
0.1. Summary

0.1 Summary

In this thesis we have worked on improving the performance of JavaScript applications,
written in the front-end framework React. We designed and implemented React-compiler,
a compiler written in JavaScript for compiling applications into more performant JavaScript
code. React-compiler enables React developers to obtain better performing applications,
without rewriting them in a different front-end framework. This thesis is a continuation of
the preliminary work in our ninth semester project. In our ninth semester project, we built
a proof of concept compiler to investigate whether it was possible to compile React appli-
cations to vanilla JavaScript. Additionally, we proposed a methodology for benchmarking
front-end frameworks as there was no standard in the industry for comparison. In our ninth
semester project, we concluded that it was possible to build a compiler for React, however,
with mixed results.

In this thesis, we chose to focus on improving the performance of our proof of concept, while
addressing the flaws found in our methodology. We structured our work in 3 iterations and
ran benchmarks at the end of each iteration to measure the performance of the optimisations
created in the iteration. We use an open source benchmarking tool, named js-benchmark-
framework, but we refer to it by its author’s name, Krausest. Krausest measures how fast
implementations written in different frameworks perform operations on the DOM of a web
page in the browser. It also measures startup time and memory consumption.

React-compiler removes the React runtime from the compiled application entirely, thus re-
ducing its total file size, which improves load times, and reduces memory consumption.
React uses a process at runtime to reduce the number of DOM operations being performed
when the application is updated. This process is called reconciliation and relies on a virtual
DOM, which is an in memory representation of the DOM shown to the user. The reconcil-
iation process improves the performance of the applications at a cost of increased memory
usage. It also increases the total size of the application, because of all the features required
in the React runtime.

React-compiler takes inspiration from another framework, named Svelte, and tracks any
dependecies found throughout an application. React-compiler will then generate DOM up-
date functions, which only updates DOM nodes whose dependencies have been modified.
This allows React-compiler to reduce the amount of DOM operations required to update the
DOM when a change occurs. However, because the dependencies are pre-computed, React-
compiler can update the DOM more efficiently than React, because it can update the DOM
directly rather than having to perform a "diffing" process.



During development of React-compiler, we encountered various challenges. For instance,
we found a correlation between performance issues, discovered after iteration 2, and the
amount of CPU slowdown used in the individual benchmarks. Disabling CPU slowdown
showed, that the compiled applications performed as expected. We theorised that the slower
CPU speeds were unable to handle the large number of DOM operations being performed in
the benchmarks, which caused the browser to overload. Our conclusion was that we needed
to implement a scheduler for the compiled applications at runtime to prioritise DOM opera-
tions, especially on slower CPU speeds. This was based on the performance of React, which
uses a scheduler at runtime, and managed to perform better than the compiled applications
both with and without CPU slowdown. We have not implemented a scheduler in this project,
however, the implementation in iteration 3 resulted in better performance than React in the
majority of benchmarks. These results did not show any performance issues related to CPU
slowdown despite the lack of a scheduler.

The compiled applications outperform React by 28% - 1740% in 5 out of 10 benchmarks in
the DOM operation category of the Krausest benchmarking tool. In the 5 benchmarks where
React-compiler is worse, it is 6% - 40% slower. Furthermore, when compiling an application
with React-compiler, the total file size of the application is reduced by up to 87%.

React-compiler does have some limitations in terms of which React features it is capable of
compiling such as React hooks, portals, and context. Multiple return expressions in a React
component’s render method are also not supported. Using third party libraries such as Redux
or MobX, does not work if the library requires its input to be a React component, since the
compiled application has removed React entirely.
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Chapter 1

Introduction

This report is based on our previous work involving the development of a methodology for
comparing front-end frameworks and the compilation of React applications [1]. This report
will reuse many concepts as well as knowledge provided in said report and it is, therefore,
advantageous to have read it. A summary of our previous work is added for convenience in
section 1.1, which covers the major contributions, however, for more in-depth explanations
of various concepts, one must refer to our previous report [1].

1.1 Background And Related Work

We investigated front-end frameworks in terms of performance, with the goal of the project
being to compile React applications to vanilla JavaScript [1]. To assist with this investiga-
tion, we chose to focus on two frameworks based on their distinct approach to optimising
DOM operations on a web page. In addition to this, we developed a methodology for com-
paring the two frameworks as well as a number of other popular frameworks such as Vue.js
and Angular. Using the knowledge gained from researching the two frameworks, we built a
Babel plugin which can compile React applications into vanilla JavaScript applications. Us-
ing our developed methodology, we then compared our implementation against both Svelte,
React, and vanilla JavaScript implementations to see how they compared in terms of perfor-
mance. This section will provide the background information needed to understand our 9th
semester report. A shortened explanation of the two frameworks is provided in section 1.1.1
and section 1.1.2. For a more detailed description of the frameworks, sections of the same
names can be found in our 9th semester project [1]. In section 1.1.3, we describe the method-
ology and results of our tests, and in section 1.1.4, we describe our implementation.
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1.1.1 React

React, is developed by a dedicated team at Facebook and uses a component based approach
to the development of UIs [2]. Applications written in React are structured using compo-
nents [3]. Components are JavaScript classes or functions that describe how the UI should
appear. UI elements such as buttons or input fields are created as components. Further-
more, components are composable, meaning a component may include one or more other
components in its output.

An example of what a React component could look like can be seen in Code 1.

1 class App extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = { count: 0 };

5 }

6

7 increment(event) {

8 this.setState({ count: this.state.count + 1 });

9 }

10

11 componentDidMount() {

12 console.log('component mounted!');

13 }

14

15 render() {

16 return (

17 <div id="container">

18 <h1>Hello {this.props.value}</h1>

19 <h2>Count: {this.state.count}</h2>

20 <button onClick={this.increment}>Increment</button>

21 </div>

22 );

23 }

24 }

25

26 ReactDOM.render(

27 <App value={'World!'}/>,

28 document.getElementById('root')

29 );

Code 1: A class component in React.

React has two distinct methods of creating components. Class components, as depicted in
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Code 1, and function components, which are JavaScript functions that return JSX, similar
to the contents of the render method in Code 1 on line 15. The render method is
called by React to render HTML in the browser [4]. A React application is instantiated by
calling the ReactDOM.render method as seen on line 26. The first parameter is the React
component to render and the second is a reference to the DOM node to use as the parent for
the application [3].

JSX and Babel

JSX is a syntax extension introduced by React, it allows developers to write markup and
logic in the same file in a convenient format to improve productivity [5]. JSX is similar
to XML/HTML syntax and is used by preprocessors, such as Babel. Babel is a toolchain
used to convert JavaScript versions, newer than ES5, into a backward-compatible version
of JavaScript, such that it can be used in older browsers or environments [6]. JSX con-
sists of JSXElements which are declared using the XML tag syntax, where the name inside
< NAME > denotes the type of HTML element or component that should be rendered in
the DOM [5]. JSX is structured as trees of JSXElements. A JSXElement can have chil-
dren, which are JSXElements nested inside another JSXElement. Inversely, a JSXElement’s
parent is the enclosing JSXElement. JSXElements can have attributes as seen on line 17 in
Code 1, which are used to control the behavior of either the HTML element or component
that the JSXElement represents.

React uses Babel to transform JSX syntax into React.createElement calls [5]. JSX
is shorthand for React.createElement , a function used to build HTML elements. The
example in Code 2 show how Babel transpiles JSX to React.createElement call. The
JSX needs to be transpiled into React.createElement function calls because JSX is not
supported by browsers directly since it is not part of the JavaScript standard.

1 <div id="container">Hello World</div>

2

3 // is transpiled into

4

5 React.createElement(

6 "div",

7 { id: "container" },

8 "Hello World"

9 )

Code 2: Example of JSX transformation to createElement call.
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A JSXExpression is denoted with and it can contain any valid JavaScript expression [5].
An example of this can be seen in Code 1 on line 18. In this case, the value stored in the
props object’s value property is returned from the JSXExpression and displayed in the

div element. JSX can be used as an expression in JavaScript, so JSXExpression can also
contain JSX inside [5]. The props object is used to pass values from the parent component
to a child component. React populates the props object with the attributes provided in the
JSX so they can be used inside the component. The value property on line 18 contains the
value of the attribute with the same name declared on line 27.

State and Lifecycle

One of the features of React is that it automatically updates the DOM when the state of the
application changes, which is also referred to as rerendering [7]. React only tracks certain
changes to a component’s props or state object [3]. The props object is controlled by the par-
ent, since the values inside the object is passed to the component through the JSXElement’s
attributes. The state object is internal to the React component and is updated by calling the
setState method as seen on line 8 in Code 1. The first parameter is an object, which

is merged with the current state object and a rerender is triggered by React automatically.
React also exposes an API for executing code in different phases of the rerendering process
called lifecycle methods [7]. One of these, componentDidMount , can be seen on line 11
in Code 1. React calls this method when the component has been mounted into the DOM.
There are additional lifecycle methods, a more detailed description of them can be found in
our 9th semester project [1].

Events

React also needs to handle user interaction of a webpage. This is done by adding a func-
tion called an event listener to reserved attributes on JSXElements. For instance, to handle
button clicks, we can set the onClick attribute to a function as seen on line 20 in Code 1.
In this case, we use the increment method on the component to increment the count
property in the component’s state. Similar attributes exist for events such as mouseover and
keypress.
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Reconciliation

As mentioned in section 1.1.1, whenever the state of a component changes, the React runtime
will update the DOM to match the new state of the application [4]. The DOM represents
what the user can currently see. React calls the render method inside the components to
determine what the new DOM looks like [4, 8]. Updating the DOM is expensive, so React
tries to minimize the number of changes made to the DOM during rerendering to improve
performance [4, 8]. This is called the reconciliation process in React [4, 8]. React use a
virtual DOM which is a representation of the DOM that is held in memory and, whenever a
component’s state changes, that change is applied to the virtual DOM [4, 8]. Operating on
the virtual DOM is much faster than the actual DOM because the browser does not need to
display it to the user [4, 8]. During rerendering, React will compute the new version of the
virtual DOM by calling the render methods of all components in the application. When
React has updated all components, it will compute the difference between the new virtual
DOM and the old one which represents the current DOM shown to the user. This process is
called "diffing" [4, 8]. The result of the diffing process is a list of DOM operations which
have to be performed in the DOM to bring it up to date with the new virtual DOM. This way,
React can compute the minimal number of DOM operations needed to bring the DOM up to
date, rather than updating everything [4, 8].

1.1.2 Svelte

Svelte implements a compiler which replaces the virtual DOM by precomputing the required
DOM operations, resulting in better runtime performance compared to React [9]. Similar to
React, Svelte is also a component based framework and also introduces its own syntax [9].
Svelte is written in .svelte files and the syntax closely resemble standard HTML files. One
key difference between React and Svelte is how Svelte handles styling within the component,
whereas React relies on CSS to style components in an additional file. An example of a
Svelte component can be seen in Code 3.

A component consists of three parts. The <script> section, which contains the JavaScript,
the <style> section, which contains any styling for the component, and the HTML sec-
tion which contains the HTML markup. Similar to React, Svelte also allows for inserting
expressions into the markup, as seen on line 9. The name of the file is the name of the
component.
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1 <script>

2 let name = 'world';

3 let count = 0

4

5 const incrementCount = () => {

6 count++

7 }

8

9 $: doubled = count * 2;

10 </script>

11

12 <style></style>

13

14 <h1>Hello {name}!</h1>

15 <div>{count}</div>

16 <p>count doubled is {doubled}</p>

17 <button on:click={incrementCount}>increment</button>

18 <input bind:value={name} >

Code 3: A basic svelte component

State and Lifecycle

Svelte also uses the notion of state within its components. However, as opposed to Re-
act, where properties are updated through the function setstate , Svelte can directly up-
date the value of a variable and still trigger a rerender [10]. An Example of this is the
incrementCount function on line 5 in Code 3. The count variable is used on line 16,

which will be displayed to the user. Svelte keeps track of where variables are used in the
DOM so that it can update the DOM nodes when the variables change [9].

Svelte introduces the $ syntax to handle computed values as seen on line 9 in Code 3 [9].
That is, values whose value relies on other variables. This syntax allows for automatically
updating a value whenever the variable(s) it depends on is updated. The value doubled
is declared to be dependant on the count variable. This means whenever the user clicks the
button, which increments the count, the doubled variable is also updated.

In addition to state, Svelte also has lifecycle events that dictate how a component should
behave when mounting and unmounting into the DOM [10]. Svelte has four lifecycle
events that handle different stages of a component’s lifecycle — onMount , similar to Re-
act’s componentDidMount , onDestroy , similar to React’s componentWillUnmount ,
beforeUpdate , and afterUpdated . The two former of the four have similar use cases

to React, such as starting and clearing timers or fetching data from sources when the compo-
nent is mounted. The two latter lifecycle events are used to schedule work to happen either
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immediately before or after the DOM has been updated [9].

Events

Svelte uses event listeners to handle interactions such as button presses similar to React.
The button on line 18 in Code 3 has incrementCount assigned as the event listener for
the click event on the button. Svelte also allows the binding of variables to the value of the
input field as seen on line 19. This automatically updates the name variable as the user
types into the input field. This feature reduces the number of event listeners that a developer
needs to write if the event listener only needs to update the value of a variable.

The Svelte Compiler

Svelte ships with its own compiler instead of using a transpiler like Babel [9]. The .svelte
files are not supported by browsers and the syntax is non-standard which means the entire
Svelte file must be compiled to JavaScript. Similar to how React must compile JSX, Svelte
compiles the entirety of the file to JavaScript. Svelte pre-computes all values and dependen-
cies during compilation which means it does not require an algorithm or runtime to update
the DOM [9, 11]. This means Svelte can automatically update values and, thus, the DOM
whenever a value changes, as has been described in the previous sections. The inspiration for
this approach to front-end frameworks, which in recent years has used runtimes and virtual
DOM’s, comes from spreadsheets [11]. At compile time, the Svelte compiler will generate
a dependency graph for the state of a component [11]. It maps out all the values and their
dependencies and generates functions that specifically update those values depending on the
various states of the component. The Svelte compiler moves the work done by the React
reconciliation process to compile time which results in a smaller overhead at runtime.

1.1.3 Methodology

To investigate and benchmark React and Svelte, we developed a methodology on how to
compare the frameworks. The methodology consisted of benchmarks in two categories —
micro- and macrobenchmarks. For each category, we used an existing tool in order to run
the benchmarks. For the microbenchmarks, we used Krausest [12], and for the macrobench-
marks, we used Google Lighthouse [13]. The microbenchmarks primarily consisted of mea-
suring the performance of DOM operations in terms of duration, memory usage, and start-up
metrics of frameworks, while the macrobenchmarks measured various metrics relating to the
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interactiveness of a webpage written in a framework. Krausest uses a web driver to automate
the benchmarking process. Each implementation in the Krausest tool must implement a set
of features which are used for running the benchmarks. Krausest is framework agnostic, so it
can benchmark any framework that can be run in the browser like JavaScript. It is fast to add
additional implementations to the Krausest benchmarks. The result of running the Krausest
benchmarks is a table containing the runtime of each implementation for each benchmark
and the relative performance of each implementation to the others.

We measure the performance of a framework in 3 categories — (1) DOM operations, (2)
Memory usage, and (3) Startup metrics. We focus mainly on the performance in the DOM
operations category and have, therefore, listed the benchmarks used below:

• Create rows: Insert a 1.000 rows of DOM nodes into a table in the DOM.

• Replace all rows: Replaces 1.000 rows of DOM nodes with 1.000 new rows in a
table.

• Partial update: Update every 10th row in a table with 1.000 rows

• Select row: Highlights a selected row by clicking on it.

• Swap rows: Swap the 2nd and 2nd to last rows in a table of 1.000 rows

• Remove row: Removes one row from a table of 1.000 rows

• Create many rows: Same as create rows but with 10.000 rows.

• Append rows: Append 1.000 rows to a table of 10.000 rows.

• Clear rows: Remove all rows from a table.

The benchmarks used in the remaining categories are present in our result tables and will be
introduced when used.

The microbenchmarks showed that Svelte outperformed React in terms of performance.
Svelte performed similarly to a JavaScript implementation without any framework. How-
ever, these performance differences were not apparent in the macrobenchmarks. The results
showed negligible performance difference between React and Svelte, although Svelte still
came out on top. This seemed to suggest that the performance of the DOM operations gen-
erated by a framework does not have as big of an impact on a real use case compared to the
synthetic microbenchmarks. It is also possible that our methodology for macrobenchmark-
ing was incorrect. The tool used for macrobenchmarks, Google Lighthouse, did not interact
with the rendered web page by, for instance, clicking a button which means that only the
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loading of the application and initial render was benchmarked. Svelte had an advantage over
React in this case, since it generated smaller applications in terms of total file size.

1.1.4 Proof of Concept

Once the methodology for comparing frameworks had been created, we moved on to build-
ing a proof of concept (PoC) compiler which can compile React applications into standard
JavaScript (also known as vanilla JavaScript). The goal of the PoC was to test whether com-
piling a React application was possible or not. Furthermore, we were interested in seeing the
potential performance-related impact of compiling React to vanilla JavaScript and removing
the virtual DOM in favour of a compilation process similar to Svelte. We took advantage
of an existing compiler, Babel, which is already part of most React applications and used
to compile JSX into vanilla JavaScript. This allowed us to implement the PoC as a Babel
plugin which meant we did not have to implement a compiler from scratch.

The plugin transforms React components and JSX by modifying the abstract syntax tree
(AST). React components are converted to a new component type called Component . The
component type uses the same API as React, which allows us to reuse existing API calls in
the source code. React components can be created using either a function or a class. React
does not distinguish the two approaches except for state and lifecycle methods, which are
only available to class components. The PoC converts the function components into class
components by inserting the body of the function component into a new class components
render method. This is done so that the PoC does not have to handle different types of

components when converting to the new component type. The JSX in the application is
transformed into a JavaScript object tree structure, which is then passed to a helper function,
createElement , to perform the DOM operations. The DOM nodes created by a compo-

nent are removed during a rerender before creating new ones to replace them. This was done
for the simplicity of the PoC rather than for performance reasons. We expected the compiled
application to perform worse in our micro benchmarks as a result of this design.

Having built the plugin, we could apply our devised methodology, and compare the compiled
React implementation to React, Svelte, and vanilla JavaScript implementations. The results
of the benchmarks were promising, with our implementation outperforming React in some
categories, despite the lack of focus on performance optimisations and a naive approach to
component rerendering. However, it did not perform as well as Svelte. Furthermore, we
were unable to run the macrobenchmarks on the compiled React applications because of
a type checking error in the state management library, Redux. The compiled application
failed this type check at runtime since all React components had been converted to the com-
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ponent type. In order to run the macrobenchmarks, we implemented a new version of the
React application that did not use Redux for state management. However, this work was
performed between the report hand-in and the examination, meaning it is not included in the
9th semester project [1]. Running the macrobenchmarks on the compiled React application
showed performance improvements compared to the original React application. We suspect
that these improvements are primarily caused by the reduced size of the application similar
to Svelte.

1.2 Project Objective

After the completion of [1], we were left with a number of avenues to pursue, were we to
continue working on that project. As stated in section 1.1, we had created a methodology
for comparing front-end frameworks and built a Babel plugin, which allowed us to compile
React applications to vanilla JavaScript. Therefore, in order to gain a better understanding
on which aspects of the previous report to pursue, we created a mindmap, which can be seen
in fig. 1.1, and listed the various branches of the previous project, we could continue to work
on and extend.

Figure 1.1: Project Mindmap.

There are six branches we can pursue:
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• Methodology: Continuing the progress made on developing a methodology for bench-
marking front-end frameworks. Extending the capabilites of Krausest either in the
form of new implementations or benchmarks.

• Optimisation of DOM operations: Further development of the PoC from [1] by
extending it to improve performance.

• Extend API support: Extend the amount of functionality the PoC can compile with,
for instance, Hooks and other unsupported React features.

• Library support: Add support for commonly used libraries such as Mobx and Redux,
thus, allowing us to run the macrobenchmarks from [1] on the compiled applications.

• Validation: Introduce a validation tool which verifies the HTML output of the com-
piled application by comparing it to the original applications HTML.

• Developer feedback: Build a UI for displaying error messages to users during com-
pilation.

We consider all branches to have a place in a final product, however, we do not have the re-
sources to work on all of them and make significant progress. Instead, we will limit the num-
ber of branches to the most essential, at this time, and work on those. Of the six branches,
we have decided to postpone Extend API support, Library support, developer feedback,
and validation to future work. The main reason for doing this, is that we assess that these
branches add the least value to the project at this stage in development. We will return to
these branches and describe our thoughts surrounding them in section 6.3. The remainder
of this section will be dedicated to describing the two branches we have chosen to pursue in
greater detail as well as the reasons for choosing to continue working on them.

We have decided to focus on methodology and optimisation of DOM operations. The pri-
mary reason for working on [1] and this project comes down to our passion for developing
our PoC compiler. However, in order to properly evaluate our progress on the PoC, we re-
quire a methodology to properly compare it to other frameworks. While we would like to
focus 100% of our attention on the further development of the PoC, we cannot justify do-
ing so given our criticism of our methodology in [1]. In this project, we will take a new
approach to the methodology, as we found during [1], that our split attention between the
PoC and methodology, did not result in a satisfactory methodology. Instead of attempting to
extend our methodology beyond [1], we have elected to cut the macrobenchmarks, in part
due to the lack of support for libraries such as Mobx and Redux, as well as, the conclusion
that the results they provided did not give much insight into the performance differences of
frameworks. Furthermore, we assess that our methodology is not something we can make
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a great deal of progress on in short time, and, as stated, our focus will primarily be on the
compiler. Therefore, we will continue to use our existing methodology but attempt to high-
light some of the inherent biases within Krausest and create implementations or benchmarks
that address these.

