
P10 - PROJECT

Jesper Fyllgraf
Ruben Henrik Mensink

Early Open Source Development:
Reports on Bootstrapping an Open

Source Project with Distributed Users

Supervisor:
Peter Axel Nielsen

Department of Computer Science

Aalborg University
Denmark

19/06-2020

This page was intentionally left blank

Department of Computer Science
Aalborg University
Selma Lagerlöfs Vej 300
9220 Aalborg East, DK
Telephone: +45 9940 9940
Telefax: +45 9940 9798
http://www.cs.aau.dk

Title:
Early Open Source Development: Re-

ports on Bootstrapping an Open Source
Project with Distributed Users

Theme:

Master Project

Project Period:
03/02-2020 - 19/06-2020

Project Group:
SD108f20

Authors:
Jesper Fyllgraf
Ruben Henrik Mensink

Supervisor:
Peter Axel Nielsen

Total Pages: 70 + frontpage
Appendix: 4
Completion Date: 19/06-2020

Abstract:

The subject of this master’s thesis is con-
cerned with three related areas of inter-
est; open source development, software
engineering processes and tools, and the
domain of qualitative research and how
these researchers use tools for qualita-
tive coding. The purpose is to explore
each area and their relation, through de-
veloping an open source real-time collab-
orative coding tool. We report on find-
ings made throughout three phases of dis-
tributed development, where each phase
is concluded with a demo. We conclude
that implementing a real-time collabora-
tion tool as a web application can be done
with a distributed architectural pattern,
where the server side uses the socket.io
component to ensure consist data between
clients. For early stage low-overhead,
rapid feedback, we use UserReport, a tool
compatible with all web applications in
order to get feedback from an anonymous
group of users. The primary results are
summarized in the implications: Early
technology familiarization requires con-
siderable time investment and can be dif-
ficult to estimate and A distributed team
needs heavier methodology weight than a
collocated team, and adjusting it requires
intentional efforts.

The contents of the report are free to use, yet any official publication referencing this requires an agreement with the authors

of the report.

http://www.cs.aau.dk

Preface

During the development of our application we have received useful feedback from a
group of anonymous users. Without it we would not have been able to develop a greater
understanding of the domain of qualitative coding, nor would we have been able to
evaluate our overall methodology and tools used in the development. Your feedback
is much appreciated. We would also like to thank our supervisor Peter Axel Nielsen
for constructive criticism throughout the whole semester and for support of the overall
development process.

iii

Table of Contents

Page

1 Introduction 1
1.1 Open source . 2
1.2 Process and tools . 5
1.3 Domain and users . 7

2 Related work 8
2.1 Agile methodology . 8
2.2 Open source software development . 10
2.3 Distributed user feedback . 14
2.4 User domain: qualitative coding . 16

3 Problem analysis 22
3.1 Bootstrapping an open source process 22
3.2 Distributed feedback practices . 24

4 The Setup 26
4.1 Development phases . 26
4.2 Development methodology . 28
4.3 Application design . 33

5 The Evolution 38
5.1 Phase 0: Project startup . 38
5.2 Demo 1 . 39
5.3 Phase 1 . 43
5.4 Demo 2 . 45
5.5 Phase 2 . 49

6 The project in retrospect 53
6.1 Discussion . 54
6.2 Conclusion . 61

Bibliography 63

Appendices 66
A First demo . 66
B Second demo . 66
C An overview of all received feedback without editing 67
D Instruction e-mails to our users . 68

iv

Chapter 1

Introduction

With software such as LibreOffice, the Linux operating system, VLC Media Player and
much more, the open source software development model has proven to be very capa-
ble of producing high quality software. A great amount of research has been made on
the subject of open source development, analyzing and describing its characteristics. It
is a phenomenon which differs a great deal from closed industrial software develop-
ment processes; the projects have no allocated resources, the developers are volunteers
motivated by non-material values, there are no restricting time-frames on delivery and
everyone can access and contribute to the source code. From a systems development
perspective, these characteristics make an interesting domain to investigate, but is it
possible to understand the processes of such a seemingly chaotic model?

In this thesis, we investigate the earliest stages of an open source project. Specif-
ically, we are reporting our experiences on bootstrapping an open source project by
developing a piece of software from scratch, using agile development as well as sug-
gestions from literature on open source development. To clarify, the source code was
made public, and we were primarily developing distributed, but there were never addi-
tional contributors apart from ourselves. Thus we are not reporting on an actual open
source project, but on how to possibly bootstrap one.

Open source is not the only area of interest in this thesis. Since we are in the general
domain of systems development, we are also interested in the development process. As
this is the bootstrapping of an open source project, and not an open source project
initially, we need to structure a process for ourselves. Additionally, since we are only
two contributors, and because we previously did a project on agile development, an
agile methodology makes sense for this thesis. A third area of interest is the domain
and its users. The domain we chose for our application concerns qualitative data coding
[1]. While several applications for this kind of data analysis already exist, research has
has described an incentive for an application with better collaborative features [2][3].
For that reason, and the fact that it is relevant for systems development research, this
domain is interesting for our thesis. As close collaboration with users is a priority in

1

agile software development, we are also interested in the users of the domain and on
getting their feedback.

Figure 1.1: Illustration of the three areas of interest contained in this report

To summarize, this thesis has a threefold nature, which is illustrated in figure 1.1.
As the figure shows, each of the areas are connected to each other, representing their
relation: We are developing an application for a specific domain with related users.
During this development, we are using agile processes and tools appropriate to our
situation, which we modify and report on incrementally. These processes and tools are
rooted in literature on both agile development and open source development. At the
end of the development process, we will discuss the processes and tools specifically in
relation to open source development; are they applicable in an open source project with
more users and open source code? What do we need to adjust to be able to extend the
project to be open source?

The remainder of this chapter will introduce each of the areas of interest, and give
an overview of their characteristics relevant to our thesis.

1.1 Open source

The purpose of this section is to introduce open source, from where the term originates,
the culture that surrounds it, as well as to introduce the difference of philosophy behind
open source software (OSS) and free/libre open source software, which is abbreviated
both as (FOSS) and (FLOSS).

The technical meaning of the term is well known, which is that code can be in either
human-readable form (the source code) or in compiled form (machine code). Open
refers to the fact that the source is available to the public, as opposed to closed source.
According to Haff [4], sharing the source code was a necessary practice in the 50’s,
60’s and 70’s, since software was viewed as a way to gain access to the real product

Page 2 of 70

(the hardware). Since software was written for specific hardware architectures, one
would often need to change the software for new purchases, adding features or fixing
bugs. To do this, one would need the source code, and it was due to such problems that
lead to the sharing of source code between users to become a culture. The values that
developed in this culture, is the idea that if someone had resolved a problem, that it was
one’s duty to share it with others. It was this sharing of the modified source code that
lead to communities of people sharing solutions to problems that they had in common.
This is the beginning of the hacker culture, the origins of which is described in the essay,
that later became a book, The Cathedral and the Bazaar [5]. According to Raymond
[5] hackerdom is a culture and a community, which is centered around technology and
that stays connected through the internet (in the early days the ARPANET). They refer
to themselves as the real programmers and hackers and not in the way the word is used
now to describe IT-criminals nor are they crackers. Hackers are enthusiasts, hobbyists,
artists, people who like to tinker with technology. They are problem solvers and thrive
on solving difficult technical problems. With these kinds of people, and their intrinsic
motivations for creating beautiful software, lie the roots of open source software; where
software development is considered more of an art or craft than engineering. The way of
thinking that permeates open source communities, seems to be fundamentally different
than that of software engineering. In section 1.2 we continue on these differences.

1.1.1 Open source licensing

The reason that software licensing is an important topic, is because without a licence,
no one is allowed to use the software that is written, since copyright law is automati-
cally applied upon creation of the software. There are two classes of licences, namely
copyleft and permissive. What distinguishes these licences is that a copyleft licence
infers mutual obligation. If we have some code that has been licenced under a copyleft
licence, and we use some of that code in another project, and then distribute the new
machine code, then we also have to make available the source code and a way for the
end user to obtain it. Permissive licenses are a contrast in this sense, since software
with these licenses can be modified and distributed (and sold for monetary gain), with-
out having to make the source code available. An example of an open source project is
Socket.io [6], which is licensed with a permissive license, specifically an MIT licence.
If we decide to use the socket.io component in our software, and we want to distribute
and/or sell our software, because it is licensed with a permissive MIT licence, then we
do not have to make the source code available.

In order to choose between a myriad of licences, the OSS-watch has developed a
tool to pick an appropriate open source licence [7].

The notion of free software originates from Richard Stallman, who developed the
GNU (Gnu’s not UNIX) manifesto (1984), the Free Software Definition (1985) and the

Page 3 of 70

GNU public license (GPL, 1986) [4]. As software was becoming more commercialized
his goal was to make sure that one was able to distribute and change the software, as
one sees fit. The words free, and libre (the french word for free), are used to describe
such software. Thereby the meaning of the word free, is as in freedom of speech and
not free as in free beer. If we want to say something about the price of software, we use
the word gratis as in free of charge. For a piece of software to be considered free/libre
it must adhere to the four essential freedoms [8]:

• The freedom to run any program as you wish, for any purpose.

• The freedom to study how the program works, and change it so it does your
computing as you wish. Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help others.

• The freedom to distribute copies of your modified versions to others. By doing
this you can give the whole community a chance to benefit from your changes.
Access to the source code is a precondition for this.

There are many nuances to these four freedom definitions, but for our purposes these
are the foundation for considering whether a software license can be considered free or
not.

There are various categories of software in terms of legality. We refer to figure 1.2
with an overview of libre software and proprietary software.

Page 4 of 70

Figure 1.2: An overview of libre and proprietary software. The figure is built around
inclusions; to illustrate that for example, all software under a GPL licence belongs to
the greater class of copyleft licenced software. According to the GNU homepage [9],
there are some cases, depending on the terminology used, of libre software that is not
open source, however the examples are few. The blue container for open source soft-
ware, shows first of all that all software under copyleft licences or permissive licences
are considered open source, but also that there is open source software included in pro-
prietary software. The red container shows that much open source software is gratis,
however, it also indicates that it does not have to be. It also shows that some public do-
main software is available for gratis download; the authors presumably mean that such
software can either be acquired through a trial period or illegally. Figure taken from [9]
with minor modifications and exclusions.

1.2 Process and tools

The topic of software engineering spans a wide range of topics [10] and stands in a stark
contrast with the Bazaar approach mentioned in 1.1. Especially in the early days of
proprietary software development, where IEEE standards were rigorously enforced and
the overall approach to software development was determined by plans and documents.
A paradigm shift occurred in 2001 where the release of the agile manifesto [11] changed

Page 5 of 70

the old way of thinking. A change of culture and values towards a more flexible style
of development, where individuals, working software collaborating with customers and
accounting for change are prioritized.

Software engineering is thought of as a set of activities. According to Sommerville
[12] these activities are software specification, software development, software valida-
tion and software evolution. In a plan driven approach, the waterfall model takes these
activities and views them as phases of development; where a single phase is executed at
a time. Incremental development is an appended approach, where parts of the system
are delivered to an end user, but still in a structured manner. The agile approach also
includes these same activities, yet development occurs in iterations, and with frequent
releases to the customer; meaning that all activities are touched upon even in small
iterations.

Another aspect of software engineering are the tools that are used. In the book Soft-
ware Engineering Body of Knowledge (SWEBOK) [10] Bourque and Fairley discuss,
rather meticulously, all aspects of software engineering; specifying all possible activ-
ities and sub-activities that software engineering can undertake, also mentioning tools
for almost each activity.

For software requirements, we have tools for both modeling requirements, but also
for managing the changing requirements, where tools can provide support for tracing
these changes. For designing software components and architectures we have methods
and also tools such as visual paradigm [13]. Different software engineering tools span
as wide as the activities themselves; tools for writing the code, such as compilers and
text editors, to tools for managing the methodology.

While these overarching paradigms decide the approach; e.g either driven by plans
or by responding to change, these are not detailed enough to be considered a process.
In his book agile software development [14] Cockburn uses the word methodology, to
describe "how software developers work together" or their "working agreement". A
methodology then describes a number of elements, that may or may not be written
down, that specifies how a team works together. In Cockburn’s view a methodology
captures thirteen such elements, which ranges from what tools the developers use in
the project, how long increments last and to what different roles there should be in
a development team. A methodology is therefore important in software engineering,
since it supports the development, such that people can work together efficiently. How
many members a team consists of and how many teams are attached to a project varies
greatly, as well as the spatial conditions of the teams.

Cockburn distinguishes between a set of different spatial conditions, where virtual is
the general term used to refer to teams not being collocated. He describes three different
spatial conditions: multi-site, offshore, and distributed development. Multi-site means
multiple independent teams working on different subsystems, offshore refers to having
designers, programmers and testers in different locations, typically in another country,

Page 6 of 70

and distributed development being that members of the same team reside in different
locations.

1.3 Domain and users

The domain we have chosen to work with throughout this project is that of qualitative
research; specifically a process used by experts in this domain. This is the process of
coding [3], which we cover in section 2.4.

A part of working with software development is working with the users of that
software. The way that is achieved is partly determined by the processes and tools
used. The purpose is then to achieve insight into the complex knowledge domain that
these users work in and to gain an understanding their needs in a tool in order for them
to be more efficient at doing what they want to do; to do qualitative research. In a
plan-driven view of software engineering, such understanding is gained through having
the users specify requirements to a system that would be beneficial to them. In an agile
approach we focus on continuous interaction with the users, where rapid feedback is
sought after.

In our case of open source development, we interact with our users through a tool;
where the choice of such a tool can limit how much understanding we gain of the
domain. In this project we only had a few users; if we had many more this would
have an effect on our process and which tools we would use, since we would have to
accommodate many users by adjusting our process and use different tools. Therefore
we have a relation between process and tools, and domain and users, where they both
affect each other.

