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Abstract
The aim of this project is the modelling of
single-mode step-index fibre and slab wave-
guides in the terahertz range. This will be
done by a combination of several analytical
and numerical methods and we will derive
the relevant theory. We will look into mode
profiles, mode coupling by evanescent waves
and transmission and reflection in several
geometries. For a 200 µm diameter air-silica
step-index fibre, we find that single-modes
exist for frequencies below 0.607 THz. The
coupling length between two identical silica
slab waveguides of thickness 200 µm ranges
from a few hundred micrometres to sev-
eral meters due to substantial evanescent
waves. The reflection of slab waveguide
in several geometries remains low usually
below 1 %. Whereas the transmission of
the guided mode in a layer of a waveguide
suspended in the air to a layer with foam
instead of air is highly dependent on the
refractive index of foam. The same holds
when the guided mode is incident from the
waveguide-foam layer to the waveguide-air
layer.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.
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1 Introduction

The purpose of this report is to examine waveguide which can support guided single
modes in the terahertz range. Despite the many applications of waves in the terahertz
domain, one may often encounter problems with the high material absorption for waves
in this frequency range. However a fairly new method was discovered by Dominik Walter
Vogt and Rainer Leonhardt in [1], where they obtained a Q-factor of 1.5 × 104. We will
in this report have a focus on examining similar waveguides as the one presented in the
before mentioned text. We will look into single-mode step-index fibre and slab waveguides
and investigate several properties of said waveguides.

Our report starts by introducing a general theory about Maxwell’s equation and
waveguides. Several numerical methods are used such as finite difference, which is applied
to Maxwell equations to derive the finite difference frequency domain for a computational
Yee Mesh for which the optical field can be calculated. This numerical approach is then
optimised by introducing a tensor averaging approximation, which allows us to model
circular waveguides more accurately.

The numerical method, the modal method in the frequency domain is presented in
chapter 4. The idea behind this approach is to use that the structure in question is
piecewise constant along the propagation axis. The eigenmodes are then calculated
in each of the constant layers and used to expand the field in their respective layers.
To investigate two-dimensional structures, we introduce the Fourier modal method.
Furthermore, we will also derive and discuss the theory about the coupling between two
waveguides, which can be found in chapter 5. This chapter builds upon coupled-mode
theory.

Chapter 6 will then present and discuss the different results obtained from the derived
theory in the previously mentioned chapters. This includes; examination of the mode
profile, coupling, reflection and transmission.
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2 Preliminary theory

2.1 Maxwell’s Equations
The Maxwell’s equations will serve as the fundamental building block for most of the
theory and calculation presented in this report and hence this section will work as an
introduction to these equations. Their differential formulation is given by

∇ × 𝐄(𝐫, 𝑡) = − 𝜕
𝜕𝑡

𝐁(𝐫, 𝑡) (2.1a)

∇ × 𝐇(𝐫, 𝑡) = 𝜕
𝜕𝑡

𝐃(𝐫, 𝑡) + 𝐉𝑓(𝐫, 𝑡) (2.1b)

∇ ⋅ 𝐃(𝐫, 𝑡) = 𝜌𝑓(𝐫, 𝑡) (2.1c)
∇ ⋅ 𝐁(𝐫, 𝑡) = 0, (2.1d)

where 𝐄 and 𝐇 are the electric and magnetic field, respectively, 𝜌𝑓 is the free electron
charge density and 𝐉𝑓 is the free current density. Furthermore, the displacement field 𝐃
and the magnetic induction 𝐁 are defined by the following equations

𝐃(𝐫, 𝑡) = 𝜀0𝐄(𝐫, 𝑡) + 𝐏(𝐫, 𝑡) (2.2)
𝐁(𝐫, 𝑡) = 𝜇0𝐇(𝐫, 𝑡) + 𝐌(𝐫, 𝑡). (2.3)

The vacuum permittivity 𝜀0 and vacuum permeability 𝜇0 are connected by the speed of
light in vacuum, 𝑐, as

𝑐 = 1
√𝜀0𝜇0

. (2.4)

The polarisation density, 𝐏(𝐫, 𝑡), and the magnetisation density, 𝐌(𝐫, 𝑡), describes the
density of electric and magnetic dipole moments in a material. Assuming that the media
is linear, local and isotropic. Then the polarization and magnetisation densities can be
expressed as linear response functions leading [2, 3]

𝐃(𝐫, 𝑡) = 𝜀0𝐄(𝐫, 𝑡) + 𝜀0 ∫
∞

0
𝜒𝑒(𝐫, 𝑡 − 𝜏)𝐄(𝐫, 𝜏) d𝜏 (2.5)

𝐁(𝐫, 𝑡) = 𝜀0𝐇(𝐫, 𝑡) + 𝜇0 ∫
∞

0
𝜒𝑚(𝐫, 𝑡 − 𝜏)𝐇(𝐫, 𝜏) d𝜏, (2.6)

where 𝜒𝑒 and 𝜒𝑚 are the electric and magnetic susceptibilities respectively. Due to
causality, it is required that 𝜒𝑖(𝐫, 𝑡 − 𝜏) = 0 for 𝜏 > 𝑡 for 𝑖 ∈ {𝑒, 𝑚}.

The Maxwell’s equations introduced in eq. (2.1) all contain time derivatives, but it can
often be convenient to consider the Fourier transform of these equations and thereby work
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2.1 Maxwell’s Equations Group 5.330 D

in the frequency domain. For example, in finite difference frequency domain (FDFD) uses
Maxwell’s equations in the frequency domain and will be described further in chapter 3.
Starting by Fourier transforming the electric and magnetic fields;

𝐄(𝐫, 𝜔) = ∫
∞

−∞
𝐄(𝐫, 𝑡) ei𝜔𝑡 d𝑡; 𝐄(𝐫, 𝑡) = 1

2𝜋
∫

∞

−∞
𝐄(𝐫, 𝜔) e− i𝜔𝑡 d𝜔 (2.7)

𝐇(𝐫, 𝜔) = ∫
∞

−∞
𝐇(𝐫, 𝑡) ei𝜔𝑡 d𝑡; 𝐇(𝐫, 𝑡) = 1

2𝜋
∫

∞

−∞
𝐇(𝐫, 𝜔) e− i𝜔𝑡 d𝜔. (2.8)

Consider the Fourier transformation of the displacement field eq. (2.6)

𝐃(𝐫, 𝜔) = ∫
∞

−∞
𝐃(𝐫, 𝑡) ei𝜔𝑡 d𝑡 (2.9)

= ∫
∞

−∞
(𝜀0𝐄(𝐫, 𝑡) + 𝜀0 ∫

∞

0
𝜒𝑒(𝐫, 𝑡 − 𝜏)𝐄(𝐫, 𝜏) d𝜏) ei𝜔𝑡 d𝑡 (2.10)

= 𝜀0𝐄(𝐫, 𝜔)(1 + 𝜒𝑒(𝐫, 𝜔)). (2.11)

In the second step, we applied the convolution theorem of Fourier theory, which states [3]

𝐹(𝜔)𝐺(𝜔) = ∫
∞

−∞
e± i𝜔𝑡 ∫

∞

−∞
𝐹(𝑡 − 𝜏)𝐺(𝜏) d𝜏 d𝑡. (2.12)

One can in a similar way obtain a relation between 𝐁 and 𝐇 by applying the same steps
to the magnetic induction, 𝐁, in eq. (2.6);

𝐁(𝐫, 𝑤) = 𝜇0𝐇(𝐫, 𝜔)(1 + 𝜒𝑚(𝐫, 𝜔)). (2.13)

The free current density 𝐉𝑓 can be separated into two variables; the source current
density 𝐉𝑠 and the currents induced by the electric field 𝐉𝑐 [2, 3]:

𝐉𝑓(𝐫, 𝑡) = 𝐉𝑠(𝐫, 𝑡) + 𝐉𝑐(𝐫, 𝑡) (2.14)

= 𝐉𝑠 + ∫
∞

0
𝜎(𝐫, 𝜏)𝐄(𝐫, 𝑡 − 𝜏) d𝜏, (2.15)

where 𝜎 is the electric conductivity. Applying the Fourier transformation on the free
current density gives

𝐉(𝐫, 𝜔) = 𝐉𝑠(𝐫, 𝜔) + 𝜎(𝐫, 𝜔)𝐄(𝐫, 𝜔). (2.16)

The next step is to express eq. (2.1b) in the frequency domain;

∇ × 𝐇(𝐫, 𝜔) = ∫
∞

−∞
∇ × 𝐇(𝐫, 𝑡) ei𝜔𝑡 d𝑡 (2.17)

= ∫
∞

−∞
( 𝜕

𝜕𝑡
𝐃(𝐫, 𝑡) + 𝐉𝑓(𝐫, 𝑡)) ei𝜔𝑡 d𝑡 (2.18)

= 𝐉𝑠(𝐫, 𝜔) − i𝜔𝜀0(1 + 𝜒𝑒(𝐫, 𝜔) + i𝜎(𝐫, 𝜔)
𝜔𝜀0

)𝐄(𝐫, 𝜔) (2.19)
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2 Preliminary theory Aalborg University

= 𝐉𝑠(𝐫, 𝜔) − i𝜔𝜀0𝜀(𝐫, 𝜔)𝐄(𝐫, 𝜔). (2.20)

The last step can be performed by defining the complex dielectric function as

𝜀(𝐫, 𝜔) = (1 + 𝜒𝑒(𝐫, 𝜔) + i𝜎(𝐫, 𝜔)
𝜔𝜀0

). (2.21)

Similarly performing the above calculations for eq. (2.1a) yields

∇ × 𝐄(𝐫, 𝜔) = i𝜔𝜇0𝜇(𝐫, 𝜔)𝐇(𝐫, 𝜔). (2.22)

For most materials the magnetisation density 𝐌 have a small contribution, hence it
stands to reason that it can be neglected i.e. 𝜇(𝐫, 𝜔) = 1. Under this assumption, the
above equation reduces to

∇ × 𝐄(𝐫, 𝜔) = i𝜔𝜇0𝐇(𝐫, 𝜔). (2.23)

Maxwell’s equations in the frequency domain can then be expressed as

∇ × 𝐄(𝐫, 𝜔) = i𝜔𝜇0𝐇(𝐫, 𝜔) (2.24a)
∇ × 𝐇(𝐫, 𝜔) = 𝐉𝑠(𝐫, 𝜔) − i𝜔𝜀0𝜀(𝐫, 𝜔)𝐄(𝐫, 𝜔) (2.24b)
∇ ⋅ 𝐃(𝐫, 𝜔) = 𝜌𝑠(𝐫, 𝜔) (2.24c)
∇ ⋅ 𝐁(𝐫, 𝜔) = 0, (2.24d)

where 𝜌𝑠(𝐫, 𝜔) = ∇ ⋅ 𝐉𝑠(𝐫, 𝜔)/ i𝜔. In this report we will primarily use Maxwell’s equations
in the frequency domain and will often use a shortened notation where the argument 𝜔
is made implicit.

2.2 Wave Equations

Maxwell’s equations in the frequency domain can be used to derive a second-order
wave equation, which only involves one of either the magnetic or the electric field. The
derivation for the electric field will be performed in this chapter, but the principle can
be used similarly to derive the wave equation for the magnetic field. Taking the curl of
eq. (2.24a) and substitute eq. (2.24b) into this equation gives

∇ × ∇ × 𝐄(𝐫, 𝜔) − 𝑘2
0𝜀(𝐫, 𝜔)𝐄(𝐫, 𝜔) = i𝜔𝜇0𝐉𝑠(𝐫, 𝜔), (2.25)

where 𝑘2
0 = 𝜔2𝜀0𝜇0. In this report we will primarily work with regions far from source

currents, therefore the source current will be neglected in the following calculation.
Furthermore by applying the identity ∇ × (∇ × 𝐀) = −∇2𝐀 + ∇(∇ ⋅ 𝐴) to the above
equation yields

∇2𝐄(𝐫, 𝜔) − ∇(∇ ⋅ 𝐄(𝐫, 𝜔)) + 𝑘2
0𝜀(𝐫, 𝜔)𝐄(𝐫, 𝜔) = 0. (2.26)
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2.3 Waveguides Group 5.330 D

Assuming that there are no free-charges, 𝜌𝑠(𝐫, 𝜔) = 0, then from eq. (2.24c) the following
expression can be derived

∇ ⋅ 𝐄(𝐫, 𝜔) = −𝐄(𝐫, 𝜔) ⋅ ∇ ln(𝜀(𝐫, 𝜔)), (2.27)

where we have used the identity

∇ ⋅ (𝑐𝐀) = 𝑐∇ ⋅ 𝐀 + (∇𝑐) ⋅ 𝐀 (2.28)

and 1
𝑐 ∇𝑐 = ∇(ln(𝑐)). In the case where 𝜀(𝐫, 𝜔) varies slowly, then the term in eq. (2.27)

can be neglected and eq. (2.26) is reduced to

(∇2 + 𝑘2
0𝜀(𝐫, 𝜔))𝐄(𝐫, 𝜔) = 0. (2.29)

Taking the curl of eq. (2.24b) and substitute eq. (2.24a) and repeating the above steps
for the magnetic field gives a similar wave equation

(∇2 + 𝑘2
0𝜀(𝐫, 𝜔))𝐇(𝐫, 𝜔) = 0. (2.30)

It should be noted that the wave equation for the magnetic and electric fields are identical
and that the components of both fields decouple, which means that the wave equation
can be reduced to a scalar equation

∇2Ψ + 𝜀𝑘2
0Ψ = 0, (2.31)

where Ψ can denote any component of 𝐇 and 𝐄.
In the case where the material is homogeneous and the material functions 𝜀 and 𝜇

do not depend on the coordinates, these wave equations can be reduced to Helmholtz
equations [3]

∇2𝐇(𝐫) + 𝑘2
0𝜀𝜇𝐇(𝐫) = 0 (2.32a)

∇2𝐄(𝐫) + 𝑘2
0𝜀𝜇𝐄(𝐫) = 0. (2.32b)

In the case where 𝜀 and 𝜇 are piecewise constant, the Helmholtz equations can still be
locally valid in regions where 𝜀 and 𝜇 are constant. By matching the local solutions from
these equations across the material interfaces with appropriate boundary conditions, then
solutions can still be found.

2.3 Waveguides
The main topic of this project is to study waveguides in the terahertz band and their
properties will be investigated in this section. Waveguides are those geometries featuring
uniformly along one axis. This class of geometries is especially interesting because they
are widely used in e.g. single and multi-mode step-index optical fibres or slab waveguides.

In this section the uniform axis of the waveguides is taking to be the 𝑧-axis. In this
case the dielectric constant 𝜀(𝐫) = 𝜀(𝐫⟂) only depends on the transverse coordinates. In
this case 𝐫⟂ = (𝑥, 𝑦).

6



2 Preliminary theory Aalborg University

In this section, we will consider non-magnetic waveguides without free charges and
currents and a monochromatic optical field on the form

𝐄(𝐫, 𝑡) = 𝐄(𝐫) e− i𝜔𝑡, 𝐇(𝐫, 𝑡) = 𝐇(𝐫) e− i𝜔𝑡, (2.33)

and with this time convention the Maxwell’s equations is given by eq. (2.24) with 𝐉𝑠 = 𝟎
and 𝜌𝑠 = 0. Since the 𝑧-axis is uniform, the electric and magnetic field can be written on
the form

𝐄(𝐫) = 𝐞(𝐫⟂) ei𝛽𝑧 (2.34)
𝐇(𝐫) = 𝐡(𝐫⟂) ei𝛽𝑧, (2.35)

where 𝛽 is the propagation constant and is used to describe the 𝑧-dependency of the field.
Within the assumptions made so far one can combine eqs. (2.26) and (2.27) into

∇2𝐄(𝐫, 𝜔) + ∇(𝐄(𝐫, 𝜔) ⋅ ∇ ln(𝜀(𝐫, 𝜔))) + 𝜀(𝐫, 𝜔)𝑘2
0𝐄(𝐫, 𝜔) = 0, (2.36)

which holds generally. If we apply the assumptions of uniform 𝑧-axis and with the electric
field presented earlier, this can be written as a second-order eigenvalue problem [3]

∇2
⟂𝐞 + (∇⟂ + i𝛽 ̂𝐳)(𝐞 ⋅ ∇ ln(𝜀(𝐫⟂))) + 𝜀(𝐫⟂)𝑘2

0𝐞 = 𝛽2𝐞. (2.37)

This equation can be simplified to a standard eigenvalue problem by noticing that the
𝑧-derivative of 𝜀 is zero, which indicates that the transverse field is not coupled to 𝑒𝑧
hence

∇2
⟂𝐞 + ∇⟂(𝐞 ⋅ ∇ ln(𝜀(𝐫⟂))) + 𝜀(𝐫⟂)𝑘2

0𝐞 = 𝛽2𝐞. (2.38)

When solving this equation one obtain the eigenvalues 𝜆𝑚 = 𝛽2
𝑚 and the eigenmodes

e⟂,𝑚(𝐫⟂). If 𝛽 is real-valued, then there will exist a solution for both positive and negative
values of 𝛽. With the time convention, exp(− i𝜔𝑡) and 𝜔 positive, the negative values of
𝛽 will represent to backward travelling waves and the positive values of 𝛽 will represent
to forward travelling waves. This will be reversed if 𝜔 changed sign. For the case where
the eigenvalues are negative the propagation constants will assume complex values, which
leads to modes that either increase or decrease exponentially along the propagation axis.
The modes with exponential decreasing fields make physical sense and these modes are
called evanescent modes.

The transverse electric field 𝐞⟂ can be calculated by solving eq. (2.38). In the case
where there are no free charges one can connect 𝑒𝑧 and 𝐞⟂ with Gauss law

∇ ⋅ (𝜀𝐄) = 0. (2.39)

Since ∇ = (∇⟂, ∇𝑧) where ∇⟂ is the transverse part of the nabla operator and using
that 𝜀 only depend on the lateral coordinates, the following identity can be derived

𝑒𝑧 = −∇⟂ ⋅ (𝜀𝐞⟂)
i𝛽𝜀

. (2.40)
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2.3 Waveguides Group 5.330 D

Similarly one can use eq. (2.24d) with the assumption that the material is non-magnetic
to derive

ℎ𝑧 = i
𝛽

∇⟂ ⋅ 𝐡⟂. (2.41)

Using 𝑒𝑧’s expression in eq. (2.40), the magnetic field can be calculated from eq. (2.24a)
as

𝐇 = 1
i𝜔𝜇0

(−𝐱̂(i𝛽𝐸𝑦 − 𝜕𝐸𝑧
𝜕𝑦

) + 𝐲̂(i𝛽𝐸𝑥 − 𝜕𝐸𝑧
𝜕𝑥

) + ̂𝐳(
𝜕𝐸𝑦

𝜕𝑥
− 𝜕𝐸𝑥

𝜕𝑦
)). (2.42)

The lateral coordinates of 𝐇 can be extracted with 𝐇⟂ = ̂𝐳 × 𝐇 × ̂𝐳 and the 𝑧-component
with 𝐻𝑧 = ̂𝐳 ⋅ 𝐇, which leads to [3]

𝐡⟂ = 1
𝜇0𝜔

̂𝐳 × (𝛽𝐞⟂ − ∇⟂(∇⟂ ⋅ (𝜀𝐞⟂)
𝛽𝜀

)) (2.43)

ℎ𝑧 = ̂𝐳 ⋅ ∇ × 𝐞⟂
i𝜇0𝜔

. (2.44)

As mentioned earlier. there are both forward and backward travelling solutions for the
same eigenmode 𝐞⟂ of the eigenvalue problem. The forward mode profile for the magnetic
and electric field is given by

𝐄+(𝐫) = (𝐞⟂(𝐫⟂) + 𝑒𝑧(𝐫⟂) ̂𝐳) ei𝛽𝑧 (2.45)
𝐇+(𝐫) = (𝐡⟂(𝐫⟂) + ℎ𝑧(𝐫⟂) ̂𝐳) ei𝛽𝑧. (2.46)

Since the transverse part of the electric field for a forward and backward propagating
wave is derived from the same eigenmode 𝐞⟂, then 𝐞⟂ is independent on 𝛽’s sign. This
is however not the case for 𝑒𝑧 as can be seen from eq. (2.40). This is reversed for the
magnetic field as can be seen from eqs. (2.43) and (2.44), hence leading to the following
expression for the backward travelling mode

𝐄−(𝐫) = (𝐞⟂(𝐫⟂) − 𝑒𝑧(𝐫⟂) ̂𝐳) e− i𝛽𝑧 (2.47)
𝐇−(𝐫) = (−𝐡⟂(𝐫⟂) + ℎ𝑧(𝐫⟂) ̂𝐳) e− i𝛽𝑧. (2.48)

The wave equation for a waveguide can be reduced to a scalar wave equation [3]

∇2
⟂Ψ + 𝜀𝑘2

0Ψ = 𝛽2Ψ, (2.49)

where Ψ is any of the lateral components of the electric or magnetic field. One should
keep in mind that the field still needs to satisfy the divergence constraints.

