
Improved Learning of Joint
Distributions using Soft-Coupled

GANs

Master Thesis by

Markus Hald Juul-Nyholm
Patrick Abildgaard Alminde

Aalborg University
Technical faculty of IT and Design

IT and Design
Aalborg University

http://www.aau.dk

Title:
Improved Learning of Joint Distribu-
tions using Soft-Coupled GANs

Project Period:
Spring Semester 2020/21

Author(s):
Markus Hald Juul-Nyholm
Patrick Abildgaard Alminde

Supervisor(s):
Thomas Dyhre Nielsen

Page Numbers: 102

Date of Completion:
June 12, 2020

Abstract:

In this project we analyse the joint distribution
learning framework Coupled GAN [34] and find
that its imposed weight sharing constraint re-
stricts the generators in learning the joint distri-
bution over noisy and diverse datasets such as
MNIST2SVHN, apple2orange, and horse2zebra.
Through an experimental approach we propose
to replace the strict weight sharing constraint
with a softer coupling between generators in the
shape of four regularisation terms. We call this
type of model Soft-CoGAN (SCoGAN). These
regularisation terms are (1) a feature regulariser
which enforces generators to learn similar fea-
tures, (2) a semantic loss based on classification of
generated images such that the content of images
are of the same class, (3) cycle consistency [44]
between latent vectors and (4) a perceptual loss
which is a more advanced version of the feature
regulariser using features from a pretrained deep
classifier. Through experiments on the afore-
mentioned datasets we find that combinations of
our proposed regularisers are able to provide a
softer coupling that learns the joint distribution
on MNIST2SVHN. However our approaches only
achieve similar performance as CoGAN on the
apple2orange, horse2zebra and CelebA datasets.
We discuss the implications of this and provide
arguments for our approaches showing greater
promise on these datasets than CoGAN.

http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

Summary

This is the mandatory summary of this master thesis.

For this master thesis we have worked on applying generative adversarial net-
works to joint distribution learning. The project is an extension of our 9th semester
project in which we worked with both generative adversarial networks and vari-
ational autoencoders. This project was originally motivated mainly by our own
interest in generative models and through literature review we found two impor-
tant use cases, namely image-2-image translation and domain adaptation. Both
of which rely on joint distribution learning. Examining this subject further we
find that an array of SotA approaches [44, 16, 42, 30] express issues with an ap-
proach named Coupled GAN(CoGAN) presented in [34]. Specifically we see in [44]
that CoGAN produces unappealing images on various image-to-image translation
tasks, and [16, 30] report that the CoGAN model fails to learn the joint distribution
over the digit datasets MNIST and Street View House Numbers(SVHN).

Further more we find that only little effort has been put into explaining the issues
thoroughly or alleviating these to improve the CoGAN architecture. This may be a
missed opportunity as CoGAN has the favourable property that it does not require
paired data as needed in the Pix2Pix [19, 39] variants. Practically this means that
we do not need a dataset representing the joint distribution we are trying to learn
(dataset consisting of tuples of corresponding images in different domains), but
only require images from the marginals of the domains. This allows us to learn
the joint distribution between domains where paired data does not exist or is hard
to come by. Furthermore CoGAN is interesting as most existing approaches [44, 7,
19, 16] utilise conditional GANs [35] while CoGAN instead couple GANs together
such that each GAN learn a specific domain. We are therefore interested in whether
the CoGAN proposal is a lost cause as indicated in SoTA literature, or if the core
idea behind the proposal can be salvaged.

We therefore perform an experimental analysis of the CoGAN framework and dis-
cover two main issue of which we select one that we focus on. Namely that Co-
GANs fail to learn the joint distribution over dataset that contain a lot of noise in
the shape of e.g. inconsistent placement of content across images, varying contexts
on images and multiple objects on each image. We hypothesise that this is due to
the way CoGAN learns the joint distribution, which is via a weight constraint on
the coupled generators. In the case of a dataset as described above this constraint
works more as a restriction on each generator such that it cannot learn it specific
marginal.

iv

v

We propose to replace the weight constraint with a softer coupling and propose
4 regularisation terms to enforce this coupling which are (1) a feature regulariser
which enforces generators to learn similar features, (2) a semantic loss based on
classification of generated images such that the content of images are of the same
class, (3) cycle consistency [44] between latent vectors and (4) a perceptual loss
which is a more advanced version of the feature regulariser using features from a
pretrained deep classifier.

From experimentation with these terms we find that we are able to surpass or at
least match the performance of CoGAN on various datasets.

Contents

Preface 1

1 Introduction 2

2 Preliminary theory 4

2.1 Neural Networks . 4

2.1.1 Activation functions . 5

2.1.2 Backpropagation . 7

2.1.3 Weight initialisation . 9

2.1.4 Convolution and Transposed convolution 10

2.1.5 Pooling operations . 12

2.1.6 Batch Normalisation . 12

2.1.7 Layer Normalisation . 13

2.2 Generative Adversarial Networks . 13

2.3 Common issues in GANs . 16

2.3.1 JSD instability under an optimal discriminator 16

2.3.2 Mode collapse . 16

2.4 Wasserstein GAN . 20

2.4.1 Wasserstein distance . 20

2.4.2 Wasserstein distance as a GAN loss 22

2.5 Wasserstein GAN with gradient penalty 23

2.6 Deep Convolutional GAN . 26

2.7 Datasets . 27

vi

Contents vii

3 Problem analysis 31

3.1 Coupled Generative Adversarial Networks 31

3.2 Metric for model evaluation . 34

3.3 CoGAN analysis . 35

3.3.1 Scaling issue . 39

3.3.2 Domain issue . 40

3.4 Problem statement . 44

4 Approaches 46

4.1 Feature regularising . 46

4.2 Controlling learned features . 50

4.2.1 Semantic loss . 51

4.2.2 Cycle consistency . 53

4.2.3 Perceptual loss . 54

5 Experiments 57

5.1 MNIST2edge . 58

5.2 MNIST2SVHN . 61

5.3 CelebA . 64

5.4 CycleGAN datasets . 68

6 Implementation 71

6.1 Main . 71

6.2 Data . 72

6.3 Nets . 73

Contents viii

6.4 Losses and Penalties . 77

6.5 CoGAN_trainer . 79

6.6 SCoGAN_trainer . 81

7 Discussion 85

7.1 Domain adaptation and style transfer 85

7.2 Joint distribution learning on CelebA variants 85

7.3 Combining regulariser terms . 87

7.4 Perceptual loss . 87

7.4.1 Perceptual loss values and weight 87

7.4.2 CycleGAN dataset results . 88

7.4.3 Checker board patterns in perceptual loss results 89

7.5 Further investigation of semantic loss 90

8 Conclusion 92

A Generator and discriminator architectures 95

B Classifier architectures for semantic loss 97

C Python script for WD and JSD experiment 98

Bibliography 100

Preface

We would like to thank the ITS department at Aalborg University for providing
access to and support for the compute infrastructure used in this project (CLAAU-
DIA) consisting of an ssh accessible server connected to two shared DGX-2 nodes.
We would also like to thank the company Ambolt for providing a space in their
offices to use as our group room.

Aalborg University, June 12, 2020

Markus Hald Juul-Nyholm
<Mjuuln15@student.aau.dk>

Patrick Abildgaard Alminde
<Palmin15@student.aau.dk>

1

Chapter 1 Introduction

Generative models are often used for data generation tasks such as image, music,
speech, and text generation. In this project, we focus on image generation and
for this task the Generative Adversarial Network (GAN) [12] has in recent years
achieved state of the art performance by producing highly realistic images [25,
5]. However, in its original form, the GAN framework is only capable of learning
marginal distributions i.e. learning images from one domain and not conditional
or joint distributions. While extending GANs to learn either of these types of
distributions is interesting we choose to focus on joint distribution learning of
multi-domain images, as conditional GANs are already widely in use [44, 19, 35].

When dealing with multi-domain images we consider a joint distribution as a prob-
ability density function, that provides a density value for each occurrence of cor-
responding images. An example of a such joint distribution over two marginals
consisting of digit images is shown in Figure 1.1. Here the marginals contain non-
corresponding digit images in a specific style and the joint distribution consist of
tuples of corresponding images in the respective styles. Using the same principle
a joint distribution over facial images would consist of tuples of the same face with
different attributes.

Figure 1.1: Example of data points from two marginal distributions and their joint distribution

Joint distribution learning has some important use cases such as domain adapta-
tion and image-to-image translation. In domain adaptation, we wish to adapt a
classifier trained in one domain to another domain while maintaining high clas-
sification accuracy. Domain adaptation is useful since labelled data for training
classifiers is not always readily available and training a classifier on data from
one domain and using it to classify data from another does not always yield good
results. Learning a joint distribution over the two domains can aid domain adap-
tation models to understand the common features of the two domains.

In image-to-image translation, we wish to apply the style, e.g. the colours and tex-

2

3

tures, of a source image to the content, e.g. objects and shapes, of another image.
Image-to-image translation networks are useful as ordinary GAN architectures, fo-
cusing on novel image generation, offer little to no control over the style or content
of the generated images, besides their resemblance to the training data. Therefore
if you wanted to generate a specific image you might have to generate multiple
images from these models before randomly stumbling across the desired output.
On the contrary, GANs focused on image translation tasks are concerned with the
ability to alter an existing image through some learned transformation. Some ex-
amples of real-world cases could be satellite images to maps, which can be used
for applications such as google maps, or sketches to detailed objects, which can be
used by many kinds of design tasks to provide fast mock-ups of low fidelity ideas.
Thus an image-to-image model can be viewed as learning the joint distribution
over content(sketch) and style(detailed object) images.

While reviewing literature on state of the art methods that perform joint distribu-
tion learning we find that [44, 16, 42, 30] express issues with an approach named
Coupled GAN(CoGAN) presented in [34]. Specifically we see in [44] that CoGAN
produces unappealing images on various image-to-image translation tasks, and
[16, 30] report that the CoGAN model fails to learn the joint distribution over the
digit datasets MNIST and Street View House Numbers(SVHN).

Upon delving further into the related literature on CoGAN we find that little effort
has been put into explaining the issues thoroughly or alleviating these to improve
the CoGAN architecture. This may be a missed opportunity as CoGAN has the
favourable property that it does not require paired data as needed in the Pix2Pix
[19, 39] variants. Practically this means that we do not need a dataset represent-
ing the joint distribution we are trying to learn (dataset consisting of tuples of
corresponding images in different domains), but only require images from the
marginals of the domains. This allows us to learn the joint distribution between
domains where paired data does not exist or is hard to come by. Furthermore
CoGAN is interesting as most existing approaches [44, 7, 19, 16] utilise conditional
GANs [35] while CoGAN instead couple GANs together such that each GAN learn
a specific domain. We are therefore interested in whether the CoGAN proposal is
a lost cause as indicated in SoTA literature, or if the core idea behind the proposal
can be salvaged. We begin by examining this further through our initial problem
statement:

How does CoGAN learn the underlying relationship of image domains to repre-
sent the joint distribution between them and which problems are experienced in
this approach? Can we replicate the known issues with this architecture and un-
derstand the underlying causes in order to propose a solution to some of these
issues?

Chapter 2 Preliminary theory

Before exploring the initial problem statement we present the necessary theory
to sufficiently understand the remainder of this project. The two main areas that
we cover here are: (1) Neural Networks in general and some important architec-
tural components which we make use of, and (2) Generative Adversarial Networks
(GAN) as originally proposed in [12] which are a key component in the CoGAN ar-
chitecture. Additionally, we describe two main problems experienced with GANs
and present existing approaches which we utilise later in this project to mitigate
these problems as they arise in our own models. Finally this chapter also contains
an overview of the datasets used throughout the project.

2.1 Neural Networks

In this section we provide a theoretical explanation of neural networks and their
associated training procedure. Alongside this we describe different components
that are used in neural networks, and that we utilise in this project. No single
source has been used while writing this section. The information provided here
has been accumulated through several semesters of working with neural networks
and represents our theoretical understanding of the presented subjects. However
in previous semester we have used [11] as a source on the presented subjects.

Neural networks are function approximators, meaning that they can be used for an
array of problems in which some unknown function must be learned. Examples of
such problems could be prediction and classification tasks. Structurally a neural
network can be represented as a directed graph where the nodes(neurons) are
arranged in layers as shown on Figure 2.1. Here the neural network consists of
an input layer(blue), a single hidden layer(green), and an output layer(orange). As
shown on the figure each layer following the input layer has an associated bias
neuron with edges to all neurons in its associated layer. All edges are weighted
and updating these weights is what we consider as learning in a neural net. This is
done through a process referred to as training which utilises the backpropagation
algorithm. This process is further explained in subsection 2.1.2.

Due to this layered structure neural nets can be viewed as a chain of transformation
functions in which each layer constitutes a transformation of its input. for a neural
net f with the structure shown on Figure 2.1 the chain of transformations is written
as follows: f (x) = f (2)(f (1)(x)). Here x is the input vector containing 4 values and
each f i represents a layer. To demonstrate how data is passed through a neural

4

2.1. Neural Networks 5

Input1

Input2

Input3

Input4

Hidden1

Hidden2

Hidden3 Output1

Output2Hidden4

Hidden5

Hidden6

Bias Bias

Figure 2.1: Simplified neural network model

net we examine an arbitrary neuron. The input, zi, to neuron i is calculated as:
zi = (1 · bwi) + ∑m

j=1 Inputjwj, where m is the total amount of inputs to neuron i,
wj is the weight on the edge connecting Inputj to the neuron and bwi is the weight
on the edge connecting the bias node and the neuron i. This intermediate value zi
is then activated, ai = σ(zi), before it is passed on to the next layer. Here σ is called
an activation function.

Activation functions are used in neurons to introduce non-linearity into the neural
network. This is important since otherwise a neural network would simply be
a sequence of linear transformations on the input data, which in itself is just a
linear transformation. As such it would not be able to model complex non-linear
functions. Different variants of activation functions that we use in this project are
presented in the following subsection.

2.1.1 Activation functions

Sigmoid
The Sigmoid activation function is defined as f (x) = 1

1+e−x it scales input values to
be in the range [0,1] and is therefore often used for binary classification problems.
A main issue with the Sigmoid activation function is that it suffers from the well
known vanishing gradients problem. This problem occurs if input values are either
very large or very small leading to outputs very close to 0 (small input values) or
1 (large input values), which in turn causes the gradients to approach 0, providing

2.1. Neural Networks 6

little feedback and halting the training process. This can be seen on Figure 2.2a as
the function stagnates.

Hyperbolic Tangent
Another widely used activation function is the hyperbolic tangent (TanH) which
is a scaled version of the Sigmoid activation function and is defined as f (x) =

2
1+e−2x − 1. The TanH function scales input to be in the range [-1, 1] and as shown
on Figure 2.2b it provides steeper derivatives than Sigmoid because of its scale.
An important distinction is that TanH is a zero-centered function, while Sigmoid
is centered at 0.5, which means that it can be better at handling both negative and
positive inputs. Like Sigmoid, this function also suffers from vanishing gradients.

a) Sigmoid b) Tanh c) ReLU d) Leaky ReLU

Figure 2.2: Activation function plots

Rectified Linear Unit (ReLU)
The ReLU activation function is defined as f (x) = max(0, x). The function returns
x if x > 0 otherwise it returns 0. A negative or 0 input results in a derivative
with value of 0, which provides no feedback to the backpropagation process and
therefore neurons that experience this become passive as their learning is stopped.
This can be seen on Figure 2.2c as the function is constant for inputs below or equal
to 0. This is an issue when many of the neurons are shut off leading to the "dying
ReLU problem" where large parts of the neural networks becomes passive, leading
to a decrease in the complexity of the functions that can be approximated by the
neural net.

Leaky ReLU
Leaky ReLU [33] is defined as f (x) = max(α · x, x) and is a response to the afore-
mentioned "dying ReLU problem". The issue is solved by introducing a small pos-
itive slope, determined by α, on negative values. This ensures that negative values
does not result in a 0-derivative which happens for the ReLU activation function.
The functions plot is shown on Figure 2.2d. Another version of Leaky ReLU is
parametric ReLU (PReLU) [14] where the α value is learned during training.

2.1. Neural Networks 7

2.1.2 Backpropagation

As previously mentioned neural network training uses the concept of backpropa-
gation. This is a gradient based algorithm that utilises the fact that the negative
gradient of a function points towards where the function decreases most rapidly.
The weights and biases are therefore updated based on the negative gradient of a
loss function in an attempt to minimise the loss. This approach is also called gra-
dient descent. In order to understand how this works we describe one backward
pass of a simple neural network, shown in Figure 2.3 and afterwards we gener-
alise the procedure. The simple network consists of four layers: 1 input(blue), 2
hidden(green) and 1 output(orange), each layer has a single bias neuron(purple)
and one weight between each of these neurons. We assume that the values of the
weights and biases comes from some initialisation procedure and that one forward
pass has been performed on some input resulting in the output value displayed on
the figure. The disconnected neuron(pink) is the target label of the input data.

Hidden

W(L)

0.4

Input 0.29 0.42 1.00.47

W(L-1)W(L-2)

a(L)a(L-1)a(L-2) y

0.300.300.30

b(L)b(L-1)b(L-2)

0.4 0.4

Hidden Output

Figure 2.3: Single neuron neural network for backpropgation example

In this example we use the squared error loss function. The loss is therefore given
by: C0(. . .) = (a(L)− y)2 = (0.47− 1)2 = 0.28 where a(L) is the value after activation
of the layer L and y is the input label. a(L) is calculated through a(L) = σ(z(L)) as
previously shown. For this example we use ReLU as the activation function in
every layer.

Now we want to know how changes to the weight w(L) affects the outcome of our
loss function C0(. . .). We therefore want the ratio between changes of these two
values given by ∂C0

∂w(L) , however C0 and w(L) are not directly correlated, as can be
seen on Figure 2.4 so we use the chain rule to formulate the following ∂C0

∂w(L) =
∂z(L)

∂w(L)
∂a(L)

∂z(L)
∂C0

∂a(L) . We then calculate these ratios as the derivatives of the original func-

tions. Therefore ∂z(L)

∂w(L) = a(L−1) = 0.42 and ∂a(L)

∂z(L) = σ′(z(L)) = ReLU′(0.47) = 1

2.1. Neural Networks 8

and ∂C0
∂a(L) = 2(a(L) − y) = 2(0.47− 1) = −1.06, which when substituted in gives

us ∂C0
∂w(L) = a(L−1)σ′(z(L))2(a(L) − y) = −1.06 · 0.42 · 1 = −0.45. This is the sen-

sitivity of the loss function with respect to changes in w(L). We then carry out
the same procedure to calculate the term with respect to b(L), which results in
∂C0

∂b(L) = 1σ′(z(L))2(a(L) − y).

C0

y

a(L)z(L)

w(L)

a(L-1)

b(L)

z(L-1)

w(L-1)

a(L-2)

b(L-1)

Figure 2.4: Illustration for explaining chain rule

This can then be applied to calculate the sensitivity of the loss function in regards
to all weights and biases, with the small change that each step further from the
loss requires an extra step in the chain-rule. For example: If we were to calculate

∂C0
∂w(L−1) we need to calculate the following chain ∂C0

∂a(L−1)
∂a(L−1)

∂z(L−1)
∂z(L−1)

∂w(L−1) where the first

term must be extended as another chain to form: ∂C0
∂a(L−1) = ∂z(L)

∂a(L−1)
∂C0
∂aL

∂a(L)

∂zL
. These

chains can also be followed on Figure 2.4 once again.

Finally these calculations are used to produce the gradient vector containing the
gradient for each weight and bias in the network∇C0 =

∣∣∣ ∂C0
∂w1

∂C0
∂b1 . . . ∂C0

∂w(L)
∂C0

∂b(L)

∣∣∣.
Once the gradient vector is obtained the weights and biases of all layers are up-
dated corresponding to their specific gradient values. An example of updating the
weights of layer L is ŵ(L) = w(L) − α · ∂C0

∂w(L) where alpha is the learning rate, which
regulates the size of the update.

We now generalise these calculations to a more realistic neural network with mul-
tiple neurons in each layer. First the loss is calculated as a sum of losses for
each output neuron of the network, in our case the sum of squared error loss:
C = ∑J

j=1(a(L)
j − y)2 where J is the total amount of neurons in layer L(output

layer).

Secondly, the input to a single neuron, z(L)
j , is now dependant on multiple inputs

from the previous layer L − 1. Therefore to calculate any z(L)
j the sum of its in-

going weights times the outbound activations of the previous layers are used like

2.1. Neural Networks 9

so: z(L)
j = b(L)

j ∑K
k=1 w(L)

j,k a(L−1)
j,k . Here K is the amount of neurons in the previous

layer.

Thirdly, as any given neuron is now affected by multiple neurons in the pre-
vious layer this changes how the gradients are calculated. Here we can look
at the dual chain example from before, where we are interested in calculating

∂C0
∂w(L−1) = ∂C0

∂a(L−1)
∂a(L−1)

∂z(L−1)
∂z(L−1)

∂w(L−1) . Recall the calculation of the first term ∂C0
∂a(L−1) which

was solved through the chain-rule. Now we must take the sum of the same
chain rule, for each of the connected neurons in the next layer, so we get that:

∂C
∂a(L−1)

k

= ∑J
j=1

∂z(L)
j

∂a(L−1)
k

∂C
∂a(L)

j

∂a(L)
j

∂z(L)
j

.

Usually these network updates are performed on batches of data using mini-
batched stochastic gradient descent(SGD). In this project we use an extended ver-
sion of mini-batch SGD called Adaptive Moment Estimation (ADAM) [27]. This
method uses an adaptive learning rate meaning that given a vector wt contain-
ing the weights of a layer at timestep t each weight has its own learning rate.
This is achieved by keeping track of a decaying average of past gradients, m′t =

β1mt + (1− β1)gt, and a decaying average of past squared gradients, v′t = β2vt +

(1− β2)g2
t . Where the beta values(β1 and β2) are originally proposed to be 0.9 and

0.999 respectively [27] and gt represents the gradients of wt with regards to the loss.
These averages are initialised with zeroes and therefore tend to be biased towards
0 in the beginning of training if the beta values are close to 1 [27]. It is therefore
necessary to compute bias corrected versions of these averages: m̂t = m′t

1−βt
1

and

v̂t = v′t
1−βt

2
. The update rule for the ADAM optimiser is then w′t = wt − αm̂t√

v̂t+ε
in

which the learning rate α is adapted according to the two averages and ε is a very
small number used to avoid division by 0.