The PoC from [1] showed a lot of promise in terms of results, however, the main drawback of
it was the inability to reuse DOM nodes. In its current iteration, when, for instance, swapping
two DOM nodes, the PoC will remove all DOM nodes, and then recreate them again with the
necessary changes. Other frameworks will simply swap the two DOM nodes. This resulted
in some impressive results in benchmarks such as "create rows", however, when it came to
benchmarks where it was more efficient to reuse DOM nodes, it fell short. This project will
focus on implementing strategies and features that allow the proof of concept to reuse DOM
nodes, such that we can gain better performance in our microbenchmarks. Futhermore, we
want to use Svelte as an inspiration to replace the reconciliation process from React, with a
form of dependency tracking at compile time to optimise the DOM operations generated by
our compiler.

1.2.1 Project structure

We will structure our report as follows:

1. A chapter dedicated to methodology that describes how we will address some of the
issues in [1].

2. A series of iterations, each comprising a chapter, which describe a performance en-
hancing feature added to the proof of concept. Each chapter will consist of a design
section, an implementation section, and a results section that determines next steps
and the impact of the feature(s) that was implemeted.

3. A chapter dedicated to discussion of the the project, our choices, and potential future
work.

We define the problem definition for this project as: To what degree can we improve the
performance of the PoC in the microbenchmarks by optimising the its output?
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Chapter 2

Methodology

In this chapter we look at extending our microbenchmarks with addtional implementations,
which tests other aspects of the frameworks than those tested by Krausest.

2.1 Methodology Improvements

In section 1.2, we wrote about how we chose to shelve our macrobenchmarks, seeing as they
made use of 3rd party libraries, something we do not support. Instead, we decided to focus
on our microbenchmarks and improve upon them. One of the main issues we had with the
existing microbenchmarks was the inherent bias in some of the benchmarks. Specifically, we
want to investigate the impact of how DOM nodes are generated and the effect of keyed/non-
keyed modes. We want to investigate how the frameworks compare when we remove keyed
and non-keyed modes from the equation.

2.1.1 Keyed and non-keyed mode

Keyed/non-keyed mode refers to whether there is a binding between data and DOM nodes
when dynamically generating DOM nodes at runtime. In keyed mode, a unique identifier
is used to associate a given data point to a specific DOM node. In non-keyed mode DOM
no key is used. React uses keyed mode, and will throw a warning if a developer does not
specify a key. It is possible to use the index as a key, if you do not have a unique identifier in
your data, however, this essentially puts it into non-keyed mode. If you use the index as the
key when mapping over data, and that data is changed by either adding or removing items,
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the order of the data is changed, thus, referencing an index will not provide the same data as
before the change. Using an identifier as a key, on the other hand, will always yield the same
data as there is a direct mapping between the DOM node and the key. If the keyed mode
finds an element with a key that does not exist in the DOM, it creates a new DOM node and
inserts it into the DOM. Similarly, if a key which currently exists in the DOM is not present
in the new data array, it is removed from the DOM.

In a non-keyed implementation, we keep track of the DOM nodes currently in the DOM.
During a rerender, we iterate through each DOM node and update its value based on the
element in the data entry with the same index, thus overwriting the data previously associated
with that DOM node. This means that no DOM nodes are moved, as is the case in keyed
mode. If there is more DOM nodes than elements in the data array, we can remove the
unused DOM nodes. New DOM nodes are created if there are too few.

2.1.2 Pre-generated rows

The Krausest tool only benchmarks the keyed/non-keyed implementation of a framework.
The Krausest tool benchmarks are, therefore, not representative of the performance of a
framework as a whole. The benchmarks do not measure how the frameworks handle imple-
mentations that do not utilse a keyed/non-keyed mode. Rather, Krausest measures how fast
the frameworks are at displaying data as rows in a table where each row consists of 9 DOM
nodes. Additionally, the frameworks dynamically generate DOM nodes based on state using
either a keyed or non-keyed mode implementation.

In order to benchmark frameworks without keyed/non-keyed mode, we create a new type of
implementation called Pre-generated rows. These implementations are designed to force the
frameworks to not use their keyed/non-keyed implementation. This is done by hardcoding
each row and its data into the source file instead of generating it dynamically. The code in
Code 4 shows what it would look like in React.

We do not run all benchmarks in the Krausest tool on the pre-generated rows implementa-
tions, since they depend on different numbers of rows. Therefore, it is not possible to have
all the functionality work simultaneously since the number of rows is hardcoded and, thus,
we have to alter the source code of the implementation in order to get specific benchmarks
to work. We have elected to focus on "create rows", "partial update", and "swap rows", as
these are benchmarks where we suspect keyed/non-keyed implementations have a signifi-
cant impact on performance. "Partial update" updates every 10th row and the "swap rows"
benchmark updates 2 rows. Using keyed/non-keyed mode allows the frameworks to only

14



1 // Keyed mode

2 {this.state.data.map(el => <div key={el.id}>{el.value}</div>)}

3

4 // hardcoded

5 <div>{this.state.data[0].value}</div>

6 <div>{this.state.data[1].value}</div>

7 <div>{this.state.data[2].value}</div>

8 <div>{this.state.data[3].value}</div>

Code 4: Example of dynamically generating DOM nodes and hardcoding them in React

update the affected rows in each benchmarks, rather than updating all 1.000 rows.

The example in Code 4 use a div element in each row. If we wanted to change this to another
HTML structure, we would need to rewrite every line to the new structure. To help us quickly
generate these pre-generated rows implementation, we create a tool to assist us.

Pre-generated rows tool

The tool is comprised of 3 main parts — (1) It accepts an input HTML file containing the
HTML tree structure we want to hardcode into the implementation. (2) a modified React
directory where the implementation has been altered to allow for hardcoded values. (3)
a directory builder which clones the modified React directory, takes the input HTML file
and generates the necessary hardcoded data, and inserts it into the render function of the
implementation.

In order to display the data from the state of the React component, we need to add place-
holders in the HTML input file. An example of this is shown in Code 5.

1 // HTML input file

2 <div>VALUE</div>

3

4 // Translate to

5 <div>{this.state.data[0].value}</div>

6 <div>{this.state.data[1].value}</div>

7 <div>{this.state.data[2].value}</div>

8 <div>{this.state.data[3].value}</div>

Code 5: Example of using placeholder values in the HTML input file to access the data stored in the state of the
React component.

In addition to replacing the placeholders, the tool will also duplicate the HTML input with an
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increasing index based on a "count" value provided as an argument. Some of the benchmarks
in the Krausest tool use 1.000 rows while others use 10.000. We can use the tool to generate
multiple implementation with different row counts to support the different benchmarks in the
Krausest tool. However, the tool does not work for all benchmarks, since we have not been
able to implement all the required features without generating rows dynamically.

Because we have implemented the tool by modifying the original React directory, we can
continue to use the webdriver in Krausest to build and run the implementations. Further-
more, this functionality is extendable to Svelte and vanillaJS by creating a new directory
containing the framework specific code. This enables us to generate pre-generated rows
implementations for other frameworks as well.
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Chapter 3

Iteration 1

3.1 Design

For this iteration, we focus on a new compiler named React-compiler based on our PoC
[1]. This version of the compiler will aim to improve the performance of the compiled
application compared to the PoC. Additionally, we implement the compiler as a stand-alone
JavaScript application as opposed to a Babel plugin which was the case for the PoC. This
decision is discussed in detail in section 6.2.

The goals for this iteration are:

• Design and implement a new compiler structure

• Improve performance of the compiled applications compared to the PoC

We introduce a React component in Code 6. We utilise this component throughout this
section in our compilation examples. The reader may find it useful to keep the example
handy while reading this section.

3.1.1 State of the PoC

The PoC compiles React components by [1]:

• Transforming function components to class components

• Transforming JSX into JavaScript objects
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1 class Main extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 count: 0,

6 data: [{value: 1}, {value: 2}]

7 };

8 }

9

10 increment() {

11 this.setState({

12 count: this.state.count + 1

13 });

14 }

15

16 render() {

17 return (

18 <div className={this.state.count}>

19 <div>Testing Static</div>

20 <Container text="Testing Functional">

21 <Header title="Testing Variables"/>

22 </Container>

23 <div>

24 <div>{this.props.value}</div>

25 {this.state.data.map(el => <div><div>{el.value}</div></div>)}

26 <div className="box">{this.state.count}</div>

27 <input type="button" value="Increment" onClick={() => this.increment()}/>

28 </div>

29 </div>

30 );

31 }

32 }

Code 6: A React class component example.
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• Using a helper function, createElement , to create DOM nodes from the objects at
runtime

A JSX expression always has a single root node that all other JSX elements are children
of [5]. The PoC utilises this heuristic during rerendering [1]. The PoC removes the parent
node from the DOM when a component needs to be rerendered. Removing a parent node
also removes its children from the DOM. As a result, all DOM nodes have to be recreated,
which is done by calling the render method of the component [1]. Rerendering a component
in the compiled application is, therefore, slower compared to the original React application
in most cases, as shown in the results of [1]. The PoC compiled version of the component
seen in Code 6, can be seen in Code 7.

1 class Main extends Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 count: 0,

6 data: [{ value: 1 }, { value: 2 }]

7 };

8 }

9

10 increment() {

11 this.setState({

12 c ount: this.state.count + 1

13 });

14 }

15

16 render(root) {

17 let clothes_slipped_farmer = createElement({

18 type: "div",

19 parent: root,

20 className: this.state.count,

21 children: [{

22 type: "div",

23 children: [{

24 type: "text",

25 value: "Testing Static"

26 }]

27 }, {

28 id: "believed_beside_process",

29 type: "component",

30 componentName: "Container",

31 props: {

32 text: "Testing Functional",
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33 },

34 init: (props, parent) => new Container(props).init(parent)

35 }, {

36 type: "div",

37 children: [{

38 type: "div",

39 children: [{

40 type: "propAccess",

41 expression: this.props.value

42 }]

43 }, {

44 type: "expression",

45 init: parent => this.state.data.map(el => function () {

46 let court_upward_so = createElement({

47 type: "div",

48 parent: parent,

49 children: [{

50 type: "div",

51 attributes: [],

52 eventListeners: [],

53 innerHTML: el.value,

54 children: []

55 }]

56 });

57 }())

58 }

59 ]

60 });

61 this.container = clothes_slipped_farmer;

62 }

63 }

Code 7: The code generated by the PoC when compiling the component seen in Code 6. The JSX inside the
render method has been replaced with an object representation. Some of the elements have been removed for
brevity.

The createElement function uses the document.createElement JavaScript API for
creating DOM nodes based on objects that represent HTML elements, such as divs [1].
Components are instantiated by calling the init function, as seen on line 34. This creates a
new instance of the class, which then creates its own DOM nodes internally. JSXExpressions
can contain any valid JavaScript expression and the returned value, if any, is rendered into
the DOM [5]. JSXExpressions can, therefore, contain JSX inside, which is the case in the
React component in Code 6 on line 25. The PoC handles this by converting the JSX to
createElement calls similar to components [1]. The PoC does perform limited analysis

on JSXExpressions at compile time to be able to handle certain cases. A JSXExpression has
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three different object representations in the PoC:
• Props access: The expression matches the expression this.props.p where p is a

valid property name.
• Children render: The expression matches the expression this.props.children .
• Expression: Any other expression not matched by the above.

This distinction is made so that we can handle the first 2 cases differently. Components
can be assigned to a prop and this.props.children [5]. When a component is used in
JSX, it can contain nested JSX elements as well, as seen on line 21 in Code 6 where the
Container component contains a single child, the Header component. These children

are accessed inside the component using this.props.children . Because the children
can either be HTML elements or other components, we must look at the type at runtime, in
order to properly create DOM nodes. This is done inside the createElement function.
All other JSXExpressions, including those that contain JSX like the expression on line 25
in Code 6, are treated as a generic JavaScript expression by wrapping them in a function
as seen on line 45 in Code 7. Wrapping an expression in a function means we can treat all
JSXExpressions as a function, making it easier to generate the JavaScript code compared
to handling each type of JSXExpression individually. Technically, a property in the state of
the component could be a JSXElement, however, this was not used in the applications in
the benchmarks, so it is not supported in the PoC [1]. We would need to add some form of
typechecking at runtime to support it, since we would need to handle it differently than a
regular JavaScript value.
The PoC stores the root node in this.container property on the component, so it can
be removed during rerender [1]. The implementation does not need to keep track of all the
DOM nodes that it creates, since they will never be updated before being removed. In order
to support DOM node reuse, it must keep track of which DOM nodes need to be updated
every rerender [1].

3.1.2 Tracking and updating DOM nodes

There are several different approaches to tracking and updating DOM nodes as we discuss
in the following sections. The challenge is to access a specific DOM node in the DOM tree
and update its attributes and contents during a rerender. Some DOM nodes are static, an
example of this can be seen in Code 6 on line 19.
The JavaScript API for creating DOM elements, document.createElement , returns a
reference to the new DOM node [14]. This reference can be used to manipulate the DOM
node. JavaScript also has API functions for searching for DOM nodes in the DOM of a
web page [14]. document.getElementById can be used to find a DOM node based on
its Id attribute, provided one exists. Ids are assumed to be unique, so only a single node is
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returned. Functions also exist for finding DOM nodes based on their class attribute and their
tag name (HTML element type) [14]. Front-end frameworks like React and Svelte use this
DOM API internally to manipulate the DOM [15, 16]. In the following sections, we look at
how these frameworks translate their components into DOM operations.

3.1.3 Reusing DOM nodes in React

React uses a virtual DOM implementation for updating DOM nodes as mentioned in sec-
tion 1.1.1. The entire process is called reconciliation [4]. The reconciliation implementation
is generalised to any DOM-like tree structure [17]. This allows the code to be reused in
different environments, known as host environments in React [17]. One such environment
is the DOM in a browser. React applications must import the ReactDOM library in order
to support the browser host environment. The ReactDOM library contains a react renderer
for the browser environment [17]. A react renderer serves as an interpreter of the generic
DOM operations generated by the reconciliation process for a specific host environment. For
instance, the createInstance operation is translated to a document.createElement
call in the ReactDOM renderer [17]. Other renderers also exist. The developers at Facebook
maintain React Native, which is a renderer for native Android and iOS apps [18]. Third party
renderers have also been created for other environments such as 3D graphics with WebGL
[19]. The createInstance operation supports a return value. Whatever value is returned
will be stored internally and passed around to other operations such as prepareUpdate
[17]. ReactDOM renderer returns the reference to the created DOM nodes so it can be used
in other operations. This approach allows React to reuse DOM nodes during rerender, since
it keeps a reference to the DOM node that the virtual DOM element represents [17].

3.1.4 Reusing DOM nodes in Svelte

Since Svelte does not use a virtual DOM, it takes a different, but somewhat similar approach
to keep references to DOM nodes. When Svelte compiles an application, it generates a
create_fragment function for each component [16]. The create_fragment function

for the example component in Code 6 can be seen in Code 8 1.

1 function create_fragment(ctx) {

2 let div4;

3 let div0;

4 let t1;

5 // other declarations removed for brevity

6 let button;

1Since the example component is written in React, we have created an equivalent Svelte version which the
compiled code example is based on.
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7 let current;

8 let dispose;

9

10 const container = new Container({

11 props: {

12 text: "Testing Functional",

13 $$slots: { default: [create_default_slot] },

14 $$scope: { ctx }

15 }

16 });

17

18 return {

19 c() {

20 div4 = element("div");

21 div0 = element("div");

22 div0.textContent = "Testing Static";

23 t1 = space();

24 create_component(container.$$.fragment);

25 // other elements removed for brevity

26 button = element("button");

27 button.textContent = "Increment";

28 attr(div2, "classname", "box");

29 attr(div4, "classname", /*count*/ ctx[0]);

30 },

31 m(target, anchor, remount) {

32 insert(target, div4, anchor);

33 append(div4, t1);

34 mount_component(container, div4, null);

35 // other appends removed for brevity

36 current = true;

37 if (remount) dispose();

38 dispose = listen(button, "click", /*handleClick*/ ctx[2]);

39 },

40 p(ctx, [dirty]) {/* Contents remove for brevity */},

41 i(local) {/* Contents remove for brevity */},

42 o(local) {/* Contents remove for brevity */},

43 d(detaching) {/* Contents remove for brevity */}

44 };

45 }

Code 8: Code output from the Svelte compiler for an equivalent component to Code 6. Some code has been
remove for brevity. The Svelte compiler shortens some function names, for instance, created becomes c and
mount becomes m.

The purpose of the create_fragment function is to encapsulate the DOM operations
needed for a given Svelte component [16]. Svelte determines at compile time, which DOM
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nodes are needed and how they need to be changed during a rerender. The first lines in
Code 8 declare local variables to contain references to each DOM node that is created. Since
they are declared in the scope of the function, they can be accessed from any nested function.
The create_fragment function returns an object, which serves as an interface for creat-
ing, mounting, updating and deleting the DOM nodes [16]. It effectively hides the specific
DOM operations behind a set of generalized operations similar to React. However, whereas
the React renderer interface operates on a single DOM node, Svelte operates on all DOM
nodes for the given component. Furthermore, Svelte uses its own functions for manipulat-
ing DOM nodes. For instance, the element function calls document.createElement
internally.

3.1.5 Reusing DOM nodes in Solid

Both React and Svelte create each DOM node individually, however, it is possible to create
a tree of DOM nodes by using an HTML string as seen in Code 9.

1 const parent = document.createElement('div');

2 parent.innerHTML = '<div><div>Hello World</div></div>';

Code 9: Using a HTML string to create multiple DOM nodes in a single operation.

In Code 9 we use parent as a placeholder to contain the DOM nodes created on line 2 by
setting the innerHTML to the HTML string. This technique is used by another front-end
framework named Solid [20]. Solid is best described as a combination of principles from
both React and Svelte. It is written in JavaScript files and uses the JSX syntax like React.
Similar to Svelte, it uses a compiler, or rather a Babel plugin, to generate DOM operations
instead of using a virtual DOM. Solid performs better than both React and Svelte according
to the Krausest tool and achieves its performance by using HTML strings to create all DOM
nodes for a component in a single operation as seen in Code 10 [20, 21].

On line 1 in Code 10, the template function is called with an HTML string represent-
ing the DOM nodes for the component. This function is provided by Solid but creates an
HTML template element internally [20]. A template element and its contents, unlike other
HTML elements, is not visible in the browser [22]. The template element is used to con-
tain the DOM nodes created by the HTML string in Solid [20]. The DOM nodes are then
cloned on line 4 and inserted into the DOM on line 11. Cloning a DOM node and its chil-
dren is faster than inserting the HTML string directly [20]. Solid also reuses DOM nodes
to improve performance. However, references are not returned for all the DOM nodes in
the template function call, since the nodes are created with the HTML string in a single
operation. The cloneNode call on line 4 does return a reference, but only to the outer-
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1 const _tmpl$ = template(`<div><div><div>Hello </div></div></div>`);

2

3 const HelloMessage = props => {

4 const _el$ = _tmpl$.cloneNode(true).

5 _el$2 = _el$.firstChild,

6 _el$3 = _el$2.nextSibling;

7 insert(_el$3, () => props.name, null);

8 return _el$;

9 };

10

11 render(

12 () => createComponent(HelloMessage, { name: "World" }),

13 document.getElementById("hello-example")

14 );

Code 10: Compiled code of a component in Solid using HTML string and template to insert multiple DOM
nodes in a single operation.

most element, meaning Solid must obtain references through other means. This is achieved
by calling firstChild and nextSibling as seen on lines 5-6 which is a part of the
JavaScript DOM API [23].

3.1.6 Reusing DOM nodes in React-compiler

In this section, we focus on the design challenges related to the different approaches for
DOM reuse introduced above.
The Solid approach is the best performing in the Krausets benchmarks [21]. It is, therefore,
the most desirable for us to implement. However, the Solid approach does complicate the
code generation process. We need to generate the HTML string based on the JSX of a
component. We can utilize the DocumentFragment object in JavaScript, which effectively
enables us to build an in-memory DOM representation of the HTML in the JSX [24]. We
could then turn the DOM into a string and use it in a template element similar to Solid.
However, not everything can be represented in an HTML string, such as event listeners and
components. Any JSXExpression that is not a constant must be evaluated outside of the
HTML string. The result is missing nodes in the DOM generated by the HTML string, since
the dynamic nodes have to be added afterwards. We, therefore, have to keep track of the
locations of the missing nodes. This is not a problem in the Svelte approach because each
node is inserted in order. One potential solution is to use the HTML slot element to indicate a
placeholder for another node, which could then be replaced after insertion [25]. The HTML
slot element is not rendered in the browser unless it contains DOM nodes, which enable us
to use it as a placehoder node [25]. To obtain a reference to the node, we would need to
traverse the DOM nodes with firstChild and nextSibling the same way that Solid

25



does.
We must, therefore, decide if it is worth implementing a similar approach to Solid at
the cost of extra development time, or if we should use the Svelte approach as inspi-
ration. To determine which approach to implement, we compare the performance of
document.createElement and HTML strings using templates. For comparison, we

use a website called JSPerf [26]. The JSPerf website lets us create JavaScript tests and
measure the number of operations each test case performs every second [26]. We cre-
ate four test cases. Two of the test cases create a single div 10.000 times using either
document.createElement or an HTML template. We call these the small test cases

because we use them to represent a single DOM insertion. The small tests cases should help
to identify the overhead associated with both approaches on a single element. The other 2
test cases create 100 divs 10.000 times and are denoted with the name large. The idea is to
compare the performance difference for both small and large DOM trees. The results can be
seen in table 3.1 and the code is available in [27].

