

UTILIZATION OF
BIG DATA
FROM THE
BUILT SECTOR

AALBORG UNIVERSITY
DEPARTMENT OF
THE BUILT ENVIRONMENT

M A S T E R T H E S I S

2 0 1 9 - 2 0 2 0

D A N I E L L E I R I A

9th. & 10th. semesters
Indoor Environment & Energy Engineer-
ing
Byggeri og Anlæg
Thomas Manns Vej 23
9220 Aalborg Øst

Title:

Utilization of big data
from the built sector

Project:

9th. & 10th. semesters thesis

Project period:

September 2019 - June 2020

Participants:

Daniel Leiria

Supervisors:

Anna Marszal-Pomianowska
Hicham Johra
Per Heiselberg
Torben Tvedebrink

Number of pages: 159
Appendix pages: 76

Synopsis:

This master thesis is a project about
the application of different data analysis
methodologies in a large set of data from
different smart energy meters installed
in residential buildings connected to the
District Heating network. The focus was
to develop and use new tools to handle
and study the data in order to learn more
regarding the buildings energy demands
and efficiency, the heating systems and the
users consumption behaviours. To work
with the data, it was used the software
RStudio and this study was mainly divided
into three parts: data preprocessing, data
visualisation and clustering analysis.
The data preprocessing consists in a large
algorithm divided in different steps, were
each step assesses a specific dataset char-
acteristic or solve a dataset problem. From
it, a benchmark of imputation methods
was created, revealing the most suitable
methods for the DH dataset. Regarding
data visualisation, different variables were
calculated and different plots were made.
Allowing to see different building’s proper-
ties, e.g. transmission losses, solar gains,
high/low temperature differences. In the
clustering analysis, the K-means method
was used for different variables and differ-
ent datasets, where several relations be-
tween clusters of different variables was
seen.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.

Preface

This thesis was written by Daniel Leiria as the final project from 9th. and 10th. semesters
of the master program of Indoor Environmental and Energy Engineering, where the theme
of this work is Utilization of big data from the built sector.

The project was written from the 1st. of September to the 10th. of June.

Acknowledgments

The author would like to thank the district heating company in Aalborg, Aalborg Forsyning,
for providing the data that served to develop this thesis.

Reading guide

The references uses the Harvard method, where the name of the author and the release
year is mentioned e.g. [Hansen, 2018]. All the references can be seen in the Bibliography.
If the publishing year isn’t known, the year for the last time it’s visited is used.

All figures and tables are referred to as e.g. figure 1.1 or table 1.1 if it’s the first figure or
table in the first chapter, wheres equations are referred to as e.g. equation (1.1) if it’s the
first equation in the first chapter.

Daniel Leiria
<dleiri18@student.aau.dk>

v

Table of contents

Chapter 1 Introduction 1
1.1 Literature Review . 2
1.2 Case study . 2

Chapter 2 Methodology 5
2.1 Data Preprocessing . 5

2.1.1 Raw data organisation . 7
2.1.2 Errors . 7
2.1.3 Outliers . 8
2.1.4 Missing values . 9
2.1.5 Imputation methods . 9

2.2 Data Visualisation . 12
2.2.1 New variables . 13
2.2.2 Plotting . 20

2.3 Clustering Analysis . 23

Chapter 3 Results 27
3.1 Data Preprocessing . 27
3.2 Data Visualisation . 31

3.2.1 Single-variable overview . 31
3.2.2 Multi-variable overview . 40

3.3 Data Clustering . 46
3.3.1 One-year variable . 46
3.3.2 Daily profiles . 49
3.3.3 Daily profiles - ∆T level . 62

Chapter 4 Conclusions 77

Chapter 5 Further work 79

Bibliography 81

I Appendix 83

Appendix A Conference article NSB 2020 85

Appendix B Script 1: Raw Data - Data Preprocessing 95

Appendix C Script 2: Errors - Data Preprocessing 101

Appendix D Script 3: Outliers - Data Preprocessing 105

vii

Department of the Built Environment Table of contents

Appendix E Script 4: Missing Values - Data Preprocessing 109

Appendix F Script 5: Imputation - Data Preprocessing 113

Appendix G Script 6: Building type segregation - Data Preprocessing 117

Appendix H Script 7: Linear Regressions - Data Visualisation 121

Appendix I Script 8: Prepare dataset for clustering - Clustering Analysis125

Appendix J Script 9: Elbow method - Clustering Analysis 129

Appendix K Script 10: Average silhouette method - Clustering Analysis 133

Appendix L Script 11: Kmeans method - Clustering Analysis 137

Appendix M Script Extra: Imputation Benchmark 141

viii

Introduction 1
In the present century, the concern regarding the environment and the sustainability of
today’s choices in the future increased, where one of these concerns is related to energy
usage. Currently, different projects are being carried worldwide in order to develop energy-
efficient solutions based on this matter. Because according to the European Commission,
the heating and cooling in buildings and industry have the share of approximately 40 % of
the European’s Union total energy consumption [European Commission, 2019]. Moreover,
in this value, 79 % is only for heating and hot water of European households. In 2018, the
Eurostat presented that 75 % of the energy used for the heating and hot water comes from
fossil fuels and only 19 % is generated by renewable energy sources [European Commission,
2020]. Due to the high proportion of heating in total energy usage, more efficient and
sustainable solutions must be implemented.

In Denmark, the idea of viable solutions in terms of reducing energy consumption and
increasing the self-reliance in renewable energy is the basis of the new and ambitious
Danish targets for 2030 and 2050 [Danish Energy Agency]. One of these solutions passes
by the district heating (DH), which already covers a large area of the country to fulfil the
demands of space heating and domestic hot waters (DHW) production. Therefore, a deeper
understanding of all functionalities and the impact of the district heating has to meet the
Danish goals regarding its network and its connected buildings is fundamental. Recently,
several decisions were made for this solution, which one of them was the installation of
smart energy meters in buildings that are connected to the DH network. This decision
allows a better overview of the households’ energy usage and the network’s operation
through the gathering of large amounts of data. By doing this, it grants the possibility of
optimising the hot water supply, detecting present faults and boost the flexibility of the
DH system for meeting the energy demands.

Due to this solution of collecting and analysing large amounts of data of building energy
systems being so new and connected with other expertises, like Data Science, several
investigative studies are still going in the field. These studies are based on applying
different methodologies to handle the collected data and treat it, visualise patterns, cluster
into groups the similar patterns and create predictive models to design energy-efficiently
the District Heating network and its installations. Some of these research papers are
published and served as a foundation for this thesis, which its primary goal is to find
more patterns and develop new methodologies to find new information regarding District
Heating data.

From this project, it was written a peer-reviewed scientific conference article that has been
accepted for presentation and publication at the 12th Nordic Symposium on Building

1

Department of the Built Environment 1. Introduction

Physics, NSB 2020, presenting the preliminary results of the data preprocessing and data
clustering, and can be consulted in Appendix A.

1.1 Literature Review

The research conducted by [Gianniou et al., 2018a] performed a clustering analysis using
the K-means method in a DH dataset of 8293 single-family households in Aarhus, Denmark.
This analysis allowed to group the buildings into different clusters based on their daily
patterns of energy usage. It was also studied the implication of the variables: building’s
age, floor area and the number of adults, teenagers and children of each house in the energy
usage and daily patterns of each cluster.

In the paper [Kristensen et al., 2018], it was developed a hierarchical archetype modelling
and calibration framework, using 150 hourly-logged time-series data from Aarhus,
Denmark. This project resulted in developing several dynamic physics-based building
models which allow to design urban areas and forecast the building’s energy performance
when considering the several building’s parameters of each archetype.

In the research [Marszal-Pomianowska et al., 2019], it was presented a simple approach
to distinguish the space heating component and DHW production component from the
total energy consumption measured by the DH smart meters. The approach is developed
based on the assumption that in the non-heating season, most of the buildings do not
use space heating. Therefore, the energy measured by the smart meters during the non-
heating season is only for DHW production. The study revealed that the method predicts
accurately when the ratio between DHW usage and the total heating demand is higher
than 0.5 and showed as well it is more reliable for newly built houses and apartments.

1.2 Case study

The present case is from a small town in the East area of Aalborg, Denmark, where
the utility company Aalborg Forsyning provided the data from the smart energy meters
installed in 2018. The given data is from 1665 buildings, which mostly are residential
single-family dwellings. In each building is installed a single smart energy meter which
measures the total thermal energy use for space heating and production of domestic hot
water (DHW), from the district heating network. In all buildings was installed one of
three different models of smart meters, Multical 402 [Kamstrup A/S, 2016], Multical 403
[Kamstrup A/S, 2019] and Multical 602 [Kamstrup A/S, 2018], from the producer company
Kamstrup A/S. These devices are equipped with sensors to measure temperature and flow
in water-based systems with temperature ranges from 2 to 160/180 °C and have an energy
calculator to measure the building’s usage accurately. The initial dataset given by Aalborg
Forsyning, containing the smart meter recordings, is in .txt format and it is separated into
several files by their respective week of the year and its measurements period is one-year,
from 1st of October 2018 until the 6th of October 2019. In each file, all the buildings are
gathered, and each data point is an hourly timestamp measurement from a smart meter
installed in a building. In figure 1.1 is represented some of the measurements from week
46 of 2018 .txt file:

2

1.2. Case study Aalborg University

Figure 1.1. Week 46 of 2018 file in .txt format

Each file has in its structure a set of parameters, known as variables, aggregated with their
respective unit. The order of the parameter’s disposition is listed below:

• Link_1: Individual identification number of a building;
• Link_2: Individual identification number of a smart meter;
• TimeStep_Logging: Time when the data was collected, with a format Year-Month-
Day Hours:Minutes;

• Energy: Cumulative energy consumption measured in the building, in kWh and
MWh;

• Unit_Ener: Unit of the energy measured at the timestamp;
• Flow: Cumulative water volume consumption measured in the building, in m3;
• Unit_Flow: Unit of the water volume measured at the timestamp;
• Lifetime: Total of hours the device is in operation, in hours;
• Unit_LifeT: Unit of the lifetime measured at the timestamp;
• Flow*T_supply: Cumulative volume multiplied by the hourly-averaged supply

temperature, in m3°C and 0, 1×m3°C;
• Unit_Flow&TS: Unit of the cumulative volume multiplied by the hourly-averaged

supply temperature measured at the timestamp;
• Flow*T_return: Cumulative volume multiplied by the hourly-averaged return

temperature, in m3°C and 0, 1×m3°C;
• Unit_Flow&TR: Unit of the cumulative volume multiplied by the hourly-averaged

return temperature measured at the timestamp;
• T_supply_(inst): Instantaneous supply temperature measured at the timestamp,

in °C;
• Unit_TS: Unit of the instantaneous supply temperature measured at the timestamp;
• T_return_(inst): Instantaneous return temperature measured at the timestamp,

in °C;
• Unit_TR: Unit of the instantaneous return temperature measured at the timestamp;
• Volume_(inst): Instantaneous water flow measured at the timestamp, in m3/h;
• Unit_Vlm: Unit of the instantaneous water flow measured at the timestamp;
• Error: Type of error detected by the device during its performance;
• SmartMeter’s_Name: Model of the smart meter.

As a remark regarding these parameters, some of the values represent a cumulative sum,
like Energy and others are instantaneous values measured when the data is collected, e.g.
Volume_(inst). In the dataset, there are two different types of temperature variables
measured. As an example of these measurements, Flow*T_supply and T_supply_(inst),

3

Department of the Built Environment 1. Introduction

and not considering the cumulative volume present in the first variable, the difference
between these two temperatures is that the first is an averaged temperature of the hour
in which is measured and the second is the instantaneous collected value.

Another file was made available by Aalborg Forsyning, where are present the list of the
house’s addresses by their indicatory ID, parameter Link_1 in the list above. This file and
the specific town’s location, will not be indicated in this project to assure the users’ data
protection.

4

Methodology 2
As mentioned in the Introduction chapter, the fundamental idea of this paperwork is
to discover new statistical approaches and visualisation techniques to display data from
the District Heating smart energy meters. The selected tool to analyse this data is the
free software RStudio. This software is an integrated development environment (IDE) for
programming with the language R. The language itself is designed for statistical computing
and graphical display and can implement several packages that are functions made by other
R-users, providing a wide range of coding functionalities, e.g. clustering analysis methods
and forecasting techniques. In the current chapter, it will be presented all the methodology
respectively of this project.

2.1 Data Preprocessing

The gathering of vast sets of information can open doors to understand and see
relationships between the measured variables that was not seen before. The study of data
belongs to the field of Data Science, but it is based on the fields of mathematics, specifically
statistics. The developed methods in Data Science can be applied to see correlations
between variables, sub-group datasets and classify them by their similar characteristics,
develop models that can predict future conditions or variables’ values. Therefore, the tools
that are used in Data Science can revolutionise all other expertises when implemented.

Nevertheless, when handling large datasets, the first step to take into account is data
cleansing and treatment, in order to solve or eliminate errors, outliers and missing values
registered by the measurement devices. This stage is crucial in data analysis because most
of the datasets have issues that must be solved. If not solved, all the adopted methodologies
for the analysis and the conclusions drawn may be incorrect and not describe the reality.

The data preprocessing of the current dataset was divided into several R scripts. Each
script has a different function based on the type of issue that is intended to solve or evaluate.
The issues found on the DH dataset are the detected faults by the smart energy meters, the
possible existence of data outliers and finally the presence of missing observations. Due to
the complexity of this algorithm in solving all the data issues, it was created a flowchart,
figure 2.1, where is exposed all the taken steps to prepare the District Heating dataset for
analysis.

5

Department of the Built Environment 2. Methodology

Raw data

Script 1: Data organisation
Uploads and organizes the datasets

Script 2: Errors
Finds and converts into missing
values the errors of each building

Script 3: Outliers
Finds and converts into missing

values the outliers of each building

Script 4: Missing values
Finds the missing values and
the time gaps of each building

>9 hours gap? Exclude
building

>10% of a building’s
data is missing?

Script 5: Imputation methods
Applies imputation

methods in missing values

Script 6: Building type segregation
Separates buildings between
residential and non-residential

Is it residential?
Exclude
building

Final data

yes

no

yes

nono

no

yes

Figure 2.1. Data preprocessing algorithm.

6

2.1. Data Preprocessing Aalborg University

2.1.1 Raw data organisation

The raw data is a term that defines the not cleansed data that comes directly from
the Aalborg Forsyning that compiled all the smart meter data from each building. In
this project, three different types of dataset contain the information used for this study.
Aalborg Forsyning provided two of them, where the first contains the buildings and smart
meters’ ID with their associated addresses. The addresses information permitted to find
the geolocations, latitude and longitude, of each building. The second data type is the
set of .txt files named by their respective week and year of the gathered data from the
DH smart energy meters, as described in section 1.2. The last data type is from Aalborg
University and contains the weather data from the studied period.

In the first script, in Appendix B, all data from the different files are combined and
organised in a single table and saved in a R file. The organisation of the dataset consists
of synchronising the time samples of the measurements of each building. Because, these
samples vary in a difference of minutes between buildings; therefore, the time values are
rounded by the hour. Besides the time synchronisation, the data are grouped by their
season of the year, as seen in the table 2.1 and day type. The day type is the distinction
between weekdays, Monday to Friday, and weekends which consists of Saturdays, Sundays
and official holidays in the calendar of Denmark.

Table 2.1. The year seasons and its respective time periods

Season Dates
From To

Fall 2018 - 10 - 01 2018 - 11 - 30
Winter 2018 - 12 - 01 2019 - 02 - 28
Spring 2019 - 03 - 01 2019 - 05 - 31
Summer 2019 - 06 - 01 2019 - 08 - 31
Fall 2019 - 09 - 01 2019 - 10 - 06

All the scripts in the data preprocessing finalise by saving the combined DH dataset with
its modifications, to be used in the next script.

2.1.2 Errors

The second stage of the algorithm is responsible for the detection and conversion of error
values into missing values. As stated in the section 1.2, one of the parameters collected by
the smart meters is the variable Errors, which is a string value consisting in an info code
description of an irregularity detected by the device. These irregularities can be a fault
in one of the sensors, the detection of air in the system, weak signal, etcetera. Because
these errors are recorded observations that might be wrong and influence the analysis
negatively, it was created a script to handle this parameter individually. The script is
called Script_2_Errors.R and it is in the Appendix C. The different types of errors and
its descriptions may differ for each installed smart meter’s model. However, some of them,
even if they have a slightly different description, in the end, it might be the same type
of irregularity. The script sums the number of occurrences of each error per building and
evaluates its proportion regarding the overall observations’ number of the building. It also

7

Department of the Built Environment 2. Methodology

eliminates each error measurement from the dataset turning this data point into a missing
value that will be solved with all the other missing values posteriorly.

2.1.3 Outliers

After having the error values converted into missing values, finding the outliers of each
variable’s time-series of each building is the following algorithm’s step. The script
responsible for this task is Script_3_Outliers.R and it can be consulted in Appendix D.
The outliers are data points in a time-series, e.g. supply temperature parameter, recorded
by the smart energy meters that differ significantly from the other points. The existence
of outliers can compromise the analysis due to some of the used methods are sensitive to
changes in the observations, e.g. linear regression methods.

The script begins by dividing the dataset into different groups, distinguished by the
building’s ID number (Link_1), the year’s season (Season) and the day’s type (Day_type).
This segregation of the data was made to take into account how different the values might
be in different seasons or when it is a week working day or weekend.

After the division, the numerical variables, as energy, flow and temperature, were
investigated by a function, to detect the outliers in the variable’s time-series. The function
is referred as Mean Standard Deviation Method in some literature, but commonly known
as Z-scores. This method calculates the z-score of each observation by the formula 2.1:

Outlierscore = Z =
X − µ
σ

(2.1)

Where:

Outlierscore Z-score of the observation [-]
X Observation value - It can be Energy, Flow, Temperature [kWh or m3/h or ºC]
µ Mean value of the observations [kWh or m3/h or ºC]
σ Standard deviation of the observations [kWh or m3/h or ºC]

The Z-score function responsible to detect the outliers in the time-series parameter Energy
is seen in the listing 2.1 as an example:

1 MSD_outlier_Energy <- function(x){
2 mean_x <- mean(x$Energy, na.rm = TRUE)
3 sd_x <- sd(x$Energy, na.rm = TRUE)
4 x %>%
5 mutate(
6 outlier_score = (x$Energy - mean_x)/sd_x,
7 outlier_energy = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
8 outlier_energy = ifelse(is.na(outlier_energy), FALSE, outlier_energy),
9 outlier_energy = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_energy)

10) %>%
11 select(-outlier_score)
12 } #Mean and Standard Deviation method: Energy

Listing 2.1. Function to detect outliers

The value Outlierscore, in the function, is used to determine if a data point, is too distant
from the expected value when it follows a normal distribution [Frost, 2020].

8

2.1. Data Preprocessing Aalborg University

The used method considers an observation an outlier when |Outlierscore| is higher than
3.291, meaning that it is a value that belongs to the area of 0.05 % of the normal
distribution, as seen in the figure 2.2. The value 0.05 % is arbitrary but taking into account
that higher values lead to more outliers detected.

Figure 2.2. Representation of the function responsible to detect the outliers.

Nevertheless, to be considered an outlier, it must also fulfil the condition that the
instantaneous flow is higher than zero. In this way, it prevents that lower values consequent
of the hydraulic system being shut-off, will not be considered as outliers.

The last step of the current script is to convert all the outliers from the different variables
into missing values.

2.1.4 Missing values

The fourth script in the data preprocessing is responsible for searching and dealing with
the missing values. The missing values, also known as NA values in R, can be the
converted values from the previous scripts or the existing ones from the smart energy
meters recordings. The script Script_4_NA.R is the one responsible for handling the
missing values, and it can be consulted in Appendix E.

The script starts by detecting the NA values. These NA values represent the missing hourly
observations and can be a singular point in the time-series or belonging in a group of
sequential NA values, denominated as gaps. The presence of significant gaps in the dataset
influence the analysis’ accuracy, therefore it is established that buildings with more than
nine hours gaps, will be excluded from the dataset. It is also a condition to exclude a
building, if the building has a variable’s time-series with more than 10 % of data missing.
The buildings that are not rejected will have their NA values solved by imputation methods,
that estimate a plausible value to replace the empty observation.

2.1.5 Imputation methods

In order to solve the remaining NA values, it must be found a methodology that estimates
credible values to substitute them. These techniques are known as imputation methods,

9

Department of the Built Environment 2. Methodology

and there are several of them that can be used to perform the values’ estimation. Therefore
in this algorithm’s step, it was performed beforehand a test to evaluate from a list of
different methods, which are the ones more suitable for this kind of data. By knowing the
results from the test, the best methods were applied to all the dataset.

The list of different imputation methods, that will be tested, are from the R package
imputeTS [Moritz and Gatscha, 2019] and the script responsible to evaluate the methods
can be consulted in Appendix M. The final estimation of the missing values in the DH
dataset by the chosen methods is performed by the script Script_5_Imputation.R and it
is in Appendix F.

The used R package, imputeTS, is a compilation of imputation techniques and plotting
functions for univariate time-series to handle missing values. From this package, the
following imputation methods were compared to find the most suitable for the District
Heating dataset.

Linear interpolation

This method identifies the missing observation by assuming that it is between two
observations following a linear function. By recognising that the variable x is the variable
time (t), then the missing variable is given by the equation 2.2:

yi(ti) = yi−1 +
yi+1 − yi−1

ti+1 − ti−1
(ti − ti−1) (2.2)

Where:

yi(ti) Missing observation in the period ti
yi−1, yi+1 Observations where the missing value is in between
ti−1, ti+1 Time periods where the value ti is in between

Spline interpolation

This technique is founded on the mathematical concept of Splines. By definition, a spline
is a polynomial function divided by known points, also known as knots. In each pair of
knots, the connecting spline can be a different function depending on the fitting of the
curve in the studied interval. In the package imputeTS, the spline algorithm is referred to
as cubic spline interpolation, which means that third-order polynomials connect the knots
of the given dataset.

Stineman interpolation

In this method, it is used a monotone cubic interpolation to replace the missing values
into values that will conserve the monotonicity of the evolution of the dataset.

Repeating with the last or next observation

Regarding this method, it can be divided into two processes. The literature calls the first
Last Observation Carried Forward, LOCF, and returns each missing value as the prior

10

2.1. Data Preprocessing Aalborg University

value from the time-series. And the other process is called Next Observation Carried
Backwards, NOCB, and consists in the reverse method of LOCF, where the closest next
value from the time-series replaces the missing value. Concerning these methods, two
notes must be taken into account. The first is that the nearest known point will replace
the missing value from the time-series, which implies that datasets with significant missing
point’s gaps decrease the accuracy of this method. The second note is that if the first
or last point in the time-series is a NA value; then the chosen technique might not work,
due to the inexistence of point before the first or after the last. To overcome the issue,
the method was programmed with the option of reverting from one method to another
in the first and last points, if necessary. This means that the first value will be replaced
by the next observation when applied LOCF. And the last value will be replaced by the
observation before when used the NOCB method.

Simple moving average

This arithmetic technique is one of the most used in data science for smoothing time-series,
and it consists of averaging the values within a pre-established range of points in the time-
series. This range, or window-size, must be supplied beforehand, which in the script is
presented by the variable k. To understand how the accuracy of this method changes with
the window-size. The algorithm was tested for the k values of 2, 4, 6 and 8.

Linear weighted moving average

Relatively to this method, it is very similar to Simple Moving Average, SMA, with the
particularity that the furthest points from the given window-size have a decreased weight
in the average. This weighted drop has a linear evolution were the points right next to the
missing value have a 1/2 influence, followed by next points with 1/3 weight continuing in
this progression until the end of the window. The algorithm was tested for the k values of
2, 4, 6 and 8.

Exponential weighted moving average

Ultimately, this method also belongs to the group of the "moving average" techniques.
It has the same assumption as the Linear Weighted Moving Average, LWMA, which is
the reduction of the influence of the values when they are closer to the limits of the
given window-size. But in this case, the weight of the observations changes exponentially,
meaning that the influence of the points next to the missing value is 1/21, the weight of
the next points will be 1/22 continuing like this until the end of the given range. The
algorithm was tested for the k values of 2, 4, 6 and 8.

Replacing by mean, median, mode and random value

In these processes, the missing value is replaced by the following values: mean value of
the dataset, the median, the mode or by a random number that is limited between the
minimum and maximum of the existing observations in the time-series.

The developed process to compare the different methods consists in using ten of the
buildings that have the lowest quantities of missing values. Each building has randomly
eliminated 500 data points that will be imputed by the various methods and compared

11

Department of the Built Environment 2. Methodology

afterwards with the known values. The variations between the known points and the
imputed ones are measured by the root mean square error, RMSE, where the lowest
RMSE results represent the best solutions. The variables that were investigated by
randomly removing their data points are the cumulative parameters of energy, volume,
volume multiplied by the hourly-averaged supply temperature and volume multiplied
by the hourly-averaged return temperature. And the instantaneous hourly parameters
of supply temperature, return temperature and flow rate. After determining the best
techniques to handle the missing data, the chosen methods are used in each variable’s
time-series of each building in DH dataset.

Building type segregation

To conclude the preprocessing of the DH dataset, it was created a simple script capable of
differentiating from all the studied buildings the residential ones from the non-residential.
The algorithm is based on the idea that a non-residential building has higher energetic
properties than a residential dwelling. Therefore, when a building has high cumulative
energy and volume and high instantaneous mean power, it is identified as an outlier when
compared with the rest of the data. Instead of using the same methodology in subsection
2.1.3, to find the outliers in time-series. A simplified algorithm was developed in the script
Script_6_Data_Segregation.R, in Appendix G. Through the equation 2.3, it is calculated
a limit value for each variable, and the buildings that have all its three variables below the
limit are considered residential dwellings.

Xlimit = Q3(X) + 1.5× IQR(X) (2.3)

Where:

X Considered variable
Q3(X) Third quartile of X
IQR(X) Interquartile range of X

This method is usual in Statistics to apply in a dataset to find its outliers, where the value
1.5 is a typical arbitrary constant used in the above equation. Due to its extensive usage,
its simplicity in coding in R and this particular dataset is not constituted by time-series,
but each building has a single value per variable, this method was selected to handle the
division between the buildings’ types.

After concluding all the steps described above, the data is ready for analysis.

2.2 Data Visualisation

In this section, it will be presented how it was calculated new variables to enrich the
dataset for the further analysis and the different visualisation techniques used to gain a
more in-depth knowledge of how the different variables are related.

12

2.2. Data Visualisation Aalborg University

2.2.1 New variables

In section 1.2 in the Introduction chapter, it is shown the several parameters recorded by
the DH smart energy meters. Each parameter has it is own significance of the dataset, but
from them, it is possible to calculate other variables that may provide more information
regarding the buildings and consumers’ behaviour. These new variables are listed below:

Hourly-averaged temperatures and ∆T

The smart meters’ dataset has the variable Flow which is the cumulative water volume
consumption from the District Heating in m3 and the variables Flow*T_supply and
Flow*T_return which are the cumulative water volume consumption multiplied by the
hourly-averaged temperatures of supplied and returned water in m3°C. Therefore, by using
the equation 2.4, it is possible to calculate the hourly-averaged temperatures in each data
point:

T =
V olume× T
V olume

(2.4)

Where:

T Hourly-averaged temperature [°C]
V olume× T Cumulative volume multiplied by the hourly-averaged temperature [m3 × °C]
V olume Cumulative volume [m3]

By having these new values, it is possible to compare them with the existing parameters
of instantaneous temperatures T_supply_(inst) and T_return_(inst) and calculating
through the equations 2.5 and 2.6, one of the essential indicators of the buildings’ energy
performance, the temperature difference, known as ∆T in °C.

∆Tinst = Tsupply − Treturn (2.5)

∆T = T supply − T return (2.6)

Where:

T supply, T return and ∆T Hourly-averaged temperatures [°C]
Tsupply, Treturn and ∆Tinst Instantaneous temperatures [°C]

With these new variables, it is possible to assess how high is the temperature’s difference
in each building and therefore providing to the District Heating utility company which
buildings have low ∆T, indicating that a building might have an inefficient heating system
due to several causes.

Hourly-energy usage and water-volume consumption

In the dataset, it is also given the cumulative energy usage and water-volume consumption
of each building. The names Energy and Flow represent these variables and the units kWh
and m3 express them. In order to obtain the hourly-consumptions, each hourly cumulated

13

Department of the Built Environment 2. Methodology

measurement is subtracted by the previous hourly cumulated measurement, as seen in
equations 2.7 and 2.8:

Ehourly = Ei − Ei−1 (2.7)

Vhourly = Vi − Vi−1 (2.8)

Where:

Ehourly and Vhourly Hourly-averaged variables [kWh and m3]
Ei and Vi Measurement [kWh and m3]
Ei−1 and Vi−1 Previous measurement [kWh and m3]

By having these variables, it is possible to evaluate the hourly consumption patterns from
each consumer, extracting the daily profiles from the buildings and correlate them with
the ∆T values.

Power

Another parameter that is estimated through the initial parameters is power. This
parameter expresses the variation of energy usage through time, therefore is an
instantaneous value. It is calculated by equation 2.9 using the parameters Volume_(inst)
which is the water flow measured in that instant and the instantaneous ∆T, mentioned
above.

Power =
cp · ρ · V̇ ·∆Tinst

3600
(2.9)

Where:

Power Power [kW]
cp Water isobaric specific heat [kJ/kg · K]
ρ Water density [kg/m3]
V̇ Water flow [m3/h]
∆Tinst Instantaneous ∆T [°C]

The value cp · ρ/3600 is considered a constant and equal to 1.145, for all observations for
simplicity, even though both fluid properties are dependent on temperature. By having
calculated power, it is possible to see the dependence of the water flow and instantaneous
∆T have on the overall buildings’ performance.

Domestic hot water

By following the methodology from [Marszal-Pomianowska et al., 2019], it can be affirmed
with some assurance that in the summer period, the ratio between DHW production and
space heating usage is higher. This idea prevails since in the summer, most of the heating
systems are turned off, and the DHW usage patterns remain. Therefore for each building
was extracted, its daily total water consumption which gives an idea of the amount of DHW

14

2.2. Data Visualisation Aalborg University

is consumed. This value was calculated by taking into account the months of June and
August. Where in each day, from Monday to Friday, it was summed the water consumed
during a day and finally averaged considering all the days from the two months period.
Furthermore, it was extracted the ∆T of the summer period, because it can indicate the
DHW heat exchanger’s efficiency.

Building’s characteristics

When considering the values of energy usage and outdoor conditions, such as temperature,
wind speed and solar radiation, for a given hour, it is possible to draw some of the
conclusions respecting the buildings’ characteristics and users’ behaviour.

The building’s energy demand consists of an energetic balance between the energy losses
from ventilation, infiltration and transmission and the energy gains from solar radiation
and heat generation from equipment or people’s presence in the building. This interaction
of the different energetic components is seen in figure 2.3 and can be mathematically
expressed by the equation 2.10.

Figure 2.3. Scheme of a building’s energy balance [Wittchen and Aggerholm, 2000]

Energy demand:

Edemand = Esolar + Einternal − Etransmission − Einfiltration/ventilation (2.10)

Where:

Edemand Energy demand or balance [kWh]
Esolar Solar gains [kWh]
Einternal Internal gains [kWh]
Etransmission Transmission losses [kWh]
Einfiltration/ventilation Infiltration/ventilation losses [kWh]

By having the values of hourly energy, see page 13, and their respective outdoor
temperature, it is possible to make a scatterplot for each building as seen in figure 2.4.

15

Department of the Built Environment 2. Methodology

Figure 2.4. Scatterplot: Energy vs Outdoor temp. - All data

By analysing the plot itself, does not seem that there is any clear correlation between the
variables, due to the widely points’ spreading. The explanation behind might be due to
the noise from the time-series, as seen in figure 2.5. To solve the issue, it was calculated the
moving average of the time-series, in order to smooth the dataset and clarify the value’s
trend. The figure 2.6, shows the same time-series when applied the simple moving average
with a window-size of 33 data points. The figure 2.7 is the same scatterplot as in figure
2.4, where the dataset used is the values generated by the moving average method, seen
in figure 2.6.

Figure 2.5. Time-series: Energy (Left - Green) vs Outdoor temp. (Right - Blue) - All data

16

2.2. Data Visualisation Aalborg University

Figure 2.6. Time-series: Energy (Left - Green) vs Outdoor temp. (Right - Blue) - SMA, k = 33

Figure 2.7. Scatterplot: Energy vs Outdoor temp. - Applied simple moving average algorithm
(SMA) of k = 33

When using the smoothed values in the scatterplot of hourly-energy demand and outdoor
temperature, a clear relationship between these two variables is observed. The plot shows
two different linear behaviours, where the first (left side - red colour) represents the heating
season, where the energy is highly dependent on the outside temperature, due to the
heating system is operating. And the second (right side - blue colour) concerns the non-
heating season, where the energy demand is not so dependent on the outside temperature,
and more dependent on the domestic hot water production. From these two linear relations,
it was performed a linear regression. Where the data points used for the heating season
regression are from the Fall, Winter and Spring periods and for the non-heating season
regression, only the Summer period observations. These linear regressions are expressed
by the equations:

17

Department of the Built Environment 2. Methodology

Heating season:

E(tout) = m× tout + E(tout = 0) (2.11)

Non-heating season:

E(tout) ≈ E(tout = tno influence) (2.12)

Where:

E(tout) Hourly energy [kWh]
tout Outdoor temperature [°C]
m Linear slope [kWh/°C]

The values E(tout = 0) and E(tout = tno influence) are the hourly energy when the outdoor
temperature is equal to zero and equal to a temperature value when from that moment
on, the energy is no longer significantly influenced by the outdoor temperature.

The valuem is a variable that is dependent on the different energy components enumerated
in the building’s energy balance, see equation 2.10. Therefore, it is dependent on the
infiltration/ventilation rates, the solar gains as the internal gains. The last one, which
is based on the heat generated from the people and equipment cannot be measured or
estimated from the dataset. However, the other components can be evaluated because
they are related to the wind speed and solar radiation, which are given by the weather file.