2.1.3 Weight initialisation

As mentioned neural nets require weights to be initialised before training. When
initialising it is important to control the magnitudes of weights such that they are
not disproportionate to each other. This imbalance can have a large impact on
the convergence time of the neural network. There exists several approaches to
initialise neural network weights however we mention only two, as these are the
ones used in this project. The first is simply drawing all weights from a normal
distribution with mean 0 and a constant standard deviation. This approach can
suffer from disproportional weight values when the standard deviation is high.
The second is Xavier initialisation [9], which also draws from a normal distribution
with mean 0, but for each layer it uses a different standard deviation. We use the

2.1. Neural Networks 10

Keras implementation1 of this approach in which the standard deviation for each
layer is computed as: stddev =

√
2

layerin+layerout
. Here layerin is the amount of in-

going edges and layerout is the amount of out-going edges.

2.1.4 Convolution and Transposed convolution

So far we have only considered fully connected layers i.e. layers where all neu-
rons of a layer are connected to all neurons of the subsequent layer, however an
important layer type used in neural networks when working with image data is
the convolution and transposed convolution layers. These layers capture underly-
ing feature representations, pixel dependencies and reduce complexity of neural
networks to increase training speed [28].

Convolution
A convolution operation is primarily used to scale down the size of input images
while retaining the features of the image. As such a convolution layer may reduce
a 64x64x3 RGB image to 32x32x6 with 3 additional feature representations. To
achieve this the convolution layer uses kernels that contain learnable weights. A
kernel is an n× n matrix that is passed over an m×m input matrix and aggregates
multiple pixel values into a single value according to the weights. The step size
of the kernel when passing over the input image is dictated by a stride value.
Furthermore zero-padding of the input matrix is often used to control the size of
the output. A convolution layer has a kernel for each feature representation that
the layers has to produce. Therefore a single convolution layer is able to capture
many different feature representations since all the kernels have separate learnable
weights.

As an example we see on Figure 2.5a a green 3x3 matrix(kernel) and a blue 6x6
matrix(input). With stride = 1 and padding = 1 the first step is to place the
mask as seen on Figure 2.5b and compute the first pixel of the output as the sum
of all overlapping weights(from kernel) and indices(from input data): output1 =

w5 · 1 + w6 · 1 + w7 · 0 + w8 · 0.4 + w9 · 1. Then we stride the kernel 1-step to the
right and make the same computation again and so on until we have covered the
entire input matrix. This produces a new matrix as seen on Figure 2.5c that is
passed onto the next layer of the network. This specific example preserves the
height and width dimensions of the input matrix, however a different combination
of stride and padding can reduce these dimension if needed.

1https://keras.io/api/layers/initializers/

https://keras.io/api/layers/initializers/

2.1. Neural Networks 11

1 1 0 0 0.6 0.2

0 0.4 1 1 1 0.3

0.2 0.1 0 0 1 0

0.7 1 0.9 0 0 1

0.3 0.1 0.4 1 1 1

0 0 0.8 0.4 1 0

w1 w2 w3

w4 w5 w6

w7 w8 w9

(a) 3x3 kernel matrix(Green) and a
6x6 input matrix(Blue)

1 1 0 0 0.6 0.2

0 0.4 1 1 1 0.3

0.2 0.1 0 0 1 0

0.7 1 0.9 0 0 1

0.3 0.1 0.4 1 1 1

0 0 0.8 0.4 1 0

w1 w2 w3

w4 w5 w6

w7 w8 w9

r1 r2

...

...

...

...

... rk

(b) First convolution of kernel onto
input matrix

1 1 0 0 0.6 0.2

0 0.4 1 1 1 0.3

0.2 0.1 0 0 1 0

0.7 1 0.9 0 0 1

0.3 0.1 0.4 1 1 1

0 0 0.8 0.4 1 0

w1 w2 w3

w4 w5 w6

w7 w8 w9

r1 r2

...

...

...

...

... rk

(c) Striding the kernel 1 step to left
for the next operation

Figure 2.5: Convolution process with a 3x3 kernel, stride = 1 and padding = 1

Transposed convolution
Instead of using a kernel to compress multiple values to 1-value, the transposed
convolution decompresses 1-value to multiple values instead, i.e. it upscales im-
ages. It utilises a kernel, stride and padding just like the ordinary convolution,
but the calculations are different. If we look at Figure 2.6 we have an input- and
a kernel matrix, both 3 × 3, we set stride = 1 and padding = 0. The kernel is
multiplied with the first entry of the input, which produces the lightblue matrix
on the right. The same is done for each entry of the input matrix, and all of the
resulting matrices are summed to produce the output. Its clear that this operation
is able to function with multiple kernels as well and that transposed convolutions
are capable of producing an output with a higher resolution than its input.

Input

0 1 2

0 2 0

1 1 1

1 2 1

0 3 0

1 2 1

0 0 0

0 0 0

0 0 0

1 2 1

0 3 0

1 2 1

2 4 2

0 6 0

2 4 2

0 0 0

0 0 0

0 0 0

2 4 2

0 6 0

2 4 2

0 0 0

0 0 0

0 0 0

1 2 1

0 3 0

1 2 1

1 2 1

0 3 0

1 2 1

1 2 1

0 3 0

1 2 1

Kernel

0 1 4 5 2

0 2 7 8 0

1 4 14 8 3

0 5 7 2 0

1 3 4 3 1

Output

Figure 2.6: Example of transposed convolution operation on 3× 3 input with 3× 3 kernel. padding =
0 and stride = 1

2.1. Neural Networks 12

2.1.5 Pooling operations

Another useful operation when working with image data is pooling operations.
Pooling operations are used for down scaling feature representations within a net-
work. Instead of a kernel we define a matrix window of size n× n which does not
contain any weights. The down scaling is performed by passing the window over
an m×m input matrix. Here all pixel values contained in the window will be ag-
gregated into a single pixel value in the down scaled matrix. Different aggregation
methods exists, and some commonly used are minimum, maximum or average
pooling. The window is then passed over the entire input matrix and for each pass
a new value in the down scaled matrix is created. Just like the convolutions the
window can be controlled through padding and stride. If we have a 4× 4 input
matrix and a 2× 2 window which we pass over the input matrix with a stride of 2.
The down scaled matrix will be of size 2× 2.

2.1.6 Batch Normalisation

When using neural nets it is common practice to normalise the input data into
small ranges such as [0,1], or [-1,1], or by ensuring that the data has mean = 0 and
standard deviation = 1 (also called standardisation). This is done to control the
magnitudes of input values such that large values do not by default have larger
influence on the output of the network.

Batch normalisation(BN) [18] is proposed based on the argument that normalisa-
tion should not only be performed on the input data, but also between layers in the
net as well. Batch normalisation is often used between the fully-connected/convolution
layer and the activation, such the output of the previous layer is normalised and
then activated. Introducing batch normalisation in neural nets have been shown to
result in a wider range of hyperparameter settings that lead to successful training
as well as reducing training time [18].

It is called batch normalisation because it normalises the feature representations
across each batch in mini-batched SGD. Given a batch B = [x1, ..., xm] of data sam-
ples where each xi consists of k feature representations xi = [xi,1, ..., xi,k] batch
normalisation is performed as standardisation on the feature representation j, by
computing the mean: µj =

1
m ∑m

i=1 xi,j and variance: σ2
j = 1

m ∑m
i=1(xi,j − µj)

2 over
a batch of size m. These values are then used to normalise the j’th feature repre-
sentation across the batch: x̄i,j =

xi,j−µj√
σj+ε

where ε is a small number used to avoid

division by 0. When all feature representations have been normalised they have
mean of 0 and standard deviation of 1, however we do not always want these spe-

2.2. Generative Adversarial Networks 13

cific values for mean and variance since this could limit learning. Therefore BN
allows for scaling and shifting of the normalised feature representations through
the following equation: x̂i,j = γx̄i,j + β where γ and β are learned parameters that
enable the network to decide how best to scale and shift activations in the batch
for the given batch normalisation layer.

2.1.7 Layer Normalisation

The goal of layer normalisation [4] is the same as batch normalisation, however
it is achieved by normalising each element of the batch independently from each
other rather than normalising each feature representation in relation to each cor-
responding feature representation in all elements of the batch. Layer normalisa-
tion therefore instead calculates mean and variance over feature representations
in the individual batch elements rather than across the batch. It follows a similar
procedure of calculating first the mean: µi = 1

m ∑m
j=1 xi,j and then the variance:

σ2
i = 1

m ∑m
j=1(xi,j − µi)

2. This is used to normalise every feature representation
in the i’th element in the batch x̄i = xi−µ√

σi+εi
. Similar to batch normalisation this

approach allows for scaling and shifting using two learned parameters specific to
each layer of layer normalisation: x̂i = γx̄i + β.

2.2 Generative Adversarial Networks

In this section we present a theoretical explanation of the Generative Adversarial
Network (GAN) framework, the issues that it faces, and three popular approaches
to dealing with these issues. This section contains revised parts of the GAN section
in our project report from last semester [1].

A GAN is a generative model in which two models compete with each other. A
generator which generates images that are supposed to resemble images from a
chosen dataset and a discriminator which estimates the probability that a data
sample was created by the generator or belongs to the dataset. The generator,
G, must learn to represent some empirical distribution, pdata, over a predefined
dataset of unlabelled images. We call the approximate distribution defined by the
generator, pmodel . To achieve this, a prior distribution, pz, over a latent space, is
defined. pz can be represented by any continuous distribution e.g. normal or uni-
form distributions. The generator learns to represent pdata as a mapping between
pz and the data space, which is denoted Gφ(z), where G is a neural network with
trainable parameters φ, which takes as input z ∼ pz and produces an image. A

2.2. Generative Adversarial Networks 14

second neural network is defined for the discriminator, D, which is represented
by Dθ(x), with trainable parameters θ. This net takes, as input, a sample x from
either, pmodel(generated image) or pdata(real image), and Dθ(x) describes the prob-
ability that x origins from pdata, rather than pmodel .

GAN training is in [12] presented as a minimax game between the two models with
the loss: min

G
max

D
V(D, G) = Ex∼pdata log(D(x)) + Ez∼pz log(1− D(G(z))). In this

setting, the generator is trained to minimise the log probability of the discriminator
classifying generated images as fake, and the discriminator is trained to best dis-
tinguish between generated and real images. An important observation regarding
the GAN loss is that the generator loss does not correspond with sample quality.
Usually in machine learning, a decreasing loss means that the model is getting
better, however, GANs do not adhere to this standard. This can be seen as the
full GAN loss measures only how well the models are performing in relation to
each other and the generator loss itself measures only its current ability to fool the
discriminator. Therefore, a decreasing generator loss does not imply good samples
since a poorly performing discriminator may be fooled by low-quality samples.

When using the minimax loss as the objective for training G and D, the learning
in every discriminator step, i.e. for a fixed generator, resembles an approxima-
tion of the Jensen-Shannon divergence (JSD) between pdata and pmodel defined as:
JSD(pdata||pmodel) = 1

2 KLD(pdata||pm) + KLD(pmodel ||pm) where pm = 1
2 (pdata +

pmodel) and KLD(p||q) = ∑x∈X p(x)log p(x)
q(x) for two probability distributions q and

p over the same space X [12]. The Jensen-Shannon divergence and the Kullback-
Leibler divergence (KLD) are distance measures between two probability distribu-
tions. This means that the discriminator loss provides an approximation of the dis-
tance between the two distributions and the better the discriminator is the more ac-
curate the approximation. In the case where the discriminator can perfectly discern
real and generated samples, the loss is exactly −log(4) + 2JSD(pdata||pmodel) and
thereby reaches its minimum of−log(4) when pdata = pmodel where JSD(pdata||pmodel) =

0. It is therefore desirable to update the discriminator more than once before each
generator update to better approximate the JSD and provide the best possible gra-
dients of the JSD to the generator [12].

This can be achieved through a training procedure that uses alternating gradient
descent, where k steps of discriminator updates are performed, followed by one
generator update. However, this theoretical promise of convergence is only appli-
cable if optimisation is done directly on the probability density function for pmodel ,
i.e. in function space, rather than in parameter space. Therefore, this does not hold
in practice where neural networks are optimised in parameter space and the GAN
training procedure is therefore implemented as seen on algorithm 1, where we see

2.2. Generative Adversarial Networks 15

the alternating updates on line 2-7 for the discriminator and line 8-10 for the gener-
ator. We further note that updates are made in parameter space at line 5-6 and 9-10
to parameters θ and φ. Furthermore, when the minimax loss is used in practice, it
causes vanishing gradients when the discriminator is consistently and confidently
rejecting generated samples. This is because when D(G(z)) approaches 0 (confi-
dent rejection), so will log(1− D(G(z))), thus resulting in a weak gradient from
this term [10].

Algorithm 1: Batched stochastic gradient descent for training generative
adversarial networks. m is the batch size, α is the learning rate. Any
gradient-based optimiser can be used.

1 for t = 0,1,2,...,number of epochs do
2 for k do
3 z = Sample batch of m prior samples from pz

4 x = Sample batch of m samples from pdata
5 gθ = ∇θ

1
m ∑m

i=1[log(Dθ(xi)) + log(1− Dθ(Gφ(zi)))]

6 θ = θ + α · SGD(θ, gθ)

7 end
8 z = Sample batch of m prior samples from pz

9 gφ = ∇φ
1
m ∑m

i=1 log(1− Dθ(Gφ(zi)))

10 φ = φ− α · SGD(φ, gφ)

11 end

Due to the issue with the minimax loss [12] presents a second loss called the non-
saturating loss which does not cause the gradients to vanish. This loss alters the
generators objective during training from minimising log(1 − D(G(z))) to max-
imising log(D(G(z))). This change results in GAN training no longer being a
minimax game and the generator loss becomes: max

G
LG = Ez∼pz log(D(G(z)))

and the discriminator loss, which is unchanged from the minimax loss:

max
D

LD = Ex∼pdata log(D(x)) +Ez∼pz log(1−D(G(z))). As this loss does not suffer

from vanishing gradients it tends to perform better in practice than the minimax
loss, even though, there are no theoretical guarantees of convergence.

2.3. Common issues in GANs 16

2.3 Common issues in GANs

Throughout this project, we encounter two main issues that cause GAN learning
to fail. Namely, the issue of the discriminator loss quickly moving to 0, inhibiting
further learning, and the issue of mode collapse. We describe these issues and their
suspected causes in the following subsections.

2.3.1 JSD instability under an optimal discriminator

When training the discriminator the maximum value of its loss should be−log(4)+
2JSD(pdata||pmodel), however, in practice the loss will go to 0 when continuously
training the discriminator to achieve a better JSD approximation. [2] proposes
that this occurrence is caused by the JSD between pdata and pmodel maxing out at
a value of log(2), i.e. becoming constant and inhibiting learning. This can oc-
cur when the supports of the two distributions do not overlap. In this case, there
exists an optimal discriminator that can perfectly discern real samples from gen-
erated ones [2]. As such under an optimal discriminator the GAN loss becomes
−log(4) + 2JSD(pdata||pmodel) = −log(4) + 2log(2) = 0, which does not provide a
useful gradient.

We illustrate the issue of the JSD maxing out on Figure 2.7. Here, we measure
the JSD between p (mean=0, standard deviation=0.1) and multiple identical dis-
tributions with shifted means ranging from 0 to 20 and plot the development in
the JSD. As such, the JSD plot consists of 20 distance measurements and we see
that as the distributions move apart, the distance increases until they no longer
overlap in which case it becomes constant. Examples of distributions used for this
experiments are shown as q1, q2, q3. The Python script for reproducing this result
can be found in Appendix C. As the JSD becomes constant minimisation through
gradient descent is not going to yield any useful learning and, as we have seen,
this is exactly what the discriminator training step approximates.

2.3.2 Mode collapse

The goal of a GAN is to represent a probability distribution by learning a mapping
from the distribution pz to pdata, and through this mapping, be able to generate
samples from the entire support of pdata. When the GAN fails to learn the entire
support by, e.g. mapping too many z ∼ pz to the same x ∼ pdata it is called mode
collapse and this reduces the variance of generated images greatly. We visualise
mode collapse on a 2D dataset later in this subsection and show samples from a

2.3. Common issues in GANs 17

Figure 2.7: JSD behaviour when distributions are moved apart

mode collapsed CoGAN in section 3.3. Mode collapse can occur since the GAN
loss does not contain any term that enforces learning the full distribution, instead
the loss measures how well the generator is currently fooling the discriminator.
Therefore, GAN learning can be viewed as optimising towards one specific image
that is best at fooling the discriminator, as opposed to e.g. variational autoencoders
[26], which enforces that data can be generated from the entirety of a parameterised
distribution e.g. a Gaussian distribution.

A formal explanation of mode collapse is presented in [2] wherein we see that
when using the non-saturating loss the gradient update to the generator for a fixed
and optimal discriminator, D∗, corresponds to

∇φEz∼pz log(1− D∗(Gφ(z))) = ∇φKLD(pmodel,φ||pdata)− 2JSD(pmodel,φ||pdata).

We see that the update contains a negated JSD computation between model and
data distribution meaning that this term is actually pushing the distributions fur-
ther apart. It also contains a KLD term which is the cause of the mode collapse.
The KLD is asymmetrical meaning that KLD(pmodel ||pdata) 6= KLD(pdata||pmodel).
Figure 2.8 illustrates this asymmetry and how it relates to mode collapse. On this
figure, we depict our pdata as a mixture of Gaussians that we wish pmodel to ap-
proximate using minimisation of the KLD between them. In Figure 2.8b we see
that using the KLD term present in the generator update for approximation yields
a pmodel that learns only one Guassian, this happens because this term places high
cost on generating images outside pdata (due to division by 0 when pdata(x) = 0),
thus pushing the generator towards learning one mode really well, but dropping
the others [10, 2].

2.3. Common issues in GANs 18

a) KLD(pdata||pmodel) b) KLD(pmodel ||pdata)

Figure 2.8: KLD behaviour when used for approximation

As a result, GANs are prone to experience mode collapse where the variance of
generated samples diminishes heavily, potentially to the point where the GAN
generates the same image for every distinct latent vector. This could for example
occur when the discriminator rejects the majority of generated samples, which
pushes the generator to find an area in the latent space or perhaps a single latent
vector that produces samples that are not rejected. Due to sample variance not
being enforced, the generator may then choose to map all latent points towards
this area yielding a mode collapsed GAN.

Figure 2.9: Toy dataset for mode collapse experiments

In our previous work [1] with GANs, from last semester, we conducted an experi-
ment to visualise the effect of mode collapse and we reuse those results here. This
experiment was conducted on a synthetic dataset consisting of 5100 two dimen-
sional data points arranged in a circular shape as shown on Figure 2.9. The goal

2.3. Common issues in GANs 19

Generator Activation Neurons Discriminator Activation Neurons
Input - 100 Input - 2
Fully connected Tanh 128 Fully connected Tanh 128
Fully connected Tanh 128 Fully connected Tanh 128
Fully connected Tanh 128 Fully connected Tanh 128
Output Linear 2 Output Sigmoid 1

Table 2.1: Neural net architectures used for exploring mode collapse in GANs

for the GAN is to match this distribution. Architecture details for this experiment is
shown in Table 2.1. We show in Figure 2.10 that a GAN can successfully learn this
distribution with the following hyperparameter settings: gen_lr = 0.0001, disc_lr =
0.0001, z_size = 10, k = 1, optimiser = ADAM, batch_size = 100, iterations = 2000.

Furthermore, we show in Figure 2.11 that when changing this configuration by
increasing the amount of discriminator training iterations to 5 the GAN now mode
collapses. According to the theoretical results regarding GANs, this change should
improve the training as the discriminator now provides a more accurate approx-
imation of the JSD between the two distributions, however, this is not the case
in practice. Here we see that the discriminator potentially becomes too strong in
comparison to the generator and even though at 1200 iterations the two GANs are
roughly equal in their understanding of the data distribution it later resolves to
only learn 6 out of 10 modes. This experiment further supports that the theoretical
claims of GAN convergence do not hold in practice.

0 iterations 1200 iterations 2000 iterations

Figure 2.10: Experiment with hyperparameters for GAN that do not cause mode collapse

2.4. Wasserstein GAN 20

0 iterations 1200 iterations 2000 iterations

Figure 2.11: Experiment resulting in mode collapse when over training the discriminator (k=5)

2.4 Wasserstein GAN

The Wasserstein GAN (WGAN) is proposed in [3] with the purpose of alleviat-
ing the mode collapse and instability issues observed with the regular and non-
saturating GAN losses. This is done by replacing the GAN loss with a function
that approximates the Wasserstein distance (WD), rather than the JSD between
pdata and pmodel .

The motivation being that the WD does not become constant when the two distri-
butions do not overlap, which is common, especially, in the beginning of training,
and thus provides a better gradient in those situations. To show this we revisit the
example from subsection 2.3.1 and we see on Figure 2.12 that the value of the WD
does not stagnate like that of the JSD, which is a desirable property for optimisation
through gradient descent. The WD is measured using the SciPy implementation2

and the full Python script can be found in Appendix C. The following sections
describe Wasserstein distance and how it is used as a loss function in GANs, as
well as the improved version of WGAN called WGAN-GP which we utilise in our
some of our models later in this project.