Small Large
CreateElement 153 1,71
Template 107 4,8

Table 3.1: Results of the JSPerf performance comparison. Measured in operations per second.

The results show that document.createElement is approximately 50% faster
than HTML templating using cloneNode for the small test case. However,
document.createElement is more than twice as slow in the large test case compared

to HTML strings. The results indicate that there is performance to be gained by using the
Solid approach, but it is not more performant in all cases. We decide to move forward with
the Svelte approach for this iteration, because the implementation performs well and requires
less development time, enabling us to iterate faster in the project.

3.1.7 Designing React-compiler

With React-compiler we move from a Babel plugin to a multi-pass standalone compiler,
which we detail in section 3.2. We use the Svelte approach as inspiration to replace the
PoC createElement helper function, effectively generating the DOM operations directly
at compile time rather than deferring it to runtime. It is desirable to generate the DOM
operations at compile time, because it reduces the amount of work performed at runtime,
which improves performance.
The PoC modifies the render method of the component to call the createElement
function, which is responsible for inserting the DOM nodes into the DOM. DOM nodes are
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removed on every rerender so the code in the render method does not need to take any
existing DOM nodes into account. This does not work when reusing DOM nodes since the
creation and insertion operations would be performed on every rerender, which would create
duplicate DOM nodes in the DOM. Instead, we must split the work in the render method
into two new methods: mount and update . The mount method contains all creation and
insertion operations and the update method contains all the modification operations. Each
DOM node will be assigned to a property on the component class instance with a unique
name, such that it can be referenced in all methods inside the component. Furthermore,
we need to generate the DOM operations for unmounting each DOM node, now that we
no longer remove them each rerender as discussed in section 3.1.1. The mount method is
called once when the component is instantiated. The update method is called on every
rerender instead of the render method.
The next code snippets show how JSXElements are transformed into DOM opera-
tions.
The code in Code 11 shows the DOM operations for the first two JSXElements in the React
component from Code 6.

1 mount() {

2 this.el_1 = document.createElement('div');

3 this.root.appendChild(this.el_1);

4 this.el_2 = document.createElement('div');

5 this.el_1.appendChild(this.el_2);

6 this.el_3 = document.createTextNode('Testing Staic');

7 this.el_2.appendChild(this.el_3);

8 this.update();

9 }

10

11 update() {

12 this.el_1.className = this.state.count;

13 }

14

15 unmount() {

16 // el_1 is the parent of all other elements

17 // so they will also be removed

18 this.el_1.remove();

19 }

Code 11: DOM operations for the first 2 elements in the React component in Code 6.

The create and insert operations are generated in depth-first order of the JSXElements in
the render method of the component. This ensures that the operations associated with a
JSXElement, and its children, are executed before any JSXElements below it, such that the
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DOM nodes appear in the correct order in the DOM. The className attribute is deferred
to the update method since its value is a JSXExpression which should be evaluated on
every rerender.
Components can be created by calling their constructor as seen on line 2 in Code 12. The
component mounts itself internally by calling its own mount method. Component props
are provided on instantiation and updated on every rerender as seen on lines 20-33.

The children prop represents the nested JSXElements inside the component, which can be
seen on lines 4-14 in Code 12. The children prop is an array of functions. Each function con-
tains the mount and update operations for the children, in this case, the component Header .
The children of a component are related to a specific instance, which is why the PoC had
to handle these children at runtime as discussed in section 3.1.1. In React-compiler, we
pass a create function to the component instead, which means the component can treat each
child as a function regardless of the JSXElement type. This has the same benefits as the
function wrapping of JSXExpressions, meaning we can control each child with the same in-
terface. Inside the Container component, we replace this.props.children with the
code seen in Code 13. The value of the this keyword is bound to the parent component
when the child function is called with the bind function in JavaScript [28].

The child function also adds a function to the this.children property as seen on line 11
in Code 12. This function is called in the update method, which removes the child from
the DOM. The child is then recreated by calling the code in Code 13 again. This means that
we currently do not reuse JSXElements passed as children. The children are passed as props,
so they can potentially change every time the props of a component are updated. In order
to reuse the children, we must implement a way to determine which children to add, update,
and remove from the DOM during rerendering. We return to this in section 5.2.1.
The last case we look at is JSXExpressions, that contain JSX. One such case can be seen
on line 25 in Code 6. The JSX inside can be thought of as a nested component "one off"
with no name and class or function declaration. By treating the JSX as a component, we
can generate the DOM operations for the JSX and replace it with the DOM operations. We
assign the DOM node references to local variables instead of properties on the component,
so that they can only be used inside the expression itself. The generated output for line 25
can be seen in Code 14.

The JSXExpression is wrapped in a function call, such that each expression can be treated
as the same type as we discussed earlier. We push an unmount function to the class property
tempList , which is an array, similarly to how children are handled. During rerendering,

we call each unmount function in the tempList which removes the existing DOM nodes
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1 mount() {

2 this.component_8 = new Container({

3 text: "Testing Functional",

4 children: [function (parent) {

5 this.component_9 = new Header({

6 title: "Testing Variables"

7 }).init(parent);

8 this.component_9.receiveNewProps({

9 title: "Testing Variables"

10 });

11 this.children.push(() => {

12 this.component_9.unmount();

13 });

14 }]

15 }).init(this.$el_6);

16 this.update();

17 }

18

19 update() {

20 this.component_8.receiveNewProps({

21 text: "Testing Functional",

22 children: [function (parent) {

23 this.component_9 = new Header({

24 title: "Testing Variables"

25 }).init(parent);

26 this.component_9.receiveNewProps({

27 title: "Testing Variables"

28 });

29 this.children.push(() => {

30 this.component_9.unmount();

31 });

32 }]

33 });

34 }

35

36 unmount() {

37 this.component_8.unmount();

38 }

Code 12: Mount and update methods for the Container and Header components found in Code 6.

1 this.props.children.forEach(child => child.bind(this)(this.el_1));

Code 13: The code replacing the this.props.children expression inside the Container component.
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1 (parent => {

2 let tempList = this.tempList;

3 this.state.data.map(el => function () {

4 let el_1 = document.createElement('div');

5 parent.before(el_1);

6 tempList.push(el_1);

7 let el_2 = document.createElement('div');

8 el_1.appendChild(el_2);

9 el_2.innerHTML = el.value;

10 }());

11 })(this.el_14);

Code 14: Code generation for JSXExpression containing JSXElements inside.

from the DOM. Calling the wrapped JSXExpression again will then create new DOM nodes
based on the new data. We expect this to affect the results of the Krausest benchmarks since it
heavily relies on keyed/non-keyed implementations. We expect that recreating DOM nodes
on every rerender is less performant than reusing them in a keyed/non-keyed implementa-
tion. We return to this decision in section 5.1.4.

3.2 Implementation

The PoC was implemented as a plugin for Babel [1]. This resulted in limited control of
the compilation process since the Babel plugin API restricts a plugin to only perform AST
analysis and modification. The primary limitation in the PoC implementation was that it
was limited to a single pass over the AST. Babel attempts to optimise the compilation time,
by only traversing the AST once and calling the visitors of the plugins sequentially. The
single-pass restriction led to more complex visitors in the PoC since the visitors now had to
serve multiple purposes.
For React-compiler, we split the visitors from the PoC into separate passes as seen in
fig. 3.1.
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Figure 3.1: Compiler multipass overview.

1. We use the Babel parser library to parse the source code into the AST
2. The Transform Function Component visitor is responsible for finding React function

components and transforming them into equivalent class components.
3. The ReactDOM.render, or as we refer to it, application root, is transformed by the

Transform React Root visitor.
4. All JavaScript files containing a component, have an import statement for the React

framework to use the React.Component class. These import statements are replaced
with an import of our runtime library containing our Component class.

5. The final visitor is Transform Component Render, which contains the code for trans-
forming the JSX inside the render method of a component into the DOM operations
inside the mount, update and unmount methods.

6. The last step of the compiler is to call the Babel code generation library to generate
the compiled code based on the AST.

The Transform Function Component, Transform React Root, and Transform React Import
visitors use code discussed in [1]. Section 3.2.1 details the changes needed in the Transform
Component Render visitor to implement the design dicussed in section 3.1.

3.2.1 Generating DOM operations for JSX

The specific operations that should be generated depend on the type that a JSXElement
represents. For HTML elements such as divs, inputs, and images, we can use the DOM API
in JavaScript. The document.createElement function does not support the creation of
HTML elements with attributes, so they must be added in a separate call [29]. The code for
generating DOM operations for HTML elements can be seen in Code 15.

We use a counter to generate the unique property names for each DOM node as seen on line
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1 if (el.type === 'html') {

2 const elVariable = `el_${idCounter++}`;

3 const ast = templateStatement(

4 `${declarePrefix}${elVariable} = document.createElement('${el.htmlType}')`

5 )();

6 actions.mountActions.push(ast);

7

8 if (el.attributes) {

9 el.attributes.forEach(atr => {

10 const ast = templateStatement(`

11 ${elVariablePrefix}${elVariable}.setAttribute('${atr.name}', VALUE)`

12 )({VALUE: atr.value});

13

14 // If the value is dependent on state or props we move it to

15 // the update method instead of mount

16 if (atr.isStatic) {

17 actions.mountActions.push(ast);

18 } else {

19 actions.updateActions.push(ast);

20 }

21 });

22 }

23

24 const mountAst = templateStatement(

25 `${parentVar}.appendChild(${elVariablePrefix}${elVariable})`

26 )();

27 actions.mountActions.push(mountAst);

28

29 if (el.children) {

30 el.children.forEach(

31 child => DOMFactory(child, false, elVariable, component, actions, options)

32 );

33 }

34 }

Code 15: Partial code for HTML element section of the DOMFactory function.
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2. The templateStatement function takes a JavaScript statement in the form of a string
as input and generates the AST for that statement using the Babel template library. We use
the term, action, for these generated JavaScript statements, because each statement represent
an action peformed on the DOM. We use a JavaScript template string, so we can insert values
of variables into the string. The declarePrefix variable, for instance, is used to control if
the return value of document.createElement is stored in a local variable with the let
keyword or as a class property using this as discussed in section 3.1.7. This approach lets
us reuse the same code for both JSXElements and JSXExpressions that contain JSX (We use
DOMExpressions as a shorthand for these JSXExpressions).
The code seen in Code 15 is part of a function called DOMFactory . This function is re-
sponsible for generating the DOM operations for all JSXElements based on their types. The
DOMFactory function takes an object named actions as one of its parameters. This ob-

ject contains 3 arrays of actions representing the actions related to the mount , update
and unmount methods. The action generated on lines 3-5 is added to the mountActions
array on line 6.
Each attribute is handled by generating an action using the setAttribute function on the
DOM node stored in the variable. The elVariablePrefix variable is used to control the
prefix for accessing the DOM node. If it is stored as a class property, it must be prefixed with
the this keyword. elVariablePrefix is empty for local variables. The Babel template
library supports AST injection into a template using a placeholder in all capital letters. In this
case of the templateStatement on line 3 we declare the placeholder VALUE , which is
then replaced with the AST stored in the object representing the attribute. We can, therefore,
avoid converting the AST representing the value of an attribute into a JavaScript value, just
to generate the AST for said value again. The action is added to the updateActions array
if an attributes value is defined by a JSXExpression, since we have evaluated it on every
rerender as discussed in section 3.1.7. If the value is defined as a string literal, we can add it
to the mount methods action array, such that it is never evaluated again.
The children of the HTML element are handled on lines 29-33. Since each child is in itself
a JSXElement, we can call the DOMFactory function recursively to handle each child. We
pass in the actions object, so each DOM operation is added to the same actions array.
The code for handling components can be seen in Code 16. A component can be created by
calling its constructor and the init method as seen on lines 28-30 in Code 16.

The children of a component are passed into the component as a prop. However, we must
generate a function for each child which contains its mount , update , and unmount as
discussed in section 3.1.7. This is done on lines 5-12 by calling the DOMFactory function
with a new actions object, so that the actions generated are not added to actions of the
parent component. The templateExpression function seen on line 14 is similar to the
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1 if (el.type === 'component') {

2 const componentVariable = `component_${idCounter++}`;

3 if (el.children.length) {

4 const childActionsList = el.children.map((child) => {

5 const childActions = DOMFactory(

6 child,

7 true,

8 'parent',

9 el.componentName,

10 actions,

11 options

12 );

13

14 return templateExpression(`function(parent) {

15 MOUNTACTIONS

16 UPDATEACTIONS

17 this.children.push(() => {UNMOUNTACTIONS});

18 }`)({...childActions});

19 });

20

21 // Add the children functions as the actual prop

22 el.props.push({

23 name: 'children',

24 value: t.arrayExpression(childActionsList)

25 });

26 }

27

28 const mountAction = templateStatement(

29 `${declarePrefix}${componentVariable} = new ${el.componentName}(PROPS).init(${parentVar});`

30 )({PROPS: el.propsAst});

31 actions.mountActions.push(mountAction);

32

33 const updateAction = templateStatement(

34 `${elVariablePrefix}${componentVariable}.receiveNewProps(PROPS);`

35 )({PROPS: el.propsAst});

36 actions.updateActions.push(updateAction);

37

38 const unmountAction = templateStatement(

39 `${elVariablePrefix}${componentVariable}.unmount();`

40 )();

41 actions.unmountActions.push(unmountAction);

42

43 }

Code 16: Partial code for component section of the DOMFactory function.
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templateStatement function introduced earlier. The difference is in the type of the root
AST node generated, which is an expression node rather than a statement node. JavaScript
object properties cannot have a statement as a value.
The remaining JSXElement types, such as text and DOMExpressions, follow a sim-
ilar approach, where an AST is generated using the templateStatement and
templateExpression functions, which are added to the action arrays. The mount ,
update and unmount methods can be generated for the component once all JSXEle-

ments have been handled. The code for generating the mount method can be seen in
Code 17.

1 const mountMethod = componentMountMethodTemplate({

2 RENDERCONTENT: renderContent,

3 ACTIONS: actions.mountActions

4 });

Code 17: Code for creating the mount method in a component using the actions generated by the DOMFactory
function.

The componentMountMethodTemplate generates a class method AST containing the ac-
tions from the mountActions array. It also adds the contents of the render method at
the beginning of the method. The render method of a React component often contains
local variables, which are used in the JSXElements. These statements must be included to
ensure that these variables are available to the actions inside the mount method as well.
The update and unmount method are generated identically.

3.3 Results

This section outlines the results of the work done in iteration 1, as well as, presents what
could be improved upon or changed in the following iteration.

3.3.1 Test setup

Since this project is a continuation of [1], the test setup will have similarities to that of [1], in
order to properly compare previous and new results. However, as mentioned in section 1.2,
we discarded macrobenchmarks and are, therefore, focusing on the microbenchmarks. To
this end, we have made some extensions to the original microbenchmarks from [1], which
were outlined in section 2.1, and are elaborated upon in section 3.3.2.
Since the completion of [1], the hardware, on which the benchmarks are run, has been up-
graded. All tests are run on a desktop PC with the following specs:
• OS: Windows 10
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• CPU: Ryzen 7 3700X
• Memory/RAM: 32gb 3600MHz DDR4
• Motherboard: Gigabyte Aorus Elite X570
• GPU: MSI Nvidia GTX 1070
• Google Chrome: 83
• Nodejs: 12.16

Additionally, we run the benchmarks on the same frameworks and versions as in [1]. They
are provided in table 3.2.

Versions Keyed Non-keyed Modified
Vanillajs x x
Vanillajs1 x
Svelte-v3.5.1 x x
Svelte-v3.12.1 x x x
React-v16.8.6 x x
React-v16.11.0 x x x
React-hooks-v16.8.6 x
React-hooks-v16.11.0 x x
React-redux-hooks-v16.8.6 + 7.1.0 x
React-redux-hooks-v16.11.0 + 7.1.0 x x
React-redux-v16.8.6 + 7.1.0 x
React-redux-v16.11.0 + 7.1.0 x x
React-mobX-v16.4.1 + 5.0.3 x
React-mobX-v16.11.0 + 5.0.3 x x

Table 3.2: Micro benchmark implementations. The x indicates that an implementation exists of that type for the
given framework version.

Each version in table 3.2 can have a keyed, non-keyed, or modified implementation and, in
some cases, some versions will have multiple. The keyed or non-keyed implementations
differ in the method used for creating relationships between data and DOM nodes, which
is described in section 2.1. Modified refers to whether the version of the framework has
been updated to a newer version. Some implementations have received updates since [1],
however, in order to be able to compare the results, we have elected not to bump the versions
again. If we were to bump the versions, we would introduce an additional variable, besides
the hardware change, that could impact results.
The benchmarks run on the implementations consist of the entire repertoire of benchmarks
in the Krausest [12] tool, as was the case in [1]. Furthermore, we have extended the imple-
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mentations to allow us to account for the ideas presented in section 2.1.
The objective for this iteration was to reuse DOM nodes to improve performance of the
compiled React application. However, we did not implement DOM node reuse in our DOM-
Expressions since we do not have a non-keyed/keyed mode implementation for this iteration.
Therefore, we do not expect performance improvements in the Krausest microbenchmarks,
as Krausest relies on DOMExpressions. On the other hand, we expect to see a performance
improvement in the benchmarks, when comparing the PoC and React-compiler, since React-
compiler reuses the DOM nodes. The [1] results show that reusing DOM nodes is more
performant than recreating them on every rerender. Therefore, we expect to close the gap on
React.

3.3.2 Pre-generated rows

In order to directly test the rendering times of the frameworks, when not using keyed or non-
keyed mode, we have created a new implementation called pre-generated rows, as described
in section 2.1. This implementation has hardcoded DOM nodes into the source code, as
opposed to creating them dynamically. As it is React we are building a compiler for, we have
elected to only benchmark a React implementation, in order to see the impact of keyed and
non-keyed on the rendering process. While including an implementation for Svelte would
provide additional information on the performance of Svelte, we argue that the results would
not aid us in the development of React-compiler. The pre-generated rows implementation
is almost identical in functionality to the React-v16.11.0 version, with the difference being
that each DOM node is hardcoded into the render method of the component, rather than
generating it based on component state. The pre-generated rows implementation removes
the use of a keyed/non-keyed mode, which allows React-compiler to reuse DOM nodes and
thus improve performance. The results can be seen in fig. 3.2.
The "create rows" benchmark in fig. 3.2 shows that the compiled version performans signifi-
cantly better than the original React application. However, this result is misleading, because
the compiled application inserts the rows on startup rather than by the click of a button as
is the case of the React application. The compiled application is outperformed by React
in both "partial update" and "swap rows". We expect the compiled application to perform
on-par with the original React version, because we can utilise the DOM node reuse func-
tionality of React-compiler. These results indicate that either the generated code is slow,
or that something in the browser is slowing down the code. It is possible that the browser
is overloaded by the more than 1.000 DOM operations performed by the update method
generated by React-compiler. We assess that the time required to profile the performance
of the browser is greater than the time required to investigate whether our code is the issue.
We, therefore, want to eliminate our code as the problem, before investing more time into
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the behaviour of the browser. Before we can determine the cause of this issue, we must first
investigate whether this issue is also present within our DOMExpressions, as they do not
support DOM reuse.