2.3.1 Slab Waveguides

In this section, the focus point will be slab waveguides which is a structure where the
permittivity only depends on one lateral coordinate, which is taken to be the 𝑥-coordinate.
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We look at the class of solutions 𝐞(𝑥) independent of the 𝑦 coordinate. This assumption
allows us to rewrite eq. (2.38) into two equations, one for 𝑒𝑥 and one for 𝑒𝑦 given by

𝜕2𝑒𝑥
𝜕𝑥2 + 𝜕

𝜕𝑥
(𝑒𝑥

d ln(𝜀(𝑥))
d𝑥

) + 𝜀(𝑥)𝑘2
0𝑒𝑥 = 𝛽2𝑒𝑥 (TM) (2.50)

𝜕2𝑒𝑦

𝜕𝑥2 + 𝜀(𝑥)𝑘2
0𝑒𝑦 = 𝛽2𝑒𝑦 (TE), (2.51)

respectively, where it was used that 𝜕𝐞/𝜕𝑦 = 𝟎. In order to calculate 𝑒𝑧 one can
use eq. (2.40). It should here be noted that only the solution from eq. (2.50) gives a
contribution to 𝑒𝑧, because 𝜕𝑒𝑦/𝜕𝑦 = 0. For the case where the solution is polarised along
the 𝑦-axis, then 𝑒𝑧 = 0 and therefore these type of modes is often known as transverse
electric (TE) modes.

2.3.2 Boundary Conditions and Eigenmode Classes

In many cases, it is useful to divide the different types of eigenmodes into groups separated
by their eigenvalues. A simple waveguide with real-valued relative permittivity profiles
will be considered. The classification will be done through examples with three classes of
geometries, which are all shown in fig. 2.1. The first case of interest is the open geometry
shown in fig. 2.1a. The modes in an open geometry may be separated into two different
groups: The discrete set of guided modes and the continuum of radiation modes. The
discrete modes satisfies the equation 𝜀1𝑘2

0 < 𝛽2 < 𝜀2𝑘2
0 and the radiation modes satisfies

𝛽2 < 𝜀1𝑘2
0. The second geometry is a periodic structure with period 𝐿𝑥 as shown in

fig. 2.1a. While the domain is infinite, the periodicity reduces the computational domain
to a single period by applying the Bloch theorem

𝐄(𝑥 + 𝐿𝑥) = 𝐄(𝑥) ei𝛼. (2.52)

This discretises the continuum of radiation modes into discrete modes, which is often
called semi-radiation modes.

Another common boundary that is frequently used is the closed boundary consisting of
perfectly conducting walls as shown in fig. 2.1c. The corresponding boundary condition
reads

𝐄(0) = 𝐄(𝐿𝑥) = 0, (2.53)
and reduces the computational domain to finite size of 𝐿𝑥 leading again to a discretisation
of the continuum of radiation modes.

2.4 Orthogonality
This section sets out to prove the orthogonality relation between the lateral eigenmodes.
This is done by considering two solutions to Maxwell’s equations (𝐄𝑗, 𝐇𝑗), which is
generated by the corresponding free current sources 𝐉𝑗, where 𝑗 ∈ {1, 2}. These solutions
need to satisfy Maxwell’s equations

∇ × 𝐄𝑗 = i𝜔𝜇0𝜇𝐇𝑗 (2.54)
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𝑥

𝜀(𝑥)

𝜀1

𝜀2

(a) Open.

𝑥

𝜀(𝑥)

𝜀1

𝜀2

𝐿𝑥

(b) Periodic.

𝑥

𝜀(𝑥)

𝜀1

𝜀2

𝐿𝑥

(c) Closed.

Figure 2.1: (a) Shows an open geometry having no boundary conditions. (b) Shows a
geometry with periodic boundary conditions. (b) Shows a geometry with closed
boundary conditions. The latter two leads to a discretiation of the radiation
band.

∇ × 𝐇𝑗 = − i𝜔𝜀0𝜀𝐄𝑗 + 𝐉𝑗. (2.55)

The first step is to take the dot product between 𝐄𝑖 and ∇ × 𝐇𝑗 and the dot product
between 𝐇𝑖 and ∇ × 𝐄𝑗, where 𝑖, 𝑗 ∈ {1, 2} and 𝑖 ≠ 𝑗. The four dot products are then
added and subtracted in the following way

𝐇2 ⋅ (∇ × 𝐄1) − 𝐄𝟏 ⋅ (∇ × 𝐇2) + 𝐄2 ⋅ (∇ × 𝐇1) − 𝐇1 ⋅ (∇ × 𝐄2) = (2.56)
𝐇2 ⋅ (i𝜔𝜇0𝜇𝐇1) − 𝐄1 ⋅ (− i𝜔𝜀0𝜀𝐄2 + 𝐉2) + 𝐄2 ⋅ (− i𝜔𝜀0𝜀𝐄1 + 𝐉1) − 𝐇1 ⋅ (i𝜔𝜇0𝜇𝐇2).

This expression can be greatly simplified by noticing that most terms on the right hand
side of eq. (2.56) cancels and applying the identity ∇⋅(𝐀×𝐁) = 𝐁⋅(∇×𝐀)−𝐀⋅(∇×𝐁)
and this leaves us with

∇ ⋅ (𝐄1 × 𝐇2 − 𝐄2 × 𝐇1) = 𝐉1 ⋅ 𝐄2 − 𝐉2 ⋅ 𝐄1. (2.57)

Integrating the above equation over a volume 𝑉 as shown in fig. 2.2 and applying Gauss
Theorem one can obtain

∮
𝑆
(𝐄1 × 𝐇2 − 𝐄2 × 𝐇1) ⋅ 𝐧̂ d𝐴 = ∫

𝑉
𝐉1 ⋅ 𝐄2 − 𝐉2 ⋅ 𝐄1 d𝑉 , (2.58)

where 𝐧̂ is a unit vector normal to the surface 𝑆 pointing outward. Assume the structure
is uniform along the 𝑧-axis with thickness Δ𝑧 = 𝑧2 − 𝑧1. The surface of the structure can
be separated into three parts, a front surface 𝑆1, a back surface 𝑆2 and the side surfaces
𝑆𝑎, 𝑆𝑏, 𝑆𝑐 and 𝑆𝑑 as shown in fig. 2.2. The surface integral in eq. (2.58) for the sides can
be expressed as a sum of surface integrals for each side hence

∫
𝛿𝑆

𝐅 ⋅ 𝐧̂ d𝐴 = ∫
𝑆𝑎

𝐅 ⋅ 𝐧̂𝑎 d𝐴 + ∫
𝑆𝑏

𝐅 ⋅ 𝐧̂𝑏 d𝐴 + ∫
𝑆𝑐

𝐅 ⋅ 𝐧̂𝑐 d𝐴 + ∫
𝑆𝑑

𝐅 ⋅ 𝐧̂𝑑 d𝐴, (2.59)

where we have introduced the notation 𝐅 = 𝐄1 ×𝐇2 −𝐄2 ×𝐇1 and 𝛿𝑆 = 𝑆𝑎 ∪𝑆𝑏 ∪𝑆𝑐 ∪𝑆𝑑
to simplify the expression.
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𝑥

𝑦

𝑧

𝑆𝑑

𝑆𝑏

𝑆𝑎 𝑆1

𝑆𝑐

𝑆2

Δ𝑧

𝑉

0 𝐿𝑥

0

𝐿𝑦

(a)

𝑥

𝑦

𝑧 𝐧̂𝑑

𝐧̂𝑏

𝐧̂𝑎

𝐧̂1

𝐧̂𝑐

𝐧̂2

(b)

Figure 2.2: (a) A box volume 𝑉 covered by the surface top 𝑆1, bottom 𝑆2, the four sides
𝑆𝑎, 𝑆𝑏, 𝑆𝑐 and 𝑆𝑑. (b) Shows the same box with the normal unit vectors of
each surface with a similar label convention.

In the case of a periodic boundary condition 𝐅(0, 𝑦, 𝑧) = 𝐅(𝐿𝑥, 𝑦, 𝑧) we have

∫
𝑆𝑎

𝐅(0, 𝑦, 𝑧) ⋅ 𝐧̂𝑎 d𝐴 = − ∫
𝑆𝑐

𝐅(𝐿𝑥, 𝑦, 𝑧) ⋅ 𝐧̂𝑐 d𝐴. (2.60)

A similar argument can be made for the surfaces 𝑆𝑏 and 𝑆𝑑, hence showing that the
surface integrals of the sides cancel out.

In the case where the sides are made of perfect conducting metal walls, the tangential
components of the magnetic field must tend to zero at the boundary, leading to 𝐅 ⋅ 𝐧̂ = 0
at the walls, hence the boundary integral disappears. The surface integrals for the top
and bottom surfaces in eq. (2.58) can be expressed as

∫
𝑆1

𝐅 ⋅ 𝐧̂1 d𝐴 + ∫
𝑆2

𝐅 ⋅ 𝐧̂2 d𝐴 = − ∫ 𝐹𝑧(𝑥, 𝑦, 𝑧1) d𝐫⊥ + ∫ 𝐹𝑧(𝑥, 𝑦, 𝑧2) d𝐫⊥ (2.61)

= ∫ 𝐹𝑧(𝑥, 𝑦, 𝑧2) − 𝐹𝑧(𝑥, 𝑦, 𝑧1) d𝐫⊥. (2.62)

Since we already assumed that the structure is invariant along the 𝑧-axis, the field must
be continuous along 𝑧. For small Δ𝑧 the field can be seen as constant hence the surface
integral can be written as

∫
𝑉

𝐉1 ⋅ 𝐄2 − 𝐉2 ⋅ 𝐄1 d𝑉 = Δ𝑧 ∫ 𝐉1 ⋅ 𝐄2 − 𝐉2 ⋅ 𝐄1 d𝐫⊥. (2.63)

By dividing with Δ𝑧 and taking the limit Δ𝑧 → 0 we obtain

∫ 𝜕
𝜕𝑧

(𝐄1 × 𝐇2 − 𝐄2 × 𝐇1) ⋅ ̂𝐳 d𝐫⊥ = ∫ 𝐉1 ⋅ 𝐄2 − 𝐉2 ⋅ 𝐄1 d𝐫⊥. (2.64)

Now assume that the free currents 𝐉1 and 𝐉𝟐 are absent i.e. 𝐉1 = 𝐉𝟐 = 𝟎, then the
right hand side of eq. (2.64) is zero. Consider the two solutions (𝐄1, 𝐇1) and (𝐄2, 𝐇2)
as forward propagating modes on the form in eq. (2.46)

[𝐄+
𝑗 (𝐫)

𝐇+
𝑗 (𝐫)] = [𝐞⟂,𝑗(𝐫⟂) + 𝑒𝑧,𝑗(𝐫⟂) ̂𝐳

𝐡⟂,𝑗(𝐫⟂) + ℎ𝑧,𝑗(𝐫⟂) ̂𝐳] ei𝛽𝑗𝑧, (2.65)
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for 𝑗 ∈ {1, 2} and inserting it into eq. (2.64) gives

(𝛽1 + 𝛽2) ∫(𝐞⟂,1 × 𝐡⟂,2 − 𝐞⟂,2 × 𝐡⟂,1) ⋅ ̂𝐳 d𝐫⟂ = 0. (2.66)

A similar expression can be derived by replacing the forward propagating mode to a
backward propagating mode i.e. (𝐄+

2 , 𝐇+
2 ) → (𝐄−

2 , 𝐇−
2 ). The backward propagating

mode is on the form in eq. (2.46)

[𝐄−
2 (𝐫)

𝐇−
2 (𝐫)] = [ 𝐞⟂,2(𝐫⟂) − 𝑒𝑧,2(𝐫⟂) ̂𝐳

−𝐡⟂,2(𝐫⟂) + ℎ𝑧,2(𝐫⟂) ̂𝐳] e− i𝛽2𝑧. (2.67)

Note that 𝐞⟂,2, 𝐡⟂,2, 𝑒𝑧,2 and ℎ𝑧,2 for the forward and backward propagating modes are
identical. Inserting (𝐄+

1 , 𝐇+
1 ) and (𝐄−

2 , 𝐇−
2 ) into eq. (2.64) gives

(𝛽2 − 𝛽1) ∫(𝐞⟂,1 × 𝐡⟂,2 + 𝐞⟂,2 × 𝐡⟂,1) ⋅ ̂𝐳 d𝐫⟂ = 0. (2.68)

If 𝛽1 ≠ 𝛽2, then the only way for eqs. (2.66) and (2.68) to be fulfilled is to set the
integrals equal to zero. Summing eqs. (2.66) and (2.68) together gives

∫(𝐞1 × 𝐡2) ⋅ ̂𝐳 d𝐫⟂ = 0, (2.69)

which is the called the orthogonality relation. If 𝛽1 = 𝛽2 then the solutions (𝐄1, 𝐇1)
and (𝐄2, 𝐇2) are not necessary orthogonal and in that case cannot satisfy eq. (2.69).
However, a Gram-Schmidt procedure can be used to orthogonalise the solutions.

Another orthogonality relation can be obtained by making the replacement (𝐄2, 𝐇2, 𝐉2)
→ (𝐄∗

2, 𝐇∗
2, 𝐉∗

2) and repeating the above steps leads to the power orthogonality relation
given by [3]

∫(𝐞1 × 𝐡∗
2) ⋅ ̂𝐳 d𝐫⟂ = 0. (2.70)

The last relation can be used along with the time-averaged Poynting vector (eq. (2.93)),
hence its name. Equation (2.69) is more general than eq. (2.70) as it holds for arbitrary
geometries including those with complex dielectric profiles. Equation (2.70) however,
only holds for real-valued dielectric profiles [3].

2.5 Poynting Vector
The Poynting vector is defined as

𝐒(𝐫, 𝑡) = 𝐄(𝐫, 𝑡) × 𝐇(𝐫, 𝑡). (2.71)

The net electromagnetic power 𝑃out that propagates out of the surface 𝑆 surrounding a
volume Ω can be found by integrating the outward flux of the Poynting vector across 𝑆.

𝑃out = ∮
𝑆

𝐒(𝐫, 𝑡) ⋅ 𝐧̂ d𝐴, (2.72)
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where 𝐧̂ is an outward pointing normal unit vector to the surface 𝑆. This surface integral
can be written as a volume integral by the divergence theorem

∮
𝑆

𝐒(𝐫, 𝑡) ⋅ 𝐧̂ d𝐴 = ∫
Ω

∇ ⋅ 𝐒(𝐫, 𝑡) d𝑉 . (2.73)

Note that in the following equations 𝐇, 𝐄, 𝐃, 𝐉 and 𝐏 are all dependent on 𝐫 and 𝑡, but
in order to shorten the notation this is made implicit. To see how the Poynting vector
can describe the flow of electromagnetic power, the above expression can be expanded by
adding the following on each side

1
2

d
d𝑡

∫
Ω

𝐁 ⋅ 𝐇 + 𝐃 ⋅ 𝐄 d𝑉

= 1
2

∫
Ω

𝐇 ⋅ 𝜕𝐁
𝜕𝑡

+ 𝐁 ⋅ 𝜕𝐇
𝜕𝑡

+ 𝐄 ⋅ 𝜕𝐃
𝜕𝑡

+ 𝐃 ⋅ 𝜕𝐄
𝜕𝑡

d𝑉 (2.74)

= 1
2

∫
Ω

2𝐇 ⋅ (−∇ × 𝐄) + 𝐄 ⋅ (∇ × 𝐇 − 𝐉) + (𝜀0𝐄 + 𝐏) ⋅ ( 1
𝜀0

𝜕
𝜕𝑡

(𝐃 − 𝐏)) d𝑉 (2.75)

= 1
2

∫
Ω

2𝐇 ⋅ (−∇ × 𝐄) + 2𝐄 ⋅ (∇ × 𝐇 − 𝐉) − 𝐄 ⋅ 𝜕
𝜕𝑡

𝐏 + 𝐏
𝜀0

⋅ 𝜕
𝜕𝑡

(𝐃 − 𝐏) d𝑉 . (2.76)

Hence eq. (2.73) can be written as

∮
𝑆

𝐒(𝐫, 𝑡) ⋅ 𝐧̂ d𝐴 + 1
2

d
d𝑡

∫
Ω

𝐁 ⋅ 𝐇 + 𝐃 ⋅ 𝐄 d𝑉 (2.77)

= ∫
Ω

∇ ⋅ 𝐒 d𝑉 + 1
2

∫
Ω

2𝐄 ⋅ (∇ × 𝐇 − 2𝐇 ⋅ (∇ × 𝐄) + −𝐉) − 𝐄 ⋅ 𝜕
𝜕𝑡

𝐏 + 𝐏
𝜀0

⋅ 𝜕
𝜕𝑡

(𝐃 − 𝐏) d𝑉 ,

where we have used the approximation 𝐁(𝐫, 𝑡) = 𝜇0𝐇(𝐫, 𝑡). By using the identity

∇ ⋅ 𝐒 = ∇ ⋅ (𝐄 × 𝐇) = 𝐇 ⋅ (∇ × 𝐄) − 𝐄 ⋅ (∇ × 𝐇), (2.78)

eq. (2.77) can be written as

∮
𝑆

𝐒 ⋅ 𝐧̂ d𝐴 + 1
2

d
d𝑡

∫
Ω

𝐁 ⋅ 𝐇 + 𝐃 ⋅ 𝐄 d𝑉 (2.79)

= − ∫
Ω

𝐄 ⋅ 𝐉 d𝑉 − 1
2

∫
Ω

𝐄 ⋅ 𝜕𝐏
𝜕𝑡

− 𝐏 ⋅ 𝜕𝐄
𝜕𝑡

d𝑉 . (2.80)

In the case of a linear and non-dispersive material, the polarisation can be expressed as

𝐏(𝐫, 𝑡) = 𝜒𝑒(𝐫)𝐄(𝐫, 𝑡), (2.81)

and since 𝜒𝑒 does not depend on time, then the last term on the right-hand side of
eq. (2.80) cancels out and Poynting theorem is obtained

∮
𝑆
𝐒(𝐫, 𝑡) ⋅ 𝐧̂ d𝐴 + d𝑈

d𝑡
= − ∫

Ω
𝐄(𝐫, 𝑡) ⋅ 𝐉(𝐫, 𝑡) d𝑉 (2.82)
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𝑈 = 1
2

∫
Ω

𝐁(𝐫, 𝑡) ⋅ 𝐇(𝐫, 𝑡) + 𝐃(𝐫, 𝑡) ⋅ 𝐄(𝐫, 𝑡) d𝑉 . (2.83)

Here 𝑈 represent the energy stored in the built-up electric and magnetic fields whereas
∮
𝑆

𝐒(𝐫, 𝑡) ⋅ 𝐧̂ d𝐴 evidently represents the electromagnetic power that is propagating out
of the volume Ω, across its boundary 𝑆. The integral ∫