To understand how significant each energy component is in the total balance of the
building. The dataset is subdivided, taking into account specific external conditions. This
subdivision is a filter applied in the dataset, where the influence of only one or two of
the energy components can be extracted. Furthermore, from that filtered points, it is
generated different linear regressions which will have different values of m. The different
filters are the following:

• Heating and Non-heating regressions: Filtered by the seasons of the year;
• Temperature regression: Solar radiation is zero, and the wind speed is lower than

1 m/s;
• Infiltration/Ventilation regression: Solar radiation is zero and the wind speed is

higher than 1 m/s;
• Radiation regression: Solar radiation is not zero, and the wind speed is lower than

1 m/s;

The first case reveals the overall relationship between energy and outdoor temperature for
the heating and non-heating seasons. The second case, by having the data points where
there is no solar radiation, night period, and the wind speed is lower than 1 m/s, then it
is possible to see how the slope changes only influenced by the outdoor temperature,
discovering, therefore, the influence of the transmission losses in the building. The
third case reveals how the building reacts with outdoor temperature and wind speed,
showing the infiltration/ventilation energy component influence. The last case considers
the building’s energy demand relatively the outdoor temperature and solar radiation
fluctuations throughout the day, showing consequently how significant is the solar gains

18

2.2. Data Visualisation Aalborg University

component in the building’s heat balance. In all these three last cases, the linear regressions
are calculated only for the heating season. Unfortunately, the m-value is dependent on
the building’s envelope area, which is information not provided in the dataset. However,
to overcome the issue, it was compared the different regression’s slopes of the building to
each other, by calculating the following ratios:

Infiltration and Ventilation:

Rinf =
minf

mtemp
(2.13)

Solar gains:

Rrad =
mrad

mtemp
(2.14)

Where:

Rinf and Rrad Ratios of the energy components [-]
mtemp Slope of temperature regression [kWh/°C]
minf Slope of infiltration/ventilation regression [kWh/°C]
mrad Slope of radiation regression [kWh/°C]

By comparing them, it is possible to find how influential each outdoor condition is in a
building. In figure 2.8, it is presented, as an example, a temperature regression with two
different cases of a radiation regression. The first case is when the radiation’s slope, mrad,
is lower than the temperature’s slope, mtemp. And the second case is when the radiation’s
slope is higher than the temperature’s slope.

Figure 2.8. Example of the m-value changes

19

Department of the Built Environment 2. Methodology

When mrad is lower than mtemp (Case 1), it means that the energy demand is more
dependent on the outdoor temperature. In the second case, where mrad is higher than
mtemp, the linear function is less dependent on outdoor temperature. Because the origins
of the dataset responsible for the radiation regression is based only on the outdoor
temperature and solar radiation, a ratio Rrad < 1 shows a building where the dataset
is influenced by the solar radiation. And the lower Rrad is, higher is the influence of the
solar radiation on the building. Based in this concept, it is defined the condition 2.15
which will be defined as a building indicator:

{
Rrad < 1, High dependency of radiation

Rrad ≥ 1, Low dependency of radiation
(2.15)

In the case of the infiltration/ventilation component, the higher the Rinf -value is the more
influence the wind speed has on a building. Due to when the outside air enters in the
space, it is at temperature of the outside. Therefore the Rinf is expressed by the relation
2.16 as a building indicator:

{
Rinf < 1, Low dependency of wind

Rinf ≥ 1, High dependency of wind
(2.16)

Regarding the temperature regression, the slope, mtemp, itself is the indicator used to
measure the influence of the transmission losses in the building’s energy demand even
though this value is also dependent on the envelope’s surface area.

By having these indicators calculated, several conclusions can be drawn from the dataset.
The buildings that have large mtemp-values might have high transmission losses through
their envelope, which might mean that they are old buildings with high transmission losses
coefficients, U-value. High Rinf means the heating demands change proportionally with
the increase of wind speed, which might mean that the building has high infiltration or
ventilation rates. This can be a building, therefore, exposed significantly to the wind
or that has significant infiltration/ventilation rates due to the building’s construction,
ventilation system or the users’ behaviour in constantly opening the windows with the
heating system operating. The ratio Rrad, when it is lower than 1, represents a building
that solar radiation exposure influences its heating demands. This might mean that it is
a building with large glazing areas, or that most of the windows are facing South, or that
the users have their curtains opened most of the time. All the regressions were calculated
by the script Calculate_Uvalue.R and it is in Appendix H.

2.2.2 Plotting

In this subsection, it clarifies which types of plots where used and the reason why they were
chosen. The code responsible for this subsection is an R markdown document, instead of
a typical script, which allows printing the results in an HTML file and sending them to be
visualised for other people without the need to share the code and dataset files.

20

2.2. Data Visualisation Aalborg University

Bubble map

There are several ways to display a geographical area with valuable information on it,
and the bubble map is one of these ways used in data visualisation. The bubble map
displays a chosen geographical region, and according to the points’ locations, in this case,
buildings, it presents a circle in each location where their colour or size is proportional to a
variable’s value. With this kind of plot, it is possible to the District Heating company have
an overview of the town in terms of high/low energy consumers, buildings with low ∆T,
buildings where the supplied temperature is too low compared with the mean network’s
temperature, meaning significant heat losses in that network branch. In order to create this
type of graph, the dataset must be provided with the latitude and longitude coordinates
of each building. The main disadvantage of this plot is if the coordinates are to close, the
circles will overlap, giving the impression of only one point instead of the real number of
points. The figure 2.9 is an example of a bubble map.

Time-series plot

A time-series is a sequence of time-dependent values separated evenly in time. Each
building’s variable in the DH dataset is a time-series with discrete values separated by
an hour interval. These type of dataset are widespread in all areas of society, e.g. from
economics to engineering. A time-series is usually displayed in a line graph where the
studied variable is plotted in a continuous-time span. Some plots can be with more than
one variable’s time-series to understand the correlation between these variables. Due to the
existence of noise in specific datasets, it can be performed several techniques to smooth the
graphs. A technique used in the DH dataset is the simple moving-average method which
generates another time-series where its values are calculated from the average of a specific
point with its neighbouring points. By using the moving-average technique, it is possible
to smooth the fluctuations from the plots to have a better trend’s overview of the dataset.
In figure 2.10 is an example of a time-series plot.

Box and whisker plot

The box and whiskers plot, commonly known as box plot, it is a different way of displaying
the variable’s distribution in the dataset. The figure 2.11 is an example of a box plot, where
the box zone is composed of the data comprehended between the lower quartile (25th
percentile) and upper quartile (75th percentile). In the middle of the box, it can have
two lines where one is located at the median value and the other at the mean value. The
lines below/above the lower/upper quartiles are denominated whiskers and represent the
data’s distribution before/after the percentiles. These types of plots also show the lower
and upper extremes of the distribution and the possible outliers. The advantages of using
this plot are the display of the different distribution characteristics, e.g. median, mean,
quartiles, skewness. And the possibility of grouping in the same plot various numerical or
categorical variables.

Parallel coordinates plot

This plotting method is used for numerical multivariate datasets. The main idea behind
this method is to attribute an axis to each variable and placed them parallel between

21

Department of the Built Environment 2. Methodology

each other. For each case, or multivariate observation, compound by a numerical vector
of variables, it draws a line intersecting each parallel axis. By having all these lines
distributed over the axes, it is possible to have a global overview of each case by comparing
with the others. In the parallel coordinates plot, it is necessary to be aware that the
axis order influences the perception of the dataset. Therefore a good practice besides
carefully thinking the axis order is to change the order itself attempting in discovering new
patterns. The major drawback of this plot is by having a high volume of cases turns the
plot extremely dense in lines. In order to overcome the issue, the plot can be interactive
when selecting a range of lines which will be highlighted while the others fade, this selective
process is called brushing. In figure 2.12, it can be seen an example of a parallel coordinates
plot.

Scatterplot

The scatterplots are formed by placing the data points into a cartesian coordinate system,
where two variables are the x and y-axis. By displaying the variables in this kind of plot,
it allows unravelling the relationship between the studied variables. These plots are also
behind the concepts of correlation and regression, which are the processes of quantifying
the strength of a variables relationship and estimating the mathematical relation between
them. The scatterplots possibilities the understanding that each variable has on the others
when compared. The drawback from this plotting method is that because it can only
consider two variables, the correlation dependence between the variables might be due to
another non-considered variable. The figure 2.13 exemplifies a scatterplot.

Figure 2.9. Example of a bubble map
[Ribecca, 2020].

Figure 2.10. Example of a time-series
[Ribecca, 2020].

22

2.3. Clustering Analysis Aalborg University

Figure 2.11. Example of a box and
whisker plot [Ribecca, 2020].

Figure 2.12. Example of a parallel coordi-
nates plot [Ribecca, 2020].

Figure 2.13. Example of a scatterplot [Ribecca, 2020].

2.3 Clustering Analysis

In Data Science, one of the methodologies used to study and find patterns in a given dataset
is through clustering analysis. Clustering methods are used to identify, divide, group and
categorise into subgroups the data points by their similarities in terms of their variables.
Different clustering methods vary in their complexity and mathematical procedure and
when applied, can achieve different results. Therefore, it is intrinsically necessary to base
the choice of a specific method in terms of the data’s nature. This means that the size of
the data, the variables’ type, the number of variables and other aspects from the data must
be taken into account when choosing a suitable clustering method. From all the existing
methods, the one chosen for this thesis is the K-means method. The decision was made
taking into account, the simplicity in coding this method in a R script, the versatility in
applying it in the different variables and that can be used for cluster time-series.

23

Department of the Built Environment 2. Methodology

The K-means method is a Partitioning clustering method. The Partitioning methods
group consists of clustering techniques where their total number of clusters must be
known a priori, and from the number of clusters, the analysis can be carried on. This
analysis subsists in dividing the time-series in the clusters’ number specified in the
beginning. Similar time-series form each cluster, and each cluster is identified by their
centre, resembling the mean value of the points from all the time-series.

The concept behind this method is the minimisation of the total within-cluster variation;
these variations intra- and inter-clusters can be measured by different dissimilarity
measures processes, also known as distance matrices, where the one used in K-means is
the Euclidean distance. The equation 2.17 defines the Euclidean distance, by measuring
the distance between two observations:

dEuclidean =

√√√√ n∑
i=1

(xi − yi)2 (2.17)

Where:

dEuclidean Euclidean distance
xi, yi Data points
n Number of total points in the dataset

Before running the K-means algorithm, all the values of each variable must be standardised
through the equation 2.18. Another important note is that for the K-means being applied
to a time-series, all its dataset must be divided according to a specific variable and the
table must be transposed. The process of standardisation and transposition of the dataset
is performed by the script Script_Prepare_Clustering_DT.R and can be consulted in
Appendix I.

Xstandardised =
X − µ
σ

(2.18)

Where:

Xstandardised Standardised observation [-]
X Observation value - It can be Energy, Flow, Temperature [kWh or m3/h or ºC]
µ Mean value of the observations [kWh or m3/h or ºC]
σ Standard deviation of the observations [kWh or m3/h or ºC]

In some datasets, the number of existing clusters is revealed. In this case of the smart
energy meter’s measurements, there is no information about the number of groups that
the buildings can be grouped in. Therefore to predetermine the total number of clusters to
begin the iterative relocation process of the cluster centres, it must be used some methods
that determine the optimal number of clusters for a given dataset.

The Elbow method is one of the most famous methods, and it is one of the most suitable
for the Partitional clustering methods due to evaluates how minimised is the total intra-
cluster variation per number of clusters assuring well-compacted clusters. The Elbow

24

2.3. Clustering Analysis Aalborg University

method generates a function where the best solution, the optimal number of clusters, is
the inflexion point, also known as the "knee", of the function. In figure 2.14, it is seen an
example of the Elbow method function, wherein this case, the optimal number of clusters
is four.

Figure 2.14. Example of the application of the Elbow method to find the optimal number of
clusters.

Another approach that is used to determine the optimal number of clusters is by evaluating
how well each observation occupies in its cluster. The Average Silhouette method
measures this suitability of the points in their cluster, where a high average silhouette
coefficient represents that the cluster which a data point was assigned to is the most
suitable for it. The method itself is performed for several cases by changing the total
number of clusters. For each case, it calculates the mean silhouette coefficient of all the
observations, where the case with the highest coefficient is the optimal solution. In figure
2.14, it is seen an example of the Average Silhouette method, wherein this case, the optimal
number of clusters is two, followed by the number four.

25

Department of the Built Environment 2. Methodology

Figure 2.15. Example of the application of the Average Silhouette method to find the optimal
number of clusters.

These two methods were performed by the scripts Script_Elbow_Kmeans_3.R and
Script_Silhouette_Kmeans_3.R, seen in Appendix J and K, to find an optimal number
of clusters for the DH dataset. From this chosen value, the K-means algorithm can be run
by the script Script_Kmeans_3.R, also in the Appendix L.

The K-means clustering method was applied in different datasets in order to analyse the
time-series by in different conditions. The first dataset is the variables cumulative energy
and cumulative water-volume and the hourly-averaged temperature difference in a year
span. The reason to cluster this dataset is to identify any groups of energy or volume
consumption. Or even to see if the groups can be divided by their temperature difference
and if the yearly mean temperature difference pattern has any influence on the overall
consumption.

The second dataset consists of the daily profiles for each year’s season of the variables
hourly-energy, hourly-volume, flow and instantaneous temperature difference. The daily
profiles were made by calculating the average variable’s value for each hour of the day,
only considering the working days of the week (from Monday to Friday). The working
days were considered due to the constant routine that the users have during the week,
which will be revealed in their heating usage.

The last dataset used in the K-means is the same as the one before but with the
particularity that the buildings before clustered were divided by their yearly mean
temperature difference. The temperature difference groups were divided into the groups
10 - 30 °C, 30 - 40 °C, 40 - 50 °C and 50 - 60 °C. And the considered variables were the
water flow and instantaneous temperature difference, for the Winter and Summer season.

26

Results 3
As described before, several methods from data analysis were considered to investigate the
District Heating data from Aalborg Forsyning. This chapter is composed of the collection
of all the results from the methods that are described in chapter 2.

3.1 Data Preprocessing

All the study begins with the raw data from Aalborg Forsyning. The data comes from 1665
District Heating smart energy meters installed in different residential and non-residential
buildings near Aalborg. In the measurements, some observations consist of detected errors
by the devices, out-of-range values and missing values, which are empty data entries that
were not measured in the first place. All the methodology used to cleanse and treat the
data from the smart meters is described in section 2.1.

After uploading all the data from the different sources and organising it, the dataset was
evaluated regarding the existing errors. In table 3.1 are all the different types of errors
present in the DH dataset. For every kind of error, it was given an ID number to be used
in the plots, afterwards.

Table 3.1. The different types of errors in the dataset and its identification number.
Type of Error Number ID

Temperature difference has wrong polarity 1
V1 Wrong flow direction 2
Flow sensor with wrong flow direction 3
Air has been detected in the flow meter
(only indicated as long as the fault exists) 4

Flow sensor with weak signal or air 5
T2 Below measuring range or short-circuited 6

From table 3.1, it is concluded that all faults recognised by the devices are from the sensor’s
performance of flow and temperatures. After identifying all the different kind of faults, it
is necessary to see how many errors were detected in a full-year period. The dataset has
14,855,339 observations, where 30,785 are faults recognised by the smart meters, therefore
in all dataset, 0.21 % of the data are errors. This is a small percentage when seeing the
overall dataset. However, it is necessary to evaluate the number of errors per building. In
figure 3.1, it is the plot with the percentage of the total sum of errors per buildings in the
ten buildings with the highest values in the dataset.

27

Department of the Built Environment 3. Results

Figure 3.1. Barplot of the quantity’s percentage of errors per building.

By analysing the plot, it is concluded two buildings stand out. These buildings are the
174492 and 167214 where 54.17 % and 36.23 % of their data are registered as an error. The
other eight buildings have percentages below 10 %. For a better understanding of these
mistakes, the script Script_2_Errors.R also generates bar plots of all the different types
of errors per building of the figure 3.1. It was used the numeric IDs from table 3.1 to
identify the error’s type. The bar plots are in figure 3.2:

28

3.1. Data Preprocessing Aalborg University

Figure 3.2. Barplot of the quantity’s percentage of errors by type per building.

By examining the plot, it is concluded from these buildings, the only errors that appear are
the types: 2, 3, 4 and 5. These types are the ones only from the flow sensor, which means
that in this dataset is much more susceptible to an issue occur in a flow sensor than in a
temperature sensor. It is also observed that the studied buildings have most of its data
with only one type of error than an even distribution between types. The buildings 174492
and 167214, present the error type 5 and 4, respectively. This error type is regarding the
detection of air in the system or that the smart meter’s signal is weak. Therefore the
systems of the two residences should be evaluated to solve the origin of the errors.

Regarding the results from the detection of outliers by the script Script_3_Outliers.R,
when considering the set of all the variables described in subsection 2.1.3. It is observed
that in the dataset, 1.99 % of the observations are outliers. Having identified all errors and
outliers, both of these observations will be considered as missing values and consequently
replaced as NA values.

The missing values, classified as NA values in R, are spread in all dataset, and
they were evaluated by the script Script_4_NA.R. In a preliminary overview, it
was concluded that most of the buildings had significant missing data gaps at the
beginning of the measurements. This is due to the time synchronisation made by the
Script_1_Raw_Data.R, where most of the buildings’ recording started after 2018 - 10 - 01.
Therefore to overcome this issue, all the data from 2018 - 10 - 01, 00:00h until 2018 - 11
- 04, 23:00h was discarded. In subsection 2.1.4, there are two criteria that if one of them
failed by a building, the building is excluded from the dataset. The first criterium is that a

29

Department of the Built Environment 3. Results

building cannot have more than nine hours gap of missing data, to prevent having buildings
with significant missing data gaps. The second criterium is that all buildings composed
with more than 10 % of NA values must be discarded from the dataset. When following
these criteria, 637 residences are eliminated from the initial number of 1665 buildings,
representing an exclusion of 38.3 % of the original set of buildings. From this point, the
dataset is ready to be solved by the imputation methods described in subsection 2.1.5 in
the Methodology chapter.

The application of the imputation methods was made in two parts. The first part consists of
finding the best techniques to apply in the DH dataset. As explained in the chapter before,
several methods were applied in ten buildings time-series, in all their set of variables. And
they were compared through the root mean square error, RMSE, between the known values
and the imputed ones from the different techniques. The final results of this benchmark
can be seen in figure 3.3, which is a coloured Excel table where the lowest values are
represented by green colour and gradually become red when they increase. Because there
are ten investigated buildings described in the script, it was calculated the average of the
RMSE results and inserted in the Excel table.

Figure 3.3. Results from the imputation methods benchmark.

The methods where the missing values are replaced by the mean, median or mode of the
dataset or by a random number limited between the minimum and maximum values of the
data presented the worst results. For the cumulative variables, the best technique found is
the linear interpolation; this might be due to the fact these variables show a monotonically
increasing evolution, similarly as a linear function. Regarding the instantaneous variables,
the best method is the exponential weighted moving average with a window-size of 8 data

30

3.2. Data Visualisation Aalborg University

points, k. The explanation behind this result might be due to its exponential nature. The
replaced missing value is dependent of several neighbouring points attributing robustness
to the solution when comparing other moving average algorithms. Based on these results,
the chosen methods to solve the missing data points are the linear interpolation for the
cumulative variables and the exponential weighted moving average with k = 8, for the
instantaneous variables. Accordingly, the second part consists of applying these methods
to the District Heating dataset to solve the issue of the remaining missing data.

When the missing values are estimated, it is possible to separate the buildings that are
residential from the non-residential. The separation procedure is defined in subsection
2.1.5 from the Methodology chapter. The calculated limits that divide the buildings are
in table 3.2:

Table 3.2. Limits to differentiate between residential and commercial building.
Variable name Limits

Maximum energy [kWh] 30,286
Maximum volume [m3] 669
Mean power [kW] 3.47

The exclusion criteria from the missing values script, it excluded 637 buildings from the
original 1665 buildings, due to large quantities of missing data. In this case, the buildings
with values higher than the ones from the table 3.2, will be considered non-residential and
consequently excluded also from the dataset. The results are that from 1028 buildings, 59
buildings were excluded. By considering all these values, the data preprocessing algorithm
finished with 969 buildings that are considered the final dataset to be used for the analysis,
and represents 58.20 % of the original data from Aalborg Forsyning.

3.2 Data Visualisation

This section is based on section 2.2 from the Methodology chapter where are described
several new calculated variables to supplement the dataset and the plotting techniques used
to unravel some of the building and systems characteristics and consumers behaviour. The
section is divided into two main parts, which the first part consists of viewing the buildings
by one variable at the time. And the second part consists of a multivariable study of all
the buildings when considering all their variables.

3.2.1 Single-variable overview

This part is responsible for giving an overview of the set of buildings near Aalborg regarding
one of its variables. By having this general perspective, it is possible to compare them with
each other. The first step in the visualisation is to map all buildings by their geolocations
and differentiate them by their properties. When evaluating the District Heating network,
the considered performance outputs from the buildings are the energy, water-volume and
the temperature difference between the supply and the return temperatures. By having
these variables, it was made a scatterplot, before the bubble mapping, to understand
any possible correlations between the variables. But also to prevent that if two of the
parameters are strongly correlated, there is no need for mapping both parameters. The

31

Department of the Built Environment 3. Results

figures 3.4, 3.5 and 3.6, are the scatterplots between total energy usage, total water-volume
consumption and the mean hourly-average temperature difference in a year span for each
building. Each plot has coloured the buildings according to the range of their mean hourly-
average ∆T .

Figure 3.4. Scatterplot between total en-
ergy consumption and total
water consumption.

Figure 3.5. Scatterplot between total en-
ergy consumption and mean
temperature difference.

Figure 3.6. Scatterplot between total water consumption and mean temperature difference.

Regarding the plots, it can be concluded that the total energy and water usage are highly
correlated and that there is a relationship where it is seen that ∆T represents the slope of
a line passing through the points marked with different colours. This relation was already
expected from the results, due to the energy be a product of the water-volume with ∆T ,
as seen in equation 3.1.

E =
1

3600
· cp · ρ · V ·∆T (3.1)

Where:

E Energy [kWh]
cp Water isobaric specific heat [kJ/kg · K]
ρ Water density [kg/m3]
V Water volume [m3]
∆T Mean hourly-average ∆T [°C]

In figure 3.6, it is not seen any correlation between the water-volume and the ∆T . The
plot shows that high or low values of ∆T have higher and lower values of total water

32

3.2. Data Visualisation Aalborg University

consumption. This might mean that these two variables are dependent by other factors
that are not being considered in this scatterplot or that they are independent of each other.
Because of the relation between energy and the variables water-volume and ∆T , only these
two last variables will be the ones used for the bubble maps.

Bubble map: Temperature

The bubble maps are a powerful tool to represent the DH dataset by spreading all the
considered variables by their locations, allowing the DH company to understand if the
building’s proximity to each other influences the dataset. This idea of proximity comes
from the premiss that most of the residential houses when close to each other might share
the same characteristics, e.g. heating/DHW systems or building materials. In terms
of temperature, the smart meters measure the supply and return temperatures, both in
hourly-average and instantaneous measurement. For the bubble maps, it was considered
the hourly-averaged values. The first variable considered is the mean supply temperature
in a year’s span. This value is important for the utility company because it is not dependent
on the building but the DH network. By mapping the supply temperature, it is possible
to see which are the buildings with low values, representing the locations on the network
with high heat losses. In figure 3.7 it is represented this bubble map. It is also plotted as
a bubble map, the mean hourly-averaged return temperature and ∆T in figures 3.8 and
3.9. These two variables are dependent on the building’s system and user’s behaviour and
therefore used by the DH company as an indicator to understand which buildings have
better overall energy performance when compared.

Figure 3.7. Bubble map of the mean supply temperature.

33

Department of the Built Environment 3. Results

Figure 3.8. Bubble map of the mean return temperature.

Figure 3.9. Bubble map of the mean temperature difference.

From the plot in figure 3.7, it is seen the mean supply temperature of all the houses is
uniform where the mean value for all the residences is 72 °C, and the standard deviation
is 2.93 °C. These results were already expected since the supply temperature is a variable
entirely dependent on the DH company and not from the buildings. In the plot, it is also
noticed a building with a supply temperature of 59 °C (blue colour), and this value might
indicate that distribution branch has significant heat losses and should be investigated by
the DH company. By evaluating the mean return temperature and the mean ∆T , it is seen
that the constancy from the first plot is not seen. In these last two plots, more buildings
have a spreader temperature distribution, where for the return temperature has a mean

34

3.2. Data Visualisation Aalborg University

value of 31 °C and standard deviation of 4.39 °C, and for the ∆T , the mean is 40 °C, and the
standard deviation is 4.85 °C. The residences that have large ∆T are seen as energetically
efficient because they return to the DH network the water at low temperature. This
also means the buildings that have low ∆T are performing poorly and must be studied
carefully to define a solution to increase their ∆T . The figure 3.10 is a box plot with the
temperatures’ distributions of the town’s DH network. From it is possible to see the overall
distribution and recognise which buildings are situated outside the expected range when
compared with the dataset.

Figure 3.10. Box plot of the temperatures’ distribution.

From the plot in figure 3.10, it is possible to see that the supply temperature has a compact
box, which means that most of its values are similar. Furthermore, in its distribution, some
points are identified as outliers. Therefore all network connecting these buildings should
be investigated. The return temperature has a broader distribution with more outliers.
This is connected with the different factors, e.g. users behaviour/consumption or the
type/efficiency of the building’s system. Most of the outliers are for temperatures higher
than 40 °C, which is not energetically efficient because the water is returning to the network
with high temperatures. All these buildings, therefore, should be investigated. Because
of this wide distribution on the return temperature, the building’s temperature difference
will also have the same distribution characteristics, as the plot reveals. The outliers of
the supply temperature and ∆T were plotted in a bubble map, as seen in figure 3.11 and
3.12 to see if any pattern emerges by having fewer points on the map. The temperature
difference in the summer season was also considered in the box plot in an attempt to see
which buildings are performing worst due to their DHW production system. As seen in the
box plot, the Summer’s temperature difference is very similar to the year’s temperature
difference, in terms of its distribution. This result means that the ∆T might not change
significantly between the summer period and year span. But to have a better understanding
of their relationship, it was plotted another box plot, figure 3.13, where its values are the
ratio ∆T summer/∆T . From this ratio, all the buildings that have values smaller than 1,

35

Department of the Built Environment 3. Results

may represent buildings where the DHW system has some installation or design problem
that may affect their performance.

Figure 3.11. Bubble map of the mean supply temperature - Outliers.

Figure 3.12. Bubble map of the mean temperature difference - Outliers.

36

3.2. Data Visualisation Aalborg University

Figure 3.13. Ratio between temperature differences.

Figure 3.14. Bubble map of the ratio between temperature differences - Outliers.

The figure 3.11 shows the buildings where their mean supply temperature is low when
considering the average from all the dataset. Even though their locations are spread
throughout the town, it is possible to see some clusters, which might mean a local network
section with higher heat losses. The figure 3.12 it is represented the outliers from the mean
temperature difference. In this bubble map, it is presented some of the buildings that have
high ∆T and the ones with low ∆T . As seen, the high values are between 50 and 60 °C,
and the low values are between 10 and 30 °C. Due to the significance of the temperature
difference variable in describing the building’s energy usage, these buildings were studied
more in-depth in section 3.3.

Regarding the Summer’s temperature measurements from the plots in the figures 3.13
and 3.14 it can be stated that the mean value of the ratio ∆T summer/∆T is 0.989 and
the standard deviation is 0.015. This means that most of the buildings have a uniform

37

Department of the Built Environment 3. Results

ratio with a lower ∆T summer than the year’s ∆T which is caused by a decrease of the
operating temperatures in the non-heating season. The outliers of this ratio are presented
in figure 3.14, where exists low-value outliers as high-value outliers. The low-value ratio
might represent a building that their DHW production system is not that efficient when
compared with the heating system. Due to the premise that during the non-heating season
the dwelling’s heating system is not operating or that it is operating but not that significant
as in the heating season. The high-values ratio might represent the residences that have a
more efficient DHW heat exchanger than its building’s space heating system.

Bubble map: Water consumption

Another important variable that can describe the building is the water-volume
consumption. This variable, as seen from the plot in figure 3.4 is highly correlated with
energy usage. To have an overview of the year’s water consumption of the town, it is also
a plotted a bubble map in figure 3.15, where all the buildings are represented.

Figure 3.15. Bubble map of the total water consumption.

The figure 3.15 show that most of the colours are grouped similarly, indicating that
buildings that are close to each other have similar consumptions. This idea corroborates the
theory that the adjacent buildings have similar characteristics, e.g. heating/DHW systems
or the number of rooms that can affect directly the water consumption. The figure 3.16
is another bubble map, where it is represented the mean daily water consumption of each
building in the Summer period.

38

3.2. Data Visualisation Aalborg University

Figure 3.16. Bubble map of the daily water consumption at the Summer period.

The figure 3.16 presents that most of the buildings in the dataset have similar daily water
consumptions during the Summer. The buildings in the map that have higher values
than compared with the average might be buildings where their heating system continues
operating, e.g. for floor heating in bathrooms, or that DHW production system as any
fault which requires to have a higher consumption to fulfil the daily energy demands. In
figures 3.17 and 3.18, it is presented the same bubble maps but only with the buildings
where their values stand out as outliers from the distribution.

Figure 3.17. Bubble map of the total water consumption - Outliers.

39

Department of the Built Environment 3. Results

Figure 3.18. Bubble map of the daily water consumption at the Summer period - Outliers.

From figure 3.17 it is concluded that are a few dwellings that are considered as outliers.
These outliers are highlighted due to their high water consumption. A dwelling can have
high consumption, due to numerous factors as having an inefficient heat exchange system
which requires more water to fulfil the energy demands. Also, it can be due to a big number
of DHW consumers in the house, e.g. people or equipment. If provided more information
concerning the building like the number of rooms or the energy labelling, it is possible
to see if these values are reasonable or not. The figure 3.18, presents more outliers than
the data from the figure 3.17. Each highlighted dwelling present a significant daily water
consumption in the Summer. This indicates to the DH company which buildings might
consume large amounts of DHW or these particular buildings use their heating system the
full-year.

3.2.2 Multi-variable overview

In the subsection above, the measured temperatures and water-volume consumption were
mapped. The mapping of each building provides to the utility company the identification of
the buildings that have peculiar values in their dataset. But as shown in the Methodology
chapter, other variables were calculated and can be used to provide important information
about the dwellings. These variables could also be plotted as bubble maps, but because
there are so many variables that might be relevant to consider when studying the DH
network with their buildings, the amount of generated maps would turn very difficult
the analysis. Also, the bubble maps can express at most two different variables when
plotted. Therefore when having more variables, it is necessary to associate them to
understand how the parameters influence each other and how they affect the building’s
energy efficiency. The solution found to plot all the variables was through a Parallel
Coordinates plot, as described in page 21 of the Methodology chapter. This type of plot,
due to its characteristics allows the plot of the several variables’ values of the buildings.
The figure 3.19 shows the parallel coordinates plot made from the DH dataset.

40

3.2. Data Visualisation Aalborg University

Figure 3.19. Parallel coordinates plot from DH dataset.

In the plot, it was considered several variables. Each variable was considered due to specific
information that provides to the utility company. The temperature colour gradient used is
the same as the one from the figure 3.9, where the high mean yearly temperature differences,
∆T , are red and the lowest temperature differences are represented in blue. Each variable
is described below:

1. DT - Full year: The mean temperature difference, in °C, calculated in a year’s
span;

2. DT - Summer: The mean temperature difference, in °C, calculated at the Summer’s
season, as described in page 14 in the Methodology chapter;

3. m - Heating: The slope value of the linear regression made for all three seasons:
Fall, Winter and Spring. These values are negative and expressed in kWh/°C, but
in the plot are described as positive values;

4. m - No Heating: The slope value of the linear regression made for the Summer’s
season. These values are negative and expressed in kWh/°C, but in the plot are
described as positive values;

5. m - Temperature: The slope value of the linear regression made when considering
the outdoor conditions where there is no solar radiation and the wind speed is low.
These values are negative and expressed in kWh/°C, but in the plot are described as
positive values;

6. R Infiltration: The ratio regarding the infiltration/ventilation component of the
heating demand, calculated from the slopes of the linear regressions for all the three
seasons Fall, Winter and Spring, as described in page 15 in the Methodology chapter;

7. R Radiation: The ratio regarding the solar gains component of the heating demand,
calculated from the slopes of the linear regressions for all the three seasons Fall,
Winter and Spring, as described in page 15 in the Methodology chapter;

8. No Influence Temp.: The estimated outdoor temperature, in °C, when the people
from that moment on turn off their space heating systems, as described in page 15
in the Methodology chapter;

9. Energy Level: The estimated energy usage, in kWh, when the outdoor temperature
is equal to 0°C, as described in page 15 in the Methodology chapter;

41

Department of the Built Environment 3. Results

10. Volume - Summer: The estimated daily hot water consumption, in litres, at the
Summer season, as described in page 14 in the Methodology chapter;

11. Total Volume: The total hot water consumption, in m3, in a year’s span of each
building;

12. Total Volume: The total energy usage, in kWh, in a year’s span of each building
from the smart energy meters;

13. Building’s ID: The identification number attributed by the utility company to
distinguish the buildings;

The variable 1. and 2. are the mean temperature differences between the supply and
return temperature of the hot water distributed by the DH network for a year’s span and
the Summer’s season. The yearly mean ∆T quantifies how significant is the temperature
drop by the heating/DHW production systems of each building, where large drops may
imply energy-efficient systems in the dwellings. And small drops can indicate dwellings
where their systems do not perform efficiently. The Summer period averaged ∆T indicates
in most of the cases the temperature efficiency of the DHW heat exchanger, due to, in
Summer, most of the heating systems are not in operation; therefore the temperature drop
occurs only on the DHW heat exchanger. By having small temperature differences in
this last variable or a big difference between these variables, it can indicate to the utility
company that the problem of a specific building for their energy inefficiency is from the
DHW production system.

The variables 3. and 4. are the slopes of the linear regressions originated from the
scatterplots between the hourly-energy usage and their outdoor temperature for the heating
and non-heating seasons. The slope of the heating season indicates the influence that the
outdoor temperature has in the building’s energy usage, where high values may imply that
a dwelling is highly dependent on the outside’s temperature, which can also indicate that
this type of building may have large transmission losses and/or high infiltration/ventilation
rates. The second variable represents the linear’s regression slope for the Summer season.
For most of the buildings, this value is close to zero, 0, which indicates a dwelling that
its energy demand in the Summer is not dependent on the outdoor temperature. This
variable when significantly higher than zero, provides to DH company the information of
the dwellings which do not shut-off their space heating system during Summer, which can
be one of the reasons why a specific building may have high total energy usage measured
by their smart energy meter. The variable 5. indicates the linear regression slope when
the outdoor conditions of no solar radiation and low wind speed are met. Because of these
conditions, the slope will indicate only the transmission losses component in the overall
energy demand, allowing to identify the buildings with large transmission losses through
their envelope.