3.3.3 Microbenchmarks

We are unable to run the benchmarks on the compiled output of React-compiler from this it-
eration. The reason for this is how the benchmarks are run on the frameworks. Krausest [12]
makes use of XPath, which is a path expression that indicates the position of a DOM node
by following a path or number of steps [30]. For instance, when the benchmarks are run,
they navigate the webpage, produced by a framework, using the XPath. In the benchmark
for "create 1000 rows", the webdriver, which emulates user behaviour, is directed to click
the "create 1000 rows" button. Thereafter, it is instructed to verify that a table with 1000
elements has been created using the following XPath: //tbody/tr[1000]/td[2]/a . It
starts from the initial table node, and then steps 1 level deeper, into the <tbody> element.
Then it steps into one of the 1000 <tr> elements and so on. If it does not find an element,
the benchmark fails. The problem with our implementation is our DOMExpression imple-
mentation. We use a HTML template element as the parent for DOMExpressions such that
the DOMExpression elements are inserted into the correct place in the DOM. In the case of
the microbenchmarks it inserts a template element as the first child of the table body (tbody)
in the DOM. This invalidates the XPaths, meaning they do not locate the elements they are
supposed to find and, therefore, fail. It is possible to change the XPaths within the bench-
marks to properly navigate our output. Therefore, instead of attempting to fix the issue by
compromising the integrity of our benchmarks, we have elected to postpone presenting the
results of iteration 1 and address the issue in chapter 4. We argue that fixing the benchmarks
to make our implementation work is not the correct course of action, but rather to fix our
implementation such that the benchmarks can be run. Therefore, a goal of the next iteration
must be to change the DOMExpression implementation, such that it no longer requires the
template element, thus allowing XPaths to function as intended.
The XPath issue is only related to implementations using React-compiler, which means we
can still present the results of running the microbenchmarks, on the new hardware as seen
in appendix A for vanillaJS, Svelte, React and the PoC. The values are given in both actual
values, the metric is indicated in the benchmark title, and relative performance to the best
performing implementation in each benchmark. To summarise the results, the vanillaJS
implementations outperform both Svelte and React. Svelte closely follows vanillaJS across
the board, and React is the worst performer, of the three, in almost all cases and by a large
margin (up to 40 times worse). One example is the "swap rows" benchmark shown in fig. 3.3,
where all React implementations apart from the non-keyed versions perform worse than both
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vanillaJS and Svelte. Furthermore, in the memory and startup categories, vanillaJS is also
the best performer, followed by Svelte, with React in last place. However, the difference in
performance is smaller within these categories, compared to the DOM operation category.
In general, our PoC performed worse than vanillaJS, Svelte, and React in most categories,
as was expected. The PoC does not reuse DOM nodes, meaning whenever a component
changes state, it rerenders the entire component, as opposed to only the elements or values
that changed [1]. This means that in benchmarks such as "swap rows", the PoC will remove
all DOM nodes and recreate them, whereas, other implementations swap the DOM nodes
associated with the two rows.
However, there are signs of performance gains in various categories/benchmarks. In the
startup category, the PoC is the best performing implementation in the "script bootup" time
benchmark, as well as, outperforming React in general in the other benchmarks of the same
category. Furthermore, in the memory category, the PoC outperforms React and Svelte im-
plementations in the benchmark "memory usage after creating 1000 rows", shown in fig. 3.4.
In general, the results suggest that while the PoC did not see performance increases in terms
of the speed at which it manipulates the DOM, it did improve on the memory consumption
and startup metrics, when compared to the non-compiled versions of React. We attribute
the performance improvement to the reduce total byte size of the compiled application. The
React applications in the microbenchmarks, all take up more than 150KB compared to the
11KB of the PoC, which results in faster load times depending on how fast the browser can
load the source code.
It is worth noting that the PoC performs worse compared to the results seen in [1]. The
PoC outperformed all keyed React implementations in the "replace all rows" benchmark
in [1], which is not the case in appendix A. We do not believe the change of hardware to
have affected the relative performance of the different implementations. We use a newer
version of Chrome in our microbenchmarks than in [1]. Contributors to the Krausest tool
have also seen performance degradations caused by newer versions of the Chrome browser
[31, 32], which leads us to believe that Chrome is the reason that some implementations
perform better and others perform worse compared to [1]. Therefore, the results presented
in appendix A, are the new baseline benchmarks for this project.
With all this in mind, the objective of chapter 4 will be to address the issues presented
in section 3.3.3. Specifically, change the implementation of DOMExpressions such that
we can run the microbenchmarks on the compiled application of iteration 1. Furthermore,
we must return to the performance issues regarding pre-generated rows and verify whether
DOMExpressions are affected.
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Chapter 4

Iteration 2

This chapter covers the design and implementation of the second iteration of React-compiler.
This iteration focuses on improving upon the employed updating technique, and extending
it to allow for updating specific parts of a component, instead of the whole component,
when a rerender is triggered. Furthermore, we must design and implement a new approach
to handling DOMExpressions as the microbenchmarks in section 3.3 showed the approach
introduced in section 3.1.7 broke the Krausest tool used for the microbenchmarks
The objectives for this iteration are:

1. Design and implement a new update method, which only performs the DOM opera-
tions necessary, based on the change in component state or props.

2. Rework the DOMExpressions design and implementation so it works with the mi-
crobenchmarks

4.1 Design

The update method introduced in chapter 3 contains the actions for updating all dynamic
parts of a component, which means that everything is updated on every rerender. However,
it is unlikely that everything need to be updated every time a component is rerendered.
Consider the React component from Iteration 1 in Code 6. The state of the component
is updated when the button on line 27 is clicked, which triggers a rerender. The React
reconciliation process determines which DOM nodes need to be updated as discussed in
section 1.1.1. In the case of Code 6 only the expressions on line 18 and 26 needs to be
updated. A compiled version using React-compiler from chapter 3 instead calls the update
method on the component, resulting in unnecessary DOM operations. Essentially, we need
to replicate the behavior of the reconciliation process in React, so we can determine which
DOM operations must be performed when state and props change in a component.
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We introduce a state diagram for a React component seen in fig. 4.1, which shows the differ-
ent states a component can be in and the transitions between each of them. Of interest are the
transitions from the Mounted state to the shouldComponentUpdate state. A component
and the DOM are considered up-to-date when in the Mounted state. User interaction can
then trigger a rerender by, for instance, clicking a button as seen in Code 6.

Figure 4.1: State diagram of the lifetime of a React component. The diagram is based on the offical documen-
tation [7].

The shouldComponentUpdate state represents a React API method with the same name.
Its return value determines whether a component is rerendered or not. By default, it al-
ways returns true, but it can be overwritten inside a component to change its behavior
to block some or all rerenders of a component triggered by updating the state or props.
forceUpdate circumvents the shouldComponentUpdate method and forces a compo-

nent to rerender regardless of any changes to state or props. It is worth pointing out that only
the state can be updated inside the component. Props are passed into a component from its
parent as discussed in section 1.1.1. React does, therefore, not provide an API method for
updating the props inside a component [7]. It is for this reason that the receiveNewProps
transition does not represent a React API method, but rather the external update made by Re-
act. In the case of React-compiler we use receiveNewProps as the name of the method on
the Component class to update props as was seen in section 3.1.7. Based on fig. 4.1 we can
see that the only ways a component is updated is by calling forceUpdate , setState ,
and receiveNewProps .
To minimize the DOM operations performed on a rerender, we must generate new methods
to replace the update method in a component. These methods should only contain DOM
operations relevant for the state and props that have changed. Thus, we need to know which
props and state have changed when a update is triggered. The forceUpdate method does
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not modify the state or the props of a component, but contents of the original render
method must be reevaluated since it may contain values used in the JSX. Props are always
provided as a complete object, so we can use a single method to handle rerenders triggered by
updating props. We designed the receiveNewProps method to receive props that are al-
ways provided as a complete object because this simplifies the shouldComponentUpdate
API method which relies on the new and old props. We can use a single method to handle
rerenders triggered by updating props as they are always updated together. In section 4.1.1
we discuss how to track JSX dependent on props and how to generate the propsUpdate
method.
The first argument to setState is either a function generating the new state object or
an object to be merged with the current state. We can determine which properties in the
state object change for each call to setState in a component by looking at the argument
provided to each setState invocation. Each call may modify a disjoint set of properties
in the state object, meaning we need to create a dedicated method for every setState call
because the affected JSXElements are likely to be different between each call. We discuss
this in detail in section 4.2.1.
So we call a different method inside the component based on which API triggered the up-
date:
• forceUpdate requires everything inside the render method to be reevaluated. We

can use the existing update method from iteration 1 since it updates all DOM nodes
in the component.
• We need a new method which only updates the DOM nodes which depend on the

props. Since all props are updated together, we do not need to track which props have
changed.
• Each setState method updates the component’s state, but not all of the properties

on the state object is updated by every call to setState . This means we need to gen-
erate an update method for each setState , which only contains DOM operations
that depend on the parts of the state that has changed.

In the next sections we look at tracking props and state dependencies in the JSX.

4.1.1 Component props dependency tracking

We can inspect the JSX at compile time to find any uses of component props. We add
information of props uses to the object representation of a JSXElement. Consider the JSX
example in Code 18.

We see that the className attribute uses a value on the props object. However, it is worth
recalling that each JSXElement can generate multiple actions. For instance, each attribute in
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1 <div id="container" className={this.props.name}></div>

Code 18: Example of a JSXElement with multiple attributes where only 1 use component props.

the div element will be a separate action. We do not need to update all attributes when props
change since only one of them uses the props value. To support this behavior, we add a new
property to each attribute on the element object as seen in Code 19.

1 {

2 name: attribute.name.name,

3 value: attribute.value.expression,

4 isStatic: false,

5 useProps: true,

6 };

Code 19: Updated object representation for JSXElement attribute with useProps flag.

During action generation for each element, we can use these flags to determine if a given
action should be added to the propsUpdate method. In section 3.2.1 we used an ac-
tions object with an array of actions for each method: mount , update , and unmount .
We can extend this object with another array for the propsUpdate method. When
the receiveNewProps method is called from the components parent, we can call the
propsUpdate method instead of the update method to only perform the DOM oper-

ations, which are dependent on the props.
This approach has the possibility of resulting in different behavior of the compiled applica-
tion compared to the original. Consider the JSX example in Code 20.

1 <div>{new Date.toISOString()}</div>

Code 20: Example of an expression which returns a new value every time a rerender is triggered.

The inner value of the div is an expression which calls the JavaScript Date object. The
returned value is the current time of the day. This JSXElement is located inside the
render method of a component in a React application. The expression is evaluated

every time a rerender is triggered. However, it is only evaluated once during mount-
ing in our design because the update method is not called again, now that we use the
propsUpdate and \cverb setState| methods for updating during rerendering. The time

displayed in the div in Code 20 will, therefore, never update, which is a problem. A similar
situation can occur if an expression has side effects when invoked. We could attempt to
analyse each expression for side effects, but we argue that this is outside the scope of this
project and could be a thesis on its own, as proven by existing work on the topic [33, 34].
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Furthermore, it is our opinion that writing JSXExpressions with side effects is a bad practice
because it can lead to unintentional behavior because the developer is not in control of the
rerendering. If the code in Code 20 is intended to display the current time, it would only
work if the component is regularly update, effectively relying implicitly on React to trigger
a rerender, which it does not do for side effects of JSXExpressions. Finally, the goal of
React-compiler is to support the applications in our microbenchmarks, which do not have
the problem described above. The propsUpdate method includes, like the other methods,
the content of the original render method above the JSX, so it is possible to rewrite the ex-
ample above to the code shown in Code 21 and it behaves indentical to the original React
application.

1 function render() {

2 const now = new Date.toISOString();

3 return <div>{now}</div>

4 }

Code 21: Refactored code for correctly using date object in JavaScript without changing behavior when com-
piled.

4.1.2 Component state dependency tracking

Handling state updates in a component requires more work compared to props. We can use
a similar approach to finding uses of state in the JSX as we do for props. However, we need
to include additional information on the elements regarding which properties on the state
object are used. Since a call to setState does not necessarily update all properties on the
state object, we only want to perform the DOM operations affected by the state change. We
can determine which properties on the state object changes in a setState call by looking
at the first parameter to the function which is an object containing the changes to the state.
The code in Code 22 shows the extended element object for handling state.

1 {

2 name: attribute.name.name,

3 value: attribute.value.expression,

4 isStatic: false,

5 useProps: true,

6 useState: true,

7 stateKeys: ['value']

8 };

Code 22: Updated object representation for JSXElement attribute with state information.
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The stateKeys array on line 7 contains each property on the state object that is used in the
JSXElement. With this information, we can determine during action generation if an action
should be performed after a setState call. For it to work, we also need information about
each setState call inside the component. We create a symbol table for component infor-
mation, which we call the component table. This lets us store information each component
in the application which can be used in the other parts of React-compiler.Each entry in the
table has the following information:
• The name of the component
• An array of properties on the state object found in the component
• An array of setState method calls and the properties modified on the state object

by the call. Each call is given a unique name to use during action generation.
During action generation, we look up the setState calls and generate a method on the
component for each call. We can sort the actions into the correct method by comparing the
property names in the stateKeys array of the element with those found in the setState
entry of the component table. The details are discussed in more detail in section 4.2.1.
Finally, we must replace the setState call with the new method generated to replace
it.
These changes mean that we no longer call the update method during rerender. Instead,
we call either the propsUpdate method or one of the setState methods, which limits
the DOM operations to those which depend on the values that have changed.

4.1.3 Reworking DOMExpressions

In chapter 3 we used a template element as the parent provided as the first argmuent to the
compiled DOMExpression function seen in Code 14. We found that the template element
caused the XPath used in the Krausest tool’s webdriver to break, so the benchmarks could
not be completed. We need to rework the design so we do not need a template element in
the DOM for DOMExpressions.
Furthermore, In Code 14 we used a component property tempList to track entries gener-
ated inside DOMExpressions. A single array worked because we always updated all DOM-
Expressions in the update method. However, now that we split updating into props and
state methods, we can no longer guarantee that all DOMExpressions are updated on every
rerender. Consider the example in Code 23 with two DOMExpressions.

The DOMExpression on line 2 is updated inside the propsUpdate method, where the other
DOMExpression on line 3 is not. The tempList property is cleared when a DOMExpres-
sion is updated, so this results in missing DOM nodes from the second DOMExpression
because they share the same array. We fix the problem by using an array for each DOM-
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1 <div>

2 {this.props.data.map(item => <div>{item}</div>)}

3 {[1,2,3,4].map(item => <div>{item}</div>)}

4 </div>

Code 23: Example of two DOMExpressions using different data to iterate over. The compiled application would
result in both using the same tempList to track DOM nodes.

Expression. We can move all of the code related to the DOMExpression inside the arrow
function as seen in Code 24.

1 (parent => {

2 if (this.tempList_el_20 && this.tempList_el_20.length) {

3 this.tempList_el_20.forEach(el => {

4 el(); // function call unmounts the DOM nodes in the element

5 });

6 this.tempList_el_20 = [];

7 }

8

9 let tempList = [];

10 let previousEl = null;

11 let useAppend = false;

12 this.props.data.map(el => function () {

13 let el_14 = document.createElement('div');

14

15 if (useAppend) {

16 previousEl ? previousEl.appendChild(el_14) : parent.appendChild(el_14);

17 } else {

18 previousEl ? previousEl.after(el_14) : parent.after(el_14);

19 }

20 el_14.innerHTML = el;

21 tempList.push(() => el_14.remove());

22 previousEl = el_14;

23 }());

24 this.tempList_el_20 = tempList;

25 })(this.el_13);

Code 24: New compiler output for DOMExpressions using the first DOMExpression from Code 23.

Lines 2-7 clears the existing DOM nodes from the DOM before the new ones are created.
In iteration 1 we used a template element as a pointer for where the DOM nodes in a DOM-
Expression should be inserted. We need to find another way to keep track of where to insert
DOM nodes, since the template element was the reason we could not run the microbench-
marks. We can remove the template element if we keep track of the element that was in-

49



serted before the DOMExpression, since the first element in the DOMExpression should be
inserted directly after the previous element. We introduce two new variables previousEl
and useAppend on lines 10-11. The previousEl variable holds a reference to the DOM
node that was inserted, so it can be used to insert the next DOM node. The parent vari-
able is used for the first DOM node where previousEL is null. This means we only need
the parent of the first element in the DOMExpression. After we insert one of the element
from the DOMExpression, we update the previousEL variable to reference that element
on line 22 such that the next element in the DOMExpression is also inserted correctly. The
useAppend boolean is used to indicate whether the DOM node should be inserted as a sib-

ling or a child of previousEl . The template element in iteration 1 was designed in such a
way that each DOM node in the DOMExpression should always be inserted into the DOM
as a sibling. However, now that we rely on the previous element in the JSX for inserting the
first DOM node, we need to handle the case where the first DOM node is the first child of
the parent node. Consider the example in Code 25.

1 // This JSX

2 <div>

3 {[1,2,3].map(el => <p>{el}</p>)}

4 </div>

5 // Generates the following HTML

6 <div>

7 <p>1</p>

8 <p>2</p>

9 <p>3</p>

10 </div>

Code 25: Example of a DOMExpression, where the element inserted before the DOMExpression is the parent
element of the DOMExpression itself.

The div on line 1 is the parent of the DOMExpression and its the last DOM node inserted
into the DOM before the DOMExpression. This means that the first DOM node in the
DOMExpression should be inserted as a child of the div. We use the useAppend to control
this by setting it to true. When we insert the second DOM node from the DOMExpression,
we should no longer insert it as a child or it would become nested inside the first DOM node
on line 7 in Code 25.
These changes ensure that all DOMExpressions can be updated independently and that the
Krausest tool can run the microbenchmarks.
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4.2 Implementation

In this section, we detail the changes made to React-compiler to accommodate the design
changes outlined in section 4.1. We include an updated visitor overview which can be seen
in fig. 4.2.

Figure 4.2: Revised Compiler overview.

We introduce a new visitor, Component Table Visitor, which is responsible for generating
the component table entry for each component in the application. We place it after the
Transform Function Component visitor, so we do not need to handle function components.
Technically, we do not need to visit function components since they cannot use state in React
as discussed in section 1.1.1. Nonetheless, we place the Component Table Visitor such that
all function components have been transformed into class components beforehand. We need
the component table in the updated Transform Component Render visitor, so the table must
be completed before the visitor is called.
The implementation details of the new Component Table visitor are described in sec-
tion 4.2.1. In section 4.2.2, we discuss the updated action generation process to support
the new propsUpdate and setState methods.
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4.2.1 Component table visitor

The component table is generated by its own visitor to separate concerns and to keep each
visitor as simple as possible. The component table is stored as an array where each element is
an object representing a component. The name of the component is retrieved by reading the
name of the class component in the AST. We create a helper function for finding expressions
that use state or props. The function for detecting state access can be seen in Code 26.

1 function isExpressionStateAccess(astNode) {

2 return t.isMemberExpression(astNode)

3 && t.isThisExpression(astNode.object.object)

4 && astNode.object.property.name === 'state';

5 }

Code 26: The isExpressionStateAccess function used to test if an AST sub tree represents the code
this.state.[property].

The function isExpressionStateAccess follows a similar pattern to those provided in
the Babel type library. The library contains functions for testing if an AST node is a specific
type such as isMemberExpression as seen on line 2 in Code 26. We have created helper
functions built on top of those provided by Babel, so we can reuse the same code throughout
the compiler. We have a similar approach to finding setState calls in components. The
code in the Component Table visitor responsible for handling setState calls can be seen
in Code 27.

On line 1 we use the visitor to find CallExpression AST nodes. We then test the call
expression on line 3 with the helper function isSetStateCall . We use the name of the
class method where the setState call is located, as part of the new setState method
name as seen on line 8. This helps us read the compiled output and know what the method
was generated from. The setState call is replaced by the new method such that it is
called at runtime instead. The first argument to setState contains the new state object to
be merged with the current state. On lines 10-18, we iterate through each property on the
object and the setState information to the component table entry.

4.2.2 Action generation

In section 3.2.1 we used the DOMFactory function as seen in Code 15 and 16 to generate
the actions based on the type of element provided. We refactor the function in this iteration
to make it easier to maintain and separate the code for generating actions for each element
type. We introduce a new function named componentDOMGenerator , which can be seen
in Code 28.
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1 CallExpression(subPath) {

2 // Find this.setState calls

3 if (isSetStateCall(subpath.node.callee) {

4 // Get either the name of the class method or the property name if its an arrow function

5 const methodName = getClassMethodParent(subPath)

6 ? getClassMethodParent(subPath).node.key.name

7 : getClassPropertyParent(subPath).node.key.name;

8 const newStateMethod = `setState_${methodName}_${idCounter++}`;

9

10 if (t.isObjectExpression(subPath.node.arguments[0])) {

11 // Get key of each property in the object

12 const keys = subPath.node.arguments[0].properties.map(p => p.key.name);

13 componentDetails.setStates.push({

14 name: newStateMethod,

15 method: methodName,

16 keys

17 });

18 } else {

19 console.warn('setState called without an object');

20 }

21

22 const ast = templateStatement(`this.${newStateMethod}(ARGUMENTS)`)({

23 ARGUMENTS: subPath.node.arguments

24 });

25

26 subPath.replaceWith(ast);

27 }

28 }

Code 27: Snippet from the Component Table Visitor.
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1 function componentDOMGenerator(element, context, actions, options) {

2 const elementGenerator = elementTypeGeneratorMapping[element.type];

3 let elementActions = elementGenerator(element, context, componentDOMGenerator, options);

4

5 elementActions.forEach(action => {

6 if (action.isUnmount) {

7 actions.unmountActions.push(action.actionAST);

8 } else if (action.isStatic) {

9 actions.mountActions.push(action.actionAST);

10 } else {

11 actions.updateActions.push(action.actionAST);

12

13 if (action.useProps) {

14 actions.propsActions.push(action.actionAST);

15 }

16

17 if (action.useState) {

18 // Add the action to action lists for each key it uses

19 action.stateKeys.forEach(key => {

20 if (actions.stateActions[key]) {

21 actions.stateActions[key].push(action.actionAST);

22 } else {

23 // Create the array if this is the first time it's seen
24 actions.stateActions[key] = [action.actionAST];

25 }

26 });

27 }

28 }

29 });

30

31 return actions;

32 }

Code 28: The componentDOMGenerator function, which replaces the DOMFactory used in chapter 3.

We use a dictionary as a lookup table for an elements type and the function used to generate
actions for it. The element type is used as the key and the value is the function to be used.
On line 2 in Code 28 we perform a lookup in the table to get the correct action generator
function. This design replaces the long if-else-if chain that was used in the DOMFactory
function from Code 15 and 16. Most of the code inside each if block has been moved
into its own function. For instance, the code in Code 16 regarding action generation for
components has been moved into a function called componentActionGenerator . Every
action generator function accepts the same parameters and returns a list of actions as seen
on line 3 in Code 28. On lines 5-29 we sort each action into the methods to be created in the
component: mount , unmount , update , propsUpdate , and setStates . This was
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previously done inside the if blocks in the DOMFactory function, which meant some code
was duplicated and made it harder to make changes.
We use an object of arrays to sort actions that use state as seen on lines 20-25. Each state
object property has an array such that any action using said property, is added to the array.
An action can, therefore, exist in multiple arrays if it depends on multiple state properties.
The Component Render Visitor uses the state actions object to generate the setState
methods as seen in Code 29.