Ω
𝐄(𝐫, 𝑡) ⋅ 𝐉(𝐫, 𝑡) d𝑉 describes the

dissipation inside Ω [2, 4].
In the case where the material is linear and dispersive, then for a narrow spectral

width around 𝜔 = 𝜔0 the Poynting theorem can instead be expressed as [2]

∫
𝑆
⟨𝐒(𝐫, 𝑡)⟩ ⋅ 𝐧̂ d𝐴 + d

d𝑡
𝑈eff (2.84)

= ∫
Ω

⟨𝐄(𝐫, 𝑡) ⋅ 𝐉𝑠(𝐫, 𝑡)⟩ d𝑉 − 𝜔0𝜀0 ∫
𝜔

Im(𝜀(𝐫, 𝜔0))⟨𝐄(𝐫, 𝑡) ⋅ 𝐄(𝐫, 𝑡)⟩ d𝑉 . (2.85)

The effective electromagnetic energy built up is now given by

𝑈eff = 1
2

𝜀0 ∫
Ω

Re(d𝜔𝜀(𝐫, 𝜔)
d𝜔

)
𝜔=𝜔0

⟨𝐄(𝐫, 𝑡) ⋅ 𝐄(𝐫, 𝑡)⟩ d𝑉 . (2.86)

Note that the brackets ⟨⋯⟩ denote the time average over one cycle of the frequency 𝜔0.
In the case where the spectral width of the fields is small enough to be treated as a

monochromatic field, it is then convenient to express the electric field on the form

𝐄(𝐫, 𝑡) = Re(𝐄(𝐫, 𝜔) e− i𝜔𝑡) = 1
2

(𝐄(𝐫, 𝜔) e− i𝜔𝑡 + 𝐄∗(𝐫, 𝜔) e+ i𝜔𝑡). (2.87)

The fields 𝐇, 𝐃, 𝐁 and 𝐉 can be written on a similar form. The time average of the
Poynting vector can be found by integrating over a time period 𝑇 = 2𝜋/𝜔 such that

𝐒av(𝐫) = 1
𝑇

∫
𝑇

0
𝐒(𝐫, 𝑡) d𝑡. (2.88)

The Poynting vector in eq. (2.71) for the monochromatic field in eq. (2.87) reads

𝐒(𝐫, 𝑡) = 𝐄(𝐫, 𝑡) × 𝐇(𝐫, 𝑡) (2.89)

= 1
2

(𝐄(𝐫, 𝜔) e− i𝜔𝑡 + 𝐄∗(𝐫, 𝜔) e+ i𝜔𝑡) × 1
2

(𝐇(𝐫, 𝜔) e− i𝜔𝑡 + 𝐇∗(𝐫, 𝜔) e+ i𝜔𝑡) (2.90)

= 1
4

{(𝐄(𝐫, 𝜔) × 𝐇(𝐫, 𝜔)) e−2 i𝜔𝑡 + (𝐄∗(𝐫, 𝜔) × 𝐇∗(𝐫, 𝜔)) e2 i𝜔𝑡

+ 𝐄(𝐫, 𝜔) × 𝐇∗(𝐫, 𝜔) + 𝐄∗(𝐫, 𝜔) × 𝐇(𝐫, 𝜔)} (2.91)

= 1
2

Re(𝐄(𝐫, 𝜔) × 𝐇∗(𝐫, 𝜔)) + 1
2

Re(𝐄(𝐫, 𝜔) × 𝐇(𝐫, 𝜔) e−2 i𝜔𝑡). (2.92)

By inserting this expression into eq. (2.88) and noting that the last term vanishes when
integrating over time, the average Poynting vector reads

𝐒av(𝐫) = 1
2

Re(𝐄(𝐫, 𝜔) × 𝐇∗(𝐫, 𝜔)). (2.93)
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2.6 The step-index optical fiber
This section discusses a method for calculating the mode profile for an electric field in a
step index fiber consisting of two layers, with the inner layer having a radius of length 𝑎.
By assuming that the refractive index is constant in each layer it can be written as the
following step-function

𝑛 = {
𝑛1, 𝜌 ≤ 𝑎
𝑛2, 𝜌 > 𝑎

, (2.94)

where we require that 𝑛1 > 𝑛2. We will then search for solution on the form

𝐄(𝐫) = ( ̂𝐳𝐸𝑧(𝜌) + ̂𝝆𝐸𝜌(𝜌) + ̂𝝓𝐸𝜙(𝜌)) ei𝑚𝜙 ei𝛽𝑧 (2.95)

𝐇(𝐫) = ( ̂𝐳𝐻𝑧(𝜌) + ̂𝝆𝐻𝜌(𝜌) + ̂𝝓𝐻𝜙(𝜌)) ei𝑚𝜙 ei𝛽𝑧, (2.96)

where 𝑚 ∈ N0 is the azimuthal index and 𝛽 is the propagation constant [5]. Within
each layer the refractive index 𝑛 does not depend on the position hence we can use
the Helmholtz equation introduced in eq. (2.32) and by writing them in cylindrical
coordinates the following equation emerges

( 𝜕2

𝜕𝜌2 + 1
𝜌

𝜕
𝜕𝜌

+ 1
𝜌2

𝜕2

𝜕𝜙2 + 𝜕2

𝜕𝑧2 + 𝑘2
0𝑛2)𝐄(𝐫) = 𝟎 (2.97)

( 𝜕2

𝜕𝜌2 + 1
𝜌

𝜕
𝜕𝜌

+ 1
𝜌2

𝜕2

𝜕𝜙2 + 𝜕2

𝜕𝑧2 + 𝑘2
0𝑛2)𝐇(𝐫) = 𝟎. (2.98)

These equation can be written into a Bessel differential equation by multiplying the
equation with 𝜌2 on each side and introducing the notation 𝜅𝑖 = √𝑘2

0𝑛2
𝑖 − 𝛽2, where

𝑖 ∈ {1, 2} such that

(𝜌2 𝜕2

𝜕𝜌2 + 𝜌 𝜕
𝜕𝜌

+ (𝜌2𝜅2
𝑖 − 𝑚2))𝐄(𝐫) = 𝟎 (2.99)

(𝜌2 𝜕2

𝜕𝜌2 + 𝜌 𝜕
𝜕𝜌

+ (𝜌2𝜅2
𝑖 − 𝑚2))𝐇(𝐫) = 𝟎. (2.100)

For the case where the modes are bounded to the waveguide, 𝑘0𝑛1 < 𝛽 < 𝑘0𝑛2 the
𝑧-component will have the solution on the form

𝐸𝑧(𝜌) = {
𝐴𝐽𝑚(𝜅1𝜌) + 𝐴′𝑌𝑚(𝜅1𝜌), 𝜌 ≤ 𝑎
𝐵𝐾𝑚(𝛾2𝜌) + 𝐵′𝐼𝑚(𝛾2𝜌), 𝜌 > 𝑎

(2.101)

𝐻𝑧(𝜌) = {
𝐶𝐽𝑚(𝜅1𝜌) + 𝐶′𝑌𝑚(𝜅1𝜌), 𝜌 ≤ 𝑎
𝐷𝐾𝑚(𝛾2𝜌) + 𝐷′𝐼𝑚(𝛾2𝜌), 𝜌 > 𝑎

(2.102)

where 𝛾2 = √𝛽2 − 𝑘2
0𝑛2

2, 𝐽𝑚 and 𝑌𝑚 are the Bessel functions of the first and second
kind, respectively, and 𝐼𝑚 and 𝐾𝑚 are the modified Bessel functions of the first and
second kind, respectively. Furthermore, 𝐴, 𝐵, 𝐶 and 𝐷 with and without primes are

15
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constants. We can discard the solution 𝑌𝑚 because 𝑌𝑚(𝑥) → −∞ as 𝑥 → 0 for all 𝑚
which is non-physical. Therefore we can set 𝐴′ = 𝐶′ = 0. Outside the core we seek a
decaying solution, but 𝐼𝑚(𝑥) → ∞ and 𝐾𝑚(𝑥) → 0 as 𝑥 → ∞ for all 𝑚, meaning that
𝐼𝑚 is not a decaying solution. Therefore we can set 𝐵′ = 𝐷′ = 0.

It is now possible to relate the electric field and the magnetic field through Maxwell’s
equation given in eqs. (2.24a) and (2.24b), which will then yield

i𝜔𝜇0𝐻𝑧 =
d𝐸𝜙

d𝜌
− i𝑚

𝜌
𝐸𝜌 + 1

𝜌
𝐸𝜙, − i𝜔𝜀0𝑛2𝐸𝑧 =

d𝐻𝜙

d𝜌
− i𝑚

𝜌
𝐻𝜌 + 1

𝜌
𝐻𝜙 (2.103)

i𝜔𝜇0𝐻𝜌 = − i𝛽𝐸𝜙 + i𝑚
𝜌

𝐸𝑧, − i𝜔𝜀0𝑛2𝐸𝜌 = − i𝛽𝐻𝜙 + i𝑚
𝜌

𝐻𝑧 (2.104)

i𝜔𝜇0𝐻𝜙 = i𝛽𝐸𝜌 − d𝐸𝑧
d𝜌

, − i𝜔𝜀0𝑛2𝐸𝜙 = i𝛽𝐻𝜌 − d𝐻𝑧
d𝜌

. (2.105)

It possible to combine these equation to express the 𝜌 and 𝜙 component of the electric
and magnetic field through the 𝑧 components such that

𝐸𝜌 = i
𝜅2 (𝛽d𝐸𝑧

d𝜌
+ i𝑚𝜇0𝜔

𝜌
𝐻𝑧), 𝐻𝜌 = i

𝜅2 (𝛽d𝐻𝑧
d𝜌

− i𝑚𝜀0𝑛2𝜔
𝜌

𝐸𝑧) (2.106)

𝐸𝜙 = i
𝜅2 (i𝑚𝛽

𝜌
𝐸𝑧 − 𝜇0𝜔d𝐻𝑧

d𝜌
), 𝐻𝜙 = i

𝜅2 (i𝑚𝛽
𝜌

𝐻𝑧 + 𝜀0𝑛2𝜔d𝐸𝑧
d𝜌

). (2.107)

Furthermore we require that 𝐻𝑧, 𝐸𝑧, 𝐻𝜙 and 𝐸𝜙 are continuous across the interface
which gives the follow four equation (the radius of the core is 𝜌 = 𝑎)

𝑚𝛽
𝜅2

1𝑎
𝐴𝐽𝑚(𝜅1𝑎) + i𝜔𝜇0

𝜅1
𝐶𝐽 ′

𝑚(𝜅1𝑎) = 𝑚𝛽
𝜅2

2𝑎
𝐵𝐾𝑚(𝛾2𝑎) + i𝜔𝜇0

𝜅2
2

𝐷𝐾′
𝑚(𝛾2𝑎)𝛾2 (2.108)

𝑚𝛽
𝜅2

1𝑎
𝐶𝐽𝑚(𝜅1𝑎) − i𝜔𝜀0𝑛2

𝜅1
𝐴𝐽 ′

𝑚(𝜅1𝑎) = 𝑚𝛽
𝜅2

2𝑎
𝐷𝐽𝑚(𝛾2𝑎) − i𝜔𝜀0𝑛2

𝜅2
2

𝐵𝐾′
𝑚(𝛾2𝑎)𝛾2 (2.109)

𝐴𝐽𝑚(𝜅1𝑎) = 𝐵𝐾𝑚(𝛾2𝑎) (2.110)
𝐶𝐽𝑚(𝜅1𝑎) = 𝐷𝐾𝑚(𝛾2𝑎). (2.111)

By combining the above equation one can obtain

⎡⎢
⎣

𝜔𝜀0(𝑛2
1

𝜅1

𝐽′
𝑚(𝜅1𝑎)

𝐽𝑚(𝜅1𝑎) + 𝑛2
2

𝛾2

𝐾′
𝑚(𝛾2𝑎)

𝐾𝑚(𝛾2𝑎)) i𝑚𝛽
𝑎 ( 1

𝜅2
1

+ 1
𝛾2

2
)

𝑚𝛽
𝑎 ( 1

𝜅2
1

+ 1
𝛾2

2
) i𝜔𝜇0( 1

𝜅1

𝐽′
𝑚(𝜅1𝑎)

𝐽𝑚(𝜅1𝑎) + 1
𝛾2

𝐾′
𝑚(𝛾2𝑎)

𝐾𝑚(𝛾2𝑎))
⎤⎥
⎦

[𝐴
𝐶] = 𝟎 (2.112)

This system of equations only contains non-trivial solution for 𝛽 when its determinant is
zero, hence the following equation of 𝛽 can be derived

𝐹(𝛽) = [𝑛2
1

𝜅1

𝐽 ′
𝑚(𝜅1𝑎)

𝐽𝑚(𝜅1𝑎)
+ 𝑛2

2
𝛾2

𝐾′
𝑚(𝛾2𝑎)

𝐾𝑚(𝛾2𝑎)
][ 1

𝜅1

𝐽 ′
𝑚(𝜅1𝑎)

𝐽𝑚(𝜅1𝑎)
+ 1

𝛾2

𝐾′
𝑚(𝛾2𝑎)

𝐾𝑚(𝛾2𝑎)
]−[𝑚𝛽

𝑘0𝑎
]

2

[ 1
𝜅2

1
+ 1

𝛾2
2

]
2

.

(2.113)
For each index 𝑚 there can exist multiple solutions 𝛽 denoted 𝛽𝑚,𝑛.
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2.7 Gaussian Beam
In this section, we will expand a Gaussian beam in plane waves and derive an expression
for the expansion coefficients. The result will be used in connection with a two-dimensional
geometry that is periodic along the 𝑥 axis with period Λ.

Consider a fundamental laser beam with a Gaussian field distribution in the beam
waist centred around 𝑥 = 𝑥𝑐 [6]

𝐸(𝑥; 𝑧 = 0) = 𝐸0 e−(𝑥−𝑥𝑐)2/𝑤2 , 𝑥 ∈ [−Λ/2 + 𝑥𝑐; Λ/2 + 𝑥𝑐], (2.114)

where 𝐸0 is a constant. The beam waist, with radius 𝑤, have been choses to be located
at 𝑧 = 0. By expanding the field in an infinite series of plane waves, the field can be
written as

𝐸(𝑥, 𝑧) =
∞

∑
𝑛=−∞

𝐸0,𝑛 ei𝑛𝐺𝑥 e− i𝛽𝑛𝑧, (2.115)

where 𝐺 = 2𝜋/Λ. In order to find 𝐸0,𝑛 we can use a Fourier transformation

𝐸0,𝑛 = 1
Λ

∫
𝑥= Λ

2 +𝑥𝑐

𝑥=− Λ
2 +𝑥𝑐

𝐸(𝑥; 𝑧 = 0) e− i𝑛𝐺𝑥 d𝑥 (2.116)

= 1
Λ

∫
𝑥= Λ

2 +𝑥𝑐

𝑥=− Λ
2 +𝑥𝑐

𝐸0 e−(𝑥−𝑥𝑐)2/𝑤2 e− i𝑛𝐺𝑥 d𝑥. (2.117)

This integral can be simplified with the substitution 𝑥′ = 𝑥 − 𝑥𝑐 which leads to

𝐸0,𝑛 = e− i𝑛𝐺𝑥𝑐

Λ
∫

𝑥′=Λ/2

𝑥′=−Λ/2
𝐸0 e−(𝑥′)2/𝑤2 e− i𝑛𝐺𝑥′ d𝑥′. (2.118)

Assuming the period of the structure is much larger than the width of the Gaussian beam
i.e. 𝑤 ≪ Λ, the limits of the above integral can be changed to 𝑥′ = ∞ and 𝑥′ = −∞ for
the upper and lower limit, respectively

𝐸0,𝑛 ≈ 𝐸0
e− i𝑛𝐺𝑥𝑐

Λ
𝑤

√
𝜋 e− (𝑛𝐺𝑤)2

4 . (2.119)
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3 Finite difference Frequency Domain

3.1 Finite difference
Most of the methods in electrodynamic and optic require knowledge of a function’s
derivatives, usually the first and second order. Sometimes analytical expressions can
be derived for derivatives, however when functions (or their derivatives) becomes too
complicated or no analytical expressions are available, then numerical derivatives must
be used. In this section, we will discuss the finite difference method to obtain first-order
derivatives.

There are three common finite difference operators; forward, backward and central
finite difference, which are defined as

Forward: d𝑓
d𝑥

≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

(3.1)

Backward: d𝑓
d𝑥

≈ 𝑓(𝑥) − 𝑓(𝑥 − ℎ)
ℎ

(3.2)

Central: d𝑓
d𝑥

≈ 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ

(3.3)

where ℎ > 0 [3, 7]. The forward difference uses the function-values at the point of interest
𝑥 and a step forward point 𝑥 + ℎ, whereas backward difference uses backwards step 𝑥 − ℎ
instead. Central difference ‘skips’ the point of interest, and only look at the forward and
backward points.

Finite difference has its roots in Taylor’s theorem. Consider a smooth function 𝑓∶ ℝ → ℝ
which is differential at some point 𝑎 ∈ ℝ. The derivative of 𝑓 is

d𝑓
d𝑥𝑎

= lim
ℎ→0

𝑓(𝑎 + ℎ) + 𝑓(𝑎)
ℎ

(3.4)

and the function can be written as the Taylor expansion

𝑓(𝑥) =
∞

∑
𝑛=0

1
𝑛!

d𝑛𝑓
d𝑥𝑛

𝑎
(𝑥 − 𝑎)𝑛. (3.5)

Setting ℎ = 𝑥 − 𝑎 then the forward difference is obtained by neglecting the second and
higher-order terms in eq. (3.5)

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + d𝑓
d𝑥𝑎

ℎ + 1
2

d2𝑓
d𝑥2

𝑎
ℎ2 + ⋯ (3.6)

⟹ d𝑓
d𝑥𝑎

= 𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

+ 1
2

d2𝑓
d𝑥2

𝑎
ℎ + ⋯ , (3.7)
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which have the truncation error as a function of ℎ as 𝑐1ℎ + 𝑐2ℎ2 + ⋯ and decreases with
smaller ℎ.

Before continuing, we introduce the big-O notation. Say we have two functions ℎ, 𝑔
where 𝑔(𝑥) is strictly positive. The Big O notation is used to describe the limiting
behaviour of ℎ(𝑥) as 𝑥 → 𝑎, where 𝑎 is a constant and are allowed to be infinity, however
we describe only the case where 𝑎 is finite. To describe the behaviour of ℎ near some
real number 𝑎, then we write ℎ(𝑥) = O(𝑔(𝑥)) as 𝑥 → 𝑎, if and only if there exist two
constants 𝑀, 𝛿 > 0, such that |ℎ(𝑥)| < 𝑀𝑔(𝑥) for all |𝑥 − 𝑎| ≤ 𝛿 [7]. It means that the
absolute value of ℎ(𝑥) is at most a constant multiple of 𝑔(𝑥). For a Taylor series of the
form eq. (3.5), we look at the limiting behaviour of ℎ(𝑥) as 𝑥 → 0 [7].

For the case in eq. (3.7), we are interested in ℎ → 0+, specifically for 0 < ℎ < 1 such
that ℎ > ℎ2 > ℎ3 > ⋯. Let ℎ = 1/𝑘, for 𝑘 → ∞ then the truncation error of the forward
difference

𝑐1ℎ + 𝑐2ℎ2 + ⋯ = 𝑐1/𝑘 + 𝑐2/𝑘2 + ⋯ (3.8)
is O(1/𝑘) = O(ℎ) as ℎ → 0.