Since this is bootstrapping of an open source project, there are more reasons to
consider a user as a valuable resource. According to Raymond [5] if the application
solves some problem then there will be enthusiasm for it while confirming the need
for the application itself. Secondly, it is possible to have users become co-developers,
which in the long term would be one of the goals of an open source project. There are
some challenges here that any open source project faces; the challenge of interacting
with users in a distributed setting and fostering potential future contributors.

Page 7 of 70

Chapter 2

Related work

While the three areas of interest introduced in chapter 1 form a large area of research
to consider, we narrow the scope by presenting relevant work related to our project.
This research will be used to give an overview of these domains, as well as to argue and
discuss the present project. We present some of the relevant themes in each of the areas,
what the challenges are, and what the literature suggests in order to accommodate them.

The first section will describe agile methodology in general, and specific related
literature we used in a previous project. The second section will present work related
to open source software development and challenges we should consider. The third
section presents research on getting feedback from geographically distributed users and
the last section describes related work on the domain of qualitative coding.

2.1 Agile methodology

Using an agile methodology has almost become a de facto in software development.
Naturally, an intangible amount of literature, including teaching material and research,
has been made on the subject. In general, the paradigm of agile development includes a
focus on prioritizing people and communication over bureaucratic processes and tools.
It has a focus on customer collaboration, getting iterative feedback, and advocates em-
bracing change, i.e. accepting the fact that you cannot predict and plan a development
process at the beginning, but you should do it iteratively.

One of the people who has made noticeable contributions to the field of agile method-
ologies is Alistair Cockburn. In a previous semester on our masters, we made a quali-
tative case study, where we interviewed employees of a software consultancy company,
and made observations on how practitioners balance agile methodologies with more
plan-driven approaches [15]. The primary literature used for the project, was his book
[14]. Being one of the authors of the Agile Manifesto [11] it is clear that Cockburn is
an advocate for agile software development. However, he suggests that in a practical

8

world, some projects allow for greater agility than others; specifically, one should bal-
ance methodology weight according to a certain situation. As Cockburn puts it: "The
question for using agile methodologies is not to ask, ’Can an agile methodology be
used in this situation’ but ’How can we remain agile in this situation?’"[14](p. 149). In
other words, some projects can be more agile than others, and this should be reflected
in the choice of methodology. To understand Cockburn’s points, it can be necessary to
understand a few of his notions [14](p. 107):

Methodology Size The number of control elements in the methodology. Each deliver-
able, standard, activity, quality measure, and technique description is an element
of control. [...]

Ceremony The amount of precision and the tightness of tolerance in the methodology.
Greater ceremony corresponds to tighter control. [...]

Methodology Weight The product of size and ceremony, the number of control ele-
ments multiplied by the ceremony involved in each. This is a conceptual product
[...]

In short, methodology weight is how large and how well-defined (ceremonial) your
methodology is. Agility and methodology weight are not synonymous notions in this
context, but there is an important relation between them. The relation is important,
because Cockburn’s overall point is that when using agile methodologies, your method-
ology should be as light as possible, for the given situation. However, not all projects
will have the same degree of agility and depends on a different methodology. A large
team with offshore developers will require a heavier methodology weight than a small
collocated team. Similarly, a critical project, like developing precise medical applica-
tions, will require a more formalized process and higher ceremony than a webshop for
a clothing line.

Recognizing the fact that the open source paradigm is very different from industrial
projects, Cockburn does touch upon the subject in relation to this theory. He argues that
the primary motivators for open source developers are intrinsic values, such as pride of
contributing and accomplishment. One key aspect that differs in this unique culture is
that all communication should be visible to everyone. In an industrial project, Cockburn
suggests that communication breaks down when teams evolve into upper and lower
class societies, creating an "us-them" separation. Similarly, in an open-source project,
all communication should be transparent to everyone, promoting a culture supporting
that there are only "us". Cockburn does not specifically mention methodology weight in
terms of open-source development, but does so in terms of distributed (virtual) develop-
ment. In short, he suggests that a heavier methodology weight can be necessary to e.g.
create essential communication between project participants. One should aim for agile

Page 9 of 70

qualities (or "sweet spots"), such as collocation, proximity to users, experienced devel-
opers and so on, however, less agile mechanisms must be used in order to be sufficient
when these qualities cannot be reached - for instance when developing distributed.

2.2 Open source software development

The popularity of open source software (OSS) development has definitely increased
since the model first emerged, and the open source paradigm is now a serious con-
tender to commercial software development [16]. Software companies are even using
resources to contribute to open source projects causing new challenges to emerge. This
section presents work related to general methodology considerations of open source
projects, as well as specific concerns including quality and usability assurance, affili-
ated participation and non developer user-feedback.

2.2.1 Open source participation

As the popularity of open source projects have grown, so has the participation of the
industry in the OSS communities. Companies not only use OSS code in their products,
they are also increasingly inclined to open their own source code. In a qualitative study,
Alami and Wasowski [17] examine how companies participate in OSS communities,
what participation barriers exist and make suggestions on how to address them.

In terms of how companies participate, they observe three types of participation
models: passive, active and latent. The passive model is observed when some compa-
nies deliberately decide to only benefit in an inbound-only manner, meaning they only
use the OSS without contributing to it. Not surprisingly, this is argued to be a con-
cern, adding no value to the community. In contrast, the active model is observed when
companies acknowledge that it is possible or even beneficial to actively contribute both
pecuniary and non pecuniary to open source projects. The latent model is a compromise
between the former two, where companies are delaying their inbound participation to
e.g. secure their own economic gains first.

Six barriers of participation are identified with associated suggestions on how to ad-
dress them. While a main focus of the paper is affiliated participation in OSS projects,
some of the barriers are not exclusive to institutions, but also individuals and commu-
nities. The first barrier deals with senior management objections. Their qualitative in-
terviews suggest that sometimes the company managers do not recognize or understand
the values of the open source concept, and therefore object to an active participation.
Similarly, the second barrier deals with concerns of companies’ images. Some compa-
nies do not want to participate, because they do not want to be associated with poten-
tially bad quality software. The third barrier is about protecting companies intellectual
property; i.e. some institutions are afraid of revealing parts of their solutions to com-

Page 10 of 70

petitors. The forth barrier concerns undefined processes and policies. In other words,
companies do not have clearly defined internal processes on how to actually participate
in such projects and therefore are reluctant to do so. The last two barriers are argued
to be relevant in the scope of communities and individuals as well as companies. The
fifth barrier concerns the potential high cost of participation. Some OSS projects may
reject contributions because they are either irrelevant or because they do not meet the
quality requirements. This means time and effort may be wasted, and can be a barrier to
participation. The sixth barrier is the challenge of trying to contribute to an unfamiliar
system. The system in this context is the social order, rituals, norms and practices of the
community. Learning such a system can be a heavy investment and thus be a barrier of
participation.

2.2.2 Open source methodology

Raymond [18] recounts his experience of running an open source project by the name
Fetchmail. Firstly, he describes two high-level approaches to open source development,
the Cathedral approach and the Bazaar approach. The idea behind the Cathedral ap-
proach is that a small group of experts design, implement and test a system in iterations,
and that when they are satisfied with the result, then they release the source code to the
public. In the Cathedral approach of development, all communication is reserved to this
group and contributions to the project is also limited to these select few. On the other
hand the Bazaar approach is focused on transparency, where code and discussions are
in view of the public and that anyone can contribute at any time. Raymond, inspired by
the Bazaar model of development used by Linus Torvalds on the Linux project, decided
to use this approach in order to empirically test software engineering theories. The pri-
mary contribution of Raymond’s empirical testing is a list of 19 lessons, where the most
significant is the following: "Given a large enough beta-tester and co-developer base,
almost every problem will be characterized quickly and the fix obvious to someone.".
The less formal version of this lesson is "Given enough eyeballs, all bugs are shal-
low.". Raymond was testing the Bazaar approach and this lesson indicates, that when
you have a large user base and a plenty of developers bugs are easily found and fixed.
It is also this lesson that indicates the core difference between these approaches; the
Bazaar approach views bugs as problems that are easily fixed when exposed to flood of
users, whereas the Cathedral approach views programming and bug finding as "tricky,
insidious and deep phenomena".

By proposing an agile methodology for distributed development, Angioni et al. [19]
outline general considerations about software development in an open source context.
In short, they describe different scenarios and literature where agile development meth-
ods have been added to a distributed context, in order to improve the processes. Ad-

Page 11 of 70

ditionally, they compare agile methodologies to open source values, and propose an
initial methodology for distributed development (MADD). While the process itself is
not elaborated thoroughly, they evaluate this MADD by surveying 41 developers from
27 different OSS projects, for a refined proposal.

In their comparison between agile methodologies and open source values, Angioni
et al. [19] find a series of apparent similarities, which they use to argue for an incentive
to their MADD proposal. Both agile development and open source projects value the
importance of being able to adapt to change. Frequent releases and continuous feed-
back from involved actors are preferred. Another apparent similarity is the emphasis
on valuing individuals, their skills and self-organizing teams. The agile manifesto men-
tions a clear priority of individuals and interactions over processes and tools [11], and
open source projects are built and owned by motivated volunteers. Furthermore, much
like agile development values, open source communities value communication and pro-
mote mutual respect in projects with possibly hundreds of developers around the world.
Frequent and incremental debugging to ensure code quality early instead of a late, high-
cost debugging is also a resemblance between the two. The main difference, however,
is that of distributed developers. While agile methodologies such as Extreme Program-
ming and methods such as pair programming promote close proximity of developers,
this is an obvious challenge in an open source context, where distributed development
is a given.

In relation to this comparison, and the feedback from the survey, the MADD pro-
posal consists of four areas: Communication, planning and design, coding and testing,
and feedback. In terms of communication, their recommendations include establish-
ing interpersonal relationships between the members, making a common vision and the
progress transparent, using tools such as dictionaries to define the users (with mails,
roles, and more), instant messages, and wikis for fast knowledge sharing. For planning
and design, their recommendations are to break down and describe the features into use
cases or user stories, use periodic releases with different versions of the software, use
different levels of detailed planning e.g. quarterly, monthly and weekly, and to evaluate
the process between phases. In relation to coding and testing, their recommendations
when having a diverse set of developers are to promote coding standards, testing and
continuous integration to continuously verify quality of the system. Lastly, the recom-
mendations for feedback include getting frequent feedback from the development team
as well as the customer, to avoid high cost of changes. Additionally, they recommend
using collaborative management of code quality, by methods such as pair programming,
unit testing and automated tests.

Page 12 of 70

2.2.3 Quality and user-centered design

The success and potential of OSS is apparent. However, as OSS development becomes
more popular, and software companies contribute to OSS and use it in their commercial
products, new challenges emerge. Hedberg et al. [20] discuss challenges about quality
and usability assurance, specifically when OSS target a larger user audience, including
non computer professionals. Specifically, they present current open source practices
in terms of quality and usability assurance, and describe recommended changes. It is
important to make a distinction between the notions usability and user-centered design
(UCD), since they are not the same. Hedberg et al. [20] have a focus on usability
throughout their paper, but describe a strong relation between the two notions. Where
usability is concerned with how well specific goals can be achieved by specific users of
a product, UCD is a more vague concept, focusing on a user-driven approach to devel-
opment. However, they are using the terms in combination or intertwined, because they
encapsulate challenges concerning the inclusion of users in open source development -
or specifically, distributed development. Thus the conclusions of their paper still apply
to the context of this thesis, even though we are not specifically performing usability
testing.

Hedberg et al. [20] explains that producing a high quality OSS is motivated by the
fact that the developers are using the software themselves. There are usually no strict
processes to follow, but instead, the development follows a more ad-hoc manner. There
will typically only be a lead developer or a small core team to be in charge of the overall
architecture. This introduces challenges in the new situation, where the end-users no
longer only consist of co-developers, but also non computer professionals. This will
in turn result in higher quality expectations. However, while proven quality assurance
models, such as CMMI and ISO 15504 exist, these are not applicable in an open source
context. OSS development is challenged by developers being distributed, dynamic hi-
erarchies, motivation factors and even culture. The recommendations presented in the
paper to overcome these challenges include stricter methods and processes as well as
advancing quality assurance to development phases before the product is delivered to
users. Specifically, they recommend producing plans and documents to support com-
munication, using inspections and reviews, pay more attention in test coverage, using
test-driven development and testing performed by developers and not users.

Hedberg et al. [20] describe user-centered design (UCD) as a vague concept with a
lot of definitions and research attached to it. Nevertheless, the area of UCD is popular,
and all its methodologies include a focus on the understanding of users and their work
context as well as a clear incentive to get early and often feedback from users. However,
usability assurance is also challenged by introducing new non computer professionals
as users. The developers do not have the necessary knowledge and skills to do UCD
in OSS development and there are often no resources to do it. The recommendations
to overcome these challenges are much aligned with general UCD suggestions: under-

Page 13 of 70

stand and specify the users and their context of use, actively involve the user and gather
early and iterative feedback.

Another paper dealing with code quality in OSS communities is that of Alami et
al. [21]. Specifically, they examine code reviews in this context, why they work, and
find that they may be an important factor in the high quality software produced in these
communities. They find that code reviews can be an emotional practice, but seem to be
important for some open source communities. By interviewing participants of an open
source community, and participating in meetings, they formulate 20 proposals for how
OSS code reviews can be improved.