The variables 6. and 7. are the ratios described in page 15 in the Methodology chapter.
These ratios are a relation between different slopes from linear regressions of the heating
season by filtering the dataset when certain conditions are met. These ratios are calculated
in order to quantify the influence of the infiltration/ventilation, and solar gains have on
the energy demand. When the infiltration ratio is equal or above to one, it indicates that
specific residence energy demand is highly dependent on the existing infiltration/ventilation
component. From these large values, the utility company can see which buildings may have

42

3.2. Data Visualisation Aalborg University

high infiltration/ventilation rates or even if the people have the practice of opening their
windows with the heating systems operating. The radiation ratio indicates to the utility
company, which are buildings have their energy usage is highly/lowly dependent on solar
radiation. The ratios below one represent buildings that are influenced by solar gains,
which may imply that these buildings have large window-to-wall ratio and/or that most of
their windows may be facing South. By knowing beforehand that the more energy-efficient
buildings or the newly constructed buildings conform with the new building regulations
that focus in buildings being built more airtight and by having large windows to receive
more radiation during the day, with these ratios, it is possible to identify which are these
types of buildings.

The variables 8. and 9. are also from the linear regressions originated from the scatterplots
between the hourly-energy usage and outside temperature. The first variable is the outdoor
temperature value that separates the heating season from the non-heating season. Where
the buildings with high values represent houses when the heating systems were shut-off
with high outdoor temperatures. The second variable is denominated "Energy level" and
represents the required energy when the outdoor temperature is equal to zero. These two
variables can also be used to indicate which buildings are more energy-efficient by having
low no-influence outdoor temperatures (variable 8) and low energy levels (variable 9).

The variable 10. is the daily hot water consumption of each building in the Summer season,
which was also plotted in bubble map in the figure 3.16. This variable indicates to the DH
company, which are the buildings that are high/low water consumers, which in Summer,
are mainly dependent on domestic hot water. If the DH company has access to the number
of rooms per dwelling it may also find which buildings are consuming large amounts of
hot water, when comparing what it should be expected. The last three variables are the
total water consumption and total energy usage in a year and the building’s identification
number.

In order to demonstrate how advantageous it is to apply this type of plot in District
Heating dataset, it was selected two buildings, where one of them have a high mean yearly
temperature difference, and the other has a low ∆T but with similar total energy usage.
These two buildings are seen in figure 3.20.

43

Department of the Built Environment 3. Results

Figure 3.20. Parallel coordinates plot from DH dataset.

These two buildings have the building’s ID: 116030 and 303914. When these two dwellings
are selected in the parallel coordinates plot, their variables have the following values, as
seen in table 3.3:

Table 3.3. Results from the buildings 116030 and 303914.
Building’s ID 116030 303914
∆T (Year)
[°C] 29.8 48.1

∆T (Summer)
[°C] 29.8 47.7

m - Heating
[kWh/°C] 0.241 0.274

m - No Heating
[kWh/°C] 0.0891 0.0457

m - Temperature
[kWh/°C] 0.186 0.304

R - Infiltration
[-] 1.38 0.96

R - Radiation
[-] 1.58 0.52

No Influence
Out. Temp. [°C] 16.4 15.7

Energy Level
[kWh] 4.75 5.05

Volume (Summer)
[liters] 598 361

Total Volume
[m3] 611 389

Total Energy
[kWh] 20,419 20,614

In table 3.3, the buildings’ year ∆T are significantly different from each other, which

44

3.2. Data Visualisation Aalborg University

indicates that the low-temperature difference case has an inefficient heating system
when comparing with the high ∆T dwelling. This is concluded since both buildings
have approximately the same amount of total energy usage but different total water
consumption. The building 116030 needs more than 1.5 times of water to fulfil the same
energy demands than building 303914. Regarding their summer ∆T , both cases have
similar ∆T when considering the different time periods. Which indicates that, in both
cases, the DHW production system is not responsible for the large differences between the
houses in terms of yearly ∆T but the house 116030 should be studied in terms of its DHW
heat exchanger due to its low ∆T . The daily water consumption for the Summer is also
larger for the 116030 case than for the 303914 case, which may imply that the residence
116030 has a larger DHW consumption than comparing with the residence 303914, due to
more people living in the house, having more DWH consumers or just because of its DHW
production system’s efficiency.

Regarding the linear regressions obtained when the energy demands are correlated with the
weather conditions, it is seen that the energy demands of the building 303914 are influenced
more by the outdoor temperature than the building 116030. This is concluded due to the
building 303914 has higher slope values on the Heating and Temperature regressions, which
might indicate that the building 303914 has an overall transmission losses coefficient higher
than the building 116030. From the small slope values of the regression made for the non-
heating season, it is seen that both buildings do not use their heating system in this system.
And the dwelling 303914 turned off their heating system before than the dwelling 116030,
which is also confirmed by the no influence outdoor temperature being lower for 303914
than for the 116030.

The infiltration/ventilation ratio and radiation ratio are lower than one for the 303914
case, indicating that this dwelling is highly dependent on the solar gains and not that much
influenced by the wind speed. In this case, the solar gains affect the energy demand of the
dwelling greatly because the value is not only below one, it is 0.52 demonstrating that the
solar radiation in the building decreases the dependence between the outdoor temperature
and the energy considerably. This case might be a dwelling have large window’s areas or
that most of them are facing South. The building 116030 is the opposite of 303914, where
it is highly dependent on wind speed and not much influenced by solar radiation. The
116030 case might be a dwelling does not receive much solar radiation, due to most of
its windows are facing North or that may be covered most of the time by internal blinds
or external objects that shadow them. Also due to Rinf is 1.38, it may also imply that
this building has significant infiltration/ventilation rates because of the building might not
be airtight enough or that the people in the house open their windows often with space
heating system operating.

From an online research about these two dwellings, it is verified that most of these
conclusions are correct. The building 303914 has large windows exposed to the South, and
the building 116030 have just a few small windows. Regarding the year of construction,
both buildings were built before 1970, which may be the reason for high transmission
losses (303914) and high infiltration rates (116030). These two dwellings have the same
number of rooms, but this information does not deny totally the assumption that high daily
water consumption during Summer may be due to more users, can just be that the house

45

Department of the Built Environment 3. Results

303914 does not have currently that many people as the dwelling 116030, even though is
just a supposition and cannot be confirmed by the data. Another information is that the
building 116030 was not built initially connected to the DH network but was provided with
an individual heating system, and the building 303914 since its construction was directly
connected to the DH network. This might be the reason for the large difference between
the dwellings’ ∆T where the residence 116030 after being connected with district heating,
their space heating and DHW production systems were not optimised for this type of
solution.

3.3 Data Clustering

This section of the thesis is regarding the application of the k-means clustering method to
identify existing groups of buildings that are similar in their characteristics. This method’s
results section was divided into three parts, depending on different filtered datasets from
the original DH dataset or by a specific variable, as described in the Methodology chapter.

3.3.1 One-year variable

The first part concerns how many clusters are identified in yearly variable time-series.
This is performed with the finality of detecting the buildings that have their parameters
similar throughout all year’s dataset. From section 3.2, it was seen that the variables that
were not relatable to each other and that are both measured by the smart energy meters
are the water-volume and the temperature difference between the supply and return water
temperature of the DH network. Therefore both time-series variables of each building were
used as a dataset to perform the K-means.

To apply the method, it is necessary to determine beforehand the optimal number of
clusters. For this it was applied the Elbow method and Average Silhouette method
which determine the best number of clusters for a dataset by taking into account different
clustering properties. The results from these methods are from the figures 3.21 to 3.23:

46

3.3. Data Clustering Aalborg University

Figure 3.21. Results of Elbow method for cumulative water-volume.

Figure 3.22. Results of Elbow method for hourly-average temperature difference.

47

Department of the Built Environment 3. Results

Figure 3.23. Results of Average Sillhouette method for cumulative water-volume and hourly-
average temperature difference.

The figures 3.21 and 3.22 show that three is the number of clusters that will assure well-
compacted clusters for both of the variables, due to the function’s "knee" is when the
number of clusters is equal to 3. The figure 3.23 shows the results from the average
silhouette method in both variables. For this method, the most suitable cluster number is
the one that maximises the average silhouette coefficient. The cumulative volume has its
maximum average silhouette coefficient when that dataset is divided into three clusters,
and for the temperature difference variable, its coefficient is maximum when the dataset
is divided into two clusters. From these results, the K-means was applied considering 3
clusters. The K-means results are plotted in the figures 3.24 and 3.25:

Figure 3.24. Results of K-means clustering for cumulative water-volume.

48

3.3. Data Clustering Aalborg University

Figure 3.25. Results of K-means clustering for hourly-average temperature difference.

In both figures, the red lines are the centres of the clusters, which are the average values
of the time-series existing in their specific cluster. On top of each cluster plot, it is given
a number to identify the cluster group and the percentage of buildings inside the group.
As a note, the Cluster 1 in figure 3.24 may not be constituted by the buildings that are
present in Cluster 1 of figure 3.25, each method applied on each variable is performed
independently from the other studied variables. The cumulative water-volume is divided
into three clusters, as seen in figure 3.24, the results show that these three main groups
vary in terms of the incremental slope of the cumulative volume, where the most significant
difference is in the inclination of the heating season. The cluster 1 is represented by the
buildings that have the lowest cumulative values in the DH dataset. Cluster 2 is the
group of buildings with the medium cumulative values, and it groups most of the buildings
present in the dataset, 49 %. The last group is cluster 3, and it is constituted by the
buildings with the highest cumulative values.

The figure 3.25 is the results from the K-means of the hourly-average temperature difference
in year’s span. The results, when compared with the cumulative volume, show the clusters
have slight differences in the percentages of the number of buildings present in each group.
The most compact cluster in the results is the Cluster 3, that has 47 % of the buildings
connected to the DH network, which might indicate a resemblance with cluster 2 of the
cumulative volume. Cluster 1 is represented by the highest ∆T values and cluster 2 is
the group of clusters with the lowest ∆T values, and it is also the group where the most
irregular time-series are situated. This might mean that the heating systems with lower
∆T values may have the more fluctuating ∆T measurements.

3.3.2 Daily profiles

The K-means was also applied to determine the dwellings that have similar daily profiles
of energy, volume, instantaneous temperature difference and flow. The profiles were made

49

Department of the Built Environment 3. Results

for each year’s season and only considering the working days, Monday to Friday, where
users’ routine is more constant throughout the year. The optimal number of clusters was
determined by the Elbow and Average Silhouette methods, and the results are the figures
from 3.26 to 3.33:

Figure 3.26. Results of the Elbow method for the energy profiles.

Figure 3.27. Results of the Average Silhouette method for the energy profiles.

The Elbow method for the energy profile in all seasons presented similar functions, where
the optimal number of clusters is three. For the Average Silhouette method, the best
number is two clusters, but because this the minimum number of considered clusters for the
method, it is usually not considered if the other numbers are not that different. Therefore

50

3.3. Data Clustering Aalborg University

the best number of clusters is three for all the seasons with the exception of Spring, which
the best number is four.

Figure 3.28. Results of the Elbow method for the volume profiles.

Figure 3.29. Results of the Average Silhouette method for the volume profiles.

The Elbow method for the volume variable in all seasons presented similar functions as in
energy, where the optimal number of clusters is three. For the Average Silhouette method,
the optimal solution is three clusters.

51

Department of the Built Environment 3. Results

Figure 3.30. Results of the Elbow method for the temperature difference profiles.

Figure 3.31. Results of the Average Silhouette method for the instantaneous temperature
difference profiles.

The Elbow method for the instantaneous temperature difference profile in all seasons
presented similar functions, where the optimal result of clusters is three. For the Average
Silhouette method, the best number is three clusters as well, where their average silhouette
coefficients are identical for each case.

52

3.3. Data Clustering Aalborg University

Figure 3.32. Results of the Elbow method for the flow profiles.

Figure 3.33. Results of the Average Silhouette method for the flow profiles.

The Elbow method for the flow in all seasons presented similar functions, where the optimal
number of clusters is three. For the Average Silhouette method, the best number is three
clusters for all the seasons except Summer, which the best clusters’ number is four. From
all applied methods, it was decided to use three clusters for all the K-means application
cases, as it was used for the yearly variables. The results of the clustering method is in
figures from 3.34 to 3.49 :

53

Department of the Built Environment 3. Results

Daily profiles: Energy

Figure 3.34. Results of K-means clustering for energy profiles in the Fall.

Figure 3.35. Results of K-means clustering for energy profiles in the Winter.

54

3.3. Data Clustering Aalborg University

Figure 3.36. Results of K-means clustering for energy profiles in the Spring.

Figure 3.37. Results of K-means clustering for energy profiles in the Summer.

The energy profiles show that during working days for all seasons exists two energy peaks,
where the first is the most significant peak situated at 7:00 hours and the second smaller
peak is between 18:00-20:00 hours. The first is originated from the usual awakening hour
of a person and the second is produced due to home arrival of the users after work.
Each cluster group presents the same peaks with different magnitudes, where Cluster 1
is composed by the buildings with the lowest daily energy demands and the Cluster 3 is
the one with the buildings with the largest demands. All the seasons presented similar
percentages of buildings’ amount in each cluster where the largest cluster is the number 2
(medium energy demand), except the Summer season which the largest cluster is 1 (low

55

Department of the Built Environment 3. Results

energy demand). This might be due to some of the users turn off the space heating during
the non-heating season.

Daily profiles: Volume

Figure 3.38. Results of K-means clustering for volume profiles in the Fall.

Figure 3.39. Results of K-means clustering for volume profiles in the Winter.

56

3.3. Data Clustering Aalborg University

Figure 3.40. Results of K-means clustering for volume profiles in the Spring.

Figure 3.41. Results of K-means clustering for volume profiles in the Summer.

The profiles generated from the water-volume consumption show that during working days
for all seasons exists two major consumption peaks, as it happens in the energy profiles.
This corroborates the concept in figure 3.4 at the page 32, where the volume and the
energy are highly correlated. Each cluster group presents the same peaks with different
magnitudes, where cluster 1 is composed by the buildings with the lowest daily volume
demands and the cluster 3 is the one with the buildings that have the largest demands. All
the seasons presented similar percentages of buildings’ amount in each cluster where the
largest cluster is the number 2 (medium energy demand), except the Summer season which
the largest cluster is also 2 (medium volume consumption) but followed by the Cluster 1

57

Department of the Built Environment 3. Results

(low consumption) with a difference of 1 %. This might be due to some of the users turn off
the space heating during the non-heating season, as explained for the daily energy profiles.

Daily profiles: ∆T

Figure 3.42. Results of K-means clustering for instantaneous temperature difference profiles in
the Fall.

Figure 3.43. Results of K-means clustering for instantaneous temperature difference profiles in
the Winter.

58

3.3. Data Clustering Aalborg University

Figure 3.44. Results of K-means clustering for instantaneous temperature difference profiles in
the Spring.

Figure 3.45. Results of K-means clustering for instantaneous temperature difference profiles in
the Summer.

By analysing the temperature difference profiles, the same patterns seen in the other
variables are generated. Revealing therefore that the energy peaks form consequently
proportionally temperature difference peaks. This means that when the energy demands
increase, the water consumption and temperature difference increases, consequently. And
to have an increase on ∆T to meet the demands, the return temperature decreases. Each
cluster group presents their peaks ate the same hours with different ∆T values. Regarding
the clusters’ distinction, it is related by the magnitude of ∆T , where cluster 1 represents
the medium ∆T levels, followed by low ∆T buildings in cluster 2 and the highest ∆T

59

Department of the Built Environment 3. Results

profiles in cluster 3. In all seasons, the majority of buildings are in the clusters 1 and 3,
medium and high ∆T profiles. At Summer, it is seen that more buildings changed from
a higher ∆T level cluster to the lowest level, cluster 2. From the results, it is also seen
that the size of the temperature’s peak is related to the ∆T level. Where the lower the
∆T profile is, the higher the peaks’ magnitude is, and consequently, the more fluctuating
is the ∆T throughout the day.

Daily profiles: Flow

Figure 3.46. Results of K-means clustering for flow profiles in the Fall.

Figure 3.47. Results of K-means clustering for flow profiles in the Winter.

60

3.3. Data Clustering Aalborg University

Figure 3.48. Results of K-means clustering for flow profiles in the Spring.

Figure 3.49. Results of K-means clustering for flow profiles in the Summer.

The flow profiles, the same patterns are seen as in the other variables. Where the two
major flow peaks are at 7:00 hours and 18:00-20:00 hours. Each cluster group presents the
same peaks with different magnitudes, where cluster 1 is composed by the buildings with
the lowest flow measurements and the cluster 3 is the one with the buildings that have
the highest water flows. Regarding the flow profiles, the amount of buildings per cluster
is constant in the Fall, Winter and Spring, where in the Summer some of the buildings
moved from high flow clusters to the lowest flow cluster, cluster 1. From the results, it is
also seen that the size of the flow peak is related to the flow level. Where the higher the
flow profile is, the higher the peaks’ magnitude are, and consequently, the more fluctuating

61

Department of the Built Environment 3. Results

is the flow throughout the day. This observation is the opposite of what is seen in the
temperature difference profiles.

3.3.3 Daily profiles - ∆T level

In section 3.2, the buildings are categorised by their average temperature difference
throughout a year, ∆T . In order to see if exists any significant differences that may
exist in each temperature level, it was applied the K-means method for each subset of
buildings that have similar ∆T . As seen from the results above, the Winter, Spring and
Fall have similar results. Therefore it was only performed this analysis for the Winter and
Summer seasons. The variables chosen in this analysis are the instantaneous temperature
difference and flow. The Elbow and Average Silhouette methods determined the optimal
number of clusters, and the results are the figures from 3.50 to 3.57:

Figure 3.50. Results of the Elbow method for the instantaneous temperature difference profiles
in Winter.

62

3.3. Data Clustering Aalborg University

Figure 3.51. Results of the Elbow method for the instantaneous temperature difference profiles
in Summer.

Figure 3.52. Results of the Average Silhouette method for the instantaneous temperature
difference profiles in Winter.

63

Department of the Built Environment 3. Results

Figure 3.53. Results of the Average Silhouette method for the instantaneous temperature
difference profiles in Summer.

The methods for the instantaneous temperature difference shown that the most suitable
number of clusters is two. But because the number three also presented good results and
to follow the above K-means results, it was also decided to use three to run the K-means.

Figure 3.54. Results of the Elbow method for the flow profiles in Winter.

64

3.3. Data Clustering Aalborg University

Figure 3.55. Results of the Elbow method for the flow profiles in Summer.

Figure 3.56. Results of the Average Silhouette method for the flow profiles in Winter.

65

Department of the Built Environment 3. Results

Figure 3.57. Results of the Average Silhouette method for the flow profiles in Summer.

The results for the variable flow also shown that the most suitable number of clusters is
two. But for all the K-means applications be congruent with each other, it was decided to
use three clusters, instead of two. By having these values determined the K-means method
can be applied.

Daily profiles in Winter - Instantaneous ∆T

This set of K-means results are for the Winter season, and it is divided according to the
different average ∆T levels during a year measured in the buildings.

Figure 3.58. ∆T = 10 - 30 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Winter.

66

3.3. Data Clustering Aalborg University

Figure 3.59. ∆T = 30 - 40 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Winter.

Figure 3.60. ∆T = 40 - 50 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Winter.

67

Department of the Built Environment 3. Results

Figure 3.61. ∆T = 50 - 60 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Winter.

The figure 3.58 is the buildings that their ∆T is between 10 °C and 30 °C. The two major
clusters are the 2 and 3, where its profiles are similar to each other only varying its ∆T

magnitude. Cluster 1, is composed of the buildings with the most fluctuating profiles and
that have the largest peaks of the subset. The figures 3.59 and 3.60 are constituted by the
buildings that their ∆T are in the temperature difference groups 30 - 40 °C and 40 - 50 °C.
These two datasets presented similar results in terms of their clusters, where each cluster
have similar profiles when the two groups are compared. The figure 3.61 is constituted
by the buildings with an annual mean temperature difference between 50 and 60 °C. This
group is composed of only a few buildings of the DH dataset. The clusters 1 and 3 have
similar profiles, and the cluster 2 is composed of only one building which its daily ∆T

profile is extremely different from the other building’s profiles.

Daily profiles in Summer - Instantaneous ∆T

This set of K-means results are for the Summer season and it is divided according to the
different average ∆T levels during a year measured in the buildings.

68

3.3. Data Clustering Aalborg University

Figure 3.62. ∆T = 10 - 30 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Summer.

Figure 3.63. ∆T = 30 - 40 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Summer.

69

Department of the Built Environment 3. Results

Figure 3.64. ∆T = 40 - 50 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Summer.

Figure 3.65. ∆T = 50 - 60 °C: Results of K-means clustering for instantaneous temperature
difference profiles in the Summer.

The figure 3.62 is the buildings that their ∆T is between 10 °C and 30 °C. The two major
clusters are the 1 and 3, but the clusters 2 and 3 have similar profiles where the only
difference is the ∆T magnitudes. Cluster 1, is composed of the buildings with the most
fluctuating profiles. The figures 3.63 and 3.64 are constituted by the buildings that their
year’s ∆T are in the temperature difference groups 30 - 40 °C and 40 - 50 °C. These two
datasets presented similar results in terms of their clusters, where each cluster have similar
profiles with two distinct peaks, morning and evening when the two groups are compared.

70

3.3. Data Clustering Aalborg University

The figure 3.65 is constituted by the buildings with an annual mean temperature difference
between 50 and 60 °C. All the cluster groups have similar profiles. When evaluating
this last dataset, it is verified that even though the buildings have high year average
temperature difference (50 - 60 °C), their Summer daily ∆T profiles are lower. The
main reason for this is that year average temperature difference is calculated from the
variable hourly-averaged ∆T and the daily profiles are made from the instantaneous ∆T

measurements from the smart energy meters.

Daily profiles in Winter - Flow

This set of K-means results are for the Winter season, and it is divided according to the
different average ∆T levels during a year measured in the buildings.

Figure 3.66. ∆T = 10 - 30 °C: Results of K-means clustering for flow profiles in the Winter.

71

Department of the Built Environment 3. Results

Figure 3.67. ∆T = 30 - 40 °C: Results of K-means clustering for flow profiles in the Winter.

Figure 3.68. ∆T = 40 - 50 °C: Results of K-means clustering for flow profiles in the Winter.

72

3.3. Data Clustering Aalborg University

Figure 3.69. ∆T = 50 - 60 °C: Results of K-means clustering for flow profiles in the Winter.

The figure 3.66 is the buildings that their ∆T is between 10 °C and 30 °C. The two major
clusters are the 1 and 2, which also have similar profiles. Cluster 3, is composed of the
buildings with the most fluctuating and different profiles when compared with the clusters
1 and 2. The figures 3.67 and 3.68 are constituted by the buildings that their year’s ∆T are
in the temperature difference groups 30 - 40 °C and 40 - 50 °C. These two datasets presented
similar results in terms of their clusters, where each cluster have similar profiles with two
distinct peaks, morning and evening when the two ∆T groups are compared. The figure
3.69 is constituted by the buildings with an annual mean temperature difference between
50 and 60 °C. This group is composed of only a few buildings of the DH dataset. All the
clusters have different flow profiles, and cluster 1 is composed of only one building which
its daily flow profile is highest in terms of measured flow.

Daily profiles in Summer - Flow

This set of K-means results are for the Summer season, and it is divided according to the
different average ∆T levels during a year measured in the buildings.

73

Department of the Built Environment 3. Results

Figure 3.70. ∆T = 10 - 30 °C: Results of K-means clustering for flow profiles in the Summer.

Figure 3.71. ∆T = 30 - 40 °C: Results of K-means clustering for flow profiles in the Summer.

74

3.3. Data Clustering Aalborg University

Figure 3.72. ∆T = 40 - 50 °C: Results of K-means clustering for flow profiles in the Summer.

Figure 3.73. ∆T = 50 - 60 °C: Results of K-means clustering for flow profiles in the Summer.

The figure 3.70 is the buildings that their ∆T is between 10 °C and 30 °C. All the clusters
have a similar percentage of buildings’ amount, where the biggest cluster is number 2.
Each cluster has a different profile, where cluster 1, has a predominant flow peak in the
morning where the other has it in the evening. The main difference between cluster 2 and
3, is that cluster 3 is composed of the buildings that have a larger evening peak than the
buildings from cluster 2. The figures 3.71 and 3.72 are constituted by the buildings that
their year’s ∆T are in the temperature difference groups 30 - 40 °C and 40 - 50 °C. These
two datasets presented similar results in terms of their clusters. Cluster 3 from the figure
3.71 is the cluster from this dataset that has a different flow profile from the others, with

75

Department of the Built Environment 3. Results

several peaks throughout the day, more concentrated in the morning period. The figure
3.73 is constituted by the buildings with an annual mean temperature difference between
50 and 60 °C. This group is composed of only a few buildings of the DH dataset, and all
its clusters have different flow profiles.

76

Conclusions 4
In this thesis, it was presented an algorithm composed of several steps that must be taken
when handling raw data from District Heating smart energy meters, in order to cleanse
and prepare the data for analysis. The overall dataset’s analysis was based on calculating
several new variables, plotting and visualisation of these variables and clustering analysis
using the K-means method. The K-means clustering method was selected due to its
simplicity to code in R, the possibility to apply it in time-series and that it is commonly
used for data clustering including similar topics of investigation

The study case is a small town in Aalborg, Denmark, constituted by 1665 smart energy
meters that measure the total heat energy use, hot water consumption, fluid flow, supply
temperature, and return temperature of each building connected to the district heating
network. All the data recorded by the smart meters was gathered by the utility company
Aalborg Forsyning.

From this project, it was obtained several results in different parts of the analysis. In the
data preprocessing, it was determined the most suitable methods to solve the problem of
missing entries in the dataset. It was concluded for variables with cumulative values the
missing data can be well estimated by linear interpolation method and the instantaneous
measured variables by the exponential weighted moving average with a high window-
range. In this part, it was also verified that the most usual error type collect by the
smart energy meters is related to the flow measuring sensor. Initially, the dataset was
constituted by 1665 buildings, where only 969 of them were used for analysis after the data
preprocessing algorithm, due to the other buildings having too many missing observations
or were considered non-residential buildings.

Regarding the visualisation and new variables’ calculation, the different generated plots and
new determining variables from weather files enriched the information about the buildings
in the DH network. From this part, it was possible to locate in the network the high
heat losses and extract the dwellings with high and low-temperature differences and water
consumption. It was also found a simplistic way to evaluate buildings in terms of DHW
consumption and the impact that the outdoor temperature, solar radiation and wind speed
has on the residence’s heating energy demands.

The clustering analysis performed by the K-means method identified three particular
clusters for all the different types of datasets. The clusters in all the analysis showed
a certain resemblance between each other variable’s clusters. Where in the first dataset
the percentage of buildings in the two variables are similar. Regarding the other two
datasets, it was seen a high similarity between the percentage of buildings for the seasons
Fall, Winter and Spring. Regarding the daily profiles from the second dataset, it presents

77

Department of the Built Environment 4. Conclusions

clear patterns such as morning and evening peaks of heat energy demand, corresponding in
peaks in the profiles of water volume, temperature difference and flow. The last analysed
dataset, presents different profiles for the Winter and Summer, in terms of instantaneous
temperature difference and flow where their yearly average temperature differences are
different. In the Winter season both variables are seen more correlated to each other,
where in Summer the generated profiles are different. Using this temperature difference
distinction, it was possible to identify buildings that have daily profiles utterly different
from the rest of the DH dataset, which might be to the heating system or the user
consumption behaviour.

78

Further work 5
Despite the several applied methods and obtained results in this thesis, there are much
more methodologies and concepts that can be investigated to uncover more information
and patterns regarding District Heating by the smart energy meters data. Therefore several
suggestions are presented in this chapter:

• Optimisation of the preprocessing algorithm, investigation of better building’s exclu-
sion conditions and application of different missing data imputation methods;

• The integration of more local weather information and with the Danish national
building register in order to optimise the methods used in this project, to determine
more and accurate building characteristics and correlate the smart meters data with
the type of building’s space/DHW systems. For this topic the research paper [Gian-
niou et al., 2018b] is suggested;

• Create a methodology to distinguish between the space heating demands and the
DHW demands of each building from its overall measured energy usage. For this
topic the research papers [Marszal-Pomianowska et al., 2019] and [Bacher et al., 2016]
are suggested;

• The application of other clustering analysis methods in the different measured pa-
rameters or other Machine Learning algorithms, e.g. forecasting and classification.
For this topic the research paper [Kristensen et al., 2018] is suggested;

• Anonymized socio-economic studies to assess possible correlations between types of
occupants and heating/DHW usage profiles;

• Building an interactive web-based interface to present and share the processed smart
energy meter data with professionals of the building sector and with the DH utility
companies. In R it can be made by the application Shiny, but other tools like Tableau
and Power BI can also be used.

79

Bibliography

Bacher et al., 2016. Peder Bacher, Philip Anton de Saint-Aubain, Lasse Engbo
Christiansen and Henrik Madsen. Non-parametric method for separating domestic hot
water heating spikes and space heating. Energy and Buildings, 130, 107 – 112, 2016.
ISSN 0378-7788. doi: https://doi.org/10.1016/j.enbuild.2016.08.037. URL
http://www.sciencedirect.com/science/article/pii/S0378778816307332.

Danish Energy Agency. Danish Energy Agency. The Danish Energy Model, Danish
Energy Agency.

European Commission, March 2019. European Commission. Clean energy for all
Europeans, 2019. Available at: https://ec.europa.eu/energy/topics/
energy-strategy/clean-energy-all-europeans_en [Accessed 21 May 2020].

European Commission, April 2020. European Commission. Heating and cooling,
2020. Available at: https://ec.europa.eu/energy/topics/energy-efficiency/
heating-and-cooling_en?redir=1 [Accessed 21 May 2020].

Frost, 2020. Jim Frost. 5 Ways to Find Outliers in Your Data, 2020. Available at:
https://statisticsbyjim.com/basics/outliers/ [Accessed 20 Mar. 2020].

Gianniou et al., 2018a. Panagiota Gianniou, Xiufeng Liu, Alfred Heller, Per Sieverts
Nielsen and Carsten Rode. Clustering-based analysis for residential district heating
data. Energy Conversion and Management, 165, 840 – 850, 2018. ISSN 0196-8904. doi:
https://doi.org/10.1016/j.enconman.2018.03.015. URL
http://www.sciencedirect.com/science/article/pii/S019689041830236X.

Gianniou et al., 2018b. Panagiota Gianniou, Christoph Reinhart, David Hsu, Alfred
Heller and Carsten Rode. Estimation of temperature setpoints and heat transfer
coefficients among residential buildings in Denmark based on smart meter data.
Building and Environment, 139, 125 – 133, 2018. ISSN 0360-1323. doi:
https://doi.org/10.1016/j.buildenv.2018.05.016. URL
http://www.sciencedirect.com/science/article/pii/S0360132318302762.

Kamstrup A/S, 2016. Kamstrup A/S. MULTICAL® 402 - Technical Description,
Kamstrup A/S, 2016.

Kamstrup A/S, 2019. Kamstrup A/S. MULTICAL® 403 - Technical Description,
Kamstrup A/S, 2019.

Kamstrup A/S, 2018. Kamstrup A/S. MULTICAL® 602 - Technical Description,
Kamstrup A/S, 2018.

Kristensen et al., 2018. Martin Heine Kristensen, Rasmus Elbæk Hedegaard and
Steffen Petersen. Hierarchical calibration of archetypes for urban building energy

81

http://www.sciencedirect.com/science/article/pii/S0378778816307332
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://ec.europa.eu/energy/topics/energy-efficiency/heating-and-cooling_en?redir=1
https://ec.europa.eu/energy/topics/energy-efficiency/heating-and-cooling_en?redir=1
https://statisticsbyjim.com/basics/outliers/
http://www.sciencedirect.com/science/article/pii/S019689041830236X
http://www.sciencedirect.com/science/article/pii/S0360132318302762

Department of the Built Environment Bibliography

modeling. Energy and Buildings, 175, 219 – 234, 2018. ISSN 0378-7788. doi:
https://doi.org/10.1016/j.enbuild.2018.07.030. URL
http://www.sciencedirect.com/science/article/pii/S0378778818312532.

Marszal-Pomianowska et al., 2019. Anna Marszal-Pomianowska, Chen Zhang,
Michal Pomianowski, Per Heiselberg, Kirsten Gram-Hanssen and Anders Rhiger
Hansen. Simple methodology to estimate the mean hourly and the daily profiles of
domestic hot water demand from hourly total heating readings. Energy and Buildings,
184, 53 – 64, 2019. ISSN 0378-7788. doi:
https://doi.org/10.1016/j.enbuild.2018.11.035. URL
http://www.sciencedirect.com/science/article/pii/S0378778818321261.

Moritz and Gatscha, 2019. Steffen Moritz and Sebastian Gatscha. Time Series
Missing Value Imputation, 2019. URL
https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf.

Ribecca, 2020. Severino Ribecca. The Data Visualisation Catalogue, 2020. Available at:
https://datavizcatalogue.com/about.html [Accessed 10 Jun. 2020].

Wittchen and Aggerholm, 2000. Kim B Wittchen and Søren Aggerholm. Calculation
of building heating demand in EPIQR. Energy and Buildings, 31(2), 137 – 141, 2000.
ISSN 0378-7788. doi: https://doi.org/10.1016/S0378-7788(99)00027-4. URL
http://www.sciencedirect.com/science/article/pii/S0378778899000274.