Repeating the above steps with a negative step length −ℎ then the Taylor expansion
reads

𝑓(𝑎 − ℎ) = 𝑓(𝑎) − d𝑓
d𝑥𝑎

ℎ + 1
2

d2𝑓
d𝑥2

𝑎
ℎ2 − ⋯ (3.9)

and the backward difference is obtained
d𝑓
d𝑥𝑎

= 𝑓(𝑎) − 𝑓(𝑎 − ℎ)
ℎ

+ O(ℎ), (3.10)

which have the same order of truncation error as the forward difference.
The central difference may be obtained by taking the difference of eqs. (3.6) and (3.9)

and dividing with two

𝑓(𝑎 + ℎ) − 𝑓(𝑎 − ℎ) = 2 d𝑓
d𝑥𝑎

ℎ + 2 1
3!

d3𝑓
d𝑥3

𝑎
ℎ3 + ⋯ (3.11)

leading to
d𝑓
d𝑥𝑎

= 𝑓(𝑎 + ℎ) − 𝑓(𝑎 − ℎ)
2ℎ

+ O(ℎ2). (3.12)

Since the truncation error for the central difference is O(ℎ2), then it leads to significantly
improved accuracy over the forward (and backward) difference, which have the truncation
error O(ℎ). Generally, the truncation error decreases with smaller ℎ. Ideally, we would
choose ℎ as small as possible to achieve the smallest truncation error. However, in
numerical calculations, the floating points arithmetic on a computer leads to round-off
errors which are of order O(𝜖𝑀/ℎ) and increases with smaller ℎ, where 𝜖𝑀 is machine
epsilon [7]. The best accuracy is found when the truncation and round-off errors are
approximately equal and the optimal ℎ can be roughly estimated from this [7].

In fig. 3.1 a comparison of the total error between the discussed methods is shown. It
is seen that the error of each method decreases with smaller ℎ until the optimal solution
is roughly reached. After that point, the round-off error becomes significant and grows
large.
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Figure 3.1: A comparison of forward difference and central difference approximations ab-
solute error using 𝑓(𝑥) = sin(sin(𝑥) cos(𝑥)) at 𝑥 = 𝜋/3. The points are rough
estimates of the optimal accuracy.

3.2 Yee Mesh

To understand the idea behind a Yee Mesh, it will be introduced with an example and
Maxwell’s equations eqs. (2.24a) and (2.24b). Writing out each vector component yields

⎡
⎢
⎣

𝐻𝑥
𝐻𝑦
𝐻𝑧

⎤
⎥
⎦

= 1
i𝜔𝜇0

⎡
⎢
⎣

𝜕
𝜕𝑦𝐸𝑧 − 𝜕

𝜕𝑧𝐸𝑦
𝜕

𝜕𝑧𝐸𝑥 − 𝜕
𝜕𝑥𝐸𝑧

𝜕
𝜕𝑥𝐸𝑦 − 𝜕

𝜕𝑦𝐸𝑥

⎤
⎥
⎦

(3.13)

⎡
⎢
⎣

𝐸𝑥
𝐸𝑦
𝐸𝑧

⎤
⎥
⎦

= − 1
i𝜔𝜀0𝜀

⎡
⎢
⎣

𝜕
𝜕𝑦𝐻𝑧 − 𝜕

𝜕𝑧𝐻𝑦
𝜕

𝜕𝑧𝐻𝑥 − 𝜕
𝜕𝑥𝐻𝑧

𝜕
𝜕𝑥𝐻𝑦 − 𝜕

𝜕𝑦𝐻𝑥

⎤
⎥
⎦

. (3.14)

The idea is to use the central difference formula eq. (3.12) to calculate the derivatives.
For the discussion below, we define the 𝑥-axis to be horizontal and the 𝑦-axis is the
vertical as illustrated in fig. 3.2.

Looking at the above expression for 𝐸𝑧, the derivative 𝜕
𝜕𝑥𝐻𝑦 and 𝜕

𝜕𝑦𝐻𝑥 must be
evaluated. With central difference, it is required to determine 𝐻𝑦 to the left and right of
𝐸𝑧 and determine 𝐻𝑥 above and below 𝐸𝑧 (using the terminology from fig. 3.2). It is
not needed to evaluate 𝐻𝑥 and 𝐻𝑦 at the same point as 𝐸𝑧. Similar arguments can be
made for all other field components. This is essentially the idea behind how to construct
a Yee grid.

Since it was assumed that the waveguide is uniform along the 𝑧-axis in section 2.3, the
electric and magnetic field can be written

𝐄(𝐫) = 𝐄(𝑥, 𝑦) ei𝛽𝑧 (3.15)
𝐇(𝐫) = 𝐇(𝑥, 𝑦) ei𝛽𝑧, (3.16)
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(𝑚, 𝑛)

𝐻𝑥

𝐸𝑦

𝐻𝑦

𝐸𝑥

𝐻𝑧

𝐸𝑧

(𝑚 + 1, 𝑛)

𝐻𝑥

𝐸𝑦

𝐸𝑧

(𝑚 − 1, 𝑛)
𝐻𝑦

𝐸𝑥

𝐻𝑧

(𝑚, 𝑛 + 1)
𝐻𝑦

𝐸𝑥𝐸𝑧

(𝑚, 𝑛 − 1)

𝐻𝑥

𝐸𝑦

𝐻𝑧

Figure 3.2: A two dimensional Yee mesh. Each box illustrate a fundamental cell with four
interior points in which the field components are evaluated by a central difference
scheme.

which means that the derivatives of the field components with respect to 𝑧 gives the field
itself multiplied by a factor of i𝛽. For example, consider the 𝐸𝑥 component. Then 𝐻𝑧
must be determined above and below of 𝐸𝑥, whereas the 𝑧-derivative of 𝐻𝑦 must be
evaluated at the same point as 𝐸𝑥 and simply becomes i𝛽𝐻𝑦. The rest of the equations
can be discretised in a similar manner and the Yee grid is formed. The grid that will
be considered consist of cells with side length Δ𝑥 and Δ𝑦, where each cell contains four
points in which the magnetic and electric field components are calculated as illustrated
in fig. 3.2.

Before proceeding with the calculations, we need to determine at which points to
calculate the dielectric function 𝜀. We could restrict the discontinuities of 𝜀 to lie on
lines running through the grid points where the electric fields are represented. But this
is inconveniently when modelling curved boundaries because the boundaries must be
approximated by right-angled steps, which is also called the staircase approximation [3]
and is illustrated in fig. 3.4b. Furthermore the discretisation of 𝜀 would also be tied to
the grid size and shape, which for example means that small changes of the structure
cannot be studied [3]. A better method is to use the dielectric averaging scheme and the
discussion of it is postponed to section 3.3. However, it implies that different 𝜀 values for
each electric field components should be used i.e. 𝜀𝑥 is calculated at 𝐸𝑥, 𝜀𝑦 is calculated
at 𝐸𝑦 and 𝜀𝑧 is calculated at 𝐸𝑧 [3].

Discretising eqs. (3.13) and (3.14) (with different 𝜀 values as mentioned above) using
the central difference scheme leads to

i𝜔𝜇0𝐻𝑥(𝑚, 𝑛) = 𝐸𝑧(𝑚, 𝑛 + 1) − 𝐸𝑧(𝑚, 𝑛)
Δ𝑦

− i𝛽𝐸𝑦(𝑚, 𝑛) (3.17)

i𝜔𝜀0𝜀𝑥(𝑚, 𝑛)𝐸𝑥(𝑚, 𝑛) = −𝐻𝑧(𝑚, 𝑛) − 𝐻𝑧(𝑚, 𝑛 − 1)
Δ𝑦

+ i𝛽𝐻𝑦(𝑚, 𝑛) (3.18)
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i𝜔𝜇0𝐻𝑦(𝑚, 𝑛) = i𝛽𝐸𝑥(𝑚, 𝑛) − 𝐸𝑧(𝑚 + 1, 𝑛) − 𝐸𝑧(𝑚, 𝑛)
Δ𝑥

(3.19)

i𝜔𝜀0𝜀𝑦(𝑚, 𝑛)𝐸𝑦(𝑚, 𝑛) = − i𝛽𝐻𝑥(𝑚, 𝑛) + 𝐻𝑧(𝑚, 𝑛) − 𝐻𝑧(𝑚 − 1, 𝑛)
Δ𝑥

(3.20)

i𝜔𝜇0𝐻𝑧(𝑚, 𝑛) =
𝐸𝑦(𝑚 + 1, 𝑛) − 𝐸𝑦(𝑚, 𝑛)

Δ𝑥
− 𝐸𝑥(𝑚, 𝑛 + 1) − 𝐸𝑥(𝑚, 𝑛)

Δ𝑦
(3.21)

i𝜔𝜀0𝜀𝑧(𝑚, 𝑛)𝐸𝑧(𝑚, 𝑛) = −
𝐻𝑦(𝑚, 𝑛) − 𝐻𝑦(𝑚 − 1, 𝑛)

Δ𝑥
+ 𝐻𝑥(𝑚, 𝑛) − 𝐻𝑥(𝑚, 𝑛 − 1)

Δ𝑦
.

(3.22)

where each box in fig. 3.2 have been given an index. If we have a 𝑀 × 𝑁 grid, then the
𝑚 index refer to the column and takes on the values 𝑚 ∈ {1, 2, … , 𝑀}, and the 𝑛 index
refers to the row and takes on the values 𝑛 ∈ {1, 2, … , 𝑁}.

From the above equations it is possible to derive an eigenvalue equation for 𝛽2. Starting
off with inserting eqs. (3.20) and (3.22) into eq. (3.17), one obtains the following equation

(𝑘2
0 − 𝛽2

𝜀𝑦(𝑚, 𝑛)
− 1

Δ𝑦2𝜀𝑧(𝑚, 𝑛 + 1)
− 1

Δ𝑦2𝜀𝑧(𝑚, 𝑛)
)𝐻𝑥(𝑚, 𝑛) (3.23)

= 1
Δ𝑥Δ𝑦𝜀𝑧(𝑚, 𝑛)

[𝐻𝑦(𝑚 − 1, 𝑛) − 𝐻𝑦(𝑚, 𝑛)]

+ 1
Δ𝑥Δ𝑦𝜀𝑧(𝑚, 𝑛 + 1)

[𝐻𝑦(𝑚, 𝑛 + 1) − 𝐻𝑦(𝑚 − 1, 𝑛 + 1)]

+ 1
Δ𝑦2𝜀𝑧(𝑚, 𝑛 + 1)

𝐻𝑥(𝑚, 𝑛 + 1) − 1
Δ𝑦2𝜀𝑧(𝑚, 𝑛)

𝐻𝑥(𝑚, 𝑛 − 1)

+ i𝛽
Δ𝑥𝜀𝑦(𝑚, 𝑛)

[𝐻𝑧(𝑚, 𝑛) − 𝐻𝑧(𝑚 − 1, 𝑛)]. (3.24)

It was found in eq. (2.41) that the 𝑧-component of the magnetic field can be decoupled
from the two remaining components as

𝐻𝑧 = i
𝛽

∇⊥ ⋅ 𝐇⊥. (3.25)

Proceeding to discretise eq. (3.25) with the central difference scheme gives

𝐻𝑧(𝑚, 𝑛) = i
𝛽

(𝐻𝑥(𝑚 + 1, 𝑛) − 𝐻𝑥(𝑚, 𝑛)
Δ𝑥

+ 𝐻𝑥(𝑚, 𝑛 + 1) − 𝐻𝑥(𝑚, 𝑛)
Δ𝑦

), (3.26)

which is inserted into eq. (3.24) so that it only depends on the 𝑥 and 𝑦 components of
the magnetic field

𝛽2𝐻𝑥(𝑚, 𝑛) = [𝑘2
0𝜀𝑦(𝑚, 𝑛) − 1

Δ𝑦2 (
𝜀𝑦(𝑚, 𝑛)
𝜀𝑧(𝑚, 𝑛)

+
𝜀𝑦(𝑚, 𝑛)

𝜀𝑧(𝑚, 𝑛 + 1)
) − 2

Δ𝑥
]𝐻𝑥(𝑚, 𝑛)

− 1
Δ𝑥Δ𝑦

[1 −
𝜀𝑦(𝑚, 𝑛)
𝜀𝑧(𝑚, 𝑛)

]𝐻𝑦(𝑚, 𝑛) + 1
Δ𝑥2 [𝐻𝑥(𝑚 + 1, 𝑛) + 𝐻𝑥(𝑚 − 1, 𝑛)]
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+
𝜀𝑦(𝑚, 𝑛)

Δ𝑦2 [ 1
𝜀𝑧(𝑚, 𝑛)

𝐻𝑥(𝑚, 𝑛 − 1) + 1
𝜀𝑧(𝑚, 𝑛 + 1)

𝐻𝑥(𝑚, 𝑛 + 1)]

(3.27)

+ 1
Δ𝑥Δ𝑦

[1 −
𝜀𝑦(𝑚, 𝑛)
𝜀𝑧(𝑚, 𝑛)

]𝐻𝑦(𝑚 − 1, 𝑛)

+ 1
Δ𝑥Δ𝑦

[1 −
𝜀𝑦(𝑚, 𝑛)

𝜀𝑧(𝑚, 𝑛 + 1)
][𝐻𝑦(𝑚, 𝑛 + 1) − 𝐻𝑦(𝑚 − 1, 𝑛 + 1)].

Similarly one can obtain the following eigenvalue equation by inserting eqs. (3.18)
and (3.22) into eq. (3.19) and use eq. (3.26) to eliminate the 𝑧 component of the magnetic
field

𝛽2𝐻𝑦(𝑚, 𝑛) = [𝑘2
0𝜀𝑥(𝑚, 𝑛) − 1

Δ𝑥2 (𝜀𝑥(𝑚, 𝑛)
𝜀𝑥(𝑚, 𝑛)

+ 𝜀𝑥(𝑚, 𝑛)
𝜀𝑧(𝑚 + 1, 𝑛)

) − 2
Δ𝑦2 ]𝐻𝑦(𝑚, 𝑛)

− 1
Δ𝑥Δ𝑦

[1 − 𝜀𝑥(𝑚, 𝑛)
𝜀𝑧(𝑚, 𝑛)

]𝐻𝑥(𝑚, 𝑛) + 1
Δ𝑦2 [𝐻𝑦(𝑚, 𝑛 + 1) + 𝐻𝑦(𝑚, 𝑛 − 1)]

+ 𝜀𝑥(𝑚, 𝑛)
Δ𝑥2 [ 1

𝜀𝑧(𝑚, 𝑛)
𝐻𝑦(𝑚 − 1, 𝑛) + 1

𝜀𝑧(𝑚 + 1, 𝑛)
𝐻𝑦(𝑚 + 1, 𝑛)] (3.28)

+ 1
Δ𝑥Δ𝑦

[1 − 𝜀𝑥(𝑚, 𝑛)
𝜀𝑧(𝑚, 𝑛)

]𝐻𝑥(𝑚, 𝑛 − 1)

+ 1
Δ𝑥Δ𝑦

[1 − 𝜀𝑥(𝑚, 𝑛)
𝜀𝑧(𝑚 + 1, 𝑛)

][𝐻𝑥(𝑚 + 1, 𝑛) − 𝐻𝑥(𝑚 + 1, 𝑛 − 1)].

From eqs. (3.27) and (3.28) a large matrix can be constructed of size (2𝑀𝑁) × (2𝑀𝑁)
and one can quickly run into memory issues. Since only neighbouring boxes to the
(𝑚, 𝑛)’th box is used, then most of the entrances in the matrix are zero, and therefore
can be treated as a sparse matrix. This solves the memory issue. The indices 𝑚 = 0,
𝑚 = 𝑀 + 1, 𝑛 = 0 and 𝑛 = 𝑁 + 1 should be ignored due to them being outside of the
grid [3].

3.3 Tensor averaging
In more general electromagnetic theory, the dielectric function 𝜀 is written as a second
rank tensor ̅̅𝜀. Consider a box with a grid point in the centre and with a boundary crosses
through it. On each side of the boundary there are different dielectric constants 𝜀1 and
𝜀2 as in fig. 3.3. Let 𝐧 = (𝑛𝑥, 𝑛𝑦, 0) be a unit normal vector to the boundary at the grid
point, then ̅̅𝜀 can be split into a parallel and perpendicular components as

̅̅𝜀 = 𝐧̂𝐧̂𝜀⟂ + ( ̅̅𝐼 − 𝐧̂𝐧̂)𝜀∥, (3.29)

where 𝐧̂𝐧̂ is a dyadic product. For 𝐧̂ lying in the 𝑥𝑦-plane, then ̅̅𝜀 components can be
written as

̅̅𝜀 = ⎡
⎢
⎣

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

⎤
⎥
⎦

= ⎡
⎢
⎣

𝑛2
𝑥𝜀⟂ + (1 − 𝑛2

𝑥)𝜀∥ 𝑛𝑥𝑛𝑦𝜀⟂ − 𝑛𝑥𝑛𝑦𝜀∥ 0
𝑛𝑦𝑛𝑥𝜀⟂ − 𝑛𝑦𝑛𝑥𝜀∥ 𝑛2

𝑦𝜀⟂ + (1 − 𝑛2
𝑦)𝜀∥ 0

0 0 𝜀∥

⎤
⎥
⎦

. (3.30)
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𝐧̂

𝐄̂⟂

𝐄̂∥

𝜀1𝜀2

Figure 3.3: A single gridpoint and its surrounding box. A boundary crosses through the
box with different dielectric on each side. The boundary defines the parallel and
perpendicular direction through 𝐧̂.

What is left, is a way to determine 𝜀⟂ and 𝜀∥. To do so, we consider an example with
a scalar dielectric function 𝜀, then 𝜀⟂ = 𝜀∥ = 𝜀. We could determine the values of 𝜀 at
the grid points. This corresponds to the staircase approximation illustrated in fig. 3.4b.
However, there is no reason for the 𝜀 value at grid points to be more significant over the
𝜀 value at any other point in the surrounding boxes of the grid points. Averaging the
values of 𝜀 over the boxes turns out to significantly improve convergence [3]. It also let
us study small changes to the structure.

Let ⟨⋯⟩ denote the average value over a box of area 𝐴. Then the average value of some
function 𝑓(𝑥, 𝑦) can be calculated as

⟨𝑓(𝑥, 𝑦)⟩ = 1
𝐴

∫
𝐴

𝑓(𝑥, 𝑦) d𝑥 d𝑦. (3.31)

Let 𝐄𝑖 ⋅ 𝐃𝑖 denote the electric field energy density at the 𝑖’th grid point. If we assume
that 𝐄𝑖 ⋅ 𝐃𝑖 represents the average value ⟨𝐄 ⋅ 𝐃⟩ of the 𝑖’th box that surrounds the 𝑖’th
grid point. Then

𝐄𝑖 ⋅ 𝐃𝑖 = 𝐄𝑖 ⋅ (𝜀𝑖𝐄𝑖) = 1
𝜀𝑖

𝐃𝑖 ⋅ 𝐃𝑖 = ⟨𝐄 ⋅ 𝐃⟩. (3.32)

If we further assume this also holds independently for the parallel and perpendicular
components of 𝐄𝑖 and 𝐃𝑖 to the refractive index boundary, then

𝐄𝑖,∥ ⋅ 𝐃𝑖,∥ = 𝐄𝑖,∥ ⋅ (𝜀𝑖,∥𝐄𝑖,∥) = ⟨𝐄∥ ⋅ 𝐃∥⟩ (3.33)

𝐄𝑖,⟂ ⋅ 𝐃𝑖,⟂ = 1
𝜀𝑖,⟂

𝐃𝑖,⟂ ⋅ 𝐃𝑖,⟂ = ⟨𝐄⟂ ⋅ 𝐃⟂⟩. (3.34)

Note that we wrote dielectric function 𝜀𝑖 with an additional subscript ⟂ or ∥ to make
it compatible with the tensor averaging notation above, but for now they are equal i.e.
𝜀𝑖,⟂ = 𝜀𝑖,∥ = 𝜀𝑖.

Since 𝐄∥ and 𝐃⟂ are both continuous across the boundary, then they should be
approximately constant over the box e.g. we can write

𝐄∥ ≈ 𝐄𝑖,∥ (3.35)
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(a) Ideal circle. (b) Staircase circle. (c) Average circle.

Figure 3.4: (a) Represents a circle in a square grid. (b) The staircase approximation, where
a box’s 𝜀 value is determined from its centre. (c) An average scheme is used to
smear out the circle.