2.4.1 Wasserstein distance

The Wasserstein distance is a metric, which stems from the field of optimal trans-
port and can be used to measure the distance between two probability distribu-
tions. It is also known as the Earth Movers distance, since it is often, informally,
explained as corresponding to the minimum cost of moving and transforming one

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_
distance.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html

2.4. Wasserstein GAN 21

Figure 2.12: WD behaviour when distributions are moved further apart

pile of dirt, shaped as a distribution, to the shape of another distribution. The cost
can be quantified as the amount of dirt moved times the distance it is moved [40].

To give an example of this intuition, we consider two discrete probability distribu-
tions P and Q that each has three piles of dirt and five shovelfuls distributed in the
piles. These distributions could be defined as:

P1 = 1, P2 = 3, P3 = 1

Q1 = 2, Q2 = 1, Q3 = 2

Multiple solutions exist for transforming P into Q. Each solution is called a work
plan, as it describes one way of performing the necessary work and the Wasserstein
distance corresponds to the cheapest work plan. Here, the cheapest work plan
would be moving one shovelful of dirt from P2, to P1 and P3. However, another,
more expensive, work plan could be to move one shovelful of dirt from P1 to P3

and then move two shovelfuls from P2 to P1. In the discrete case, the Wasserstein
distance is calculated by first finding the cost for each pile and then summing the
absolute value of those costs:

costi = costi−1 + Pi −Qi

WDdiscrete =
m

∑
j
|costj|

2.4. Wasserstein GAN 22

Here m is the total amount of piles. For this example, the cheapest cost is therefore:

cost1 = 0 + 1− 2 = −1

cost2 = cost1 + 3− 1 = 1

cost3 = cost2 + 1− 2 = 0

WDdiscrete =
3

∑
j
|costj| = 2

We can extend the discrete example such the P and Q are now continuous distri-
butions in which case the Wasserstein distance is defined as

WD(P, Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ||x − y||. Here γ(x, y) represents some work plan

from a set of potential plans. In the continuous case, a work plan is a joint distri-
bution with marginals P and Q and Π(P, Q) is the set of all joint distributions. In
this sense, γ(x, y) describes how much mass must be moved from x to y, in order
to transform P to Q. inf is short for infimum, which represents the greatest lower
bound (minimum) for a set and is used for selecting the plan with the lowest cost.

2.4.2 Wasserstein distance as a GAN loss

The Wasserstein distance cannot be directly used as a loss, since computing the infi-
mum over all possible work plans is often intractable in practice as it requires us to
compute all possible joint distributions in Π(P, Q). Therefore, [3] proposes to use
a reformulation of the Wasserstein distance found by applying the Kantorovich-
Rubinstein duality and is defined as WD(P, Q) = sup

f
Ex∼P[f (x)] − Ex∼Q[f (x)].

Exactly how this is done, is described in chapter 6 of [38].

Here, the supremum is over all 1-Lipschitz functions, f : X → R, where in
our case X is the space of all images. In order to calculate the Wasserstein dis-
tance, we have to find the function f that maximises the expression. A real
valued function g : R → R is K-Lipschitz if there is a constant K ≥ 0 where
|g(x1)− g(x2)| = K · |x1 − x2| for any x1, x2 ∈ R. Intuitively for a function to be K-
Lipschitz means that there is some limit K on the slope of the function. Assuming
that f origins from a family of K-Lipschitz functions parameterised by θ, { fθ}θ∈Θ,
where Θ is a compact space, we can estimate f by solving the following maximi-
sation problem: max

θ
Ex∼P[fθ(x)] − Ex∼Q[fθ(G(x))]. Finding θ such that fθ = f

yields an approximation of the Wasserstein distance between the two distributions
up to a multiplicative constant, namely K ·WD(P, Q).

2.5. Wasserstein GAN with gradient penalty 23

This is employed as a GAN loss:

min
G

max
D

VWGAN(G, D) = Ex∼pdata [D(x)]−Ez∼pz [D(G(z))]. Here we solve the max-

imisation problem to estimate f using the discriminative model, which, as a result,
has to be K-Lipschitz. As f is a real valued function the discriminator is no longer
trained to discriminate. Instead, it outputs a value in the range [−∞, ∞] interpreted
as the realness of a given image, rather than a classification. The implications of
this, in a practical implementation, is simply that the last Sigmoid layer used for
binary classification is removed. As a result, the discriminator is renamed the critic
in [3], but for simplicity we stick to the term discriminator in the remainder of
this report, as well as, use D to represent it. To ensure that the discriminator is K-
Lipschitz [3] proposes to clip the weights θ of the discriminator after every update
to ensure that they lie in a compact space. In [3], they propose to use the clipping
range [−0.01, 0.01]. Training is performed in the same way as shown in algorithm 1
using alternating gradient descent with weight clipping after each discriminator
update. When training in practice, [3] proposes to update the discriminator five
times for each generator update.

Seeing as the discriminators loss approximates the Wasserstein distance it is in our
interest to update the discriminator multiple times to improve this approximation.
Opposed to the minimax and non-saturating losses that fail to provide good gra-
dients when the discriminator is overtrained, the WGAN loss benefits from this,
and due to the continuous nature of this distance measure provide better gradients
for the generator with a better approximation. An additional improvement that
WGAN brings to the GAN framework is that the loss now correlates with sample
quality, which is not the case for the minimax and non-saturating losses. This is
an important contribution as it enables another, although not perfect, method of
evaluating trained GANs, rather than only visual inspection of generated samples.
Furthermore, WGANs alleviates the mode collapse issue as the formal description
presented in subsection 2.3.2 is no longer true for WGAN loss.

2.5 Wasserstein GAN with gradient penalty

While the WGAN loss does provide improvements to the GAN framework, both
theoretical and in practice, the authors acknowledge that: "Weight clipping is a
clearly terrible way of enforcing a Lipschitz constraint" [3]. This approach inhibits
learning and limits the discriminators capability of modelling more complex func-
tions [3, 13]. Furthermore, the optimal 1-Lipschitz function to maximise the WGAN
loss has gradient norm of 1 and when training a WGAN the gradient norms tend to
either explode or vanish depending on the clipping range [13]. In cases where the

2.5. Wasserstein GAN with gradient penalty 24

clipping parameter is not well tuned, WGAN will not achieve an accurate approx-
imation of the Wasserstein distance and therefore not provide accurate gradients
for the generator to follow. It is therefore desirable to find another way of enforcing
the Lipschitz constraint.

With this motivation, [13] proposes to add a regularisation term to the WGAN loss
that penalises the gradients of the discriminator with respect to its input whenever
the gradient norm strays from 1. As it is intractable to compute for the gradi-
ents for every possible real and fake input and measure the gradient norm they
utilise the fact that the discriminator must also have a gradient norm equal to 1 for
any interpolated sample x̂ = interpolate(x, y, α) = αx + (1− α)y where x ∼ pdata,
y ∼ pmodel and α is drawn from a uniform distribution with range [0,1]. These in-
terpolations lie on straight lines between real and generated samples and α decides
the exact position along the line. Figure 2.13 illustrates this idea of interpolating
images along a line.

PmodelPdata

Interpolated samples

Figure 2.13: Interpolated samples along straight lines. The position of the green interpolations are
decided by α

As such, this regularisation term penalises the gradient norm at randomly sampled
interpolations x̂. Equation 2.1 shows the WGAN loss with the gradient penalty
term added. Here, λ is a hyperparameter that we must set and its purpose is
to scale the effect of the penalty. [13] recommends λ = 10. The L2 norm of the
discriminators gradients with respect to its input is represented as ||∇x̂ f (x̂)||2 .

min
G

max
D

VWGAN−GP(G, D) = VWGAN(G, D) + λEx∼pdata,y∼pmodel (||∇x̂ f (x̂)||2 − 1)2

(2.1)

where x̂ = interpolate(x, y, α)

2.5. Wasserstein GAN with gradient penalty 25

In practice there are two key differences when using the WGAN-GP approach. The
first is that batch normalisation should no longer be used in the discriminator. This
is because the regularisation term penalises the gradient norm with respect to each
independent input and batch normalisation creates correlations between samples
in batches. They instead recommend using layer normalisation as this approach
does not create such correlations. Secondly, they propose a new set of hyperpa-
rameter settings for stable training which are as follows: ADAM parameters beta1
and beta2 should be set to 0 and 0.9 respectively and the learning rate should be
set to 0.0001.

This approach has been empirically shown to retain the improvements made by
WGAN such as meaningful loss and reduced mode collapse. To display these
properties gained by introducing this loss in GAN training we reuse the example
regarding mode collapse shown in subsection 2.3.2. We train the mode collapsed
configuration now using the WGAN-GP loss and its recommended hyperparam-
eter settings and display results in Figure 2.14. Here we see that WGAN-GP sta-
bilises training and after 3000 iterations the model has learned the shape of the
distribution, however, it is less precise in the modes it has learned. Furthermore
Figure 2.15 shows how the discriminator loss, i.e. the Wasserstein estimate, de-
creases as the model learns to represent the correct distribution.

0 iterations 2000 iterations 3000 iterations

Figure 2.14: Experiment showing WGAN-GP alleviating mode collapse on GAN configuration that
collapses with non-saturating loss

2.6. Deep Convolutional GAN 26

Figure 2.15: Discriminator loss (WD estimate) for WGAN-GP training

2.6 Deep Convolutional GAN

When GANs were first proposed in 2014, the generator and discriminator models
were both implemented as neural nets that consisted solely of fully connected lay-
ers and pooling layers. However, in 2015, this changed when Deep Convolutional
GANs (DCGANs) were proposed in [37]. DCGANs are based on knowledge about
model design in computer vision tasks and describes how convolutional layers can
be incorporated in GAN architectures to stabilise training and achieve superior
image quality. This improved performance using convolutional architectures is
shown empirically, rather than based on mathematical proofs. [37] presents 5 rules
for building DCGAN architectures which are as follows:

1. Replace pooling layers with strided convolutions in the discriminator and
transpose convolutions in the generator.

2. Use batch normalisation in both generator and discriminator.

3. Remove fully connected hidden layers for deeper architectures.

4. Use ReLU activations in the generator for all layers except the output, which
uses Tanh.

5. Use LeakyReLU activations in all layers in the discriminator.

2.7. Datasets 27

By training models that follow these rules for architecture design on multiple
datasets they found that the adaptive learning rate optimiser ADAM [27] with
the following hyperparameter settings performs the best: β1 = 0.5 and β2 = 0.999,
the learning rate should be set to 0.0002, LeakyReLU leak should be set to 0.2, all
weights should be initialised from a normal distribution with standard deviation
of 0.2 and mean 0, batch size should be set to 128 and input images must be nor-
malised to [-1,1], to fit the Tanh activation. DCGANs have, since their publication,
been adopted as the default pattern for designing GAN architectures and have
been used as baselines in many branches of GAN research such as [3, 13, 22, 32, 6].

2.7 Datasets

This section provides an overview of the datasets used in this project: MNIST,
MNISTedge, MNISTrotate, Street View House Numbers (SVHN), CelebA, apple2orange
and horse2zebra.

MNIST

MNIST is a well known and often used dataset in the field of machine learning. It
consists of 60.000, 28x28 images of handwritten white digits(1-9) on a black back-
ground. In this project, whenever we use MNIST we scale the images to 32x32. It
was proposed in [41] as a downloadable dataset, but has since been made avail-
able through Tensorflow Datasets for easier access which is what we have used.
Figure 2.16 shows examples of MNIST images.

Figure 2.16: Randomly selected samples from the MNIST dataset.

MNISTedge and negative

These two datasets are transformations of the MNIST dataset. MNISTnegative is
created by negating colours of original MNIST images as shown on Figure 2.17.
MNISTedge can be created by using the dilate function in the python library,

2.7. Datasets 28

OpenCV and subtracting the original MNIST image from the dilated version. Re-
sulting images are shown on Figure 2.18. These datasets are used in conjunction
with the MNIST dataset for joint distribution learning in which MNIST represents
one domain and edge/negative represents the other. We therefore select 50% of the
MNIST dataset and convert it into either edge/rotate and thus the size of MNIST
and edge/negative is 30.000 images each.

Figure 2.17: Randomly selected samples from MNISTnegative.

Figure 2.18: Randomly selected samples from MNISTedge.

Street View House Numbers(SVHN)

This dataset consists of 73.257, 32x32 real-life images of house numbers(0-9). While
this dataset is much alike MNIST in image size and main content SVHN images are
generally noisier and blurrier. Some images may also contain more than one digit
where the centred digit is what the image is labelled as. Examples of SVHN im-
ages can be seen on Figure 2.19 in which the images from left to right are labelled
as: 1,1,0,3 even though three of the images contain multiple numbers. This dataset
is available for download through http://ufldl.stanford.edu/housenumbers/,
however we acquired it through the Tensorflow Datasets API. We use a pruned
version of this dataset where we remove a subset of blurry images such as the
rightmost one on Figure 2.19. This is done to improve quality of generated images.
We pruned the dataset by training a classifier(details found in chapter 5) and re-
moving all samples where the highest prediction confidence is below or equal to
40%. This resulted in a dataset of size 70.262 with fewer blurry images.

http://ufldl.stanford.edu/housenumbers/

2.7. Datasets 29

Figure 2.19: Randomly selected samples from the SVHN dataset.

CelebA

CelebA consists of 202.599 face images of celebrities and was first proposed in [31].
Each image is annotated with 40 binary attributes, some examples of attributes are:
big_nose, brown_hair, and goatee. Samples are shown on Figure 2.20. Through the
attributes the dataset can be split into multiple domains e.g. one domain would
only contain images with blond hair and the second domain would only contain
images with brown hair. The dataset is made available for download through http:
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html which is what we used to collect
it. All images are of size 178x218 and unless otherwise stated when we use the
CelebA dataset we scale the images to 128x128. In this project we run experiments
on three different subsets of this dataset namely (1) faces with and without glasses
called CelebEyeglasses, (2) faces with blond and non blond hair called CelebBlond
and (3) faces that are smiling and not smiling called CelebSmiling. The size of each
dataset is shown in Table 2.2.

Attribute CelebSmiling CelebBlond CelebEyeglasses
With attribute 97,669 29,983 13,193
Without attribute 104,930 172,616 189,406

Table 2.2: Overview of CelebA dataset sizes

Figure 2.20: Randomly selected samples from the CelebA dataset

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

2.7. Datasets 30

CycleGAN datasets

In 2017 the CycleGAN [44] paper was released and it introduced an array of 2-
domain datasets, which are ideal for the image-to-image translation tasks that Cy-
cleGAN was solving. CycleGAN datasets contain fewer images than the other
datasets presented in this chapter and all the images are of size 256x256. We have
used two of their proposed datasets, namely apple2orange and horse2zebra. Ap-
ple2orange consists of 995 images of apples and 1019 images of oranges in differ-
ent noisy contexts. Examples are shown on Figure 2.21. The horse2zebra dataset
consists of 1067 horse images and 1334 zebra images, also in noisy contexts. Exam-
ples are shown on Figure 2.22. All CycleGAN datasets are available through the
Tensorflow Datasets API which is what we have used to collect them.

Figure 2.21: Randomly selected samples from the Apple2Orange dataset

Figure 2.22: Randomly selected samples from the Horse2Zebra dataset

Chapter 3 Problem analysis

In this chapter, we describe and experimentally analyse Coupled Generative Ad-
versarial Nets (CoGAN) [34]. CoGAN is an extension of the GAN framework
which enables GANs to represent joint probability distributions and not just marginal
distributions. With our own implementation, we reproduce some of the results
presented in the original paper and show two main issues that this approach suf-
fers from. Furthermore we describe the evaluation metric we use to quantify the
performance of trained models since we use it as part of the experimental analysis.

3.1 Coupled Generative Adversarial Networks

The main feat of CoGAN is that this approach manages to learn a joint distribu-
tion over multiple image domains using only the marginal distributions from each
domain, rather than the joint distribution itself [34]. This is, especially, attractive
since it can be difficult to construct datasets consisting of pairs of corresponding
images to represent the joint distribution. Furthermore, CoGANs have been shown
to be applicable within the fields of image-2-image translation and unsupervised
domain adaptation [34].

CoGAN consists of multiple GANs coupled together by a weight sharing constraint
between the generators and discriminators respectively. Specifically, it requires one
GAN per domain in the joint distribution we wish to learn. As such, CoGANs
can be scaled up to learn k domains by coupling k GANs together. However, in
this project we focus mainly on the case of learning a joint distribution over two
domains.

CoGANs rely on a core idea that specific layers in neural networks decode specific
levels of detail in images. Thereby when the weights of specific layers in the GAN
that decodes high-level features, i.e. the general shapes and larger features, are
shared between models, these are forced to perform this decoding in the same way
and obtain a shared high-level image representation. By not weight sharing the
layers that decode low-level features each GAN can style this shared representation
to its specific domain. In the case of facial images, the high-level features may be
the shape of the face and placement of eyes, ears, mouth and so on. While the
low-level features may be eye or hair colour, or facial expression.

Weights are shared between generators and discriminators respectively as shown
on Figure 3.1. For the generators the weight sharing can be written, in the case

31

3.1. Coupled Generative Adversarial Networks 32

of learning a joint distribution over two domains, as follows: Let G1 and G2 be
the two generators of GAN1 and GAN2. Both GANs are implemented as neural
networks and can therefore be written as a sequence of transformation on an input
vector z ∼ pz as seen below. Here, G(i)

1 and G(i)
1 represents the i’th layer in the

neural net and m1 and m2 are the total number of layers.

G1(z) = G(m1)
1 (G(m1−1)

1 (...(G(2)
1 (G(1)

1 (z))), G2(z) = G(m2)
2 (G(m2−1)

2 (...(G(2)
2 (G(1)

2 (z)))

In the generators the first layers decode high-level features [34] and later layers
decode low-level features. Therefore, the weight sharing between the generators
occur in the first layers such that φ

G(i)
1

= φ
G(i)

2
for i = 1, 2, 3, ..., k where i represents

the total amount of shared layers and φ
G(i)

1
and φ

G(i)
2

are the trainable weights of

layer i in each model.

The discriminators are represented in a similar manner as shown below. Here, x1 ∼
pd1 and x2 ∼ pd2 are images from the two domains that we wish to learn a joint
distribution over. n1 and n2 are the total amount of layers in either discriminator
D1 and D2.

D1(x1) = D(n1)
1 (D(n1−1)

1 (...(D(2)
1 (D(1)

1 (x1))), D2(x2) = D(n2)
2 (D(n2−1)

2 (...(D(2)
2 (D(1)

2 (x2)))

In discriminative models, the last layers are responsible for encoding high-level
features and therefore the discriminators share the weights of those layers such
that: θ

D(n1−j)
1

= θ
D(n2−j)

2
for j = 0, 1, 2, ..., l− 1, where l represents the total amount of

shared layers and θ
D(j)

1
and θ

D(j)
2

are the trainable weights of layer i in each model.

It is possible for the neural nets to be of different sizes, m1 6= m2 and n1 6=
n2, in this case we can only share layers corresponding to minimum(m1, m2) and
minimum(n1, n2). Additionally, layers that share weights have to share structure as
well i.e. if we wish to share weights between layer 1 of G1 and G2 they must be the
same type of layer and have the same amount of weights. This also applies to the
discriminators.

Figure 3.1 shows how the two GANs are employed in the CoGAN architecture.
Both GANs are given the same input vector, z ∼ pz, as in regular GAN training,
which is passed into the shared layers of each generator to produce the shared
representation of the generated image. This is then passed to the unshared layers

3.1. Coupled Generative Adversarial Networks 33

to add details to each image, thus styling them to the specific domain. In the figure,
we use MNIST and MNISTedge as the two domains. The generated numbers from
either generator must have the same high-level features, i.e. the number itself
and different low-level features, i.e. either full line numbers of edge versions. As
with regular GAN training, the discriminator is passed either a generated or a real
image and in the case of CoGAN the real images passed to both discriminators do
not necessarily need to have the same high-level features. The discriminators then
evaluate the image they receive as either real or fake.

Shared
layers of
D1 and

D2

Unshared
layers of

G1

Shared
layers of
G1 and

G2

Unshared
layers of

D1

Unshared
layers of

G2

Unshared
layers of

D2

x1=G1(z)

x2=G2(z)

z~pz

D1(x1)

D2(x2)

GAN1

GAN2

Dataset
domain1

Dataset
domain2

x2~pd2

x1~pd1

Figure 3.1: CoGAN architecture for joint distribution with two domains

min
G1,G2

max
D1,D2

VCoGAN(G1, G2, D1, D2) = Ex1∼pdata1 log(D1(x1))−Ez∼pz log(1− D1(G1(z)))

+Ex2∼pdata2 log(D2(x2))−Ez∼pz log(1− D2(G2(z))
(3.1)

Training in the CoGAN framework is very similar to regular GAN training in that
it is performed using alternating gradient descent. The main difference is that
we have to account for the weight sharing and ensure that updates performed
on shared layers are the same between the two models. We show how this can
be implemented using Tensorflow and Keras in chapter 6. The loss function for
CoGANs, shown in Equation 3.1, is therefore also quite similar to that of regular
GANs. Here, we see that it has simply been expanded to include the second GAN.
With the important detail that VCoGAN(D1, D2, G1, G2) is subject to the weight shar-
ing constraints on the generators and discriminators, which were defined earlier.

3.2. Metric for model evaluation 34

Intuitively, the generator and discriminators of CoGAN perform the same objec-
tive as in regular GAN training i.e. the generator for one domain attempts to best
fit its given data distribution and the discriminator attempts to discern between
generated and real images. In the case of CoGAN, the training can now be viewed
as teams of generators and discriminators that collaborate through weight sharing
to best complete their respective objectives. Note that, with this combined loss it
is still possible to employ the non-saturating loss or the Wasserstein loss as well as
add penalties such as the gradient penalty as previously described. As an example
of this, Equation 3.2 shows the CoGAN loss function using the Wasserstein loss.

min
G1,G2

max
D1,D2

VWCoGAN(G1, G2, D1, D2) = Ex1∼pdata1 D1(x1)−Ez∼pz D1(G1(z))

+Ex2∼pdata2 D2(x2)−Ez∼pz D2(G2(z)
(3.2)

3.2 Metric for model evaluation

In order objectively evaluate model performance we are interested in a quantitative
metric which measures similarity between images. However quantitative metrics
for evaluating image generation models is currently a subject that is under devel-
opment. Metrics currently used in literature [15, 29, 43] are based on comparison
between feature representations, extracted from images. These metrics require
sampling a large amount of images in an attempt to evaluate samples from the
entire support of the model distribution. Relying on random sampling to cover
the entire distribution causes uncertainty in how accurate the estimated score is,
however we find no other approaches.