In general, they find that the underlying reason behind why code reviews work in
these communities is hacker ethics. In other words, the contributors of such a commu-
nity are motivated by virtues such as passion, caring, creativity and joy. Furthermore,
they found that non-material extrinsic motivators, such as gaining reputation and learn-
ing, are key factors as well. They summarize six observations and suggest actions/inter-
ventions for each of them. The first observation is about having a work environment that
embraces rejection. Thus it is important to welcome critique and wanting to improve.
Along these lines, the second observation is about the iterative improvement cycle that
code reviews enable; programmers should appreciate the process of iterative feedback.
Similarly, the third observation deals with the importance of embracing passion by de-
velopers. Open source communities are driven by volunteers, and their passion should
be cultivated. The fourth observation states that the ethic of care is a positive contrib-
utor for code reviews, and that should be supported. While acknowledging that there
is a lack of research in the area, the fifth observation is about the incentive to nurture
engineers’ intrinsic motivators. Likewise, the sixth observation states that the extrinsic
motives are important drivers for the OSS contributors, and that they make code reviews
effective.

2.3 Distributed user feedback

User testing is almost an obligatory practice for software engineering. However, while
the advantages of such practices are apparent, it is argued that they require considerable
resources. In a qualitative study, Bruun et al. [22] compare traditional usability testing
- i.e. testing in a lab setting - to remote asynchronous testing, and discuss their trade-
offs. Practices of usability testing, such as planning for tests, establishing test settings,
conducting the tests and analyzing the results, require substantial resources and can
result in software teams neglecting the practice altogether. These considerations have
introduced remote methods, where the evaluators are separated in both time and space
from the users.

As a benchmark for the remote methods, Bruun et al. [22] use conventional laboratory-

Page 14 of 70

based think-aloud testing. These results are compared to the results of three different
remote methods for user testing, in terms of critical, serious and cosmetic usability prob-
lems. All the methods are used on an existing mailing system by 40 test users; 10 for
each method. The first method is called user-reported critical incident, where the users
are supposed to report the potential problems themselves. In their study, this was done
immediately using a web form. The second method is a forum based condition, where
the users are asked to post and discuss their findings with each other. The last method
is a diary-based longitudinal approach, where users are asked to report problems in a
certain time frame with no restrictions on the format.

The overall findings made by these comparisons were in terms of how many prob-
lems identified, and how much time was spent on the entire usability method. In short,
a significantly higher amount of problems were identified in the traditional laboratory
setting (approximately double) compared to all of the remote approaches. However,
all of the three remote approaches required less than a third of the time to complete,
making remote usability testing an appealing practice for many software projects.

An important thing to note in relation to the present report, is that they discuss the
potential challenge of doing usability testing early in the development process. Since
the users are on their own in these remote approaches, they have no possibility of sup-
port, which can influence how such a method can be structured.

A more recent paper also discussing user feedback in the context of OSS develop-
ment is that of Llerena et al. [23]. They argue that one of the main challenges in OSS
applications is poor usability. Similar to the related work presented above, they suggest
that OSS developers have tended to develop software for themselves, however, as the
popularity of the open source paradigm has grown, the communities are unsure of who
the users actually are. Additionally, a lack of resources and the fact that the developers
are volunteers are obstacles preventing thorough usability testing.

In a multiple case study, Llerena et al. [23] adapt four user feedback techniques to
fit the OSS development process. Since these techniques often involve direct contact
with users, some OSS characteristics present apparent challenges to overcome; devel-
opment is feature driven, developers are geographically distributed worldwide, there
are a shortage of resources, and it has a culture that is alien to interaction designers.
Since the existing user feedback in OSS development mainly focus on usability testing,
they purposely include two adapted techniques focusing on requirements analysis. The
four techniques adapted for the case study are personas, user profiles, post-test infor-
mation, and direct observation. The former two are mainly techniques for requirements
gathering, and the latter two for usability evaluation. In total, the techniques were ap-
plied to four different OSS communities; one for personas, one for user profiles, and
two in combination with direct observation and post-test information. The techniques
were analyzed to identify adverse conditions in relation to OSS development resulting

Page 15 of 70

in suggested adaptions to overcome them.
The main conclusions and contributions of this study, are the identified obstacles

for each of the techniques, as well as their suggested associated adaptions, made by
observing and evaluating the techniques in the case studies. Since the developers are
distributed across different time zones, they found it difficult to arrange meetings and
have consistent communication. To overcome this, developers have to communicate via
e-mail, and users have to participate via online wikis. Additionally, usability experts are
required to analyse and interpret results from some of the techniques. The suggested
adaption here, is to replace the usability expert by a team of junior experts supervised by
a senior expert. Another major concern was that of user participation. Even identifying
the users can be a challenge, but making them engage in voluntary usability testing
presented an even greater obstacle. To accommodate this, users can participate online
via online surveys and social networks. Also, if there is a shortage of actual voluntary
users, a suggested adaption is to include biased user sampling including family and
friends of the contributors. Besides the obstacles and adaptions, Llerena et al. [23]
present guidelines for each of the user feedback techniques, i.e. how they can be adapted
to a distributed open source context. For instance, while direct observation presents
clear challenges, this can be overcome by the aforementioned biased user samples as
well as using online tools for information sharing, to simulate the observations.

2.4 User domain: qualitative coding

Within the field of qualitative research, one of the methods to process qualitative data is
through coding. Through the coding process the researcher gains greater understanding
and insight into the data, as well as organizing data according to codes. The purpose of
the process is to extract themes, that are based on the codes and categories, in order to
prove an existing theory or generate a new theory, according to Saldana [3].

Page 16 of 70

Figure 2.1: A model that describes going from qualitative data to codes and then to
theory for qualitative inquiry. Figure adapted from [3].

The coding process takes as input raw data and at least a single researcher and
through the process of coding, the researcher aims to organize qualitative data and find
patterns within this data. The format of the data can be text, audio, video, and the source
of the data can be interview transcripts, participant observation field notes, journals,
documents, literature, artifacts, photographs, video, websites, e-mail correspondence
etc.

The way data is organized is through the use of codes. The purpose of the code is
to act as a container, that captures the essence of a piece of data. After a researcher has
a created a code, subsequent pieces of data can be grouped as to belong to a code. This
is the way that data is organized. The part of the data that is selected is referred to as
a quote of the data, and the quote always belongs a code or perhaps to several codes.
Analyzing patterns in the data is done by linking codes to other codes. At a greater
abstraction level we have categories. A category contains a set of codes, where the
category itself can be expressed as the essence of the set of codes it contains, thereby
creating a hierarchy in the following way [3]: In the coding process new categories,
subcategories and codes are discovered and therefore a great amount of editing of these
codes and categories takes place. The specific data that is summarized by a code, are
quotes and the following example shows how quotes are linked to codes.

Page 17 of 70

Category: Teacher skills

Subcategory 1: instructional skills

• Code: Pedagogical

• Code: Socio-Emotional

• Code: Style/Personal expression

• Code: Technical

Subcategory 2: Management skills

• Code: Behaviorist Techniques

• Code: Group Management

• Code: Socio-Emotional

• Code: Style (overlaps with instructional style)

• Code: Unwritten Curriculum

Figure 2.2: Example of codes in a hierarchy. Example taken from [3].

Figure 2.3: An example of how codes are linked to quotes. We have two codes; 1LIN-
ING UP FOR LUNCH and 2MANAGING BEHAVIOR and three quotes, where the
numeric value of the code indicates the quote (in this case text). Example taken from
[3].

Saldana [3] recommends a pre-coding activity, which includes circling, highlight-
ing, bolding etc. important quotes or passages, through the use of software such that
these quotes can be accessed at another time.

The coding process is a cyclic process, which in software engineering terms would
refer to as coding in multiple iterations, and during this process the researcher gains
greater insight into the data. Because of the iterative nature of this process, there is

Page 18 of 70

often a need to revisit codes; either adding new ones or editing the existing ones, and
adding new links between exiting codes. Although this process is considered to be
individualistic, there is an advantage in having multiple researchers code the same data.
Since this kind of analysis is prone to one’s own perception of the data, it can be useful
to compare one’s analysis to the analysis of another researcher. However, according to
Nielsen [2], this process can become more fruitful through researchers collaborating,
not only for reducing the reliability of the analysis, but also to "inform, influence and
justify through dialogue" in order to achieve a consistent analysis.

2.4.1 Applications supporting the coding process

In this section we document the part of our analysis that pertains to the technical part
of the problem analysis. Since the purpose of the project is that of bootstrapping an
open source project, as described in section 3.1, and to work with some level of user
feedback in a distributed setting, there remain the following questions:

• What kind of system or application should we develop?

• Which features should the application have or focus on?

• Which technologies should we use to implement the system or application?

In section 1.3 we started by limiting the scope of the project to be exclusively about
qualitative data analysis, where we in section 2.4 discussed this process at a higher
abstraction level. The question that we ask is: what feature of functionality do cur-
rent qualitative data analysis tools not support?. To answer this question we start of
with the whitepaper [2]. The purpose of the whitepaper is to explore how qualitative
data analysis tools support the process of coding, as well as evaluating the potential of
collaborative coding and how tools support this collaboration.

We start off with table 2.4, which gives an overview of tools that were available in
2012.

Page 19 of 70

Figure 2.4: A list of qualitative data analysis tools. Table taken from [2].

We are presented with six applications, two of whom are free, which are the ones
of primary interest since we will be developing an open source application. At the time
of writing this report (February-June 2020) we cannot find any reference to Knowdoo;
neither through the provided link Knowdoo.net nor through search-engines. The open
source project CAT is still available, however documentation has not been updated since
2009 and the source code, although available for download, has no public repository nor
is there a mailing list or anything that indicates a community around the software [24].
We searched for other open source projects. We found the project RQDA [25], which
is a small python program written by a single developer, which focuses on fundamental
features, such as creating codes and marking quotes. A primary feature of RQDA is
exporting codes and quotes to R, which has a lot of packages for handling data presen-
tation. Similarly, from an online discussion on GitHub, from the 2018 unconference
hosted by rOpenSci an open science hackathon for developers; there was a discussion
on open source qualitative coding tools [26]. The request was for a coding tool, not
necessarily an analysis tool, where the tool should be be simple to use where the user
used the analogy of a paring knife, in order to describe the characteristic of the required
product. The user gives an example of codes and quotes, the same as we gave in sec-
tion 2.4, where pieces of text can be coded by setting a ’1’ indicating that the coding
tool not necessarily has to be based on a graphical user interface. Since this conference
was hosted specifically by a community focused on using R, this coding should also
be able to export codes and quotes. Another open source project QualCoder developed
by Colin Curtain a lecturer from Australia [27], which includes many features, most
notably being able to handle many data sources, such as text from many file formats, as
well as audio, video and image data. What we gather from these sources is that there
is potential for an open source community. However, we also have proprietary appli-
cations namely NVivo, atlas.ti, HyperResearch, and Dedoose. Nielsen [2] provides a

Page 20 of 70

comparison of these applications, as figure 2.5 shows.

Figure 2.5: Differences between proprietary applications. Figure taken from [2].

While these applications have a range of features, the one feature that is missing,
is that of real-time collaboration. Real-time collaboration is a well known feature of
applications such as Google docs and Overleaf, which allows users to concurrently edit
a text document in real time. However, since this whitepaper was written in 2012,
some of these applications may support this feature. Currently, ATLAS and Dedoose
support real-time collaboration, NVivo supports collaboration by synchronization and
HyperResearch supports none [28][29][30][31]. Since there are no open source alter-
natives to the proprietary applications in terms of real-time collaboration, we will use
that feature as our starting point.

Page 21 of 70

Chapter 3

Problem analysis

In chapter 1 we limited the project to three areas of interest; (1) open source devel-
opment, (2) software development processes and tools, (3) domain and users, and in
chapter 2 we presented theory related to each of them. In this chapter we examine the
described theory and present research questions that address the three aspects.

3.1 Bootstrapping an open source process

As we have presented, the open source development methodology is a unique paradigm
which does not conform to traditional industrial methodologies. The hacker culture,
as introduced in chapter 1, entails different motivators for participants of OSS com-
munities, and this has to be reflected in the work processes. In his book [14], Cock-
burn outlines these differences, in a tangible way. Using an analogy of a cooperative
game, specifically rock climbing, he describes software development. He uses game
terminology to describe the characteristics of agile software development, such as be-
ing cooperative, goal-seeking, skill-sensitive, using tools, require training, consisting of
teams, and having individuals with talent. For instance, both rock climbing and agile
software development relies on cooperation, communication and aim to reach a goal;
reaching the top or producing a piece of software. Though open source development
is still goal-seeking, the goals are different. Instead of trying to reach the next release,
or finishing an application, OSS developers are not usually restricted in time-frames,
but may have a goal to have fun or make something good. Cockburn mentions children
carpet wrestling or musicians playing music as a better analogy. The point is that these
characteristics of the hacker culture should not be neglected. If open source communi-
ties are dependent on having skilled, motivated contributors, we have to be careful not
to change the circumstances in a way that drives them away - for example by enforcing
a lot of heavy bureaucratic rules and processes.

Although we have to be careful not to ruin the culture that makes up the open source
communities, we have presented literature in chapter 2 that introduces a series of con-

22

siderations regarding OSS methodologies. The remainder of this section will summarise
these:

• A number of barriers can prevent people from participating in OS projects. This
includes individuals, communities and industries

• Agile development and open source systems share similar values. This should be
considered when designing a methodology for OS development

• As OS development becomes more popular, quality expectations will increase.
OS characteristics such as distributed development challenges these requirements

• Getting the right user feedback is a valuable practice in OS development, how-
ever, existing methods are difficult to adopt in this context

Alami and Wasowski [17] identified six barriers of participation, that could lead to
so called passive participation, where participants only use the code, but do not con-
tribute - or even prevent participation altogether. Although these considerations and
their related resolutions are relevant, they are mostly related to the side of the contrib-
utor. For instance, the barrier regarding objections from senior management are sug-
gested to be resolved by improving communication between developers and manage-
ment. However, the barriers regarding a high cost of participation and being unfamiliar
with the system can be accommodated by the OS community. Alami and Wasowski
suggest that the communities should consider whether some of the participation costs
should be reduced and if the communities should be more helpful to integrate newcom-
ers. For instance, experienced OSS contributors could mentor inexperienced people
trying to enter the project.