1 const comp = componentTable.find(c => c.name === componentName);

2 comp.setStates.forEach(setState => {

3 const relevantActions = [];

4 setState.keys.forEach(key => {

5 if (actions.stateActions[key]) {

6 relevantActions.push(...actions.stateActions[key]);

7 }

8 });

9 const stateUpdateMethod = componentStateUpdateMethodTemplate(setState.name, {

10 RENDERCONTENT: renderContent,

11 BODY: relevantActions

12 });

13

14 subpath.insertAfter(stateUpdateMethod);

15 });

Code 29: Part of the Transform Component Render visitor responsible for creating the setState methods based
on the actions.

Using the entry in the component table, we iterate through each setState call in the
component on line 2. We then use the stateKeys array to get all relevant actions from the
state actions object by using the property name as the key on lines 5-7. One downside to this
approach is that new setState methods can contain duplicate code, which increases the
size of the compiled application. However, the reduction in file size by removing the React
runtime should outweigh the increase in size casued by the new setState methods.

4.3 Results

One of the objectives of iteration 2 has been to address the issues, which were presented in
section 3.3. Therefore, this section outlines the results of the work done in both iteration 1
and iteration 2, as well as, presents what could be improved upon or changed in chapter 5.
We expect to see performance improvements in the DOM operations category, but at a cost
of more memory consumption and longer startup times.
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4.3.1 Iteration 1 and 2

The tables B.1 and B.2 show the microbenchmarks results from chapter 3 with the compiled
results for iteration 1 and 2. The performance issues we found in pre-generated rows in
section 3.3.2 are also present in the DOMExpression implementation for "swap rows" as
seen in fig. 4.3.
In fig. 4.3 we see that both the iteration 1 and 2 compiled applications are up to 30 times
slower than the other implementations. This is similar to the performance of the PoC we
saw in section 3.3.3.
In general, the DOM operation results have not seen much improvement over the course
of both iteration 1 and 2, despite changes such as introducing DOM reuse. It makes sense
that the changes made in iteration 1 and 2 do not improve performance significantly, since
the microbenchmarks rely on the DOMExpressions which do not benefit from the changes.
The minor improvement that we do see, may be attributed to the fact that some of the code
executed at runtime in the PoC, has been moved to compile time in React-compiler.
Furthermore, when looking at the memory and startup categories, we have seen performance
degradations in some benchmarks. However, this makes sense as React-compiler, in general,
generates more code and performs more actions when updating the DOM compared to the
PoC which would remove the DOM nodes and rebuild them in all cases. For instance, in
fig. 4.5, the performance has decreased by around 26% in the "Run memory" benchmark
when comparing it1 and it2 to our PoC. It should be noted, that the percentage is calculated
based off of the actual values in appendix B. The relative performance only tells us how well
the implementations perform relative to the best performer in that benchmark. In order to
find the percentage difference between two implementations, we must compare their actual
values. Any further percentages displayed in this report are devised using the same method.
We assume this performance decrease is due to the compiler tracking references to all DOM
nodes, as opposed to the PoC where references were not tracked.
Now that we have verified that the performance issues with DOMExpressions as we did with
pre-generated rows, we can focus on investigating what the potential causes are. We expect
to see the best results in pre-generated rows, since we have focused on DOM node reuse in
React-compiler.
The results of compiling the pre-generated rows implementation with the iteration 2 version
of React-compiler yielded similar results as seen in section 3.3.2. In iteration 1, we theorised
that the performance issues were either related to the compiled code being slow, or that the
browser environment was overloaded by the number of DOM operations executed in the
update methods. If the code generated by React-compiler, is the culprit, then we would
see a difference between the performance in the microbenchmarks using DOMExpressions
compared to pre-generated rows. However, when inspecting the benchmarks, we can see that
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it is the same benchmarks that perform poorly in both cases. We expect the DOMExpressions
code to be slightly slower in "partial update" than in the "create 1.000 rows" benchmark,
since the code removes the existing rows and recreates them. This is also the case in the
PoC. Instead we see, that the performance in "select row" and "partial update" follow the
same pattern across DOMExpressions and pre-generated rows for both the PoC and React-
compiler.
Some of the microbenchmarks in Krausest use CPU slowdown, to simulate a slower com-
puter in a benchmark. The specific amount of slowdown varies between each benchmark
from 0 to 16x. Interestingly, the two worst performing benchmarks for both the PoC and
React-compiler are "partial update" and "select row" which have the highest CPU slowdown
of 16x. The "append rows" bench uses 2x CPU slowdown where we also see the PoC and
React-compiler perform poorly compared to the other implementations. It stands to reason
that the CPU slowdown may have a significant impact on the performance of our implemen-
tations, whereas the React, Svelte and vanillaJS are less affected. To test this theory, we
disable CPU slowdown on the microbenchmarks, to see the performance difference between
React-compiler and React. The results of disabling CPU slowdown on the microbenchmarks
can be seen in table 4.1. We have also included the results of the same benchmarks with the
original CPU slowdown for comparison.
We have used the actual performance values in table 4.1 to be able to better compare the
effect of CPU slowdown on the results. React still outperforms the compiled applications.
However, when looking at the actual values for both it1 and it2, we can see that the "partial
update", "select row" and "swap rows" are approximately 10 ms slower than "create rows".
These results are what we expect, since the DOMExpressions recreate the DOM nodes on
every rerender as discussed above. We do not expect it1 and it2 applications using DOMEx-
pressions to perform better than the results seen in table 4.1. The React application utilises
a keyed mode implementation, which suggests there is significant performance to be gained
by implementing a similar approach in React-compiler. Running the "partial update" bench-
mark with 16x CPU slowdown results in an actual runtime of 5.926 ms and 5.525 ms for it1
and it2, respectively. Disabling CPU slowdown results in 194 ms runtime for both versions
of React-compiler. Comparing these shows that the 16x CPU slowdown version is 30 times
slower for it1 and 28 times slower for it2. Compare this to the React application which is 19
times slower with 16x CPU slowdown in the "partial update" benchmark. This suggests that
the CPU affects React-compiler more than React. Furthermore, the results without slow-
down show that the generated code, while slower than React, is not the reason for the poor
performance results in the microbenchmarks.
We now perform the same test on the pre-generated rows benchmark by disabling CPU and
compare the actual results. The results of the test can be seen in table 4.2.
Once again, React outperforms the compiled application. However, it is only approximately
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3 times as slow compared to the results in table 4.1, where the compiled application is 12
times slower. This result makes sense since the pre-generated rows application does not use
DOMExpressions, meaning it can take advantage of DOM node reuse. Furthermore, the
CPU slowdown has the same effect on performance in pre-generated rows as we saw in the
other microbenchmarks.
The implementations in the pre-generated rows do not take advantage of the dependency
tracking feature of React-compiler introduced in this iteration. We can see why by inspecting
the code for "partial update" in Code 30.

1 update() => {

2 const data = this.state.data;

3 for (let i = 0; i < data.length; i += 10) {

4 const item = data[i];

5 data[i] = { id: item.id, label: item.label + " !!!" };

6 }

7 this.forceUpdate();

8 };

Code 30: The method used in the React "partial update" benchmark.

The code does not use the setState React API at all, but instead uses the forceUpdate
API on line 7. This means that none of the improvements in iteration 2 React-compiler for
state changes are used in the compiled version. Calling the forceUpdate method means,
that the update method is called in the compiled application, which performs unnecessary
DOM operations, since it is designed to update all computed values. The code in Code 30
manipulates the state of the component directly, which is not the intended approach in React.
The pre-generated rows implementations need to be refactored to use setState instead of
forceUpdate such that the a setState method is called in the compiled application

rather than the update method. Inspecting the code in Code 30 also reveals a design flaw
in our dependency tracking design. The data property of the state object is an array and
the state dependency tracking, will not look at a specific index when tracking dependencies,
which means that if we were to rewrite the code in Code 30 to use the setState API, the
compiled code, would update all DOM nodes that depend on the data array, rather than just
the ones that changed. This limitation of React-compiler reduces the possible performance
improvements in the pre-generated rows benchmarks. In order, to properly benefit from the
improvements made to React-compiler in this iteration, we would need to rewrite the state
object to use a separate property for each row of data. An example of this can be seen in
Code 31.

We have identified some limitations of the current version of React-compiler, which, if ad-
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1 this.state = {

2 0: {id: 0, label: 'value 0'},

3 1: {id: 1, label: 'value 1'},

4 2: {id: 2, label: 'value 2'}

5 }

Code 31: Example of converting the data array into object properties instead to work with the dependency
tracking in this iteration.

dressed, could lead to better performance in the pre-generated rows. However, the CPU
slowdown is biggest contributor to the poor performance we see in both the microbench-
marks and pre-generated rows. To fix this problem, we must identify what mechanisms
other frameworks like React use to overcome overloading of slower CPU’s. The React Core
Team introduces a new architeture named fiber with the release of React version 16 [8, 35].
This new architeture changed the way that React structures it work. Specifically, it intro-
duced a scheduler to help keep the UI responsive while updating the DOM [35]. The React
Scheduler assigns a priority to each DOM operation, such as low, normal and immediate.
JavaScript is single threaded [36]. Any work done on the main thread can block the DOM
from updating, which results in unresponsive UI [35]. The purpose of the React Scheduler
is to perform as many DOM operations as possible without blocking the main thread long
enough to impact the responsiveness of the UI. The scheduler will prioritise the most im-
portant DOM operations such as button clicks. However, each priority has an associated
timeout, which ensures that all DOM operations are eventually performed, even if higher
priority operations are queued. The results of this implementation is that the UI remains
responsive throughout the rerendering process in React. When React-compiler triggers a
rerender, it will queue all DOM operations on the main thread. This means that the main
thread is blocked untill all the operations have been performed. We suspect that this is the
root cause of our performance issues. This approach is not a problem if the CPU is suf-
ficiently fast since it is capable of performing all DOM operations without leaving the UI
unresponsive. However, with CPU slowdown, this is no longer the case. Implementing a
scheduler for React-compiler should result in better performance.

4.3.2 Goals for iteration 3

As mentioned previously, we suspect the cause of our poor results to be due to the lack of
scheduling of DOM operations. We theorise that in order to gain any significant performance
increases in the Krausest benchmarks, we have to implement a scheduler. However, due to
the inherent time limitations that comes with a semester project, we do not have time to
both acquire the knowledge required to build a scheduler and implement it. While we could
attempt to implement a naive queue system for DOM operations, that implementation would

64



have to be completely reworked later and replaced with a proper scheduler. We assess that
this solution is not viable and have, therefore, elected to use the remaining time of this
project on a third iteration which focuses on optimising and rewriting existing functionality
of React-compiler, as well as, implementing the foundation of a UI for propogating errors
when attempting to compile applications. The rewrite of the codebase will focus on exposing
a single API for all elements such as components and DOMExpressions. The UI will focus
on validating and providing error messages for invalid HTML elements, however, the idea is
that this UI will be extendable to other error handling. This feature falls under the developer
feedback category, which we initially postponed to future work in section 1.2. Furthermore,
as the benchmarks are a test of keyed/non-keyed modes, as our results suggest, we will
dedicate some time to implementing a non-keyed version of React-compiler in hopes of
providing a performance increase despite the lack of a scheduler.
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Chapter 5

Iteration 3

This chapter outlines the design and implementation of 4 features — (1) a common interface
for all elements in React-compiler, (2) a validation module that can determine whether an
HTML element is valid, (3) a module which can print error messages to the terminal when
errors occur, and (4) an implementation of a non-keyed mode in React-compiler
1-3 describe "nice to have" features to React-compiler, while 4 focuses on performance
optimisations in the microbenchmarks.

5.1 Design

One of the complexities we have encountered while developing React-compiler is the dif-
ferent interfaces of generated code. Components are implemented as a class that requires
the new keyword to create an instance. Other elements are wrapped in functions such as
DOMExpressions and component’s children as discussed in section 3.1.7. The internal logic
of React-compiler needs to handle each type of element differently as a result. Furthermore,
it means that a change to an element interface may require changes throughout the compiler.
Effectively, there is a tight coupling between each element in the compiler and their specific
interfaces. In this iteration, we look at designing and implementing a common interface for
all element types in the compiler, which hides their specific implementation details, such that
changes can be made without requiring modifications in other parts of the compiler.

5.1.1 Common Element Interface

We focus on creating a minimal interface, that only contains functionality currently used
in the compiler. This way we avoid adding features, which seem to be useful, but may
never be used. We can use the categories of actions used in the componentDOMGenerator
discussed in section 4.2.2 as a starting point. Each action is sorted into a list based on its
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purpose. Currently, we have the following action lists:
• Mount : Actions that create and insert a DOM node into the DOM or instantiate a

component.
• Update : Actions that modify the value or attribute of a DOM. Any computed value

is considered an update action, as explained in section 3.2.
• PropsUpdate : If an action uses the props object of a component it is included in

this list. These actions are also present in the Update list.
• SetStates : Each entry contains a set of actions that depend on the state of a com-

ponent. Similar to propsUpdate.
• Unmount : Actions that unmount components and removes DOM nodes from the

DOM. Used for clean up.
The Update and SetState action lists are intended for internal use because they are only
triggered by code inside the component. The Update action list is used in the update
method which is called by the mount method. Similarly, the SetState actions are used for
the setState methods replacing the React API method with the same name as discussed
in section 4.1. Since the state of a component is internal, it should not be modifiable outside
of the component explicitly through an interface.
We could create an interface with Mount , PropsUpdate , and Unmount , but if we look at
the Component class in Code 32, we can see that not all React API methods are supported
by these 3 methods.

Specifically the forceUpdate method on line 19 in Code 32. This React API method is
used to trigger a rerender without updating the props or state of a component as we discussed
in section 4.1. So we need to add the forceUpdate method to our interface to support the
React API. The init and receiveNewProps methods on line 3 and 33 respectively, are
not React API methods. We use the init method to initialize and mount the component,
which is the equivalent to the mount method in the proposed interface. In fact, the init
method calls the mount method as seen on line 7 in Code 32. receiveNewProps is equiv-
alent to the propsUpdate interface method. The remaining methods in the Component
class are React lifecycle methods, which can be used inside the component by overriding
them. They are defined in the Component class to avoid errors if a lifecycle method is
called from a component that has not implemented its version of the lifecycle method.
We need to decide how to implement our interface. One option is to create a new class
that conforms to the new interface. Another option is to use the factory function pattern
[37]. This pattern consists of a function that returns an object which conforms to the API
[37]. If we use a class, we need to use the new keyword, whereas the factory function is
a normal function invocation. Furthermore, we would need to create a class declaration for
every component, DOMExpression, etc, which leads to a lot of additional code. The factory
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1 class Component {

2 constructor(props) { this.props = props || {}; }

3 init(rootEl, isSibling = false) {

4 this.root = rootEl;

5 this.isSibling = isSibling;

6 this.children = [];

7 this.mount();

8 this.componentDidMount();

9 return this;

10 }

11 setState(state) {

12 const oldState = this.state;

13 this.state = { ...oldState,...state };

14 if (this.shouldComponentUpdate(this.props, state)) {

15 this.update();

16 this.componentDidUpdate(this.props, oldState, null);

17 }

18 }

19 forceUpdate(callback) {

20 const oldState = this.state;

21 this.update();

22 this.componentDidUpdate(this.props, oldState, null);

23

24 if (callback) {

25 callback();

26 }

27 }

28 shouldComponentUpdate(nextProps, nextState) { return true; }

29 componentDidMount() {}

30 componentDidUpdate(prevProps, prevState, snapshot) {}

31 componentWillUnmount() {}

32 unmount() { if (this.container) this.container.remove(); }

33 receiveNewProps(props) {

34 this.props = props;

35 if (this.propsUpdate) {

36 this.propsUpdate();

37 } else {

38 this.update();

39 }

40 }

41 }

Code 32: The Component class used by React-compiler to replace the React Component class.
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function can be placed inline which means we can declare it and use it in place of the current
implementation. Additionally, the Component class from Code 32 does not contain a lot
of logic, so we can convert all class components to the factory pattern without having to
re-implement a lot of code from the Component class. Thus we settle on a factory function
pattern which looks like the function in Code 33.

1 function facotry(props) {

2 // init code here such as function and variables

3 return {

4 mount(root, isSibling = false) {},

5 update(props) {},

6 forceUpdate() {},

7 unmount() {}

8 };

9 }

Code 33: General pattern for the common interface using the factory function pattern.

The implementation details are detailed in section 5.2.1.

5.1.2 Validating elements

In [1], we do not validate HTML elements during compilation apart from checking the type
of the element. In this iteration we design and implement a module which validates whether
an HTML element is valid i.e. it follows the specification provided by MDN [38].
The code shown in Code 34, shows the current validation performed before the HTML
element is processed. This code is found in the JSXTreeVisitor, used in the Transform
Component Render phase in fig. 4.2.

1 function convertJSXElement(JSXElement, parentId, path) {

2 const elType = JSXElement.openingElement.name.name;

3

4 if (supportedHTMLElements.includes(elType)) {

5 return convertHTMLElement(JSXElement, parentId, path);

6 } else if (/[A-Z]/.test(elType[0])) {

7 return convertComponentElement(JSXElement, parentId, path);

8 } else {

9 console.error(`Invalid or unsupported element: ${elType}`);

10 return;

11 }

12 }

Code 34: The convertJSXElement function.

In the function convertJSXElement , on line 4, the conditional statement checks whether
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the supportedHTMLElements list contains the elType of the element we are looking at,
which is the type of the HTML element. If that statement evaluates to true, it will proceed
to convert the HTML into an object representation shown in Code 35.

1 let element = {

2 id: elId,

3 type: 'html',

4 htmlType: elType,

5 parent: parentId || null,

6 attributes: [],

7 eventListeners: [],

8 children: [],

9 isStatic: true

10 };

Code 35: Object representation of an HTML element.

The object contains information about the HTML element, as well as, any children it may
have. As the visitor proceeds through the AST, it will add the attributes and event listen-
ers found in the JSX to the attributes and eventListeners properties. This design
originates from the PoC in [1].
While this solution works, it is vulnerable to errors and can lead to runtime errors if we
attempt to create invalid HTML elements. Instead, we can redesign the current method in
order to verify the entirety of the element object, rather than just the type of the element. We
create a function, which takes the element object as input, shown in Code 35, once it contains
all information. This allows us to verify the element object by adding a function call in the
convertHTMLElement function, which is called in Code 34, and shown in Code 36.

On line 23, we can validate the element and display any errors that may occur to the user.
We define errors as being invalid attributes and event listeners i.e those which are not valid
for a specific HTML element, as well as, duplicated attributes or event listeners.

5.1.3 Displaying error messages

We can create an interface which can be used to display error messages to the user when
an HTML element is invalid. This serves as a basis on which we can extend towards more
developer feedback functionality in future iterations of React-compiler.
The interface is built for the terminal, similar to how other compilers produce their error
messages through the terminal. Instead of only pointing to where the error occurs with a line
number, we are able to take it one step further by displaying the code snippet and indicating
which part of the code is an error. In order to do this, we use two tools — babel code-frame
[39] and Ink [40].
The former, babel code-frame, is a babel package which allows us to produce code snippets
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1 function convertHTMLElement(JSXElement, parentId, path) {

2 const elId = generateId();

3 const elType = JSXElement.openingElement.name.name;

4

5 let element = {

6 id: elId,

7 type: 'html',

8 htmlType: elType,

9 parent: parentId || null,

10 attributes: [],

11 eventListeners: [],

12 children: [],

13 isStatic: true

14 };

15

16 JSXElement.openingElement.attributes.forEach((attr, index) =>

17 convertHTMLElementAttribute(element, attr,

18 path.get(`openingElement.attributes.${index}`)));

19

20 JSXElement.children.forEach((child, index) =>

21 convertJSXChild(element, child, path.get(`children.${index}`)));

22

23 //call validation function

24

25 return element;

26 }

Code 36: The convertHTMLElement function which will contain the validation call.
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with syntax highlighting, as well as, arrows pointing towards a specific line and column of
the snippet, as depicted in fig. 5.1. The column refers to the depth or n’th character in that
line.

Figure 5.1: Example of the use of babel code-frame.

The latter, Ink, is a custom React renderer for building command line interfaces (CLI). We
need a custom React renderer, because we cannot use HTML elements in the terminal since
it is not a browser environment. We discussed how react handles different environments and
renderers in section 3.1.3.
There are multiple methods of developing CLI’s in various languages, which require a num-
ber of libraries that each handle different functionality, such as interaction, styling, and ori-
enting content. However, Ink wraps all such functionality within a single library and allows
one to write CLI applications similar to writing web applications in React and JavaScript.
It utilises much of the functionality provided by React, such as both functional and class
components, as well as, Hooks. Furthermore, one can style and orient the content of the
output using JSX syntax and custom components that are built for the terminal. This means
that instead of using multiple libraries in order to build the CLI, we can use Ink and use our
knowledge from React to speed up the process of developing the CLI.
An example of a application built in Ink is shown in fig. 5.2.