When analysing the CoGAN framework we therefore use a combination of visual
inspection and Learned Perceptual Image Patch Similarity(LPIPS) distances [43] to
assess and discuss the capabilities and issues of the framework. LPIPS distance is a
measurement for perceptual similarity between images that is aimed at simulating
human visual perception. This means that LPIPS assigns a low score to an image
pair if they perceptually resemble each other. This metric measures the difference
in feature maps extracted by a pretrained classifier on two input images. If the
difference between the feature maps is small the similarity of images is higher,
which means that if an image pair has LPIPS distance of 0, they are perceptually
very similar. We choose to use this metric, since it has been used by other papers
within the field of style transfer [17, 8], and it provides a measurement on the
similarity between images that is more complex than per-pixel difference.

3.3. CoGAN analysis 35

LPIPS distance is measured as d(x, x0) = ∑l
1

HlWl
∑h,w ||wl � (δ(x)l

hw − φ(x0)l
0hw)||22

where x and x0 are input images, l is the number of layers extracted by δ, which is a
pretrained classifier(VGG, AlexNet, or SqueezeNet) used as a feature extractor. Hl
and Wl are height and width dimension of feature map l. wl is a scaling vector, � is
the pairwise multiplication operator and δ(x)l

hw is the channel value of feature map
l extracted by δ with input x. Lastly, it is noted that δ also normalises the feature
maps. All reported LPIPS distances are calculated through a cloned version of the
official implementation1. We use the 0.1 version of the official implementation with
all default settings.

3.3 CoGAN analysis

In this section, we present an experimental analysis of the CoGAN framework. To
perform this analysis, we implement a training framework in Python using Ten-
sorflow that allows us to easily define model architectures and train CoGANs with
different hyperparameter settings. Details of our implementation of the training
framework can be found in chapter 6. We train CoGANs on a variety of two-
domain problems.

In these experiments, we use architectures identical to those used in the official
Github implementation of CoGAN2, and presented in Table 3.1 and 3.2. The Batch-
Norm and Activation columns describe whether batch normalisation is applied
after the given layer in a row and which activation function is then applied. If a
layer is followed by batch normalisation, it is always applied before the activation
function. A ’-’ in the activation column means that the identity function is applied
as the activation. To avoid cluttering the following chapters and sections with large
tables of all used architectures, every time there is a reference to an architecture
it can be found in Appendix A. We also use the same optimiser, hyperparameter
settings (ADAM optimiser with DCGAN settings), and training time of 25000 it-
erations 3 In all experiments conducted in this project, we scale pixel values from
[0,255] to [-1,1].

Resulting samples of the experiments on the MNIST variants are shown in Fig-
ure 3.2, where each image in the top half is generated with separate latent vectors
and belong to one domain and the bottom half is the corresponding image in the

1https://github.com/richzhang/PerceptualSimilarity
2https://github.com/mingyuliutw/CoGAN
3However, we note that during CoGAN training on the MNIST variants, we already see similar

features and whole digits around 2500-4000 iterations in. This is also shown in https://github.
com/palminde/P10Project

https://github.com/richzhang/PerceptualSimilarity
https://github.com/mingyuliutw/CoGAN
https://github.com/palminde/P10Project
https://github.com/palminde/P10Project

3.3. CoGAN analysis 36

Generator Shape Kernel Stride BatchNorm Activation Shared
Input 100 - - - - yes

Fully Connected 16384 - - - - yes
Reshape 4x4x1024 - - - - yes
ConvTranspose 4x4x1024 4 1 yes PRelu(0.25) yes
ConvTranspose 4x4x512 3 2 yes PRelu(0.25) yes
ConvTranspose 8x8x256 3 2 yes PRelu(0.25) yes
ConvTranspose 16x16x128 3 2 yes PRelu(0.25) yes
ConvTranspose 32x32x3 6 1 yes PRelu(0.25) no

Table 3.1: CoGAN generator architecture for 32x32 image experiments

Discriminator Shape Kernel Stride BatchNorm Activation Shared
Input 32x32x3 - - - - no
Conv 32x32x20 5 1 - - no
MaxPool 16x16x20 2 2 - - no
Conv 16x16x50 5 1 - - yes
MaxPool 8x8x50 2 2 - - yes
Fully Connected 500 - - - PRelu(0.25) yes
Dropout(0.5) 500 - - - - yes
Fully Connected 1 - - - Sigmoid yes

Table 3.2: CoGAN discriminator architecture for 32x32 image experiments

second domain. In this way, the first image in row one is generated from the same
latent vector as the first image in row three, and the second image in row one
corresponds to the second image in row three and so on. When we display image
samples for models that learn joint distributions they will always be presented fol-
lowing this pattern. We see that our implementation of CoGAN can successfully
learn joint distributions over the digit datasets and is capable of producing pairs
of corresponding images from both domains.

We did not manage to fully reproduce the results on the CelebA dataset. Using the
architecture and hyperparameter settings described in the paper yielded results
shown on Figure 3.3a. These samples do, clearly, not match those presented in the
CoGAN paper and after thoroughly inspecting their Caffe [20] implementation, a
library with which we are unfamiliar, we found several inconsistencies between
their paper and the implementation. Firstly, the architectures used in their code
did not fully match those shown in the paper differing in the first layer of the
discriminator and with several dropout layers of the discriminator being left out
completely. Additionally, they use L2 weight decay, which adds the following
regularisation term to the loss: c ∑I

i=0 w2
i . This term consists of the sum of squared

3.3. CoGAN analysis 37

a) MNIST2edge b) MNIST2negative

Figure 3.2: Reproduced CoGAN results with our own implementation

weights multiplied by some constant, in this case c = 0.0001. I is equal to the
total number of weights in the model. L2 weight decay continuously squeezes the
weights with the intuition of diminishing weight values that are high due to noise
in the data. These will not, as easily, rise again as high weight values that identify
actual features of the data.

Correcting these inconsistencies in our implementation improved the sharpness
of the generated samples to a point where they are visually comparable to those
presented in the CoGAN paper [34], as shown on Figure 3.3b. On these images, the
top half is the domain with no attribute and the bottom half is the domain with the
attribute. Although we see similar high-level features between the two domains we
do not, as in the CoGAN paper, see the difference in low-level features that we aim
for with one generator producing faces with glasses and one without. Additionally,
we have trained on CelebSmiling and CelebBlond, shown on Figure 3.4, and see the
same tendency of sharp corresponding images, but no distinct feature is learned
on either dataset. The updated architecture used for the CelebA experiments can
be found in Table A.1 and Table A.2.

Since we are able to reproduce some results as well as achieve comparable im-
age quality, we do not believe that the error origins from our implementation of
CoGAN training, but rather from incomplete architecture or hyperparameter in-
formation about their CelebA experiments provided by the CoGAN paper and
potentially us not being able to extract it from their implementation. All further
experiments with CoGANs are therefore performed using our own implementa-
tion. We discuss this further in section 7.2.

Beyond our reproduction issues, we identify two underlying problems with the
CoGAN framework, which are based on an important observation about its learn-

3.3. CoGAN analysis 38

a) CelebEyeglasses b) CelebEyeglasses

Figure 3.3: Failed reproduction CoGAN results with our own implementation. a) is achieved using
the architecture described in the CoGAN paper. b) is achieved using the architecture found in their
Caffe implementation. Samples are taken after 35k iterations of training

a) CelebSmiling b) CelebBlond

Figure 3.4: Failed reproduction of CoGAN results with our own updated implementation.

ing capabilities. Namely, that to be able to learn a joint distribution over two
domains, the domains are required to share high-level features [34]. While Co-
GAN performs reasonably well on the MNIST variants and CelebA, we show in
the following sections that when the images become too large (256x256) or when
the domains become too ’different’ in either the content or the style of images Co-
GANs fail to learn anything meaningful. We name these issues the scaling issue
and the domain issue.

3.3. CoGAN analysis 39

3.3.1 Scaling issue

We train CoGANs on the horse2zebra and apple2orange datasets in order to eval-
uate the models performance on larger image sizes. For these experiments, we
use the 128x128 architectures, but add an extra transposed convolution layer to
the generators in order to generate 256x256 images. The architectures are shown
in Table A.3 and A.4. The models are trained for 35k iterations using DCGAN
hyperparameters. Samples from each model are shown on Figure 3.5 in which we
see that CoGAN manages to produce a coupling between generated images in dif-
ferent domains, however quality of the images is very low and it is clear that the
images are not generated as corresponding pairs.

An example of the learned coupling is seen on Figure 3.5a, where similar horse
images maps to similar zebra images. On the horse2zebra dataset, it does not seem
like the model manages to learn any correct shapes, although some of the zebra and
horse styles are visible. As this can be difficult to visually assess, we calculate the
average LPIPS distance between generated and real samples as shown in Table 3.3.
Here, each generated and real set consists of 1000 samples, since we are limited
by the small size of the real horse2zebra dataset. From these distance measures,
we see that each generator is generating images that are more similar to their
respective targets, which supports our visual assessment. The same observations
can be seen for the apple2orange where samples are shown on Figure 3.5b. Here
we also calculate LPIPS distance, seen in Table 3.4, and again the same pattern
supports the visual inspection of the samples.

Gen./Real Real horses Real zebras
Gen. horses 0.7792 0.8185
Gen. zebras 0.7728 0.7546

Table 3.3: LPIPS distances between 256x256 horse2zebra dataset with CoGAN

Gen./Real Real apples Real oranges
Gen. apples 0.8388 0.8693
Gen. oranges 0.9005 0.8944

Table 3.4: LPIPS distances between 256x256 apple2orange dataset with CoGAN

This image quality issue that occurs when scaling up CoGAN is most likely caused
by the fact that GAN architectures are not easily scalable to higher resolution im-
ages (>256x256), rather than a direct issue in the CoGAN framework. This is a
well-known problem in GAN literature, and [24, 23, 5] are works that aim to en-
able GANs to generate larger images through architectural changes. As such this
issue could most likely be solved by introducing one of these methods.

3.3. CoGAN analysis 40

a) horse2zebra b) apple2orange

Figure 3.5: Samples from CoGAN trained on 256x256 CycleGAN datasets

3.3.2 Domain issue

As we saw in the previous section, CoGAN does not perform very well when
training on 256x256 images. Therefore, we scale down the horse2zebra and ap-
ple2orange datasets to 128x128, the same size as CelebA, and train a CoGAN model
using the same generator and discriminator architectures as for CelebA (Table A.1
and A.2). The goal of this experiment is to understand whether CoGAN solely
fails on these datasets due to the image size, or if there are other contributing fac-
tors. The models are trained for 35k iterations with the DCGAN hyperparameter
settings. Samples from this experiment are shown on Figure 3.6a and Figure 3.7a.

Shapes that may indicate body and legs are now visible in the zebra samples, but
it is more difficult to distinguish any horse features in the horse domain and we
also see the same issues of non-correspondence as found on the 256x256 images
persists. Additionally, the images in the zebra domain are very similar across
different latent vectors, which could be a sign of the model mode collapsing. The
same is seen to a lesser extent in the horse domain. The calculated LPIPS distances
on Table 3.5, is indicating that there is a larger difference between generated horses
and real samples from both domains, than what is seen of generated zebras. This
is expected as the collapsed modes of the horse domain does not resemble neither
horses nor zebras, while the mode collapsed zebra domain has some of the correct
zebra styles and some shapes that could resemble horse/zebra-like features.

When looking at the apple2orange samples on Figure 3.7a we notice a slight im-
provement, especially, on the shapes and texture of oranges, and on the fact that
some of the apples appear to have a form of stem. However, the image quality is
definitely not up to par with that of models trained on CelebA. From the LPIPS

3.3. CoGAN analysis 41

distances seen in Table 3.6 we also see these improvements across all scores, when
comparing to those obtained by the 256x256 case reported in Table 3.4.

Gen./Real Real horses Real zebras
Gen. horses 0.8906 0.9594
Gen. zebras 0.6923 0.7024

Table 3.5: LPIPS distances between 128x128 horse2zebra dataset with CoGAN

Gen./Real Real apples Real oranges
Gen. apples 0.7345 0.7756
Gen. oranges 0.7402 0.7169

Table 3.6: LPIPS distances between 128x128 apple2orange dataset with CoGAN

Due to the observed mode collapse on the horse2zebra dataset, we train two Co-
GANs using the WGAN-GP loss described in section 2.5 on both horse2zebra and
apple2orange. Due to the nature of this loss, we replace all batch normalisation
layers in our discriminator with layer normalisation and use WGAN-GP hyperpa-
rameter settings mentioned in section 2.5. Using this loss quadrupled the training
time due to the added calculations of the gradients of the interpolated images and
we therefore only train the WGAN-GP models for 25k iterations.

Samples from these models are shown in Figure 3.6b and 3.7b. We notice a definite
decrease in mode collapse, which impacts the LPIPS distances. On Table 3.7, we
report new LPIPS distances on horse2zebra and without mode collapse, we now
see the correct pattern in the distances. When comparing LPIPS distances without
WGAN-GP (Table 3.5 and 3.6) to those with WGAN-GP (Table 3.7 and 3.8) we
see a slight improvement in the similarity across all configurations, which could
indicate that WGAN-GP improves the models. However, we still note that all
produced images are of extremely low quality when considering the quality of
images achieved in [34] on the CelebA dataset.

Since the downscaled CycleGAN datasets still proved difficult for CoGAN, despite
the fact that CoGAN has achieved success on the 128x128 CelebA dataset, indicates
that these datasets offer a different challenge, other than just image size. Later in
this section we hypothesise what this challenge may be, but first we show another
experiment to further illustrate the domain issue.

We experiment with the MNIST2SVHN dataset using the architectures previously
shown in Table 3.1 and 3.2 and DCGAN hyperparameter settings. These models
are trained for 25k iterations. The goal of this experiment is to investigate the
weight sharing constraint and its effect on the capabilities of each GAN. We train
four CoGANs which each have 4, 3, 2, and 1 shared layers between their generators.

3.3. CoGAN analysis 42

a) Non-saturating GAN loss b) WGAN-GP loss

Figure 3.6: 128x128 CoGAN samples trained on horse2zebra

a) Non-saturating GAN loss b) WGAN-GP loss

Figure 3.7: 128x128 CoGAN samples trained on apple2orange

We here wish to find out whether gradually reducing the number of shared layers
in the generator improves the individual GANs ability to capture the distributions
of each dataset. If this is the case, we believe that the weight sharing constraint is
restricting the generators and may be a key factor as to why CoGAN fails on these
noisier datasets.

Figure 3.8 shows samples from the four models of this experiment. From these
we confirm that the CoGAN does not learn a joint distribution on this dataset as
reported in [16, 30]. Additionally we see that as the number of shared layers is de-
creased (figure A to D), the GAN responsible for the SVHN domain becomes better
at learning its domain. According to the assumption that CoGANs can utilise high-
level features between image domains, this implies that MNIST and SVHN do not
share any high-level features. However, both datasets contain images of digits i.e.
the same content and only differ in the styles in which the content is displayed.

3.3. CoGAN analysis 43

Gen./Real Real horses Real zebras
Gen. horses 0.6676 0.7472
Gen. zebras 0.7101 0.6824

Table 3.7: LPIPS distances between 128x128 horse2zebra dataset with CoGAN: WGAN-GP

Gen./Real Real apples Real oranges
Gen. apples 0.6931 0.7414
Gen. oranges 0.7069 0.6968

Table 3.8: LPIPS distances between 128x128 apple2orange dataset with CoGAN: WGAN-GP

So, intuitively there should exist some kind of high-level features representing the
shapes of the digit objects that CoGAN could learn. We examine how similar the
generated pairs of images are through the LPIPS distance measures. We calculate
the average distance between 50.000 generated MNIST images and 50.000 gener-
ated SVHN images for the configurations furthest apart, namely, 4 shared layers
and 1 shared layer. The calculated average for 4 shared layers is 0.3541 and for
1 shared layer is 0.3423, which indicates that more similarity between generated
samples is achieved when relaxing the weight constraint, however this relaxation
is not enough to achieve proper joint distribution learning.

We believe the reason that CoGAN succeeds on MNIST variants and CelebA, and
fails on datasets like horse2zebra, apple2orange, and MNIST2SVHN, is that the im-
ages in both domains of the MNIST variants and CelebA variants are very similar
compared to those of horse2zebra, apple2orange, and MNIST2SVHN. By similar,
we mean that the content of images in successful datasets is regularly placed (cen-
tred) and contains low noise.

In the case of the SVHN, the content(numbers) occurs in many different styles
such as changing colours as well as the occurrence of multiple numbers on one
image. As such it is not very similar to MNIST which has very little noise. For the
CycleGAN datasets, the content occurs in many different contexts and is often not
always positioned in the same spot across images. Additionally, multiple content
objects may occur on each image as with SVHN. These are potential factors that
cause these datasets to be more noisy and may therefore contribute to why CoGAN
does not perform well on these datasets. As further support of our claims in this
section, we refer to [44, 30, 16] where CoGAN exhibits similar issues.

3.4. Problem statement 44

a) 4 shared layers b) 3 shared layers

c) 2 shared layers d) 1 shared layer

Figure 3.8: Reproduced CoGAN results with our own implementation

Based on our discussion of the domain issue, as well as the observations in the
aforementioned literature, we form the hypothesis that as the content or style,
or both, of the domains, become less similar the weight sharing constraint may
work more as a restriction on the generators such that they cannot fully learn their
specific domain.

3.4 Problem statement

Through our examination of CoGAN, we identify two main issues with the frame-
work:
The domain issue regarding the learning of joint distributions over domains with-
out a certain degree of similar high-level features.
The scaling issue centred around the scaling of CoGANs to learn distributions of
more complex data, i.e. larger images.

3.4. Problem statement 45

Since we are interested in working with issues specific to the CoGAN framework,
we choose to work with the domain issue, where we are interested in the fact that
weight sharing is restricting the generators, to a point where even the marginals
cannot be learned on noisy datasets. This problem is focused on the fundamental
approach in CoGAN, whereas the scaling issue is more based on general GAN im-
provements. We are also interested in whether WGAN-GP is necessary to prevent
mode collapse when deviating from the CoGAN approach, with the goal of learn-
ing joint distributions over noisier datasets. With these choices and interests in
mind, we state the following general problem statement for further working with
the domain issue of CoGAN, along with some specific problems that we want to
address in this project:

How can we address the domain issue experienced with CoGANs in a way that
improves the models capability of learning joint distributions, while still only
training on marginal datasets?

– How can we relax the weight sharing constraint that restricts the individual
generators, in a way that increases the CoGANs capability of learning the
joint distribution between image domains?

– How can we utilise the core idea of learning similar high-level features pre-
sented by CoGAN?

– Will we still need WGAN-GP, as previously seen, to avoid mode collapse on
noisier datasets?

Chapter 4 Approaches

In this chapter, we first present an initial approach aimed at solving our problem
statement. Through experimentation, we learn that this approach alone is not
sufficient and therefore we present three additional methods that aim to improve
the results seen from our initial approach. All presented methods are in the shape
of regularisation terms, which we add to the loss of both generators. We disregard
the need for replacing the weight sharing constraint between the discriminators,
as they in [34] report little difference when altering the weight sharing of these.
Implementation details of these proposed regularisation terms can be found in
chapter 6.

4.1 Feature regularising

Our idea is to completely remove the weight sharing constraint and instead intro-
duce a softer constraint, which provides more freedom for the generators’ weights
to deviate from each other. As such, we still wish to couple two GANs, but with a
softer coupling. We call these GANs Soft-Coupled GAN (SCoGAN).

In [34], the goal is to generate pairs of images in two respective domains that share
high-level features. They achieve this goal implicitly via the weight sharing con-
straint that they impose between the generators and discriminators. We are instead
interested in achieving this goal by explicitly enforcing similar learned features be-
tween the generators. Therefore, we initially propose a feature regularisation(FR)
term that is added to each of the generator losses, aimed at this explicit enforcing
of similar features. The feature regularisation term measures similarity between
intermediate outputs of both generators at select layers and is defined in the gen-
erator’s losses as seen on Equation 4.1. Here, K is the number of shared layers,
Gk

1(z) is the intermediate feature map output of generator1 at layer k and Gk
2(z) is

the corresponding output of generator2. Finally, α is for weighting the term and by
setting K, you can select a number of layers you wish to regularise between. These
variables are considered tunable hyperparameters. This follows the intuition de-
scribed in [34] that certain layers of neural networks are responsible for high-level
feature generation and other layers are responsible for low-level feature generation.

46

4.1. Feature regularising 47

LG1(G1) = Ez∼pz log(1− D1(G1(z))) + αFdi f f

LG2(G2) = Ez∼pz log(1− D2(G2(z))) + αFdi f f

where Fdi f f (G1, G2) =
1
K

K

∑
k=1

(Gk
1(z)− Gk

2(z))
2

(4.1)

We hypothesise that the feature regulariser provides the network with more free-
dom to use its weights to learn the appropriate joint distribution since it does not
put a restriction directly on the weights. However, a concern with the FR term is
that it might create similar training dynamics, to what is seen when using weight
sharing. Consider the fact that FR must be lower, when weights are more similar,
which means that optimising for a low feature regulariser term could encourage
similar weights. Because of this, we conduct an initial experiment with a SCoGAN
that employs the FR term (SCoGAN-FR) and a CoGAN to examine the behaviour
of generator weights during training.