82

http://www.sciencedirect.com/science/article/pii/S0378778818312532
http://www.sciencedirect.com/science/article/pii/S0378778818321261
https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf
https://datavizcatalogue.com/about.html
http://www.sciencedirect.com/science/article/pii/S0378778899000274

Part I

Appendix

83

Conference article NSB
2020 A

85

*
 Corresponding author: hj@civil.aau.dk

Treatment and analysis of smart energy meter data from a
cluster of buildings connected to district heating: A Danish case

Hicham Johra1,*, Daniel Leiria1, Per Heiselberg1, Anna Marszal-Pomianowska1, and Torben Tvedebrink2

1Aalborg University, Department of Civil Engineering, Thomas Manns Vej 23, 9220 Aalborg Ø, Denmark
2Aalborg University, Department of Mathematical Sciences, Skjernvej 4A, 9220 Aalborg Ø, Denmark

Abstract. District heating has been found to be a key component of future and reliable smart energy grids

comprising 100% of renewable energy sources for countries with dominant heating season. However, these

systems face challenges that require a deeper understanding of the coupling between the distribution

networks and the connected buildings, to enable demand-side management and balance the intermittence of

renewables. In recent years, many smart energy meters have been installed on the heating systems of Danish

dwellings connected to district heating, and the first yearly measurement data sets of large building clusters

are now available. This article presents the methodology for the pre-processing and cluster analysis (K-

means clustering) of a one-year-long smart energy meter measurement data from 1665 Danish dwellings

connected to district heating. The aim is to identify typical household daily profiles of heat energy use,

return temperature, and temperature difference between the supply and the return fluid. The study is

performed with the free software environment “R”, which enables the rapid extraction of information to be

shared with professionals of the building and energy sectors. After presenting the preliminary results of the

clustering analysis, the article closes with the future work to be conducted on this study case.

1 Introduction

For countries of temperate and cold climates with a

dominant heating season, district heating (DH) has been

found to be the most efficient, sustainable and cost-

effective solution to provide heat to buildings in urban

areas. It is also a key component for future and reliable

smart grid systems with 100% renewable energy sources

[1,2]. However, the current DH systems are facing

several production and distribution challenges:

 Detecting faults in the network.

 Identifying critical distribution points, congestion

distribution bottlenecks, problematic buildings, and

energy-intensive user behaviors.

 Optimizing the system’s efficiency by decreasing

the overall temperature in the DH network (from

typically 80 °C / 45 °C supply/return temperature,

down to 50 °C / 25 °C in some extreme cases) to

reduce the heat losses in the distribution pipes.

 Decreasing the supply temperature to allow the

integration of low-temperature waste heat input

from the surrounding industry ecosystem.

 Minimizing the return temperature of the DH

network to increase the energy efficiency of the heat

production units.

 Diminishing the demand peaks (typically occurring

in the morning) to avoid using or installing fossil-

fuel peak boilers or temperature boosters with high

operation and maintenance costs, and to enable

downsizing new distribution networks.

 Matching the heat energy demand with the heat

energy supply and bear the increasing share of

intermittent renewable energy sources.

Smart-meter monitoring and demand-side

management strategies can greatly help to address the

aforementioned challenges. However, large efforts are

still needed to gain a better understanding of the

dynamic interactions between the DH networks and the

connected buildings, in order to develop and calibrate

efficient numerical urban-scale models of those

integrated systems. The latter, together with the feedback
information from the Smart Grid meters, will ease

planning and optimum control of the DH plants and

networks, making use of the aggregated energy

flexibility potential of building clusters to perform load

shifting and peak shaving at a district level and tackle

some of the aforementioned issues.

Denmark has a long history of district heating use

with networks that are widespread over the entire

country. Indeed, Denmark has one of the largest shares

of heating production covered by DH systems. 63% of

all private houses and citizens of Denmark are connected
to the district heating network for space heating and

domestic hot water (DHW) production. For comparison,

in Europe, only Iceland and Latvia have a higher share

of DH coverage (90% and 65%, respectively), followed

by Finland, Lithuania, Poland and Sweden (more than

50%). DH systems are primarily found in urban and

suburban areas where the heating need density is high.

However, smaller towns and villages (500 households)

can be also be equipped with a DH network. In addition

to the vast central DH networks implemented in the 6

largest urban areas of Denmark, around 400 smaller ones

can be found in other towns of modest size around the

country. Those various DH installations present a large

diversity of distribution network sizes, configurations,

fuels mixes, and production plants, comprising some

short term heat storages (typically 12 hours of full load

heat production from the plant), supplementary solar

heating or electric boilers, and integrating parts of the
surplus heat generation from local industries. In 2013,

more than 70% of all DH energy in Denmark was

produced in cogeneration with electricity by efficient

combined heat and power (CHP) plants. Consequently,

more than 60% of the national electricity was produced

by CHPs [3].

For all of those aforementioned reasons, Denmark is

a particularly interesting case to study the many aspects

of the district heating technologies. Fortunately,

Denmark has recently started a massive and systematic

campaign of smart energy meters installation in all
buildings connected to DH. In addition, Denmark has a

consistent national building and household information

database, which enables statistical studies about the

correlations between socio-economic context and

energy-related practices, for instance.

The first complete yearly data sets of large clusters of

buildings connected to DH networks in different Danish

cities are now available for treatment and analysis.

Although big data mining has now become a common

concept and practice in many fields of research and in

the industry such as electricity grid operators (because

data from electricity smart meters have been readily
available for several years now), this is still a new thing

for urban-scale district heating systems.

In recent years, some Danish research projects started

investigating how to extract valuable information for the

buildings and energy sector from those smart energy

meters’ data sets.

Gianniou et al. [4] performed a clustering analysis on

the heating usage data of 8293 Danish dwellings

connected to a district heating network. The researchers

could thus classify the different households into specific

groups with defined consumption intensity and
representative patterns. They also looked at the

correlations between the energy intensity, the building’s

characteristics, the type of occupants, the load profiles of

the households, their consumption behavior, and the

changes of the latter over time.

In another publication, Gianniou et al. [5] have

estimated the indoor set-point temperature (a very

sensitive assumption for building energy models) and the

building heat losses of 14,000 dwellings by applying

linear regression and heat balance calculation to a large

data set of DH smart energy meters, weather data and

information from the national building register.
Kristensen et al. [6] used smart energy meter data (50

training buildings and 100 test buildings) to create

dynamic physics-based building energy models of

archetypes using the Bayesian calibration framework.

Those building models can produce a good prediction of

the aggregated energy use of single-family houses

connected to DH.

Hedegaard et al. [7] adopted a bottom-up modeling

approach to create, calibrate and validate an urban-scale

model of the district heating consumption of 159 houses,

using data from public building registers, local weather

stations, and smart energy meters of this building cluster.

This model has then enabled testing the effectiveness of

a simple price-based aggregated demand response

strategy to reduce demand peaks in the district heating
network.

In this paper, the preliminary result analysis of a one-

year data collection of 1665 smart energy meters in a

Danish town connected to a large DH network is

presented. The data is analyzed with the K-means

clustering method to help identify typical household

daily profiles of heat energy usage, return temperature to

the DH network, and the temperature difference between

the supply and the return fluid.

2 Study case

2.1. Building cluster

The study case is a building cluster consisting of 1665

residential dwellings (mostly single-family houses), all

located in the town of Klarup (Denmark). Klarup has a
population of 4733 inhabitants. It is situated 11 km to the

east of Aalborg (the fourth largest city in Denmark).

For space heating and domestic hot water supply, the

entire building cluster is connected to the large district

heating network of the municipality of Aalborg (see

Figure 1). For space heating supply, the local network

inside each building comprising the heating terminals

(radiators or under-floor heating) is directly connected to

the main DH network. On the other hand, the

instantaneous domestic hot water production is

performed by a heat exchanger (indirect connection to

the main DH network).

Fig. 1. Overview of the town study case, Klarup, and its district

heating distribution network.

Aalborg Forsyning [8] is the utility company in

charge of the heat production and distribution,

development, operation and maintenance of the DH

distribution network. In 2018, Aalborg Forsyning has

installed smart energy meters in every dwelling of

Klarup: one smart energy meter per building, measuring

the aggregated energy usage for space heating and

domestic hot water production.

2.2. Smart energy metering system

The smart energy meters installed in the buildings of the

study case are state-of-the-art metering devices for

hydronic heating systems: Multical® 402, Multical®

403, and Multical® 602 from the specialized

manufacturer Kamstrup A/S [9]. The typical

uncertainties on the temperature measurements, the fluid

flow rate measurements, and the estimates of the energy

usage are ± 0.53%, ± 2% and ± 0.22 %, respectively.

The different measurement variables recorded by the

smart energy meters are as follows: timestamp, fluid

flow rate, supply temperature, return temperature,

cumulative volume usage, and cumulative heat energy
usage. In addition, the smart energy meter indicates and

records any specific error message if it detects the

following problems: wrong flow direction in the fluid

flow sensor, air detected in the fluid flow sensor, weak

signal from the fluid flow sensor, return temperature is

higher than supply temperature, return temperature is too

low. The measurements are integrated (averaged) over a

time period of around one hour. Consequently, there are

around 24 measurements per day for each building.

2.3. Data set

The study of this paper analyses the data collected from

the building cluster case during an entire year: from the
1st of October 2018 until the 7th of October 2019.

Although the raw data contains more than 14 million

lines, the entire data loading, pre-processing, processing,

and analysis algorithm developed for this study can be

run on a standard computer station in around 2 hours.

3 Methodology

In this study, the entire data processing and analysis are

performed with the free software environment and

language for statistical computing and graphics “R” [10].
The pre-processing of the raw data files consists in the

concatenation of the different log files corresponding to

different time periods, followed by resampling to obtain

coherent and synchronized hourly times series of the

different measurement variables for all the buildings.

The quality of the data set is then assessed to determine

what criteria is used to discard the sub-sets

corresponding to buildings with too many or too large

information gaps in the time series. In order to prepare

the remaining data subset for clustering analysis, it is

necessary to operate an imputation

(interpolation/estimation) of the measurement gaps in the
time series recorded by the smart energy meters.

The clustering analysis method used in this study to

identify subgroups of similar households within the

observations of the data set is named “K-means

clustering” [11]. This method is simple to employ,

widely used, fast to compute, and can be applied to time

series, which makes it a perfect tool for the analysis of

data from large building clusters.

Antecedently to running the K-means clustering

algorithm, the input data set must be standardized, i.e.,

scaled. The optimum number of clusters (subgroups) is
then determined with the “Average Silhouette” method.

Finally, the K-means clustering algorithm is executed

with a Euclidean distance measure [11].

4 Data analysis, preliminary results, and

discussions

4.1. Data set quality and data cleansing

A preliminary data quality assessment is conducted to

estimate the amount of missing information in the raw

data collected from the 1665 building cases. The missing

information is either erroneous measurement points

(flagged as an error by the smart energy meter, or

containing NaN values, or out of realistic range for this

DH system) or missing measurements (no measurement

has been logged for more than an hour which creates a

gap in the time series). It is found that the raw data set

has an overall 3.7 % of missing values. One could
consider that this percentage of missing information is

negligible and use the entire raw data as is. However,

consecutive missing data can form large continuous gaps

in the time series, which can be problematic when

imputing/estimating the latter by means of interpolation.

One can see in Figure 2 the distribution of the gaps in

the time series as a function of their length. It can be

observed that the vast majority of the data gaps are short,

with the one-hour gaps, two-hour gaps and three-hour

gaps representing 70 %, 13.7 % and 5.5 % of the time

series gap occurrences, respectively.

Fig. 2. Occurrence distribution and contribution to the total

missing information of the time series gaps as a function of

their length in the raw data set.

In order to avoid the interpolation of very large data

gaps, all buildings having information gaps larger than 9

consecutive hours have been discarded. The data subset

of the 1028 remaining buildings (out of 1665) has an

overall 2.49 % of missing information, with a maximum

of 10.7 % missing values for the time series with the

most data gaps. The quality of this subset is considered

satisfactory and it is thus used for the clustering analysis.

4.2. Imputation of the missing data

The next step in the data pre-processing is the imputation

of the missing values (gaps) in the time series. Because

there are numerous methods suitable for the replacement

of missing values in univariate time series [12, 13], the

latter are benchmarked against each other. One can see

in Table 1 the results of this benchmarking. Each method

has been tested to estimate information gaps artificially

introduced into 10 building time series that originally did
not have any missing data. These information gaps have

a length distribution that is equal to that of the entire data

set (see the previous subsection) and are randomly

placed within the 10 building time series. The Root

Mean Square Error (RMSE) is then calculated for each

measurement variable and used to determine the most

suited imputation methods for the current data set, i.e.,

the ones with the lowest RMSE.

According to the benchmarking results, it is chosen

to use linear interpolation for the cumulative

measurements (energy, volume, volume x supply
temperature, volume x return temperature), and

exponential weighted moving average (k=8) for

instantaneous measurements (supply temperature, return

temperature, fluid flow rate).

Table 1. Benchmarking results for the different missing data

imputation methods.

4.3. Problem decomposition and optimum
number of clusters

As mentioned before, the aim of the current clustering

analysis is to identify typical household daily profiles of

energy usage, return temperature to the DH network, and

temperature difference between the supply and the return

fluid. For the sake of simplicity, the current study is
restricted to only working days: all weekend days and

official bank holidays are removed. It is assumed that

households have a more regular pattern of energy usage

during working days compared to rest days. In addition,

the data set is divided into four time periods: Spring,

Summer, Autumn, Winter. For each household, the

seasonal typical daily profile is thus calculated as the

average of all the days over the respective season time

period.

In order to perform the K-means clustering analysis,

an optimum number of clusters has to be chosen

beforehand. Three popular methods, i.e., the Elbow

method, the Silhouette method, and the Gap method,

have been tested to estimate cluster compactness and

clustering quality as a function of the total number of

clusters. It is chosen to use the Silhouette method to

assess the optimum number of clusters for the analysis of
energy usage profiles, return temperature profiles, and

temperature difference profiles. One can see in Figure 3

that the optimum number of clusters (highest average

silhouette width) is 2 for all the cases. However, it is

decided to set the number of clusters to 4 for the analysis

of all the measured variables.

Fig. 3. Average silhouette width (clustering quality) as a
function of the total number of clusters.

4.4. K-means clustering results

After all the above mentioned pre-processing steps have

been completed, the K-means clustering algorithm can
be run. One can see in Figure 4, Figure 5 and Figure 6,

the results of this clustering analysis.

Fig. 4. K-means clustering analysis results for the daily profiles
of the heat energy use for working days only during the four
seasons of Spring, Summer, Autumn, and Winter, respectively.

Fig. 5. K-means clustering analysis results for the daily profiles

of the temperature difference between the supply and the return
fluid for working days only during the four seasons of Spring,
Summer, Autumn, and Winter, respectively.

Fig. 6. K-means clustering analysis results for the daily profiles
of the return temperature to the DH network for working days
only during the four seasons of Spring, Summer, Autumn, and
Winter, respectively.

For each type of daily profile, namely, heat energy

use, temperature difference between the supply and the

return fluid, and return temperature to the DH network,

the 1028 buildings are classified into 4 different groups

(clusters): A, B, C, and D. The subplots present the daily

profiles of all the buildings (grey lines) in their

respective group. The centroid of each cluster is

illustrated by the thick red line. The distribution of each

group within the total population of buildings is

indicated on the top of each subplot.

One can observe in Figure 4 that the vast majority of

the buildings belong to the clusters A and B, which

present a rather similar daily profile heat energy use with
a significant morning peak (morning shower time on

working days) and a smaller evening peak. The same

trends can be observed in clusters C and D, but with a

much larger overall energy use. One explanatory

hypothesis could be that the buildings in clusters A and

B are single-family houses (as expected), whereas the

buildings in clusters C and D are larger residential

buildings with several apartment blocks but a single

main smart energy meter. Those results are in agreement

with the general description of the study case city and

are very similar to what was observed in another Danish
city by Giannou et al. [4].

One can see in Figure 5 that concerning the daily

profile of temperature difference between the supply and

the return fluid, the distribution among the different

categories is more balanced. For all seasons, the

categories with a relatively low overall temperature

difference (clusters A and B) present 2 clear peaks in the

morning and in the evening, which is similar to is

observed on all heat energy use profiles. However,

clusters C and D have a significantly larger temperature

difference but with a much more regular profile.

The return temperature profiles presented in Figure 6
appear as a direct consequence of what has been

previously described for the temperature difference

profiles. Because the supply temperature is expected to

be rather stable throughout the entire study case DH

subnetwork, the return temperature from the building

should be directly correlated with the temperature

difference. It is thus logical to observe that clusters A

and B have low and stable return temperature profiles,

whereas clusters C and D have higher return temperature

profiles with more variations and 2 clear temperature

drops at morning peak and at evening peak.

4.5. Correlations in between clusters and
measured variables

In this section, a simple correlation analysis is performed

by calculating the percentage of shared buildings

between two clusters from different seasons or different
measurement variables. An element of the correlation

matrices is marked 1 if 100% of the buildings are shared

between the two clusters, and it is marked 0 if there are

no common buildings in between those clusters.

One can see in Figure 7 the matrix of correlations

between the different clusters for heat energy use profile

during the four seasons. One can notice that most of the

terms of the matrix are zero or close to it, except the

terms corresponding to the same cluster. This clearly

indicates that most of the buildings do not change heat

energy use categories in between the different seasons.

Fig. 7. Matrix of correlations between the different clusters for
daily profiles of the heat energy use (working days only)
during the four seasons of Spring, Summer, Autumn, and
Winter, respectively.

One can see in Figure 8 the matrices of correlations

between the different clusters of daily profiles for heat

energy use, return temperature from the building, and

temperature difference between the supply and the return

fluid. The correlation analysis is performed for the

working days of the winter season only.

One can observe in Figure 8 (a) that there is no

particular pattern for the correlation matrix of the heat
energy use and the return temperature. The distribution

of the return temperature clusters within the heat energy

ones is very similar to that of the energy profile among

all buildings, which would suggest that there is no

particular correlation between those two variables.

On the other hand, one can see in Figure 8 (b) that

there is a slight trend of buildings with a low heat energy

use (towards cluster A) having also lower temperatures

and vice versa.

Fig. 8. Matrices of correlations between the different clusters
of daily profiles for different measurement variables for the

winter season only and for the working days only.

In agreement with what was assumed in the previous
section, one can clearly identify in Figure 8 (c) the

correlation between the temperature difference and the

return temperature from the building.

5 Conclusions

In this paper, the authors have presented the different

steps necessary for the pre-processing and cleansing of

the raw data from smart energy meters in order to

perform a K-means clustering analysis. The K-means

clustering method is fairly simple to use, fast to compute

and can be applied to time series, which makes it ideal to

analyze, categorize and identify typical profiles or

patterns in large measurement data sets from vast

building clusters.
The study case of the current investigations is a small

Danish town connected to the large district heating

network of the local regional capital Aalborg. 1665

smart energy meters have been installed in all the

dwellings of this locality, and are recording the total heat

energy use, fluid flow, supply temperature, and return

temperature to the district heating network.

The preliminary results from the study of a one-year

data collection of those 1665 smart energy meters (out of

which 1028 are kept for analysis) identified 4 distinct

typical daily profiles of heat energy use, temperature
difference between the supply and the return fluid, and

return temperature from the building. Those profiles

present clear patterns such as morning and evening peaks

of heat energy demand, which lead to corresponding

peaks in the profiles of temperature difference, and drops

of the return temperature from the building. Those

results are in agreement with previous observations of

district heating systems in Denmark. In addition, a

simple correlation analysis showed that the buildings of

the study case tend to stay in the same heat energy use

category from one season to the other. Finally, since the

supply temperature is expected to be homogenous
throughout the subnetwork of this building cluster, there

is a strong correlation between the return temperature

from the building and the temperature difference

between supply and return fluid.

6 Future work

As the current paper only presents the preliminary results

of this clustering analysis, many follow-up studies will

be conducted on the smart energy meter measurement

data set:

 Other pre-processing, missing data imputation and

clustering methods will be tested.

 Further analysis of the data and coupling with the

local weather information and the Danish national

building register will be performed to identify

building characteristics such as the envelope thermal

performance, or the type of heating system installed.

 A challenging task will be to identify certain traits

of the occupants’ behavior and practices such as the

domestic hot water usage profile, and the indoor
temperature set point.

 Anonymized socio-economic studies would also be

of great interest to assess the correlation between

types of occupant and heating usage profiles.

 The “Shiny” package [14] will be used in the R

environment to develop interactive web-based

interfaces to present and share the processed smart

energy meter data with professionals of the building

sector and with the DH utility companies.

 Further data analysis could also help to detect

problems in the DH network or identify problematic

and critical buildings in the network.

 Combined with high-quality GIS information about

this DH network study case, this data set analysis

will be used to generate, calibrate and validate an

urban-scale numerical model based on the Modelica
language, and sub-model component libraries and

tools developed by the IBPSA Project 1 [15]. This

detailed model will be able to simulate both the

thermodynamics of the DH network and of every

single building, which makes it suitable for testing

urban-scale demand-side management and energy

flexibility strategies for building clusters.

This work was financed by the InterHUB project which is
funded by Aalborg University’s strategic funding for
interdisciplinary research. InterHUB project: Intermittent
energy – Integrating Households, Utilities, and Buildings

(www.interhub.aau.dk).

References

1. H. Lund, B. Möller, B.V. Mathiesen, A. Dyrelund,

Energy 35, 1381-1390 (2010)

2. B.V. Mathiesen, H. Lund, D. Connolly, H. Wenzel,

P.A. Østergaard, B. Möller, S. Nielsen, I. Ridjan, P.

Karnøe, K. Sperling, F.K. Hvelplund, Appl. Energy

145, 139-154 (2015)

3. Danish Energy Agency, Regulation and planning of

district heating in Denmark (2015)

4. P. Giannou, X. Liu, A. Heller, P.S. Nielsen, C.

Rode, Energy Convers. Manag. 165, 840-850 (2018)

5. P. Giannou, C. Reinhart, D. Hsu, A. Heller, C.

Rode, Build. Environ. 139, 125-133 (2018)

6. M.H. Kristensen, R.E. Hedegaard, S. Petersen,

Energ. Buildings 175, 219-234 (2018)

7. R.E. Hedegaard, M.H. Kristensen, T.H. Pedersen,

A. Brun, S. Petersen, Appl. Energy 242, 181-204

(2019)

8. Aalborg Forsyning, https://aalborgforsyning.dk

9. Kamstrup A/S, Smart heat meters & devices,

https://www.kamstrup.com/en-en/heat-

solutions/heat-meters

10. R environment for statistical computing,

https://www.r-project.org/about.html

11. K-means clustering analysis with R, https://uc-

r.github.io/kmeans_clustering

12. S. Moritz, T. Bartz-Beielstein, R J. 9, 207-218

(2017)

13. Time Series Missing Value Imputation, R package,

https://cran.r-

project.org/web/packages/imputeTS/imputeTS.pdf

14. Shiny, R package, https://shiny.rstudio.com

15. IBPSA Project 1, https://ibpsa.github.io/project1

Script 1: Raw Data - Data
Preprocessing B

1 ### Script 1: Organizes the Raw Data (Preprocessing)
--

2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE & require(’leaflet’)==FALSE){ #If
NOT installed then install and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31 install.packages("leaflet")
32
33 library(data.table)
34 library(dplyr)
35 library(readr)
36 library(ggplot2)
37 library(tictoc)
38 library(lubridate)
39 library(imputeTS)
40 library(magrittr)
41 library(DataExplorer)
42 library(ggpubr)
43 library(lemon)

95

Department of the Built Environment B. Script 1: Raw Data - Data Preprocessing

44 library(gghighlight)
45 library(viridis)
46 library(hrbrthemes)
47 library(xts)
48 library(tidyr)
49 library(tibble)
50 library(purrr)
51 library(cluster)
52 library(factoextra)
53 library(leaflet)
54 } else { #If already installed then "check it" in the menu "Packages" to be

used
55 library(data.table)
56 library(dplyr)
57 library(readr)
58 library(ggplot2)
59 library(tictoc)
60 library(lubridate)
61 library(imputeTS)
62 library(magrittr)
63 library(DataExplorer)
64 library(ggpubr)
65 library(lemon)
66 library(gghighlight)
67 library(viridis)
68 library(hrbrthemes)
69 library(xts)
70 library(tidyr)
71 library(tibble)
72 library(purrr)
73 library(cluster)
74 library(factoextra)
75 library(leaflet)
76 }
77
78 ### 3. Import all the *.txt files in the main directory to a single data frame

79
80 tic(’Time to load data in *.txt format’)
81
82 temp = list.files(pattern="*.txt") #These function produce a character vector of the names of files

or directories in the main directory.
83 DH_data <- rbindlist(sapply(temp, fread, simplify = FALSE, header = FALSE, sep = ";", dec = ","))
84
85 Addresses <- read.csv("List_Addresses_ID_Geocode.csv", header = FALSE, sep = ";", dec = ".",

stringsAsFactors=FALSE) # File with DH_data addresses
86
87 ## Header = FALSE -> There is no header’s name on the given data.
88 ## sep = ";" -> The data is separated by semicolons (;).
89 ## fread -> Function that reads faster the table.
90 ## dec = ’,’ -> The decimals are distinguished by commas.
91
92 toc()
93
94 ### 4. Reshape the data

--
95
96 tic(’Time to reshape the data’)
97
98 ## Giving a name for each variable (columns’ names) - Header
99 colnames(DH_data) <-

c("Link_1","Link_2","TimeStep_Logging","Energy","Unit_Ener","Flow","Unit_Flow","Lifetime","Unit_LifeT","Flow*T_supply","Unit_Flow&TS","Flow*T_return","Unit_Flow&TR","T_supply_(inst)","Unit_TS","T_return_(inst)","Unit_TR","Volume_(inst)","Unit_Vlm","Error","Col21","Col22","Col23","Col24","SmartMeter’s_Name")
100
101 colnames(Addresses) <- c("Link_1","Address","Latitude","Longitude")
102
103 ## All empty spaces ’’ convert to NA values

96

Aalborg University

104 DH_data[DH_data==’’] <- NA #Must be before the conversion of Time_Logging from character to date
class, if not it will give a mistake!

105
106 ## Convert TimeStep logging variable from ’character’ data type to ’date’ type
107 DH_data$TimeStep_Logging <- as.POSIXct(DH_data$TimeStep_Logging, tz = "", "%Y-%m-%d %H:%M") #Be

careful with the difference between "as.POSIXct" and "as.POSIXlt"
108
109 ## Force the data to be a specific class (ex: a column of numbers to be read as an number and not

as a string)
110 DH_data$Link_1=as.numeric(DH_data$Link_1)
111 DH_data$Link_2=as.integer(DH_data$Link_2)
112 DH_data$Energy=as.numeric(DH_data$Energy)
113 DH_data$Unit_Ener=as.character(DH_data$Unit_Ener)
114 DH_data$Flow=as.numeric(DH_data$Flow)
115 DH_data$Unit_Flow=as.character(DH_data$Unit_Flow)
116 DH_data$Lifetime=as.integer(DH_data$Lifetime)
117 DH_data$Unit_LifeT=as.character(DH_data$Unit_LifeT)
118 DH_data$‘Flow*T_supply‘=as.numeric(DH_data$‘Flow*T_supply‘)
119 DH_data$‘Unit_Flow&TS‘=as.character(DH_data$‘Unit_Flow&TS‘)
120 DH_data$‘Flow*T_return‘=as.numeric(DH_data$‘Flow*T_return‘)
121 DH_data$‘Unit_Flow&TR‘=as.character(DH_data$‘Unit_Flow&TR‘)
122 DH_data$‘T_supply_(inst)‘=as.numeric(DH_data$‘T_supply_(inst)‘)
123 DH_data$Unit_TS=as.character(DH_data$Unit_TS)
124 DH_data$‘T_return_(inst)‘=as.numeric(DH_data$‘T_return_(inst)‘)
125 DH_data$Unit_TR=as.character(DH_data$Unit_TR)
126 DH_data$‘Volume_(inst)‘=as.numeric(DH_data$‘Volume_(inst)‘)
127 DH_data$Unit_Vlm=as.character(DH_data$Unit_Vlm)
128 DH_data$Error=as.character(DH_data$Error)
129 DH_data$Col21=as.numeric(DH_data$Col21)
130 DH_data$Col22=as.character(DH_data$Col22)
131 DH_data$Col23=as.numeric(DH_data$Col23)
132 DH_data$Col24=as.character(DH_data$Col24)
133 DH_data$‘SmartMeter’s_Name‘=as.character(DH_data$‘SmartMeter’s_Name‘)
134
135
136 toc()
137
138 ### 5. Convert all values for the same units

--
139 ## Some values have different units, e.g. kWh and MWh in the Energy column
140
141 DH_data$Energy <- ifelse(DH_data$Unit_Ener == ’MWh’ & !is.na(DH_data$Energy), DH_data$Energy*1000,

DH_data$Energy)
142 DH_data$Unit_Ener[DH_data$Unit_Ener == ’MWh’] <- ’kWh’
143 DH_data$‘Flow*T_supply‘ <- ifelse(DH_data$‘Unit_Flow&TS‘ == ’m3xC x 0,1’ &

!is.na(DH_data$‘Flow*T_supply‘), DH_data$‘Flow*T_supply‘/0.1, DH_data$‘Flow*T_supply‘)
144 DH_data$‘Unit_Flow&TS‘[DH_data$‘Unit_Flow&TS‘ == ’m3xC x 0,1’] <- ’m3xC’
145 DH_data$‘Flow*T_return‘ <- ifelse(DH_data$‘Unit_Flow&TR‘ == ’m3xC x 0,1’ &

!is.na(DH_data$‘Flow*T_return‘), DH_data$‘Flow*T_return‘/0.1, DH_data$‘Flow*T_return‘)
146 DH_data$‘Unit_Flow&TR‘[DH_data$‘Unit_Flow&TR‘ == ’m3xC x 0,1’] <- ’m3xC’
147
148 ### 6. Resample data according to time and creates columns for weekdays and seasons’ names

--
149
150 attr(DH_data$TimeStep_Logging, "tzone") <- "Europe/Copenhagen" #Convert to Europe/Copenhagen time
151
152 DH_data <- DH_data%>%
153 mutate(Time_round = as.POSIXct(round(DH_data$TimeStep_Logging, "hours")))
154 toc()
155
156 ### 4. Creates sequence of time -----------------------
157
158 DH_data_update <- split(DH_data,DH_data$Link_1)
159
160 add_time <- function(DH_data, Time_min, Time_max){
161

97

Department of the Built Environment B. Script 1: Raw Data - Data Preprocessing

162 Sequence_time <- as.data.frame(seq(Time_min, Time_max, by = "hour"))
163 Sequence_time <- as.data.frame(Sequence_time[c(-651),]) #Issue: 2019-10-28 02:00:00 -> Eliminates

it
164 colnames(Sequence_time) <- c("Time_round") #Atributes another name in the column
165
166 DH_data_ID <- mean(DH_data$Link_1, na.rm = TRUE)
167 DH_data_Smeter <- mean(DH_data$Link_2)
168
169 DH_data <- Sequence_time %>%
170 transmute(Time_round = as.POSIXct(Time_round), Link_1 = DH_data_ID) #Function returns a

dataframe with 2 columns: Date and Link_1
171
172 }
173
174 Time_min <- as.POSIXct(round(min(DH_data$TimeStep_Logging, na.rm = T), "hours")) #Minimum date in

all data
175 Time_max <- as.POSIXct(round(max(DH_data$TimeStep_Logging, na.rm = T), "hours")) #Maximum date in

all data
176
177 DH_data_update_list <- lapply(DH_data_update, add_time, Time_min = Time_min, Time_max = Time_max)

#Applies the function "add_time" which has more than one variable
178
179 DH_data_update <- rbindlist(DH_data_update_list) #Binds all the buildings together in one dataframe
180
181 DH_data <- DH_data_update %>% #Joins dataframe of the time sequence with the DH_data dataset
182 left_join(DH_data)
183
184
185 DH_data <- DH_data %>%
186 mutate(Time_hour = hour(Time_round)+(minute(Time_round)/60)) #Adds a column with only the hours

and minutes from the date
187
188 DH_data <- DH_data %>% #Create columns with day, month and year
189 mutate(Day = day(DH_data$Time_round), Month = month(DH_data$Time_round), Year =

year(DH_data$Time_round))
190
191 DH_data <- DH_data %>%
192 mutate(Week_day = weekdays(DH_data$Time_round)) #Add a column with weekdays name
193 DH_data$Week_day=as.character(DH_data$Week_day) #Converts it to a string
194
195 DH_data <- DH_data %>% #Separate days regarding weekday or weekend
196 mutate(Day_type = 0)
197 DH_data$Day_type[DH_data$Week_day == ’lrdag’] <- ’Weekend’
198 DH_data$Week_day[DH_data$Week_day == ’lrdag’] <- ’Saturday’
199 DH_data$Day_type[DH_data$Week_day == ’sndag’] <- ’Weekend’
200 DH_data$Week_day[DH_data$Week_day == ’sndag’] <- ’Sunday’
201 DH_data$Day_type[DH_data$Week_day == ’mandag’] <- ’Weekday’
202 DH_data$Week_day[DH_data$Week_day == ’mandag’] <- ’Monday’
203 DH_data$Day_type[DH_data$Week_day == ’tirsdag’] <- ’Weekday’
204 DH_data$Week_day[DH_data$Week_day == ’tirsdag’] <- ’Tuesday’
205 DH_data$Day_type[DH_data$Week_day == ’onsdag’] <- ’Weekday’
206 DH_data$Week_day[DH_data$Week_day == ’onsdag’] <- ’Wednesday’
207 DH_data$Day_type[DH_data$Week_day == ’torsdag’] <- ’Weekday’
208 DH_data$Week_day[DH_data$Week_day == ’torsdag’] <- ’Thursday’
209 DH_data$Day_type[DH_data$Week_day == ’fredag’] <- ’Weekday’
210 DH_data$Week_day[DH_data$Week_day

==
’fredag’]
<-
’Friday’

211
212 DH_data <- DH_data %>%
213 mutate(Week_number = strftime(DH_data$Time_round, format = "%V")) #Add a column with week number
214 DH_data$Week_number=as.numeric(DH_data$Week_number) #Convert to a numeric value
215
216 DH_data <- DH_data %>%

98

Aalborg University

217 mutate(Season = month(DH_data$Time_round)) #Create column where the season is given regarding the
month