𝐃⟂ ≈ 𝐃𝑖,⟂. (3.36)

Rewriting eq. (3.33) into

∥𝐄𝑖,∥∥2𝜀𝑖,∥ = ⟨𝐄∥ ⋅ (𝜀𝐄∥)⟩ ≈ ∥𝐄𝑖,∥∥2⟨𝜀⟩, (3.37)

which suggest us to use 𝜀𝑖,∥ = ⟨𝜀⟩. However, if we rewrite eq. (3.34)

1
𝜀𝑖,⟂

∥𝐃𝑖,⟂∥2 = ⟨1
𝜀

𝐃⟂ ⋅ 𝐃⟂⟩ ≈ ∥𝐃𝑖,⟂∥2⟨1
𝜀

⟩, (3.38)

which suggest us to use 𝜀𝑖,⟂ = ⟨1/𝜀⟩−1. Generally ⟨𝜀⟩ and ⟨1/𝜀⟩−1 are not equal and for a
scalar 𝜀 we have the relation 𝜀𝑖,⟂ = 𝜀𝑖,∥ = 𝜀𝑖. This means that 𝜀𝑖 = ⟨𝜀⟩ and 𝜀𝑖 = ⟨1/𝜀⟩−1

cannot satisfied simultaneously. This is the reason we cannot use a scalar 𝜀 if we want to
average 𝜀 over a box, however the tensor version ̅̅𝜀 given in eq. (3.30) allows that 𝜀𝑖,⟂
and 𝜀𝑖,∥ are different when averaging.

The off-diagonal elements in eq. (3.30) becomes problematic for a Yee grid and it is
suggested in [3] that these are ignored and only the diagonal elements are used. Setting
𝜀𝑥 ≔ 𝜀𝑥𝑥, 𝜀𝑦 ≔ 𝜀𝑦𝑦 and 𝜀𝑧 ≔ 𝜀𝑧𝑧. It was mentioned in the previous section that 𝜀𝑥, 𝜀𝑦
and 𝜀𝑧 should be calculated at 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧, respectively. For example, 𝜀𝑥 is calculated
from 𝜀∥ = ⟨𝜀⟩ and 𝜀⟂ = ⟨1/𝜀⟩−1, which themselves are found by averaging over a box
around the grid point, where 𝐸𝑥 is calculated. This averaging scheme is sketched in
fig. 3.4c.
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4 Modal Method

The modal method is a family of eigenmode expansion techniques for the frequency
domain. It relies on decomposing the optical field into a basis set of transverse eigenmodes
for each layer of the modelled device [3]. The device’s geometry is divided into layers
of uniform permittivity along the propagation axis, taken to be the 𝑧-axis, while the
permittivity profile along the lateral coordinates may depend on 𝐫⟂, depending on the
dimensions of the geometry [3]. The transverse eigenmodes are determined by solving
Maxwell’s equations or the wave equation for each layer of the geometry. In each layer, the
optical field is expanded on the corresponding eigenmodes and the fields are connected at
the interfaces using mode-matching techniques, e.g. the T-matrix or S-matrix formalisms
can be used [3].

As mentioned above, the optical field can be expanded in a set of eigenmodes that are
obtained by solving eq. (2.38), and the field can be described by

𝐄⟂(𝐫) =
∞

∑
𝑚=1

𝑎′
𝑚𝐞⟂𝑚(𝐫⟂𝑚) ei𝛽𝑚𝑧 +

∞
∑
𝑚=1

𝑏𝑚𝐞⟂𝑚(𝐫⟂𝑚) e− i𝛽𝑚𝑧, (4.1)

where we have used the time convention e− i𝜔𝑡 so that the 𝑎 and 𝑏 coefficients are describ-
ing the forward and backward modes, respectively. Here 𝑎′

𝑚 and 𝑏𝑚 are the expansion
coefficients which refers to the 𝑚’th forward and backward travelling eigenmodes, re-
spectively. In practice, the infinite sums are limited to include 𝑁 finite number of modes.
While eqs. (2.38) and (4.1) only gives the transverse field components, the remaining four
components of the electromagnetic field can be found using the equations in section 2.3.

The next sections will consider 1D and 2D geometries. For the latter geometry, Fourier
modal method will be introduced.

4.1 1D Geometry

In the one dimensional case, we assume that the propagation axis is along the 𝑧-axis. The
dielectric function 𝜀(𝑧) is independent of the lateral coordinates (𝐫⟂) = (𝑥, 𝑦), however it
vary along the propagation axis 𝑧. We divide the geometry along the 𝑧 axis into 𝑁 layers
of constant permittivity with 𝜀𝑞 being the permittivity in layer 𝑞.

Consider layer 𝑞. Since 𝜀(𝑧) is independent of (𝐫⟂) then ∇𝜀𝑞(𝐫⟂) = 0 and eq. (2.38)
reduces to

∇2
⟂𝐞𝑞 + 𝜀𝑞𝑘2

0𝐞𝑞 = 𝛽2
𝑞 𝐞𝑞. (4.2)

This is a linear partial differential equation of second order which solutions depend on
the field of interest. If one seeks a solution independent on the lateral coordinates 𝐫⟂
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Figure 4.1: A two-layer structure showing how the fields are travelling through the structure
i.e. reflection and transmission.

then there exist only one eigenmode given by 𝐞𝑞 = 𝐶𝐮 with the dispersion 𝜀𝑞𝑘2
0 = 𝛽2

𝑞 ,
where 𝐶 is a constant and 𝐮 is a vector in the 𝑥𝑦-plane.

The field can then be calculated from eq. (4.1) with the sum limited to 𝑚 = 1 once
the unknown expansion coefficients 𝑎′

1,𝑞 and 𝑏1,𝑞 have been determined. The coefficients
𝑎′

1,1 and 𝑎′
1,𝑁 are found from boundary conditions at the interfaces between the layers,

by requiring the tangential components of 𝐄 and 𝐇 are continuous across the boundary.

4.1.1 Single interface and propagation

To make the calculations on a general 𝑁-layer structure, two core concepts must be
addressed: mode-matching and propagation. The former deals with how the fields are
matched at the interface between two layers, that is reflection and transmission. The
latter deals with how the fields propagate inside a layer.

Continuing on the previous example with a constant field, then the field for a two-layer
structure can be described by

𝐸(𝑧) = {
𝑎1 ei𝑛1𝑘0(𝑧−𝑧01) + 𝑏′

1 e− i𝑛1𝑘0(𝑧−𝑧01) ∞ < 𝑧 ≤ 𝑧12

𝑎2 ei𝑛2𝑘0(𝑧−𝑧12) + 𝑏′
2 e− i𝑛2𝑘0(𝑧−𝑧12) 𝑧12 < 𝑧 < ∞

. (4.3)

Here we have used the notation in fig. 4.1. Before looking at the boundary condition at
the interface, the field in layer 1 at 𝑧12 must be determined. We construct a propagation
matrix relating the coefficients at 𝑧01 and 𝑧12 by

[𝑎′
1

𝑏1
] = ̄𝑃1[𝑎1

𝑏′
1
]. (4.4)

Its entries can be found by describing the field with 𝑧12 as its reference point, which is
equal to eq. (4.3) at the same point 𝑧

𝐸1(𝑧) = 𝑎1 ei𝑛1𝑘0(𝑧−𝑧01) + 𝑏′
1 e− i𝑛1𝑘0(𝑧−𝑧01) = 𝑎′

1 ei𝑛1𝑘0(𝑧−𝑧12) + 𝑏1 e− i𝑛1𝑘0(𝑧−𝑧12). (4.5)

Since the forward and backward travelling waves are independent, then 𝑏′
1 does not

contribute to 𝑎′
1 through the propagation matrix. A similar argument can be applied to

𝑎1 and 𝑏1, hence
̄𝑃1 = [ei𝑛1𝑘0Δ𝑧 0

0 e− i𝑛1𝑘0Δ𝑧], (4.6)
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where Δ𝑧 = 𝑧12 − 𝑧01. For every layer, a propagation matrix can be constructed as the
above but with their corresponding propagation constants.

Consider the case where the field is incident form region 1. It should be noted that
since there is no interface at the end of region 2 there cannot be any backward travelling
waves hence 𝑏′

2 must be equal to 0. In order to determine the rest of the coefficients, the
Fresnel reflection and transmission coefficients can be used to link 𝑎′

1 to 𝑏1 and 𝑎2, such
that 𝑏1 = 𝑟12𝑎′

1 and 𝑎2 = 𝑡12𝑎′
1. The Fresnel coefficients can be determined with the

criteria that the transverse part of the electric and magnetic fields needs to be continuous
across the interface at 𝑧 =12, giving

𝑎′
1 + 𝑏1 = 𝑎2 (4.7)

𝑛1(𝑎′
1 − 𝑏1) = 𝑎2𝑛2, (4.8)

where the first condition arises from the continuity of the electric field and the second
comes from the continuity of the magnetic field. The above two equations can be solved
for which we get the reflection and transmission coefficients

𝑟12 = 𝑛1 − 𝑛2
𝑛1 + 𝑛2

(4.9)

𝑡12 = 2𝑛1
𝑛1 + 𝑛2

. (4.10)

In the case where the field is incident from the other side (region 2) the calculation can
be performed similarly, yielding

𝑟21 = 𝑛2 − 𝑛1
𝑛1 + 𝑛2

(4.11)

𝑡21 = 2𝑛2
𝑛1 + 𝑛2

. (4.12)

If the fields are incident from both sides then the full relation becomes

[𝑎2
𝑏1

] = [𝑡12 𝑟21
𝑟12 𝑡21

][𝑎′
1

𝑏′
2
]. (4.13)

This matrix relates the incident fields with the outgoing fields. This is known as the
𝑆-matrix formalism which will be discussed later. Another common approach is to relate
the fields in one region with the fields in another region. For example, the above case
would correspond to

[𝑎2
𝑏′

2
] = 1

𝑡21
[𝑡12𝑡21 − 𝑟12𝑟21 𝑟21

−𝑟12 1 ][𝑎′
1

𝑏1
], (4.14)

which is called the 𝑇-matrix formalism.
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Figure 4.2: The reflection and transmission illustrated for a 3-layer geometry.

4.2 S Matrix Theory

The first focus point of this section will be on a three-layer structure as illustrated in
seen in fig. 4.2. Thereafter we will use the three-layer structure to generalise to a 𝑁-layer
structure in a recursive scheme.

We consider a single mode 𝑚 incident from region 1 propagating along the 𝑧-axis.
When the incoming field reached the first interface at 𝑧12, multiple modes can be reflected
and transmitted at the interface. The transmitted field will similarly be reflected and
transmitted at the other region, hence the field can be written on the form

𝐄1(𝐫) = 𝑎′
1𝑚𝐞+

1𝑚(𝐫⊥) ei𝛽1𝑚(𝑧−𝑧12) +
𝑁

∑
𝑗=1

𝑏1𝑗𝐞−
1𝑗(𝐫⊥) e− i𝛽1𝑗(𝑧−𝑧12) (4.15)

𝐄2(𝐫) =
𝑁

∑
𝑗=1

𝑎2𝑗𝐞+
2𝑗(𝐫⊥) ei𝛽2𝑗(𝑧−𝑧12) +

𝑁
∑
𝑗=1

𝑏′
2𝑗𝐞−

2𝑗(𝐫⊥) e− i𝛽2𝑗(𝑧−𝑧23) (4.16)

𝐄3(𝐫) =
𝑁

∑
𝑗=1

𝑎3𝑗𝐞+
3𝑗(𝐫⊥) ei𝛽3𝑗(𝑧−𝑧23). (4.17)

It should be noted that some of the coefficients are marked with a prime, which indicates
that those coefficients are facing the interface and the coefficient without is having their
back towards an interface. Therefore in region 2 we can describe the propagation as
𝑎′

2𝑗 = ei𝛽𝐿2𝑎2𝑗 and 𝑏2𝑗 = e− i𝛽𝐿2𝑏′
2𝑗, where 𝐿2 is the width of region 2.

The field is incident from region 1 and will be partially reflected and transmitted
once it reaches the interface at 𝑧12. The reflected part will be described by ̄𝑟12 and the
transmitted part will be described by ̄𝑡12. The transmitted part can then propagate
through region 2 and will then be partially reflected and transmitted at the next interface
𝑧23. Hence the field in region 2 can bounce back and forth. One cycle of this can be
described by ̄𝑡21 ̄𝑝2 ̄𝑟23 ̄𝑝2 with ̄𝑝2 being the propagation matrix in region 2. The total
reflected field in region 1 is partially described by the initial reflection ̄𝑟12 but will also
consist of the reflected field from 𝑧23 that is transmitted through 𝑧12. It may be described

30



4 Modal Method Aalborg University

by the reflection matrix

̄𝑟13 = ̄𝑟12 + ̄𝑡21 ̄𝑝2 ̄𝑟23 ̄𝑝2

∞
∑
𝑛=0

( ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)𝑛 ̄𝑡12, (4.18)

where each term in the sum represents the field that has propagated back and fourth
𝑛 + 1 times. It should be noted that the form of 𝑟13 and all following coefficients have
been chosen such that as few different matrices as possible are inverted.

Similarly, the transmission matrix ̄𝑡13 can be used to describe the total transmitted
field to region 3 as

̄𝑡13 = ̄𝑡23 ̄𝑝2

∞
∑
𝑛=0

( ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)𝑛 ̄𝑡12. (4.19)

The sum in the above two equations can be greatly simplified by applying the geometric
series ∑∞

𝑛=0 ̄𝑎𝑛 = ( ̄𝐼 − ̄𝑎)−1, which is only valid when the matrix ̄𝑎 have absolute
eigenvalues below unity [3]. With this, the equations becomes

̄𝑟13 = ̄𝑟12 + ̄𝑡21 ̄𝑝2 ̄𝑟23 ̄𝑝2( ̄𝐼 − ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)−1 ̄𝑡12 (4.20)
̄𝑡13 = ̄𝑡23 ̄𝑝2( ̄𝐼 − ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)−1 ̄𝑡12. (4.21)

If the field is incident from region 3 then the ̄𝑟31 and ̄𝑡31 coefficients are needed and can
be found similarly as the ̄𝑟13 and ̄𝑡13 coefficients. This will yield

̄𝑟31 = ̄𝑟32 + ̄𝑡23 ̄𝑝2( ̄𝐼 − ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)−1 ̄𝑟21 ̄𝑝2 ̄𝑡32 (4.22)
̄𝑡31 = ̄𝑡21 ̄𝑝2 ̄𝑡32 + ̄𝑡21 ̄𝑝2 ̄𝑟23 ̄𝑝2( ̄𝐼 − ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)−1 ̄𝑟21 ̄𝑝2 ̄𝑡32. (4.23)

The remaining field coefficients in region 1 and 3 can now be calculated by eq. (4.13)
with index 2 replaced by 3

𝐚3 = ̄𝑡13𝐚′
1 + ̄𝑟31𝐛′

3 (4.24)
𝐛1 = ̄𝑟13𝐚′

1 + ̄𝑡31𝐛′
3. (4.25)

The coefficients 𝐚2 and 𝐛2 should likewise take into account of the fields bouncing back
and forth in region 2. If the field is incident from region 1, then the contribution to 𝐚2
comes from ̄𝑡12 and a infinite sum of multiples of ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2. While the contribution to
𝐛2 comes from ̄𝑟23 ̄𝑝2 ̄𝑡12 and a infinite sum of multiples of ̄𝑟23 ̄𝑝2 ̄𝑟12 ̄𝑝2. A similar analysis
can be made if the field is incident from region 3 instead and gives

𝐚2 = ( ̄𝐼 − ̄𝑟21 ̄𝑝2 ̄𝑟23 ̄𝑝2)−1( ̄𝑡12𝐚′
1 + ̄𝑟21 ̄𝑝2 ̄𝑡32𝐛′

3) (4.26)

𝐛2 = ( ̄𝐼 − ̄𝑟23 ̄𝑝2 ̄𝑟21 ̄𝑝2)−1( ̄𝑟23 ̄𝑝2 ̄𝑡12𝐚′
1 + ̄𝑡32𝐛′

3), (4.27)

where the first factors of each expression take care of the multiple reflections inside region
2.
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Figure 4.3: The reflection and transmission of field inside a 4-layer geometry.

4.2.1 Multi-layer Structure

The next part of the section will be focusing on expanding the structure to a 𝑁-layer
geometry, which is illustrated in fig. 4.4. This will firstly be done by giving a rough
idea of what happens when the geometry contains 4 layers. The four-layer structure is
illustrated in fig. 4.3. In this case, the reflection and transmission coefficients between
layer 1 and 3 can be calculated as before. These matrices take into account of the modes
that are reflected and transmitted from/into layer 3. Hence everything that happens in
layer 2 has already been calculated into ̄𝑟13 and ̄𝑡13, therefore the four-layer structure
can be thought as a 3-layer structure. The problem is then similar to the one already
solved, hence we can reuse eq. (4.18) by doing some replacements

̄𝑟14 = ̄𝑟13 + ̄𝑡31 ̄𝑝3 ̄𝑟34 ̄𝑝3( ̄𝐼 − ̄𝑟31 ̄𝑝3 ̄𝑟34 ̄𝑝3)−1 ̄𝑡13. (4.28)

Generally, when knowing the reflection and transmission coefficients for a 𝑞-layer
structure one can calculate ̄𝑟1,𝑞+1, ̄𝑡1,𝑞+1, ̄𝑟𝑞+1,1 and ̄𝑡𝑞+1,1 by reducing the structure to
a three-layer geometry [3]. Let the structure in question contain 𝑛 layers in total, then
the recursive procedure is similar but here we solve the three-layer geometry consistent
of layer 𝑛 − 2, 𝑛 − 1 and 𝑛. In this structure we can then calculate ̄𝑟𝑛−2, ̄𝑡𝑛−2,𝑛, ̄𝑟𝑛,𝑛−2
and ̄𝑡𝑛,𝑛−2, and when including the fourth layer we can collapse the structure into a
three-layer geometry as before. When considering the 𝑞’th layer in the recursive process
the matrices ̄𝑟𝑞−1,𝑛, ̄𝑡𝑞−1,𝑛, ̄𝑟𝑛,𝑞−1 and ̄𝑡𝑛,𝑞−1 can then be calculated from ̄𝑟𝑞,𝑛, ̄𝑡𝑞,𝑛, ̄𝑟𝑛,𝑞
and ̄𝑡𝑛,𝑞. Below we have given all the recursive relations [3]

̄𝑟1,𝑞+1 = ̄𝑟1,𝑞 + ̄𝑡𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑞+1 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑞+1 ̄𝑝𝑞)−1 ̄𝑡1,𝑞 (4.29)
̄𝑡1,𝑞+1 = ̄𝑡𝑞,𝑞+1 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑞+1 ̄𝑝𝑞)−1 ̄𝑡1,𝑞 (4.30)

̄𝑟𝑞+1,1 = ̄𝑟𝑞+1,𝑞 + ̄𝑡𝑞,𝑞+1 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑞+1 ̄𝑝𝑞)−1 ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑡𝑞+1,𝑞 (4.31)
̄𝑡𝑞+1,1 = ̄𝑡𝑞,1 ̄𝑝𝑞 ̄𝑡𝑞+1,𝑞 + ̄𝑡𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑞+1 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑞+1 ̄𝑝𝑞)−1 ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑡𝑞+1,𝑞 (4.32)

̄𝑟𝑞−1,𝑛 = ̄𝑟𝑞−1,𝑞 + ̄𝑡𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞)−1 ̄𝑡𝑞−1,𝑞 (4.33)
̄𝑡𝑞−1,𝑛 = ̄𝑡𝑞,𝑛 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞)−1 ̄𝑡𝑞−1,𝑞 (4.34)

̄𝑟𝑛,𝑞−1 = ̄𝑟𝑛,𝑞 + ̄𝑡𝑞,𝑛 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞)−1 ̄𝑟𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑡𝑛,𝑞 (4.35)
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Figure 4.4: The reflection and transmission of field inside a 𝑁 layer geometry.