For this experiment, we use SCoGAN with the same architecture as shown in
Table 3.1 and 3.2, without any shared layers. From our effort on reproducing
the CoGAN results on MNIST2edge, we found that after ∼ 3000 iterations the
CoGAN had learned similar features and proper creation of the digits, therefore
we choose to train for 4000 iterations. We use DCGAN hyperparameter settings, set
the weight α = 10, and use non-saturating GAN loss. For the feature regulariser,
we set K = 3, meaning that we compare intermediate feature maps on the first
3 layers of the generators. Plots are shown on Figure 4.1, where we see that the
weight difference, during training, increases much faster for the feature regulariser,
than for CoGAN. From this, we confirm that SCoGAN-FR and CoGAN do not have
similar training behaviour.

Next, we choose to conduct an experiment on SCoGAN-FR to see whether it is able
to learn a joint distribution like CoGAN. This experiment uses the same configura-
tions as the weight difference experiment above. We train two different versions of
this SCoGAN architecture on the MNIST2edge dataset. The first version is a SCo-
GAN without any regularising terms and acts as a baseline, which should show
no correlation between samples from either domain. The second version uses the
feature regularising term in the loss function of each generator.

On Figure 4.2a, we see samples from the baseline model at 4000 iterations. It is
clear that the model only learns the marginal distributions as expected. On 4.2b,
the feature regulariser proves to be efficient at enforcing similar generated features
between the two models, and therefore is learning the joint distribution.

4.1. Feature regularising 48

Figure 4.1: Measured weight difference during training for SCoGAN with feature regulariser, and
CoGAN

Since SCoGAN-FR achieves comparable results to CoGAN on the low noise and
clear object dataset of MNIST2edge, we decide to experiment further with the
MNIST2SVHN dataset. The same architectures, hyperparameters, and loss func-
tion as the previous MNIST2edge experiment are used. The model is trained for
20000 iterations, as the joint distribution of this dataset is seemingly harder to learn.
On Figure 4.3a, we see that SCoGAN-FR is not able to learn the joint distribution
with α = 10. Therefore, we attempt to increase the weight α = 100, to emphasise
the importance of learning similar features.

Samples from this are seen on Figure 4.3b, and it clearly shows that this enforces
similar high-level features, but we lose the ability to generate SVHN style. Ex-
amining the discriminator loss for these experiments, as seen on Figure 4.3a&b,
revealed that the discriminator is unstable when the feature regulariser term is
weighted this high. We tested further with weight values(10,50,75) but found that
a balance between learning similar high-level features and learning the style of
SVHN was difficult to achieve without causing the SVHN discriminator to become
unstable.

Due to this instability, we introduce the WGAN-GP loss as presented in section 2.5.
We replace the non-saturating loss with the WGAN loss and employ gradient
penalty with λ = 10 and perform 5 discriminator updates, on each discrimina-
tor, before updating the generators. We use the same architecture and hyperpa-
rameter configuration as previously. On Figure 4.4a, we see samples from this

4.1. Feature regularising 49

a) SCoGAN - 4000 iterations b) SCoGAN-FR - 4000 iterations

Figure 4.2: Samples from feature regulariser experiments

model, where SCoGAN-FR is vastly improved by the WGAN-GP loss and is now
vaguely capable of learning a joint distribution, albeit with some flaws. The top
rows of the MNIST2SVHN samples contain similar content, while the bottom rows
are different. Observing how samples from the same latent vector seed developed
during training, we notice that the features of the top row images change accord-
ingly such that corresponding digits are shown1. We notice that the FR introduces
SVHN styling onto the MNIST samples, which is especially seen on the third sam-
ple of the second row in 4.4a. This is likely due to a balancing issue between the
weight and the number of layers considered by the feature regulariser. From the
results, we would like to increase the weight even further to capture more similar-
ity between content features, but this will most likely lead to enforcing additional
styling features. To avoid this, we attempt to reduce the layers that are part of the
feature regulariser term from K = 3 to K = 2. This targets even higher level con-
tent features and might avoid the low-level style features. The result of this can be
seen on Figure 4.4b, and it is clear that this does not contribute to a better learning
of the joint distribution, as there are no correlations between MNIST and SVHN
samples.

From the results obtained with the feature regulariser approach, we are confi-
dent that a solution focusing on the similarity between features, is achievable.
However, the feature regulariser is only able to capture the joint distribution of
MNIST2SVHN to some degree, and therefore we look further into other ways of
controlling and enforcing feature similarity that either supports or replaces the
feature regulariser in the training process.

1https://github.com/palminde/P10Project

4.2. Controlling learned features 50

a) SCoGAN-FR α = 10 b) SCoGAN-FR α = 100

c) Discriminator loss for α = 10 d) Discriminator loss for α = 100

Figure 4.3: SCoGAN-FR on MNIST2SVHN dataset

4.2 Controlling learned features

As we are focusing on controlling the learned features between the two GANs, we
propose two methods to be used in conjunction with the feature regulariser. These
are: (1) a semantic loss which enforces that pairs of generated images should be
classified identically by an auxiliary classifier, (2) a cycle consistency loss between
latent vectors which indirectly enforces feature similarity such that generated im-
ages pairs can be encoded back to the latent vector that was used to generate them.
Additionally we propose a more advanced alternative to the feature regulariser
called the perceptual loss. This term directly enforces content similarity between
generated pairs of images and style similarity between generated and real images.
To achieve this we use a pretrained classifier as a feature extractor and compares
features from multiple intermediate layers.

4.2. Controlling learned features 51

a) SCoGAN-FR α = 100 and K = 3 b) SCoGAN-FR α = 100 and K = 2

Figure 4.4: SCoGAN-FR with WGAN-GP loss on MNIST2SVHN

4.2.1 Semantic loss

Our semantic loss is an altered version of the semantic loss presented in [16]. Here
they provide their model with a source image that must be transformed into the
style of a target image. Their semantic loss enforces that the transformed source
image and the original source image must be classified identically by a classifier
pretrained on the source domain with the goal of retaining the content features
through the style transformation.

To adapt this to our case in which we have no source image, we compare clas-
sifications of generated image pairs, as shown in Figure 4.5, ensuring that for the
same latent vector both generators produce images that can be classified identically.
The classifier should preferably be trained on a mixed dataset of both domains to
achieve the best possible classifications to guide the two GANs toward generating
similar images. However if the two domains have similar high-level features, such
as MNIST2edge, a classifier trained on one domain may be sufficient.

Our semantic loss does not enforce similar features but rather learns to map specific
explicit classes in different domains. As an example, when this approach is used
on MNIST2edge the classifier is trained to classify MNIST and MNISTedge images,
and thus this regularisation term pushes towards a mapping between ones, twos,
threes, and so on. As such for a given latent vector both generators produce ones,
but as similar features are not enforced, digits generated from the same latent
vector may have, for example, different orientation in the two domains. Because
of this, the semantic loss term can ideally be coupled with the feature regulariser,
to aid with producing paired content, such that the feature regulariser is more
focused on making the orientation/style/etc. of the content identical.

4.2. Controlling learned features 52

Noise
Input

Generator1

Generated sample

Generator2

Generated sample

Pre-trained
Classifier

0 0.03 0.01 0 0 0 0.02 0 0.01 0.93

0 0.02 0.02 0 0 0.01 0.01 0 0.10 0.84

Figure 4.5: Generator setup with semantic loss

Equation 4.2.1 shows the generator loss when employing the semantic loss as a
regularisation term. Here, we pretrain δ as a classifier network for each dataset
case that we experiment on. Besides the added semantic loss term, we add α as a
tuneable weight.

LG1 = Ez∼pz log(1− D1(G1(z))) + αLsem

LG2 = Ez∼pz log(1− D2(G2(z))) + αLsem

where Lsem =
(δ(G1(z))− δ(G2(z)))2

2

(4.2)

The main restriction with this approach is that it requires to pretrain a classifier
that is able to classify at least one of the two domains. As such, atleast one dataset
must be labelled and each dataset must contain the same amount of classes so that
the classifier can be taught to match corresponding classes in each domain. This
restricts the types of datasets that can be used. An example of a dataset that abides
by these points is MNIST2SVHN. Both datasets(MNIST and SVHN), consist of the
same type of objects and therefore a single classifier can be trained on either one
of the datasets or a mixture of both. An example of a dataset that does not work
in this setting is horse2zebra, since each domain consists only of one class, either
horse or zebra and a classifier on these datasets therefore would not help to guide
the type of objects to generate.

4.2. Controlling learned features 53

4.2.2 Cycle consistency

This proposal is inspired by the main contribution of CycleGAN [44], namely the
cycle-consistency loss (CCL). Intuitively, the CCL enforces that the stylised out-
put image of one GAN can be reversed back to its original style through another
trained GAN. This enforces that the two GANs generate the same content in differ-
ent styles such that the image can be reversed [44, 7]. These two GANs are trained
together to learn this cyclic behaviour. CCL has been adopted in many conditional
style transfer models [16, 7, 30], where style transferring back and forth between
two domains is desirable. Because of its popularity within this field and its relation
to joint distribution learning, we are interested in the application of this loss for the
SCoGAN architecture in conjunction with both our semantic loss and our feature
regulariser loss.

Our proposal is a slightly different interpretation of cycle consistency. Rather than
measuring the reconstruction loss between original and stylised images we mea-
sure reconstruction between latent vectors as SCoGAN does have any input image
to compare to. On Figure 4.6, we illustrate the SCoGAN generator architecture
for generating images with the cycle consistency loss. Consider the generation of
an image x = G1(z) and an image y = G2(z). We train an encoding network F,
alongside G1 and G2, which learns to encode generated images back to the initial
latent vector, z, by minimising the loss Lenc(F, h, z) = ||F(h)− z||22. Here, h is either
x or y. This encoding network is used in the cycle consistency loss for the SCo-
GAN architecture seen as part of the generator losses at Equation 4.3. Here, the
CCL Lcyc enforces that both generators generate images that can be encoded back
to the latent vector that originally generated them. This means that both images
must contain some shared information that allows the encoder to create the same
latent vector again.

LG1(G1, G2, F) = Ez∼pz log(D1(G1(z))) + αLcyc (4.3)

LG2(G1, G2, F) = Ez∼pz log(D2(G2(z))) + αLcyc (4.4)

where Lcyc(G1, G2) = Ez∼pz ||F(G1(z))− z||22 + ||F(G2(z))− z||22

4.2. Controlling learned features 54

Noise
Input

Generator1

Generated sample

Generator2

Generated sample

Encoder z1 z2

Figure 4.6: Generator setup with cycle concistency loss

4.2.3 Perceptual loss

Our final proposition on how to solve our problem statement is a more advanced
approach to feature regularisation, which uses an altered version of the perceptual
loss introduced in [21]. The perceptual loss also relies on an auxiliary network,
but here it is used as a deep feature extraction network, instead of a classifier. The
perceptual loss in [21] consists of two terms, namely the Feature Reconstruction
Loss(FRL) and the Style Reconstruction Loss(SRL). The intuition behind this is the
same as used in CoGAN: neural network classifiers extract high-level features in
later layers and low-level features in the early layers. Thus, the FRL measures high-
level feature similarity between images by comparing feature maps extracted from
the auxiliary net at a later layer, and SRL measures low-level feature similarity by
extracting feature maps at multiple intermediate layers. Originally, this approach
is used in a style transfer model, where a network is trained to transform the style
of an input image, to match the style of the target image. However as SCoGAN is
not a conditional model we utilise another scheme.

We employ the FRL term between features extracted from the two generated im-
ages as to enforce the generated images to share similar high-level features. We
use the SRL term between generated and real images in the respective domains
to aid the generators in maintaining the correct style in each domain. This task is

4.2. Controlling learned features 55

partly shared with the adversarial loss which ensures that the generated images
match images in the target domain in order to fool the discriminator. However,
the discriminator is concerned with a full view of the image in order to identify
real/fake samples, and therefore focuses on a mixture of features containing both
content and style. The feature extraction is illustrated on Figure 4.7. Here, we
extract both style and feature maps with the pretrained VGG19 network from the
generated images, which is indicated by the green arrows. While also extracting
style maps for the real target images indicated by the red arrows.

Style extraction

Real data

Noise
Input

Generator1

Generated sample

Real data

Generator2

Generated sample

Pretrained Imagenet
VGG19

Feature extraction

Figure 4.7: Generator setup with perceptuel loss

These alterations result in the new loss functions for the generators seen on Equa-
tion 4.5. Here, x1 ∼ pdata1 and x2 ∼ pdata2 where pdata1 and pdata2 are distributions
over the two domains respectively. δj is a pretrained VGG16 network that provides
the output of layer j and HjWjCj are the height, width, and channel dimensions
of this output. In the SRL term, Gramj is a Cj×Cj gram matrix, where each element

(c, c′) of the matrix is calculated as Gramj(k)c,c′ =
1

HjWjCj
∑

Hj
h=1 ∑

Wj
w=1 δj(k)h,w,cδj(k)h,w,c′ .

Finally, we add weighting terms as before via the α and β variables.

4.2. Controlling learned features 56

LG1 = Ez∼pz log(D1(G1(z))) + αFRL(G1(z), G2(z)) + Ex1∼pdata1 βSRL(G1(z), x1)

LG2 = Ez∼pz log(D2(G2(z))) + αFRL(G2(z), G1(z)) + Ex2∼pdata2 βSRL(G2(z), x2)

where FRL(x, x′) =
(δj(x′)− δj(x))2

HjWjCj

and SRL(x, x′) = (Gramj(x′)− Gramj(x))2

(4.5)

In contrast to the semantic loss combination, this method is more general and is
applicable to any combination of datasets as it does not require labelled data. How-
ever we note that the quality of the features may vary depending on the pretrained
feature extractor.

Chapter 5 Experiments

In this chapter, we conduct and present the results of experiments with our pro-
posed solutions. The chapter is split into four sections, one for each dataset, and
within these sections, we present the samples for visual inspection and quantitative
evaluations of each approach on the given dataset. All experiments are conducted
on 1x NVIDIA Tesla V-100 GPU.

We quantify the performance of our models using the LPIPS-distance presented
in section 3.2. For each dataset, we calculate the LPIPS distance between the real
samples of both domains as a baseline for how similar these two datasets are. For
each experiment, we report three different measurements of LPIPS distances. First,
we measure LPIPS between generated samples from both domains, which has a
correspondence to how well high-level features are shared between the generators.
This is compared to the baseline LPIPS for the given dataset and should be lower, as
comparing pairs of images that, if the joint distribution has been correctly learned,
share similar high-level features. Even so, the score must not be too low, as this
would indicate that the images are too similar, meaning that no domain-specific
features have been learned. Providing a limit for this is difficult and therefore we
rely on visual inspection of samples to fully interpret this score. The additional
samples we use for visual inspection as well as samples taken during training
of different SCoGAN models can be found here https://github.com/palminde/
P10Project.

The second and third measurements compare batches of generated and real sam-
ples in the respective domains, e.g. generated MNIST images with real MNIST
images. These distances correspond with each GANs ability to generate images
that retain features from its target domain. For these two scores lower is better as a
lower score indicates more similarity between the target domain and the generated
samples. We calculate these three measurements for both SCoGAN and CoGAN
models to have a more objective comparison method between models than visual
inspection.

Before presenting the experiments, we would like to state that we found the percep-
tual loss at a later stage of the project and therefore did not have time to perform
any tuning of hyperparameters or experiment with which layers in the pretrained
net are optimal to extract features from, on the different datasets. Training with the
perceptual loss requires the setting of the weight αPL and βPL for the FRL and SRL
term respectively. In the official implementation of [21] αPL = 1 and βPL = 1250
which produces huge values that are disproportionate to our adversarial loss term.
We therefore decide to use the weight values αPL = 0.001 and βPL = 0.00000000001

57

https://github.com/palminde/P10Project
https://github.com/palminde/P10Project

5.1. MNIST2edge 58

such that they correspond better with our adversarial loss. These values were
found after a very small amount of initial testing and we discuss the implications
of this choice and how we would have approached this problem if we had had
more time. The experiments performed with this proposal, therefore, shows only
a rough proof of concept, rather than a fully fletched solution. However, as it
alleviates the main issue with the semantic loss, as discussed in subsection 4.2.3,
we deemed it important to include. For all perceptual loss experiments, we use a
VGG19 network pretrained on the Imagenet dataset 1 as the feature extractor.

5.1 MNIST2edge

In [34] experiments are conducted on several different alterations of the MNIST
dataset. We choose to only include one of these alterations in our experiments,
namely MNIST2edge, because of the simplicity of these datasets. As seen in chap-
ter 4 SCoGAN-FR can sufficiently learn the joint distribution between the two do-
mains, however, we are interested in whether our three remaining proposals are
likewise able to create a soft coupling between the GANs and produce similar
results.

All experiments in this section are conducted with the architectures shown in Ta-
ble 3.1 and 3.2 without any shared layers. We follow optimiser, learning rate, input
normalisation and batch size recommendations for DCGAN training as presented
in section 2.6. Weights are initialised using Xavier initialisation and the latent vec-
tor consists of 100 values sampled from a uniform distribution with min = −1 and
max = 1. Lastly, we use weight decay with a decay rate of 0.0005. These settings
mirror those used in the official Pytorch implementation of CoGAN for training on
MNIST2edge. If not otherwise specified, all models are trained with the WGAN-
GP loss with weight λ = 10 for the gradient penalty weight. All models are trained
for 20.000 iterations.

LPIPS distances for models trained on this dataset are measured as the average
distance between 30.000 pairs of images. This amount is chosen as it is the total
size of MNISTedge. The baseline average LPIPS distance between real MNIST and
MNISTedge samples is 0.1627. Table 5.1 summarises all LPIPS scores gained on
the MNISTedge dataset using CoGAN and SCoGAN with feature regulariser(FR),
semantic loss(SL), cycle consistency(CC), and perceptual loss(PL). In order to pro-
vide a better understanding of these scores and put them into perspective, we see
some examples on Figure 5.2. These are the lowest(a) and highest(b) scoring pairs
generated by the baseline CoGAN architecture on the MNIST2edge dataset. In

1https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG19

https://www.tensorflow.org/api_docs/python/tf/keras/applications/VGG19

5.1. MNIST2edge 59

this case, even the highest scoring pair is quite similar, most likely due to the fact
that the second domain(MNISTedge) is created from the first domain(MNIST) and
therefore generated pairs inherently has many similar features.

a) LPIPS Score = 0.0183 b) LPIPS Score = 0.2937

Figure 5.1: Samples generated from CoGAN model trained on MNIST2edge. Leftmost image in each
pair belongs to MNIST domain and rightmost belongs to MNISTedge

Configuration CoGAN FR SL CC PL
Gen. MNIST vs Gen. edge 0.1026 0.1227 0.1039 0.1092 0.1019
Gen. MNIST vs Real MNIST 0.1157 0.1217 0.1141 0.1148 0.1110
Gen. edge vs Real edge 0.1157 0.1429 0.1100 0.1092 0.1064

Table 5.1: All LPIPS scores obtained on the MNIST2edge dataset

Semantic Loss

As a prerequisite, we train a classifier whose architecture is seen in Table B.1. The
classifier is trained on the standard MNIST dataset for 10 epochs, reaching an
accuracy of ∼ 98% using a categorical cross entropy loss. We use this classifier
when training the SCoGAN model with the semantic loss term (SCoGAN-SL).
We set the weight αSL = 10. On Figure 5.2a, we show samples of images from
this model. Based on visual inspection, the semantic loss term does learn the
joint distribution over these domains. This is further supported by the measured
LPIPS distances shown in Table 5.1, which are very close to those measured on the
CoGAN architecture and surpasses the baseline MNIST2edge score.

Cycle Consistency

In this experiment, we train an SCoGAN model that is only regularised by cycle
consistency (SCoGAN-CC). The weight of the CC term is set to 10. Samples from
this model, seen on Figure 5.2b, show that SCoGAN-CC is equally good at learn-
ing the joint distribution and this is again supported by the LPIPS distances on
Table 5.1.

5.1. MNIST2edge 60

a) SCoGAN-SL b) SCoGAN-CC

c) SCoGAN-PL

Figure 5.2: Samples from SCoGAN-SL, SCoGAN-CC and SCoGAN-PL on MNIST2edge

Perceptual Loss

Training an SCoGAN using the perceptual loss (SCoGAN-PL) we see on Figure 5.2c
that this model is equally capable of learning the joint distribution as our previ-
ously proposed approaches. This is again supported by the LPIPS measures as
seen in Table 5.1.

Summary

These experiments confirm that all our approaches enforce learning of similar fea-
tures between generators and can successfully learn the joint distribution over two
low noise domains. All methods surpass the baseline LPIPS distance between
MNIST and MNISTedge, thus, quantitatively, showing that generated samples gen-
erally do resemble each other and similarly low LPIPs scores are achieved for all

5.2. MNIST2SVHN 61

approaches when comparing generated and real images. Meaning that each sepa-
rate GAN has managed to learn its respective domain.

5.2 MNIST2SVHN

In these experiments, we are interested in whether semantic loss, feature regularis-
ing, and cycle consistency can be combined in meaningful ways to solve the issues
we see with the CoGAN and SCoGAN-FL on MNIST2SVHN in chapter 3 and 4.
Unless explicitly specified in the following subsections, all experiments in this sec-
tion are conducted with the same architecture, loss, and hyperparameter settings
as described in section 5.1. Each model is trained for 25.000 iterations.

The average LPIPS distance is measured between 50.000 image pairs, and the base-
line average LPIPS distance on MNIST2SVHN is 0.3304. Table 5.2 summarise all
LPIPS distances of the models trained on MNIST2SVHN. We note that the gen-
erated MNIST vs real MNIST measure is comparable to the ones achieved on
MNIST2edge, which is expected as the MNIST generator of all models produces
compelling MNIST images. We also see that there is less similarity between gen-
erated images compared to the MNIST2edge case, which is also expected as the
baseline LPIPS distance is larger for MNIST2SVHN. Finally, we note that CoGAN
has a higher dissimilarity between generated images(0.3400) than our SCoGAN
with the feature regulariser(0.2434). Again, this is expected as SCoGAN-FR pro-
duces MNIST images with SVHN styling, resulting in more similarity between
the generated samples. Therefore, we hypothesise that a good model produces a
generator vs generator LPIPS score in the range of [0.2434, 0.3400] for this dataset.