Similar to some of the points made by Cockburn in his cooperative game analogy,
Angioni et al. [19] suggest that open source development is very similar to agile values.
Thus when designing methodologies for this context, these values are important to re-
flect; transparent communication, iterative development, continuous integration testing
etc. (as described in section 2.2.2).

As described by Hedberg et al. [20], the expanded use of OSS result in higher ex-
pectations to quality assurance. Due to the unique characteristics of OSS development,
this may not be a trivial problem. Contributors can be distributed across the world,
hierarchies can be dynamic or unclear, and the motivations of volunteering developers
may be misaligned with thorough testing and code reviews. Hedberg et al. [20] rec-
ommend using stricter quality assurance methods to resolve this. A somewhat different
approach is presented by Alami et al. [21]. They suggest embracing the motivating
factors of the hacker ethics (or culture), and create an environment promoting these val-
ues. For instance, as these volunteering contributors are motivated by intrinsic values,
such as writing good code and improving themselves, they should welcome critique and
thorough code reviews.

Page 23 of 70

Getting the right user feedback is generally a valuable practice for software de-
velopment, including open source projects. However, characteristics such as having
distributed developers all over the world create problems to overcome. These are elab-
orated in section 3.2, on user feedback.

As the applied literature have argued, the above problems are relevant in the context
of open source development, but what does this mean in terms of bootstrapping such a
project? We have not been able to find any research on how to initialize an open source
project, or how the process should look at its early stages. Combining the problems and
suggestions from this literature, practically forms a catalogue of development processes,
but how can they be used at the start of a project? What should be prioritized and what
is less relevant, when a project is small and at its early stages? Our research question is
the following:

• RQ1: How can we bootstrap an open source project?

3.2 Distributed feedback practices

One of the interesting aspects of open source is how to handle feedback of users, con-
sidering that open source development is challenging due to spatial and temporal dif-
ferences; there is a similar challenge in interacting with users. In section 2.3 we cov-
ered literature that shows that remote feedback is certainly possible. The problem is
that these methods are geared towards usability evaluation and not for utility evalua-
tion. These usability evaluation methods from Bruun et al. [22] also do not consider
the resource constrained context of open source communities and volunteer users, as
described by Llerena et al. [23].

Nielsen [32] in his book Usability Engineering gives an overview of what utility
and usability entail, which figure 3.1 illustrates.

Figure 3.1: We see that although utility and usability are closely related, both being a
subcategory of usefulness, they do differ. Figure taken from [32].

Page 24 of 70

The core difference being that utility refers to the functionality of the system, e.g.
does the system have the necessary features, such that the user can perform whatever
task he or she might want to accomplish. Tarkkanen et al. [33] conclude, after reviewing
173 usability problems from three separate usability tests, that early usability testing
with a think-aloud protocol and open task structure measures both utility and usability
equally well. They report that the number of utility problems ranges from 51% to
74%. Our problem is then reduced to adapting one or more of the usability evaluation
techniques to that of utility testing.

We formulate research questions based on the triangle described in the beginning of
chapter 1, which were expunged in the previous sections: 3.1, 3.2, and subsection 2.4.1.
The research questions are as follows:

• RQ2:

– RQ2.1: What kind of functionality, architecture, and software components
can be used to build a real-time collaborative qualitative coding tool?

– RQ2.2: How can we apply user feedback methods in the context of an open
source project, with voluntary distributed users?

– RQ2.3: What kind of tools and practices can be used to support a minimal
open source process in the context of distributed development?

Page 25 of 70

Chapter 4

The Setup

Our methodology is reminiscent of the Cathedral approach, which is one of the open
source approaches we described in section 2.2.2. The characteristics of our method-
ology are as follows: we are a small distributed team that designs, implements and
releases software that is evaluated against a distributed user base, while all our com-
munication is kept internally, yet the source code is made available at any time. If we
compare these characteristics to the Cathedral approach, then it becomes apparent that
there are a lot of similarities in terms of the overall approach. At the same time we can
also say that we are not developing with a Bazaar approach, since we are not transpar-
ent with project decisions, nor do we have any procedures for contributing or recruiting
new developers.

In section 4.1 we will present a timeline and the phases included in our development
project to give an overview of the whole first. In section 4.2 we will elaborate on this,
and describe our methodology in more detail, providing arguments for the choices we
made regarding practices as well as tools.

4.1 Development phases

As figure 4.1 shows, our development process consisted of three general phases and two
demos. At each demo, the application was made available on a website, to get feedback
from relevant users.

26

Figure 4.1: Overview of the development phases (timeline)

Phase 0

Phase 0 was mostly about setting up the project, and developing a minimal application
viable for the first demo. We acknowledged the fact that we had to invest some time into
learning the technology stack before we could start developing anything. As we became
more familiar with the technologies, we made a few sketches of an initial application,
based on what we already knew about the domain. Then we set up project formalities
including an initial kanban (Trello), configuration management (GitHub), continuous
integration (Heroku and Netlify), and a tool for user feedback (UserReport). The rest
of phase 0 was spent on developing the application to be ready for the first demo.

For the first demo, we made the application available to the users for one day, and
collected their feedback through the tool UserReport, which was attached to the site
itself.

Phase 1

In this phase we started using sprints. We had two sprints in this phase, which were
followed by a demo. Only one sprint was planned initially, but as we did not have much
new functionality to show for a demo, we planned another sprint for this phase. Thus
the second sprint is a small extension of the first, to complete the leftover tasks.

Since we started using time-boxed sprints, we would also do planning, which con-
sisted of translating all the feedback from the first demo into work items, and creating
a sprint backlog to be done throughout the sprint. Additionally, we held daily stand-up
meetings online using Discord, where we discussed the features we were working on.
At the end of phase 1 we held a sprint retrospective, however, only for the last sprint,
discussing how the sprint had gone and what should be changed for the next sprint.

For the second demo, after having written an e-mail instructing our users, the appli-
cation was also made available to the users for a day. For this demo we also used the

Page 27 of 70

tool UserReport just as with demo 1 to collect feedback.

Phase 2

Phase two started with wrapping up from phase 1, and then focusing on other tasks
than development. We did sprint planning and we did daily stand-ups in the same way
as in previous phases, where another sprint was planned that should have lasted from
18.05.2020 to 01.06.2020, however, due to time constraints we ended the sprint early
on 27.05.2020, and since we did not have much extra functionality, we ended up with
not releasing a demo to our users. The purpose of the sprint was changed midways, in
order to experiment with significantly increasing the level of ceremony with regards to
pair programming. The reason that we ended up with not much extra functionality was
because did a lot of refactoring, which was not planned initially, but was necessary for
further implementation. Screenshots of the application from each demo, as well as the
feedback received, can be seen in appendix A and B.

4.2 Development methodology

In this section we will describe the choices of our development methodology as it was
for the first phase. Changes to the methodology are described in chapter 5.

We know from the principles of methodology design, which we described in section
2.1, that a team with a few members need very little methodology. Our project is of very
low criticality and as such we need not have high ceremony for the practices that we
establish. In the first two weeks of the initial phase, we were collocated, and for the
rest of the development we were distributed, where our users were distributed during
the entirety of the development.

Activities, Milestones, and Process

Cockburn describes activities as to mean what people in the team spend their time on
during the day, milestones being measures of progress and process as how activities are
strung together over time. We described milestones with very low ceremony, i.e. we
talked about what we wanted to achieve, not writing down any formal milestones, in
the following phase in terms of functionality and the milestone would then consist of a
set of tasks to be completed, which would reside on our Trello board.

We have no explicit document that says how much time we spend on different types
of activities. In phase 1 we spend much time learning about technologies, tools and
operations, and we spent some time on designing and programming.

We conducted sprints in the following way:

• Sprint planning on the Friday before the start of the sprint, which would be the
following Monday.

Page 28 of 70

• Talk about the overall goal of the sprint (milestone).

• Possible distribution of tasks of this sprint

• The length of a sprint is decided at the sprint planning.

Daily stand-ups had the following structure:

• Meetup on voice-chat at 10:00 AM each weekday

• Status of work (current task)

• Discuss encountered problems

• Possible distribution of new tasks (switching tasks)

• Evaluation and possible revision of the current sprint

The daily stand-ups ensure that we keep the level of communication and knowledge
sharing up. Increments, in the form of sprints, allows us to set milestones.

4.2.1 Tools

For web development, we use WebStorm and the open-source text editor Atom. We use
Git as our version control system, and GitHub as the hosting site. Considering that this
is how most open source projects host their code base, and that Git is the only system
we have experience with, these are good choices for our team.

Branching, continuous integration and continuous deployment

We decided to branch based on features. When starting on a new feature the pro-
grammer branches from the master branch, work on that feature while committing new
changes to that branch everyday. When the feature is finished the programmer would do
some manual testing and then integrate it on the master branch, and delete the branch
that was used to develop the feature. This means that our integration cycle is not a con-
stant value, such as every day or every three days, but rather it is dependent on when
a feature is finished. Integrating changes will, however, not take any longer than the
duration of a sprint.

Since we needed a way for users to be able to test the application and since it is a
web application, the most straightforward way is to host the application in the cloud.
We tried several different cloud services, however, we ended up using Heroku [34] for
hosting the back-end and Netlify [35] for hosting the front-end. These services also
come with built-in support for continuous integration (CI) and continuous deployment
(CD). The pipeline is illustrated in figure 4.2.

Page 29 of 70

Figure 4.2: Deployment pipeline with Heroku and Netlify cloud services.

Bug tracking

For bug tracking we initially referred to Serrano and Ciordia [36], where a number
of bug tracking tools are compared. While the paper is from 2005, the most notable
systems mentioned are Bugzilla and ITracker, where Bugzilla is a system that is still
currently used. There are many more such systems, and the authors of the paper provide
a list of 70 other bug tracking tools in addition to the two mentioned [37]. The most
important things for this project, considering we are two developers with a handful of
users, are ease of use, quick setup, and low maintenance, and since we have not used
any bug tracking tool before, familiarity plays no role. It would make sense to use the
industry standard Bugzilla, because of its wide adoption, however, this would require us
to install the system and grant access to our users to this system. Another argument for
using Bugzilla is that when our open source policies and methodology is established,
it would be easier to transition from closed development to open development. At first
glance, the bug tracking tool MantisBT seemed a good fit for this project. It is open
source, but there is also a paid cloud hosted version available, therefore we spent some
time researching the possibility of hosting it ourselves, which we did, but after installing
the system we experienced that it would take some overhead to manage the system. If
we also want to have users be able to add and track bugs, then it would either require
users to create an account for the system or we would have to create accounts for them.
In either case more effort is required. Bug tracking was therefore limited to being a
checklist on a single card on our kanban. This may seem as limited functionality, since
bug tracking tools have a range of specifiable attributes of a bug, such as which browser
the bug was encountered with. For the beginning of this small OSS project, we prefer
low overhead by writing bugs in a checklist on our kanban.

Page 30 of 70

Kanban

We have previous experience with the kanban style work visualization tool [38]. We
use the kanban for maintaining an overview of the project as well as visualizing what
work items are in which state. The specific tool that implements the kanban is the
web application Trello [39]. We have the following states, that a work item can be in:
(1) Backlog, (2) Sprint backlog, (3) Implementing/doing, (4) Needs Review, (5) Done.
Figure 4.3 is a screenshot of our kanban with the mentioned columns.

Figure 4.3: Kanban columns. These are the columns we had in phase 0.

Each work item contains a description of a feature or something that has to be done,
such as setting up continuous integration or a demo, and is then labelled with one or
more labels. Work items are labelled with one of the following labels:

Figure 4.4: We have included some non-development labels since this project includes
both the development of a web application, but also consists of other non-development
tasks.

We have no entry or exit criteria for changing the state of a task, where this is done
mostly ad hoc during daily stand up or during sprint planning. The difference between

Page 31 of 70

the needs review and done is that a work item is considered done when it is integrated
into the master branch. During development we added labels as needed as well as
adding extra columns that happened during development, and the reasoning for these
changes we describe in chapter 5.

Feedback tool: UserReport

In order to get frequent feedback from our users we used the tool UserReport. User-
Report is an external service, which provides websites (and web applications) a way
to directly leave feedback on the web application without having to switch to another
’tab’ or other program to leave feedback. An example of the UserReport interface can
be seen in appendix A. To use UserReport we add a script tag to the index.html file of
our web application. The script tag is a single line of HTML, that is copied from the
UserReport service. The way we would interact with our users would be per e-mail,
instructing them how to engage wit the application as well as how to leave feedback.
The e-mais can be seen in appendix D.

Users can submit ideas for features and submit bugs. The screen that is displayed to
the users can be seen in figure 4.5

Figure 4.5: Screenshot of the UserReport interface where users can submit ideas and
bugs.

This is the interface that is provided by UserReport. All feature requests are visible
to all users, where a voting mechanism is provided, allowing a user to vote on any
feature requested by another user. A user can also submit a bug that will be anonymous
to other users. The tool is limited with regards to customization; we cannot add nor
subtract any functionality. The advantage of this tool is that setup takes very little effort
and that it can be applied to any web application, regardless of underlying architecture,
since the feedback option will be available on any web application page. Disadvantages
are that bug descriptions are limited to text and no options can be specified, such as
what browser was used or browser version. The user could specify such details. Feature

Page 32 of 70

requests are also limited to text descriptions. With these tools in place, most notably
a CI/CD pipeline and UserReport, we can frequently deploy new features and acquire
rapid feedback of users.

4.3 Application design

In this section we describe a set of features and components that are necessary to do
basic collaborative coding. These features are based on the whitepaper from Nielsen
[2] and from the description in section 2.4. This is the design created at the beginning
of phase 0 from figure 4.1. The functionality that is essential to the coding process:

1. That all users can create codes, and that all users independently of who created
the code, can dispose of it, and that these changes are always reflected among all
clients in real time.