̄𝑡𝑛,𝑞−1 = ̄𝑡𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑡𝑛,𝑞 + ̄𝑡𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞( ̄𝐼 − ̄𝑟𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞)−1 ̄𝑟𝑞,𝑞−1 ̄𝑝𝑞 ̄𝑡𝑛,𝑞. (4.36)

The field expansion vectors for the 𝑞’th layer may be calculated by [3]

𝐚𝑞 = ( ̄𝐼 − ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑟𝑞,𝑛 ̄𝑝𝑞)−1( ̄𝑡1,𝑞𝐚′
1 + ̄𝑟𝑞,1 ̄𝑝𝑞 ̄𝑡𝑛,𝑞𝐛′

𝑛) (4.37)

𝐛𝑞 = ( ̄𝐼 − ̄𝑟𝑞,𝑛 ̄𝑝𝑞 ̄𝑟𝑞,1 ̄𝑝𝑞)−1( ̄𝑟𝑞,𝑛 ̄𝑝𝑞 ̄𝑡1,𝑞𝐚′
1 + ̄𝑡𝑛,𝑞𝐛′

𝑛), (4.38)

and the electric and magnetic fields in the 𝑞 layer may be calculated by [3]

𝐄𝑞(𝐫) =
𝑁

∑
𝑗

(𝑎𝑞,𝑗 ei𝛽(𝑧−𝑧𝑞−1,𝑞)𝐞+
𝑞,𝑗(𝐫⊥) + 𝑏𝑞,𝑗 e− i𝛽(𝑧−𝑧𝑞,𝑞+1)𝐞−

𝑞,𝑗(𝐫⊥)) (4.39)

𝐇𝑞(𝐫) =
𝑁

∑
𝑗

(𝑎𝑞,𝑗 ei𝛽(𝑧−𝑧𝑞−1,𝑞)𝐡+
𝑞,𝑗(𝐫⊥) + 𝑏𝑞,𝑗 e− i𝛽(𝑧−𝑧𝑞,𝑞+1)𝐡−

𝑞,𝑗(𝐫⊥)). (4.40)

4.3 Fourier Modal Method
This section will contain the theory for calculating the electric field in a two-dimensional
geometry that can be divided into regions that are invariant along the propagation axis
and periodic along the other axis. To match the electric fields at the interfaces between
the regions, one needs to use the boundary conditions such that the transverse fields
are continuous across each interface. From these boundary conditions, one can create a
scattering matrix which describes the modes propagating through an interface. The first
case of interest is a rather simple case with only one interface. This example will then be
expanded into a more complicated problem with multiple layers.

4.3.1 Single Interface

This section will look into a two-layer structure, where the first region consists of air
and the other consists of a semi-infinite periodic array of infinitely long rods. This is
illustrated in fig. 4.5. An s-polarised plane wave is incident from region 1, hence the
electric field can be described as

𝐄(𝐫) = 𝐲̂𝐸(𝑥, 𝑧). (4.41)
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𝜃
𝑥

𝑧

𝑎 Λ

𝜀1

𝜀2

Figure 4.5: An illustration of field incident from above upon a single interface. Each layer
is invariant along the 𝑧 axis and periodic along 𝑥.

Since the structure is periodic along the 𝑥-axis in region two with a period of Λ, it can
be assumed that the electric field is periodic as well, hence it can be divided into Bloch
waves [8]

𝐸(𝑥 + Λ, 𝑧) = 𝐸(𝑥, 𝑧) ei𝑘𝑥Λ, (4.42)

where 𝑘𝑥 = 𝑘0 sin(𝜃) is the Bloch wave number. In region 1 the field is incident from
above and due to the reflection at the interface there can be waves which can propagate
either along the positive and negative 𝑧-axis hence the field can be written as

𝐸(1)(𝑥, 𝑧) =
∞

∑
𝑛=−∞

(𝑎(1)
𝑛 e− i𝑘(1)

𝑧,𝑛𝑧 + 𝑏(1)
𝑛 ei𝑘(1)

𝑧,𝑛𝑧) ei𝑘𝑥,𝑛𝑥. (4.43)

Note that we have used a different convention for the forward and backward propagating
fields compared to previous sections. Here we have used 𝑎𝑛 to represent the backward
propagating modes and 𝑏𝑛 represents the forward propagating modes.

The electric field needs to satisfy both the wave equation and the Bloch condition,
which means that [8]

𝑘𝑥,𝑛 = 𝑘𝑥 + 𝑛𝐺, where 𝐺 = 2𝜋/Λ (4.44)

𝑘(1)
𝑧,𝑛 = √𝑘2

0 − 𝑘2
𝑥,𝑛. (4.45)

In region 2 the field can no longer be described with simple plane waves or evanescent
waves, here the field will be on the form of

𝐸(2)(𝑥, 𝑧) =
∞

∑
𝑛=−∞

(ei𝑘𝑥,𝑛𝑥 ∑
𝑚

𝐸(𝑛,2)
𝑚 (𝑎(2)

𝑚 e− i𝑘(2)
𝑧,𝑚𝑧 + 𝑏(2)

𝑚 ei𝑘(2)
𝑧,𝑚𝑧)), (4.46)

since there, in general, are multiple modes in region 2, where each mode is expanded with
plane waves. We will approximate the field in region 1 so that it is expanded in a finite
number of plane waves, such that 𝑛 varies from −𝑁 to 𝑁. Furthermore, it will be assumed
that there will be the same amount of modes in region 2 so 𝑚 ∈ {1, 2, … , 2𝑁 + 1}.

To calculate the mode coefficients for each region, one can use the boundary conditions
which require that the 𝑦-component of the electric field is continuous across the interface

2𝑁+1

∑
𝑚=1

𝐸(𝑛,1)
𝑚 (𝑎(1)

𝑚 + 𝑏(1)
𝑚 ) =

(𝑛,2)

∑
𝑚

𝐸(𝑛,2)
𝑚 (𝑎(2)

𝑚 + 𝑏(2)
𝑚 ). (4.47)
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A similar argument can be made for 𝑥-component of the magnetic field, which can be
expressed through the electric field as 𝐻𝑥 = − 1

i𝜔𝜇
𝜕

𝜕𝑧𝐸𝑦, hence the boundary conditions
reads

2𝑁+1

∑
𝑚=1

𝑘(1)
𝑧,𝑚𝐸(𝑛,1)

𝑚 (𝑎(1)
𝑚 − 𝑏(1)

𝑚 ) =
2𝑁+1

∑
𝑚=1

𝑘(2)
𝑧,𝑚𝐸(𝑛,2)

𝑚 (𝑎(2)
𝑚 − 𝑏(2)

𝑚 ). (4.48)

The equation for the boundary condition can be written on matrix form

𝑀̄ (𝐸)
1 (𝐚(1) + 𝐛(1)) = 𝑀̄ (𝐸)

2 (𝐚(2) + 𝐛(2)) (4.49)

𝑀̄ (𝐻)
1 (𝐚(1) − 𝐛(1)) = 𝑀̄ (𝐻)

2 (𝐚(2) − 𝐛(2)), (4.50)

where

𝐚(𝑖) = (𝑎(𝑖)
1 , 𝑎(𝑖)

2 , … , 𝑎(𝑖)
2𝑁+1) (4.51)

𝐛(𝑖) = (𝑏(𝑖)
1 , 𝑏(𝑖)

2 , … , 𝑏(𝑖)
2𝑁+1) (4.52)

𝑀̄ (𝐸)
𝑖 = [𝐄(𝑖)

1 𝐄(𝑖)
2 ⋯ 𝐄(𝑖)

2𝑁+1] (4.53)

𝑀̄ (𝐻)
𝑖 = [𝑘(𝑖)

𝑧,1𝐄(𝑖)
1 𝑘(𝑖)

𝑧,2𝐄(𝑖)
2 ⋯ 𝑘(𝑖)

𝑧,2𝑁+1𝐄(𝑖)
2𝑁+1] (4.54)

𝐄(𝑖)
𝑚 = (𝐸(−𝑁,𝑖)

𝑚 , 𝐸(−𝑁+1,𝑖)
𝑚 , … , 𝐸(𝑁,𝑖)

𝑚 ). (4.55)

We will later show how the matrices 𝑀̄ (𝐸)
𝑖 and 𝑀̄ (𝐻)

𝑖 are calculated.
Assuming that the field is incident from region 1 then there are no waves propagating

along the positive 𝑧-axis in region 2, hence 𝐛(2) = 0. From eqs. (4.49) and (4.50) one can
derive the two following equations for the mode coefficients

𝐛(1) = 𝑅̄12𝐚(1) (4.56)
𝐚(2) = ̄𝑇12𝐚(1), (4.57)

where the 𝑅̄12 and ̄𝑇12 are the reflection and transmission matrices between region 1 and
2, respectively and they are given by

𝑅̄12 = ((𝑀̄ (𝐸)
2 )

−1
𝑀̄ (𝐸)

1 + (𝑀̄ (𝐻)
2 )

−1
𝑀̄ (𝐻)

1 )
−1

((𝑀̄ (𝐻)
2 )

−1
𝑀̄ (𝐻)

1 ) − (𝑀̄ (𝐸)
2 )

−1
𝑀̄ (𝐸)

1 )

(4.58)

̄𝑇12 = (𝑀̄ (𝐸)
2 )

−1
𝑀̄ (𝐸)

1 ( ̄𝐼 + 𝑅̄12). (4.59)

The next step is to calculate the modes for region 2. This is done with a similar approach
as for region 1 but yields a different result. Inserting the expression for a single-mode 𝑚
of the electric field into the wave equation

0 = ∑
𝑛

(−𝑘2
𝑥,𝑛 − (𝑘(2)

𝑧,𝑚)2 + 𝑘2
0𝜀(𝑥))𝐸(𝑛,2)

𝑚 ei𝑘𝑥,𝑛𝑥 e± i𝑘𝑧,𝑚𝑧 (4.60)
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and since that the structure is periodic along the 𝑥-axis with period Λ then the ap-
proximation is 𝜀(𝑥) ≈ ∑𝑛 𝜀𝑛 e𝑖𝑛𝐺𝑥 valid. Then it is possible to derive the following
equation

(𝑘(2)
𝑧,𝑚)2 ∑

𝑛
𝐸(𝑛,2)

𝑚 ei(𝑛𝐺+𝑘𝑥)𝑥 =

− ∑
𝑛

(𝑛𝐺 + 𝑘𝑥)2𝐸(𝑛,2)
𝑚 ei(𝑛𝐺+𝑘𝑥)𝑥 + 𝑘2

0 ∑
𝑛′

∑
𝑛″

𝜀𝑛″𝐸(𝑛′,2)
𝑚 ei(𝑛″+𝑛′)𝐺𝑥 ei𝑘𝑥𝑥 (4.61)

⟹ −(𝑛𝐺 + 𝑘𝑥)2𝐸(𝑛,2)
𝑚 + 𝑘2

0 ∑
𝑛′

𝜀𝑛−𝑛′𝐸(𝑛′,2)
𝑚 = (𝑘(2)

𝑧,𝑚)2𝐸(𝑛,2)
𝑚 . (4.62)

The above equation can be written on matrix form by using vector eq. (4.55) and the
matrices

̄𝐴 =
⎡
⎢
⎢
⎣

(−𝑁𝐺 + 𝑘𝑥)2 0 ⋯ 0
0 ((−𝑁 + 1)𝐺 + 𝑘𝑥)2 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 0 ⋯ (𝑁𝐺 + 𝑘𝑥)2

⎤
⎥
⎥
⎦

(4.63)

and

𝐵̄ =
⎡
⎢
⎢
⎣

𝜀0 𝜀−1 ⋯ 𝜀−2𝑁
𝜀1 𝜀0 ⋯ 𝜀−2𝑁+1
⋮ ⋮ ⋱ ⋮

𝜀2𝑁 𝜀2𝑁−1 ⋯ 𝜀0

⎤
⎥
⎥
⎦

. (4.64)

To calculate the Fourier coefficients given in the above matrix for the dielectric function,
one should keep in mind that the dielectric function is a piecewise constant function
given by (see fig. 4.5 for reference)

𝜀(𝑥) = {
𝜀2, 0 ≤ 𝑥 < 𝑎
𝜀1, 𝑎 ≤ 𝑥 < Λ

. (4.65)

Then the Fourier coefficients can be calculated by integrating the dielectric function over
a single period

𝜀𝑛 = 1
Λ

∫
Λ

0
𝜀(𝑥) e− i 2𝜋

Λ 𝑛𝑥 d𝑥 (4.66)

= 1
Λ

(∫
𝑎

0
𝜀2 e− i 2𝜋

Λ 𝑛𝑥 d𝑥 + ∫
Λ

𝑎
𝜀1 e− i 2𝜋

Λ 𝑛𝑥 d𝑥), (4.67)

which leads to two different results, one for 𝑛 = 0 and one for 𝑛 ≠ 0

𝜀𝑛 = {
𝑎
Λ𝜀2 + (1 − 𝑎

𝜆)𝜀1, 𝑛 = 0
𝜀2−𝜀1
i𝑛𝐺Λ (1 − e− i𝑛𝐺𝑎), 𝑛 ≠ 0

. (4.68)

The eigenvalue problem can then be formulated as

(𝑘2
0𝐵̄ − ̄𝐴)𝐄(2)

𝑚 = (𝑘(2)
𝑧,𝑚)2𝐄(2)

𝑚 . (4.69)
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After solving the eigenvalue problem and finding the eigenmodes, then 𝑀̄ (𝐸)
2 and 𝑀̄ (𝐻)

2
can be found as

𝑀̄ (𝐸)
2 = (𝐄(2)

1 , 𝐄(2)
2 , … , 𝐄(2)

2𝑁+1) (4.70)

𝑀̄ (𝐻)
2 = [𝑘(2)

𝑧,1𝐄(2)
1 𝑘(2)

𝑧,2𝐄(2)
2 ⋯ 𝑘(2)

𝑧,2𝑁+1𝐄(2)
2𝑁+1]. (4.71)

The same goes for the corresponding matrices for region 1, but since this region only
consist of free space we can just write the solutions as

𝑀̄ (𝐸)
1 = ̄𝐼 (4.72)

𝑀̄ (𝐻)
1 = diag(𝑘(1)

𝑧,1, 𝑘(1)
𝑧,2, … , 𝑘(1)

𝑧,2𝑁+1). (4.73)

Figure 4.6 shows the electric field distribution for the two-layer structure given in
fig. 4.5. The calculation was performed with Λ = 400 000 µm, 𝑎 = 200 µm, 𝜆 = 700 µm
and 4001 plane waves. It was assumed the rods had a dielectric value of 𝜀2 = 1.962

and the surrounding air with 𝜀1 = 1. The incident field in layer 1 was chosen to be the
normal plane wave to the interface. We see that the field is scattered in all directions at
the interface. The transmitted field excites the guided mode of the waveguide and the
semi-radiation modes.

4.3.2 Multiple interfaces

The FMM can be expanded to handle multiple layers using S-matrix theory described in
section 4.2.1. Instead of having semi-infinite rods in layer 2 as in fig. 4.5, we will consider
a three-layer structure where layer 2 has a finite length 𝐿2 as shown in fig. 4.7. The third
layer is identical to layer 1, that is they are both solely consisting of air.

The electric field on each of the layers can be represented as

𝐸(𝑖)(𝑥, 𝑦) =
𝑁

∑
𝑛=−𝑁

ei𝑘𝑥,𝑛𝑥
2𝑁+1

∑
𝑚=1

𝐸(𝑛,𝑖)
𝑚 (𝑎(𝑖)

𝑚 e− i𝑘(𝑖)
𝑧,𝑚(𝑧−𝑧𝑖−1,𝑖) + 𝑏(2)

𝑚 e+ i𝑘(𝑖)
𝑧,𝑚(𝑧−𝑧𝑖−1,𝑖)), (4.74)

where 𝑖 can take the values 1, 2 and 3. Before we take into account the multiple reflections
that appears in layer 2, we will first consider a propagation matrix which describes the
propagation of the modes along the 𝑧-axis. This matrix is given by

̄𝑃 (𝑖) =
⎡
⎢
⎢
⎢
⎣

exp(i𝑘(𝑖)
𝑧,1𝐿𝑖) 0 ⋯ 0

0 exp(i𝑘(𝑖)
𝑧,2𝐿𝑖) ⋱ 0

⋮ ⋱ ⋱ ⋮
0 0 ⋯ exp(i𝑘(𝑖)

𝑧,2𝑁+1𝐿𝑖)

⎤
⎥
⎥
⎥
⎦

. (4.75)

The scatter matrix between each layer can then be calculated using the method outlined
in section 4.2.1. To calculate the eigenmodes, we can use eq. (4.69), since it was derived
using the general expression for the electric field.

In fig. 4.8 the real, imaginary and absolute values of the electric field are plotted for
the geometry given in fig. 4.7. Layer 1 and 3 consist of air while layer 2 consist of air
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Figure 4.6: The figures show the electric field distribution for a propagation field along
the 𝑧-axis. The waveguide in the lower centre has 𝜀2 = 1.962, whereas the
surrounding air has 𝜀1 = 1.
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Figure 4.7: An illustration of field incident from above in a three-layer structure with two
interfaces. Each layer is invariant along the 𝑧 axis and the middle layer is
periodic along 𝑥.
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Figure 4.8: The figures show the electric field distribution of fig. 4.7 with a normal in-
cident plane wave from above. The parameters was 𝜀1 = 1, 𝜀2 = 1.962,
Λ = 400 000 µm, 𝑎 = 200 µm, 𝜆 = 700 µm and 4001 plane waves.
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and rods with 𝜀2 = 1.962. The plots was calculated with Λ = 400 000 µm, 𝑎 = 200 µm
and 4001 plane waves. The incident field was chosen to be a normal incident plane wave
from above. We see that the field is scattered in all directions at the first interface. The
transmitted field excites the guided mode of the waveguide and the semi-radiation modes.
A rather advanced interference pattern is formed in the middle layer due to the multiple
reflections. The field transmitted through the second interface is largely scattered. The
field in the middle layer becomes more similar to the field in fig. 4.6 as 𝐿2 increases.

4.3.3 Transmission and Reflection

The transmission and reflection of the fields at the interfaces can be found by calculating
the power of each mode and taking their ratio. The 𝑚’th backwards propagating mode
in layer 𝑖’ can be expressed as

𝐸(𝑖)
𝑦,𝑚(𝑥, 𝑧) = (∑

𝑛
𝐸(𝑛,𝑖)

𝑦,𝑚 ei𝑘𝑥,𝑛𝑥) e− i𝑘(𝑖)
𝑧,𝑚𝑧. (4.76)

The power can then be calculated by integrating the time-averaged Poynting vector over
an interface, where the time-average Poynting vector is given by

⟨𝐒(𝑖)
𝑚 ⟩ = 1

2
Re(𝐄(𝑖)

𝑚 × (𝐇(𝑖)
𝑚 )∗). (4.77)

Since we are only interested in the energy flux along the 𝑧-direction we can multiply both
sides of this equation with 𝐧̂ = ̂𝐳. Then the only relevant part of 𝐄(𝑖)

𝑚 and (𝐇(𝑖)
𝑚 )∗ are the

former’s 𝑦 component and the latter’s 𝑥 component. Note that we are still assuming that
the electric field is polarised along the 𝑦-axis. This allows us to write the 𝑥-component of
the magnetic field as

𝐻(𝑖)
𝑥,𝑚 = −1

i𝜔𝜇0

𝜕
𝜕𝑧

𝐸(𝑖)
𝑦,𝑚 = 𝑘(𝑖)

𝑧,𝑚

𝜔𝜇0
𝐸(𝑖)

𝑦,𝑚. (4.78)

This enables us to write

− ̂𝐳 ⋅ ⟨𝐒𝑚⟩ = 1
2

Re(𝐸(𝑖)
𝑦,𝑚(𝐻(𝑖)

𝑥,𝑚)∗) (4.79)

= 1
2

Re(𝑘(𝑖)
𝑧,𝑚

𝜔𝜇0
)∣𝐸(𝑖)

𝑦,𝑚∣
2
. (4.80)

The power of the field propagating across the interface into region 𝑖 can then be calculated
by integrating the time-averaged Poynting vector over a single period at the interface

𝑃 (𝑖)
𝑚 = ∫

Λ

0

1
2

Re(𝑘(𝑖)
𝑧,𝑚

𝜔𝜇0
)(∑

𝑛
𝐸(𝑛,𝑖)

𝑦,𝑚 ei𝑘𝑥,𝑛𝑥)(∑
𝑛′

(𝐸(𝑛′,𝑖)
𝑦,𝑚 )∗ e− i𝑘𝑥,𝑛′𝑥) d𝑥 (4.81)

= 1
2√

𝜀0
𝜇0

Re(𝑘(𝑖)
𝑧,𝑚

𝑘0
)Λ ∑

𝑛
∣𝐸(𝑛,𝑖)

𝑦,𝑚 ∣
2
, (4.82)
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where we have used 𝑐𝑘0 = 𝜔 and 𝑐 = 1/√𝜀0𝜇0 is the speed of light in vacuum. Note that
this result is build upon the electric field presented in eq. (4.76). If we used a forward
travelling mode i.e. exp(+ i𝑘𝑧,𝑚𝑧), then we would have to use 𝐧̂ = ̂𝐳 as the unit normal
vector to the interface. In this case, eq. (4.82) is unchanged. In order to get the power
for the forward or the backward mode the above result needs to be multiplied with either
∣𝑎(𝑖)

𝑚 ∣2 or ∣𝑏(𝑖)
𝑚 ∣2.