218 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/12/1996’, format="%d/%m/%Y"))] <- ’Winter’
219 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/01/1996’, format="%d/%m/%Y"))] <- ’Winter’
220 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/02/1996’, format="%d/%m/%Y"))] <- ’Winter’
221 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/03/1996’, format="%d/%m/%Y"))] <- ’Spring’
222 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/04/1996’, format="%d/%m/%Y"))] <- ’Spring’
223 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/05/1996’, format="%d/%m/%Y"))] <- ’Spring’
224 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/06/1996’, format="%d/%m/%Y"))] <- ’Summer’
225 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/07/1996’, format="%d/%m/%Y"))] <- ’Summer’
226 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/08/1996’, format="%d/%m/%Y"))] <- ’Summer’
227 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/09/1996’, format="%d/%m/%Y"))] <- ’Fall’
228 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/10/1996’, format="%d/%m/%Y"))] <- ’Fall’
229 DH_data$Season[DH_data$Season==month(as.POSIXct(’01/11/1996’, format="%d/%m/%Y"))] <- ’Fall’
230 DH_data$Season=as.character(DH_data$Season) #Convert to a string
231
232
233 ### 7. Attribute "Weekend" for holidays in Denmark -------------------------------
234
235 DH_data <- DH_data %>%
236 mutate(Holiday_day = day(DH_data$Time_round), Holiday_month = month(DH_data$Time_round),

Holiday_year = year(DH_data$Time_round)) #Create column where the where the year/month/day
is given

237
238 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’01/01/2018’, format="%d/%m/%Y")) &

DH_data$Holiday_month==month(as.POSIXct(’01/01/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’01/01/2018’, format="%d/%m/%Y"))] <- ’Weekend’

239 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’29/03/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’29/03/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’29/03/2018’, format="%d/%m/%Y"))] <- ’Weekend’

240 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’30/03/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’30/03/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’30/03/2018’, format="%d/%m/%Y"))] <- ’Weekend’

241 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’01/04/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’01/04/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’01/04/2018’, format="%d/%m/%Y"))] <- ’Weekend’

242 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’02/04/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’02/04/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’02/04/2018’, format="%d/%m/%Y"))] <- ’Weekend’

243 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’27/04/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’27/04/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’27/04/2018’, format="%d/%m/%Y"))] <- ’Weekend’

244 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’10/05/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’10/05/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’10/05/2018’, format="%d/%m/%Y"))] <- ’Weekend’

245 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’20/05/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’20/05/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’20/05/2018’, format="%d/%m/%Y"))] <- ’Weekend’

246 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’21/05/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’21/05/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’21/05/2018’, format="%d/%m/%Y"))] <- ’Weekend’

247 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’24/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’24/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’24/12/2018’, format="%d/%m/%Y"))] <- ’Weekend’

248 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’25/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’25/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’25/12/2018’, format="%d/%m/%Y"))] <- ’Weekend’

249 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’26/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’26/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’26/12/2018’, format="%d/%m/%Y"))] <- ’Weekend’

250 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’31/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’31/12/2018’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’31/12/2018’, format="%d/%m/%Y"))] <- ’Weekend’

251
252 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’01/01/2019’, format="%d/%m/%Y")) &

DH_data$Holiday_month==month(as.POSIXct(’01/01/2019’, format="%d/%m/%Y")) &

99

Department of the Built Environment B. Script 1: Raw Data - Data Preprocessing

DH_data$Holiday_year==year(as.POSIXct(’01/01/2019’, format="%d/%m/%Y"))] <- ’Weekend’
253 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’18/04/2019’, format="%d/%m/%Y")) &

DH_data$Holiday_month==month(as.POSIXct(’18/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’18/04/2019’, format="%d/%m/%Y"))] <- ’Weekend’

254 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’19/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’19/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’19/04/2019’, format="%d/%m/%Y"))] <- ’Weekend’

255 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’21/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’21/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’21/04/2019’, format="%d/%m/%Y"))] <- ’Weekend’

256 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’22/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’22/04/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’22/04/2019’, format="%d/%m/%Y"))] <- ’Weekend’

257 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’17/05/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’17/05/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’17/05/2019’, format="%d/%m/%Y"))] <- ’Weekend’

258 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’30/05/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’30/05/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’30/05/2019’, format="%d/%m/%Y"))] <- ’Weekend’

259 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’09/06/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’09/06/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’09/06/2019’, format="%d/%m/%Y"))] <- ’Weekend’

260 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’10/06/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’10/06/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’10/06/2019’, format="%d/%m/%Y"))] <- ’Weekend’

261 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’24/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’24/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’24/12/2019’, format="%d/%m/%Y"))] <- ’Weekend’

262 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’25/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’25/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’25/12/2019’, format="%d/%m/%Y"))] <- ’Weekend’

263 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’26/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’26/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’26/12/2019’, format="%d/%m/%Y"))] <- ’Weekend’

264 DH_data$Day_type[DH_data$Holiday_day==day(as.POSIXct(’31/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_month==month(as.POSIXct(’31/12/2019’, format="%d/%m/%Y")) &
DH_data$Holiday_year==year(as.POSIXct(’31/12/2019’, format="%d/%m/%Y"))] <- ’Weekend’

265
266 DH_data <- DH_data %>%
267 select(-Holiday_day, -Holiday_month, -Holiday_year)
268
269 DH_data <- DH_data %>% #Join DH_data data with addressess and geocodes data
270 inner_join(Addresses)
271
272 DH_data <- DH_data %>% #Eliminates possible repeated lines
273 distinct()
274
275 ### 8. Save the data.frame into a *.Rda file and store it in the main directory

--
276
277 tic(’Time to save the data.frame in the main directory’)
278
279 save(DH_data, file="DH_data_20182019.Rda")
280
281 z <- DH_data %>% # Data frame without units information and organized by date

and Building ID
282 arrange(Time_round) %>%
283 arrange(Link_1) %>%
284 select(-Unit_Ener,-Unit_Flow,-Unit_LifeT,-‘Unit_Flow&TS‘,-‘Unit_Flow&TR‘,-Unit_TS,-Unit_TR,-Unit_Vlm)
285
286 save(z, file="z_1.Rda") #Save dataframe to be used in the next scripts
287
288 toc()

Listing B.1. Script 1: Raw Data

100

Script 2: Errors - Data
Preprocessing C

1 ### Script 2: Errors (Preprocessing)
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University - Full year
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)
41 library(ggpubr)
42 library(lemon)
43 library(gghighlight)
44 library(viridis)

101

Department of the Built Environment C. Script 2: Errors - Data Preprocessing

45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75 ### 3. Load the *.Rda file from the main directory

--
76
77 tic(’Time to load the data.frame’)
78
79 load("z_1.Rda") #Load dataframe
80
81 toc()
82
83 ### 4. List of functions --
84
85 convert_error_DK_EN <- function(df){
86
87 df$Error[df$Error == "Temperaturforskel har forkert polaritet"] <- "Temperature difference has

wrong polarity"
88 df$Error[df$Error == "Flowmler V1, forkert flowretning"] <- "V1 Wrong flow direction"
89 df$Error[df$Error == "Flowmler har forkert flowretning"] <- "Flow sensor with wrong flow

direction"
90 df$Error[df$Error == "Der er fundet luft i flowmleren (angives kun, s lnge fejlen findes)"] <-

"Air has been detected in the flow meter (only indicated as long as the fault exists)"
91 df$Error[df$Error == "Flowmler med svagt signal eller luft"] <- "Flow sensor with weak signal or

air"
92 df$Error[df$Error == "Temperaturfler t2 under grnse eller kortsluttet"] <- "t2 Below measuring

range or short-circuited"
93
94 return(df)
95 } #Function: Converts the errors written in Danish to English
96
97 convert_error_to_number<- function(df){
98
99 df$Error[df$Error == "Temperature difference has wrong polarity"] <- 1

100 df$Error[df$Error == "V1 Wrong flow direction"] <- 2
101 df$Error[df$Error == "Flow sensor with wrong flow direction"] <- 3
102 df$Error[df$Error == "Air has been detected in the flow meter (only indicated as long as the

fault exists)"] <- 4

102

Aalborg University

103 df$Error[df$Error == "Flow sensor with weak signal or air"] <- 5
104 df$Error[df$Error == "t2 Below measuring range or short-circuited"] <- 6
105
106 return(df)
107 } #Function: Converts the errors types into numbers
108
109
110 convert_value_to_NA <- function(df){
111 df$Energy[!is.na(df$Error)] <- NA
112 df$Flow[!is.na(df$Error)] <- NA
113 df$‘Flow*T_supply‘[!is.na(df$Error)] <- NA
114 df$‘Flow*T_return‘[!is.na(df$Error)] <- NA
115 df$‘T_supply_(inst)‘[!is.na(df$Error)] <- NA
116 df$‘T_return_(inst)‘[!is.na(df$Error)] <- NA
117 df$‘Volume_(inst)‘[!is.na(df$Error)] <- NA
118
119 return(df)
120 } #Function: When a data point presents an error, converts all its significant variables into NA

values
121
122 ### 5. Reshape dataframe --
123
124 tic(’Time to reshape dataframe’)
125
126 z <- convert_error_DK_EN(z) # Convert error types from Danish language to English
127
128 z$Link_1 <- as.character(z$Link_1) #Converts to a string Link_1
129 z$Link_2 <- as.character(z$Link_2) #Converts to a string Link_2
130
131 toc()
132
133
134 ### 6. Errors Plots

135
136 n_filter <- 10 #Number of buildings to use in plots
137
138 z_error_total <- z %>% #Creates table with all the total number of rows per building ID
139 group_by(Link_1) %>%
140 summarise(N_total=n())
141
142 z_error_not_NA <- z %>% #Table with values without NA values, meaning table only with errors
143 filter(!is.na(Error))
144
145 z_error_NA_total <- z_error_not_NA %>% #Total number of errors per ID building
146 group_by(Link_1) %>%
147 summarise(N_error=n())
148
149 z_error <- z_error_NA_total %>% #Joins above tables with a column of percentage of errors per

building ID, organized by descending order
150 inner_join(z_error_total) %>%
151 mutate(Percentage_error = round((N_error/N_total)*100,digits = 2)) %>%
152 arrange(desc(Percentage_error))
153
154 z_error_filter <- z_error %>%
155 head(n_filter) #Filter by a number of buildings that was established before to be used for the

plots!
156
157 ## Total percentage of errors per building
158
159 Plt_error_percentage <- ggplot(data = z_error_filter, aes(x=reorder(Link_1, -Percentage_error),

y=Percentage_error)) + #Bar plot with the total percentage of errors
160 geom_bar(stat = "identity", fill="sky blue") +
161 labs(title="Percentage of errors vs Building ID", subtitle = "Full year", y="Percentage of errors

[%]", x="Building ID") +
162 geom_text(aes(label=Percentage_error), vjust=-0.6, color="black",

103

Department of the Built Environment C. Script 2: Errors - Data Preprocessing

163 position = position_dodge(0.9), size=3.5) +
164 theme_minimal()
165
166 ## Percentage of different types of errors per ID building
167
168 z_error_diff <- z_error_not_NA %>% #Total number of the different types of errors per building
169 group_by(Link_1, Error) %>%
170 summarise(N_total_diff=n())
171
172 z_error_diff_filter <- z_error_filter %>% #To use the same number of selected buildings for plotting
173 inner_join(z_error_diff) %>%
174 mutate(Percentage_error_diff = round((N_total_diff/N_total)*100,digits = 2))
175
176 # Plot: Bar plot with total number of each error per building stacked together
177 Plt_error_diff_percent <- ggplot(z_error_diff_filter, aes(fill=Error, y=Percentage_error_diff,

x=reorder(Link_1, -Percentage_error_diff))) +
178 geom_bar(position="stack", stat="identity") +
179 labs(title="Percentage of different errors vs Building ID", subtitle = "Full year", y="Percentage

of different errors [%]", x="Building ID")
180
181 z_error_diff_filter_1 <- convert_error_to_number(z_error_diff_filter)
182
183 # Plot: Bar plot with total number of each error per building separated with percentage above
184 Plt_error_diff_percent_1 <- ggplot(z_error_diff_filter_1, aes(fill=Error, y=Percentage_error_diff,

x=Error)) +
185 geom_bar(position="dodge", width=1, stat="identity") +
186 labs(title = "Percentage of different errors per Building ID", subtitle = "Full year",

y="Percentage of errors [%]", x="Error type") +
187 facet_rep_wrap(~Link_1, scales = "free_y", repeat.tick.labels = TRUE) +
188 geom_text(aes(label = Percentage_error_diff), vjust = 0.5) +
189 scale_fill_brewer(palette = "RdBu")
190
191 ### 7. Convert values into NA ---------------------------------
192
193 z <- convert_value_to_NA(z) #Convert error into NA
194
195 z <- z %>%
196 mutate(data_changed_error = ifelse(!is.na(z$Error), TRUE, FALSE)) #Knows if the value was an

error before conversion
197 percentage_of_conversion <-

(length(z$data_changed_error[z$data_changed_error==TRUE])/length(z$data_changed_error))*100
#Percentage of errors converted into NA

198
199 save(z, file="z_2.Rda")

Listing C.1. Script 2: Errors

104

Script 3: Outliers - Data
Preprocessing D

1 ### Script 3: Outliers (Preprocessing)
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)
41 library(ggpubr)
42 library(lemon)
43 library(gghighlight)
44 library(viridis)

105

Department of the Built Environment D. Script 3: Outliers - Data Preprocessing

45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75 ### 3. Load the *.Rda file from the main directory

--
76
77 tic(’Time to load the data.frame’)
78
79 # Full year
80 load("z_2.Rda") #Load data from previous script
81
82 toc()
83
84 ### 4. List of functions --
85
86 convert_value_to_NA <- function(df){
87 df$Energy[df$outlier_energy == TRUE] <- NA
88 df$Flow[df$outlier_flow == TRUE] <- NA
89 df$‘Flow*T_supply‘[df$outlier_flow_ts == TRUE] <- NA
90 df$‘Flow*T_return‘[df$outlier_flow_tr == TRUE] <- NA
91 df$‘T_supply_(inst)‘[df$outlier_tsupply == TRUE] <- NA
92 df$‘T_return_(inst)‘[df$outlier_treturn == TRUE] <- NA
93 df$‘Volume_(inst)‘[df$outlier_volume == TRUE] <- NA
94
95
96 return(df)
97 } #Function: When a data point presents an outlier, converts into NA value
98
99

100 ### 5. Group data according to ID, season and day type
...

101
102 z_group <- split(z,list(z$Link_1, z$Season, z$Day_type))
103
104
105 ### 6. Find outliers: Functions --------------------------------
106
107 MSD_outlier_Energy <- function(x){

106

Aalborg University

108 mean_x <- mean(x$Energy, na.rm = TRUE) #Mean value
109 sd_x <- sd(x$Energy, na.rm = TRUE) #Standard deviation
110 x %>%
111 mutate(
112 outlier_score = (x$Energy - mean_x)/sd_x, #Z-score
113 outlier_energy = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier:

conditions
114 outlier_energy = ifelse(is.na(outlier_energy), FALSE, outlier_energy),
115 outlier_energy = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_energy)
116) %>%
117 select(-outlier_score)
118
119 } #Mean and Standard Deviation method: Energy
120
121
122 MSD_outlier_Flow <- function(x){
123 mean_x <- mean(x$Flow, na.rm = TRUE)
124 sd_x <- sd(x$Flow, na.rm = TRUE)
125 x %>%
126 mutate(
127 outlier_score = (x$Flow - mean_x)/sd_x,
128 outlier_flow = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
129 outlier_flow = ifelse(is.na(outlier_flow), FALSE, outlier_flow),
130 outlier_flow = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_flow)
131) %>%
132 select(-outlier_score)
133
134 } #Mean and Standard Deviation method: Flow
135
136 MSD_outlier_Flow_TS <- function(x){
137 mean_x <- mean(x$‘Flow*T_supply‘, na.rm = TRUE)
138 sd_x <- sd(x$‘Flow*T_supply‘, na.rm = TRUE)
139 x %>%
140 mutate(
141 outlier_score = (x$‘Flow*T_supply‘ - mean_x)/sd_x,
142 outlier_flow_ts = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
143 outlier_flow_ts = ifelse(is.na(outlier_flow_ts), FALSE, outlier_flow_ts),
144 outlier_flow_ts = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_flow_ts)
145) %>%
146 select(-outlier_score)
147
148 } #Mean and Standard Deviation method: Flow*T_supply
149
150 MSD_outlier_Flow_TR <- function(x){
151 mean_x <- mean(x$‘Flow*T_return‘, na.rm = TRUE)
152 sd_x <- sd(x$‘Flow*T_return‘, na.rm = TRUE)
153 x %>%
154 mutate(
155 outlier_score = (x$‘Flow*T_return‘ - mean_x)/sd_x,
156 outlier_flow_tr = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
157 outlier_flow_tr = ifelse(is.na(outlier_flow_tr), FALSE, outlier_flow_tr),
158 outlier_flow_tr = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_flow_tr)
159) %>%
160 select(-outlier_score)
161
162 } #Mean and Standard Deviation method: Flow*T_return
163
164 MSD_outlier_TS <- function(x){
165 mean_x <- mean(x$‘T_supply_(inst)‘, na.rm = TRUE)
166 sd_x <- sd(x$‘T_supply_(inst)‘, na.rm = TRUE)
167 x %>%
168 mutate(
169 outlier_score = (x$‘T_supply_(inst)‘ - mean_x)/sd_x,
170 outlier_tsupply = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
171 outlier_tsupply = ifelse(is.na(outlier_tsupply), FALSE, outlier_tsupply),
172 outlier_tsupply = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_tsupply)

107

Department of the Built Environment D. Script 3: Outliers - Data Preprocessing

173) %>%
174 select(-outlier_score)
175
176 } #Mean and Standard Deviation method: T_supply (instantaneous)
177
178 MSD_outlier_TR <- function(x){
179 mean_x <- mean(x$‘T_return_(inst)‘, na.rm = TRUE)
180 sd_x <- sd(x$‘T_return_(inst)‘, na.rm = TRUE)
181 x %>%
182 mutate(
183 outlier_score = (x$‘T_return_(inst)‘ - mean_x)/sd_x,
184 outlier_treturn = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
185 outlier_treturn = ifelse(is.na(outlier_treturn), FALSE, outlier_treturn),
186 outlier_treturn = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_treturn)
187) %>%
188 select(-outlier_score)
189
190 } #Mean and Standard Deviation method: T_return (instantaneous)
191
192 MSD_outlier_Volume <- function(x){
193 mean_x <- mean(x$‘Volume_(inst)‘, na.rm = TRUE)
194 sd_x <- sd(x$‘Volume_(inst)‘, na.rm = TRUE)
195 x %>%
196 mutate(
197 outlier_score = (x$‘Volume_(inst)‘ - mean_x)/sd_x,
198 outlier_volume = abs(outlier_score) > qnorm(0.9995), #If True, then it’s an outlier
199 outlier_volume = ifelse(is.na(outlier_volume), FALSE, outlier_volume),
200 outlier_volume = ifelse(x$‘Volume_(inst)‘ == 0, FALSE, outlier_volume)
201) %>%
202 select(-outlier_score)
203
204 } #Mean and Standard Deviation method: Volume (instantaneous)
205
206 ### 7. Run functions to detect outliers and join values in the tables -------------
207
208 z_group <- lapply(z_group, MSD_outlier_Energy) %>% #Detect outliers
209 lapply(MSD_outlier_Flow) %>%
210 lapply(MSD_outlier_Flow_TS) %>%
211 lapply(MSD_outlier_Flow_TR) %>%
212 lapply(MSD_outlier_TS) %>%
213 lapply(MSD_outlier_TR) %>%
214 lapply(MSD_outlier_Volume)
215
216 z <- rbindlist(z_group) #Join values in a single table
217
218 z <- convert_value_to_NA(z) #Run function to convert outliers into NA values
219
220 z <- z %>% #Create column that shows if any value was an outlier changed to NA, returns value TRUE
221 mutate(data_changed_outlier = ifelse((outlier_energy | outlier_flow | outlier_flow_ts |

outlier_flow_tr | outlier_tsupply | outlier_treturn | outlier_volume) == TRUE, TRUE, FALSE))
%>%

222 select(-outlier_energy, -outlier_flow, -outlier_flow_ts, -outlier_flow_tr, -outlier_tsupply,
-outlier_treturn, -outlier_volume)

223
224 z$data_changed_outlier[is.na(z$data_changed_outlier)] <- FALSE
225
226 # Calculate percentage of outliers
227 percentage_of_conversion <-

(length(z$data_changed_outlier[z$data_changed_outlier==TRUE])/length(z$data_changed_outlier))*100
228
229
230 save(z, file="z_3.Rda") #Save dataframe

Listing D.1. Script 3: Outliers

108

Script 4: Missing Values -
Data Preprocessing E

1 ### Script 4: NA Values - Missing Values (Preprocessing)
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)
41 library(ggpubr)
42 library(lemon)
43 library(gghighlight)
44 library(viridis)

109

Department of the Built Environment E. Script 4: Missing Values - Data Preprocessing

45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75
76 ### 3. Load the *.Rda file from the main directory

--
77
78 tic(’Time to load the data.frame’)
79
80 # Full year
81 load("z_3.Rda") #Load data from previous script
82
83 toc()
84
85 z <- z %>% #Detect NA values originated by errors, outliers or normal NA
86 mutate(data_changed_NA = ifelse(
87 data_changed_error == FALSE & data_changed_outlier == FALSE & (is.na(Energy) | is.na(Flow) |

is.na(‘Flow*T_supply‘) | is.na(‘Flow*T_return‘) | is.na(‘T_supply_(inst)‘) |
is.na(‘T_return_(inst)‘) | is.na(‘Volume_(inst)‘)),

88 TRUE,
89 FALSE
90), NA_value = ifelse(data_changed_error == TRUE | data_changed_outlier == TRUE |

data_changed_NA == TRUE, TRUE, FALSE))
91
92 z$data_changed_NA[is.na(z$TimeStep_Logging)] <- TRUE #Detect NA values in Time column
93
94 z <- z %>%
95 mutate(z_day = day(z$Time_round), z_month = month(z$Time_round), z_year = year(z$Time_round)) %>%

Data frame without units information and organized by date and Building ID
96 arrange(Time_round) %>%
97 arrange(Link_1) #Create columns where the where the year/month/day are given
98
99 z <- z %>%

100 filter(z_year == 2019 | (z_day >= 5 & z_month == 11 & z_year == 2018) | (z_month == 12 & z_year
== 2018)) #Remove October until beginning of November

101
102
103

110

Aalborg University

104 ## Detect NA Gaps
105
106 NA_vector <- rle(z$NA_value == TRUE)
107
108 z <- z %>%
109 mutate(Gap = rep(NA_vector$values*NA_vector$lengths, NA_vector$lengths))
110
111 Gap_max <- z %>% #Dataframe with highest gap in a building
112 group_by(Link_1) %>%
113 summarize(max_gap=max(Gap)) %>%
114 arrange(desc(max_gap))
115
116 z <- z %>% #Join with dataset
117 inner_join(Gap_max)
118
119 z <- z %>%
120 filter(max_gap < 10) #Less than 10 hours gaps (More will be removed)
121
122
123
124 ### 4. NA values ---
125
126 #NA percentage for each building
127 n_filter <- 30 #Number of buildings for plot
128
129 #Number of rows by ID
130 n_rows_total_ID <- z %>%
131 group_by(Link_1) %>%
132 summarise(N_total=n())
133
134 # Number of rows with NA values by ID
135 n_rows_NA_ID <- z %>%
136 filter(NA_value == TRUE) %>%
137 group_by(Link_1) %>%
138 summarise(N_total_NA=n())
139
140 # Percentage of NA values by ID
141 z_NA_percent1 <- n_rows_NA_ID %>%
142 inner_join(n_rows_total_ID) %>%
143 mutate(Percentage_NA = ifelse(!is.na(N_total_NA), round((N_total_NA/N_total)*100,digits = 2), 0))

%>%
144 arrange(desc(Percentage_NA))
145
146 z_NA_percent <- z_NA_percent1 %>%
147 head(n_filter)
148
149
150 # Bar plot of percentages vs Building ID
151 plt_NA_percentage <- ggplot(data = z_NA_percent, aes(x=reorder(Link_1, -Percentage_NA),

y=Percentage_NA)) +
152 geom_bar(stat = "identity", fill=z_NA_percent$Link_1) +
153 labs(title="Percentage of NA vs Building ID", subtitle = "All variables - Full year",

y="Percentage of NA [%]", x="Building ID") +
154 geom_text(aes(label = Percentage_NA), vjust = -0.5)
155
156
157 Remove_percentage <- 10 #Percentage of remove the data according to NA values
158
159 z <- z %>% #Remove buildings with high NA percentages
160 inner_join(z_NA_percent1) %>%
161 filter(Percentage_NA < Remove_percentage) %>%
162 select(-N_total_NA, -N_total, -Percentage_NA)
163
164 z$Link_1 <- as.numeric(z$Link_1) #Converts to a string Link_1
165 z$Link_2 <- as.numeric(z$Link_2) #Converts to a string Link_2
166

111

Department of the Built Environment E. Script 4: Missing Values - Data Preprocessing

167 z <- z %>% # Final dataset organized by date and Building ID
168 arrange(Time_round) %>%
169 arrange(Link_1) %>%
170 select(-z_day, -z_month, -z_year, -Gap, -max_gap)
171
172
173 save(z, file="z_4.Rda")

Listing E.1. Script 4: Missing values

112

Script 5: Imputation - Data
Preprocessing F

1 ### Script 5: Imputation (Preprocessing)
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)
41 library(ggpubr)
42 library(lemon)
43 library(gghighlight)
44 library(viridis)

113

Department of the Built Environment F. Script 5: Imputation - Data Preprocessing

45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75 ### 3. Load the *.Rda file from the main directory

--
76
77 tic(’Time to load the data.frame’)
78
79 # Full year
80 load("z_4.Rda") #Load dataframe
81
82 toc()
83
84 z_group <- split(z,z$Link_1) #Split dataframe into small dataframes by their Link_1
85
86
87 ### 4. Convert variables columns into time series and imputes values

88
89 Imputation_function <- function(z){
90
91 TS_Energy <- xts(z$Energy, z$Time_round)
92 TS_Volume <- xts(z$Flow, z$Time_round)
93 TS_Volume_Tsupply <- xts(z$‘Flow*T_supply‘, z$Time_round)
94 TS_Volume_Treturn <- xts(z$‘Flow*T_return‘, z$Time_round)
95 TS_Tsupply <- xts(z$‘T_supply_(inst)‘, z$Time_round)
96 TS_Treturn <- xts(z$‘T_return_(inst)‘, z$Time_round)
97 TS_Flow <- xts(z$‘Volume_(inst)‘, z$Time_round)
98
99 TS_Energy <- na_interpolation(TS_Energy, option = "linear")

100 TS_Volume <- na_interpolation(TS_Volume, option = "linear")
101 TS_Volume_Tsupply <- na_interpolation(TS_Volume_Tsupply, option = "linear")
102 TS_Volume_Treturn <- na_interpolation(TS_Volume_Treturn, option = "linear")
103 TS_Tsupply <- na_ma(TS_Tsupply, k = 8, weighting = "exponential")
104 TS_Treturn <- na_ma(TS_Treturn, k = 8, weighting = "exponential")
105 TS_Flow <- na_ma(TS_Flow, k = 8, weighting = "exponential")
106
107 z %>%

114

Aalborg University

108 mutate(
109 Energy_TS = as.numeric(TS_Energy),
110 Flow_TS = as.numeric(TS_Volume),
111 Flow_Tsupply_TS = as.numeric(TS_Volume_Tsupply),
112 Flow_Treturn_TS = as.numeric(TS_Volume_Treturn),
113 T_supply_TS = as.numeric(TS_Tsupply),
114 T_return_TS = as.numeric(TS_Treturn),
115 Volume_TS = as.numeric(TS_Flow)
116)
117 } #Function that converts data into Time Series type and applies the chosen imputation methods per

building
118
119 z_group <- lapply(z_group, Imputation_function) #Applies function
120
121 z <- rbindlist(z_group) #Binds all the data together
122
123 z$Energy <- z$Energy_TS #Results will be the new data in each variable
124 z$Flow <- z$Flow_TS
125 z$‘Flow*T_supply‘ <- z$Flow_Tsupply_TS
126 z$‘Flow*T_return‘ <- z$Flow_Treturn_TS
127 z$‘T_supply_(inst)‘ <- z$T_supply_TS
128 z$‘T_return_(inst)‘ <- z$T_return_TS
129 z$‘Volume_(inst)‘ <- z$Volume_TS
130
131 z <- z %>% #Removes the repeated columns, because they were replaced in the respective variables
132 select(-Energy_TS, -Flow_TS, -Flow_Tsupply_TS, -Flow_Treturn_TS, -T_supply_TS, -T_return_TS,

-Volume_TS)
133
134
135 ### 5. Calculations -----------------------------------
136
137 const <- (985.2*4.183)/3600 #Constant value to be used to calculate Power
138
139 z <- z %>%
140 arrange(Time_round) %>%
141 arrange(Link_1) %>%
142 mutate(T_supply_avg = ‘Flow*T_supply‘/Flow, T_return_avg = ‘Flow*T_return‘/Flow, Delta_T_inst =

‘T_supply_(inst)‘- ‘T_return_(inst)‘, Delta_T_avg = T_supply_avg - T_return_avg, Power_inst
= const *‘Volume_(inst)‘*Delta_T_inst, Power_avg = const *‘Volume_(inst)‘*Delta_T_avg)

143
144
145 z_group <- split(z,z$Link_1)
146
147 Add_Energy_Volume_Hourly <- function(z){
148
149 z %>%
150 mutate(Energy_hourly = Energy - lag(Energy, default = first(z$Energy)), Volume_hourly = (Flow -

lag(Flow, default = first(z$Flow)))*1000)
151 } #Calculates from the cumulative variables (Energy and Volume) their hourly values
152
153 z_group <- lapply(z_group, Add_Energy_Volume_Hourly)
154
155 z <- rbindlist(z_group)
156
157 z <- z %>% # Data frame organized by date and Building ID
158 arrange(Time_round) %>%
159 arrange(Link_1)
160
161 save(z, file="z_5.Rda") #Saves dataframe

Listing F.1. Script 5: Imputation

115

Script 6: Building type
segregation - Data

Preprocessing G
1 ### Script to separate the types of buildings
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE & require(’ggExtra’)==FALSE &
require(’dygraphs’)==FALSE){ #If NOT installed then install and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’ggExtra’)
31 install.packages("dygraphs")
32
33 library(data.table)
34 library(dplyr)
35 library(readr)
36 library(ggplot2)
37 library(tictoc)
38 library(lubridate)
39 library(imputeTS)
40 library(magrittr)

117

Department of the Built EnvironmentG. Script 6: Building type segregation - Data Preprocessing

41 library(DataExplorer)
42 library(ggpubr)
43 library(lemon)
44 library(gghighlight)
45 library(viridis)
46 library(hrbrthemes)
47 library(xts)
48 library(tidyr)
49 library(tibble)
50 library(purrr)
51 library(cluster)
52 library(factoextra)
53 library(ggExtra)
54 library(dygraphs)
55 library(plotly)
56 library(leaflet)
57 library(htmltools)
58 } else { #If already installed then "check it" in the menu "Packages" to be

used
59 library(data.table)
60 library(dplyr)
61 library(readr)
62 library(ggplot2)
63 library(tictoc)
64 library(lubridate)
65 library(imputeTS)
66 library(magrittr)
67 library(DataExplorer)
68 library(ggpubr)
69 library(lemon)
70 library(gghighlight)
71 library(viridis)
72 library(hrbrthemes)
73 library(xts)
74 library(tidyr)
75 library(tibble)
76 library(purrr)
77 library(cluster)
78 library(factoextra)
79 library(ggExtra)
80 library(dygraphs)
81 library(plotly)
82 library(leaflet)
83 library(htmltools)
84 }
85
86 ### 3. Load the *.Rda file from the main directory

--
87
88 load("z_5.Rda") #Load dataframe
89
90 ### 4. Method ----------------------
91
92 z_group <- z %>% # Create dataframe with principal characteristics of each building
93 group_by(Link_1, Address) %>%
94 summarise(Latitude = mean(Latitude), Longitude = mean(Longitude), Energy_max = max(Energy) -

min(Energy), Volume_max = max(Flow) - min(Flow), Power_mean = mean(Power_avg))
95
96 ## Limits for considering a commercial building
97
98 Energy_limit <- quantile(z_group$Energy_max, 0.75, type = 2) + 1.5 * IQR(z_group$Energy_max, type =

2) #[kWh]
99 Volume_limit <- quantile(z_group$Volume_max, 0.75, type = 2) + 1.5 * IQR(z_group$Volume_max, type =

2) #[m3]
100 Power_limit <- quantile(z_group$Power_mean, 0.75, type = 2) + 1.5 * IQR(z_group$Power_mean, type =

2) #[kW]

118

Aalborg University

101
102 z_residential <- z_group %>%
103 mutate(Residential = if(Energy_max > Energy_limit | Volume_max > Volume_limit | Power_mean >

Power_limit){FALSE} else{TRUE}) %>%
104 select(Link_1, Residential)
105
106 z_AllBuilding <- z %>%
107 inner_join(z_residential)%>% #All the buildings: Residential + Commercial
108 arrange(Time_round) %>%
109 arrange(Link_1)
110
111 save(z_AllBuilding, file="Data_AllBuildings.Rda")
112
113 z <- z_AllBuilding %>% #Only residential buildings with adjustments in the columns
114 filter(Residential == TRUE) %>%
115 transmute(Time = Time_round, Link_1 = Link_1, Link_2 = Link_2, Address = Address, Latitude =

Latitude, Longitude = Longitude, Lifetime = Lifetime,
116 Energy_accum = Energy, Volume_accum = Flow, Volume_TSupply = ‘Flow*T_supply‘,

Volume_TReturn = ‘Flow*T_return‘,
117 T_supply_inst = ‘T_supply_(inst)‘, T_supply_avg = T_supply_avg , T_return_inst =

‘T_return_(inst)‘, T_return_avg = T_return_avg,
118 Delta_T_inst = Delta_T_inst, Delta_T_avg = Delta_T_avg, Flow = ‘Volume_(inst)‘*1000,
119 Power_inst = Power_inst, Power_avg = Power_avg, Energy = Energy_hourly, Volume =

Volume_hourly,
120 Time_hour = Time_hour, Day = Day, Month = Month, Year = Year, Week_day = Week_day,

Day_type = Day_type, Week_number = Week_number, Season = Season)
121
122 save(z, file="z_6.Rda")
123
124 z_short <- z %>% #Small dataframe creation to program algorithms easily
125 filter(Link_1==103067| Link_1==103068| Link_1==103069| Link_1==103070| Link_1==103071|