Figure 5.3 shows pairs of images with low(a) and high(b) LPIPS score. These sam-
ples are taken from an SCoGAN with semantic loss and feature regulariser(SCoGAN-
SLFR) trained on the MNIST2SVHN dataset. Here, it is easier to see the difference
between high and low LPIPS scores than on the MNIST2edge dataset.

a) LPIPS Score = 0.0919 b) LPIPS Score = 0.6342

Figure 5.3: Samples generated from an SCoGAN-SLFR model. Leftmost image in each pair belongs
to MNIST domain and rightmost belongs to SVHN

5.2. MNIST2SVHN 62

Configuration CoGAN FR SLFR SLCC FRCC PL
Gen. MNIST vs Gen. SVHN 0.3400 0.2434 0.3016 0.3093 0.3022 0.2948
Gen. MNIST vs Real MNIST 0.1126 0.1194 0.1162 0.1153 0.1146 0.1120
Gen. SVHN vs Real SVHN 0.2151 0.1941 0.2046 0.2083 0.2094 0.2117

Table 5.2: All LPIPS scores obtained on the MNIST2SVHN dataset

Semantic Loss and Feature Regulariser

We train a SCoGAN model with both the semantic loss and the feature regulariser
(SCoGAN-SLFR), where αSL = 10 and αFR = 100. The classifier used for the
semantic loss is trained on a mixed dataset containing both MNIST and SVHN
images and uses the architecture found at Table B.1. It is trained for 10 epochs,
reaching an accuracy of ∼92%. Samples from the SCoGAN-SLFR model can be
seen on Figure 5.4a and shows visible similarities between high-level features in
most pairs, which is an improvement over both the feature regulariser and over
CoGAN. Furthermore, we see styles that match those of MNIST and SVHN in
their respective samples.

The LPIPS distance between generated and real samples does not deviate a lot from
what CoGAN and the feature regulariser achieved. However, the distance between
generated samples from both domains is lower and actually lies within the range
of the baseline and feature regulariser score indicating that the generators have
managed to learn the shared high-level features of the two domains.

a) αSL = 10 and αFR = 100 b) αSL = 10 and αCC = 10

Figure 5.4: Samples from SCoGAN-SLFR (a) and SCoGAN-SLCC (b) on MNIST2SVHN

5.2. MNIST2SVHN 63

Semantic Loss and Cycle Consistency

We now train an SCoGAN model with the cycle consistency and semantic loss
(SCoGAN-SLCC). We use the configuration described at the beginning of this sec-
tion. We use standard values for the weights αCC = 10 and αSL = 10 and showcase
samples from the trained model on Figure 5.4b. Here, we also see similarities
between image pairs, and when comparing LPIPS scores the SCoGAN-SLCC is
almost identical to the SCoGAN-SLCC. The reason that we see good results here,
may be that the cycle consistency loss indirectly pushes toward feature similarity,
as the feature regulariser does, by enforcing that both images can be encoded into
the same latent vector. As such, it works well with the semantic loss since they
enforce different aspects that are important to learn the joint distribution, namely
similar features (CC) and similar content (SL).

Feature Regulariser and Cycle Consistency

We also train an SCoGAN model with the feature regulariser and the cycle con-
sistency terms (SCoGAN-FRCC). The configuration used is the same as previously
and the weights are set as αFR = 100 and αCC = 10. Figure 5.5a shows samples
from this model. According to the LPIPS score, this combination of regularisation
terms performs just as well as the other two, however through visual inspection
of samples we see that this combination is unable to learn the joint distribution.
This is a clear example of why the LPIPS score should be used in conjunction with
visual inspection.

A possible explanation for these results is that both terms enforce feature similarity
- the feature regulariser does it directly and cycle consistency does it indirectly -
as such, this combination is missing a directed content element such as the one
provided by the semantic loss. We discuss this further in section 7.3. As we see
poor results from this combination and with the fact that the two previous com-
binations have yielded decent results, we choose to discontinue this combination
and conduct no further experiments with it.

Perceptual Loss

Finally, we train a SCoGAN-PL model using the same configuration as previously
with weights αPL = 0.001 and βPL = 0.00000000001. Resulting samples are shown
on Figure 5.5b, where we see similar behaviour to what is achieved by the feature
regulariser in section 4.1. There is similarity between some of the digits such as

5.3. CelebA 64

a) αFR = 100 and αCC = 10 b) αPL = 0.001 and βPL = 0.00000000001

Figure 5.5: Samples from SCoGAN-FRCC (a) and SCoGAN-PL (b) on MNIST2SVHN

5, 9, and 0, and from our visual inspection, these appear clearer than previously
generated MNISTSVHN pairs by our other approaches. This could indicate that
targeting style and content separately can result in a clearer generation of content
in the correct styling. We note that this is just speculation, but it could be an
interesting subject to investigate as part of future work. The LPIPS metrics can be
seen in Table 5.2, and are close to the other proposals.

5.3 CelebA

We train and evaluate SCoGAN-SLFR, SCoGAN-SLCC, and SCoGAN-PL models
on the CelebSmiling dataset, with the goal of learning the joint distribution over
face images with different features. For these experiments, we use the architectures
shown in Table A.1 and A.2 with no shared layers. We copy the hyperparameter
settings from the CelebA experiments performed in [34], namely L2 weight decay
with a decay rate of 0.0001, weights being initialised from a normal distribution
with mean 0, and variance 0.02, the latent vector is of size 100 and is sampled from
a uniform distribution with range [−1, 1]. Deviating from CoGANs configuration,
we use the WGAN-GP loss with the recommend parameters proposed in [13] as
mentioned in section 2.5. We train each model for 35.000 iterations.

The pretrained classifier used for the semantic loss is now trained as a multi-label
classification problem, rather than a multi-class classification problem. This is due
to the fact that CelebA images do not belong to a single labelled class as is the
case for MNIST and SVHN images. Instead, each CelebA image has 40 binary
attributes describing features on the image which can be used as labels. As such,
one image can have multiple labels. We choose to not use all 40 attributes as la-

5.3. CelebA 65

bels since some are severely under-represented. We, therefore, select the labels
that are represented by a minimum of 50.000 images. This results in the following
13 which are: Arched_Eyebrows, Attractive, Heavy_Makeup, High_Cheekbones,
Male, Mouth_Slightly_Open, No_Beard, Oval_Face, Pointy_Nose, Smiling, Wavy_Hair,
Wearing_Lipstick and Young. These labels cover the entire dataset and this selec-
tion, therefore, does not reduce the size of the dataset. Training a classifier for
multi-label classification only requires slight alterations from training a multi-class
classifier. We use the same architecture as for previously described semantic loss
classifiers, but the softmax activation in the last layer must be replaced with a
sigmoid activation to get a probability of every single label and not a probability
vector over all labels and then we use the binary cross-entropy loss. The classifier
is trained for 10 epochs achieving ∼87% accuracy.

On this dataset, we calculate the average LPIPS distance between 50.000 image
pairs and the baseline dataset measure is 0.3955. Table 5.3 summarises all LPIPS
scores obtained on this dataset. We note that the difference between image pairs
generate by CoGAN is low, which is expected as our implementation of the Co-
GAN model generated very similar images with both generators. However we
believe that the optimal LPIPS score on the CelebSmiling dataset is even lower
than this. This is due to the fact that the perceptual difference should be lower,
when the style difference between the two domains is smaller. Consider the ex-
ample image on Figure 5.6a, where LPIPS is 0.0437 and here head shape, eyes,
colourisation, and mouths are slightly different. So the score should be lower if
this slight difference only applied to the mouths on the images. Figure 5.6 shows
both of the samples from a trained SCoGAN-SLFR model with low(a) and high(b)
LPIPS scores.

a) LPIPS Score = 0.0437 b) LPIPS Score = 0.3988

Figure 5.6: Samples generated from an SCoGAN-SLFR model trained on CelebSmiling. Leftmost
image in each pair belongs to No-Smile domain and rightmost belongs to Smile

5.3. CelebA 66

Configuration CoGAN SLFR SLCC PL
Gen. No-smile vs Gen. Smile 0.0433 0.1294 0.1708 0.0857
Gen. No-smile vs Real No-smile 0.3923 0.3875 0.3879 0.3907
Gen. Smile vs Real Smile 0.3877 0.3921 0.3881 0.3962

Table 5.3: All LPIPS scores obtained on the CelebSmiling dataset

Semantic Loss and Feature Regulariser

We train an SCoGAN-SLFR model with the aforementioned configuration and reg-
ulariser weights set to αSL = 10 and αFR = 100. Samples from the trained model
can be seen in Figure 5.7a. As with our CoGAN models, we see no joint distribu-
tion learning, rather the two models have learned to make almost identical image
pairs. Even though samples are similar to those presented by CoGAN, we see a
larger difference between generated images in the LPIPS scores reported in Ta-
ble 5.3. This indicates that SCoGAN-SLFR generates images that differs too much
from each other, as the models should achieve low LPIPS scores on CelebSmiling.

This might be due to the way that the semantic loss enforces the mapping to the
multi-label classification problem of CelebA. Consider that we have 13 attributes
to express the complex features of a human face. It is easy to imagine that two
completely different faces could be expressed by the same 13 binary attributes. If
the mapping is perfect on all 13 attributes it is the job of the feature regulariser to
then match exact styles of these attributes, which intuitively is much more com-
plicated than the same task for MNIST2SVHN, where only the style of the single
attribute should be matched. If the mapping is imperfect this tasks becomes even
more difficult for the feature regulariser term.

a) αSL = 10 and αFR = 100 b) αSL = 10, αcc = 10

Figure 5.7: Samples from SCoGAN-SLFR (a) and SCoGAN-SLCC (b) on CelebSmiling

5.3. CelebA 67

Semantic Loss and Cycle Consistency

We train an SCoGAN-SLCC model with weights set to αSL = 10, αcc = 10. Samples
are shown in Figure 5.7b. Visual inspection of samples from this model shows
that this combination of regulariser terms also fail to learn the joint distribution,
and also seems to produce worse CelebA images. This model also sees the largest
difference between samples from the two domains according to the LPIPS score
which, following the logic of the previous experiment with SLFR, indicates that the
indirect feature regularising of CC is even worse at handling this difficult mapping
case that semantic loss presents.

Perceptual Loss

This experiment uses weights α = 0.001 and β = 0.00000000001 and the config-
uration of architecture and hyperparameters mentioned at the beginning of this
section. This model is trained on all three CelebA variants. Samples from all three
models are shown on Figure 5.8. The SCoGAN-PL model does not successfully
learn the joint distribution over any of the CelebA variants. However, from visual
inspection of samples, we notice that the domain-specific feature is seen a lot in
samples from both domains, e.g. we see many image pairs with blond hair when
targeting this feature on the second generator.

We only report the LPIPS on the CelebSmiling case for comparison. Here we
notice that similarity between generated images is very high compared to our other
approaches. This indicates that the controlled targeting of features is important in
these cases where the difference between the features of both domains are subtle.
Since a smile could be considered a fairly low-level feature it would be interesting
to change the FRL extraction layer to capture this earlier in the model.

5.4. CycleGAN datasets 68

a) CelebSmiling b) CelebBlond

c) CelebEyeglasses

Figure 5.8: Samples from SCoGAN-PL on the CelebSmiling(a), Blond(b) and Eyeglasses(c) datasets

5.4 CycleGAN datasets

As mentioned in chapter 4, a major drawback of the semantic loss is that it is reliant
on having labelled data from at least one, and preferably both domains, which
reduces the number of datasets it can be successfully applied to. The perceptual
loss does not suffer from this limitation and as such we show its performance
on the CycleGAN datasets horse2zebra and apple2orange, on which the semantic
loss cannot be applied. For these experiments, we resize the images from 256x256
to 128x128 and use the same architecture and hyperparameter settings as for the
previous experiments with the CelebSmiling. Each model is trained for 20.000
iterations. We measure LPIPS distance between 1000 samples for horse2zebra, and
995 samples for apple2orange as these datasets are a lot smaller than the others we
use. The baseline LPIPS distance for horse2zebra is 0.7062 and for apple2orange it
is 0.7013.

5.4. CycleGAN datasets 69

Configuration CoGAN(a2o) PL(a2o) CoGAN(h2z) PL(h2z)
Gen. Domain1 vs Gen. Domain2 0.6081 0.5774 0.6238 0.6163
Gen. Domain1 vs Real Domain1 0.6939 0.7361 0.6691 0.6715
Gen. Domain2 vs Real Domain2 0.7021 0.7339 0.6844 0.6900

Table 5.4: All LPIPS scores obtained on the horse2zebra and apple2orange datasets

Samples from the trained SCoGAN-PL models are shown on Figure 5.9. Visual
inspection shows that there are a small number of similarities between image pairs,
however, it is not any more significant than what can be produced by a CoGAN.
This could indicate that to be more successful in finding similar shapes on this
dataset, we need to increase the weight on the FRL term as it seems that both
models manage to capture their respective style domains i.e. we see brown horses
and striped zebras as well as red apples and orange oranges.

These rather poor results are backed by high LPIPS distances shown in Table 5.4
signalling that the models do not learn similar features very well. Figure 5.10 and
5.11 shows samples from the two SCoGAN-PL models with low(a) and high(b)
LPIPS scores on the horse2zebra and apple2orange datasets. On horse2zebra, we
see that for image pairs with low LPIPS, the zebra pattern has been completely
discarded, and seemingly no meaningful shapes are present. For the high scoring
image pair, the zebra image somewhat resembles the neck and head of a zebra,
but the corresponding horse image retains none of these features. Apple2orange
has more visible shapes in the low scoring pair, however, it seems that the red
colour has merged into the orange domain, a similar effect to what we saw on
the CelebA variants using perceptual loss. Furthermore, on both datasets, we
notice occurrences of ’checkerboard’ artifacts. We discuss these results and the
checkerboard artifacts further in section 7.4. We also look into the behaviour of the
SRL and FRL terms during training.

5.4. CycleGAN datasets 70

a) Horse2zebra b) Apple2orange

Figure 5.9: Samples from SCoGAN-PL on horse2zebra and apple2orange

a) LPIPS Score = 0.4474 b) LPIPS Score = 0.8266

Figure 5.10: Samples generated from a SCoGAN-PL model with corresponding LPIPS score. Left-
most image in each pair belongs to the horse domain and rightmost belongs to the zebra domain

a) LPIPS Score = 0.3496 b) LPIPS Score = 0.7897

Figure 5.11: Samples generated from a SCoGAN-PL model with corresponding LPIPS score. Left-
most image in each pair belongs to apple domain and rightmost belongs to orange domain

Chapter 6 Implementation

As a part of our previous semester project, we implemented a GAN training frame-
work that allows us to easily train different GANs on different datasets. For this
thesis, we have expanded upon this framework such that it now includes CoGAN
and SCoGAN models as well. The framework is written in Python3.6 using the
machine learning framework Tensorflow2.0 to implement models and training pro-
cedures. Our framework is used for all the previously presented experiments.
The Framework consists of nine modules: Main, Data, Nets, Losses, Penalties,
Gan_trainer, CoGAN_trainer, SCoGAN_trainer and a utility module, Utils, which
mainly contains helper functions for the Main and trainer modules. An illustration
of the framework architecture is shown in Figure 6.1. In this figure, every module
imports and utilises all the in-going connected modules.

Main

Data

GAN
trainer

CoGAN
trainer

Nets Losses

Penalties

Local
image files

Utils

Tensorflow
Datasets

SCoGAN
trainer

Figure 6.1: The structure of the GAN training framework which we have developed over two
semesters

6.1 Main

The main module binds together the entire framework and is responsible for re-
ceiving user input and starting the correct training that corresponds to the user-
provided configuration. Input about the training configuration is given to this
module when launching it, as an array of arguments which specify the type of
GAN, CoGAN or SCoGAN you wish to train, as well as on which dataset, with
which architecture and which hyperparameter settings to use. An explanation
of to run training using our framework is provided in our Github repository

71

6.2. Data 72

https://github.com/palminde/P10Project.

To handle the input arguments, we use a Python package called argparse that
parses the given arguments and stores them in a dictionary which we call args.
When user arguments have been parsed, the Main module instantiates the cor-
rect Keras optimisers for the generative and discriminative models using the user-
specified hyperparameter settings. When this is done, the necessary datasets are
loaded and prepared for training in the Data module and upon request from the
Main module, the necessary discriminator and generator nets are selected from the
Nets module. When the correct dataset and neural nets have been found, a trainer
is instantiated, which contains functionality for training either a GAN, CoGANs,
or SCoGANs. When instantiated, the trainer selects the correct loss function and
penalty settings based on user arguments. During training the trainer keeps a
record of the loss values and samples images from the generator at a user-selected
interval. The following sections go more in-depth with each module and how it
works internally.

6.2 Data

This module is responsible for loading data from either local image files or the Ten-
sorflow Datasets API and preprocessing it such that it can be used for either GAN
or (S)CoGAN training. We use the Tensorflow Data API which allows us to build
datasets that can be automatically batched and shuffled. To fetch and preprocess
data for (S)CoGAN training, we use the function select_dataset_cogan(). On
Listing 6.1 is a snippet of this method, where we use the Tensorflow Dataset API
to load the correct dataset in line 4. The Tensorflow Dataset objects for the two
domains are extracted from the data dictionary in line 5 while line 7 and 8 is for
preprocessing the images. Tensorflow Dataset objects allow for an array of func-
tions to be called on them such as map, filter, and reduce. In this case, we perform
our preprocessing by mapping a function containing image transformations onto
the dataset.

The preprocessing we apply with the function format_example_scale is shown in
Listing 6.2. This function takes two inputs, an image and its label and returns a
preprocessed image and its label. The preprocessing we perform on CycleGAN
datasets is simply scaling pixel values to the range [-1, 1], however, many other
operations can be added in this function such as image size scaling. Each dataset
is then shuffled, repeated, and batched according to some batch size. Repeating a
dataset enables us to continuously loop through it with an iterator without having
to reset it and reshuffle.

https://github.com/palminde/P10Project

6.3. Nets 73

1 . . .
2 e l i f args . cogan_data in [’ apple2orange ’ , ’ horse2zebra ’] :
3 # Domains
4 data , i n f o = t f d s . load (’ cycle_gan/ ’+args . cogan_data , with_info=True ,

as_supervised=True)
5 X1 , X2 = data [’ trainA ’] , data [’ t r a i n B ’]
6

7 X1 = X1 . map(format_example_scale)
8 X2 = X2 . map(format_example_scale)
9 num_examples = i n f o . s p l i t s [’ trainA ’] . num_examples

10

11 X1 = X1 . s h u f f l e (num_examples) . repeat () . batch (args . b a t c h _ s i z e)
12 X2 = X2 . s h u f f l e (num_examples) . repeat () . batch (args . b a t c h _ s i z e)
13 shape = (None , 256 , 256 , 3)
14 . . .

Listing 6.1: Dataset selection and preprocessing - implemented in python

1 def format_example_scale (image , l a b e l) :
2 image = t f . c a s t (image , t f . f l o a t 3 2)
3 # Normalize the p i x e l values
4 image = (image − 1 2 7 . 5) / 127 .5
5 re turn (image , l a b e l)

Listing 6.2: One preprocessing function - implemented in python

6.3 Nets

The Nets module contains all of our discriminator and generator architectures for
regular GANs, CoGANs, and SCoGANs. The models are implemented using the
Keras Model API available through Tensorflow as such we utilise the Keras imple-
mentation of all neural net components such as layers, activations, and weight ini-
tialisers. In this section, we show how we have implemented a GAN used for gen-
erating 32x32 images and how this GAN can be transformed into a CoGAN with
weight sharing between generators and discriminators. Furthermore, we show the
multi-output SCoGAN architecture necessary for the feature regulariser to extract
features maps from intermediate layers. We do not show the single output SCo-
GAN implementation as this is simply two GANs with no relation to each other.

Listing 6.3 shows a regular GAN generator which takes as input a noise vector
in line 4, performs a sequence of transformations on it from line 7 to 14, and
finally outputs an image on line 16. This code defines a Keras model based on the
sequence of transformations. This model can be trained and used to generate new
images. To allow a generator with this architecture to share the weights of all its
layers except the last with another similar generator is quite simple. All it requires

6.3. Nets 74

is for us to replace the final layer of Listing 6.3 (line 16) with the code shown in
Listing 6.4. The output of the sequence of transformations up until line 14 is now
given to two separate layers that each generates an image independent of each
other. As we can see on line 7 of Listing 6.4, two models are now defined using
the same input but producing different outputs. These two models will share the
layers defined on and before line 14 and have separate output layers.

Listing 6.4 additionally shows how weight decay, weight initialisers, and bias
initialisers are implemented in Keras models. This is done through the argu-
ments kernel_initialzer, kernel_regularizer, and bias_initializer respec-
tively. For each of these arguments, we have a corresponding value in the args
dictionary that can be set by the user to define which type of initialisation and
weight decay should be used. These arguments have been removed from future
listings for simplicity, however, we do utilise weight decay, and the two types of
initialisation in every layer in all generator and discriminator models.