To calculate the transmission into layer 𝑖 and the reflection of an incident beam 𝐚(1), we
will need to sum over the modes of interest, because of power orthogonality (eq. (2.70))

𝑇 =
∑𝑚 𝑃 (𝑖)

𝑚 ∣𝑎(𝑖)
𝑚 ∣

2

∑𝑛 𝑃 (1)
𝑛 ∣𝑎(1)

𝑛 ∣
2 (4.83)

𝑅 =
∑𝑚 𝑃 (1)

𝑚 ∣𝑏(1)
𝑚 ∣

2

∑𝑛 𝑃 (1)
𝑛 ∣𝑎(1)

𝑛 ∣
2 . (4.84)

For the two-layer geometry in fig. 4.5, it can be interesting to determine how much of
the incident field is transmitted into the guided modes of the waveguide. In case of a
single-mode slab waveguide, we can calculate this transmission as

𝑇guided =
𝑃 (2)

𝑖 ∣𝑎(2)
𝑖 ∣

2

∑2𝑁+1
𝑚=1 𝑃 (1)

𝑚 ∣𝑎(1)
𝑚 ∣

2 , (4.85)

where 𝑖 corresponds to the index of the guided mode of the waveguide. The total
transmission and reflection through a 𝑛-layer structure is found by summing over all
modes as

𝑇total =
∑2𝑁+1

𝑚=1 𝑃 (𝑛)
𝑚 ∣𝑎(𝑛)

𝑚 ∣
2

∑2𝑁+1
𝑚=1 𝑃 (1)

𝑚 ∣𝑎(1)
𝑚 ∣

2 (4.86)

𝑅total =
∑2𝑁+1

𝑚=1 𝑃 (1)
𝑚 ∣𝑏(1)

𝑚 ∣
2

∑2𝑁+1
𝑚=1 𝑃 (1)

𝑚 ∣𝑎(1)
𝑚 ∣

2 . (4.87)

When calculating the last two equations, we should check the condition 𝑇total + 𝑅total = 1
is satisfied.

4.4 Absorbing Boundary Condition
In the Fourier modal method the field is expanded in a set of plane waves under the
assumption that the structure is periodic. In the case where one is interested in a
non-periodic structure, the period can be made large enough such that each waveguide
does not interact with each other. However since large period requires a large number
of plane waves for the expansion, one cannot necessarily make the period large enough
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to avoid any interaction from the neighbouring waveguides, which results in parasitic
reflections. In the non-open geometries, Te parasitic reflections will lead to advanced
interference patterns. They are an artefact of having a non-open geometry and will not
be present in an open geometry [3].

The parasitic reflections can be suppressed by introducing an absorbing layers also
known as perfectly matched layers (PML) [3], which leads to less interference. The
electric field for a plane wave propagating in a medium of thickness 𝐿 with refractive
index 𝑛 can be described as

𝐄(𝐿) = ei𝑘0𝑛𝐿𝐄(0) (4.88)

by allowing the refractive index to assume complex values, the field contains a damping
effect which reduces the amplitude of the field. For large complex values of 𝑛 the amplitude
tends to move towards zero. However the index difference between the absorbing layer
and the inner layer can create reflection as can be seen from eq. (4.9) [3]. Another
approach is to make 𝐿 in eq. (4.88) complex, which will yield as similar result as by
making 𝑛 complex [3]. It can be used to describe the field near a single waveguide.
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5.1 Coupled waveguides
This section will go into detail with the coupling between waveguides. This will initially be
done through the examination of a slab waveguide consisting of 5 layers, i.e. 2 waveguides
with air around and between them as seen in fig. 5.1. It will be assumed that a TE
wave is propagating along with the uniform 𝑧-axis of the waveguide. Such a wave can be
described with an electric field, which is polarised along the 𝑦-direction

𝐸𝑦,𝑖(𝑥, 𝑧) = (𝐸𝑖,𝑅 ei𝑘𝑖,𝑥(𝑥−𝑥𝑖−1,𝑖) + 𝐸𝑖,𝐿 e− i𝑘𝑖,𝑥(𝑥−𝑥𝑖−1,𝑖)) ei𝛽𝑧, (5.1)

where the subscript 𝑖 is used to indicate the layer for which the electric field is to be
calculated and hence it can assume the values 1, 2, 3, 4, 5.

Since the dielectric function is piecewise constant along the 𝑥-axis, the electric field
needs to satisfy the Helmholtz equation, eq. (2.32) in each region, hence

0 = (∇2 − 𝛽2 + 𝑘2
0𝜀𝑖)𝐸𝑖(𝑥, 𝑧), (5.2)

from which it can be concluded that 𝑘𝑖,𝑥 = √𝑘2
0𝜀𝑖 − 𝛽2 for each region 𝑖. Furthermore,

the transverse components of the electric and magnetic fields are continuous across the
boundary. By looking at the transverse electric field at the interface between layer 𝑖 and
layer 𝑗 = 𝑖 + 1 one can obtain the following equation

𝐸𝑖,𝑅 ei𝑘𝑖,𝑥𝑑𝑖 + 𝐸𝑖,𝐿 e− i𝑘𝑖,𝑥𝑑𝑖 = 𝐸𝑗,𝑅 + 𝐸𝑗,𝐿, (5.3)

where 𝑑𝑖 = 𝑥𝑖,𝑗 − 𝑥𝑖−1,𝑗−1 is the width of layer 𝑖. From Maxwell’s equations, eq. (2.24), it
can be found that the 𝑧-component of the magnetic field is given by 𝐻𝑧 = (i𝜔𝜇0)−1𝜕𝐸𝑦/𝜕𝑥,
hence by the requirement that 𝐻𝑧 is continuous across the interface one can obtain

𝐸𝑖,𝑅 ei𝑘𝑖,𝑥𝑑𝑖 − 𝐸𝑖,𝐿 e− i𝑘𝑖,𝑥𝑑𝑖 =
𝑘𝑗,𝑥

𝑘𝑖,𝑥
(𝐸𝑗,𝑅 − 𝐸𝑗,𝐿). (5.4)

𝑥

𝑎 Λ

𝜀1 𝜀2 𝜀1 𝜀2 𝜀1

Figure 5.1: Two waveguides that are coupled together if the separation distance Λ is
sufficiently small.
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Solving eqs. (5.3) and (5.4) for 𝐸𝑗,𝑅 and 𝐸𝑗,𝐿 by adding and subtracting the equations
yields

[𝐸𝑗,𝑅
𝐸𝑗,𝐿

] = 1
2

⎡⎢
⎣

1 + 𝑘𝑖,𝑥
𝑘𝑗,𝑥

1 − 𝑘𝑖,𝑥
𝑘𝑗,𝑥

1 − 𝑘𝑖,𝑥
𝑘𝑗,𝑥

1 + 𝑘𝑖,𝑥
𝑘𝑗,𝑥

⎤⎥
⎦

[ei𝑘𝑖,𝑥𝑑𝑖 0
0 e− i𝑘𝑖,𝑥𝑑𝑖

][𝐸𝑖,𝑅
𝐸𝑖,𝐿

]. (5.5)

The first matrix, in the above equation, describes how the field changes across an interface
and the second matrix describes how the field propagates inside a single layer of the
structure. Assuming the coefficient 𝐸1,𝐿 and 𝐸1,𝑅 are known, this equation can be used
to calculate the field in the second layer and henceforth. Introducing the notation 𝐻̄𝑖𝑗 for
the first matrix (including the factor 1/2) and 𝐿̄𝑖 for the second matrix, we shall write

[𝐸′
𝑖,𝑅

𝐸′
𝑖,𝐿

] = 𝐿̄𝑖[
𝐸𝑖,𝑅
𝐸𝑖,𝐿

]. (5.6)

Then it is possible to set up an equation for the coefficients for the five-layer structure

[𝐸5,𝑅
𝐸5,𝐿

] = 𝐻̄45𝐿̄4𝐻̄34𝐿̄3𝐻̄23𝐿̄2𝐻̄12[𝐸′
1,𝑅

𝐸′
1,𝐿

] (5.7)

= ̄𝑆[𝐸′
1,𝑅

𝐸′
1,𝐿

]. (5.8)

To determine the guided eigenmodes of the coupled waveguides, we look at the case
where there are no incoming field i.e. 𝐸1,𝑅 = 𝐸5,𝐿 = 0. Then it follows from eq. (5.8)
that

𝐸5,𝐿 = 𝑆21𝐸′
1,𝑅 + 𝑆22𝐸′

1,𝐿 ⟹ 𝑆22𝐸′
1,𝐿 = 0, (5.9)

where 𝑆21 and 𝑆22 are components of ̄𝑆. Since the fields in region 1 and 5 are evanescent
waves, then 𝐸′

1,𝐿 ≠ 0, we require therefore that

𝑆22(𝛽) = 0, (5.10)

which can be solved for 𝛽 numerically.

5.2 Coupled Mode Theory
In this section, we will be looking into the coupling of waveguides approximately as
opposed to the exact model introduced in section 5.1. Consider two isolated waveguides
oriented along the 𝑧-axis with refractive index 𝑛1 and 𝑛2, respectively as in fig. 5.2.
Furthermore, the electric field is polarised along the 𝑦-direction and it is required that
this electric field satisfy the scalar equation for each waveguide isolated

∇2𝐸𝑦,𝑖(𝑥, 𝑦, 𝑧) + 𝑛2
𝑖 (𝑥, 𝑦)𝑘2

0𝐸𝑦,𝑖(𝑥, 𝑦, 𝑧) = 0. (5.11)

In the case where both waveguides are uniform along the 𝑧-axis the electric field will only
change with a phase-factor along the 𝑧-axis

𝐸𝑦,𝑖(𝑥, 𝑦, 𝑧) = 𝐸𝑖(𝑥, 𝑦) e− i𝛽𝑖𝑧, (5.12)
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𝑥

𝑛1(𝑥)

𝑛ref

(a)
𝑥

𝑛2(𝑥)

𝑛ref

(b)
𝑥

𝑛𝑇(𝑥)

𝑛ref

(c)

Figure 5.2: (a-b) Two refractive index distributions of two isolated waveguides. (c) The
refractive index of the same two waveguides in the same geometry.

where 𝑖 ∈ {1, 2} and 𝐸𝑖(𝑥, 𝑦) and 𝛽𝑖 is the transverse field and the propagation constant
for the 𝑖’th waveguide respectively. These solution should also fulfil the scalar equation

∇2
⊥𝐸𝑖(𝑥, 𝑦) + [𝑛𝑖(𝑥, 𝑦)𝑘2

0 − 𝛽𝑖]𝐸𝑖(𝑥, 𝑦) = 0, (5.13)

where ∇⊥ denotes the transverse part of the nabla operator. These equations can be
solved for 𝛽𝑖 and 𝐸𝑖(𝑥, 𝑦) and we will in the following assume they are known.

Consider now two waveguides in the same geometry as in fig. 5.2c. The electric field
will need to satisfy the scalar equation

∇2𝐸(𝑥, 𝑦, 𝑧) + 𝑛2
𝑇(𝑥, 𝑦)𝑘2

0𝐸(𝑥, 𝑦, 𝑧) = 0, (5.14)

where 𝑛2
𝑇 is the combined refractive index distribution of waveguides, i.e. 𝑛𝑇 = 𝑛1 + 𝑛2 −

𝑛ref. Assume that the electric field in this geometry can be described as a superposition
of the electric fields for the two isolated waveguides

𝐸(𝑥, 𝑦, 𝑧) = 𝐴1(𝑧)𝐸1(𝑥, 𝑦) e− i𝛽1𝑧 + 𝐴2(𝑧)𝐸2(𝑥, 𝑦) e− i𝛽2𝑧, (5.15)

where 𝐴1 and 𝐴2 are the amplitude of the two modes [9]. Using this solution with
eq. (5.14) and simplifying the resulting expression using eq. (5.11), then the following
equation can be obtained

0 = [𝐴1(𝑛2
𝑇 − 𝑛2

1)𝑘2
0𝐸1 + d2𝐴1

d𝑧2 𝐸1 − 2 i𝛽1
d𝐴1
d𝑧

𝐸1] e− i𝛽1𝑧

+ [𝐴2(𝑛2
𝑇 − 𝑛2

2)𝑘2
0𝐸2 + d2𝐴2

d𝑧2 𝐸2 − 2 i𝛽2
d𝐴2
d𝑧

𝐸2] e− i𝛽2𝑧. (5.16)

The above expression introduced two new functions; 𝑛2
𝑇 − 𝑛2

1 and 𝑛2
𝑇 − 𝑛2

2. One should
remember that the dielectric constant and the refractive index is connected through
𝑛2 = 𝜀𝑟, therefore can 𝑛2

𝑇 − 𝑛2
1 be interpreted as a perturbation in dielectric constant

Δ𝜀𝑟,1 to waveguide 1 caused by the neighbouring waveguide. A similar interpretation
can be made for 𝑛2

𝑇 − 𝑛2
2 [9].
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To move forward with the calculations, it will be assumed that the second-order deriv-
atives of the amplitude can be neglected. Applying this approximation and multiplying
eq. (5.16) with the complex conjugated solutions of waveguide 1 and integrating over the
device cross-section gives the first of the two following equations whereas the other is
obtained by multiplying with the complex conjugated solutions of waveguide 2

𝑘2
0⟨𝐸1∣𝐴1(𝑛2

𝑇 − 𝑛2
1)∣𝐸1⟩ − 2 i𝛽1

d𝐴1
d𝑧

⟨𝐸1|𝐸1⟩

+ [𝑘2
0⟨𝐸1∣𝐴2(𝑛2

𝑇 − 𝑛2
2)∣𝐸2⟩ − 2 i𝛽2

d𝐴2
d𝑧

⟨𝐸1|𝐸2⟩] e−(𝛽2−𝛽1)𝑧 = 0 (5.17)

𝑘2
0⟨𝐸2∣𝐴2(𝑛2

𝑇 − 𝑛2
2)∣𝐸2⟩ − 2 i𝛽2

d𝐴2
d𝑧

⟨𝐸2|𝐸2⟩

+ [𝑘2
0⟨𝐸2∣𝐴1(𝑛2

𝑇 − 𝑛2
2)∣𝐸1⟩ − 2 i𝛽2

d𝐴1
d𝑧

⟨𝐸2|𝐸1⟩] e− i(𝛽1−𝛽2)𝑧 = 0. (5.18)

Here we have used ⟨⋅|⋅⟩ to denote the integrals. These equations can be simplified by
making several approximations. It will be assumed that the overlap terms are small,
hence the overlap integral ⟨𝐸2|𝐸1⟩ and ⟨𝐸1|𝐸2⟩ can be neglected. This is a reasonable
approximation as long as the guides are not too close together. The self-coupling terms
⟨𝐸1∣𝐴1(𝑛2

𝑇 − 𝑛2
1)∣𝐸1⟩ and ⟨𝐸2∣𝐴2(𝑛2

𝑇 − 𝑛2
2)∣𝐸2⟩ can be neglected as well, since they are

only non-zero in regions of the perturbations Δ𝜀𝑟1 and Δ𝜀𝑟2, respectively. That is in the
regions where the evanescent fields of 𝐸1 and 𝐸2 are already small, hence

−2 i𝛽1
d𝐴1
d𝑧

⟨𝐸1|𝐸1⟩ + 𝐴2𝑘2
0⟨𝐸1∣𝐴2(𝑛2

𝑇 − 𝑛2
1)∣𝐸2⟩ e− i(𝛽2−𝛽1)𝑧 = 0 (5.19)

−2 i𝛽2
d𝐴2
d𝑧

⟨𝐸2|𝐸2⟩ + 𝐴1𝑘2
0⟨𝐸2∣𝐴2(𝑛2

𝑇 − 𝑛2
2)∣𝐸1⟩ e− i(𝛽1−𝛽2)𝑧 = 0. (5.20)

Due to the symmetry of the geometry, it stands to reason that the coupling between the
waveguides should not change if the positions of the waveguides are swapped, hence it
will be assumed that the following equation will hold

𝑘2
0⟨𝐸1∣𝑛2

𝑇 − 𝑛2
1∣𝐸2⟩/⟨𝐸1|𝐸1⟩ ≈ 𝑘2

0⟨𝐸2∣𝑛2
𝑇 − 𝑛2

2∣𝐸1⟩/⟨𝐸2|𝐸2⟩. (5.21)

Furthermore the propagation constants will be assumed to be approximately equal i.e.
𝛽1 ≈ 𝛽2 ≈ 𝛽0. With these simplifications eqs. (5.19) and (5.20) can be rewritten into

d𝐴1
d𝑧

+ i𝜅𝐴2 e− i(𝛽2−𝛽1)𝑧 = 0 (5.22)

d𝐴2
d𝑧

+ i𝜅𝐴1 e+ i(𝛽2−𝛽1)𝑧 = 0, (5.23)

where 𝜅 is the coupling coefficient given by

𝜅 = 𝑘2
0

2𝛽0

⟨𝐸1∣𝑛2
𝑇 − 𝑛2

1∣𝐸2⟩
⟨𝐸1|𝐸1⟩

. (5.24)

The change in amplitudes of the waveguides’ fields are connected, as seen from eqs. (5.22)
and (5.23) in the case of non-zero coupling coefficient 𝜅. The coupling length can be
found by 𝜋/(2𝜅) and describes the distance for which guided modes are transferred from
one waveguide to the other [10].
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6 Results

In this project, the waveguides that are examined is an air-silica step-index optical
fibre with radius 𝑎 = 100 µm and slab waveguide of the same compound with thickness
𝑎 = 200 µm. The air-silica step-index waveguide can be obtained by stripping away the
cladding of a commercially available multi-mode optical fibre which leaves only the core
[1]. Usually, the core has a slightly higher refractive index than the cladding (about 1 %).
Since the cladding has been removed and therefore effectively been replaced by air the
difference in refractive index becomes much larger.

According to [1] this makes the step index fibre able to support guided modes in the
terahertz band. Particularly, in the frequency range 0.3 THz to 1 THz, corresponding to
the wavelength range 300 µm to 1000 µm, the refractive index of the core has a nearly
constant value of 1.96. With the parameters given above, one can calculate from the 𝑉
parameter

𝑉 = 𝑘0𝑎√𝑛2 − 𝑛2
1 (6.1)

that frequencies above 0.6807 THz results in multiple guided modes in the air-silica
step-index fibre.

6.1 Step index fibre
In this section, we will examine the step-index fibre waveguide using finite-difference
frequency-domain described in section 3.2. To use the Yee mesh, the first step is to
choose a method to calculate the dielectric function at the grid points. The easiest
method is to check whether a grid point is inside or outside the core and assign the
respective dielectric constant, the so-called staircase approximation (fig. 3.4b). This
approach may be adequate when the resolution of the waveguide is large enough. To
significantly improve convergence of the eigensolutions to eqs. (3.27) and (3.28), a tensor
averaging scheme was implemented as described in section 3.3. An example of this
averaging scheme is shown in fig. 6.1. It should be noted that the axes are different for
each diagonal component of the dielectric tensor, as they are needed to be determined at
different grid points.