Link_1==103072| Link_1==103073| Link_1==103074|
126 Link_1==103076 | Link_1==103078| Link_1==103079|
127 Link_1==103080| Link_1==103081 | Link_1==103436 | Link_1==111835)
128
129 save(z_short, file="z_6_short.Rda")
130
131 z_AllBuilding <- z_AllBuilding %>% #Residential + Commercial buildings with adjustments in the

columns
132 transmute(Time = Time_round, Link_1 = Link_1, Link_2 = Link_2, Address = Address, Latitude =

Latitude, Longitude = Longitude, Residential = Residential, Lifetime = Lifetime,
133 Energy_accum = Energy, Volume_accum = Flow, Volume_TSupply = ‘Flow*T_supply‘,

Volume_TReturn = ‘Flow*T_return‘,
134 T_supply_inst = ‘T_supply_(inst)‘, T_supply_avg = T_supply_avg , T_return_inst =

‘T_return_(inst)‘, T_return_avg = T_return_avg,
135 Delta_T_inst = Delta_T_inst, Delta_T_avg = Delta_T_avg, Flow = ‘Volume_(inst)‘*1000,
136 Power_inst = Power_inst, Power_avg = Power_avg, Energy = Energy_hourly, Volume =

Volume_hourly,
137 Time_hour = Time_hour, Day = Day, Month = Month, Year = Year, Week_day = Week_day,

Day_type = Day_type, Week_number = Week_number, Season = Season)
138
139 save(z_AllBuilding, file="z_AllBuildings.Rda")

Listing G.1. Script 6: Building type segregation

119

Script 7: Linear
Regressions - Data

Visualisation H
1 ### Title: Linear regressions in Energy & Outdoor Temperature
2
3
4 ### 1. Setting the main directory ---
5 ## Setting the data for the folder where is the file with the data.
6
7 # Aalborg University - Full year
8 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S2_Data_Visualisation/Energy")
9

10 ### 2. Installing important packages

11
12 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

13 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

14 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE & require(’TSstudio’)==FALSE &
require(’dygraphs’)==FALSE & require(’forecast’)==FALSE & require(’plotly’)==FALSE){ #If
NOT installed then install and check it to be used

15 install.packages(’data.table’)
16 install.packages(’dplyr’)
17 install.packages(’readr’)
18 install.packages(’ggplot2’)
19 install.packages(’tictoc’)
20 install.packages(’imputeTS’)
21 install.packages(’magrittr’)
22 install.packages(’DataExplorer’)
23 install.packages(’ggpubr’)
24 install.packages(’lemon’)
25 install.packages(’gghighlight’)
26 install.packages(’xts’)
27 install.packages(’tidyr’)
28 install.packages(’tibble’)
29 install.packages(’purrr’)
30 install.packages(’cluster’)
31 install.packages(’factoextra’)
32 install.packages("NbClust")
33 install.packages("clustree")
34 install.packages("clValid")
35 install.packages("gridExtra")
36 install.packages("amap")
37 install.packages("fpc")
38 install.packages("TSstudio")
39 install.packages("dygraphs")
40 install.packages("forecast")

121

Department of the Built EnvironmentH. Script 7: Linear Regressions - Data Visualisation

41 install.packages("plotly")
42
43 library(data.table)
44 library(dplyr)
45 library(readr)
46 library(ggplot2)
47 library(tictoc)
48 library(lubridate)
49 library(imputeTS)
50 library(magrittr)
51 library(DataExplorer)
52 library(ggpubr)
53 library(lemon)
54 library(gghighlight)
55 library(viridis)
56 library(hrbrthemes)
57 library(xts)
58 library(tidyr)
59 library(tibble)
60 library(purrr)
61 library(cluster)
62 library(factoextra)
63 library(NbClust)
64 library(clustree)
65 library(clValid)
66 library(gridExtra)
67 library(amap)
68 library(fpc)
69 library(TSstudio)
70 library(dygraphs)
71 library(forecast)
72 library(plotly)
73 } else { #If already installed then "check it" in the menu "Packages" to be

used
74 library(data.table)
75 library(dplyr)
76 library(readr)
77 library(ggplot2)
78 library(tictoc)
79 library(lubridate)
80 library(imputeTS)
81 library(magrittr)
82 library(DataExplorer)
83 library(ggpubr)
84 library(lemon)
85 library(gghighlight)
86 library(viridis)
87 library(hrbrthemes)
88 library(xts)
89 library(tidyr)
90 library(tibble)
91 library(purrr)
92 library(cluster)
93 library(factoextra)
94 library(NbClust)
95 library(clustree)
96 library(clValid)
97 library(gridExtra)
98 library(amap)
99 library(fpc)

100 library(TSstudio)
101 library(dygraphs)
102 library(forecast)
103 library(plotly)
104 }
105

122

Aalborg University

106
107 ### 3. Load the *.Rda file from the main directory

--
108
109 load("z_6.Rda") #Load the data
110
111 z_Heating <- filter(z, Season != "Summer") #Filter dataset according to season
112 z_No_Heating <- filter(z, Season == "Summer")
113
114 z_Inf <- filter(z, Season != "Summer" & Solar_Rad == 0 & Wind_Speed > 1) #Filter by weather

conditions
115 z_Rad <- filter(z, Season != "Summer" & Solar_Rad != 0 & Wind_Speed <= 1)
116
117 z_Temp <- filter(z, Season != "Summer" & Solar_Rad == 0 & Wind_Speed <= 1)
118
119 z_link_Heating <- split(z_Heating, z_Heating$Link_1) #Split dataset by building’s ID
120 z_link_No_Heating <- split(z_No_Heating, z_No_Heating$Link_1)
121 z_link_Inf <- split(z_Inf, z_Inf$Link_1)
122 z_link_Rad <- split(z_Rad, z_Rad$Link_1)
123
124 z_link_Temp <- split(z_Temp, z_Temp$Link_1)
125
126 Conv_Calc_SMA <- function(df){ #Function: Calculate moving average of time-series
127
128 k_roll <- 33 #Range of moving average
129
130 Energy_TS <- xts(x=df$Energy, order.by=df$Time) #Convert to time-series
131 Energy_TS <- xts_to_ts(Energy_TS, frequency = 1)
132
133 OutTemp_TS <- xts(x=df$Out_Temp, order.by=df$Time)
134 OutTemp_TS <- xts_to_ts(OutTemp_TS, frequency = 1)
135
136 SMA_Energy <- ma(Energy_TS, order=k_roll, centre=FALSE) #Apply moving average
137 SMA_OutTemp <- ma(OutTemp_TS, order=k_roll, centre=FALSE)
138
139 df <- transmute(df, Link_1 = Link_1, Out_Temp = as.numeric(SMA_OutTemp), Energy =

as.numeric(SMA_Energy))
140 }
141
142 z_link_Heating <- lapply(z_link_Heating, Conv_Calc_SMA) #Apply function of moving average
143 z_link_No_Heating <- lapply(z_link_No_Heating, Conv_Calc_SMA)
144 z_link_Inf <- lapply(z_link_Inf, Conv_Calc_SMA)
145 z_link_Rad <- lapply(z_link_Rad, Conv_Calc_SMA)
146 z_Temp <- lapply(z_link_Temp, Conv_Calc_SMA)
147
148 z_Heating <- rbindlist(z_link_Heating) %>% #Bind all the buildings in one dataframe
149 mutate(Type = "Heating")
150 z_No_Heating <- rbindlist(z_link_No_Heating) %>%
151 mutate(Type = "No Heating")
152 z_Inf <- rbindlist(z_link_Inf) %>%
153 mutate(Type = "Infiltration")
154 z_Rad <- rbindlist(z_link_Rad) %>%
155 mutate(Type = "Radiation")
156 z_Temp <- rbindlist(z_link_Temp) %>%
157 mutate(Type = "Temperature")
158
159 df <- z_Heating %>%
160 bind_rows(z_No_Heating, z_Inf, z_Rad, z_Temp) %>%
161 transmute(Link_1, Out_Temp, Energy, Type)
162 df <- split(df, df$Link_1)
163
164 calculate_Uvalue <- function(df){ #Create linear regressions and its values
165
166 df_Heating <- filter(df, Type == "Heating")
167 linear_Heating <- lm(Energy ~ Out_Temp, data = df_Heating)
168 m1 <- coef(linear_Heating)[2]

123

Department of the Built EnvironmentH. Script 7: Linear Regressions - Data Visualisation

169 b1 <- coef(linear_Heating)[1]
170
171 df_NoHeating <- filter(df, Type == "No Heating")
172 linear_NoHeating <- lm(Energy ~ Out_Temp, data = df_NoHeating)
173 m2 <- coef(linear_NoHeating)[2]
174 b2 <- coef(linear_NoHeating)[1]
175
176 Slope_Heating <- m1
177 Slope_No_Heating <- m2
178 T_NoInfluence <- (b2-b1)/(m1-m2)
179 E_NoHeating <- m1*T_NoInfluence + b1
180
181 df_Infiltration <- filter(df, Type == "Infiltration")
182 linear_Infiltration <- lm(Energy ~ Out_Temp, data = df_Infiltration)
183 m_Infiltration <- coef(linear_Infiltration)[2]
184 b_Infiltration <- coef(linear_Infiltration)[1]
185
186 df_Radiation <- filter(df, Type == "Radiation")
187 linear_Radiation <- lm(Energy ~ Out_Temp, data = df_Radiation)
188 m_Radiation <- coef(linear_Radiation)[2]
189 b_Radiation <- coef(linear_Radiation)[1]
190
191 df_Temperature <- filter(df, Type == "Temperature")
192 linear_Temperature <- lm(Energy ~ Out_Temp, data = df_Temperature)
193 m_Temperature <- coef(linear_Temperature)[2]
194 b_Temperature <- coef(linear_Temperature)[1]
195
196 df <- df %>%
197 mutate(Slope_Heating = Slope_Heating, Interc_Heating = b1, Slope_No.Heating = Slope_No_Heating,

Interc_No.Heating = b2, m_Infiltration = m_Infiltration, b_Infiltration = b_Infiltration,
m_Radiation = m_Radiation, b_Radiation = b_Radiation, m_Temperature = m_Temperature,
b_Temperature = b_Temperature, T_No.Influence = T_NoInfluence, E_No.Heating = E_NoHeating)

198 }
199
200 df <- lapply(df, calculate_Uvalue)
201 df <- rbindlist(df) %>%
202 select(Link_1, Slope_Heating, Interc_Heating, Slope_No.Heating, Interc_No.Heating,

m_Infiltration, b_Infiltration, m_Radiation, b_Radiation, m_Temperature, b_Temperature,
T_No.Influence, E_No.Heating) %>%

203 group_by(Link_1) %>%
204 summarise(Slope_Heating = mean(Slope_Heating), Interc_Heating = mean(Interc_Heating),

Slope_No.Heating = mean(Slope_No.Heating), Interc_No.Heating = mean(Interc_No.Heating),
205 m_Infiltration = mean(m_Infiltration), b_Infiltration = mean(b_Infiltration),
206 m_Radiation = mean(m_Radiation), b_Radiation = mean(b_Radiation),
207 m_Temperature = mean(m_Temperature), b_Temperature = mean(b_Temperature),
208 T_No.Influence = mean(T_No.Influence), E_No.Heating = mean(E_No.Heating))
209
210
211 z <- z %>%
212 left_join(df)
213
214 save(z, file = "z_7.Rda") #Save dataframe

Listing H.1. Script 7: Linear regressions

124

Script 8: Prepare dataset for
clustering - Clustering

Analysis I
1 ### Script to prepare dataframe for clustering
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University - Full year
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S3_Clustering/Kmeans")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)

125

Department of the Built EnvironmentI. Script 8: Prepare dataset for clustering - Clustering Analysis

41 library(ggpubr)
42 library(lemon)
43 library(gghighlight)
44 library(viridis)
45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75
76 ### 3. Load the *.Rda file from the main directory

--
77
78 load("z_7.Rda") #Load dataframe
79
80 z_group <- z %>% #Group buildings and calculate mean DT per building
81 group_by(Link_1) %>%
82 summarise(DT_group = mean(Delta_T_avg))
83
84 z <- z %>% #Join mean DT values with initial dataframe
85 left_join(z_group)
86
87 ### Temperature difference level ------------------------
88
89 #In this case it was performed the preparation for dataset:
90 #Variable: Flow
91 #Season: Winter
92 #Day type: Week working day (Always)
93 #Mean Delta T group: 50 - 60C
94
95 #For other cases, just change the conditions and names of the files below!
96
97 z_Flow <- z %>% #Filter and create daily profile
98 filter(Season == "Winter", Day_type == "Weekday", DT_group > 50 & DT_group <= 60) %>%
99 group_by(Link_1, Time_hour) %>%

100 summarise(Flow = mean(Flow))
101
102 z_Flow <- split(z_Flow, z_Flow$Link_1)
103
104 Time_date <- function(z){ #Hours are converted to date variable type

126

Aalborg University

105
106 z$Time_hour <- as.POSIXct("2019-07-16 00:00") + as.difftime(z$Time_hour, units="hours")
107
108 return(z)
109
110 }
111
112 z_Flow <- lapply(z_Flow, Time_date)
113
114 z_Flow <- rbindlist(z_Flow) #Dataframe with daily flow profiles of each building
115
116
117 ### Variables per season ------------------
118
119 z_Flow <- z_Flow %>% #Standarize flow variable
120 mutate(Flow_Scale = (Flow - mean(Flow))/sd(Flow)) %>%
121 select(-Flow)
122
123 z_group <- split(z_Flow, z_Flow$Link_1)
124
125 Invert_table <- function(z){ #Transpose table function
126
127 z %>%
128 group_by(Link_1, Time_hour) %>%
129 mutate(rn = row_number()) %>%
130 pivot_wider(names_from = Time_hour, values_from = Flow_Scale) %>%
131 filter(rn != 2) %>%
132 select(-rn)
133 }
134
135 z_group <- lapply(z_group, Invert_table)
136
137 z_Flow_final_Winter_5060 <- rbindlist(z_group) ##Dataframe with daily flow profiles of each

building (Standarized and tranposed)
138
139
140 z_Flow_final_Winter_5060 <- subset(z_Flow_final_Winter_5060,

!duplicated(z_Flow_final_Winter_5060[,Link_1]))
141 save(z_Flow_final_Winter_5060, file="z_Flow_Winter_5060.Rda") #Save dataframe as R file

Listing I.1. Script 8: Prepare dataset for clustering

127

Script 9: Elbow method -
Clustering Analysis J

1 ### Script to find optimal number of clusters
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University - Full year
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S3_Clustering/Kmeans")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)
41 library(ggpubr)
42 library(lemon)
43 library(gghighlight)
44 library(viridis)

129

Department of the Built Environment J. Script 9: Elbow method - Clustering Analysis

45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75
76 ### 3. Load the *.Rda file from the main directory

--
77
78 load("z_Flow_Summer_1030.Rda") #Load prepared for cluster files
79 load("z_Flow_Summer_3040.Rda")
80 load("z_Flow_Summer_4050.Rda")
81 load("z_Flow_Summer_5060.Rda")
82
83 x_Flow_Summer_1030 <- z_Flow_final_Summer_1030 %>% select(-Link_1)
84 x_Flow_Summer_3040 <- z_Flow_final_Summer_3040 %>% select(-Link_1)
85 x_Flow_Summer_4050 <- z_Flow_final_Summer_4050 %>% select(-Link_1)
86 x_Flow_Summer_5060 <- z_Flow_final_Summer_5060 %>% select(-Link_1)
87
88 ### 4. Elbow method -------------------------
89
90 #CASEs:
91 #Variable: Flow
92 #Season: Summer
93 #Day type: Week working day (Always)
94 #Mean Delta T group: All
95
96
97 set.seed(123)
98
99 # function to compute total within-cluster sum of square

100 wss.1030 <- function(k) {
101 kmeans(x_Flow_Summer_1030, k, nstart = 10, iter.max = 50)$tot.withinss
102 }
103
104 wss.3040 <- function(k) {
105 kmeans(x_Flow_Summer_3040, k, nstart = 10, iter.max = 50)$tot.withinss
106 }
107
108 wss.4050 <- function(k) {

130

Aalborg University

109 kmeans(x_Flow_Summer_4050, k, nstart = 10, iter.max = 50)$tot.withinss
110 }
111
112 wss.5060 <- function(k) {
113 kmeans(x_Flow_Summer_5060, k, nstart = 10, iter.max = 50)$tot.withinss
114 }
115
116
117 # Compute and plot wss for k = 1 to k = 10 (K is number of clusters)
118 k.values <- 1:10
119
120 # extract wss for 2-10 clusters
121 wss_1030 <- map_dbl(k.values, wss.1030)
122 wss_3040 <- map_dbl(k.values, wss.3040)
123 wss_4050 <- map_dbl(k.values, wss.4050)
124 wss_5060 <- map_dbl(k.values, wss.5060)
125
126
127 ### Plot
128
129 plot(k.values, wss_1030,
130 type="b", pch = 19, lty=1, col = "black",frame = FALSE, main= "Elbow Method: Flow - Summer",
131 xlab="Number of clusters K",
132 ylab="Total within-clusters sum of squares",
133 xlim = c(0,11), ylim = c(0,15000))
134
135 # Add second curve to the same plot by calling points() and lines()
136 # Use symbol ’*’ for points.
137 points(k.values, wss_3040, type = "b", pch = 19, col="red")
138 lines(k.values, wss_3040, col="red",lty=1)
139
140 # Add Third curve to the same plot by calling points() and lines()
141 # Use symbol ’+’ for points.
142 points(k.values, wss_4050, type = "b", pch = 19, col="green")
143 lines(k.values, wss_4050, col="green", lty=1)
144
145 # Add Fourth curve to the same plot by calling points() and lines()
146 # Use symbol ’-’ for points.
147 points(k.values, wss_5060, type = "b", pch = 19, col="blue")
148 lines(k.values, wss_5060, col="blue", lty=1)
149
150 # Legend
151
152 legend(8,10000,legend=c("10 - 30C","30 - 40C","40 - 50C", "50 - 60C"),

col=c("black","red","green","blue"),
153 pch=c(19,19,19,19),lty=c(1,1,1,1), ncol=1)

Listing J.1. Script 9: Elbow method

131

Script 10: Average
silhouette method -
Clustering Analysis K

1 ### Script to find optimal number of clusters
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University - Full year
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S3_Clustering/Kmeans")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE){ #If NOT installed then install
and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31
32 library(data.table)
33 library(dplyr)
34 library(readr)
35 library(ggplot2)
36 library(tictoc)
37 library(lubridate)
38 library(imputeTS)
39 library(magrittr)
40 library(DataExplorer)
41 library(ggpubr)

133

Department of the Built EnvironmentK. Script 10: Average silhouette method - Clustering Analysis

42 library(lemon)
43 library(gghighlight)
44 library(viridis)
45 library(hrbrthemes)
46 library(xts)
47 library(tidyr)
48 library(tibble)
49 library(purrr)
50 library(cluster)
51 library(factoextra)
52 } else { #If already installed then "check it" in the menu "Packages" to be

used
53 library(data.table)
54 library(dplyr)
55 library(readr)
56 library(ggplot2)
57 library(tictoc)
58 library(lubridate)
59 library(imputeTS)
60 library(magrittr)
61 library(DataExplorer)
62 library(ggpubr)
63 library(lemon)
64 library(gghighlight)
65 library(viridis)
66 library(hrbrthemes)
67 library(xts)
68 library(tidyr)
69 library(tibble)
70 library(purrr)
71 library(cluster)
72 library(factoextra)
73 }
74
75
76 ### 3. Load the *.Rda file from the main directory

--
77
78 load("z_Flow_Summer_1030.Rda") #Load prepared for cluster files
79 load("z_Flow_Summer_3040.Rda")
80 load("z_Flow_Summer_4050.Rda")
81 load("z_Flow_Summer_5060.Rda")
82
83 x_Flow_Summer_1030 <- z_Flow_final_Summer_1030 %>% select(-Link_1)
84 x_Flow_Summer_3040 <- z_Flow_final_Summer_3040 %>% select(-Link_1)
85 x_Flow_Summer_4050 <- z_Flow_final_Summer_4050 %>% select(-Link_1)
86 x_Flow_Summer_5060 <- z_Flow_final_Summer_5060 %>% select(-Link_1)
87
88 ### 4. Silhouette method -------------------------
89
90 #CASE:
91 #Variable: Flow
92 #Season: Summer
93 #Day type: Week working day (Always)
94 #Mean Delta T group: All
95
96 set.seed(123)
97
98 # function to compute total within-cluster sum of square
99 silh.1030 <- function(k) {

100 km.res <- kmeans(x_Flow_Summer_1030, centers = k, nstart = 25, iter.max = 50)
101 ss <- silhouette(km.res$cluster, dist(x_Flow_Summer_1030))
102 mean(ss[, 3])
103 }
104
105 silh.3040 <- function(k) {

134

Aalborg University

106 km.res <- kmeans(x_Flow_Summer_3040, centers = k, nstart = 25, iter.max = 50)
107 ss <- silhouette(km.res$cluster, dist(x_Flow_Summer_3040))
108 mean(ss[, 3])
109 }
110
111 silh.4050 <- function(k) {
112 km.res <- kmeans(x_Flow_Summer_4050, centers = k, nstart = 25, iter.max = 50)
113 ss <- silhouette(km.res$cluster, dist(x_Flow_Summer_4050))
114 mean(ss[, 3])
115 }
116
117 silh.5060 <- function(k) {
118 km.res <- kmeans(x_Flow_Summer_5060, centers = k, nstart = 25, iter.max = 50)
119 ss <- silhouette(km.res$cluster, dist(x_Flow_Summer_5060))
120 mean(ss[, 3])
121 }
122
123
124 # Compute and plot wss for k = 2 to k = 10 (K is number of clusters)
125 k.values <- 2:10
126
127 # extract wss for 2-10 clusters
128 avg_sil_1030 <- map_dbl(k.values, silh.1030)
129 avg_sil_3040 <- map_dbl(k.values, silh.3040)
130 avg_sil_4050 <- map_dbl(k.values, silh.4050)
131 avg_sil_5060 <- map_dbl(k.values, silh.5060)
132
133 ### Plot
134
135 plot(k.values, avg_sil_1030,
136 type="b", pch = 19, lty=1, col = "black",frame = FALSE, main="Average Silhouette Method: Flow

- Summer",
137 xlab="Number of clusters K",
138 ylab="Average Silhouette Coeff.",
139 xlim = c(2,11), ylim = c(0,0.8))
140
141 # Add second curve to the same plot by calling points() and lines()
142 # Use symbol ’*’ for points.
143 points(k.values, avg_sil_3040, type = "b", pch = 19, col="red")
144 lines(k.values, avg_sil_3040, col="red",lty=1)
145
146 # Add Third curve to the same plot by calling points() and lines()
147 # Use symbol ’+’ for points.
148 points(k.values, avg_sil_4050, type = "b", pch = 19, col="green")
149 lines(k.values, avg_sil_4050, col="green", lty=1)
150
151 # Add Fourth curve to the same plot by calling points() and lines()
152 # Use symbol ’-’ for points.
153 points(k.values, avg_sil_5060, type = "b", pch = 19, col="blue")
154 lines(k.values, avg_sil_5060, col="blue", lty=1)
155
156 # Legend
157
158 legend(8,0.75,legend=c("10 - 30C","30 - 40C","40 - 50C", "50 - 60C "),

col=c("black","red","green","blue"),
159 pch=c(19,19,19,19),lty=c(1,1,1,1), ncol=1)

Listing K.1. Script 10: Average silhouette method

135

Script 11: Kmeans method
- Clustering Analysis L

1 ### Script to clustering: K-means
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University - Full year
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. DH

Analysis/Scripts/S3_Clustering/Kmeans")
8
9 # Home

10 #setwd("C:/Users/Utilizador/Desktop/Indoor Environmental and Energy Engineering/Master Thesis/NASB
Conference")

11
12 ### 2. Installing important packages

13
14 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

15 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

16 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE & require(’factoextra’)==FALSE){
#If NOT installed then install and check it to be used

17 install.packages(’data.table’)
18 install.packages(’dplyr’)
19 install.packages(’readr’)
20 install.packages(’ggplot2’)
21 install.packages(’tictoc’)
22 install.packages(’imputeTS’)
23 install.packages(’magrittr’)
24 install.packages(’DataExplorer’)
25 install.packages(’ggpubr’)
26 install.packages(’lemon’)
27 install.packages(’gghighlight’)
28 install.packages(’xts’)
29 install.packages(’tidyr’)
30 install.packages(’tibble’)
31 install.packages(’purrr’)
32 install.packages(’cluster’)
33 install.packages(’factoextra’)
34 install.packages("NbClust")
35
36 library(data.table)
37 library(dplyr)
38 library(readr)
39 library(ggplot2)
40 library(tictoc)
41 library(lubridate)
42 library(imputeTS)
43 library(magrittr)

137

Department of the Built EnvironmentL. Script 11: Kmeans method - Clustering Analysis

44 library(DataExplorer)
45 library(ggpubr)
46 library(lemon)
47 library(gghighlight)
48 library(viridis)
49 library(hrbrthemes)
50 library(xts)
51 library(tidyr)
52 library(tibble)
53 library(purrr)
54 library(cluster)
55 library(factoextra)
56 library(NbClust)
57 } else { #If already installed then "check it" in the menu "Packages" to be

used
58 library(data.table)
59 library(dplyr)
60 library(readr)
61 library(ggplot2)
62 library(tictoc)
63 library(lubridate)
64 library(imputeTS)
65 library(magrittr)
66 library(DataExplorer)
67 library(ggpubr)
68 library(lemon)
69 library(gghighlight)
70 library(viridis)
71 library(hrbrthemes)
72 library(xts)
73 library(tidyr)
74 library(tibble)
75 library(purrr)
76 library(cluster)
77 library(factoextra)
78 library(NbClust)
79
80 }
81
82 ### 3. Load the *.Rda file from the main directory

--
83
84 load("z_Flow_Winter_5060.Rda") #Load dataframes
85 z_Flow_final_Winter <- z_Flow_final_Winter_5060
86 load("z_7.Rda")
87
88 #CASE:
89 #Variable: Flow
90 #Season: Winter
91 #Day type: Week working day (Always)
92 #Mean Delta T group: 50 - 60C
93
94 z_group <- z %>%
95 group_by(Link_1) %>%
96 summarise(DT_group = mean(Delta_T_avg))
97
98 z <- z %>%
99 left_join(z_group)

100
101 z_Flow <- z %>%
102 filter(Season == "Winter", Day_type == "Weekday", DT_group > 50 & DT_group <= 60) %>%
103 group_by(Link_1, Time_hour) %>%
104 summarise(Flow = mean(Flow))
105
106 Mean_x <- mean(z_Flow$Flow)
107 Sd_x <- sd(z_Flow$Flow)

138

Aalborg University

108
109 ### 4. Kmeans ---
110
111
112 x_Winter <- z_Flow_final_Winter %>% select(-Link_1)
113
114 set.seed(123)
115
116 kmeans_Winter <- kmeans(x_Winter, centers = 3, iter.max = 50) #Apply Kmeans
117 avg_centers_wide <- rownames_to_column(as.data.frame(kmeans_Winter$centers), "cluster") #Dataframe

of the average time series of the clusters
118
119 Cluster_Winter <- z_Flow_final_Winter %>% #Dataframe with IF number of the cluster per building ID
120 transmute(Link_1 = Link_1, cluster = kmeans_Winter$cluster)
121
122 x_long <- z_Flow_final_Winter %>% #Converts wide initial data frame to long version
123 pivot_longer(cols = -Link_1, names_to = "Time", values_to = "Flow") %>%
124 inner_join(Cluster_Winter)
125
126
127 x_long$Flow <- x_long$Flow*Sd_x + Mean_x #Non-standard value
128 x_long$Link_1 <- as.numeric(x_long$Link_1)
129 x_long$Time <- as.POSIXct(x_long$Time)
130
131
132
133 centers_long <- avg_centers_wide %>% #Converts wide average per cluster data frame to long version
134 pivot_longer(cols = -cluster, names_to = "Time", values_to = "Flow")
135 centers_long$Flow <- centers_long$Flow*Sd_x + Mean_x #Non-standard value
136 centers_long$cluster <- as.numeric(centers_long$cluster)
137 centers_long$Time <- as.POSIXct(centers_long$Time)
138
139
140 Number_per_cluster <- Cluster_Winter %>% #Calculate percentage of buildings per cluster
141 group_by(cluster) %>%
142 summarise(N_buildings_per_cluster = n()) %>%
143 mutate(Percentate_of_quantity = round(N_buildings_per_cluster/nrow(z_Flow_final_Winter)*100,

digits = 0))
144
145
146 plt_quant_cluster <- ggplot(data = Number_per_cluster, aes(x=cluster, y=Percentate_of_quantity)) +

#plot of quantity of buildings per cluster
147 geom_col(fill = Number_per_cluster$cluster) +
148 labs(title="Percentage of buildings per cluster vs Cluster ID", y="Percentage of buildings per

cluster [%]", x="Cluster ID") +
149 geom_text(aes(label = Percentate_of_quantity), vjust = -0.5)
150
151
152 Percentage_cluster <- paste("Cluster ", Number_per_cluster$cluster, ": ",

Number_per_cluster$Percentate_of_quantity, "%")
153 names(Percentage_cluster) <- as.character(Number_per_cluster$cluster) #Title of cluster in the plot
154
155 ### Plot
156
157 plt_kmeans_Winter <- ggplot() + #plot of kmeans per cluster
158 geom_line(data = x_long, aes(y = Flow, x = Time, group = Link_1), colour = "grey") +
159 facet_wrap(~cluster, nrow = 1, labeller = labeller(cluster = Percentage_cluster)) +
160 geom_line(data = centers_long, aes(y = Flow, x = Time, group = cluster), col = "red") +
161 labs(title = "K-means Clustering: Flow (50 - 60C)", subtitle = "Season: Winter", x = "Time

[hours]", y = "Flow [liters/h]") +
162 scale_x_datetime(date_labels = "%H:%M", date_breaks = "6 hour")

Listing L.1. Script 11: Kmeans

139

Script Extra: Imputation
Benchmark M

1 ### Script Extra: Imputation Benchmark
2
3 ### 1. Setting the main directory ---
4 ## Setting the data for the folder where is the file with the data.
5
6 # Aalborg University - Full year
7 setwd("C:/Users/LAB-PC/OneDrive - Aalborg Universitet/Master Thesis/7. Klarup

Analysis/Scripts/S1_Preprocessing")
8
9 ### 2. Installing important packages

10
11 if (!require(’data.table’) & require(’magrittr’)==FALSE & require(’imputeTS’)==FALSE &

require(’lubridate’)==FALSE & require(’dplyr’)==FALSE & require(’readr’)==FALSE &
require(’ggplot2’)==FALSE & require(’tictoc’)==FALSE

12 & require(’DataExplorer’)==FALSE & require(’ggpubr’)==FALSE & require(’lemon’)==FALSE &
require(’gghighlight’)==FALSE & require(’xts’)==FALSE

13 & require(’tidyr’)==FALSE & require(’tibble’)==FALSE & require(’purrr’)==FALSE &
require(’cluster’)==FALSE & require(’factoextra’)==FALSE & require(’Metrics’)==FALSE){ #If
NOT installed then install and check it to be used

14 install.packages(’data.table’)
15 install.packages(’dplyr’)
16 install.packages(’readr’)
17 install.packages(’ggplot2’)
18 install.packages(’tictoc’)
19 install.packages(’imputeTS’)
20 install.packages(’magrittr’)
21 install.packages(’DataExplorer’)
22 install.packages(’ggpubr’)
23 install.packages(’lemon’)
24 install.packages(’gghighlight’)
25 install.packages(’xts’)
26 install.packages(’tidyr’)
27 install.packages(’tibble’)
28 install.packages(’purrr’)
29 install.packages(’cluster’)
30 install.packages(’factoextra’)
31 install.packages("Metrics")
32
33 library(data.table)
34 library(dplyr)
35 library(readr)
36 library(ggplot2)
37 library(tictoc)
38 library(lubridate)
39 library(imputeTS)
40 library(magrittr)
41 library(DataExplorer)
42 library(ggpubr)
43 library(lemon)
44 library(gghighlight)

141

Department of the Built Environment M. Script Extra: Imputation Benchmark

45 library(viridis)
46 library(hrbrthemes)
47 library(xts)
48 library(tidyr)
49 library(tibble)
50 library(purrr)
51 library(cluster)
52 library(factoextra)
53 library(Metrics)
54 } else { #If already installed then "check it" in the menu "Packages" to

be used
55 library(data.table)
56 library(dplyr)
57 library(readr)
58 library(ggplot2)
59 library(tictoc)
60 library(lubridate)
61 library(imputeTS)
62 library(magrittr)
63 library(DataExplorer)
64 library(ggpubr)
65 library(lemon)
66 library(gghighlight)
67 library(viridis)
68 library(hrbrthemes)
69 library(xts)
70 library(tidyr)
71 library(tibble)
72 library(purrr)
73 library(cluster)
74 library(factoextra)
75 library(Metrics)
76 }
77
78
79 ### Load the *.Rda file from the main directory

--
80
81 # Full year
82 load("z_Imputation.Rda") #Load dataframe
83 z <- z_impute
84
85 ## List of IDs that can be selected:
86 # 130863
87 # 130877
88 # 134828
89 # 138560
90 # 175576
91 # 176391
92 # 300119
93 # 301916
94 # 306643
95 # 312376
96
97
98 z <- z %>% #Adjusts dataframe and filters per building Link_1 - The buildings must be selected

individually
99 select(Link_1, Time_round, Energy, Flow, ‘Flow*T_supply‘, ‘Flow*T_return‘, ‘T_supply_(inst)‘,

‘T_return_(inst)‘, ‘Volume_(inst)‘, NA_value = NA_value) %>%
100 filter(Link_1 == 312376 & NA_value == FALSE) %>%
101 transmute(Link_1 = Link_1, Time =Time_round, Energy = Energy, Volume_accum = Flow, Volume_TS =

‘Flow*T_supply‘, Volume_TR = ‘Flow*T_return‘, T_supply = ‘T_supply_(inst)‘, T_return =
‘T_return_(inst)‘, Flow = ‘Volume_(inst)‘)