Figure 5.2: Snapshot of a Counter application in Ink.

The code required to build the application in fig. 5.2 is shown in Code 37.
The structure of the application is similar to a React application using Hooks. The Counter
function returns JSX, which is then rendered in the terminal. The Color component on
line 14, is a custom component provided by Ink. It is used styling for strings and rendering
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1 const Counter = () => {

2 const [counter, setCounter] = useState(0);

3

4 useEffect(() => {

5 const timer = setInterval(() => {

6 setCounter(previousCounter => previousCounter + 1);

7 }, 100);

8

9 return () => {

10 clearInterval(timer);

11 };

12 }, []);

13

14 return <Color green>{counter} tests passed</Color>;

15 };

16

17 render(<Counter />);

Code 37: Code for the Counter example.

coloured text in the terminal.

5.1.4 DOM Reuse in DOMExpressions

Implementing DOM node reuse in DOMExpressions is required to improve the performance
of the compiled applications of React-compiler in the microbenchmarks. The DOM node
reuse implemented in chapter 3 does not work for DOMExpressions, because it is not capa-
ble of determining which DOM nodes to create, update and remove during rerender, since it
depends on the expression in the DOMExpression itself. Consider the DOMExpression in
Code 38.

1 {this.state.data.map(el => <div>{el.value}</div>)}

Code 38: DOMExpression that creates a DOM node for every entry in the data array of the component’s state.

The DOMExpression uses the component’s state to generate DOM nodes. In order to reuse
the DOM nodes created by the DOMExpression, we need to know what DOM nodes were
created last render. For instance, if the data array contains two elements initially then we
have 2 DOM nodes in the DOM. If we trigger a rerender by adding a third, we need to add
another DOM node to the DOM. Inversely, we need to remove a DOM node if an element
is removed from the array. We also need to ensure that each DOM node displays the correct
value, such that each element’s value is displayed in the same order as the data array. The job
of a keyed/non-keyed mode is to handle updating these DOM nodes, such that they always
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match the data they were generated from, as is explained in section 2.1.1.
In this iteration, we design and implement a non-keyed mode, because it is the best overall
performer in the microbenchmarks, as shown in section 3.3. It is also the simplest to imple-
ment, since we do not need to deal with keys. It is worth noting that there are cases where a
keyed implementation is better. For instance, if an element has been added at the beginning
of the data array, then every DOM node is updated in a non-keyed mode, while a keyed im-
plementation will detect that all but the first element has just been moved. Deciding which
mode to use is a tradeoff between the cost of performing unnecessary DOM operations in
non-keyed mode and the cost of computing what has been moved, updated and removed in
a keyed mode.
In algorithm 1 we present the algorithm we have designed for our non-keyed implementa-
tion.

1 elements = []
2 position = 0
3 for item in DOMExpression do
4 if elements[position]! = null then
5 elements[position].update()

6 else
7 element = newElement()
8 elements[position] = element
9 element.mount()

10 position += 1

11 if elements.length − 1 >= position then
12 i = position
13 while i < elements.length do
14 elements[i].unmount()
15 elements[i] = null
16 i += 1

Algorithm 1: Non-keyed mode for React-compiler.
On line 1 we define an array, elements , which we use for storing the references to the
elements in the DOM. Each entry is the common element interface object we designed in
section 5.1.1, which enables us to perform update and remove on each element in the
DOMExpression. The postion variable on line 2 is used to track the current position in the
elements array. As we evalute the DOMExpression, we must keep track of which elements
we have reused. The for loop on line 3 is controlled by the expression of the DOMExpres-
sion. In the example Code 38, the expression would be this.state.data.map . The
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non-keyed implementation must work with any DOMExpression, so we cannot assume how
the expression in a DOMExpression works. For instance, it must also work for DOMEx-
pression, which do not iterate through data in the component’s state. This is why we use
the position variable to track the postion in the elements list. When the JSX is replaced
inside the DOMExpression, we insert the code on lines 4 - 10 inside the for loop on line 3
to handle each item in the DOMExpression. Incrementing the position variable on line
10 lets us track our progress without havin direct control of the expression itself. On line 4
we check if an element exists for the current position, so we can reuse it. A new element
is created on line 7 and inserted into the elements array on line 8. We defer the details re-
garding element creation to the implementation in section 5.2.5. Once the expression has
been evaluated, we must check if there is any elements in the DOM that was not reused. On
line 11 we check if the current position is at the end of the elements array. If we still have
elements left, we loop through each remaining element on line 13 and remove it from the
DOM and the array. This ensure that unused DOM nodes are not left in the DOM.

5.2 Implementation

The implementation of the proposed design in section 5.1, is split into 5 parts following the
order in section 5.1.

5.2.1 Common Element Interface

Implementing the common element interface designed in section 5.1.1 requires us to trans-
form all class components into factory functions. This transformation involves the following
steps:
• Transforming class methods into local functions of the factory function.
• Moving properties on the class to local variables of the factory function.
• Moving the content of the class constructor into the body of the factory function.

We use a Babel template similar to those used in section 3.2.1 to generate the AST for the
factory function. The template can be seen in Code 39.

We use this template as the scaffolding for each of the class components that need to be
converted. We modify the Component Render Visitor introduced in section 3.2, to replace
the entire class declaration instead of only replacing the render method. We extend the
visitor to visit every class method and property, so we can copy the AST to the factory
function. We use an array to store the ASTs. If we attempted to insert the method and
property ASTs directly into our factory function template, we would get a syntax error from
Babel. Class methods and properties have different declaration syntax than local variables
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1 function COMPONENTNAME(props) {

2 let container;

3 let children = [];

4 let state;

5

6 // React API Methods

7

8 // DOM Nodes

9 DECLARATIONS

10

11 // Constructor Content

12 CONSTRUCTORCONTENT

13

14 // Component Methods

15 COMPONENTMETHODS

16

17 // SetState Methods

18 SETSTATES

19

20 return {

21

22 mount(root, isSibling = false) {

23 componentMount(root, isSibling);

24 },

25

26 update(props) {

27 componentPropsUpdate(props);

28 },

29

30 forceUpdate() {

31 componentUpdate();

32 },

33

34 unmount() {

35 componentUnmount();

36 }

37 };

38 }

Code 39: Template used for creating factory functions for components in React-compiler. Capitalised words
are replaced by Babel with AST’s provided as input.

77



and function declarations. So, we need to convert class methods to function declarations
and class properties to local variables. An example of this transformation can be seen in
Code 40.

1 // Class method

2 print(text) { console.log(text); }

3 // to

4 function print(text) { console.log(text); }

5

6 //Class property

7 Type = 'component';

8 // to

9 let Type = 'component';

Code 40: Example of the transformation from class method to function declaration and class property to local
variable.

We also need to convert any references to the class methods and properties, because these
references use the this keyword to access methods and properties on the class, which will
not work in the function factory. We create a visitor to find uses of this and remove them
as seen in Code 41.

1 funcPath.traverse({

2 // this.state.value --> state.value

3 MemberExpression(MEPath) {

4 if (t.isThisExpression(MEPath.node.object)) {

5 MEPath.replaceWith(MEPath.node.property);

6 }

7 }

8 });

Code 41: Visitor used to remove uses this in an AST.

This approach can cause errors at runtime. Accessing a local variable before it is defined is
not allowed in JavaScript, which means that we need to ensure that all converted class meth-
ods and properties are inserted before any of them are referenced. Class properties do not
have to deal with this, because they are properties on an object and not a variable. JavaScript
is function scoped, which means that every function creates its own scope. Variables in
JavaScript can be declared using var , let , and const 1 [41, 42]. Variables declared
with var are implicitly moved to the beginning of its enclosing scope, which is known as

1Const variables cannot be reassigned, however, the value can still be mutated i.e adding an item to an array
stored in a const variable.
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hoisting [43]. let and const were introduced with the ES2015 version of JavaScript and
they are not hoisted [42] . This is important because variables declared with var can be
referenced before they are declared because the declaration is implicitly hoisted at runtime
[43, 41]. We could solve the potential reference errors by using var to declare all the con-
verted class properties. However, we prefer to use the newer declaration syntax [44]. We
can replicate the behaviour of var , by explicitly moving all declarations to the beginning
of the factory function, so that we avoid any reference errors. Function declarations are also
hoisted in JavaScript, so we do not need to deal with the order of function declarations [43].
The template in Code 39 reflects this design. Only React API methods and React-compiler
specific variables are declared above the converted class methods and properties.
The final step is to copy the content of the class constructor to the factory function. The
factory function itself serves as the constructor in the new design, so we can move the state-
ments found in the constructor to the root of the factory function. React class components
take a single parameter, which is the props object for that component. The factory function
also takes the props of a component as its first parameter so we safely move the content of
the constructor as long as we ensure that the name of the first parameter of the constructor
and all its references matches the name given to the parameter of the factory function. The
initial value of a component’s state is commonly defined in the constructor, but it is optional.
The component state is declared as a variable on line 4 in Code 39 such that the state variable
is always declared even when no initial state is defined. We, therefore, have to handle the
initial state declaration differently from any other class property, since it has already been
declared. The state declaration has to be converted into an assignment, such that we do not
get a duplicate variable declaration errors at runtime.
Next, we look at changing the action generation code introduced in section 4.2.2 to reflect
the new interface. We only discuss a subset of these changes rather than systematically
walking through every change, since most of the changes consist of renaming functions on
components.
We designed component children to be passed into a component as a function in sec-
tion 3.2.1. Each child’s function encapsulated the actions required to mount and update
the child in the DOM. During rerender, we removed the child and recreated it using the
child’s function. This design was created to simplify the code generation by avoiding the
need to handle the specific element type of each child. This is the problem that the com-
mon element interface is intended to solve. Each child’s function is replaced with a factory
function, which hides the specific element type and exposes the common element interface.
This means we can call mount, update, and unmount on children without knowing if they
are a component, HTML element, DOMExpression, etc. The component children factory
function array can be seen in Code 42 on line 2.
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1 // component creation

2 let el = Container({

3 text: "Hello World!",

4 children: [function () {

5 // declarations

6 return {

7 mount(root, isSibling = false) {

8 el_9 = Header({

9 title: "Testing Variables"

10 });

11 el_9.mount(root);

12 },

13

14 update() {

15 el_9.update({

16 title: "Testing Variables"

17 });

18 },

19

20 unmount() {

21 el_9.unmount();

22 }

23

24 };

25 }()]

26 });

27

28 // inside component on mount

29 children.forEach(child => child.mount());

Code 42: Component children mounting using the common element interface.
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We previously used the children array to contain the unmount function for each child which
was called in the propsUpdate method as seen in Code 43.

1 // old pattern

2 propsUpdate() {

3 if (this.children.length) {

4 this.children.forEach(fn => fn());

5 this.children = [];

6 }

7

8 // rest of propsUpdate

9 }

10

11 // new pattern

12 propsUpdate() {

13 if (children.length) {

14 children.forEach(child => child.update());

15 }

16

17 // rest of propsUpdate

18 }

Code 43: Component children updating using the common element interface versus the previous method.

In our new design, we use the children array to contain the common element interface object
for each child, such that we can call the update function in propsUpdate instead as seen
on line 12.
The actions generated by the componentDOMGenerator for DOMExpressions are in-
serted directly into the DOMExpression itself, replacing the JSX it represents as seen in
Code 44.

In section 4.1.3 we detailed the use of arrays for storing unmount functions for elements
generated by DOMExpressions similar to the way children were handled. With the common
element interface, we replace the JSX with the factory function declaration for said JSX,
which allows us to encapsulate the specific element details of each element in a DOMEx-
pression in the common element interface. This change can be seen in Code 45.

We now have an interface for reusing the DOM nodes created inside DOMExpressions,
which we use for creating the non-keyed implementation designed in section 5.1.4. The
implementation details can be seen in section 5.2.5.
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1 // JSXExpressionContainer

2 {this.state.data.map(el => <div><div>{el.value}</div></div>)}

3

4 // Compiles to

5 (parent => {

6 if (this.tempList_el_30 && this.tempList_el_30.length) {

7 this.tempList_el_30.forEach(el => el());

8 this.tempList_el_30 = [];

9 }

10

11 let tempList = [];

12 let previousEl = null;

13 let useAppend = true;

14 // JSXExpression

15 this.state.data.map(item => function () {

16 // JSX replaced with actions

17 let el_14 = document.createElement('div');

18

19 if (useAppend) {

20 previousEl ? previousEl.appendChild(el_14) : parent.appendChild(el_14);

21 } else {

22 previousEl ? previousEl.after(el_14) : parent.after(el_14);

23 }

24

25 tempList.push(() => el_14.remove());

26 previousEl = el_14;

27 let el_15 = document.createElement('div');

28 el_14.appendChild(el_15);

29 el_15.innerHTML = el.value;

30 }());

31 this.tempList_el_30 = tempList;

32 })(this.el_27);

Code 44: Example of compiling a DOMExpression with React-compiler with iteration 2 version.
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1 // JSXExpressionContainer

2 {this.state.data.map(el => <div><div>{el.value}</div></div>)}

3

4 // Compiles to

5 (parent => {

6 let tempList = [];

7 let previousEl = null;

8 let useAppend = true;

9 // JSXExpression

10 this.state.data.map(item => function () {

11 // JSX replaced with factory function

12 function node(props) {

13 // factory function content removed for brevity

14 }

15

16 let element = node({

17 value: el.value

18 });

19 tempList.push(element);

20 element.mount(previousEl || parent, !useAppend);

21 }());

22 this.tempList_el_30 = tempList;

23 })(this.el_27);

Code 45: Example of compiling a DOMExpression with React-compiler with iteration 3 version. The factory
function is named node, since the JSX from the original code is not a component.
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5.2.2 Validating HTML elements

In order to validate HTML elements, we first have to establish what constitutes a valid
HTML element. This is a somewhat tedious task as it, essentially, requires us to go
through the MDN reference [38] and map out all valid event event listeners and attributes
a given HTML element can have. The result is a dictionary with entries as depicted in
Code 46.

1 const htmlElements = {

2 'a': {

3 isSupported: true,

4 validAttrs: globalAttributes.concat(

5 ['download', 'href', 'hreflang', 'ping',

6 'referrerpolicy', 'rel', 'target', 'type']

7 ),

8 validEvents: globalEvents

9 },

10 ...

11 }

Code 46: Example of an entry in the HTML element dictionary.

Prior to HTML5, each element would support a set amount of attributes and event listeners
which would vary from element to element. With the introduction of HTML5, the reference
was changed such that HTML elements support what is referred to as global attributes and
events listeners. This means all HTML elements support these global attributes/event listen-
ers and can have additional attributes/event listeners which are unique to that element. Due
to this change, we make two lists, as indicated on line 4 and 8 in Code 46, which contain
the global attributes and event listeners and then concatenate any additional attributes/event
listeners, an element supports, to the lists. On line 3, we indicate whether the element is sup-
ported by React-compiler, as there are some elements we do not support, such as canvas and
WebGl, because they use a different JavaScript API than the other HTML elements. This
information is stored for all HTML elements.
The logic for validating an element is split into 3 separate functions — checkEl ,
validateEl , and isDuplicate . checkEl is the initial entry point when validating

an element and is shown in Code 47.
The checkEl function accepts an element as a parameter with a similar structure to that of
the element shown in Code 35 in section 5.1. On line 3, we check whether the htmlType
of the element i.e. which element it is, is a key in our dictionary of HTML elements. If this
is the case, we pass the valid attributes and event listeners for that particular element, as well
as, the element and whether the element is supported to the validateEl function.
The code for the validateEl function is shown in Code 48.
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1 function checkEl(el) {

2

3 if (el.htmlType in data.htmlElements) {

4 let attrs = data.htmlElements[el.htmlType].validAttrs;

5 let isSupported = data.htmlElements[el.htmlType].isSupported;

6 let events = data.htmlElements[el.htmlType].validEvents;

7

8 return validateEl(el, attrs, isSupported, events);

9

10 } else {

11 return console.log('Not a valid HTML element')

12 }

13 }

Code 47: The checkEl function.

The responsibility of the validateEl function is to go through the element and its at-
tributes and event listeners to check whether they are valid in terms of the aforementioned
dictionary of HTML elements. In order to do this, we first create an object, on line 2, which
is the return value of the function. This object houses any information or errors found with
the element. Thereafter, on line 13, we check whether it is an element supported by React-
compiler. If this is the case, on lines 18 and 23, we proceed to check the attributes and event
listeners of the element and use the isDuplicate function to check whether any attributes
are duplicated, as this would be invalid. Furthermore, we iterate over the attributes and event
listeners, on lines 32 and 34, and check whether they are in the list of valid attributes or event
listeners for that element. Any duplicate or invalid attributes or event listeners will be added
to the object, on line 2. Lastly, the function will return the object to the caller.

5.2.3 Building codeframes

The purpose of buildCodeFrame is to be called from within the function in Code 35, in
section 5.1. It will then parse the necessary information to the validation component and use
the returned object to build codeFrames [39].
An example of what the input to buildCodeFrame could look like is shown in
Code 49.
The babel AST is decorated with source code locations, which means we have access to
information such as the line and column of each attribute and event listener. This infor-
mation allows us to display errors such as the image shown in fig. 5.1. The task of the
buildCodeFrame is to take an element, after validation, identify which attributes or event

listeners from the code snippet, supplied on lines 39-41 in Code 49, are invalid and build a
codeFrame pointing out which are invalid.
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1 function validateEl(el, validAttrs, isSupported, validEvents) {

2 let errmsg = {

3 type: el.htmlType,

4 attrIsValid: false,

5 elIsValid: false,

6 invalidAttrs: [],

7 invalidEvents: [],

8 containsDuplicateAttrs: false,

9 containsDuplicateEvents: false,

10 isSupported: true,

11 };

12

13 if (!isSupported) {

14 errmsg.isSupported = false;

15 return errmsg;

16 }

17

18 const duplicateAttr = isDuplicate(el.attributes);

19 if (duplicateAttr.length > 0) {

20 errmsg.containsDuplicateAttrs = true;

21 errmsg.invalidAttrs.push(duplicateAttr);

22 errmsg.invalidAttrs = errmsg.invalidAttrs.flat();

23 }

24

25 const duplicateEL = isDuplicate(el.eventListeners);

26 if (duplicateEL.length > 0) {

27 errmsg.containsDuplicateEvents = true;

28 errmsg.invalidEvents.push(duplicateEL);

29 errmsg.invalidEvents = errmsg.invalidEvents.flat();

30 }

31

32 el.attributes.forEach((attr) => isValidAttribute(attr));

33

34 el.eventListeners.forEach((event) => isValidEventlistener(event));

35

36 return errmsg;

37 }

Code 48: The validateEl function.
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1 element: {

2 id: 123,

3 type: 'html',

4 htmlType: 'div',

5 attributes: [ {

6 name: 'id',

7 codeSnippet: {

8 start: {line: 1, column: 6},

9 end: {line: 1, column: 7}

10 }

11 },

12 {

13 name: 'class',

14 codeSnippet: {

15 }

16 },

17 {

18 name: 'tool',

19 codeSnippet: {

20 }

21 }

22 ],

23 eventListeners: [ {

24 name: 'click',

25 codeSnippet: {

26 start: {line: 1, column: 42},

27 end: {line: 1, column: 46}

28 }

29 },

30 {

31 name: 'stick',

32 codeSnippet: {

33 }

34 }

35 ],

36 children: [],

37 codeSnippet: {

38 fileLocation: './app.js',

39 code: '<div id="test" class="big" tool="yes"

40 click={} stick={}>{this.state.count}</div>',

41 location: { start: { line: 1, column: 18 } },

42

43 }

44 }

Code 49: Example of input to buildCodeFrame.
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The code for buildCodeFrame is displayed in Code 50, however, we have removed some
of its contents for brevity.
On line 3, we define the object, which the function returns to be used in the Ink component.
Once the element has been validated, on line 13, we check whether there were any invalid
attributes and iterate over them in the remaining code. For each invalid attribute, we match it
to the attributes in the intial input element and build a codeFrame using the line and column
information of that attribute. The same process is repeated for the event listeners. The code-
Frames are built using the babel code-frame [39] function codeFrameColumns . It accepts
a string representing a code snippet, and an object indicating the line and column of the error
that occurs. The codeFrames are then added to the object on line 3 and returned from the
function. The end result of running the buildCodeFrame function on our example input
in Code 49 is shown in fig. 5.3.

Figure 5.3: Output of buildCodeFrames.

5.2.4 Ink interface

The ink interface consists of a singular component named BCF. The return object from
buildCodeFrame is passed in as props. We will not display the code for the component

as there is nothing significant within it to discuss. However, an image of the end product is
shown in fig. 5.4.

Figure 5.4: Output in terminal after validating an element.

It displays the output after validating the element shown in Code 49. We display the file in
which the error occurs, the location of where the code snippet starts and ends, as well as,
the type of the element and its id. Furthermore, in the case that the element is unsupported
or invalid, an error message stating this is displayed in place of the codeFrames displayed in
fig. 5.4. If an element is supported, but has invalid attributes or event listeners, the errors are
displayed as shown in fig. 5.4.
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1 function buildCodeFrame(codeFrameData) {

2 //store codeframes

3 let codeFrames = {

4 ...

5 };

6

7 //map out required info for the validation function

8 const validationEl = {

9 ...