In fig. 6.2 the magnitude of the fundamental mode has been plotted for two different
wavelengths. The first thing to notice is both plots show substantial evanescent waves in
agreement with [1], which becomes more substantial with increasing wavelength. This
can also be expressed through the full width half maximum (FWHM) which has been
calculated as a function of the 𝑉-parameter in the range 1 to 3.5 as shown in fig. 6.3a. For
the examined step-index fibre, 𝑉 = 1 corresponds to the frequency 𝑓 = 0.283 THz and
scales linearly with frequency. The FWHM was calculated by averaging the radius from
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Figure 6.1: An example of the tensor averaging scheme of the dielectric tensor. Here a Yee
grid of size 20×20 and each box at the circle edge was split up into 1000×1000
grid points and the permittivity was determined at each point and averaged
together.

the fundamental mode’s centre to all points that are positioned in a small range around
half maximum e.g. all the points in the red band in fig. 6.3b was used. It should be noted
that there are some bumps between 𝑉 = 2 and 𝑉 = 3. These bumps are non-physical
and their origin is not clear. Possible explanations could be the eigensolutions were not
fully converged or the grid length should have been chosen smaller. The other thing to
notice is that the fundamental mode has an approximately Gaussian distribution.

For wavelengths larger than 500 µm, the grid length of 800 µm (as in fig. 6.2) is no
longer sufficient to calculate the eigenmodes of the waveguide. This is because the outer
grid boundary acts as a closed boundary and the field drops to zero outside. Ideally, an
open boundary should be used, however, limited by memory it is enough to choose a grid
length for which the field is sufficiently close to zero near the border. The field is not
close to zero at the border in fig. 6.2b, however, it is adequate to give a good result.

An investigation has been performed to check at which grid length gives eigenvalues
closes to those obtained from the analytical method presented in section 2.6. It was
found that a grid length of 2000 µm was the most optimal for 𝑉-parameters in the range
1 to 7 for the examined step-index fibre.

With the optimal parameters found, the mode indices as a function of 𝑉-parameter
have been calculated and presented in fig. 6.4a using finite difference frequency domain
outlined in section 3.2. For comparison, fig. 6.4b have been calculated with the analytical
expression outlined in section 2.6. We see that the modes indices in fig. 6.4a have fully
converged except some tails (low 𝛽/𝑘0). The tails of the smoothly bending curves are
not fully converged. This is most noticeable when looking at the orange curve just above
𝑉 = 4.
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Figure 6.2: A surface plot of |𝐇⟂| fundamental mode for two different wavelength. The red
circle represents the 200 µm diameter waveguide.
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Figure 6.3: (a) A plot of the FWHM as a function of the 𝑉-parameter of the air-silica
step index fiber. (b) The red band illustrates where the FWHM averaging was
carried out.
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Figure 6.4: Plots of the effective mode index for the air-silica step-index fiber. (a) Calculated
with FDFD and a Yee mesh of 2000 µm by 2000 µm and discretised in 300×300
was used. (b) Calculated with the analytical expression in eq. (2.113).

6.2 Mode coupling of slab waveguides

Mode coupling addresses the means of power transfer. One way to transfer power
between two distinct waveguides is through evanescent waves [1, 5, 9, 10], which we will
be examined in this section. The modal profiles of interest are the two modes with the
highest real 𝛽. Additionally, we shall look into the coupling between these two modes.

6.2.1 Finding the mode indices

The mode indices 𝛽/𝑘0 was found by solving eq. (5.10) using several numerical methods.
The first step is to discretise the line 𝜀1𝑘0 < 𝛽 < 𝜀2𝑘0 for which guided modes exist and
𝑆22 is calculated and plotted in fig. 6.5. It is seen there exist modes where the curve
crosses the dashed line around 𝛽/𝑘0 = 1.05, meaning that the modes can be identified
by looking for sign changes in 𝑆22. However these are not the modes of interest, but
higher-order modes. Effectively, not all modes can be found like this as the peak around
𝛽/𝑘0 = 1.77 does not cross the dashed line, and the two modes that can be found there
are the modes of interest. More grid points could be used, but this would require heavier
computational resources and is rather time-consuming. As Λ increases, the problem
will occur again and would require more grid points. A smaller discretization range
𝜀1𝑘0 < 𝑎 < 𝛽 < 𝑏 < 𝜀2𝑘0 could be used, however the modes are not guaranteed to lie in
the new range.

After calculating 𝑆22 over the grid 𝜀1𝑘0 < 𝛽 < 𝜀2𝑘0, we decided to look for local
extremas in the following way: For 𝑆22 > 0 look for local minimums and for 𝑆22 < 0 look
for local maximums. This can be done for even a low number of grid points. A small
grid of 𝛽-values around the corresponding extrema points is made. These sets of modes
are then converged toward the true mode indices iteratively by the Newton-Raphson
method.
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Figure 6.5: A logaritmic plot of 𝑆22(𝛽). The plot have been shifted upward with the offset
min{𝑆22} + 1 before taking the logarithm. The dashed line shows where the
solution may be found.

6.2.2 Result

We will compare the two coupled-mode theories describes in sections 5.1 and 5.2, where
one of the methods is exact and the other is an approximation.

Consider the geometry with two slab waveguides of width 𝑎 = 200 µm and separation
distance Λ as in fig. 5.1. Firstly we consider the exact theory from section 5.1 and look
into how the isolated waveguides’ fundamental modes split into the coupled waveguides’
supermodes as the distance between the waveguides Λ decreases. Figure 6.6 shows the
mode indices for the two supermodes with the highest real mode indices. As the Λ
increases the effective mode indices of the two supermodes converges toward the mode
index of a single waveguide of width 𝑎 = 200 µm for each wavelength, because the coupling
between the waveguides decreases. They converge toward the same mode in the limit as
Λ → ∞ [11]. While for small separation distances the coupling increases leading to a
large separation in the mode indices. In the limit that Λ → 0, the two supermode indices
converge toward the two highest mode indices for a single waveguide of width 𝑎 = 400 µm
[11].

Figure 6.7a shows the field amplitudes of the two supermodes waves for different
wavelength. As the wavelength increases, the modes become less bounded to the waveguide
and creating substantial evanescent fields. In fig. 6.7b, the fields have been calculated
with the approximate coupled-mode theory. It can be seen that this method accurately
depicts the fields compared with the exact calculations.

If both super modes are exited then the field can be described as

ei𝛽0𝑧𝐸𝑦,0(𝑥) + ei𝛽1𝑧𝐸𝑦,1(𝑥) = ei𝛽0𝑧(𝐸𝑦,0(𝑥) + ei(𝛽1−𝛽0)𝑧𝐸𝑦,1(𝑥)), (6.2)

with the exact method. Here 𝛽1 − 𝛽0 can be viewed as the coupling coefficient and have
an important property; power transfer between waveguides. Assume the field is entirely
located in waveguide 1 at 𝑧 = 0. The field amplitudes are simply summed together here.
Then after travelling some distance say, 𝑧 = 𝜋/|𝛽1 − 𝛽0|, then the field amplitude 𝐸𝑦,1(𝑥)
is multiplied with a factor −1. This results in the field are cancelled in waveguide 1 and
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Figure 6.6: The super mode indices for the two highest real mode indices for two coupled
waveguides.

are now entirely located in waveguide 2. Through evanescent waves, the power has been
transferred from one waveguide to the other. This is shown in fig. 6.9 for weakly and
strongly coupled waveguides. The distance over which such transfer occurs is highly
dependent on wavelength and separation distance.

For the exact model, we call
𝛿 = 𝜋

|𝛽1 − 𝛽0|
(6.3)

the coupling length and it describes the distance for which the guided modes is transferred
from one waveguide to the other. In the approximate model, the coupling length can be
found through eq. (5.24) as

𝜋
2𝜅

, (6.4)

where 𝜅 is found by eq. (5.24). The coupling lengths as a function of the separation
distance Λ is shown in fig. 6.8. The coupling length’s dependence on wavelength and
separation distance is clearly shown, and the power transfer can occur over distances as
small as a few hundred micrometres to several meters. We also see that the approximate
coupled-mode theory can accurately describe the coupling length over various separation
distance Λ. Thought the approximate model predicts a slightly higher value at a very
low Λ/𝜆 value.
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Figure 6.7: The field profiles of the two highest real modes in two coupled waveguides.
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Figure 6.8: The coupling between two waveguides is highly dependent on wavelength 𝜆 and
separation distance Λ.
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(a) Weakly coupled waveguides. 𝜆 = 500 µm.
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(b) Strongly coupled waveguides. 𝜆 = 1000 µm.

Figure 6.9: Both plots shows power transfer with separation distance Λ = 500 µm for two
different wave length. Higher wavelength leads to a smaller coupling length 𝛿.
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Figure 6.10: An illustration of a two-layer structure. Each layer is invariant along the 𝑧-axis
and periodic along the 𝑥-axis.

6.3 Analysis of slab waveguides with FMM

We shall in this section discuss the use of the Fourier modal method to analyse slab
waveguides in different geometries. Additionally, we shall look into the transmission and
reflection of guided mode, plane wave and Gaussian beam through the geometries.

In the following subsections, we will assume that the air has permittivity 𝜀1 = 1, the
slab waveguide has permittivity 𝜀2 = 1.962 and thickness has permittivity 𝑎 = 200 µm.
Additionally, we will work with the wavelength of 𝜆 = 700 µm. All other parameters will
be specified in the figure captions.

6.3.1 2 layers with waveguides suspended in air and foam

Consider the geometry in fig. 6.10 wherein layer one we have semi-infinite long waveguides
placed in air. In layer two the air is replaced with another material, which we will call
foam. In practice, we cannot have the waveguides suspended in the air. The foam may
act as supporting pillars to keep the waveguide suspended in air over long distances.
However, the foam’s presence will influence the field propagating in the waveguides. We
will study how much influence the foam has on the transmitted field.

In fig. 6.11 the electric field have been plotted for the geometry in fig. 6.10 for various
refractive indices of the foam. Here we have a backward propagating guided mode
incident from the upper layer. At the interface, the field is largely transmitted and is
only slightly reflected. The transmitted field is slightly, fairly, and greatly scattered in
the foam for low, medium, and high refractive index, respectively. This is contributed by
the reduction of confinement of the guided mode in the waveguide in the bottom layer.
Whereas in fig. 6.12 the electric field has been plotted for the geometry in fig. 6.10 for
various refractive indices of the foam. Here we have a forward propagating guided mode
incident from the bottom layer. At the interface, the field is largely transmitted and the
reflection varies with 𝜀3. The transmitted field is slightly, fairly, and greatly scattered in
the air for low, medium, and high refractive index, respectively.

In fig. 6.13 the transmission and reflection are plotted with the guided mode incident
from the top layer. In fig. 6.14 the transmission and reflectance are plotted with the
guided mode incident from the bottom layer. The blue curves describe the total reflection
and transmission, whereas the red curves only account of the reflection and transmission
into the guided mode of layer one and two, respectively. Note that the reflection for the
two graphs in fig. 6.13a and fig. 6.14a are similar for small values of 𝑛3. As 𝑛3 increases,
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Figure 6.11: The field distribution of fig. 6.10 with a guided mode incident from the upper
layer. We used Λ = 400 000 µm and 4001 plane waves.
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Figure 6.12: The field distribution of fig. 6.10 with a guided mode incident from the bottom
layer. We used Λ = 400 000 µm and 4001 plane waves.

55



6.3 Analysis of slab waveguides with FMM Group 5.330 D

1.2 1.4 1.6 1.8p
"3

0

0.5

1

1.5

2

R
e.

ec
ti
o
n

R

#10!3

Total

Guided

(a) Reflection

1.2 1.4 1.6 1.8p
"3

0

0.5

1

T
ra

n
sm

is
si
o
n

T

Total

Guided

(b) Transmission

Figure 6.13: The reflection and transmission of fig. 6.10 with a guided mode incident from
the upper layer. We used Λ = 40 000 µm and 1001 plane waves.
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Figure 6.14: The reflection and transmission of fig. 6.10 with a guided mode incident from
the bottom layer. We used Λ = 40 000 µm and 1001 plane waves.

the difference becomes more prominent. This is due to the fact that the mode incident in
the bottom layer becomes more loosely bound due to the difference between the refractive
index of the waveguide and the foam becomes smaller. For the mode incident towards
the upper layer, the modes remain strongly bounded due to the difference between the
refractive index of the waveguide and air remain the same.

6.3.2 3 layers with waveguides suspended in air and foam

The illustration, fig. 6.16, shows the electric field distribution for the three-layer structure
given in fig. 6.15. The calculation was performed with Λ = 20 000 µm. For the incident
mode in layer 1, we choose the mode with the largest real propagation constant 𝛽. The
first thing to notice is the scattering of the incoming mode when it crossed into layer
2 grows larger as 𝜀3 grows. When 𝜀3 < 1.2 then the scattering is fairly low and the
field inside the waveguide is only slightly disturbed. For large values of 𝜀3, the field has
been scattered significantly and the transmission of the field into the guided mode is
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Figure 6.15: An illustration of a three-layer structure. Each layer is invariant along the 𝑧
axis and periodic along the 𝑥 axis.
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Figure 6.16: The field distribution of fig. 6.15 with the upper layer’s guided mode incident
from above. We used Λ = 20 000 µm and 1001 plane waves in the calculation.
The fields are affected by substantial parasitic waves.

significantly lowered.
It should be noted that the field in figs. 6.16b and 6.16c are both subject to substantial

parasitic waves from neighbouring waveguides leading to advanced interference patterns.
It shows that the choice of Λ should have been much larger in order to describe the field
for a single waveguide accurately. As shown in fig. 6.17, even at Λ = 400 000 µm the effect
of the parasitic waves is still too large to approximate the field for a single waveguide.
Calculation with so large a period requires a very large number of plane waves and is
very computationally heavy in terms of both time and memory.

As mentioned in section 4.4, there are several methods to reduce the parasitic waves.
The method we tried out is using a complex period Λ = Λ𝑅 + iΛ𝐼, where we can control
the dampening with Λ𝐼. The field is shown in fig. 6.18. Thought the field near the
waveguide look to be unaffected by parasitic waves and give a nice field. However, from
around |𝑥| > Λ𝑅/2 the field is greatly disturbed by Λ𝐼 due to exponential increasing
waves. For a smaller Λ𝐼, this occur first at a larger |𝑥|-values. Therefore to use a complex
period, one should choose a large Λ𝑅 and small Λ𝐼.

The transmission and reflectance of an incident guided mode through the three-layer
structure fig. 6.15 was investigated. The transmission and reflectance depends on refractive
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Figure 6.17: The field distribution of fig. 6.15 with the upper layer’s guided mode incident
from above. We used Λ = 400 000 µm and 4001 plane waves in the calculation.
The fields are affected by substantial parasitic waves.
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Figure 6.18: The field distribution of fig. 6.15 with the upper layer’s guided mode incident
from above. We used Λ = (20 000 + 600i) µm and 1001 plane waves in the
calculation. The fields are not affected by parasitic waves.
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Figure 6.19: A plot of the reflection and transmission of a guide mode from above for the
structure in fig. 6.15.

index of the surrounding foam in layer two and the length of layer two 𝐿2 as seen in
fig. 6.19. These plots are created with a period Λ = 12 000 µm. In fig. 6.19c it can be
seen that the transmission is approximately equal one for 𝑛3 < 1.6. However as 𝑛3 > 1.7
the guided mode in the middle layer becomes loosely bounded resulting in less excitation
of this mode. Figure 6.19b and Figure 6.19a indicates that there is a low loss due to
reflection for most refractive indices of the form. However for large values of 𝑛3 there
seems to be introduced a small amount of loses due to an increase in reflection. It is
found that the transmission and reflection is largely independent of 𝐿2.

Gaussian beam

Here we will look at the 2-layer structure given in fig. 4.5 with a normal incident Gaussian
beam from above. We have air in layer 1 and in layer 2 we have a periodic array of
waveguides with air surrounding it.
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Figure 6.20: Reflection and transmission of a Gaussian beam normal incident from above
on a two-layer structure fig. 6.10.

The transmission and reflection of the Gaussian beam through the interface depends on
the beam width, 𝑤, as shown in fig. 6.20. The blue curves describe the total reflection and
transmission, whereas the red curves only account of how much of the field is transmitted
into the waveguide’s guided mode. Since we used the approximation 𝑤 ≪ Λ when the
theory was derived in section 4.3.3, we need to make sure that this requirement is satisfied
for every beam width 𝑤 in fig. 6.20. This is done by scaling the period Λ with increasing
𝑤 such that Λ/𝑤 = 10.

For the case of small 𝑤 ⪅ 2000 µm, the reflection develops chaotic, which may occur
due to evanescent waves or parasitic scattering due to small period. As 𝑤 increases, an
increasing amount of the field propagates through the air outside of the waveguide which
results in the total transmission goes towards 1. The guided transmission goes to zero
for large 𝜔. The latter is misleading because most of the power is transmitted through
the air.

When looking at the field fig. 6.21 another interpretation arise. The field in the
waveguides seems equal amplitude (it is in arbitrary units). From fig. 6.21a is can be
seen that the field excites the guided mode of the waveguide while some of it is also
scattered into to air. As the beam width increases, more of the field propagates in the air.
Comparing the field in fig. 6.21c with the field infig. 4.6f, they are almost identical. For
large 𝑤, the field is almost constant over a small interval along the 𝑥-axis i.e. |𝑥| ≪ 𝑤
and propagates in one direction. Hence they are similar in properties and therefore a
single plane wave can approximate a wide Gaussian beam.
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(a) 𝑤 = 600 µm

-2 0 2
x [mm]

-2

-1

0

1

z
[m

m
]

0.2 0.4 0.6 0.8 1 1.2

(b) 𝑤 = 1500 µm
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(c) 𝑤 = 10 000 µm

Figure 6.21: The absolute electric field of fig. 4.5 with an normal incident Gaussian beam
from the upper layer. We used Λ = 400 000 µm and 4001 plane waves in the
calculation.
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7 Conclusion

This project aimed to examine the air-silica step-index fibre presented in Ultra-High Q
terahertz whispering-gallery modes [1]. One of the first things that where examined was
the mode profile as a function of the 𝑉-parameter. It was found for the 200 µm diameter
step-index fibre, that frequencies below 0.6807 THz result in single mode. For frequencies
below this, the width of the fibre’s fundamental mode greatly increased with decreasing
frequencies leading to large evanescent waves.

Air-silica slab waveguides of thickness 200 µm were also studied. We investigated
the mode coupling of two identical slab waveguides by evanescent waves and found
that the coupling length ranges between a few hundred micrometres to several metres.
Furthermore, the coupled-mode theory gave satisfactory results in terms of coupling
length and field profiles compared to analytical calculations.

To study two-dimensional geometries, we used Fourier modal method to examine single
slab waveguides in two-layer and three-layer geometries. The foam was introduced to
hold the waveguides suspended in the air and the effect of its presence was investigated.
Moreover, it is evident from the field plots that the field scattering at the interfaces
between the layers is low for a low refractive index of the foam. For a high refractive
index, the scattering is increased leading to a great loss of power. The thickness of the
foam was not found to have any prominent influence of the transmission and reflection.

In an attempt to get rid of advance interference patterns which occurred due to parasitic
scattering, we tried to see the effects of introducing a complex period, Λ, and increase
the number of plane waves used in the plane-wave expansion. It was here found that
due to the limitation of the computational equipment available, the dampening effect,
due to the complex period, was found the be most effective. However, the field may be
affected by exponential increasing waves for large |𝑥|-values but unaffected by them near
the waveguide. A similar course of action was performed but instead of sending in a
guided mode towards the structure, a Gaussian beam was incident. It was found that
the reflection of a Gaussian beam was low.
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