102
103 zna <- z # Dataframe to have the empty data
104

142

Aalborg University

105 ### Values extraction
106
107 N <- 500 # the number of random values to replace
108 inds <- round (runif(N, 1, length(zna$Energy))) # draw random values from [1, length(vector)]
109 zna$Energy[inds] <- NA
110 zna$Energy[inds +1] <- NA
111 zna$Volume_accum[inds] <- NA
112 zna$Volume_TS[inds] <- NA
113 zna$Volume_TR[inds] <- NA
114 zna$T_supply[inds] <- NA
115 zna$T_return[inds] <- NA
116 zna$Flow[inds] <- NA
117
118 ### Convert into Time Series ---
119 TS_Energy <- xts(z$Energy, z$Time) #Real data to be compared with
120 TS_Volume <- xts(z$Volume_accum, z$Time)
121 TS_Volume_Tsupply <- xts(z$Volume_TS, z$Time)
122 TS_Volume_Treturn <- xts(z$Volume_TR, z$Time)
123 TS_Tsupply <- xts(zT_supply, zTime)
124 TS_Treturn <- xts(zT_return, zTime)
125 TS_Flow <- xts(z$Flow, z$Time)
126
127 TS_NA_Energy <- xts(zna$Energy, zna$Time) #Data with NA to be solved
128 TS_NA_Volume <- xts(zna$Volume_accum, zna$Time)
129 TS_NA_Volume_Tsupply <- xts(zna$Volume_TS, zna$Time)
130 TS_NA_Volume_Treturn <- xts(zna$Volume_TR, zna$Time)
131 TS_NA_Tsupply <- xts(znaT_supply, znaTime)
132 TS_NA_Treturn <- xts(znaT_return, znaTime)
133 TS_NA_Flow <- xts(zna$Flow, zna$Time)
134
135
136
137 Results <- data.frame("Method"=character(), # Dataframe with RMSE and MAE results from the

comparison between values
138 "Variable"= character(),
139 "RMSE"= numeric(),
140 "MAE" = numeric(),
141 stringsAsFactors = FALSE)
142
143 ### Calculations ---------------------------------------
144
145 ## Linear Interpolation -----------------------------
146
147 method_name <- "linear"
148
149 TS_Energy_final <- na_interpolation(TS_NA_Energy, option = method_name)
150 TS_Volume_final <- na_interpolation(TS_NA_Volume, option = method_name)
151 TS_Volume_Tsupply_final <- na_interpolation(TS_NA_Volume_Tsupply, option = method_name)
152 TS_Volume_Treturn_final <- na_interpolation(TS_NA_Volume_Treturn, option = method_name)
153 TS_Tsupply_final <- na_interpolation(TS_NA_Tsupply, option = method_name)
154 TS_Treturn_final <- na_interpolation(TS_NA_Treturn, option = method_name)
155 TS_Flow_final <- na_interpolation(TS_NA_Flow, option = method_name)
156
157 # Root Mean Squared Error
158 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
159 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
160 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
161 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
162 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
163 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
164 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
165
166 # Mean Absolute Error
167 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
168 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
169 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)

143

Department of the Built Environment M. Script Extra: Imputation Benchmark

170 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
171 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
172 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
173 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
174
175 Results_Energy <- data.frame(’Method’ = "Linear Interpolation", "Variable" = "Energy", "RMSE" =

RMSE_Energy, "MAE" = MAE_Energy)
176 Results_Volume <- data.frame(’Method’ = "Linear Interpolation", "Variable" = "Volume", "RMSE" =

RMSE_Volume, "MAE" = MAE_Volume)
177 Results_Volume_Tsupply <- data.frame(’Method’ = "Linear Interpolation", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
178 Results_Volume_Treturn <- data.frame(’Method’ = "Linear Interpolation", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
179 Results_Tsupply <- data.frame(’Method’ = "Linear Interpolation", "Variable" = "Tsupply", "RMSE"

= RMSE_Tsupply, "MAE" = MAE_Tsupply)
180 Results_Treturn <- data.frame(’Method’ = "Linear Interpolation", "Variable" = "Treturn", "RMSE"

= RMSE_Treturn, "MAE" = MAE_Treturn)
181 Results_Flow <- data.frame(’Method’ = "Linear Interpolation", "Variable" = "Flow", "RMSE" =

RMSE_Flow, "MAE" = MAE_Flow)
182
183 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
184
185 Results <- bind_rows(Results, Results_provisory)
186
187 ## Spline Interpolation -------------------------------
188
189 method_name <- "spline"
190
191 TS_Energy_final <- na_interpolation(TS_NA_Energy, option = method_name)
192 TS_Volume_final <- na_interpolation(TS_NA_Volume, option = method_name)
193 TS_Volume_Tsupply_final <- na_interpolation(TS_NA_Volume_Tsupply, option = method_name)
194 TS_Volume_Treturn_final <- na_interpolation(TS_NA_Volume_Treturn, option = method_name)
195 TS_Tsupply_final <- na_interpolation(TS_NA_Tsupply, option = method_name)
196 TS_Treturn_final <- na_interpolation(TS_NA_Treturn, option = method_name)
197 TS_Flow_final <- na_interpolation(TS_NA_Flow, option = method_name)
198
199 # Root Mean Squared Error
200 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
201 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
202 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
203 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
204 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
205 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
206 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
207
208 # Mean Absolute Error
209 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
210 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
211 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
212 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
213 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
214 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
215 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
216
217 Results_Energy <- data.frame(’Method’ = "Spline Interpolation", "Variable" = "Energy", "RMSE" =

RMSE_Energy, "MAE" = MAE_Energy)
218 Results_Volume <- data.frame(’Method’ = "Spline Interpolation", "Variable" = "Volume", "RMSE" =

RMSE_Volume, "MAE" = MAE_Volume)
219 Results_Volume_Tsupply <- data.frame(’Method’ = "Spline Interpolation", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
220 Results_Volume_Treturn <- data.frame(’Method’ = "Spline Interpolation", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
221 Results_Tsupply <- data.frame(’Method’ = "Spline Interpolation", "Variable" = "Tsupply", "RMSE"

= RMSE_Tsupply, "MAE" = MAE_Tsupply)
222 Results_Treturn <- data.frame(’Method’ = "Spline Interpolation", "Variable" = "Treturn", "RMSE"

144

Aalborg University

= RMSE_Treturn, "MAE" = MAE_Treturn)
223 Results_Flow <- data.frame(’Method’ = "Spline Interpolation", "Variable" = "Flow", "RMSE" =

RMSE_Flow, "MAE" = MAE_Flow)
224
225 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
226
227 Results <- bind_rows(Results, Results_provisory)
228
229 ## Stineman Interpolation -------------------------------
230
231 method_name <- "stine"
232
233 TS_Energy_final <- na_interpolation(TS_NA_Energy, option = method_name)
234 TS_Volume_final <- na_interpolation(TS_NA_Volume, option = method_name)
235 TS_Volume_Tsupply_final <- na_interpolation(TS_NA_Volume_Tsupply, option = method_name)
236 TS_Volume_Treturn_final <- na_interpolation(TS_NA_Volume_Treturn, option = method_name)
237 TS_Tsupply_final <- na_interpolation(TS_NA_Tsupply, option = method_name)
238 TS_Treturn_final <- na_interpolation(TS_NA_Treturn, option = method_name)
239 TS_Flow_final <- na_interpolation(TS_NA_Flow, option = method_name)
240
241 # Root Mean Squared Error
242 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
243 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
244 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
245 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
246 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
247 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
248 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
249
250 # Mean Absolute Error
251 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
252 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
253 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
254 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
255 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
256 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
257 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
258
259 Results_Energy <- data.frame(’Method’ = "Stineman Interpolation", "Variable" = "Energy", "RMSE"

= RMSE_Energy, "MAE" = MAE_Energy)
260 Results_Volume <- data.frame(’Method’ = "Stineman Interpolation", "Variable" = "Volume", "RMSE"

= RMSE_Volume, "MAE" = MAE_Volume)
261 Results_Volume_Tsupply <- data.frame(’Method’ = "Stineman Interpolation", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
262 Results_Volume_Treturn <- data.frame(’Method’ = "Stineman Interpolation", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
263 Results_Tsupply <- data.frame(’Method’ = "Stineman Interpolation", "Variable" = "Tsupply",

"RMSE" = RMSE_Tsupply, "MAE" = MAE_Tsupply)
264 Results_Treturn <- data.frame(’Method’ = "Stineman Interpolation", "Variable" = "Treturn",

"RMSE" = RMSE_Treturn, "MAE" = MAE_Treturn)
265 Results_Flow <- data.frame(’Method’ = "Stineman Interpolation", "Variable" = "Flow", "RMSE" =

RMSE_Flow, "MAE" = MAE_Flow)
266
267 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
268
269 Results <- bind_rows(Results, Results_provisory)
270
271 ## Last Observation Carried Forward -------------------------------
272
273 method_name <- "locf"
274
275 TS_Energy_final <- na_locf(TS_NA_Energy, option = method_name, na_remaining = "rev")
276 TS_Volume_final <- na_locf(TS_NA_Volume, option = method_name, na_remaining = "rev")
277 TS_Volume_Tsupply_final <- na_locf(TS_NA_Volume_Tsupply, option = method_name, na_remaining =

145

Department of the Built Environment M. Script Extra: Imputation Benchmark

"rev")
278 TS_Volume_Treturn_final <- na_locf(TS_NA_Volume_Treturn, option = method_name, na_remaining =

"rev")
279 TS_Tsupply_final <- na_locf(TS_NA_Tsupply, option = method_name, na_remaining = "rev")
280 TS_Treturn_final <- na_locf(TS_NA_Treturn, option = method_name, na_remaining = "rev")
281 TS_Flow_final <- na_locf(TS_NA_Flow, option = method_name, na_remaining = "rev")
282
283 # Root Mean Squared Error
284 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
285 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
286 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
287 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
288 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
289 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
290 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
291
292 # Mean Absolute Error
293 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
294 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
295 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
296 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
297 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
298 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
299 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
300
301 Results_Energy <- data.frame(’Method’ = "LOCF", "Variable" = "Energy", "RMSE" = RMSE_Energy,

"MAE" = MAE_Energy)
302 Results_Volume <- data.frame(’Method’ = "LOCF", "Variable" = "Volume", "RMSE" = RMSE_Volume,

"MAE" = MAE_Volume)
303 Results_Volume_Tsupply <- data.frame(’Method’ = "LOCF", "Variable" = "Volume_Tsupply", "RMSE" =

RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
304 Results_Volume_Treturn <- data.frame(’Method’ = "LOCF", "Variable" = "Volume_Treturn", "RMSE" =

RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
305 Results_Tsupply <- data.frame(’Method’ = "LOCF", "Variable" = "Tsupply", "RMSE" = RMSE_Tsupply,

"MAE" = MAE_Tsupply)
306 Results_Treturn <- data.frame(’Method’ = "LOCF", "Variable" = "Treturn", "RMSE" = RMSE_Treturn,

"MAE" = MAE_Treturn)
307 Results_Flow <- data.frame(’Method’ = "LOCF", "Variable" = "Flow", "RMSE" = RMSE_Flow, "MAE" =

MAE_Flow)
308
309 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
310
311 Results <- bind_rows(Results, Results_provisory)
312
313 ## Next Observation Carried Backward -------------------------------
314
315 method_name <- "nocb"
316
317 TS_Energy_final <- na_locf(TS_NA_Energy, option = method_name, na_remaining = "rev")
318 TS_Volume_final <- na_locf(TS_NA_Volume, option = method_name, na_remaining = "rev")
319 TS_Volume_Tsupply_final <- na_locf(TS_NA_Volume_Tsupply, option = method_name, na_remaining =

"rev")
320 TS_Volume_Treturn_final <- na_locf(TS_NA_Volume_Treturn, option = method_name, na_remaining =

"rev")
321 TS_Tsupply_final <- na_locf(TS_NA_Tsupply, option = method_name, na_remaining = "rev")
322 TS_Treturn_final <- na_locf(TS_NA_Treturn, option = method_name, na_remaining = "rev")
323 TS_Flow_final <- na_locf(TS_NA_Flow, option = method_name, na_remaining = "rev")
324
325 # Root Mean Squared Error
326 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
327 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
328 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
329 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
330 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
331 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)

146

Aalborg University

332 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
333
334 # Mean Absolute Error
335 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
336 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
337 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
338 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
339 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
340 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
341 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
342
343 Results_Energy <- data.frame(’Method’ = "NOCB", "Variable" = "Energy", "RMSE" = RMSE_Energy,

"MAE" = MAE_Energy)
344 Results_Volume <- data.frame(’Method’ = "NOCB", "Variable" = "Volume", "RMSE" = RMSE_Volume,

"MAE" = MAE_Volume)
345 Results_Volume_Tsupply <- data.frame(’Method’ = "NOCB", "Variable" = "Volume_Tsupply", "RMSE" =

RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
346 Results_Volume_Treturn <- data.frame(’Method’ = "NOCB", "Variable" = "Volume_Treturn", "RMSE" =

RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
347 Results_Tsupply <- data.frame(’Method’ = "NOCB", "Variable" = "Tsupply", "RMSE" = RMSE_Tsupply,

"MAE" = MAE_Tsupply)
348 Results_Treturn <- data.frame(’Method’ = "NOCB", "Variable" = "Treturn", "RMSE" = RMSE_Treturn,

"MAE" = MAE_Treturn)
349 Results_Flow <- data.frame(’Method’ = "NOCB", "Variable" = "Flow", "RMSE" = RMSE_Flow, "MAE" =

MAE_Flow)
350
351 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
352
353 Results <- bind_rows(Results, Results_provisory)
354
355 ## Weighted Moving Average: Simple -------------------------------
356
357 method_name <- "simple"
358
359 TS_Energy_final_1 <- na_ma(TS_NA_Energy, k = 2, weighting = method_name)
360 TS_Energy_final_2 <- na_ma(TS_NA_Energy, k = 4, weighting = method_name)
361 TS_Energy_final_3 <- na_ma(TS_NA_Energy, k = 6, weighting = method_name)
362 TS_Energy_final_4 <- na_ma(TS_NA_Energy, k = 8, weighting = method_name)
363
364 TS_Volume_final_1 <- na_ma(TS_NA_Volume, k = 2, weighting = method_name)
365 TS_Volume_final_2 <- na_ma(TS_NA_Volume, k = 4, weighting = method_name)
366 TS_Volume_final_3 <- na_ma(TS_NA_Volume, k = 6, weighting = method_name)
367 TS_Volume_final_4 <- na_ma(TS_NA_Volume, k = 8, weighting = method_name)
368
369 TS_Volume_Tsupply_final_1 <- na_ma(TS_NA_Volume_Tsupply, k = 2, weighting = method_name)
370 TS_Volume_Tsupply_final_2 <- na_ma(TS_NA_Volume_Tsupply, k = 4, weighting = method_name)
371 TS_Volume_Tsupply_final_3 <- na_ma(TS_NA_Volume_Tsupply, k = 6, weighting = method_name)
372 TS_Volume_Tsupply_final_4 <- na_ma(TS_NA_Volume_Tsupply, k = 8, weighting = method_name)
373
374 TS_Volume_Treturn_final_1 <- na_ma(TS_NA_Volume_Treturn, k = 2, weighting = method_name)
375 TS_Volume_Treturn_final_2 <- na_ma(TS_NA_Volume_Treturn, k = 4, weighting = method_name)
376 TS_Volume_Treturn_final_3 <- na_ma(TS_NA_Volume_Treturn, k = 6, weighting = method_name)
377 TS_Volume_Treturn_final_4 <- na_ma(TS_NA_Volume_Treturn, k = 8, weighting = method_name)
378
379 TS_Tsupply_final_1 <- na_ma(TS_NA_Tsupply, k = 2, weighting = method_name)
380 TS_Tsupply_final_2 <- na_ma(TS_NA_Tsupply, k = 4, weighting = method_name)
381 TS_Tsupply_final_3 <- na_ma(TS_NA_Tsupply, k = 6, weighting = method_name)
382 TS_Tsupply_final_4 <- na_ma(TS_NA_Tsupply, k = 8, weighting = method_name)
383
384 TS_Treturn_final_1 <- na_ma(TS_NA_Treturn, k = 2, weighting = method_name)
385 TS_Treturn_final_2 <- na_ma(TS_NA_Treturn, k = 4, weighting = method_name)
386 TS_Treturn_final_3 <- na_ma(TS_NA_Treturn, k = 6, weighting = method_name)
387 TS_Treturn_final_4 <- na_ma(TS_NA_Treturn, k = 8, weighting = method_name)
388
389 TS_Flow_final_1 <- na_ma(TS_NA_Flow, k = 2, weighting = method_name)

147

Department of the Built Environment M. Script Extra: Imputation Benchmark

390 TS_Flow_final_2 <- na_ma(TS_NA_Flow, k = 4, weighting = method_name)
391 TS_Flow_final_3 <- na_ma(TS_NA_Flow, k = 6, weighting = method_name)
392 TS_Flow_final_4 <- na_ma(TS_NA_Flow, k = 8, weighting = method_name)
393
394 # Root Mean Squared Error
395 RMSE_Energy_1 <- rmse(TS_Energy_final_1, TS_Energy)
396 RMSE_Energy_2 <- rmse(TS_Energy_final_2, TS_Energy)
397 RMSE_Energy_3 <- rmse(TS_Energy_final_3, TS_Energy)
398 RMSE_Energy_4 <- rmse(TS_Energy_final_4, TS_Energy)
399
400 RMSE_Volume_1 <- rmse(TS_Volume_final_1, TS_Volume)
401 RMSE_Volume_2 <- rmse(TS_Volume_final_2, TS_Volume)
402 RMSE_Volume_3 <- rmse(TS_Volume_final_3, TS_Volume)
403 RMSE_Volume_4 <- rmse(TS_Volume_final_4, TS_Volume)
404
405 RMSE_Volume_Tsupply_1 <- rmse(TS_Volume_Tsupply_final_1, TS_Volume_Tsupply)
406 RMSE_Volume_Tsupply_2 <- rmse(TS_Volume_Tsupply_final_2, TS_Volume_Tsupply)
407 RMSE_Volume_Tsupply_3 <- rmse(TS_Volume_Tsupply_final_3, TS_Volume_Tsupply)
408 RMSE_Volume_Tsupply_4 <- rmse(TS_Volume_Tsupply_final_4, TS_Volume_Tsupply)
409
410 RMSE_Volume_Treturn_1 <- rmse(TS_Volume_Treturn_final_1, TS_Volume_Treturn)
411 RMSE_Volume_Treturn_2 <- rmse(TS_Volume_Treturn_final_2, TS_Volume_Treturn)
412 RMSE_Volume_Treturn_3 <- rmse(TS_Volume_Treturn_final_3, TS_Volume_Treturn)
413 RMSE_Volume_Treturn_4 <- rmse(TS_Volume_Treturn_final_4, TS_Volume_Treturn)
414
415 RMSE_Tsupply_1 <- rmse(TS_Tsupply_final_1, TS_Tsupply)
416 RMSE_Tsupply_2 <- rmse(TS_Tsupply_final_2, TS_Tsupply)
417 RMSE_Tsupply_3 <- rmse(TS_Tsupply_final_3, TS_Tsupply)
418 RMSE_Tsupply_4 <- rmse(TS_Tsupply_final_4, TS_Tsupply)
419
420 RMSE_Treturn_1 <- rmse(TS_Treturn_final_1, TS_Treturn)
421 RMSE_Treturn_2 <- rmse(TS_Treturn_final_2, TS_Treturn)
422 RMSE_Treturn_3 <- rmse(TS_Treturn_final_3, TS_Treturn)
423 RMSE_Treturn_4 <- rmse(TS_Treturn_final_4, TS_Treturn)
424
425 RMSE_Flow_1 <- rmse(TS_Flow_final_1, TS_Flow)
426 RMSE_Flow_2 <- rmse(TS_Flow_final_2, TS_Flow)
427 RMSE_Flow_3 <- rmse(TS_Flow_final_3, TS_Flow)
428 RMSE_Flow_4 <- rmse(TS_Flow_final_4, TS_Flow)
429
430
431 # Mean Absolute Error
432 MAE_Energy_1 <- mae(TS_Energy_final_1, TS_Energy)
433 MAE_Energy_2 <- mae(TS_Energy_final_2, TS_Energy)
434 MAE_Energy_3 <- mae(TS_Energy_final_3, TS_Energy)
435 MAE_Energy_4 <- mae(TS_Energy_final_4, TS_Energy)
436
437 MAE_Volume_1 <- mae(TS_Volume_final_1, TS_Volume)
438 MAE_Volume_2 <- mae(TS_Volume_final_2, TS_Volume)
439 MAE_Volume_3 <- mae(TS_Volume_final_3, TS_Volume)
440 MAE_Volume_4 <- mae(TS_Volume_final_4, TS_Volume)
441
442 MAE_Volume_Tsupply_1 <- mae(TS_Volume_Tsupply_final_1, TS_Volume_Tsupply)
443 MAE_Volume_Tsupply_2 <- mae(TS_Volume_Tsupply_final_2, TS_Volume_Tsupply)
444 MAE_Volume_Tsupply_3 <- mae(TS_Volume_Tsupply_final_3, TS_Volume_Tsupply)
445 MAE_Volume_Tsupply_4 <- mae(TS_Volume_Tsupply_final_4, TS_Volume_Tsupply)
446
447 MAE_Volume_Treturn_1 <- mae(TS_Volume_Treturn_final_1, TS_Volume_Treturn)
448 MAE_Volume_Treturn_2 <- mae(TS_Volume_Treturn_final_2, TS_Volume_Treturn)
449 MAE_Volume_Treturn_3 <- mae(TS_Volume_Treturn_final_3, TS_Volume_Treturn)
450 MAE_Volume_Treturn_4 <- mae(TS_Volume_Treturn_final_4, TS_Volume_Treturn)
451
452 MAE_Tsupply_1 <- mae(TS_Tsupply_final_1, TS_Tsupply)
453 MAE_Tsupply_2 <- mae(TS_Tsupply_final_2, TS_Tsupply)
454 MAE_Tsupply_3 <- mae(TS_Tsupply_final_3, TS_Tsupply)
455 MAE_Tsupply_4 <- mae(TS_Tsupply_final_4, TS_Tsupply)

148

Aalborg University

456
457 MAE_Treturn_1 <- mae(TS_Treturn_final_1, TS_Treturn)
458 MAE_Treturn_2 <- mae(TS_Treturn_final_2, TS_Treturn)
459 MAE_Treturn_3 <- mae(TS_Treturn_final_3, TS_Treturn)
460 MAE_Treturn_4 <- mae(TS_Treturn_final_4, TS_Treturn)
461
462 MAE_Flow_1 <- mae(TS_Flow_final_1, TS_Flow)
463 MAE_Flow_2 <- mae(TS_Flow_final_2, TS_Flow)
464 MAE_Flow_3 <- mae(TS_Flow_final_3, TS_Flow)
465 MAE_Flow_4 <- mae(TS_Flow_final_4, TS_Flow)
466
467 Results_Energy_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" = "Energy", "RMSE" =

RMSE_Energy_1, "MAE" = MAE_Energy_1)
468 Results_Energy_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" = "Energy", "RMSE" =

RMSE_Energy_2, "MAE" = MAE_Energy_2)
469 Results_Energy_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" = "Energy", "RMSE" =

RMSE_Energy_3, "MAE" = MAE_Energy_3)
470 Results_Energy_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" = "Energy", "RMSE" =

RMSE_Energy_4, "MAE" = MAE_Energy_4)
471
472 Results_Volume_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" = "Volume", "RMSE" =

RMSE_Volume_1, "MAE" = MAE_Volume_1)
473 Results_Volume_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" = "Volume", "RMSE" =

RMSE_Volume_2, "MAE" = MAE_Volume_2)
474 Results_Volume_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" = "Volume", "RMSE" =

RMSE_Volume_3, "MAE" = MAE_Volume_3)
475 Results_Volume_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" = "Volume", "RMSE" =

RMSE_Volume_4, "MAE" = MAE_Volume_4)
476
477 Results_Volume_Tsupply_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_1, "MAE" = MAE_Volume_Tsupply_1)
478 Results_Volume_Tsupply_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_2, "MAE" = MAE_Volume_Tsupply_2)
479 Results_Volume_Tsupply_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_3, "MAE" = MAE_Volume_Tsupply_3)
480 Results_Volume_Tsupply_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_4, "MAE" = MAE_Volume_Tsupply_4)
481
482 Results_Volume_Treturn_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_1, "MAE" = MAE_Volume_Treturn_1)
483 Results_Volume_Treturn_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_2, "MAE" = MAE_Volume_Treturn_2)
484 Results_Volume_Treturn_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_3, "MAE" = MAE_Volume_Treturn_3)
485 Results_Volume_Treturn_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_4, "MAE" = MAE_Volume_Treturn_4)
486
487 Results_Tsupply_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_1, "MAE" = MAE_Tsupply_1)
488 Results_Tsupply_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_2, "MAE" = MAE_Tsupply_2)
489 Results_Tsupply_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_3, "MAE" = MAE_Tsupply_3)
490 Results_Tsupply_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_4, "MAE" = MAE_Tsupply_4)
491
492 Results_Treturn_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_1, "MAE" = MAE_Treturn_1)
493 Results_Treturn_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_2, "MAE" = MAE_Treturn_2)
494 Results_Treturn_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_3, "MAE" = MAE_Treturn_3)
495 Results_Treturn_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_4, "MAE" = MAE_Treturn_4)
496
497 Results_Flow_1 <- data.frame(’Method’ = "WMA Simple, k=2", "Variable" = "Flow", "RMSE" =

149

Department of the Built Environment M. Script Extra: Imputation Benchmark

RMSE_Flow_1, "MAE" = MAE_Flow_1)
498 Results_Flow_2 <- data.frame(’Method’ = "WMA Simple, k=4", "Variable" = "Flow", "RMSE" =

RMSE_Flow_2, "MAE" = MAE_Flow_2)
499 Results_Flow_3 <- data.frame(’Method’ = "WMA Simple, k=6", "Variable" = "Flow", "RMSE" =

RMSE_Flow_3, "MAE" = MAE_Flow_3)
500 Results_Flow_4 <- data.frame(’Method’ = "WMA Simple, k=8", "Variable" = "Flow", "RMSE" =

RMSE_Flow_4, "MAE" = MAE_Flow_4)
501
502 Results_provisory <- bind_rows(Results_Energy_1, Results_Energy_2, Results_Energy_3,

Results_Energy_4,
503 Results_Volume_1, Results_Volume_2, Results_Volume_3,

Results_Volume_4,
504 Results_Volume_Tsupply_1, Results_Volume_Tsupply_2,

Results_Volume_Tsupply_3, Results_Volume_Tsupply_4,
505 Results_Volume_Treturn_1, Results_Volume_Treturn_2,

Results_Volume_Treturn_3, Results_Volume_Treturn_4,
506 Results_Tsupply_1, Results_Tsupply_2, Results_Tsupply_3,

Results_Tsupply_4,
507 Results_Treturn_1, Results_Treturn_2, Results_Treturn_3,

Results_Treturn_4,
508 Results_Flow_1, Results_Flow_2, Results_Flow_3, Results_Flow_4)
509
510 Results <- bind_rows(Results, Results_provisory)
511
512 ## Weighted Moving Average: Linear -------------------------------
513
514 method_name <- "linear"
515
516 TS_Energy_final_1 <- na_ma(TS_NA_Energy, k = 2, weighting = method_name)
517 TS_Energy_final_2 <- na_ma(TS_NA_Energy, k = 4, weighting = method_name)
518 TS_Energy_final_3 <- na_ma(TS_NA_Energy, k = 6, weighting = method_name)
519 TS_Energy_final_4 <- na_ma(TS_NA_Energy, k = 8, weighting = method_name)
520
521 TS_Volume_final_1 <- na_ma(TS_NA_Volume, k = 2, weighting = method_name)
522 TS_Volume_final_2 <- na_ma(TS_NA_Volume, k = 4, weighting = method_name)
523 TS_Volume_final_3 <- na_ma(TS_NA_Volume, k = 6, weighting = method_name)
524 TS_Volume_final_4 <- na_ma(TS_NA_Volume, k = 8, weighting = method_name)
525
526 TS_Volume_Tsupply_final_1 <- na_ma(TS_NA_Volume_Tsupply, k = 2, weighting = method_name)
527 TS_Volume_Tsupply_final_2 <- na_ma(TS_NA_Volume_Tsupply, k = 4, weighting = method_name)
528 TS_Volume_Tsupply_final_3 <- na_ma(TS_NA_Volume_Tsupply, k = 6, weighting = method_name)
529 TS_Volume_Tsupply_final_4 <- na_ma(TS_NA_Volume_Tsupply, k = 8, weighting = method_name)
530
531 TS_Volume_Treturn_final_1 <- na_ma(TS_NA_Volume_Treturn, k = 2, weighting = method_name)
532 TS_Volume_Treturn_final_2 <- na_ma(TS_NA_Volume_Treturn, k = 4, weighting = method_name)
533 TS_Volume_Treturn_final_3 <- na_ma(TS_NA_Volume_Treturn, k = 6, weighting = method_name)
534 TS_Volume_Treturn_final_4 <- na_ma(TS_NA_Volume_Treturn, k = 8, weighting = method_name)
535
536 TS_Tsupply_final_1 <- na_ma(TS_NA_Tsupply, k = 2, weighting = method_name)
537 TS_Tsupply_final_2 <- na_ma(TS_NA_Tsupply, k = 4, weighting = method_name)
538 TS_Tsupply_final_3 <- na_ma(TS_NA_Tsupply, k = 6, weighting = method_name)
539 TS_Tsupply_final_4 <- na_ma(TS_NA_Tsupply, k = 8, weighting = method_name)
540
541 TS_Treturn_final_1 <- na_ma(TS_NA_Treturn, k = 2, weighting = method_name)
542 TS_Treturn_final_2 <- na_ma(TS_NA_Treturn, k = 4, weighting = method_name)
543 TS_Treturn_final_3 <- na_ma(TS_NA_Treturn, k = 6, weighting = method_name)
544 TS_Treturn_final_4 <- na_ma(TS_NA_Treturn, k = 8, weighting = method_name)
545
546 TS_Flow_final_1 <- na_ma(TS_NA_Flow, k = 2, weighting = method_name)
547 TS_Flow_final_2 <- na_ma(TS_NA_Flow, k = 4, weighting = method_name)
548 TS_Flow_final_3 <- na_ma(TS_NA_Flow, k = 6, weighting = method_name)
549 TS_Flow_final_4 <- na_ma(TS_NA_Flow, k = 8, weighting = method_name)
550
551 # Root Mean Squared Error
552 RMSE_Energy_1 <- rmse(TS_Energy_final_1, TS_Energy)
553 RMSE_Energy_2 <- rmse(TS_Energy_final_2, TS_Energy)

150

Aalborg University

554 RMSE_Energy_3 <- rmse(TS_Energy_final_3, TS_Energy)
555 RMSE_Energy_4 <- rmse(TS_Energy_final_4, TS_Energy)
556
557 RMSE_Volume_1 <- rmse(TS_Volume_final_1, TS_Volume)
558 RMSE_Volume_2 <- rmse(TS_Volume_final_2, TS_Volume)
559 RMSE_Volume_3 <- rmse(TS_Volume_final_3, TS_Volume)
560 RMSE_Volume_4 <- rmse(TS_Volume_final_4, TS_Volume)
561
562 RMSE_Volume_Tsupply_1 <- rmse(TS_Volume_Tsupply_final_1, TS_Volume_Tsupply)
563 RMSE_Volume_Tsupply_2 <- rmse(TS_Volume_Tsupply_final_2, TS_Volume_Tsupply)
564 RMSE_Volume_Tsupply_3 <- rmse(TS_Volume_Tsupply_final_3, TS_Volume_Tsupply)
565 RMSE_Volume_Tsupply_4 <- rmse(TS_Volume_Tsupply_final_4, TS_Volume_Tsupply)
566
567 RMSE_Volume_Treturn_1 <- rmse(TS_Volume_Treturn_final_1, TS_Volume_Treturn)
568 RMSE_Volume_Treturn_2 <- rmse(TS_Volume_Treturn_final_2, TS_Volume_Treturn)
569 RMSE_Volume_Treturn_3 <- rmse(TS_Volume_Treturn_final_3, TS_Volume_Treturn)
570 RMSE_Volume_Treturn_4 <- rmse(TS_Volume_Treturn_final_4, TS_Volume_Treturn)
571
572 RMSE_Tsupply_1 <- rmse(TS_Tsupply_final_1, TS_Tsupply)
573 RMSE_Tsupply_2 <- rmse(TS_Tsupply_final_2, TS_Tsupply)
574 RMSE_Tsupply_3 <- rmse(TS_Tsupply_final_3, TS_Tsupply)
575 RMSE_Tsupply_4 <- rmse(TS_Tsupply_final_4, TS_Tsupply)
576
577 RMSE_Treturn_1 <- rmse(TS_Treturn_final_1, TS_Treturn)
578 RMSE_Treturn_2 <- rmse(TS_Treturn_final_2, TS_Treturn)
579 RMSE_Treturn_3 <- rmse(TS_Treturn_final_3, TS_Treturn)
580 RMSE_Treturn_4 <- rmse(TS_Treturn_final_4, TS_Treturn)
581
582 RMSE_Flow_1 <- rmse(TS_Flow_final_1, TS_Flow)
583 RMSE_Flow_2 <- rmse(TS_Flow_final_2, TS_Flow)
584 RMSE_Flow_3 <- rmse(TS_Flow_final_3, TS_Flow)
585 RMSE_Flow_4 <- rmse(TS_Flow_final_4, TS_Flow)
586
587
588 # Mean Absolute Error
589 MAE_Energy_1 <- mae(TS_Energy_final_1, TS_Energy)
590 MAE_Energy_2 <- mae(TS_Energy_final_2, TS_Energy)
591 MAE_Energy_3 <- mae(TS_Energy_final_3, TS_Energy)
592 MAE_Energy_4 <- mae(TS_Energy_final_4, TS_Energy)
593
594 MAE_Volume_1 <- mae(TS_Volume_final_1, TS_Volume)
595 MAE_Volume_2 <- mae(TS_Volume_final_2, TS_Volume)
596 MAE_Volume_3 <- mae(TS_Volume_final_3, TS_Volume)
597 MAE_Volume_4 <- mae(TS_Volume_final_4, TS_Volume)
598
599 MAE_Volume_Tsupply_1 <- mae(TS_Volume_Tsupply_final_1, TS_Volume_Tsupply)
600 MAE_Volume_Tsupply_2 <- mae(TS_Volume_Tsupply_final_2, TS_Volume_Tsupply)
601 MAE_Volume_Tsupply_3 <- mae(TS_Volume_Tsupply_final_3, TS_Volume_Tsupply)
602 MAE_Volume_Tsupply_4 <- mae(TS_Volume_Tsupply_final_4, TS_Volume_Tsupply)
603
604 MAE_Volume_Treturn_1 <- mae(TS_Volume_Treturn_final_1, TS_Volume_Treturn)
605 MAE_Volume_Treturn_2 <- mae(TS_Volume_Treturn_final_2, TS_Volume_Treturn)
606 MAE_Volume_Treturn_3 <- mae(TS_Volume_Treturn_final_3, TS_Volume_Treturn)
607 MAE_Volume_Treturn_4 <- mae(TS_Volume_Treturn_final_4, TS_Volume_Treturn)
608
609 MAE_Tsupply_1 <- mae(TS_Tsupply_final_1, TS_Tsupply)
610 MAE_Tsupply_2 <- mae(TS_Tsupply_final_2, TS_Tsupply)
611 MAE_Tsupply_3 <- mae(TS_Tsupply_final_3, TS_Tsupply)
612 MAE_Tsupply_4 <- mae(TS_Tsupply_final_4, TS_Tsupply)
613
614 MAE_Treturn_1 <- mae(TS_Treturn_final_1, TS_Treturn)
615 MAE_Treturn_2 <- mae(TS_Treturn_final_2, TS_Treturn)
616 MAE_Treturn_3 <- mae(TS_Treturn_final_3, TS_Treturn)
617 MAE_Treturn_4 <- mae(TS_Treturn_final_4, TS_Treturn)
618
619 MAE_Flow_1 <- mae(TS_Flow_final_1, TS_Flow)