10 }

11

12 //validate the element

13 const validatedEl = validate.checkEl(validationEl);

14

15 //check whether there are any invalid attributes

16 if (validatedEl.attrIsValid === false) {

17 validatedEl.invalidAttrs.forEach(attr => {

18 codeFrameData.element.attributes.forEach(attr2 => {

19 if (attr2.name === attr) {

20 codeFrames.codeFrame.push(createAttibuteCodeFrame(attr, attr2));

21 }

22 });

23 });

24 }

25

26 //check whether there are any invalid events

27 if (validatedEl.elIsValid === false) {

28 validatedEl.invalidEvents.forEach(event => {

29 codeFrameData.element.eventListeners.forEach(event2 => {

30 if (event2.name === event) {

31 codeFrames.codeFrame.push(createEventlistenerCodeFrame(event, event2));

32 }

33 });

34 });

35 }

36

37 return codeFrames;

38

39 }

Code 50: The buildCodeFrame function.
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5.2.5 Non-keyed Mode

A major part of implementing our non-keyed mode has been completed in section 5.2 by
providing the necessary interface for reusing existing DOM nodes. The code in Code 51
shows the compiled output with the non-keyed implementation of the DOMExpression from
Code 45.

We use the factory function named node on line 12 to create a new instance of an element.
We can then use the common element interface to mount, update and unmount the element
in the non-keyed implementation. The tempList_1 variable is used as the elements array
from algorithm 1 introduced in section 5.1.4. The variable is delcared in the component it-
self, rather than inside the DOMExpression, so it can be referenced in other update functions,
such as a setState function. We keep the previousEl and useAppend to control in-
sertion of DOM nodes as discussed in section 4.1.3. Lines 16 to 30 are equivalent to those
seen inside the for loop on line 3 in algorithm 1, but we have added the specific code for
calling the factory function node on line 22. We use the slice function to create a new
array without the unused elements on line 38 in Code 51.
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1 // JSXExpressionContainer

2 {this.state.data.map(el => <div><div>{el.value}</div></div>)}

3

4 // Compiles to

5 (parent => {

6 let position = 0;

7 let previousEl = null;

8 let useAppend = false;

9 // JSXExpression

10 this.state.data.map(item => function () {

11 // JSX replaced with factory function

12 function node(props) {

13 // factory function content removed for brevity

14 }

15

16 if (tempList_1[position]) {

17 tempList_1[position].update({

18 value: el.value

19 });

20 previousEl = tempList_1[position].getContainer();

21 } else {

22 let element = node({

23 value: el.value

24 });

25 tempList_1.push(element);

26 element.mount(previousEl || parent, !useAppend);

27 previousEl = element.getContainer();

28 }

29

30 position += 1;

31 }());

32

33 if (tempList_1.length - 1 >= position) {

34 for (let i = position; i < tempList_1.length; i++) {

35 tempList_1[i].unmount();

36 }

37

38 tempList_1 = current.slice(0, position);

39 }

40 })(this.el_27);

Code 51: Example of compiling a DOMExpression with React-compiler with iteration 3 version non-keyed
mode. The factory function is named node, since the JSX from the original code is not a component.
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5.3 Results

The objective for iteration 3 was to refactor the codebase towards a more uniform API for
elements, as well as, building a foundation for displaying errors during compilation to users.
Furthermore, we implemented a non-keyed implementation of React-compiler in order to in-
vestigate whether the performance in the Krausest benchmarks would improve. This section
will focus on the latter objective of iteration 3, as the two former objectives do not involve
any performance optimisations.
The microbenchmarks do show a bias towards keyed/non-keyed implementations, as shown
in section 3.3 and section 4.3, meaning we do expect to see improvements due to the abil-
ity to reuse DOM nodes in DOMExpressions, which is what is benchmarked by Krausest.
However, we also expect the issues presented in section 3.3 and section 4.3 to be present in
the non-keyed implementation and are, therefore, uncertain as to the degree of improvement
we can expect to see.
The results of running the microbenchmarks can be seen in appendix C. Suprisingly, we do
not see the peformance issues in the it3 results as we did in section 4.3. In fact, the non-keyed
implementation outperforms all React implementations and keyed Svelte implementations,
which is a larger improvement than we expected. The "partial update" benchmark results
can be seen in fig. 5.5.
This was one of the benchmarks using 16x CPU slowdown and we can see the poor results
from iteration 1 and 2. However, it is also clear that the CPU slowdown does not affect
the iteration 3 version of React-compiler, which performs similarly to the React non-keyed
implementations. In fact, the it3 version has seen a 1755% increase in performance, when
compared to it2, meaning the that it takes it2 17.5 times as long to to update every 10th row
in a table of 1.000 rows. These results seem to indicate that the changes we have made in the
this iteration has solved the performance issues from the previous iterations. Additionally, it
seems that the performance gained from the iteration 3 implementation does not come with
an increased cost to memory consumption, as shown in fig. 5.6. In fact, this implementation
outperforms all of our previous iterations in both the memory and startup categories.
We did perform a single run of the microbenchmarks after having completed the common el-
ement interface detailed in section 5.2.1, which showed no impact on the performance when
comparing the factory function code to the class based code. The major change between
iteration 2 and 3 is the DOM reuse for DOMExpressions in the compiled applications of
React-compiler. We did not expect this change to improve the results to the extent that it
did. We already implemented DOM node reuse in the pre-generated rows implementations,
which also had performance issues, so it seems unlikely that this change alone is the reason
for the improvements. Our theory from section 4.3 was that performance issues was cause by
overloading the browser due to the number of DOM operations. We still think that the perfor-
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mance issues in section 4.3 are cause by overloading the browser, because the performance
was related to the CPU slowdown. However, it is unlikely that the browser is unable to han-
dle the number of DOM operations triggered by the applications, because the pre-generated
rows implementations perform the same number of DOM operations as the non-keyed mode
from this iteration, since they are both using the componentDOMGenerator for generating
the actions in the update method. It is unclear to us at this time, what exactly causes the
performance issues in section 4.3, while it does appear to be related to the speed of the CPU,
it does not appear to relate to the number of DOM operations generated by React-compiler.
We discuss this further in section 6.2.
This project set out to improve the performance of the PoC from [1]. With the conclusion
of this iteration, we have managed to exceed our own expectations by outperforming React
in most of the microbenchmarks. When we started [1], we posed the question of whether it
was possible to compile a React application to more performant JavaScript code. We argue,
with the results of iteration 3, we have succeeded and shown that it is possible to improve
the performance of React applications, without rewriting them in a new framework, like
Svelte.
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Chapter 6

Discussion

In this chapter, we discuss the project and its contents. Specifically, we discuss the deci-
sions we have made and their impact. Furthermore, we return to various subjects mentioned
througout the report, such as the notion of scheduling. Lastly, we discuss next steps for
the project and which direction one could take React-compiler after the completion of this
project.
To begin our discussion, it is relevant to look back at where we started with this project.
Initially, we created a mindmap in order to distinguish between the important aspects of the
project and decide which to pursue. The mindmap is shown in fig. 6.1.

Figure 6.1: Project Mindmap.

When we ended [1], we had a lot of aspirations for React-compiler, however, we also knew
we would not have time to complete all of them within the timeframe of this semester.
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Therefore, we prioritised items from the mindmap in order to produce the most value as
discussed in chapter 1. Now that we are at the end of this project, it is relevant to ask, did
we make good choices, and what are the opportunities to move forward?
To structure our discussion, we have divided our thoughts into two areas of focus, as outlined
in chapter 1, based on fig. 6.1:
• Methodology: Add additional implementations to compare the performance of

keyed/non-keyed to other approaches.
• Performance Optimisations: Expand on the PoC from [1] to improve the perfor-

mance of the compiled output.
In sections 6.1 and 6.2, we describe our progress within each category, discuss the choices
we have made, and comment on our process. Finally, we look at potential directions for
future projects in section 6.3.

6.1 Methodology

In this section, we discuss our decisions regarding our methodology. Specifically, we dis-
cuss — (1) the exclusion of macrobenchmarks, (2) the creation of the pre-generated rows
implementations, (3) the prioritisation of methodology.

6.1.1 Excluding Macrobenchmarks

In section 1.2, we detailed the issues we had with our methodology from [1] and, therefore,
set out to improve upon it. We wrote off the existing macrobenchmarks for two main rea-
sons. Firstly, we concluded in [1], that the results from our macrobenchmarks did not provide
valuable insight into the performance of the frameworks. Secondly, the implementations in
the macrobenchmarks utilised third party libraries, which are not supported by the PoC.
To support the macrobenchmarks in React-compiler, would require us to dedicate time to
implement support for multiple libraries which would only enable us to compile additional
applications, rather than spending time on improving the performance of React-compiler.
We assess that this is still the correct decision. We argue that the macrobenchmarks would
not have enabled us to improve the performance of the compiled applications further since
we have not attempted all potential performance optimisations identified by the microbench-
marks.

6.1.2 Creating Pre-generated Rows Tool

The implementations in our microbenchmarks dynamically generate rows based on data us-
ing either keyed or non-keyed implementation as detailed in chapter 2. In chapter 2 we
created the pre-generated rows implementations, which have the rows hardcoded into the
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code rather than generating them dynamically. We described the design and implementa-
tion of a tool for creating pre-generated rows implementations. The Krausest tool [12] used
for our microbenchmarks only benchmarks a subset of a framework’s capabilities. The pre-
generated rows implementations are designed to challenge the inherent biases within Kraus-
est. The results of the pre-generated rows implementations helped us identify performance
issues with the application compiled with both iteration 1 and 2 versions of React-compiler
as discussed in section 4.3. While we did not see the expected performance of the compiled
applications, we showed that React performed better in pre-generated rows compared to the
microbenchmarks. We, therefore, argue, that the pre-generated rows implementations did
highlight the shortcomings of Krausest and how it does not give a full representation of how
a framework performs overall.

6.1.3 Prioritisation of Methodology

It is clear from this report, that our focus has not been on the methodology. Most of our re-
sources have been dedicated to developing React-compiler and, therefore, the methodology
has been prioritised lower. This is both a result of our interest mainly being on developing
React-compiler, but also due to the lack of a widely accepted standard for benchmarking
front-end frameworks in the industry, which is investigated in [1]. We have established
that Krausest is not an accurate representation of the performance of a framework, how-
ever, there is no alternative that benchmarks the same aspects as Krausest. The issue with
this field of research is that there is no accepted methodology for benchmarking front-end
frameworks and, thus, it has been up to us to determine the correct method for our project.
We have found that developing a complete methodology, which takes all or, at least more,
aspects of a framework’s performance into account, compared to Krausest, is an extensive
task. React-compiler is our priority and it is not feasible for us to develop a compiler while
also developing the correct and complete method for evaluating its performance in our given
timeframe.

6.2 Performance Optimisations

In this project, we transitioned our PoC, designed as a Babel plugin, into React-compiler,
a standalone compiler. React-compiler is built on top of Babel, to avoid implementing a
JavaScript parser, AST, and code generator from scratch. In [1] we ran into limitations
with the PoC, because it was implemented as a Babel plugin, which limits our control of
the compilation process. Specifically, we had to implement the PoC plugin as a single-
pass compiler, which resulted in more complex code, as discussed in section 3.1.7. Using
Babel as a foundation has provided us with some "nice to have" tools, such as the Babel
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code-frame library used in chapter 5. We are confident this decision was correct, seeing as
the development process was made significantly easier. Furthermore, we gained access to
additional tools and by using Babel as the foundation, we could focus on optimisation efforts
instead of compiler basics.
As part of React-compiler we implemented the following performance optimisations:
• DOM Node Reuse: In chapter 3 we designed and implemented DOM node reuse for

most cases with the exception of DOMExpressions.
• Dependency Tracking of Props and State: Reduce the number of DOM operations

performed during rerender by tracking component props and state use in the JSX and
only updating relevant DOM nodes as detailed in chapter 4.
• Non-keyed Mode: Create a non-keyed implementation to allow DOM node reuse in

DOMExpressions as detailed in section 5.1.1.
In the following subsections, we will outline and discuss our decisions for the aforemen-
tioned optimisations.

6.2.1 DOM Node Reuse

We decided to implement DOM node reuse at the beginning of this project because it was
not supported in the PoC and both Svelte and React reuse DOM nodes. Furthermore, we ex-
pected that updating DOM nodes was more performant that recreating them on every reren-
der as we did in the PoC. This is further supported by our results in section 3.3 which indicate
that all other frameworks, that use DOM node reuse, perform better than the PoC. We ex-
pected our pre-generated rows implementations to show better performance when reusing
DOM nodes in React-compiler compared to the PoC. The pre-generated rows implementa-
tions are specifically designed to benchmark the performance of DOM node reuse without
relying on a keyed/non-keyed implementation. However, the performance difference was
overshadowed by other performance issues, which meant we were unable to determine the
performance impact of reusing DOM nodes.

6.2.2 Dependency Tracking of Props and State

We were inspired by Svelte to create dependency tracking of a component’s props and state
in order to improve performance by reducing the number of DOM operations being per-
formed during rerender. Dependency tracking is highlighted by the authors of Svelte [45],
as one of the primary ways that the framework achieves its performance. In the results of
iteration 1, we saw that Svelte is only beaten by the vanillaJS implementations, which mo-
tivated us to implement a similar approach. While React optimises its DOM operations at
runtime using the Reconciliation process outlined in section 1.1.1, it adds overhead to reren-
dering which reduces performance. Svelte does this at compile time, which is what inspired
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the dependency tracking in React-compiler. However, we did not see any performance im-
provements in our benchmarks, which we determined was caused by the way the React
applications in the microbenchmarks were implemented as discussed in section 4.3. The
applications would have to be refactored in order to benefit from the dependency tracking
implemented in chapter 4.

6.2.3 Non-keyed Mode

In chapter 5 we achieved DOM node reuse for the DOMExpressions by implementing a
non-keyed mode. We expected this to result in improved performance in the microbench-
marks now that our compiled application functions similarly to the other frameworks. This
optimisation resulted in the greatest performance improvement to React-compiler. React-
compiler outperforms all React versions and is on par with Svelte implementations in some
benchmarks. We also alleviated the performance issues from iteration 1 and 2 related to
CPU throttling.

6.2.4 Evaluation

We are confident implementing DOM node reuse was the right call, as it serves as a founda-
tion for our implementation of a non-keyed mode. Furthermore, our results show that reusing
DOM nodes is more performant than recreating them as we did in the PoC. We still think
that dependency tracking is a good idea and that we still expect it to improve performance. If
our goal is to perform better in the Krausest benchmarks, implementing dependency tracking
was not the most efficient decision, as the results do not show an improvement. However, if
our goal is to create a more complete compiler, we assess it to be the correct decision. This
further supports the fact that Krausest does not capture the overall performance of a frame-
work, but a narrow subset. The decision, essentially, boils down to two things — (1) do we
optimise React-compiler to perform better in Krausest, which we know does not give a full
picture of a framework’s performance, or (2) optimise React-compiler to perform better in
general use cases of a framework, which is not captured in the Krausest benchmarks.
It is clear from the results of iteration 3, that the benchmarks in Krausest benefit significantly
from implementing a performant keyed/non-keyed mode. However, it is unlikely that other
applications, such as the real-world applications used in [1] for macrobenchmarks, would
benefit as much from a non-keyed implementation as we have seen in Krausest. While real-
world applications do utilise keyed/non-keyed mode, they also use other aspects of a frame-
work, which means that an improvement in DOMExpressions only partially contributes of
the overall performance of the applications. If we had implemented our non-keyed mode
as part of iteration 1, we would likely have had more time to work on benchmarking other
aspects of a framework’s capabilities. The results would have made it clear, that there was
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limited performance to be gained, in the microbenchmarks, by focusing on optimising DOM-
Expressions further in the project. While we could have saved time by implementing non-
keyed mode in iteration 1, the specific implementation of React-compiler in iteration 1 and
2 identified issues such as CPU slowdown and scheduling in general.
We assess that we would not have identified these issues had we not proceeded the way we
did. This issue is a bottleneck, that we did not anticipate to encounter, and the knowledge
of this issue can prevent problems if work was to continue on React-compiler. Our theory
in section 4.3 was that the browser running with the slower CPU speeds was overloaded
by the number of DOM operations generated by the compiled applications. The results in
section 5.3 suggest that this is not the case, since the it3 implementation did not have these
issues. It is clear that we have issues with CPU slowdown in some of our implementations,
but it is unlikely that performing too many DOM operations is the cause. Our assessment is
that the it3 implementation has not fixed these issues, but instead that it is not affected in the
same way as it1 and it2. We need to dig deeper into the performance of the browser during
execution of the benchmarks in order to determine what causes the performance issues.
Ultimately, in terms of achieving short term results, implementing non-keyed in iteration 1
could have allowed us to shift our focus towards improving our methodology and broadening
the aspects of the frameworks we benchmark.

6.3 Future Work

In section 1.2, we presented 6 potential avenues we could pursue in this project. Ultimately,
we postponed 4 of them to future work as we wanted to focus on performance optimisations
and methodology.
In iteration 3, we decided to begin development on developer feedback, which was initially
discarded. While this is not a major part of this project, we deemed it to be a good addition
to React-compiler as good error messages save a lot of debugging time when working with
a compiler. It is easy for us, as the authors of React-compiler, to find the causes of errors,
however, that is not the case for other potential users. Nonetheless, it is a vital part of
React-compiler if it is to be used by React developers. Some compilers have cryptic error
messages, which can be a hurdle for developers when working with a compiler. Therefore,
a project working on extending React-compiler could focus on the usability of the compiler
from the perspective of other React developers.
During development of React-compiler, we experimented with a tool, which would validate
if two applications had identical HTML outputs. This was done to verify whether the out-
put of React-compiler modified the HTML of the original React application, as this should
not be the case. In section 3.3 we saw that the DOMExpression implementation we had
implemented, broke the Krausest webdriver. The problem was that the HTML output of
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React-compiler was different than the original React applications HTML output. However,
we did not find any further use for it in this project, due to the limited complexity of the
applications used, which made it easy to validate the output by hand. We argue that in the
future, a tool that validates the HTML output could be useful when testing React-compiler
on larger and more complex applications, where the HTML tree is significantly larger, mak-
ing it tedious to validate by hand. Nevertheless, as the tool was not used, we decided against
presenting it in this report.
The current state of React-compiler improves the performance of the compiled applications
in the microbenchmarks. Essentially, we have created a compiler which allows React de-
velopers to obtain more performant code without rewriting the application in another frame-
work. We argue this is a valuable contribution because, while front-end frameworks like
React and Svelte share many concepts, it still requires a time investment to become familiar
with a new framework. For instance, both React and Svelte use components to structure
applications, but use a different syntax for creating components. While React-compiler has
achieved better performance than React, it is still limited in its use-cases. For instance, we
do not support the use of external libraries nor do we support all HTML elements. The next
steps should involve extending the support of React-compiler, which is one of the branches
of our mindmap in fig. 6.1, without degrading the performance we have obtained. This
would enable React developers to use React-compiler on real world applications, where an
increase in performance could have monetary benefits. Furthermore, it also means that front-
end developers may not disregard React as their framework of choice due to its performance
compared to other frameworks such as Svelte.
Throughout this report, we have commented on the biases within our microbenchmarks. We
added the pre-generated rows implementations in order to benchmark other aspects of the
frameworks than keyed/non-keyed mode. However, we were unsuccessful in capturing what
we hoped with the pre-generated rows implementations due to the performance issues with
the compiled applications in iteration 1 and 2. A future project based on our work could
involve identifying better ways of benchmarking more functionality of a framework, which
extends what Krausest benchmarks. This project, along with [1], has shown that working on
a methodology for benchmarking front-end frameworks, more extensively than Krausest, is a
significant undertaking. A large amount of our research in [1], was dedicated to investigating
and developing a methodology for benchmarking front-end frameworks. Furthermore, we
concluded in [1] that expanding our methodology would be a project in and of itself, which
was the reason for not focusing on it in this project. Even with the extensions made in
this project, the methodology is far from complete, we still only benchmark a subset of
what a framework is capable of and the developers of Krausest encounter many issues in
maintaining the tool itself [12, 31, 32].