2. That all users can highlight text in a document, and that all users independently of
who created the highlight, can remove the highlighting and that the highlighting
is reflected among all clients in real time.

3. That data is persistent, such that users can return to the document at a later stage
and resume the coding activity.

Figure 4.6 illustrates the intended data model, where we only implemented a minor part
of it.

Page 33 of 70

Figure 4.6: The red square marks the part of the data model that was implemented.

We ended up only implementing the red part of the model, since we only consider
codes, quotes, and memo to pertain to essential functionality.

We started off the user interface design with the following three sketches 4.7, 4.8,
and 4.9.

Page 34 of 70

Figure 4.7: Partitioning of the UI. The idea was to divide the user interface into multiple
sections, and how to achieve that with HTML.

Figure 4.8: Specific buttons and layout possibilities. Here we added ideas in terms of
where specific functionality could be located in the user interface.

Page 35 of 70

Figure 4.9: An extracted view of quotes that are doubly linked to a code or overridden
by other quotes. Our considerations with this view, was to be able to open a separate
view, in order to view quotes that were overlapping. We speculated that this would
occur often, because of the collaborative functionality in the application.

We based these sketches on the previous description on necessary functionality, the
literature on qualitative data analysis and our own experience with tools that support the
process of coding.

4.3.1 Technology stack and components

We decided to use the MERN web stack (MongoDB, Express, React, Node), for the
development of the application. This stack is fully open source, therefore when up-
dates are made to these technologies our open source project will evolve with the open
source community as a whole. In our case this has the drawback, that we have no ex-
perience with any of the technologies in use, nor do we have any experience with web
development in general. However, considering that our users are distributed it will be
much easier for us to have our users visit a web application from their browser, than to
have them install an application on their own system. Continuously deploying a web
application also takes less time in general, and therefore this is the preferred choice.

MongoDB is an open source database management system that is based on NoSQL.
It contains JSON objects, which are commonly used in web applications. On the other
hand we have SQL databases; these are stricter in terms of having to define a schema,

Page 36 of 70

whereas NoSQL JSON objects can contain any attributes without having to redefine
their attributes. This is important for this project, because we are exploring the problem
domain and we therefore prefer ease of modification. Express is a web application
framework for Node, that can be used for creating web services and web application
programming interfaces (API), we use it to write a REST API on the back-end. A REST
API may not be necessary for this project, however since the MERN stack advocates
this approach we will use it as well. React is a library that contains functionality for
re-rendering the HTML DOM (the UI), when there is a change in the data model. This
makes it useful to create an interactive web application that reacts to user input, for
example when a user adds a code, then React handles the re-render automatically to
display the change.

We use the open source component Socket.IO to implement real time collaboration
between clients [40]. Clients will have a local copy of all the data, and each time a
client adds a quote or code, this needs to be reflected at the other clients. Socket.io can
be used to broadcast such a change to all clients.

Page 37 of 70

Chapter 5

The Evolution

In the previous chapter, we described the structure of our development process, and
how our associated methodology was initially designed. In this chapter, we describe
the observations and findings made throughout our development phases, and how the
methodology changed. As this thesis is based around the three areas of interest intro-
duced in chapter 1, we will present findings for each of them. This will be done in-
crementally with respect to each of the phases illustrated in figure 4.1. In other words,
we will go through each of the phases following phase 0, and the demos, and present
what we learned with respect to each of the three areas; (1) open source development,
(2) processes and tools, and (3) domain and users. The purpose of this format is to
give a clear overview of our observations and findings, however, we do note that a clear
separation between the areas can not be done, since there are natural relations between
them.

5.1 Phase 0: Project startup

As this phase was primarily about setting up the project, we do not have notable findings
from the stage. At this stage of the project, we barely had any defined development
processes, such as daily stand-ups or code sprints, and we were still collocated for a
portion of this phase. The focus was to setup the necessary tools, and design the initial
processes, as described in section 4.2.

As described by Angioni et al. [19] in section 2.1, open source development de-
velopment values have a lot in common with agile methodologies. Also, open source
systems are comprised of volunteering contributors with different intrinsic motivations,
creating a unique hacker culture. Using Cockburns terminology, these facts solicit a
light methodology weight; few elements with low ceremony. This worked well at this
stage, because it did not create unnecessary overheard, and because elements of the
three areas of interest were still uncertain.

38

5.2 Demo 1

The first demo marks the beginning of where we started to develop as our methodol-
ogy from section 4.2 prescribes. Naturally, every software development project needs
a start-up phase like ours, where code repositories and task management is set up, thus
not much can be said about phase 0. On the contrary, we did learn something about
the three areas of interest, during the first demo; primarily about the domain and our
approach to getting feedback from the users.

Domain and Users

In terms of domain knowledge, we received an array of useful feedback concerning
new features, the purpose of the application, and on the feedback process itself. We
have summarised the feedback as follows:

• When selecting a code, the relevant quotes should be highlighted in the text. This
helps interpret how collaborators are working, and gives an overview of related
codes.

• Shortcuts to apply codes would be appropriate, particularly when coding a large
amount of data.

• It should be possible to apply two different codes on the same area.

• It should be possible to see metadata about the document that is being coded in.

• It should be visible how many times each code has been applied.

• It should be possible to see who of the collaborators have added which code.

• It should be visible who has access to the document, and who is currently online.

• It should be possible to add new codes while highlighting the text.

• It is unclear what the purpose of the feedback is. What questions should be an-
swered? Crowd sourced analysis of qualitative data may be a more accurate de-
scription of the process.

• Consider what collaboration entails.

Each of these items are the comments received through the UserReport tool. We
have slightly changed the format so they are understandable, and are phrased in a similar
way. As expected, the users had several suggestions on potential new features where
several of them are also present in similar applications, as described in section 2.4. The
most apparent theme here, is information about other users and general collaboration.

Page 39 of 70

The users want to be able to see who has access to the application, who is currently
working on the document and information about the applied codes.

Some interesting things can be noted about the feedback process itself as well. It
was only the point about being able to see who added which code that was submitted
twice. While all of the feedback was available to every user as soon as it was posted,
this can be an indication that the users were aware of the submitted posts and there-
fore did not make duplicate feedback. On the other hand, none of the suggestions had
any up- or down-votes, which could have been useful when trying to decide what tasks
to implement. This can be an indication that the users were not aware that the voting
feature was available at all. Furthermore, one of the feedback posts suggested that the
purpose of the feedback process was unclear, and that he or she did not know what
kind of feedback we were looking for. A potential adaption to the process could be to
elaborate further on the purpose of the demo, in the e-mails to the users beforehand.
Lastly, the post regarding missing document metadata presented a different challenge.
Although the suggestion could be valuable to the application, we were missing an elab-
oration of what kind of metadata should be included. Since the application was only
available in a certain time-frame, and the user-posts were anonymous, we could not
expand the feature further. This suggests a potential shortcoming in this way of getting
user feedback.

The UI of the application at the time of this demo can be seen in figure 5.1, the
corresponding component hierarchy in figure 5.2 and an architectural overview in figure
5.3.

Figure 5.1: Screenshot of the application at the first demo. Left hand side we have
an overview of codes (Component: Code Toggle), where codes can be added and re-
moved. In the middle we have placeholder text, where text can be highlighted as quotes
(Component: Toolbar). The right hand side we have the Chat (Components: Join and
Chat).

Page 40 of 70

Figure 5.2: React component hierarchy. Here we have the components that are men-
tioned in figure 5.1, in a hierarchy. App is at the top of the hierarchy, since with regards
to the UI, the children of the App component are nested within it. However, the com-
ponents Code Toggle, Content, and Toolbar have dependencies to the App component,
since these components call functions, and get parts of the model passed to them, from
the App component.

Figure 5.3: Architecture of our application at the time of Demo 1. Clients are connected
only through socket.io events. In this version we have no database.

The functionality supported by this version of the application, is that of highlighting
text, which is displayed in real time to all other clients. When clients log in however, no
highlighting will be displayed, since we do not have persistent data. In this early version
we have used socket.io extensively in multiple components, since this took the least
time. Using socket.io in this way was the cause of some bugs, which would be solved

Page 41 of 70

at a later stage, by having the App component be responsible for passing instances of
the socket.io component to other child components.

Open source development

As presented in section 2.3, Bruun et al. [22] tested and found potential for three differ-
ent types of remote feedback methods, where one of them was a forum based condition.
In short, the idea in their test was for users to discuss their use of the tested application
on a forum with only a few instructions. Considering the issues we presented above
about not using the voting system and a confusion about the goal of the feedback, a
forum based approach could be a potential solution. On such a forum, we would have
been able to post simple instructions and comments on the process itself, and the feed-
back would be more transparent to all the users. Additionally, considering the issue
about needing elaboration, we would be able to communicate with the users and dis-
cuss potential changes to the application.

Processes and tools

In general, our approach to getting user feedback was successful. Using a lightweight
tool such as UserReport proved to be very useful for several reasons. One of the biggest
challenges of getting distributed feedback in an open source context is, as described
in section 2.3, to engage users in participation. There should be virtually no barriers
when giving feedback, such as installing external software or creating unnecessary user
profiles. UserReport proved to be a subtle addition on top of our application, in the
sense that it was not intrusive and posting feedback could be achieved with only few
clicks. Additionally, from our perspective, the online platform provided by UserReport
made it easy to see all the posts, which we could then easily translate in to development
tasks for the backlog - if sufficient information was posted. One issue that we did
encounter with the tool, was the lack of customization. We were not able to add any
instructional text, or edit the features. We would like to have been able to make a few
comments on the feedback process, in particular when and how to use the idea or bug
tabs to post feedback.

We changed our Kanban by adding another column and another label in order to
incorporate the feedback, such that we have a column with Developer backlog and a
column with User backlog, which is shown in figure 5.4. We added the label Demo
feedback to indicate that a work item was the direct result of feedback. With the extra
column we are continually reminded of what the users would like, and we assure that
no mix-up happens, which is important since user requirements should be prioritized
higher than what we want to implement. However, we still had non-functional require-
ments that users may not have directly asked for, but that would be necessary for the
system to work well, such as being able to upload files.

Page 42 of 70

Figure 5.4: Adding another column to our Kanban. This Kanban is from the beginning
of phase 1.

5.3 Phase 1

For this phase we planned the first development sprint, and the use of our light method-
ology. As described in chapter 4, this was also the phase where we had to extend the
second sprint of this phase, in order to get ready for the next demo. We learned a great
deal from the experience.

Processes and Tools

In general, the few processes and tools we were using during the first sprint of phase
1 were useful. The daily stand-ups were done through Discord, which a good way
to get an overview of task progression, and what tasks were currently being worked
on. However, some days we would skip a daily stand-up, for example if we were still
working on the same thing as the day before.

We tracked bugs in an ad hoc manner, where the bug label on Trello and a single
work item with a checklist were sufficient. Generally, we did not spend much time
on fixing specific bugs throughout this phase, since some of the bugs would be solved
through a change of architecture. Therefore spending time on specific bugs was not
a priority. We had experienced some issues that had to be adapted in the next sprint.
These were especially related to the fact that we had to add an additional short sprint,
in order to have enough new functionality to show for the following demo. Using the
sprint retrospective method was particularly useful when trying to clarify these issues.

During phase 1, we found that we had to break down the backlog tasks more than we
did at the first sprint. In practice, we did this by adding a checklist for each of the tasks
on Trello, representing a series of sub-tasks. By breaking down the tasks further, it was
both easier to understand the problem and to quantify the size of the task. Addition-

Page 43 of 70

ally, discussing the tasks together helped discover additional challenges and possible
solutions. Another useful adaption to our process was the use of pair programming for
tasks that were particularly difficult. One may fear that being two developers working
on the same task is less effective, yet in our case, we ended up being more productive.
We had technical challenges regarding some of the collaboration aspects of the appli-
cation, which partially caused us to miss the sprint deadline as well as other unforeseen
problems with other technologies. Utilizing pair programming helped us understand
the problems and to implement a working solution faster. Lastly, we encountered prob-
lems regarding version control, when we deviated from our established approach. As
described in section 4.2.1, our application was automatically deployed on Netlify, when
we made commits to a demo branch. When we were setting up the demo for user
feedback though, we discovered a few bugs, which we fixed immediately on the demo
branch. This was a bad practice, since we then had to either merge the demo branch
into the master afterwards, or fix the bugs one more time. The point is that we had to
be more disciplined about following the version control processes, to avoid overhead
later. During this phase of development we did some minor refactoring that turned out
unsuccessful. Because of our lack of experience with React, we added unit tests where
the purpose was to ensure correct re-rendering behavior of React components based on
the updating of data. This lead to some unplanned tasks, that resulted in adding a label
to our Kanban, such that we could mark work items with unplanned. The idea was that
we during a sprint retrospective we could evaluate the amount of unplanned work.

Open source development

Although open source projects do not necessarily have the same requirements in terms
of deadlines and sprint planning, the above findings can still be relevant to an open
source context. Using daily stand-ups in our project not only gave an overview of the
sprint progression, but also of the tasks being implemented, and thus the state of the
application. This was an advantageous quality for us when we were prioritizing what
to implement next, and what had to wait. In general, maintaining good communication
proved an important quality in our project. Before breaking down the tasks thoroughly,
our time estimation was way off, and we had an insufficient understanding of the tasks.
Going through the user feedback suggestions together, breaking them down into back-
log tasks and discussing potential steps on how to implement them, we got a much better
understanding of the problems and how long they were going to take. This could poten-
tially be an important practice in an open source project with additional developers. If
contributors of such a project choose to include user feedback similar to us, creating a
backlog based on the results, the incentive to break down tasks carefully could be even
greater. Specifically, this practice may be a valuable way to ensure commonly perceived
user profiles and product visions between contributors. Regarding version control, the
presented issue may have been caused by our inexperience, however, ensuring a similar

Page 44 of 70

discipline may be important in an open source project as well. If an open source project
has DevOps practices, or some sort of live version like our demo, handling bugs and per-
sistent changes should be done carefully. Depending on the version control practices,
having multiple practitioners with different versions of the system, this issue could be
important to consider.