1 def gan_generator_32 (args) :
2 channels = args . dataset_dim [3]
3

4 noise = t f . keras . l a y e r s . Input (shape =(args . noise_dim ,))
5 model = t f . keras . l a y e r s . Dense (1024∗4∗4 , k e r n e l _ i n i t i a l i z e r =args . w_init

, k e r n e l _ r e g u l a r i z e r =args .wd, b i a s _ i n i t i a l i z e r =args . b i) (noise)
6 model = t f . keras . l a y e r s . Reshape ((4 , 4 , 1024)) (model)
7 model = (t f . keras . l a y e r s . BatchNormalization ()) (model)
8 model = (t f . keras . l a y e r s . PReLU(args . p r e l u _ i n i t)) (model)
9

10 . . . # Intermediate l a y e r s removed to keep l i s t i n g s h o r t e r − See
appendix A f o r f u l l a r c h i t e c t u r e

11

12 model = (t f . keras . l a y e r s . Conv2DTranspose (1 2 8 , (3 , 3) , s t r i d e s =(2 , 2) ,
padding= ’ same ’ , k e r n e l _ i n i t i a l i z e r =args . w_init , k e r n e l _ r e g u l a r i z e r =
args .wd, b i a s _ i n i t i a l i z e r =args . b i)) (model)

13 model = (t f . keras . l a y e r s . BatchNormalization ()) (model)
14 model = (t f . keras . l a y e r s . PReLU(args . p r e l u _ i n i t)) (model)
15

16 img = t f . keras . l a y e r s . Conv2DTranspose (channels , (6 , 6) , s t r i d e s =(1 , 1) ,
a c t i v a t i o n = ’ tanh ’ , padding= ’ same ’ , k e r n e l _ i n i t i a l i z e r =args . w_init ,

k e r n e l _ r e g u l a r i z e r =args .wd, b i a s _ i n i t i a l i z e r =args . b i) (model)
17

18 re turn keras . Model (noise , img)

Listing 6.3: 32x32 image GAN generator - implemented in Python

6.3. Nets 75

1 # Generator 1
2 img1 = t f . keras . l a y e r s . Conv2DTranspose (channels , (6 , 6) , s t r i d e s =(1 , 1)

, a c t i v a t i o n = ’ tanh ’ , padding= ’ same ’ , k e r n e l _ i n i t i a l i z e r =args . w_init ,
k e r n e l _ r e g u l a r i z e r =args .wd, b i a s _ i n i t i a l i z e r =args . b i) (model)

3

4 # Generator 2
5 img2 = t f . keras . l a y e r s . Conv2DTranspose (channels , (6 , 6) , s t r i d e s =(1 , 1)

, a c t i v a t i o n = ’ tanh ’ , padding= ’ same ’ , k e r n e l _ i n i t i a l i z e r =args . w_init ,
k e r n e l _ r e g u l a r i z e r =args .wd, b i a s _ i n i t i a l i z e r =args . b i) (model)

6

7 re turn keras . Model (noise , img1) , keras . Model (noise , img2)

Listing 6.4: Changes performed to GAN generator implementation create the 32x32 image CoGAN
generators - implemented in Python

Listing 6.5 shows how we have implemented the discriminator part of this GAN. It
consists of an input layer on which we perform some initial transformations. This
is then provided to a predefined sequential model that contains all intermediate
layers and the output layer. We do not have to make use of a sequential model like
this to implement a discriminator, it could have followed the same structure as we
saw in the generator, i.e. just have the layers continuously after each other. How-
ever, we choose this structure as it is easier to alter into a CoGAN discriminator.
To make this alteration, we replace the input layers in line 5-7 with the code shown
in line 2-9 of Listing 6.6 such that our model now has two separate input layers.
Then we have to replace the code in line 15 and 16 of Listing 6.5 with line 11-13
of Listing 6.6. This code takes the output from each of the separate input layers
and has the shared sequential model evaluate both separately and then defines two
Keras models.

1 def c o g a n _ d i s c r i m i n a t o r s _ d i g i t (args) :
2 img_shape = (args . dataset_dim [1] , args . dataset_dim [2] , args .

dataset_dim [3])
3

4 # Discr iminator input
5 img = t f . keras . l a y e r s . Input (shape=img_shape)
6 x = t f . keras . l a y e r s . Conv2D(2 0 , (5 , 5) , padding= ’ same ’) (img)
7 x = t f . keras . l a y e r s . MaxPool2D () (x)
8

9 # Sequent ia l model of in termediate l a y e r s and output
10 model = keras . Sequent ia l ()
11 model . add (t f . keras . l a y e r s . Conv2D (5 0 , (5 , 5) , padding= ’ same ’))
12 . . . # Intermediate l a y e r s removed to keep l i s t i n g s h o r t e r − See

appendix A f o r f u l l a r c h i t e c t u r e
13 model . add (t f . keras . l a y e r s . Dense (1))
14

15 output = model (x , t r a i n i n g =True)

6.3. Nets 76

16 re turn keras . Model (img , output)

Listing 6.5: Changes performed to GAN generator implementation create the 32x32 image CoGAN
generators - implemented in Python

1 # Discr iminator 1
2 img1 = t f . keras . l a y e r s . Input (shape=img_shape)
3 x1 = t f . keras . l a y e r s . Conv2D(2 0 , (5 , 5) , padding= ’ same ’) (img1)
4 x1 = t f . keras . l a y e r s . MaxPool2D () (x1)
5

6 # Discr iminator 2
7 img2 = t f . keras . l a y e r s . Input (shape=img_shape)
8 x2 = t f . keras . l a y e r s . Conv2D(2 0 , (5 , 5) , padding= ’ same ’) (img2)
9 x2 = t f . keras . l a y e r s . MaxPool2D () (x2)

10

11 output1 = model (x1 , t r a i n i n g =True)
12 output2 = model (x2 , t r a i n i n g =True)
13 re turn keras . Model (img1 , output1) , keras . Model (img2 , output2)

Listing 6.6: Changes performed to GAN generator implementation create the 32x32 image CoGAN
generators - implemented in Python

Having shown how we implement GANs and CoGANs, we now move on to the
multi-output SCoGAN model. On Listing 6.7, we create an array output1(line 2)
onto which we append all intermediate outputs of the network (line 12-13, 16-17,
and 22). We can then specify a Keras model with inputs noise and outputs as the
list of outputs we have to create, namely output1.

1 def cogan_generators_digi t_noshare (args) :
2 output1 = []
3

4 noise = t f . keras . l a y e r s . Input (shape =(args . noise_dim ,))
5 model = t f . keras . l a y e r s . Dense (1024∗4∗4) (noise)
6 model = t f . keras . l a y e r s . Reshape ((4 , 4 , 1024)) (model)
7

8 # Generator 1
9 model1 = t f . keras . l a y e r s . Conv2DTranspose (5 1 2 , (3 , 3) , s t r i d e s =(2 , 2) ,

padding= ’ same ’) (model)
10 model1 = t f . keras . l a y e r s . BatchNormalization () (model1)
11 f ea tures1_8x8 = t f . keras . l a y e r s . PReLU(p r e l u _ i n i t) (model1)
12 output1 . append (fea tures1_8x8)
13

14 model1 = t f . keras . l a y e r s . Conv2DTranspose (2 5 6 , (3 , 3) , s t r i d e s =(2 , 2) ,
padding= ’ same ’) (f ea tures1_8x8)

15 f ea tures1_16x16 = t f . keras . l a y e r s . PReLU(p r e l u _ i n i t) (model1)
16 output1 . append (fea tures1_16x16)
17

18 model1 = t f . keras . l a y e r s . Conv2DTranspose (1 2 8 , (3 , 3) , s t r i d e s =(2 , 2) ,
padding= ’ same ’) (fea tures1_16x16)

19 img1 = t f . keras . l a y e r s . Conv2DTranspose (channels , (6 , 6) , s t r i d e s =(1 , 1)
, a c t i v a t i o n = ’ tanh ’ , padding= ’ same ’) (model1)

6.4. Losses and Penalties 77

20

21 output1 . append (img1)
22 generator1 = keras . Model (noise , output1)
23

24 . . . # Generator 2 below here

Listing 6.7: Changes performed to GAN generator implementation create the 32x32 image CoGAN
generators - implemented in Python

6.4 Losses and Penalties

These two modules implement the loss functions (non-saturating, WGAN) and
penalties (WGAN-GP, feature regulariser) that we have described in our report.
The goal of these two modules is to make the losses and penalties dynamic such
that a user can easily choose exactly which loss and penalty configuration to use
for training, without having to rewrite the training procedure. Additionally, the
modules are easily expandable such that extra losses and penalties can be added
also without having to perform large changes in related modules.

The entire Losses module is shown in Listing 6.8. All losses are implemented ac-
cording to their formulation shown in the respective papers. Each generator loss
takes only one argument, namely the output of the discriminator on generated
samples, i.e. D(G(z)) and each discriminator loss takes two arguments, namely the
discriminator output on real and generated samples, i.e. D(x) and D(G(z)). For
the non-saturating loss, we apply the Sigmoid function to outputs of the discrimi-
nator as all our discriminator nets are implemented without a Sigmoid activation
as the last layer for binary classification. This allows us to use both the WGAN and
non-saturating loss on all our models.

1 import Tensorflow as t f
2

3 def non_sat_gen (fake_output) :
4 G_loss = − t f . reduce_mean (t f . math . log (t f . math . sigmoid (fake_output)))
5 re turn G_loss
6

7 def non_sat_disc (fake_output , rea l_output) :
8 r e a l _ l o s s = t f . math . reduce_sum(− t f . reduce_mean (t f . math . log (t f . math .

sigmoid (rea l_output))))
9 f a k e _ l o s s = t f . math . log (1 − t f . math . sigmoid (fake_output))

10 D_loss = r e a l _ l o s s + f a k e _ l o s s
11 re turn D_loss
12

13 def wasserste in_gen (fake_output) :
14 G_loss = − t f . reduce_mean (fake_output)
15 re turn G_loss

6.4. Losses and Penalties 78

16

17 def w a s s e r s t e i n _ d i s c (fake_output , rea l_output) :
18 D_loss = t f . reduce_mean (fake_output) − t f . reduce_mean (rea l_output)
19 re turn D_loss
20

21 def s e t _ l o s s e s (args) :
22 i f args . l o s s == ’ ce ’ :
23 re turn cross_entropy_disc , cross_entropy_gen
24 e l i f args . l o s s == ’wgan ’ :
25 re turn wassers te in_disc , wasserste in_gen

Listing 6.8: Non-saturating and Wasserstein loss - implemented in python

The Penalty module consists of two classes called DiscriminatorPenalties and
GeneratorPenalties. The DiscriminatorPenalties class contains our implemen-
tation of the gradient penalty proposed in [13], shown in Listing 6.9 and GeneratorPenalties
contains an implementation of our proposed feature regulariser, shown in List-
ing 6.10. Our implementation of WGAN-GP follows the description given in
the original paper. First, the interpolated image is computed. Then, Tensor-
flows GradientTape(), which defines a scope and records computations performed
within it such that the gradients may be computed later is used to find the gradi-
ents of the discriminator output with regards to the interpolations. Finally, the
L2 of the gradients is computed and we found how far they deviate from 1. Our
implementation of the feature regulariser is quite simple, we iterate a predefined
number of layers and sum over the means of the squared difference between fea-
tures maps from the respective layers.

1 def wasserstein_gp (s e l f , fake_data , rea l_data , d i s c r i m i n a t o r) :
2 # I n t e r p o l a t i o n constant
3 alpha = t f . random . uniform (shape =[r e a l _ d a t a . shape [0] , 1 , 1 , 1] , minval = 0 . ,

maxval = 1 .)
4 # Ca l c u l a te i n t e r p o l a t i o n s
5 d i f f e r e n c e s = fake_data − r e a l _ d a t a
6 in terpolated_images = r e a l _ d a t a + (alpha ∗ d i f f e r e n c e s)
7 # Gradients of i n t e r p o l a t e d images
8 with t f . GradientTape () as gTape :
9 gTape . watch (interpolated_images)

10 d i s c _ i n t e r p o l a t e s = d i s c r i m i n a t o r (interpolated_images , t r a i n i n g =
True)

11 gradients = gTape . gradient (d i s c _ i n t e r p o l a t e s , in terpolated_images)
12 gradients += 1e−8
13 # Ca l c u l a te penalty from image gradients
14 s lopes = t f . s q r t (t f . math . reduce_sum (t f . math . square (gradients) , a x i s

= [1 , 2 , 3]))
15 gradient_penal ty = t f . reduce_mean ((s lopes − 1 .) ∗∗ 2)
16 re turn gradient_penal ty

Listing 6.9: Gradient penalty presented in [13] - implemented in python

6.5. CoGAN_trainer 79

1 def f e a t u r e _ r e g u l a r i z e r (s e l f , g1_batch , g2_batch , shared_layers) :
2 d i s t a n c e = 0
3 f o r idx in range (shared_layers) :
4 d i s t a n c e = d i s t a n c e + t f . reduce_mean (t f . math . squared_di f fe rence (

g1_batch [idx] , g2_batch [idx]))
5 re turn d i s t a n c e

Listing 6.10: Our proposed feature regulariser - implemented in python

6.5 CoGAN_trainer

This module implements the CoGAN training procedure. It consists of a class
called Trainer, shown in Listing 6.11, which implements the training procedure in
the function train() as well as functionality for logging generator and discrimina-
tor losses, sampling images during training and clipping discriminator weights
in the case where the WGAN loss is used. When instantiated it requires the
two necessary datasets representing each domain and the two generators and dis-
criminators. Furthermore, it contains instances of the DiscriminatorPenalty and
GeneratorPenalty classes and four instance variables used for logging loss val-
ues for each model. In this section, we only cover the train() function as image
sampling, and logging is deemed trivial and unnecessary to include.

1 c l a s s Tra iner (o b j e c t) :
2 def _ _ i n i t _ _ (s e l f , g1 , g2 , d1 , d2 , domain1 , domain2) :
3 s e l f . h i s t _ g 1 = []
4 s e l f . h i s t _ g 2 = []
5 s e l f . h i s t_d1 = []
6 s e l f . h i s t_d2 = []
7 s e l f . X1 = domain1
8 s e l f . X2 = domain2
9 s e l f . f u l l _ t r a i n i n g _ t i m e = 0

10 s e l f . d iscPenal = p . D i s c r i m i n a t o r P e n a l t i e s ()
11 s e l f . genPenal = p . Genera torPena l t i es ()
12 s e l f . d1 , s e l f . d2 = d1 , d2
13 s e l f . g1 , s e l f . g2 = g1 , g2
14

15 def t r a i n () :
16 def sample_images () :
17 def p l o t _ l o s s e s () :
18 def c l ip_weights (s e l f , c l i p) :

Listing 6.11: Overview of Trainer class - implemented in python

The train() function retains the loop structure of algorithm 1, thus consisting of
two loops of which the outer loop counts training iterations and the inner loop
counts extra discriminator iterations.

6.5. CoGAN_trainer 80

Within the inner loop, we sample data from both real data domains, generate a
noise vector, and use it to generate two batches of images, one for each domain.
Using the generated and real image batches, we wish to update both our discrimi-
nators. For this, we again use Tensorflows GradientTape(). The update procedure
for one CoGAN discriminator is shown in Listing 6.12. Each cycle in the inner
loop consists of two of these, one for each discriminator. Within the scope of the
GradientTape(), we apply the discriminator on both real and generate images and
calculate the loss based on these in line 7. Next, the discriminator penalty is cal-
culated and added to the loss. If no discriminator penalty is to be applied, then
calc_penalty() will return 0. After a single update on both discriminators, we ei-
ther move on to updating generators or run another cycle in the inner a new noise
vector and new real images.

1 gen_batch1 = s e l f . g1 (noise , t r a i n i n g =True)
2 with t f . GradientTape () as tape :
3 # Disc response
4 d i s c _ r e a l 1 = s e l f . d1 (batch1 , t r a i n i n g =True)
5 disc_ fake1 = s e l f . d1 (gen_batch1 , t r a i n i n g =True)
6 # Calc l o s s and penalty
7 d1_loss = d_loss_fn (disc_fake1 , d i s c _ r e a l 1)
8 gp1 = s e l f . d iscPenal . c a l c _ p e n a l t y (gen_batch1 , batch1 , s e l f . d1 , args)
9 d1_loss = d1_loss + (gp1 ∗ args . penalty_weight_d)

10 # Calc gradients
11 g r a d i e n t s _ o f _ d i s c r i m i n a t o r = tape . gradient (d1_loss , s e l f . d1 .

t r a i n a b l e _ v a r i a b l e s)
12 args . d i sc_opt imizer . apply_gradients (zip (g r a d i e n t s _ o f _ d i s c r i m i n a t o r , s e l f .

d1 . t r a i n a b l e _ v a r i a b l e s))

Listing 6.12: CoGAN discriminator training procedure - implemented in python

Generator updates are implemented similarly to the discriminator updates. We
again use GradientTape() as shown on Listing 6.13. Using a new noise vector,
we generate a batch of images and have the discriminate evaluate them in lines 2
and 4. The generator loss is calculated and a generator penalty is added if one is
enabled. Then the gradients are calculated and applied, and the outer loop finishes
with logging of all four model losses and runs again.

1 with t f . GradientTape () as tape :
2 gen_fake = s e l f . g1 (noise , t r a i n i n g =True)
3 # Disc response
4 d i s c _ f a k e = s e l f . d1 (gen_fake , t r a i n i n g =True)
5 g1_loss = g_ loss_ fn (d i s c _ f a k e)
6 # Calc l o s s and penalty
7 penalty1 = s e l f . genPenal . c a l c _ p e n a l t y (s e l f . g1 , s e l f . g2 , 20 , args)
8 g1_loss = g1_loss + (penalty1 ∗ args . penalty_weight_g)
9 # Calc gradients

10 gradients_of_genera tor1 = tape . gradient (g1_loss , s e l f . g1 .
t r a i n a b l e _ v a r i a b l e s)

6.6. SCoGAN_trainer 81

11 args . gen_optimizer . apply_gradients (zip (gradients_of_generator1 , s e l f . g1 .
t r a i n a b l e _ v a r i a b l e s))

Listing 6.13: CoGAN generator training procedure - implemented in python

6.6 SCoGAN_trainer

The SCoGAN_trainer is the main contribution to the framework in this project. It
is developed as a prototype to explore our different proposals in combination with
each other. The SCoGAN_trainer resembles the CoGAN_trainer, but with a few
alterations. It contains more variables meant for logging different loss term values
that are related to our proposals, during training, e.g. semantic loss value or cycle
loss value. It also contains the implementation of all proposed approaches, besides
the feature regulariser which is part of the GeneratorPenalty class presented in
section 6.4. On Listing 6.14, we see the initial check of the train method, where
we load auxiliary networks, lines 5 and 7 for semantic and perceptual loss respec-
tively, or create additional neural networks as the encoder in line 3 for the cycle
consistency loss.

1 def t r a i n (s e l f , args) :
2 i f args . use_cyc le :
3 s e l f . encoder = n . encoder (args)
4 i f args . semant ic_ loss :
5 s e l f . c l a s s i f i e r = t f . keras . models . load_model (args .

c l a s s i f i e r _ p a t h)
6 i f args . p e r c e p t u a l _ l o s s :
7 s e l f . vgg_feature_model = s e l f . f e a t u r e _ l a y e r s (s e l f . s t y l e _ l a y e r s

+ s e l f . content_ layers , args)
8 . . . # Rest of the t r a i n method below here

Listing 6.14: SCoGAN train method - implemented in python

These extra networks are used when updating the generators later in the training
method. We see on Listing 6.15, the beginning of the generator update method,
and how we utilise three gradient tapes simultaneously to capture calculations
that allows for updating generator1, generator2, and the cycle consistency encoder
within one scope. This is done since all proposals rely on information from both
generators. The first three lines in this with block constitute the adversarial loss for
generator1 and here, we see a difference from the CoGAN_trainer as the input to
the discriminator at line 4 is the last element of gen1_fake. This is seen throughout
the SCoGAN trainer, as it uses the multi-output generators. Therefore, gen1_fake
is a list of outputs, where the last element is the image output. From line 9, we see
the implementation of the semantic loss term. This loss is calculated as the mean

6.6. SCoGAN_trainer 82

of the squared difference between predictions on both domains. The value is then
logged and added to the total generator loss.

1 with t f . GradientTape () as tape1 , t f . GradientTape () as tape2 , t f .
GradientTape () as tape3 :

2 # Adv l o s s
3 gen1_fake = s e l f . g1 (noise , t r a i n i n g =True)
4 disc1_ fake = s e l f . d1 (gen1_fake [−1] , t r a i n i n g =True)
5 g1_loss = g_ loss_ fn (d i sc1_ fake)
6

7 . . . #Omitted a d v e r s e r i a l l o s s f o r generator2
8

9 i f args . semant ic_ loss :
10 domain1_pred = s e l f . c l a s s i f i e r (gen1_fake [−1])
11 domain2_pred = s e l f . c l a s s i f i e r (gen2_fake [−1])
12 d i f f = t f . reduce_mean (t f . math . squared_di f ference (domain1_pred ,

domain2_pred))
13 # log semantic l o s s
14 s e l f . h i s t _ s e m a n t i c _ l o s s . append (d i f f)
15 g1_loss = g1_loss + d i f f ∗ args . semantic_weight
16 g2_loss = g2_loss + d i f f ∗ args . semantic_weight

Listing 6.15: SCoGAN generator update with semantic loss - implemented in python

The implementation of the cycle consistency loss term is equally simple and can be
seen on Listing 6.16. Here, we provide the extra encoder network with the image
output of each generator. Then, we calculated the mean absolute error between
each reconstruction and the original noise vector as seen in lines 4-5. The total
reconstruction loss is simply the sum of each reconstruction task. This loss value
is then multiplied by its respective weight and added to the total generator loss.
This reconstruction loss is also the loss of the encoder minimises during training.