103





Chapter 7

Conclusion

In this project we have designed and implemented React-compiler, a compiler written in
JavaScript for compiling applications written in React, a front-end framework for the web,
into more performant JavaScript code. React-compiler enables React developers to ob-
tain better performing applications, without rewriting them in a different front-end frame-
work.
The main contribution of this project is React-compiler, which has the following fea-
tures:
• Removes the React runtime entirely, thus reducing the total file size of the compiled

application, improving load times, and reducing memory consumption.
• Replaces the React Reconciliation algorithm, by computing the dependencies of JSX

elements in React components at compile time.
• Tracks dependencies of JSX elements to generate DOM update functions, which only

updates DOM nodes whose dependencies have been modified.
The compiled applications outperform React by 28% - 1740% in 5 out of 10 benchmarks in
the DOM operation category of the Krausest benchmarking tool [12]. In the 5 benchmarks
where React-compiler is worse, it is 6% - 40% slower. Furthermore, when compiling an
application with React-compiler, the total file size of the application is reduced by up to
87% in our benchmarks.
The current state of React-compiler does have some limitations in terms of which React
features it is capable of compiling such as React hooks, portals, context. Multiple return
expressions in a React component’s render method are also not supported. Using third party
libraries such as Redux or MobX, does not work if the library requires its input to be a React
component, since the compiled application has removed React entirely.
This project is a continuation of the preliminary work in [1]. In [1] we built a proof of con-
cept compiler to investigate whether it was possible to compile React applications to vanilla
JavaScript. Additionally, we proposed a methodology for benchmarking front-end frame-
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works as there was no standard in the industry for comparison. [1] concluded that it was
possible to build a compiler for React, however, with mixed results. The goal of this project
was to expand on the proof of concept compiler to improve the performance of the com-
piled applications. During development, we encountered a number of challenges with the
performance of the compiled applications. In iteration 1, we could not run our microbench-
marks due to how we had implemented DOMExpressions. The cause for this was that the
benchmarking tool could not locate the correct elements using XPath. In iteration 2, we
fixed the XPath issue, however, the microbenchmark results did not show the performance
we had expected to achieve with the optimisations made in the first two iterations. We found
a correlation between the performance issues and the amount of CPU slowdown used in the
individual benchmarks. Disabling the CPU slowdown showed, that the compiled applica-
tions performed as expected. We theorised that the slower CPU was unable to handle the
large number of DOM operations being performed in the benchmarks, which caused the
browser to overload.
Our conclusion was that we needed to implement a scheduler for the compiled applications
at runtime to prioritise DOM operations, especially on slower CPU’s. This was based on
the performance of React, which uses a scheduler at runtime, and managed to perform bet-
ter than the compiled applications both with and without CPU slowdown. We have not
implemented a scheduler in this project, however, in iteration 3 we created a non-keyed im-
plementation that resulted in better performance than React in the majority of benchmarks.
These results did not show any performance issues related to CPU slowdown despite the
lack of a scheduler.
We argue that React-compiler shows that it is possible to improve the performance of the
proof of concept compiler, and, in some cases, exceed the performance of the original React
application.
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Appendix A

Microbenchmark Results Iteration
1
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Consistently interactive (ms)

Script bootup time (ms)

Total kilobyte weight (Kb)

Slowdown geometric mean

vanillajs-1-non-keyed
1,876.1

(1.00)
16.0

(1.00)
144.2

(1.00)
1

vanillajs-non-keyed
1,875.6

(1.00)
16.0

(1.00)
147.0

(1.02)
1.01

m
_svelte-v3.12.1-non-keyed

1,875.6
(1.00)

16.0
(1.00)

145.3
(1.01)

1
svelte-v3.5.1-non-keyed

1,876.2
(1.00)

16.0
(1.00)

145.2
(1.01)

1
vanillajs-1-keyed

1,875.7
(1.00)

16.0
(1.00)

143.6
(1.00)

1
vanillajs-keyed

1,875.9
(1.00)

16.0
(1.00)

149.5
(1.04)

1.01
svelte-v3.5.1-keyed

1,905.6
(1.02)

16.0
(1.00)

145.8
(1.01)

1.01
m

_svelte-v3.12.1-keyed
1,876.1

(1.00)
16.0

(1.00)
147.5

(1.03)
1.01

react-v16.8.6-non-keyed
2,502.3

(1.33)
16.0

(1.00)
261.1

(1.82)
1.34

m
_react-v16.11.0-non-keyed

2,652.4
(1.41)

16.0
(1.00)

271.8
(1.89)

1.39
m

_react-hooks-v16.11.0-keyed
2,553.4

(1.36)
16.0

(1.00)
270.8

(1.89)
1.37

react-hooks-v16.8.6-keyed
2,500.9

(1.33)
16.0

(1.00)
260.1

(1.81)
1.34

react-redux-hooks-v16.8.6
+

7.1.0-keyed
2,654.6

(1.42)
16.0

(1.00)
277.7

(1.93)
1.4

m
_react-redux-hooks-v16.11.0

+
7.1.0-keyed

2,702.1
(1.44)

16.0
(1.00)

288.5
(2.01)

1.43
m

_react-v16.11.0-keyed
2,653.9

(1.41)
16.0

(1.00)
271.8

(1.89)
1.39

react-v16.8.6-keyed
2,502.1

(1.33)
16.0

(1.00)
261.8

(1.82)
1.34

react-m
obX

-v16.4.1
+

5.0.3-keyed
2,851.3

(1.52)
64.0

(4.00)
313.6

(2.18)
2.37

m
_react-redux-v16.11.0

+
7.1.0-keyed

2,701.9
(1.44)

59.7
(3.73)

290.9
(2.03)

2.22
react-redux-v16.8.6

+
7.1.0-keyed

2,656.7
(1.42)

59.1
(3.69)

280.1
(1.95)

2.17
m

_react-m
obX

-v16.11.0
+

5.0.3-keyed
2,965.9

(1.58)
73.2

(4.57)
341.8

(2.38)
2.58

poc_react-v16.11.0-keyed
1,905.6

(1.02)
16.0

(1.00)
149.3

(1.04)
1.02
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Appendix B

Microbenchmark Results Iteration
2
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Create rows (ms)

Replace all rows (ms)

Partial update (ms)

Select row (ms)

Swap rows (ms)

Remove row (ms)

vanillajs-1-non-keyed
130.7

(1.14)
47.4

(1.01)
215.9

(1.08)
25.8

(1.00)
31.9

(1.09)
45.5

(1.11)
vanillajs-non-keyed

133.4
(1.16)

51.2
(1.09)

225.9
(1.13)

26.1
(1.01)

32.8
(1.12)

46.3
(1.13)

m
_svelte-v3.12.1-non-keyed

157.9
(1.37)

47.1
(1.00)

230.5
(1.15)

35.4
(1.37)

29.4
(1.00)

41.0
(1.00)

svelte-v3.5.1-non-keyed
149.8

(1.30)
47.0

(1.00)
225.4

(1.12)
37.0

(1.43)
31.2

(1.06)
41.2

(1.01)
vanillajs-1-keyed

114.9
(1.00)

126.8
(2.70)

200.4
(1.00)

26.7
(1.04)

48.8
(1.66)

45.4
(1.11)

vanillajs-keyed
120.9

(1.05)
139.9

(2.98)
265.2

(1.32)
38.8

(1.51)
50.6

(1.72)
46.9

(1.14)
svelte-v3.5.1-keyed

146.8
(1.28)

156.4
(3.33)

244.3
(1.22)

38.3
(1.48)

58.8
(2.00)

46.6
(1.14)

m
_svelte-v3.12.1-keyed

150.0
(1.31)

158.7
(3.38)

234.2
(1.17)

38.3
(1.49)

58.0
(1.98)

46.3
(1.13)

react-v16.8.6-non-keyed
191.3

(1.66)
51.0

(1.09)
333.8

(1.67)
98.5

(3.82)
37.5

(1.28)
47.6

(1.16)
m

_react-v16.11.0-non-keyed
194.1

(1.69)
50.2

(1.07)
323.5

(1.61)
106.6

(4.13)
38.6

(1.31)
48.6

(1.19)
m

_react-hooks-v16.11.0-keyed
170.1

(1.48)
146.8

(3.13)
230.6

(1.15)
44.5

(1.73)
546.6

(18.61)
46.2

(1.13)
react-hooks-v16.8.6-keyed

169.6
(1.48)

148.0
(3.15)

241.4
(1.20)

44.0
(1.71)

565.1
(19.25)

46.2
(1.13)

react-redux-hooks-v16.8.6
+

7.1.0-keyed
180.0

(1.57)
150.0

(3.19)
303.1

(1.51)
47.2

(1.83)
560.3

(19.08)
46.8

(1.14)
m

_react-redux-hooks-v16.11.0
+

7.1.0-keyed
175.5

(1.53)
149.5

(3.18)
289.3

(1.44)
51.5

(2.00)
552.5

(18.82)
46.8

(1.14)
m

_react-v16.11.0-keyed
189.2

(1.65)
162.6

(3.46)
308.6

(1.54)
91.5

(3.55)
556.8

(18.96)
47.5

(1.16)
react-v16.8.6-keyed

186.2
(1.62)

165.0
(3.51)

296.5
(1.48)

93.3
(3.62)

574.1
(19.55)

48.4
(1.18)

react-m
obX

-v16.4.1
+

5.0.3-keyed
220.2

(1.92)
171.5

(3.65)
284.3

(1.42)
72.1

(2.80)
562.3

(19.15)
49.6

(1.21)
m

_react-redux-v16.11.0
+

7.1.0-keyed
223.5

(1.95)
179.2

(3.82)
371.1

(1.85)
51.4

(1.99)
560.0

(19.07)
58.1

(1.42)
react-redux-v16.8.6

+
7.1.0-keyed

210.2
(1.83)

176.6
(3.76)

381.9
(1.91)

66.2
(2.57)

565.0
(19.24)

57.6
(1.41)

m
_react-m

obX
-v16.11.0

+
5.0.3-keyed

747.3
(6.50)

677.9
(14.43)

667.7
(3.33)

332.7
(12.90)

1,410.3
(48.03)

61.8
(1.51)

poc_react-v16.11.0-keyed
216.2

(1.88)
206.4

(4.40)
5,889.0

(29.38)
5,985.7

(232.11)
940.3

(32.02)
200.0

(4.88)
it1_react-v16.11.0-keyed

176.7
(1.54)

202.1
(4.30)

5.925,8
(29.57)

6,396.0
(248.02)

862.8
(29.35)

186.4
(4.55)

it2_react-v16.11.0-keyed
185.6

(1.62)
194.7

(4.14)
5,525.5

(27.57)
5,751.5

(223.03)
870.1

(29.63)
202.9

(4.95)

Table
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Consistently interactive (ms)

Script bootup time (ms)

Total kilobyte weight (Kb)

Slowdown geometric mean

vanillajs-1-non-keyed
1,876.1

(1.00)
16.0

(1.00)
144.2

(1.00)
1

vanillajs-non-keyed
1,875.6

(1.00)
16.0

(1.00)
147.0

(1.02)
1.01

m
_svelte-v3.12.1-non-keyed

1,875.6
(1.00)

16.0
(1.00)

145.3
(1.01)

1
svelte-v3.5.1-non-keyed

1,876.2
(1.00)

16.0
(1.00)

145.2
(1.01)

1
vanillajs-1-keyed

1,875.7
(1.00)

16.0
(1.00)

143.6
(1.00)

1
vanillajs-keyed

1,875.9
(1.00)

16.0
(1.00)

149.5
(1.04)

1.01
svelte-v3.5.1-keyed

1,905.6
(1.02)

16.0
(1.00)

145.8
(1.01)

1.01
m

_svelte-v3.12.1-keyed
1,876.1

(1.00)
16.0

(1.00)
147.5

(1.03)
1.01

react-v16.8.6-non-keyed
2,502.3

(1.33)
16.0

(1.00)
261.1

(1.82)
1.34

m
_react-v16.11.0-non-keyed

2,652.4
(1.41)

16.0
(1.00)

271.8
(1.89)

1.39
m

_react-hooks-v16.11.0-keyed
2,553.4

(1.36)
16.0

(1.00)
270.8

(1.89)
1.37

react-hooks-v16.8.6-keyed
2,500.9

(1.33)
16.0

(1.00)
260.1

(1.81)
1.34

react-redux-hooks-v16.8.6
+

7.1.0-keyed
2,654.6

(1.42)
16.0

(1.00)
277.7

(1.93)
1.4

m
_react-redux-hooks-v16.11.0

+
7.1.0-keyed

2,702.1
(1.44)

16.0
(1.00)

288.5
(2.01)

1.43
m

_react-v16.11.0-keyed
2,653.9

(1.41)
16.0

(1.00)
271.8

(1.89)
1.39

react-v16.8.6-keyed
2,502.1

(1.33)
16.0

(1.00)
261.8

(1.82)
1.34

react-m
obX

-v16.4.1
+

5.0.3-keyed
2,851.3

(1.52)
64.0

(4.00)
313.6

(2.18)
2.37

m
_react-redux-v16.11.0

+
7.1.0-keyed

2,701.9
(1.44)

59.7
(3.73)

290.9
(2.03)

2.22
react-redux-v16.8.6

+
7.1.0-keyed

2,656.7
(1.42)

59.1
(3.69)

280.1
(1.95)

2.17
m

_react-m
obX

-v16.11.0
+

5.0.3-keyed
2,965.9

(1.58)
73.2

(4.57)
341.8

(2.38)
2.58

poc_react-v16.11.0-keyed
1,905.6

(1.02)
16.0

(1.00)
149.3

(1.04)
1.02

it1_react-v16.11.0-keyed
2,032.6

(1.08)
16.0

(1.00)
154.9

(1.08)
1.05

it2_react-v16.11.0-keyed
2,030.9

(1.08)
16.0

(1.00)
154.9

(1.08)
1.05

Table
B

.3:
B

enchm
ark

results
for

Startup
m

etrics.
M

easured
in

m
illiseconds

(m
s)

and
kilobytes

(K
b)

depending
on

the
benchm

ark.
T

he
unit

is
indicated

in
the

benchm
ark

title.T
he

relative
perform

ance
can

be
seen

in
the

parenthesis,w
here

1.0
is

the
best.
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Readymemory(MBs)
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Appendix C

Microbenchmark Results Iteration
3
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Create rows (ms)

Replace all rows (ms)

Partial update (ms)

Select row (ms)

Swap rows (ms)

Remove row (ms)

vanillajs-1-non-keyed
130.7

(1.14)
47.4

(1.01)
215.9

(1.08)
25.8

(1.00)
31.9

(1.09)
45.5

(1.11)
vanillajs-non-keyed

133.4
(1.16)

51.2
(1.09)

225.9
(1.13)

26.1
(1.01)

32.8
(1.12)

46.3
(1.13)

m
_svelte-v3.12.1-non-keyed

157.9
(1.37)

47.1
(1.00)

230.5
(1.15)

35.4
(1.37)

29.4
(1.00)

41.0
(1.00)

svelte-v3.5.1-non-keyed
149.8

(1.30)
47.0

(1.00)
225.4

(1.12)
37.0

(1.43)
31.2

(1.06)
41.2

(1.01)
vanillajs-1-keyed

114.9
(1.00)

126.8
(2.70)

200.4
(1.00)

26.7
(1.04)

48.8
(1.66)

45.4
(1.11)

vanillajs-keyed
120.9

(1.05)
139.9

(2.98)
265.2

(1.32)
38.8

(1.51)
50.6

(1.72)
46.9

(1.14)
svelte-v3.5.1-keyed

146.8
(1.28)

156.4
(3.33)

244.3
(1.22)

38.3
(1.48)

58.8
(2.00)

46.6
(1.14)

m
_svelte-v3.12.1-keyed

150.0
(1.31)

158.7
(3.38)

234.2
(1.17)

38.3
(1.49)

58.0
(1.98)

46.3
(1.13)

react-v16.8.6-non-keyed
191.3

(1.66)
51.0

(1.09)
333.8

(1.67)
98.5

(3.82)
37.5

(1.28)
47.6

(1.16)
m

_react-v16.11.0-non-keyed
194.1

(1.69)
50.2

(1.07)
323.5

(1.61)
106.6

(4.13)
38.6

(1.31)
48.6

(1.19)
m

_react-hooks-v16.11.0-keyed
170.1

(1.48)
146.8

(3.13)
230.6

(1.15)
44.5

(1.73)
546.6

(18.61)
46.2

(1.13)
react-hooks-v16.8.6-keyed

169.6
(1.48)

148.0
(3.15)

241.4
(1.20)

44.0
(1.71)

565.1
(19.25)

46.2
(1.13)

react-redux-hooks-v16.8.6
+

7.1.0-keyed
180.0

(1.57)
150.0

(3.19)
303.1

(1.51)
47.2

(1.83)
560.3

(19.08)
46.8

(1.14)
m

_react-redux-hooks-v16.11.0
+

7.1.0-keyed
175.5

(1.53)
149.5

(3.18)
289.3

(1.44)
51.5

(2.00)
552.5

(18.82)
46.8

(1.14)
m

_react-v16.11.0-keyed
189.2

(1.65)
162.6

(3.46)
308.6

(1.54)
91.5

(3.55)
556.8

(18.96)
47.5

(1.16)
react-v16.8.6-keyed

186.2
(1.62)

165.0
(3.51)

296.5
(1.48)

93.3
(3.62)

574.1
(19.55)

48.4
(1.18)

react-m
obX

-v16.4.1
+

5.0.3-keyed
220.2

(1.92)
171.5

(3.65)
284.3

(1.42)
72.1

(2.80)
562.3

(19.15)
49.6

(1.21)
m

_react-redux-v16.11.0
+

7.1.0-keyed
223.5

(1.95)
179.2

(3.82)
371.1

(1.85)
51.4

(1.99)
560.0

(19.07)
58.1

(1.42)
react-redux-v16.8.6

+
7.1.0-keyed

210.2
(1.83)

176.6
(3.76)

381.9
(1.91)

66.2
(2.57)

565.0
(19.24)

57.6
(1.41)

m
_react-m

obX
-v16.11.0

+
5.0.3-keyed

747.3
(6.50)

677.9
(14.43)

667.7
(3.33)

332.7
(12.90)

1,410.3
(48.03)

61.8
(1.51)

poc_react-v16.11.0-keyed
216.2

(1.88)
206.4

(4.40)
5,889.0

(29.38)
5,985.7

(232.11)
940.3

(32.02)
200.0

(4.88)
it1_react-v16.11.0-keyed

176.7
(1.54)

202.1
(4.30)

5.925,8
(29.57)

6,396.0
(248.02)

862.8
(29.35)

186.4
(4.55)

it2_react-v16.11.0-keyed
185.6

(1.62)
194.7

(4.14)
5,525.5

(27.57)
5,751.5

(223.03)
870.1

(29.63)
202.9

(4.95)
it3_react-v16.11.0-non-keyed

145.2
(1.26)

65.1
(1.38)

314.7
(1.57)

130.5
(5.06)

31.2
(1.06)

66.7
(1.63)

Table
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results
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m
illiseconds
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s).T

he
relative

perform
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can
be
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in
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1.0
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the

best.
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Createmanyrows(ms)

Appendrows(ms)

Clearrows(ms)

Slowdowngeometricmean
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Consistently interactive (ms)

Script bootup time (ms)

Total kilobyte weight (Kb)

Slowdown geometric mean

vanillajs-1-non-keyed
1,876.1

(1.00)
16.0

(1.00)
144.2

(1.00)
1

vanillajs-non-keyed
1,875.6

(1.00)
16.0

(1.00)
147.0

(1.02)
1.01

m
_svelte-v3.12.1-non-keyed

1,875.6
(1.00)

16.0
(1.00)

145.3
(1.01)

1
svelte-v3.5.1-non-keyed

1,876.2
(1.00)

16.0
(1.00)

145.2
(1.01)

1
vanillajs-1-keyed

1,875.7
(1.00)

16.0
(1.00)

143.6
(1.00)

1
vanillajs-keyed

1,875.9
(1.00)

16.0
(1.00)

149.5
(1.04)

1.01
svelte-v3.5.1-keyed

1,905.6
(1.02)

16.0
(1.00)

145.8
(1.01)

1.01
m

_svelte-v3.12.1-keyed
1,876.1

(1.00)
16.0

(1.00)
147.5

(1.03)
1.01

react-v16.8.6-non-keyed
2,502.3

(1.33)
16.0

(1.00)
261.1

(1.82)
1.34

m
_react-v16.11.0-non-keyed

2,652.4
(1.41)

16.0
(1.00)

271.8
(1.89)

1.39
m

_react-hooks-v16.11.0-keyed
2,553.4

(1.36)
16.0

(1.00)
270.8

(1.89)
1.37

react-hooks-v16.8.6-keyed
2,500.9

(1.33)
16.0

(1.00)
260.1

(1.81)
1.34

react-redux-hooks-v16.8.6
+

7.1.0-keyed
2,654.6

(1.42)
16.0

(1.00)
277.7

(1.93)
1.4

m
_react-redux-hooks-v16.11.0

+
7.1.0-keyed

2,702.1
(1.44)

16.0
(1.00)

288.5
(2.01)

1.43
m

_react-v16.11.0-keyed
2,653.9

(1.41)
16.0

(1.00)
271.8

(1.89)
1.39

react-v16.8.6-keyed
2,502.1

(1.33)
16.0

(1.00)
261.8

(1.82)
1.34

react-m
obX

-v16.4.1
+

5.0.3-keyed
2,851.3

(1.52)
64.0

(4.00)
313.6

(2.18)
2.37

m
_react-redux-v16.11.0

+
7.1.0-keyed

2,701.9
(1.44)

59.7
(3.73)

290.9
(2.03)

2.22
react-redux-v16.8.6

+
7.1.0-keyed

2,656.7
(1.42)

59.1
(3.69)

280.1
(1.95)

2.17
m

_react-m
obX

-v16.11.0
+

5.0.3-keyed
2,965.9

(1.58)
73.2

(4.57)
341.8

(2.38)
2.58

poc_react-v16.11.0-keyed
1,905.6

(1.02)
16.0

(1.00)
149.3

(1.04)
1.02

it1_react-v16.11.0-keyed
2,032.6

(1.08)
16.0

(1.00)
154.9

(1.08)
1.05

it2_react-v16.11.0-keyed
2,030.9

(1.08)
16.0

(1.00)
154.9

(1.08)
1.05

it3_react-v16.11.0-non-keyed
2,027.6

(1.08)
16.0

(1.00)
164.7

(1.15)
1.07

Table
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Readymemory(MBs)

Runmemory(MBs)

Updateeach10throw(MBs)

Replace1krows(MBs)

Creating/Clearing1krows(MBs)

Slowdowngeometricmean
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