5.4 Demo 2

For the second demo, we also received a series of useful feedback posts through User-
Report. These included suggestions on new features, bug reports, and general domain
knowledge. Although we did not plan on implementing all of the suggestions, or present
a third demo, the feedback was still useful to the three areas of interest.

Domain and users

For this demo, we gave a few instructions to the users to ensure that they noticed the
new features. This resulted in approximately the same amount of feedback posts on the
UserReport form, which is summed up below. Each of the items translates to a feedback
post, similar to how we presented the results from the first demo:

• It should be possible to see where quotes are in the source text, from the the quote
window; either by adding line numbers to the code window or having the option
of clicking a quote and it then getting highlighted in the source text.

• It should be possible to delete a code from the code window.

• It should be possible to see how many times a code has been applied to the source
text.

• Bug: logged out of the system when clicking the ’-’ button.

• It should be possible to write a memo after marking a piece of text with the cursor.

• I rarely discuss codes synchronously, therefore the chat is not of much value.

• Colours should be more.

Most of these feedback posts were once again very useful in terms of domain knowl-
edge, and gave a good idea on how to proceed with the development process. This time
however, some of the posts were more specific in terms of the coding process itself.
For instance, one user suggested that the chat gave little value to the application, based
on his or her experience with similar applications. Similarly, a user suggested that it
should be possible to see where quotes are in the source text, when showing the code
window. This gives useful insight as to how this user works when coding, and what

Page 45 of 70

features are important. This difference in feedback fidelity may be because the applica-
tion was more developed, or it could be the result of giving the users brief instructions.
Additionally, unlike the first demo, there were no feedback expressing a confusion on
the purpose of the feedback, which may also be due to some clarification caused by
these instructions. Another thing to note, is that there were no duplicate posts for this
demo at all. As discussed for the previous demo, this could suggest that the users are
aware of existing feedback posts. On the other hand, the voting system was hardly used
for this demo either. Only a couple of posts were up-voted once. Lastly, considering
the post titled "Colours should be more", we could still benefit from having a way to
communicate with the users, since we do not know how to interpret this feedback.

The following figures document the version that was released as the second demo:
figures 5.5, 5.6, and 5.7 show the user interface, while figure 5.8 shows the new hierar-
chy of components and 5.9 shows the architecture of the application.

Figure 5.5: Screenshot of the application at the second demo (1/3). We re-purposed the
login to the chat component to be the login screen to the application.

Figure 5.6: Screenshot of the application at the second demo (2/3). We now have
persistent data, so the user is shown highlights when first logging in. We added the
name of the user at the top of the screen, as well as being able to add a memo to a quote.

Page 46 of 70

Figure 5.7: Screenshot of the application at the second demo (3/3). It is now possible
to get an overview by clicking a code (figure 5.6) in the left hand side, after which this
screen is presented to the user and all aggregated quotes of a code are shown.

Figure 5.8: The component has changed, since we have moved the login screen to be
the first view, this is reflected in the hierarchy through the Client Router component,
which takes the user from the login screen to the main screen.

Page 47 of 70

Figure 5.9: Architecture with a lot of dependencies between the socket.io component
and various React components. We added a cloud hosted NoSQL database for persistent
data, where we used Axios and Express for communication between client and server,
and the Mongoose framework for object-document mapping (ODM), that also acts as
the interface between the server and the database.

In terms of functionality we focused partly on adding persistent data e.g not some-
thing the users had requested, but something that is necessary for other features. The
code view from figure 5.6 is an example of a feature that was requested. In phase 1,
section 5.3, we mentioned that we had some unforeseen problems with some of the
technologies. It was partly due to adding Axios/Express, which on a higher level is
quite straightforward as figure 5.9 shows, however specific implementation details with
these frameworks caused long delays, that ultimately lead to the second sprint and also
to the extension of that sprint. In order to enable such communication, Express has to
be configured with certain CORS policies enabled, such that any client from any origin
can connect. Such details are solved by experience and we found that such details make
it difficult to predict and estimate without thorough understanding of the technologies.

Open source development

The findings from the first demo in terms of open source systems are also applicable
for the second demo. Using some sort of forum based approach, where we would be
able to communicate with the users, could help clarify feedback that needs elaboration.
Similarly, we could also make the voting system more apparent, which would help us
prioritize what future development tasks will give most value to the application.

Page 48 of 70

Process and Tools

Adjusting the feedback process by adding a few instructions to the users seems useful.
As described above, some of the feedback was more detailed and gave us even better
domain insight. Additionally, as we received no feedback regarding process ambiguity,
the process may have been easier to understand. On the other hand, as argued at the
findings from the first demo, there were a few shortcomings in terms of using the voting
system and to get elaborations of the feedback. This could potentially be accommodated
by the open source adaptions described above.

5.5 Phase 2

Process and tools

We decided to do high-ceremony pair programming at the end of the last sprint. We did
in total three sessions spanning three days, where each session lasted four hours. During
the session we would switch roles every 30 minutes, which was done by setting a timer,
after which the programmer role would not be allowed to keep on writing code, but had
to commit the code. The reason for this was that we had focused much on different
aspects of the code, separating responsibilities in front-end and back-end. Another rea-
son was because we used JavaScript, and because this language is dynamically typed,
it sometimes takes longer to figure out what kind of objects are transmitted between the
client and server and the server and database. With pair programming we are quicker
to make these look ups, and since we both know different parts of the code-base, we
experienced quicker implementation of functionality, since we typically need informa-
tion about the whole stack, to implement a single feature. We did not do any formal
tracking of velocity, but through our experience with these sessions we estimate that
we achieved a greater velocity than before. Although refactoring was not an indented
part of these sessions, we ended up re-writing how different React components would
receive data; instead of many React components having their own reference to a socket,
we moved data into a React component of a higher level in the hierarchy. Specifically,
the App component, shown in figure 5.10.

Page 49 of 70

Figure 5.10: React components of the application. For each React component we in-
cluded whether the components contain UI, functions, and Model.

Testing a new feature is also easier with pair programming; since the burden of
having to think of all possible cases or scenarios that can go wrong can be put on
the non-programmer, which leaves the programmer to executing the tasks and staying
focused.

After the second demo, we started creating work items on our kanban that specif-
ically addressed how to perform a demo; this included a basic checklist procedure to
follow. The checklist included documenting the UI, as well as asking users about the
feedback tool, to run a script that checks if the application is still running. It also in-
cludes general clean-up of the repository such as deleting old branches, and ensuring
that changes to the demo were added to the master branch, thereby ensuring consistency
of versions.

Just as in phase 1, we also skipped daily stand-up once in a while. However, we did
more pair programming in general in phase 2, however, that pair programming through
out phase 2 was generally of low ceremony, except for the three pair programming
sessions at the end of sprint 3.

Open source development

The pair programming session resulted in significantly better code quality and a more
coherent design. Previously, the React components code manager, code inspector, Ed-
itor, Toolbar and Chat from figure 5.10 would all instantiate socket.io components,
resulting in duplicate messages for each client. Another problem was that the model
was kept in separate components. The socket.io events, that were used to update the

Page 50 of 70

model and keep data consistent between clients, would be used throughout the appli-
cation instead of in a specific component. We refactored the application with regards
to instantiating multiple sockets into passing along a single socket through a context,
which solved the duplicate messages bug. The components Code Inspector, Editor and
Toolbar would have part of the model as their state. This was removed during pair pro-
gramming and the replacement was to pass functions to these components from the App
component. We can see this reflected in the architecture by the removal of dependen-
cies between these components and the socket.io component, by comparing figure 5.9
with figure 5.11. The last thing to refactor would be to move socket.io events into the
App component as well, such that we get the ideal architecture outlined in figure 5.11,
where all communication is restricted to a single React component.

Figure 5.11: With an estimated days worth pair programming (refactoring) we will
have all communication handled by the App component as portrayed in this figure. We
follow the distributed architecture pattern, where [H server is kept relatively simple
and its behavior is limited to forwarding data as well as acting as a REST API. The
client implements the necessary functionality as well as each client having a copy of
the model, where synchronization between components is handled through the socket.io
component.

Page 51 of 70

Domain and users

While we did implement three minor requests from the users, the main progress of the
pair programming sessions was the refactoring. Figure 5.12 shows two of the requests
and figure 5.13 shows the delete button for all the codes.

Figure 5.12: The areas marked with a red square indicate extra functionality. The upper
red square indicates a number that corresponds to the number of times a code has been
applied. The lower red square captures the part of the UI that shows which collaborator
added the quote. These were both requested by the users.

Figure 5.13: We added a delete button to this view, such that the code and aggregated
quotes all can be deleted, as per user request.

Page 52 of 70

Chapter 6

The project in retrospect

Throughout chapter 4 and 5 we have described our approach to development of the ap-
plication and what we learned from the experience, respectively. In this chapter, we
summarize our findings from chapter 5, as seen in table 6.1, which we will use through-
out the chapter. We present implications from the development of an open source ap-
plication and discuss the rationale for these implications as well as how they apply to
literature. The discussion leads to the answering our research questions presented in
chapter 3, where we end with a discussion on how to adjust our methodology to accom-
modate more contributors and users. Finally, we conclude the thesis, including potential
future work.

53

Table 6.1: Summary of findings presented in chapter 5. The findings are divided into
the three areas of interest, and related sub categories. The findings marked in bold are
the ones we find the most interesting, and are discussing in this chapter.

Processes and tools

Processes (and tools)
1. Practices (e.g. daily stand-up, sprint planning) and tools (Discord, Trello) help with distributed
communication and knowledge sharing.
2. Pair-programming can help simplify problems and can even be more efficient than working individually.
3. Maintaining discipline regarding version control is particularly relevant when having "live" versions of the
application.
4. Pair programming is a good practice for ensuring a consistent design and high code quality,
especially in a distributed setting

UserReport 5. A light-weight tool with little overhead for both users and developers.
6. Seems to facilitate collaboration between the users.
7. Voting system does not seem to work. Would be useful for developers.

Domain and Users
Feedback 8. Tools can be too light-weight for certain situations.

9. Users benefit from simple instructions about the feedback process.
10. Having a user backlog and a developer backlog on the Kanban board helps sorting and prioritizing tasks.

Application 11. All unedited feedback about the application can be seen in appendix C.
12. In general, the users want transparent information about collaborators; Who coded what? Which quotes
are related to which codes? Who is currently online?

Open Source Development (future)
General methodology 13. Practices and tools facilitating distributed development may be essential for open source development.

14. We argue that collaboration is important when retrieving and breaking down tasks in a project with
many developers.
15. If an open source project uses DevOps or "live" versions of a system, version control discipline may
be important to consider.

Forum-based feedback 16. Can enable instructions and communication between developers and users.
17. Can enable elaboration of ambiguous feedback.
18. Could create an incentive for user participation by showing a backlog and general progression.

The findings presented in chapter 5 are summarized in table 6.1. Although they are
sorted in the three areas of interest, some of them are naturally interlinked. The findings
written in boldface are the ones we find the most interesting in relation to our project,
and they will be the basis of our discussion.

6.1 Discussion

In this project, we have developed an open source system at its early stages. We have
designed an initial methodology, suited for a small distributed team, and adjusted it
throughout the development process. We have inquired distributed user-feedback with
users accustomed to the application domain. In chapter 5, we presented our findings
observed throughout the process which we will discuss in this chapter. Some of these
findings have certain implications, which we elaborate on and relate to existing liter-
ature below. Furthermore, we will discuss how to expand our project to additional
contributors and users, thus answering the research question on how to bootstrap an
open source project.

Page 54 of 70

6.1.1 Implications

Distributed development requires effort to establish communication between develop-
ers.
Communication and collaboration is essential for any software development team. As
we have described in a previous project [15], Cockburn dedicates an entire chapter of his
book [14] to communication and team collaboration in agile teams. One of his implica-
tions is that teams should strive to be collocated and reduce physical barriers between
them, to facilitate good communication. However, he acknowledges the fact that some-
times the circumstances do not allow for this behaviour, and has to be accommodated
in different ways.

This is the same issue that we encountered when we went from being collocated
developers at the initial phase 0, to being distributed for the remainder of the develop-
ment process. Being collocated, it was much easier to keep a mutual understanding of
the product vision as well as how the project progressed. When sitting next to each
other, it does not take much effort to discuss issues or to be aware of what is being
worked on. As described by finding 1, we found that the applied practices, and related
tools, helped facilitate this necessary communication. Applying daily stand-ups, sprint
planning, and sprint retrospective to our process, using Discord, was essential. As our
experience shows in chapter 5, this was indeed helpful in terms of getting an overview
of the project and its progression as well as to share knowledge and keep a common
vision. However, we did skip daily stand-ups about every third day, and as such we
deviated from the process.

Pair programming in remote development enables faster learning, better code quality
and helps motivate development.
Another practice that we found particularly helpful to our development process was
that of pair programming. Finding 2 encapsulates our thoughts on the values of using
this method in our project, which we found to be particularly relevant when working
distributed. As described in section 2.2.2, existing literature [19] recommends using
pair programming in open source development, which made us apply it to our project.
We applied pair programming in the second sprint of phase 1, while at the end of the
third sprint we had a three days of high-ceremony pair programming sessions.