151

Department of the Built Environment M. Script Extra: Imputation Benchmark

620 MAE_Flow_2 <- mae(TS_Flow_final_2, TS_Flow)
621 MAE_Flow_3 <- mae(TS_Flow_final_3, TS_Flow)
622 MAE_Flow_4 <- mae(TS_Flow_final_4, TS_Flow)
623
624 Results_Energy_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" = "Energy", "RMSE" =

RMSE_Energy_1, "MAE" = MAE_Energy_1)
625 Results_Energy_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" = "Energy", "RMSE" =

RMSE_Energy_2, "MAE" = MAE_Energy_2)
626 Results_Energy_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" = "Energy", "RMSE" =

RMSE_Energy_3, "MAE" = MAE_Energy_3)
627 Results_Energy_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" = "Energy", "RMSE" =

RMSE_Energy_4, "MAE" = MAE_Energy_4)
628
629 Results_Volume_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" = "Volume", "RMSE" =

RMSE_Volume_1, "MAE" = MAE_Volume_1)
630 Results_Volume_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" = "Volume", "RMSE" =

RMSE_Volume_2, "MAE" = MAE_Volume_2)
631 Results_Volume_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" = "Volume", "RMSE" =

RMSE_Volume_3, "MAE" = MAE_Volume_3)
632 Results_Volume_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" = "Volume", "RMSE" =

RMSE_Volume_4, "MAE" = MAE_Volume_4)
633
634 Results_Volume_Tsupply_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_1, "MAE" = MAE_Volume_Tsupply_1)
635 Results_Volume_Tsupply_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_2, "MAE" = MAE_Volume_Tsupply_2)
636 Results_Volume_Tsupply_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_3, "MAE" = MAE_Volume_Tsupply_3)
637 Results_Volume_Tsupply_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_4, "MAE" = MAE_Volume_Tsupply_4)
638
639 Results_Volume_Treturn_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_1, "MAE" = MAE_Volume_Treturn_1)
640 Results_Volume_Treturn_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_2, "MAE" = MAE_Volume_Treturn_2)
641 Results_Volume_Treturn_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_3, "MAE" = MAE_Volume_Treturn_3)
642 Results_Volume_Treturn_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_4, "MAE" = MAE_Volume_Treturn_4)
643
644 Results_Tsupply_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_1, "MAE" = MAE_Tsupply_1)
645 Results_Tsupply_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_2, "MAE" = MAE_Tsupply_2)
646 Results_Tsupply_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_3, "MAE" = MAE_Tsupply_3)
647 Results_Tsupply_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply_4, "MAE" = MAE_Tsupply_4)
648
649 Results_Treturn_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_1, "MAE" = MAE_Treturn_1)
650 Results_Treturn_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_2, "MAE" = MAE_Treturn_2)
651 Results_Treturn_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_3, "MAE" = MAE_Treturn_3)
652 Results_Treturn_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn_4, "MAE" = MAE_Treturn_4)
653
654 Results_Flow_1 <- data.frame(’Method’ = "WMA Linear, k=2", "Variable" = "Flow", "RMSE" =

RMSE_Flow_1, "MAE" = MAE_Flow_1)
655 Results_Flow_2 <- data.frame(’Method’ = "WMA Linear, k=4", "Variable" = "Flow", "RMSE" =

RMSE_Flow_2, "MAE" = MAE_Flow_2)
656 Results_Flow_3 <- data.frame(’Method’ = "WMA Linear, k=6", "Variable" = "Flow", "RMSE" =

RMSE_Flow_3, "MAE" = MAE_Flow_3)
657 Results_Flow_4 <- data.frame(’Method’ = "WMA Linear, k=8", "Variable" = "Flow", "RMSE" =

RMSE_Flow_4, "MAE" = MAE_Flow_4)

152

Aalborg University

658
659 Results_provisory <- bind_rows(Results_Energy_1, Results_Energy_2, Results_Energy_3,

Results_Energy_4,
660 Results_Volume_1, Results_Volume_2, Results_Volume_3,

Results_Volume_4,
661 Results_Volume_Tsupply_1, Results_Volume_Tsupply_2,

Results_Volume_Tsupply_3, Results_Volume_Tsupply_4,
662 Results_Volume_Treturn_1, Results_Volume_Treturn_2,

Results_Volume_Treturn_3, Results_Volume_Treturn_4,
663 Results_Tsupply_1, Results_Tsupply_2, Results_Tsupply_3,

Results_Tsupply_4,
664 Results_Treturn_1, Results_Treturn_2, Results_Treturn_3,

Results_Treturn_4,
665 Results_Flow_1, Results_Flow_2, Results_Flow_3, Results_Flow_4)
666
667 Results <- bind_rows(Results, Results_provisory)
668
669 ## Weighted Moving Average: Exponential -------------------------------
670
671 method_name <- "exponential"
672
673 TS_Energy_final_1 <- na_ma(TS_NA_Energy, k = 2, weighting = method_name)
674 TS_Energy_final_2 <- na_ma(TS_NA_Energy, k = 4, weighting = method_name)
675 TS_Energy_final_3 <- na_ma(TS_NA_Energy, k = 6, weighting = method_name)
676 TS_Energy_final_4 <- na_ma(TS_NA_Energy, k = 8, weighting = method_name)
677
678 TS_Volume_final_1 <- na_ma(TS_NA_Volume, k = 2, weighting = method_name)
679 TS_Volume_final_2 <- na_ma(TS_NA_Volume, k = 4, weighting = method_name)
680 TS_Volume_final_3 <- na_ma(TS_NA_Volume, k = 6, weighting = method_name)
681 TS_Volume_final_4 <- na_ma(TS_NA_Volume, k = 8, weighting = method_name)
682
683 TS_Volume_Tsupply_final_1 <- na_ma(TS_NA_Volume_Tsupply, k = 2, weighting = method_name)
684 TS_Volume_Tsupply_final_2 <- na_ma(TS_NA_Volume_Tsupply, k = 4, weighting = method_name)
685 TS_Volume_Tsupply_final_3 <- na_ma(TS_NA_Volume_Tsupply, k = 6, weighting = method_name)
686 TS_Volume_Tsupply_final_4 <- na_ma(TS_NA_Volume_Tsupply, k = 8, weighting = method_name)
687
688 TS_Volume_Treturn_final_1 <- na_ma(TS_NA_Volume_Treturn, k = 2, weighting = method_name)
689 TS_Volume_Treturn_final_2 <- na_ma(TS_NA_Volume_Treturn, k = 4, weighting = method_name)
690 TS_Volume_Treturn_final_3 <- na_ma(TS_NA_Volume_Treturn, k = 6, weighting = method_name)
691 TS_Volume_Treturn_final_4 <- na_ma(TS_NA_Volume_Treturn, k = 8, weighting = method_name)
692
693 TS_Tsupply_final_1 <- na_ma(TS_NA_Tsupply, k = 2, weighting = method_name)
694 TS_Tsupply_final_2 <- na_ma(TS_NA_Tsupply, k = 4, weighting = method_name)
695 TS_Tsupply_final_3 <- na_ma(TS_NA_Tsupply, k = 6, weighting = method_name)
696 TS_Tsupply_final_4 <- na_ma(TS_NA_Tsupply, k = 8, weighting = method_name)
697
698 TS_Treturn_final_1 <- na_ma(TS_NA_Treturn, k = 2, weighting = method_name)
699 TS_Treturn_final_2 <- na_ma(TS_NA_Treturn, k = 4, weighting = method_name)
700 TS_Treturn_final_3 <- na_ma(TS_NA_Treturn, k = 6, weighting = method_name)
701 TS_Treturn_final_4 <- na_ma(TS_NA_Treturn, k = 8, weighting = method_name)
702
703 TS_Flow_final_1 <- na_ma(TS_NA_Flow, k = 2, weighting = method_name)
704 TS_Flow_final_2 <- na_ma(TS_NA_Flow, k = 4, weighting = method_name)
705 TS_Flow_final_3 <- na_ma(TS_NA_Flow, k = 6, weighting = method_name)
706 TS_Flow_final_4 <- na_ma(TS_NA_Flow, k = 8, weighting = method_name)
707
708 # Root Mean Squared Error
709 RMSE_Energy_1 <- rmse(TS_Energy_final_1, TS_Energy)
710 RMSE_Energy_2 <- rmse(TS_Energy_final_2, TS_Energy)
711 RMSE_Energy_3 <- rmse(TS_Energy_final_3, TS_Energy)
712 RMSE_Energy_4 <- rmse(TS_Energy_final_4, TS_Energy)
713
714 RMSE_Volume_1 <- rmse(TS_Volume_final_1, TS_Volume)
715 RMSE_Volume_2 <- rmse(TS_Volume_final_2, TS_Volume)
716 RMSE_Volume_3 <- rmse(TS_Volume_final_3, TS_Volume)
717 RMSE_Volume_4 <- rmse(TS_Volume_final_4, TS_Volume)

153

Department of the Built Environment M. Script Extra: Imputation Benchmark

718
719 RMSE_Volume_Tsupply_1 <- rmse(TS_Volume_Tsupply_final_1, TS_Volume_Tsupply)
720 RMSE_Volume_Tsupply_2 <- rmse(TS_Volume_Tsupply_final_2, TS_Volume_Tsupply)
721 RMSE_Volume_Tsupply_3 <- rmse(TS_Volume_Tsupply_final_3, TS_Volume_Tsupply)
722 RMSE_Volume_Tsupply_4 <- rmse(TS_Volume_Tsupply_final_4, TS_Volume_Tsupply)
723
724 RMSE_Volume_Treturn_1 <- rmse(TS_Volume_Treturn_final_1, TS_Volume_Treturn)
725 RMSE_Volume_Treturn_2 <- rmse(TS_Volume_Treturn_final_2, TS_Volume_Treturn)
726 RMSE_Volume_Treturn_3 <- rmse(TS_Volume_Treturn_final_3, TS_Volume_Treturn)
727 RMSE_Volume_Treturn_4 <- rmse(TS_Volume_Treturn_final_4, TS_Volume_Treturn)
728
729 RMSE_Tsupply_1 <- rmse(TS_Tsupply_final_1, TS_Tsupply)
730 RMSE_Tsupply_2 <- rmse(TS_Tsupply_final_2, TS_Tsupply)
731 RMSE_Tsupply_3 <- rmse(TS_Tsupply_final_3, TS_Tsupply)
732 RMSE_Tsupply_4 <- rmse(TS_Tsupply_final_4, TS_Tsupply)
733
734 RMSE_Treturn_1 <- rmse(TS_Treturn_final_1, TS_Treturn)
735 RMSE_Treturn_2 <- rmse(TS_Treturn_final_2, TS_Treturn)
736 RMSE_Treturn_3 <- rmse(TS_Treturn_final_3, TS_Treturn)
737 RMSE_Treturn_4 <- rmse(TS_Treturn_final_4, TS_Treturn)
738
739 RMSE_Flow_1 <- rmse(TS_Flow_final_1, TS_Flow)
740 RMSE_Flow_2 <- rmse(TS_Flow_final_2, TS_Flow)
741 RMSE_Flow_3 <- rmse(TS_Flow_final_3, TS_Flow)
742 RMSE_Flow_4 <- rmse(TS_Flow_final_4, TS_Flow)
743
744 # Mean Absolute Error
745 MAE_Energy_1 <- mae(TS_Energy_final_1, TS_Energy)
746 MAE_Energy_2 <- mae(TS_Energy_final_2, TS_Energy)
747 MAE_Energy_3 <- mae(TS_Energy_final_3, TS_Energy)
748 MAE_Energy_4 <- mae(TS_Energy_final_4, TS_Energy)
749
750 MAE_Volume_1 <- mae(TS_Volume_final_1, TS_Volume)
751 MAE_Volume_2 <- mae(TS_Volume_final_2, TS_Volume)
752 MAE_Volume_3 <- mae(TS_Volume_final_3, TS_Volume)
753 MAE_Volume_4 <- mae(TS_Volume_final_4, TS_Volume)
754
755 MAE_Volume_Tsupply_1 <- mae(TS_Volume_Tsupply_final_1, TS_Volume_Tsupply)
756 MAE_Volume_Tsupply_2 <- mae(TS_Volume_Tsupply_final_2, TS_Volume_Tsupply)
757 MAE_Volume_Tsupply_3 <- mae(TS_Volume_Tsupply_final_3, TS_Volume_Tsupply)
758 MAE_Volume_Tsupply_4 <- mae(TS_Volume_Tsupply_final_4, TS_Volume_Tsupply)
759
760 MAE_Volume_Treturn_1 <- mae(TS_Volume_Treturn_final_1, TS_Volume_Treturn)
761 MAE_Volume_Treturn_2 <- mae(TS_Volume_Treturn_final_2, TS_Volume_Treturn)
762 MAE_Volume_Treturn_3 <- mae(TS_Volume_Treturn_final_3, TS_Volume_Treturn)
763 MAE_Volume_Treturn_4 <- mae(TS_Volume_Treturn_final_4, TS_Volume_Treturn)
764
765 MAE_Tsupply_1 <- mae(TS_Tsupply_final_1, TS_Tsupply)
766 MAE_Tsupply_2 <- mae(TS_Tsupply_final_2, TS_Tsupply)
767 MAE_Tsupply_3 <- mae(TS_Tsupply_final_3, TS_Tsupply)
768 MAE_Tsupply_4 <- mae(TS_Tsupply_final_4, TS_Tsupply)
769
770 MAE_Treturn_1 <- mae(TS_Treturn_final_1, TS_Treturn)
771 MAE_Treturn_2 <- mae(TS_Treturn_final_2, TS_Treturn)
772 MAE_Treturn_3 <- mae(TS_Treturn_final_3, TS_Treturn)
773 MAE_Treturn_4 <- mae(TS_Treturn_final_4, TS_Treturn)
774
775 MAE_Flow_1 <- mae(TS_Flow_final_1, TS_Flow)
776 MAE_Flow_2 <- mae(TS_Flow_final_2, TS_Flow)
777 MAE_Flow_3 <- mae(TS_Flow_final_3, TS_Flow)
778 MAE_Flow_4 <- mae(TS_Flow_final_4, TS_Flow)
779
780 Results_Energy_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" = "Energy", "RMSE"

= RMSE_Energy_1, "MAE" = MAE_Energy_1)
781 Results_Energy_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" = "Energy", "RMSE"

= RMSE_Energy_2, "MAE" = MAE_Energy_2)

154

Aalborg University

782 Results_Energy_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" = "Energy", "RMSE"
= RMSE_Energy_3, "MAE" = MAE_Energy_3)

783 Results_Energy_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" = "Energy", "RMSE"
= RMSE_Energy_4, "MAE" = MAE_Energy_4)

784
785 Results_Volume_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" = "Volume", "RMSE"

= RMSE_Volume_1, "MAE" = MAE_Volume_1)
786 Results_Volume_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" = "Volume", "RMSE"

= RMSE_Volume_2, "MAE" = MAE_Volume_2)
787 Results_Volume_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" = "Volume", "RMSE"

= RMSE_Volume_3, "MAE" = MAE_Volume_3)
788 Results_Volume_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" = "Volume", "RMSE"

= RMSE_Volume_4, "MAE" = MAE_Volume_4)
789
790 Results_Volume_Tsupply_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_1, "MAE" = MAE_Volume_Tsupply_1)
791 Results_Volume_Tsupply_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_2, "MAE" = MAE_Volume_Tsupply_2)
792 Results_Volume_Tsupply_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_3, "MAE" = MAE_Volume_Tsupply_3)
793 Results_Volume_Tsupply_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" =

"Volume_Tsupply", "RMSE" = RMSE_Volume_Tsupply_4, "MAE" = MAE_Volume_Tsupply_4)
794
795 Results_Volume_Treturn_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_1, "MAE" = MAE_Volume_Treturn_1)
796 Results_Volume_Treturn_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_2, "MAE" = MAE_Volume_Treturn_2)
797 Results_Volume_Treturn_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_3, "MAE" = MAE_Volume_Treturn_3)
798 Results_Volume_Treturn_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" =

"Volume_Treturn", "RMSE" = RMSE_Volume_Treturn_4, "MAE" = MAE_Volume_Treturn_4)
799
800 Results_Tsupply_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" = "Tsupply",

"RMSE" = RMSE_Tsupply_1, "MAE" = MAE_Tsupply_1)
801 Results_Tsupply_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" = "Tsupply",

"RMSE" = RMSE_Tsupply_2, "MAE" = MAE_Tsupply_2)
802 Results_Tsupply_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" = "Tsupply",

"RMSE" = RMSE_Tsupply_3, "MAE" = MAE_Tsupply_3)
803 Results_Tsupply_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" = "Tsupply",

"RMSE" = RMSE_Tsupply_4, "MAE" = MAE_Tsupply_4)
804
805 Results_Treturn_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" = "Treturn",

"RMSE" = RMSE_Treturn_1, "MAE" = MAE_Treturn_1)
806 Results_Treturn_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" = "Treturn",

"RMSE" = RMSE_Treturn_2, "MAE" = MAE_Treturn_2)
807 Results_Treturn_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" = "Treturn",

"RMSE" = RMSE_Treturn_3, "MAE" = MAE_Treturn_3)
808 Results_Treturn_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" = "Treturn",

"RMSE" = RMSE_Treturn_4, "MAE" = MAE_Treturn_4)
809
810 Results_Flow_1 <- data.frame(’Method’ = "WMA Exponential, k=2", "Variable" = "Flow", "RMSE" =

RMSE_Flow_1, "MAE" = MAE_Flow_1)
811 Results_Flow_2 <- data.frame(’Method’ = "WMA Exponential, k=4", "Variable" = "Flow", "RMSE" =

RMSE_Flow_2, "MAE" = MAE_Flow_2)
812 Results_Flow_3 <- data.frame(’Method’ = "WMA Exponential, k=6", "Variable" = "Flow", "RMSE" =

RMSE_Flow_3, "MAE" = MAE_Flow_3)
813 Results_Flow_4 <- data.frame(’Method’ = "WMA Exponential, k=8", "Variable" = "Flow", "RMSE" =

RMSE_Flow_4, "MAE" = MAE_Flow_4)
814
815 Results_provisory <- bind_rows(Results_Energy_1, Results_Energy_2, Results_Energy_3,

Results_Energy_4,
816 Results_Volume_1, Results_Volume_2, Results_Volume_3,

Results_Volume_4,
817 Results_Volume_Tsupply_1, Results_Volume_Tsupply_2,

Results_Volume_Tsupply_3, Results_Volume_Tsupply_4,
818 Results_Volume_Treturn_1, Results_Volume_Treturn_2,

155

Department of the Built Environment M. Script Extra: Imputation Benchmark

Results_Volume_Treturn_3, Results_Volume_Treturn_4,
819 Results_Tsupply_1, Results_Tsupply_2, Results_Tsupply_3,

Results_Tsupply_4,
820 Results_Treturn_1, Results_Treturn_2, Results_Treturn_3,

Results_Treturn_4,
821 Results_Flow_1, Results_Flow_2, Results_Flow_3, Results_Flow_4)
822
823 Results <- bind_rows(Results, Results_provisory)
824
825 ## Mean -------------------------------
826
827 method_name <- "mean"
828
829 TS_Energy_final <- na_mean(TS_NA_Energy, option = method_name)
830 TS_Volume_final <- na_mean(TS_NA_Volume, option = method_name)
831 TS_Volume_Tsupply_final <- na_mean(TS_NA_Volume_Tsupply, option = method_name)
832 TS_Volume_Treturn_final <- na_mean(TS_NA_Volume_Treturn, option = method_name)
833 TS_Tsupply_final <- na_mean(TS_NA_Tsupply, option = method_name)
834 TS_Treturn_final <- na_mean(TS_NA_Treturn, option = method_name)
835 TS_Flow_final <- na_mean(TS_NA_Flow, option = method_name)
836
837 # Root Mean Squared Error
838 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
839 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
840 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
841 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
842 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
843 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
844 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
845
846 # Mean Absolute Error
847 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
848 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
849 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
850 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
851 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
852 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
853 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
854
855 Results_Energy <- data.frame(’Method’ = "Mean", "Variable" = "Energy", "RMSE" = RMSE_Energy,

"MAE" = MAE_Energy)
856 Results_Volume <- data.frame(’Method’ = "Mean", "Variable" = "Volume", "RMSE" = RMSE_Volume,

"MAE" = MAE_Volume)
857 Results_Volume_Tsupply <- data.frame(’Method’ = "Mean", "Variable" = "Volume_Tsupply", "RMSE" =

RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
858 Results_Volume_Treturn <- data.frame(’Method’ = "Mean", "Variable" = "Volume_Treturn", "RMSE" =

RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
859 Results_Tsupply <- data.frame(’Method’ = "Mean", "Variable" = "Tsupply", "RMSE" = RMSE_Tsupply,

"MAE" = MAE_Tsupply)
860 Results_Treturn <- data.frame(’Method’ = "Mean", "Variable" = "Treturn", "RMSE" = RMSE_Treturn,

"MAE" = MAE_Treturn)
861 Results_Flow <- data.frame(’Method’ = "Mean", "Variable" = "Flow", "RMSE" = RMSE_Flow, "MAE" =

MAE_Flow)
862
863 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
864
865 Results <- bind_rows(Results, Results_provisory)
866
867 ## Median -------------------------------
868
869 method_name <- "median"
870
871 TS_Energy_final <- na_mean(TS_NA_Energy, option = method_name)
872 TS_Volume_final <- na_mean(TS_NA_Volume, option = method_name)
873 TS_Volume_Tsupply_final <- na_mean(TS_NA_Volume_Tsupply, option = method_name)

156

Aalborg University

874 TS_Volume_Treturn_final <- na_mean(TS_NA_Volume_Treturn, option = method_name)
875 TS_Tsupply_final <- na_mean(TS_NA_Tsupply, option = method_name)
876 TS_Treturn_final <- na_mean(TS_NA_Treturn, option = method_name)
877 TS_Flow_final <- na_mean(TS_NA_Flow, option = method_name)
878
879 # Root Mean Squared Error
880 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
881 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
882 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
883 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
884 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
885 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
886 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
887
888 # Mean Absolute Error
889 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
890 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
891 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
892 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
893 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
894 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
895 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
896
897 Results_Energy <- data.frame(’Method’ = "Median", "Variable" = "Energy", "RMSE" = RMSE_Energy,

"MAE" = MAE_Energy)
898 Results_Volume <- data.frame(’Method’ = "Median", "Variable" = "Volume", "RMSE" = RMSE_Volume,

"MAE" = MAE_Volume)
899 Results_Volume_Tsupply <- data.frame(’Method’ = "Median", "Variable" = "Volume_Tsupply", "RMSE"

= RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
900 Results_Volume_Treturn <- data.frame(’Method’ = "Median", "Variable" = "Volume_Treturn", "RMSE"

= RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
901 Results_Tsupply <- data.frame(’Method’ = "Median", "Variable" = "Tsupply", "RMSE" =

RMSE_Tsupply, "MAE" = MAE_Tsupply)
902 Results_Treturn <- data.frame(’Method’ = "Median", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn, "MAE" = MAE_Treturn)
903 Results_Flow <- data.frame(’Method’ = "Median", "Variable" = "Flow", "RMSE" = RMSE_Flow, "MAE" =

MAE_Flow)
904
905 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
906
907 Results <- bind_rows(Results, Results_provisory)
908
909 ## Mode -------------------------------
910
911 method_name <- "mode"
912
913 TS_Energy_final <- na_mean(TS_NA_Energy, option = method_name)
914 TS_Volume_final <- na_mean(TS_NA_Volume, option = method_name)
915 TS_Volume_Tsupply_final <- na_mean(TS_NA_Volume_Tsupply, option = method_name)
916 TS_Volume_Treturn_final <- na_mean(TS_NA_Volume_Treturn, option = method_name)
917 TS_Tsupply_final <- na_mean(TS_NA_Tsupply, option = method_name)
918 TS_Treturn_final <- na_mean(TS_NA_Treturn, option = method_name)
919 TS_Flow_final <- na_mean(TS_NA_Flow, option = method_name)
920
921 # Root Mean Squared Error
922 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
923 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
924 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
925 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
926 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
927 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
928 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
929
930 # Mean Absolute Error
931 MAE_Energy <- mae(TS_Energy_final, TS_Energy)

157

Department of the Built Environment M. Script Extra: Imputation Benchmark

932 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
933 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
934 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
935 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
936 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
937 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
938
939 Results_Energy <- data.frame(’Method’ = "Mode", "Variable" = "Energy", "RMSE" = RMSE_Energy,

"MAE" = MAE_Energy)
940 Results_Volume <- data.frame(’Method’ = "Mode", "Variable" = "Volume", "RMSE" = RMSE_Volume,

"MAE" = MAE_Volume)
941 Results_Volume_Tsupply <- data.frame(’Method’ = "Mode", "Variable" = "Volume_Tsupply", "RMSE" =

RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
942 Results_Volume_Treturn <- data.frame(’Method’ = "Mode", "Variable" = "Volume_Treturn", "RMSE" =

RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
943 Results_Tsupply <- data.frame(’Method’ = "Mode", "Variable" = "Tsupply", "RMSE" = RMSE_Tsupply,

"MAE" = MAE_Tsupply)
944 Results_Treturn <- data.frame(’Method’ = "Mode", "Variable" = "Treturn", "RMSE" = RMSE_Treturn,

"MAE" = MAE_Treturn)
945 Results_Flow <- data.frame(’Method’ = "Mode", "Variable" = "Flow", "RMSE" = RMSE_Flow, "MAE" =

MAE_Flow)
946
947 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
948
949 Results <- bind_rows(Results, Results_provisory)
950
951 ## Random -------------------------------
952
953 TS_Energy_final <- na_random(TS_NA_Energy, lower_bound = NULL, upper_bound = NULL)
954 TS_Volume_final <- na_random(TS_NA_Volume, lower_bound = NULL, upper_bound = NULL)
955 TS_Volume_Tsupply_final <- na_random(TS_NA_Volume_Tsupply, lower_bound = NULL, upper_bound =

NULL)
956 TS_Volume_Treturn_final <- na_random(TS_NA_Volume_Treturn, lower_bound = NULL, upper_bound =

NULL)
957 TS_Tsupply_final <- na_random(TS_NA_Tsupply, lower_bound = NULL, upper_bound = NULL)
958 TS_Treturn_final <- na_random(TS_NA_Treturn, lower_bound = NULL, upper_bound = NULL)
959 TS_Flow_final <- na_random(TS_NA_Flow, lower_bound = NULL, upper_bound = NULL)
960
961 # Root Mean Squared Error
962 RMSE_Energy <- rmse(TS_Energy_final, TS_Energy)
963 RMSE_Volume <- rmse(TS_Volume_final, TS_Volume)
964 RMSE_Volume_Tsupply <- rmse(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
965 RMSE_Volume_Treturn <- rmse(TS_Volume_Treturn_final, TS_Volume_Treturn)
966 RMSE_Tsupply <- rmse(TS_Tsupply_final, TS_Tsupply)
967 RMSE_Treturn <- rmse(TS_Treturn_final, TS_Treturn)
968 RMSE_Flow <- rmse(TS_Flow_final, TS_Flow)
969
970 # Mean Absolute Error
971 MAE_Energy <- mae(TS_Energy_final, TS_Energy)
972 MAE_Volume <- mae(TS_Volume_final, TS_Volume)
973 MAE_Volume_Tsupply <- mae(TS_Volume_Tsupply_final, TS_Volume_Tsupply)
974 MAE_Volume_Treturn <- mae(TS_Volume_Treturn_final, TS_Volume_Treturn)
975 MAE_Tsupply <- mae(TS_Tsupply_final, TS_Tsupply)
976 MAE_Treturn <- mae(TS_Treturn_final, TS_Treturn)
977 MAE_Flow <- mae(TS_Flow_final, TS_Flow)
978
979 Results_Energy <- data.frame(’Method’ = "Random", "Variable" = "Energy", "RMSE" = RMSE_Energy,

"MAE" = MAE_Energy)
980 Results_Volume <- data.frame(’Method’ = "Random", "Variable" = "Volume", "RMSE" = RMSE_Volume,

"MAE" = MAE_Volume)
981 Results_Volume_Tsupply <- data.frame(’Method’ = "Random", "Variable" = "Volume_Tsupply", "RMSE"

= RMSE_Volume_Tsupply, "MAE" = MAE_Volume_Tsupply)
982 Results_Volume_Treturn <- data.frame(’Method’ = "Random", "Variable" = "Volume_Treturn", "RMSE"

= RMSE_Volume_Treturn, "MAE" = MAE_Volume_Treturn)
983 Results_Tsupply <- data.frame(’Method’ = "Random", "Variable" = "Tsupply", "RMSE" =

158

Aalborg University

RMSE_Tsupply, "MAE" = MAE_Tsupply)
984 Results_Treturn <- data.frame(’Method’ = "Random", "Variable" = "Treturn", "RMSE" =

RMSE_Treturn, "MAE" = MAE_Treturn)
985 Results_Flow <- data.frame(’Method’ = "Random", "Variable" = "Flow", "RMSE" = RMSE_Flow, "MAE" =

MAE_Flow)
986
987 Results_provisory <- bind_rows(Results_Energy, Results_Volume, Results_Volume_Tsupply,

Results_Volume_Treturn, Results_Tsupply, Results_Treturn, Results_Flow)
988
989 Results <- bind_rows(Results, Results_provisory)
990
991 ### Final tables per variable ---------------------------------
992
993 BMark_Energy <- Results %>%
994 filter(Variable == "Energy")
995
996 BMark_Volume <- Results %>%
997 filter(Variable == "Volume")
998
999 BMark_Volume_Tsupply <- Results %>%

1000 filter(Variable == "Volume_Tsupply")
1001
1002 BMark_Volume_Treturn <- Results %>%
1003 filter(Variable == "Volume_Treturn")
1004
1005 BMark_Tsupply <- Results %>%
1006 filter(Variable == "Tsupply")
1007
1008 BMark_Treturn <- Results %>%
1009 filter(Variable == "Treturn")
1010
1011 BMark_Flow <- Results %>%
1012 filter(Variable == "Flow")
1013
1014
1015 ### Convert Time Series into Dataframe -------------------------------
1016
1017 z_new_Energy <- na_interpolation(TS_NA_Energy, option = "linear")
1018 z_new_Volume <- na_interpolation(TS_NA_Volume, option = "linear")
1019 z_new_Volume_Tsupply <- na_interpolation(TS_NA_Volume_Tsupply, option = "linear")
1020 z_new_Volume_Treturn <- na_interpolation(TS_NA_Volume_Treturn, option = "linear")
1021 z_new_Tsupply <- na_ma(TS_NA_Tsupply, k = 8, weighting = "exponential")
1022 z_new_Treturn <- na_ma(TS_NA_Treturn, k = 8, weighting = "exponential")
1023 z_new_Flow <- na_ma(TS_NA_Flow, k = 8, weighting = "exponential")
1024
1025 z$Energy <- as.numeric(z_new_Energy)
1026 z$Volume_accum <- as.numeric(z_new_Volume)
1027 z$Volume_TS <- as.numeric(z_new_Volume_Tsupply)
1028 z$Volume_TR <- as.numeric(z_new_Volume_Treturn)
1029 z$T_supply <- as.numeric(z_new_Tsupply)
1030 z$T_return <- as.numeric(z_new_Treturn)
1031 z$Flow <- as.numeric(z_new_Flow)

Listing M.1. Script Extra: Imputation Benchmark

159

	Titelblad
	Table of contents
	Introduction
	Literature Review
	Case study

	Methodology
	Data Preprocessing
	Raw data organisation
	Errors
	Outliers
	Missing values
	Imputation methods

	Data Visualisation
	New variables
	Plotting

	Clustering Analysis

	Results
	Data Preprocessing
	Data Visualisation
	Single-variable overview
	Multi-variable overview

	Data Clustering
	One-year variable
	Daily profiles
	Daily profiles - T level

	Conclusions
	Further work
	Bibliography
	Appendix
	Appendix
	Conference article NSB 2020
	Script 1: Raw Data - Data Preprocessing
	Script 2: Errors - Data Preprocessing
	Script 3: Outliers - Data Preprocessing
	Script 4: Missing Values - Data Preprocessing
	Script 5: Imputation - Data Preprocessing
	Script 6: Building type segregation - Data Preprocessing
	Script 7: Linear Regressions - Data Visualisation
	Script 8: Prepare dataset for clustering - Clustering Analysis
	Script 9: Elbow method - Clustering Analysis
	Script 10: Average silhouette method - Clustering Analysis
	Script 11: Kmeans method - Clustering Analysis
	Script Extra: Imputation Benchmark