We found that using pair programming was more effective in terms of how much
we could accomplish compared to working individually. Although one may think that
distributing the tasks would prove more effective, this was not the case in our project.
While we do not have any formal tracking of velocity, our intuition tells us that pair pro-
gramming to be more effective in our case - particularly for complicated tasks (epics).
Since we are both at a junior expertise level with respect to the technology stack we are
using, this aligns with the findings of Dybå et al. [41]. In short, they present guidelines
on when to use pair programming, and when solo programming is favorable, based on

Page 55 of 70

the complexity of a task and the expertise levels of programmers. Their general recom-
mendations are that junior-level programmers will benefit from pair programming, and
experts should avoid it, unless the task is too complex. This is very much inline with
our findings; breaking down tasks together and discussing possible solutions and issues
helped us get a better overall knowledge of the architecture and flow of the application.
Combining our knowledge of separate parts of the application and focusing on a sin-
gle task at a time, not only helped on functionality, but also improved the code quality,
as section 5.5 suggests through the improved architecture, which finding number 4 is
based on.

A distributed team needs heavier methodology weight than a collocated team, and ad-
justing it requires intentional efforts.
Considering the implications above, our findings are inline with Cockburn’s thoughts
on methodology weight in relation to distributed development, and that this type of de-
velopment requires a heavier methodology weight. As we had to add additional control
elements to our process (daily-stand ups, sprint retrospective etc.) when we went from
being collocated to distributed, our methodology size grew.

Additionally, as we experienced the negative effects of deviating from these pro-
cesses, we had to be more disciplined (ceremonial) about it. In other words, we had
to increase our methodology weight, to accommodate the project circumstances, of no
longer sitting together, and having a good communication channel. One thing to note
here, is that there also was a transitory change in our project. The point is that these
practices also have been suitable to the project since we moved to a later an more de-
fined stage, compared to when we were distributed. This is also one of Cockburns
points, which we described in our previous project [15]; At the early stages of a prob-
lem, the methodology will naturally be lighter, since the software team needs a better
understanding of the problem and the technologies in use. Similarly, when a project is
at a later stage, the team can start applying methods suitable for the context.

In continuation of this, we found that this adjustment of methodology weight, is
not a novelty, and takes conscious effort. As we have shown throughout chapter 5 our
methodology did change, mostly during phase 2. Especially in the beginning we had a
particular problem, which is expressed by Weinberg in [42] in the following way, of how
problems are handled in an oblivious culture: "Problems are suffered in silence.". This
was a characteristic of our early distributed development. In the beginning of phase 0,
before the distributed setting this was not a problem, and it was during phase 2, where
we were utilizing the practice of pair programming in a more structured manner that
allowed better handling of problems.

This allowed us to go from an oblivious culture to the variable culture pattern. Cock-
burn mentions [14] the importance of bothering to reflect as well as specifying that
reflective improvement is one of the three core properties of the Crystal Clear method-

Page 56 of 70

ology, and without reflection one will not change their ways of working for the better.
By looking back now, through this cultural pattern, we can see the necessity of reflec-
tion.

Teams getting user feedback in a distributed setting should balance low overhead and
sufficiency.
As implicated by finding 5, the tool UserReport proved to be a light-weight tool with
little overhead, and generally suitable for projects in an early stage of development. It
is convenient and easy to use from a user perspective, and as our sprints show we never
lacked quantity in feedback. In general the feedback can be characterized as one-liners
(1-5 lines sometimes). However, this is to be expected with such a tool.

It was also easy to implement from a developers perspective, by adding a single
script tag to the code. The platform provided by UserReport was also straightforward
to use, and made it easy to find the feedback and translate it in to backlog tasks. On the
other hand, as indicated by finding 8, we did encounter certain situations where the tool
was too light-weight. We noticed this when one of the users made a feedback post about
being confused about what the purpose of the evaluation was, and what we wanted to
achieve with the application.

Additionally, we received a few feedback posts that were ambiguous or could prefer-
ably be elaborated on. In other words, while UserReport has low overhead, the lack of
customization and limited functionality is a limitation in certain situations. It would be
useful if we can customize the feedback tool, make small instructions and be able to
communicate with the users during the feedback. At the same time, we would have to
be careful not to make the process too complicated, where related work from section
2.3 suggests that this could negatively influence user participation.

Prolonged development would benefit from a more advanced tool. At a later stage
when the application is closer to a finished product, our focus shifts to that of usability,
which can be measured by different tools and methods. While the step towards usability
would have to be taken at some point, one such intermediate step could be to use the
project management features of GitHub. since we already use GitHub to host our source
code, a natural progression would be to use those features as well.

Additionally, GitHub is easier to customize, and offers an array of additional fea-
tures, such as general issue tracking (including bug reporting) and a public kanban.
A disadvantage of GitHub is that we increase the level of effort for the users; by the
requirement of having a GitHub account as well as switching between ’tabs’ when pro-
viding feedback. We did briefly consider changing our feedback method to use GitHub
issues instead, but since we were in the latter part of phase 2, we did not have time.

Early technology familiarization requires a considerable time investment, and can be
difficult to estimate.

Page 57 of 70

A pre-requisite of development and software engineering processes is a certain level
of understanding of the technologies and programming languages that are being used.
During development we found that a symptom of lack of understanding can be seen
in task estimation; the more you know about the technological platform the better one
is able to estimate a given task. The first sprint we had in phase 1 had work items
left in the backlog, which was the reason for the second sprint. The second sprint was
planned to last a week, in order to complete that same backlog, but was extended due
to our estimations being off point. Then in the third sprint we did not progress very
quickly, and therefore we changed the purpose of the sprint; to experiment with high
ceremony practices. The reason that our estimates were incorrect was typically because
of unforeseen problems with the technologies we were using, for example the problem
with configuring Express, that we described in section 5.4.

Cockburn [43] recommends that each team has a designated lead designer/program-
mer on the team. This role should be covered by the person with the most experience as
this person will typically have to mentor the other designer/programmers. The problem
with configuring Express is not a difficult problem, however, the time an inexperienced
programmer has to use compared to an experienced are tremendous. Therefore, having
one experienced person on the team will make development much smoother, especially
with osmotic communication, since such Express problems can be easily solved by a
team member even with little experience.

In retrospect, the task of estimating work items in terms of how many man-hours
(or days), did not support development. Therefore such methodology weight can be
removed, since there is a high percent chance of getting the estimation wrong, which
creates unnecessary tension and demotivates the team unnecessarily. This is an example
of methodology weight that does not contribute to the overall development process,
even though we do in general need more methodology, that it not the right kind of
weight. Kniberg suggests in the book SCRUM and XP from the Trenches [44](p. 65) to
skip task estimation entirely, since many teams through experience will be able to break
down tasks into 1-2 day chunks at some point. We also experienced that breaking down
tasks has advantages in our context, while time estimating did not.

An important issue that the agile manifesto raised was to change how progress was
measured. Instead of measuring progress by the amount of documentation, in the form
of requirements specification, design documents or otherwise, we measure progress by
running code. According to the agile manifesto this is the primary measure of progress
[11]. In line with this principle, we measured our progress by the amount of work
items (features) that we had implemented. We did not measure this formally, but we
needed a certain amount of features to show our users, and therefore features became
the deciding factor of when to hold a demo.

Another practice we could have employed was to track learning. In the previous
paragraphs we discussed how our estimates would not be accurate, and therefore we

Page 58 of 70

had to adjust sprints and it would seems that we lacked progress. Cockburn mentions
the effect of slower development, where one of the effects is on lower morale. Yet,
we progressed in other manners, and visualizing this, perhaps secondary measure of
progress, is important to boost morale.

Not all methodology weight is equal
We have already discussed, based on finding 2 and 4, that pair programming is a useful
practice for junior developers in a distributed setting. As we discussed not all method-
ology weight is the right amount of weight. Pair programming in our case is, and
with the added ceremony of the three day pair programming session was a significant
methodological upgrade, which resulted in a much cleaner architecture with fewer de-
pendencies.

However, we could have achieved this through other methodological elements. We
could for example have declared a standard that says that all client side communication
must be handled by the App component. Another approach could have been through
automated tests; where a test suite will fail, if any other component besides the App
component contains references to the socket.io component. A third option would be to
hold code reviews. However, the advantage of pair programming is that we cooperate
in order to get a consistent architecture and few unnecessary dependencies, rather than
establishing standards or quality assurance measures that that are more burdensome.
Therefore, even though we have many ways of increasing the methodology weight, the
preferred choice is pair programming.

These practices share the same goal of assuring high quality code and few architec-
tural dependencies, however the burden of these practices are different. Therefore the
implication Not all methodology weight is equal, where in this context pair program-
ming is the preferred practice.

6.1.2 Adjusting our methodology for additional contributors

Based on our experience with distributed development, that we summarized through
implications, we describe how we would adjust our methodology in order to accommo-
date a large number of contributors and a large number of users. Several of our find-
ings are about distributed development - which is a given in open source development.
Therefore, these implications apply when designing an open source methodology.

An increase of contributors

The first implication emphasises the importance of communication and collaboration,
and that the practices and tools we used helped facilitate this in a distributed setting.
However, in an open source project with tens or even hundreds of contributors, our cur-
rent practices (daily stand-up, sprint planning, pair programming) would not be ideal.

Page 59 of 70

These practices require synchronization of developers, which is difficult in an open
source context. Keeping a common vision, supporting communication, ensuring high
code quality would have to be done through practices that do not require direct com-
munication between developers, such as with daily stand-up, sprint planning, and pair
programming.

We mentioned some of these alternative practices for quality assurance, where code
review would be ideal, since this requires no synchronization of developers like pair
programming. Pair programming can still be done between contributors, but coordina-
tion will be difficult and the things that are discussed during pair programming would
not be transparent to the community at large. Code review on the other hand is some-
thing that a whole community can participate in, and therefore a more efficient practice
for a larger community.

To accommodate additional developers it is also important to consider participation
barriers, as we have elaborated in section 2.2.1. In particular, the barriers identified by
Alami and Wasowski [17] regarding a high cost of participation and being unfamiliar
with the system, can be managed by an OS community. Alami and Wasowski suggest
reducing unnecessary participation formalities and find ways to help integrate newcom-
ers in the community.

This is essentially about knowledge sharing and our current practices have included
daily stand-up and pair programming. These practices are not ideal to handle newcom-
ers, since this would require a lot of effort by current contributors. Therefore, a well
documented system with component hierarchies (figure 5.10) and general architecture
outline (figure 5.11 would help newcomers in understanding the structure of the system.
Such figures could be added to the source code project hosted on GitHub.

An increase of users

Based on related work, we analysed problems about getting user feedback from dis-
tributed users in section 3.1. Although getting the right user feedback is a valuable
practice in OS development, the nature of OS projects presents several challenges. The
contributors are volunteering, distributed developers with no allocated resources, and
may not have the necessary knowledge in terms of user centered design.

Furthermore, conventional methods used to get user feedback require the physical
presence of users. The users themselves may not even be identified, and can be difficult
to engage in the development process. In fact, Llerena et al. [23] found that one of the
biggest challenges when adapting feedback techniques to open source software, was to
find and engage users. To find more users, they suggest promoting and communicating
with the users through online wikis and social networks. In terms of engaging the users,
they suggest finding some sort of incentive for users to participate, but do not specify
how.

In continuation of this, Llerena et al. [23] also found that to keep users engaged,

Page 60 of 70

the feedback process cannot be cumbersome and time consuming. To accommodate
these challenges, we suggest considering our implication that teams should balance low
overhead and sufficiency when getting distributed feedback. It has to be a quick and
easy process to give feedback, while still providing sufficient contributions. Specific
to open source systems, as we have summarised in findings 15-17, we suggest using
a forum-based approach as described in [22], or extending our process to include a
chatroom. That way, we would be able to ask users to elaborate on their feedback when
necessary, answer questions, and give them instructional guidelines.

Finally, showing a backlog of the tasks drawn from the feedback, making the de-
velopment process transparent, we may create an incentive for the users to engage in
further participation. Being able to see the development progress and how the feedback
suggestions are being implemented (or fixed), could motivate participation. We would
do this with the built-in functionality on GitHub, essentially moving our current kanban
to that of GitHub.

The culture

Based on the literature presented in section 1.1, we consider alternative ways of attract-
ing potential contributors. We know from the literature that open source projects are
driven by motivated individuals who voluntarily invest their own time. And that the un-
derlying culture is driven by solving interesting problems, in an environment of absence
of deadlines or other time constraints. Therefore, presenting clear and well formulated
technical problems might attract contributors.

6.2 Conclusion

We conclude by answering our research questions from chapter 3.

RQ2.1: What kind of functionality, architecture, and software components can be used
to build a real-time collaborative qualitative coding tool?
Based on literature, existing knowledge, and the feedback received from users, we have
developed a web application with the MERN technology stack, where the application is
implemented with the distributed architectural pattern. We showed through our findings
that our implication Pair programming in remote development enables faster learning,
better code quality, and helps motivate development that to ensure such an architecture
and to ensure low dependencies among components implemented with socket.io, pair
programming can be a suitable quality assurance practice for junior level developers.
An overview of the functionality, as well as how it evolved throughout the process, is
described specifically in chapter 5.

Page 61 of 70

RQ2.2: How can we apply user feedback methods in the context of an open source
project, with voluntary distributed users?
Through our findings we argued for the implication Teams getting user feedback in a
distributed setting should balance low overhead and sufficiency. We found that a light-
weight tool, integrated in the web application, provided appropriately low overhead,
while still facilitating valuable feedback. The tool UserReport proved to be sufficiently
easy to use, both from a user and a developer perspective, but did present a few short-
comings. Not being able to customize the input forms, and having no communication
channel to the users, was a problem when analyzing the feedback. Therefore, we sug-
gest adapting or combining UserReport with external communication channels - partic-
ularly in later stages of development.

RQ2.3: What kind of tools and practices can be used to support a minimal open source
process in the context of distributed development?
The implications Distributed development requires effort to establish communication
between developers and A distributed team needs heavier methodology weight than
a collocated team, and adjusting it requires intentional efforts as well as Teams get-
ting user feedback in a distributed setting should balance low overhead and sufficiency
answer this research question. In particular, we found that when developing in a dis-
tributed fashion, certain practices enable a break of cultural pattern, e.g. going from an
oblivious culture to a variable culture.

RQ1: How can we bootstrap an open source project?
We have bootstrapped an open source project, by using well known software engi-
neering tools and practices, as is described in following implication Early technology
familiarization requires considerable time investment, and can be difficult to estimate.
While the mentioned implication covers early development, practices change as the
project opens up for more contributors and users. This we have described in section
6.1.2.

Page 62 of 70

Bibliography

[1] Coding (social sciences) - wikipedia.
https://en.wikipedia.org/wiki/Coding_(social_sciences). Accessed: 2020-06-03.

[2] Peter Axel Nielsen. “Collaborative coding of qualitative data”. In: White
paper—LA2020. Kristiansand S, Norway: University of Agder (2012).

[3] Johnny Saldaña. “An introduction to codes and coding”. In: The coding manual
for qualitative researchers 3 (2009).

[4] Gordon Haff. How open source ate software: Understand the open source
movement and so much more. Apress, 2018.

[5] Eric S. Raymond. The cathedral and the bazaar - musings on Linux and open
source by an accidental revoltionary (rev. ed.) O’Reilly, 2001. ISBN:
978-0-596-00108-7.

[6] Socket.io licence. URL:
https://github.com/socketio/socket.io/blob/master/LICENSE.

[7] Mark Johnson OSS watch. Licence differentiator. URL:
http://oss-watch.ac.uk/apps/licdiff.

[8] Richard Stallman. The Four Essential Freedoms. URL:
https://www.gnu.org/philosophy/free-sw.html.en.

[9] Chao-Kuei. Categories of free and non-free software. URL:
https://www.gnu.org/philosophy/categories.html.

[10] Pierre Bourque, Richard E Fairley, et al. Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press, 2014.

[11] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,
Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,
Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for
Agile Software Development. 2001. URL: http://www.agilemanifesto.org/.

[12] I Sommerville. Software Engineering (Global Edition), 10e. 2015.

[13] Visual paradigm. URL: https://www.visual-paradigm.com/.

Page 63 of 70

https://en.wikipedia.org/wiki/Coding_(social_sciences)
https://github.com/socketio/socket.io/blob/master/LICENSE
http://oss-watch.ac.uk/apps/licdiff
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/categories.html
http://www.agilemanifesto.org/
https://www.visual-paradigm.com/

[14] Alistair Cockburn. Agile Software Development. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN: 0-201-69969-9.

[15] Jesper Fyllgraf and Ruben H. Mensink. “Adjusting methodology weight: A case
study examining how plan-driven qualities are added to agile methodologies”.
In: (2019).

[16] Adam Alami, Yvonne Dittrich, and Andrzej Wasowski. “Influencers of quality
assurance in an open source community”. In: 2018 IEEE/ACM 11th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE. 2018, pp. 61–68.

[17] Adam Alami and Andrzej Wąsowski. “Affiliated participation in open source
communities”. In: 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE. 2019, pp. 1–11.

[18] Eric Raymond. “The cathedral and the bazaar”. In: Knowledge, Technology &
Policy 12.3 (1999), pp. 23–49.

[19] Manuela Angioni, Raffaella Sanna, and Alessandro Soro. “Defining a
distributed agile methodology for an open source scenario”. In: Proceedings of
the 1st International Conference on Open Source Systems, July 11-15, 2005
Genova, Italy. 2005.

[20] Henrik Hedberg, Netta Iivari, Mikko Rajanen, and Lasse Harjumaa. “Assuring
quality and usability in open source software development”. In: First
International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). IEEE. 2007, pp. 2–2.

[21] Adam Alami, Marisa Leavitt Cohn, and Andrzej Wąsowski. “Why does code
review work for open source software communities?” In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE. 2019,
pp. 1073–1083.

[22] Anders Bruun, Peter Gull, Lene Hofmeister, and Jan Stage. “Let your users do
the testing: a comparison of three remote asynchronous usability testing
methods”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2009, pp. 1619–1628.

[23] Lucrecia Llerena, Nancy Rodriguez, John W Castro, and Silvia T Acuña.
“Adapting usability techniques for application in open source software: A
multiple case study”. In: Information and Software Technology 107 (2019),
pp. 48–64.

[24] Coding analysis toolkit (CAT) documentation. URL: http://cat-help.texifter.com/.

[25] RQDA: How an open source alternative to ATLAS.ti, MAXQDA, and NVivo
opens new possibilities for qualitative data analysis. URL:
https://philippejoly.net/2018/12/03/rqda/.

Page 64 of 70

http://cat-help.texifter.com/
https://philippejoly.net/2018/12/03/rqda/

[26] Open Source Qualitative Coding Tool #71. URL:
https://github.com/ropensci/unconf18/issues/71.

[27] Qual coder. URL: https://github.com/ccbogel/QualCoder.

[28] Atlas feature comparison. URL:
https://atlasti.com/atlas-ti-product-feature-comparison/.

[29] Dedoose features. URL: https://www.dedoose.com/home/features.

[30] NVivo collaboration. URL: https://www.qsrinternational.com/nvivo-qualitative-
data-analysis-software/about/nvivo/modules/collaboration.

[31] HyperResearch. URL: http://www.researchware.com/.

[32] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[33] Kimmo Tarkkanen, Ville Harkke, and Pekka Reijonen. “Are we testing utility?
Analysis of usability problem types”. In: International Conference of Design,
User Experience, and Usability. Springer. 2015, pp. 269–280.

[34] Heroku. URL: https://www.heroku.com/.

[35] Netlify. URL: https://www.netlify.com/.

[36] Nicolas Serrano and Ismael Ciordia. “Bugzilla, itracker, and other bug trackers”.
In: IEEE software 22.2 (2005), pp. 11–13.

[37] Web based bug tracking. URL: http://www.aptest.com/bugtrack.html.

[38] David J Anderson. Kanban: successful evolutionary change for your technology
business. Blue Hole Press, 2010.

[39] Web service Trello. URL: https://trello.com/.

[40] Socket.io. URL: https://socket.io/.

[41] Tore Dybå, Erik Arisholm, Dag IK Sjøberg, Jo E Hannay, and Forrest Shull.
“Are two heads better than one? On the effectiveness of pair programming”. In:
IEEE software 24.6 (2007), pp. 12–15.

[42] Gerald M Weinberg. Quality software management (vol. 3) congruent action.
Dorset House Publishing Co., Inc., 1994.

[43] Alistair Cockburn. Crystal clear: A human-powered methodology for small
teams: A human-powered methodology for small teams. Pearson Education,
2004.

[44] Henrik Kniberg. Scrum and XP from the Trenches. Lulu. com, 2015.

Page 65 of 70

https://github.com/ropensci/unconf18/issues/71
https://github.com/ccbogel/QualCoder
https://atlasti.com/atlas-ti-product-feature-comparison/
https://www.dedoose.com/home/features
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo/modules/collaboration
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/about/nvivo/modules/collaboration
http://www.researchware.com/
https://www.heroku.com/
https://www.netlify.com/
http://www.aptest.com/bugtrack.html
https://trello.com/
https://socket.io/

Appendices

A First demo

Figure 1: Screenshot of the feedback from the first demo, received through UserReport

B Second demo

Figure 2: Screenshot of the feedback from the second demo, received through UserRe-
port

Page 66 of 70

C An overview of all received feedback without
editing

C.1 First demo

• show number of coded instances: An overview of how many times each code is
applied

• Show what member highlighted which sentences: Should be possible to see what
other group member highlighted/coded which sentences and submitted new tags.

• Highlight selected code: When selecting a code the relevant codes should be
highlighted in the source. When working together, this feature would show how
my collaborators interpret codes and help get an overview over related codes.

• show who added which code: It is unclear where existing codes came from

• Shortcuts: When coding large amount of data, it can be time-consuming to click
around. Shortcuts (right-click to code) would be appropriate, but it is a nice-to-
have feature.

• Identify document source: It should be possible to see metadata about whatever
document is being coded

• Show other members: Show other collaboraters*, other people who are online

• Add new code while text is highlighted: It should be possible to add a new code
while coding the text. It seems it is only possible to add new codes prior to
analysis

• Make it possible to code the same section with different codes: It should be pos-
sible to apply two different codes on the same area.

• Collaborative analysis of qualitative data: I do not understand what kind of anal-
ysis you hope to get out of this? What questions should the analysis answer?
Moreover, I suggest you consider what collaboration entails. Crowd sourced
analysis of qualitative data may be a more accurate label on what you hope to
achieve.

•

C.2 Second demo

• Number of codes: It would be practical if it was possible to see how many of
references there are in each code. It will give a good overview.

Page 67 of 70

• Option to delete code when viewing the code window: It took me a moment to
realize how to delete a code. I first clicked the minus-button, which logs me out
of the system, before figuring out that you have to write the name of the code
you want to delete and then click "-". I think it would be practical to have the
opportunity to delete a code when you click it and view the code window. The
existing solution seems a little odd to me.

• Marking on text when writing memo: If you mark a line of text and then click
"optional memo", the marking disappears. This means that you would always
have to write the memo before marking the text, which I could see be impractical
in some cases. Would be nice if the marking persisted when writing memo.

• Reference to text in code window: I would like to see a reference to where the
quotes displayed in a code window are placed in the text, either by adding line
numbers or having the option to click on a code and then it get marked in the text.
For the latter option, the code window should probably not cover all of the text
view.

• Chat: Personally, I don’t see any real value regarding the chat. It’s unlikely, in
my experience, to discuss about codes synchronously.

• Bug: Marking on text disappears when typing memo: If you mark a line of text
and then click in "optional memo", the marking disappears. This means that you
have to always write a memo before marking the text, which could probably be
impractical in some cases.

• Bug: Logged out when clicking "-": I get logged out when I click the minus-
button in the left panel.

D Instruction e-mails to our users

D.1 First email

"Thank you for agreeing to act as demo tester and your effort is much appreciated. We
hope to develop our application driven by feedback from users, that is, we are pursuing
a user-centric and agile approach.

We are iteratively developing an open source tool to support users (researchers) in
the analysis of qualitative data. We hope that you have previous knowledge of what
analysis of qualitative data is in an empirical research process. The application is at a
very early stage of development, where we are currently working towards a minimum
viable product (MVP). We are at this stage primarily interested in ideas for features and
feedback on the user interface itself, but of course bug reports are always welcome.

Page 68 of 70

The main focus is of the web application is to support collaborative analysis of qual-
itative data (i.e., coding) in real time. Therefore, during the demo, you may see codes
being added, or text getting marked randomly. This happens because all participants
work on the same set of qualitative data.

Getting a feel for the application, in its current state, should take no more than 5-10
minutes. The application will be open for demo testing from Monday at 9:00 to Tuesday
at Noon.

The demo test can be conducted in the following way:

• Follow the link: https://fervent-albattani-caf461.netlify.com/ which directs to the
web application itself.

• Move around on your own in the application – there is still very little functionality
– and get a feel for it

• Try to select text and add a code to it, and check how it works. We rely here on
your previous knowledge of what qualitative data analysis is.

• Try the chat panel to see if anyone else is here at the same time, and check how it
works

• Provide feedback on the teal colored button with a smiley face, on the right side
of the screen

• Select a name for yourself so that you are anonymous for the developers (your
email will be hidden if you enter that)

• Enter new ideas and enter bug that

• Please also vote if you see comments that coincide with your own comments

Thank you for your participation and we appreciate the feedback very much!
Best regards, Jesper Fyllgraf and Ruben Henrik Mensink"

D.2 Second email

Thank you for agreeing to be demo testers once again, your feedback from the pre-
vious session is much appreciated and helped guide development in a good direction.
While we have implemented some of the feature requests that were suggested, we have
also implemented some additional infrastructure code, such as adding a database and a
REST API. We have certainly not forgotten about the remaining suggestion of features.

The main difference between the two demo’s is that now the state is saved, while
maintaining the real-time collaboration aspect of the application. As such, when using
the application during this demo, what all previous users and current users are working
on can be seen by everyone. As for now we have no access rights between users, so
everyone can delete anything.

Page 69 of 70

The current state of the application is somewhat poor in performance, this is partly
due to the free hosting services that are used, which most likely causes small delays
when working with the application, as well as the first time the application is visited.

The demo test can be conducted in the following way:

• Follow the link: https://fervent-albattani-caf461.netlify.com/ which directs to the
web application itself.

• Move around on your own in the application – there is a little more functionality
now, and it should be much easier to get a feel for the real-time aspect of the
application.

• Codes: we suggest to not delete the first three codes, but feel free to mark pieces
of text with those codes.

– Add a code of your own

– Use your new code to select quotes

– View your selected quotes by clicking on a code in the left hand panel

– Delete your code (which will delete all the associated quotes).

• Quotes: select your own or one of the quotes already present in the document and
view the associated memo of the quote and who added it

– Create a quote and add a memo, and refrain from creating a quote, from text
that is already marked, since this is an unhandled case and will cause a bug

– Delete a quote

– Consider using the chat if any other demo tester is present during your test-
ing time.

• Provide feedback on the teal colored button with a smiley face, on the right side
of the screen

• Select a name for yourself so that you are anonymous for the developers (your
email will be hidden if you enter that)

• Enter new ideas and enter bug that

• Please also vote if you see comments that coincide with your own comments

Thank you for your participation and we appreciate the feedback very much!

Page 70 of 70

	Introduction
	Open source
	Process and tools
	Domain and users

	Related work
	Agile methodology
	Open source software development
	Distributed user feedback
	User domain: qualitative coding

	Problem analysis
	Bootstrapping an open source process
	Distributed feedback practices

	The Setup
	Development phases
	Development methodology
	Application design

	The Evolution
	Phase 0: Project startup
	Demo 1
	Phase 1
	Demo 2
	Phase 2

	The project in retrospect
	Discussion
	Conclusion

	Bibliography
	Appendices
	First demo
	Second demo
	An overview of all received feedback without editing
	Instruction e-mails to our users