1 i f args . use_cyc le :
2 noise_recon1 = s e l f . encoder (gen1_fake [−1])
3 noise_recon2 = s e l f . encoder (gen2_fake [−1])
4

5 noise_recon_ loss1 = t f . math . reduce_mean (t f . math . abs (noise_recon1 −
noise))

6 noise_recon_ loss2 = t f . math . reduce_mean (t f . math . abs (noise_recon2 −
noise))

7

8 t o t a l _ r e c o n _ l o s s = noise_recon_ loss1 + noise_recon_ loss2
9

10 # log c y c l e l o s s
11 s e l f . h i s t _ c y c l e _ l o s s . append (t o t a l _ r e c o n _ l o s s)
12

13 g1_loss = g1_loss + (t o t a l _ r e c o n _ l o s s ∗ args . cycle_weight)
14 g2_loss = g2_loss + (t o t a l _ r e c o n _ l o s s ∗ args . cycle_weight)

Listing 6.16: SCoGAN cycle consistency loss - implemented in python

6.6. SCoGAN_trainer 83

Finally, the perceptual loss is implemented through different steps. The first step is
found on Listing 6.17, which shows the method feature_layers(self, layer_names).
This method is used to instantiate the feature extraction network from a pretrained
VGG classifier. Here, we use the Keras Applications API to download and cache
a pretrained VGG19 network in line 2. The input of the method layer_names is a
list of names for the layers, we want to get intermediate outputs from. We build
a list of output layers from the VGG network through these layer names in line 3.
We create a model whose input is that of the VGG network and whose outputs
are all these intermediate layers. The method StyleContentModel(self, inputs)
is responsible for passing input through the network and returning separate style
and content features. Here, all style feature maps are passed through the method
gram_matrix at line 15. In this method, we calculate the gram matrix for the feature
maps through the einsum method in line 23. The input style map has dimensions
B × H ×W × C and we specify that einsum should do matrix multiplication as
∑i ∑j input[b, i, j, c] ∗ input[b, i, j, d] = out[b, c, d]. Finally, we normalise over the
total number of values in the feature map.

1 def f e a t u r e _ l a y e r s (s e l f , layer_names) :
2 vgg = t f . keras . a p p l i c a t i o n s . VGG19 ()
3 outputs = [vgg . g e t _ l a y e r (name) . output f o r name in layer_names]
4

5 model = t f . keras . Model ([vgg . input] , outputs)
6 re turn model
7

8 def StyleContentModel (s e l f , inputs) :
9 inputs = (0 . 5 ∗ inputs + 0 . 5) ∗ 255

10 inputs = t f . keras . a p p l i c a t i o n s . vgg19 . preprocess_input (inputs)
11 f ea ture_outputs = s e l f . vgg_feature_model (inputs)
12 s t y l e s = fea ture_outputs [: s e l f . num_style_layers]
13 content = fea ture_outputs [s e l f . num_style_layers :]
14

15 s t y l e _ o u t p u t s = [s e l f . gram_matrix (s t y l e) f o r s t y l e in s t y l e s]
16

17 c o n t e n t _ d i c t = { content_name : value f o r content_name , value in zip (s e l f
. content_ layers , content) }

18 s t y l e _ d i c t = { style_name : value f o r style_name , value in zip (s e l f .
s t y l e _ l a y e r s , s t y l e _ o u t p u t s) }

19

20 re turn content_d ic t , s t y l e _ d i c t
21

22 def gram_matrix (s e l f , input) :
23 r e s u l t = t f . l i n a l g . einsum (’ b i j c , b i jd−>bcd ’ , input , input)
24 num_locations = input . shape [1] ∗ input . shape [2]
25 re turn r e s u l t /num_locations

Listing 6.17: SCoGAN perceptual loss setup methods - implemented in python

In the generator update section of the train method, we calculate the perceptual

6.6. SCoGAN_trainer 84

loss through the code seen at Listing 6.18 line 1-9. Here, we pass generated and
real images through the method explained in the previous listing to produce style
and content features. In lines 7 and 8, we calculate the SRL and FRL with the
StyleContentLoss method seen in line 13. This method calculates the SRL as the
sum of mean squared differences between the respective style gram matrixes, and
the FRL is calculated likewise. The values are normalised through the number of
layers and multiplied by their respective weights.

1 . . . //Snippet of t r a i n method
2 i f args . p e r c e p t u a l _ l o s s :
3 fake1_content , f a k e 1 _ s t y l e = s e l f . StyleContentModel (gen1_fake [−1])
4 fake2_content , f a k e 2 _ s t y l e = s e l f . StyleContentModel (gen2_fake [−1])
5 rea l1_content , r e a l 1 _ s t y l e = s e l f . StyleContentModel (batch1)
6 rea l2_content , r e a l 2 _ s t y l e = s e l f . StyleContentModel (batch2)
7

8 g 1 _ s t y l e _ l o s s , g1_content_ loss = s e l f . StyleContentLoss (f a k e 1 _ s t y l e ,
r e a l 1 _ s t y l e , fake1_content , fake2_content , args)

9 g 2 _ s t y l e _ l o s s , g2_content_ loss = s e l f . StyleContentLoss (f a k e 2 _ s t y l e ,
r e a l 2 _ s t y l e , fake2_content , fake1_content , args)

10

11 g1_loss = (g1_ loss) + g 1 _ s t y l e _ l o s s + g1_content_ loss
12 g2_loss = (g2_ loss) + g 2 _ s t y l e _ l o s s + g2_content_ loss
13 . . .
14

15

16

17 def StyleContentLoss (s e l f , s t y l e _ f a k e , s t y l e _ t a r g e t , content_fake1 ,
content_fake2 , args) :

18 s t y l e _ l o s s = t f . add_n ([t f . reduce_mean ((s t y l e _ f a k e [name]− s t y l e _ t a r g e t [
name]) ∗∗2) f o r name in s t y l e _ f a k e . keys ()])

19 c o n t e n t _ l o s s = t f . add_n ([t f . reduce_mean ((content_fake1 [name] −
content_fake2 [name]) ∗∗2) f o r name in content_fake1 . keys ()])

20

21 s t y l e _ l o s s ∗= args . s ty le_weight / s e l f . num_style_layers
22 c o n t e n t _ l o s s ∗= args . content_weight / s e l f . num_content_layers
23

24 re turn s t y l e _ l o s s , c o n t e n t _ l o s s

Listing 6.18: SCoGAN perceptual loss calculation - implemented in python

Chapter 7 Discussion

In this chapter we discuss the results achieved during experimentation as well as
other aspects of the project. These discussion points are mainly focused on pro-
viding clearer thought behind some decisions or providing additional information
that seemed out of place elsewhere.

7.1 Domain adaptation and style transfer

We motivate this project through the two use-cases domain adaptation and style
transfer, which the original CoGAN is capable of doing [34]. However since our
focus has been on the learning of joint distributions and not on the use cases of
this, we have not directly shown that our proposed methods are equally capable of
these tasks. Therefore we here note that all our proposals can be used for domain
adaptation and style transfer in the same way as described in [34]. This is the case
as we are not altering the input/output scheme, and we are preserving the joint
distribution aspect of CoGAN.

7.2 Joint distribution learning on CelebA variants

Throughout this project, we experience issues with our implementation of CoGAN
and SCoGAN on the CelebA variants. While both models learn to generate decent
looking facial images, none manage to learn the joint distribution. We have inves-
tigated the following problems that we believe can cause such an issue: (1) error in
data loading, (2) error in the training procedure, loss or penalty implementations,
and (3) error in the network architecture implementation.

We confirmed that the data was being loaded correctly by inspecting dataset sizes
after CelebA has been split into two domains and ensuring that the sizes in our im-
plementation matched the ones specified in [34]. We extracted a subset of CelebA
consisting of 3700 images for which we knew how many images belonged to each
domain, and for this smaller test, we also see that the images are split correctly
into two datasets. Additionally, we have performed a visual inspection of the first
200 samples from each domain for the full dataset without seeing any misplaced
images in either domain.

85

7.2. Joint distribution learning on CelebA variants 86

Errors in the implementation of the training procedure, loss, and penalties are to us
not very likely, as we are using the same implementation on the MNIST2edge and
MNIST2SVHN datasets, where SCoGAN models do manage to learn the joint dis-
tributions. One extra step that we could take in ensuring correct implementation is
unit testing our loss and penalty implementations. We performed the testing infor-
mally, comparing the output of our losses to the output of official implementations
such1 for WGAN-GP and found our implementation to produce the same values.

Lastly, we looked for errors in our implementation of the neural net architectures.
We thoroughly examined the official implementation of CoGAN and built our ar-
chitectures following the Caffe definition files they have made available. This in-
cluded comparing Caffe and Keras documentation of e.g. batch normalisation and
parametric ReLU layers to ensure that default hyperparameter settings were the
same and if not, to include Caffe default values in our implementation. An exam-
ple is the initial value of parametric ReLU being 0.25 in Caffe and 0 in Keras.

Furthermore, we wished to confirm if the official CoGAN implementation could
reproduce the shown CelebA results by running their code. However, the offi-
cial repository only contains scripts for running MNISTedge experiments with no
specification for how to train on CelebA and seemingly no data/data loading for
CelebA datasets. We, therefore, do not know if the architecture described in the
definition file available in their implementation is even capable of learning the joint
distribution, which may not be the case. Additionally, as we previously described
in section 3.3, their Caffe implementation does not follow the described architec-
tures in their paper, and their PyTorch implementation only covers the MNIST
cases. We, therefore, believe that some information could be missing from their
paper or implementation about the celebA model and configurations. Another
aspect that could cause these discrepancies is that we are not familiar with the
Caffe framework, and there could be computational differences between the inter-
nal implementation of the Keras and Caffe framework, that we have been unable
to find.

1https://github.com/igul222/improved_wgan_training

https://github.com/igul222/improved_wgan_training

7.3. Combining regulariser terms 87

7.3 Combining regulariser terms

From the experiments on the MNIST2SVHN dataset, we found that both SCoGAN
combinations with semantic loss produce compelling samples, while the combi-
nation of feature regulariser and cycle consistency did not. We elaborate on this
here.

The feature regulariser is a softer coupling of the generators than the weight shar-
ing constraint of CoGAN, however, the feature regulariser is still directly constrain-
ing the generators during training, i.e. we are in both cases trying to control the
intermediate layers that the model uses to generate images, but with varying de-
grees of freedom. Meanwhile, the cycle consistency is an implicit way of enforcing
feature similarity between generated images, but we are here unable to directly
understand or influence how these feature similarities are made in this approach.
A combination of these terms (FR and CC) provides the SCoGAN-FRCC with a
multi-task learning objective where one task can be restrictive on the generation
process(FR), and the other task is not directly related to producing similar high-
level features or content, between generated samples(CC). This might be the reason
why this combination performs poorly in relation to the ones with the semantic
loss, as the semantic loss is a direct and non-restrictive way of enforcing similar-
ity between the content of generated images. Therefore, the semantic loss can be
directing either approach in their respective combinations.

7.4 Perceptual loss

As previously mentioned the perceptual loss was added late in the project and
therefore tuning performed on this approach has been minimal. However we be-
lieve the intuition of separating learned features into style and content can yield
good results and therefore we provide a discussion below on some of the choices
and further aspects regarding this proposal.

7.4.1 Perceptual loss values and weight

Before implementing the approach ourselves we examined the official implementa-
tion2 through code inspection and execution. Here we found that the loss values of
the FRL and SRL term were many magnitudes larger than our adversarial loss term
for the generators. For example the FRL term would take a value > 10.000 and

2https://github.com/jcjohnson/fast-neural-style

https://github.com/jcjohnson/fast-neural-style

7.4. Perceptual loss 88

the SRL term would be > 10.000.000. These are the values before multiplying with
the weight, which for the default setting was set to wFRL = 1 and wSRL = 1250.
If we were to introduce these values into our total generator loss term we would
severely diminish the effect, that the adversarial loss would have on the generator
updates. Therefore we choose to use the weights to scale down the loss values
to proportionately fit with the adversarial loss, such that each term of the genera-
tors loss would roughly contribute equally to the total value. Our adversarial loss
term for the generators produces values approximately in the [−100, 100] range,
and therefore we set the weights wFRL = 0.001 and wSRL = 0.00000000001. These
were the only tested weights for this method and as we see in our horse2zebra,
apple2orange and CelebA experiments these values are seemingly not optimal.

One reason that we see so poor results on these datasets is the SRL term is con-
stant through the entire training for the horse2zebra, apple2orange and the CelebA
datasets, as shown on Figure 7.1a-c. Ideally this term should to steadily decrease
throughout training as the model learns the domain specific feature and since it is
constant, this learning clearly does not take place. Furthermore Figure 7.1d shows
the generator loss for an SCoGAN-PL model trained on CelebSmiling. Here we
see that the loss is decreasing while oscillating with rather large values compared
to those seen in its corresponding SRL and FRL terms shown on Figure 7.1c. In
this case these terms may not have a very large influence even if they were not
constant. Apple2oranges and horse2zebra datasets similarly shows much larger
generator loss. We therefore believe that further testing with different weight val-
ues as well as an exploration of the optimal amount of layers to extract feature
maps from in the pretrained model is necessary in order to fully understand the
capability of this method.

7.4.2 CycleGAN dataset results

Neither CoGAN nor SCoGAN-PL achieve stunning results on the horse2zebra and
apple2orange datasets. We suspect that this is related to the architectures that we
have used, rather than a failure of CoGAN or SCoGAN-PL. This is due to the fact
that CycleGAN uses network architectures with 2 convolutional layers, followed by
6 residual blocks, followed by 2 transpose convolutions for learning 128x128 im-
ages. This points toward the necessity of using deeper networks on these datasets.
We initially wanted to compare our results to those achieved by CoGAN and there-
fore used the architectures that they proposed, however to further investigate per-
formance on the CycleGAN datasets a good place to start would most likely be
updating the neural net architectures such that they follow the residual architec-
ture used by CycleGAN.

7.4. Perceptual loss 89

a) horse2zebra b) apple2orange

c) CelebSmiling d) Generator loss for CelebSmiling

Figure 7.1: (a-c) SRL and FRL losses from training SCoGAN-PL on various datasets. (d) Generator
loss for SCoGAN-PL on CelebSmiling

7.4.3 Checker board patterns in perceptual loss results

Inspecting samples from SCoGAN-PL models trained with the perceptual loss on
the CycleGAN datasets we see that they exhibit checkerboard patterns. This is-
sue may relate to the architecture depth issue discussed above. However another
potential causes is proposed in [36] which establishes that such patterns are com-
monly observed and proposes that it is due to the use of transpose convolutions for
upscaling the noise vector to an image in the generator. Transposed convolutions
when upscaling images can suffer from overlapping kernels which amplify pixel
values contained in the overlap. Since kernels are applied methodically across the
entire image these overlaps will occur in a checkerboard pattern that depends on
the kernel size and stride. [36] shows some very nice interactive figures of how this
overlap looks. To solve this problem they propose to replace transposed convolu-
tions with regular image resizing using nearest neighbour interpolation followed
by a stride one convolution layer. While this may be a good place to start it does

7.5. Further investigation of semantic loss 90

not explain why the SCoGAN-PL models suffer from this problem, when a Co-
GAN with an equivalent architecture is not affect as heavily. This point towards
an issue inherent in the perceptual loss approach which may be alleviated through
further exploration as mentioned previously.

7.5 Further investigation of semantic loss

During our experiments on MNIST2SVHN we see that the two methods that show
best performance both include the semantic loss. We therefore conduct a small
additional experiment to examine whether the semantic loss alone can learn this
joint distribution. We train an SCoGAN-SL model on MNIST2SVHN with the same
configurations as mentioned in section 5.2. We set αSL = 10 and show samples from
this training on Figure 7.2 and LPIPS scores in Table 7.1, which are very similar
to those achieved by our other approaches on MNIST2SVHN. Visual inspection of
samples shows us that this model manages to learn the joint distribution in similar
fashion to the models combining semantic loss with the feature regulariser and
cycle consistency respectively. Additional samples used for visual inspection can
be found in our Github repository3.

Figure 7.2: Samples from SCoGAN-SL trained on MNIST2SVHN with αSL = 10

3https://github.com/palminde/P10Project

https://github.com/palminde/P10Project

7.5. Further investigation of semantic loss 91

Configuration SL
Gen. MNIST vs Gen. SVHN 0.3018
Gen. MNIST vs Real MNIST 0.1140
Gen. SVHN vs Real SVHN 0.2053

Table 7.1: All LPIPS scores obtained on the MNIST2SVHN dataset

Chapter 8 Conclusion

Throughout this project we have worked with applying generative adversarial net-
works (GAN) to joint distribution learning over multi domain images. This work
springs from an initial problem statement that is formulated based on a review
of current literature within the field of joint distribution learning. Here we ob-
serve that an older GAN based model, called CoGAN [34], which when proposed
showed impressive results and has the desirable property of being able to learn
a joint distribution over multiple image domains requiring only data from the
marginal distribution of each domain. Has been dismissed in literature due to lack
of performance with no real effort in showing the problems that it suffers from.
We therefore decide to investigate this model.

Through an experimental analysis we discover two main issues with CoGANs that
may be the cause of this dismissal. The first issue is that CoGANs do not scale well
to larger images. We find that this problem may relate more to the architecture of
the GANs comprising the model, than the actual CoGAN framework, and therefore
suspect that this issue can be solved by introducing a GAN architecture proposed
for large scale image generation such as [23, 5, 24]. The second issue is that, as the
image domains become less similar through either the appearance of background
noise or content diversity the weight sharing constraint, used in CoGANs to learn
the joint distribution, works as a restriction on its generators to the point where
they cannot learn their respective domains.

We choose to focus on the second issue as it offers more opportunity for applying
new approaches rather than implementing existing ideas. This leads us to our main
problem statement: How can we address the domain issue experienced with CoGANs in
a way that improves the models capability of learning joint distributions, while still only
training on marginal datasets? and the following subquestions:

• How can we relax the weight sharing constraint that restricts the individual
generators, in a way that increases the CoGANs capability of learning the
joint distribution between image domains?

• How can we utilise the core idea of learning similar high-level features pre-
sented by CoGAN?

• Will we still need WGAN-GP, as previously seen, to avoid mode collapse on
noisier datasets?

92

93

To solve this problem statement we propose to remove the strict weight sharing
coupling used in CoGANs and instead aim to introduce a softer coupling which
would allow each GAN more freedom over their respective weights to better learn
their image domain. We call this type of model a Soft-CoGAN (SCoGAN). We
propose to achieve the softer coupling through four different regularisation terms:
(1 - feature regulariser) Regularise similarity between intermediate layer outputs
of both generators, thereby soft coupling GANs to generate similar feature maps
in the generation process. (2 - semantic loss) Use an auxiliary network to classify
the image output of both generators and regularise similarity between these clas-
sification, thereby enforcing that the content on each image should come from the
same class. (3 - cycle consistency) Simultaneously train an encoder network, that
encodes generated images back to the original latent vector and regularise similar-
ity between encoded and input latents. This implicitly enforces both generators to
produce similar content that the encoder can use to produce the same output. (4 -
perceptual loss) Use an auxiliary network to extract features of varying levels in the
generated and real images to regularise high-level feature similarity between gen-
erated images in both domains, and low-level feature similarity between generated
and real images in respective domains.

With our own implementation of the CoGAN architecture and our four proposed
regularisation terms we conduct experiments on a variety of 32x32 and 128x128
datasets. Through a combination of qualitative visual inspection and quantitative
LPIPS distance measures on samples from these experiments we find that all four
regularisers approaches are able to learn a joint distribution over the low noise
MNIST2edge dataset.

On the noisier dataset MNIST2SVHN we find that SCoGAN models that use the
semantic loss, either alone or in conjunction with the feature regulariser or cycle
consistency are capable of learning the joint distribution that CoGAN cannot. The
perceptual loss manages to achieve similar results to those seen by the feature
regulariser alone, but maintains more control over the generated style features on
the MNIST2SVHN dataset.

On the CelebA datasets our implementation of both CoGAN and SCoGAN were
unable to replicate the results seen in [34], which we discuss further in section 7.2.
On this dataset both models learn similar high- and low-level features, and thus
do not learn domain specific features. This indicates that the coupling between
generators is too tight. This is seen through visual inspection of samples and
the measured LPIPS distances. However the LPIPS distances also show that our
proposed regulariser terms result in more diversity between generated samples
than achieved by our CoGAN. Through this we see the benefits that our softer
coupling provides, but still must conclude that the coupling is too tight.

94

Experiments on the two CycleGAN datasets apple2orange and horse2zebra, show
that neither our proposed method nor CoGAN is able to achieve results that is
comparable to those seen in CycleGAN. This could be explained by the deeper
architecture of CycleGAN, which we discuss in subsection 7.4.2.

Additionally we show that WGAN-GP can be used to stabilise the learning of joint
distributions in both CoGAN and SCoGAN, specifically in cases where the models
face difficulties.

This concludes our work in this project and it is summarised in the following con-
tributions: We show that the weight sharing constraint of CoGAN restricts the
learning capabilities of the generators. Based on this we propose 4 different regu-
larisation terms to provide a softer coupling between GANs that retain the ability
to learn joint distributions, but are less constraining than the weight sharing of
CoGAN. We then show that these methods can single-handedly or in combination
create Soft Coupled GANs(SCoGANs) that either surpass or perform similarly to
the CoGAN approach on joint distribution learning tasks. We specifically want
to highlight our SCoGAN-SLFR and SCoGAN-SLCC models abilities to learn the
joint distribution on MNIST2SVHN, which CoGAN is notorious for failing on.
Through these regularisation terms we prove that the core intuition in CoGAN of
coupling GANs on to achieve similar high-level features, can be utilised to create
joint distribution learning models, that, in some cases, are better than the original
proposed method.

Appendix A Generator and discrim-
inator architectures

Generator Output shape Kernel Stride BatchNorm Activation Shared
Input 100 - - - - yes
Fully Connected 16384 - - - - yes
Reshape 4x4x1024 - - - - yes
ConvTranspose 4x4x512 4 2 yes PRelu(0.25) yes
ConvTranspose 8x8x256 4 2 yes PRelu(0.25) yes
ConvTranspose 16x16x128 4 2 yes PRelu(0.25) yes
ConvTranspose 32x32x64 4 2 yes PRelu(0.25) yes
ConvTranspose 64x64x32 4 2 yes PRelu(0.25) no
ConvTranspose 128x128x3 3 1 yes Tanh no

Table A.1: Original CoGAN generator architecture for 128x128 image experiments

Discriminator Output shape Kernel Stride BatchNorm Activation Shared
Input 128x128x3 - - yes - no
Conv 128x128x32 5 2 yes PRelu(0.25) no
Conv 64x64x64 5 2 yes PRelu(0.25) yes
Conv 32x32x128 5 2 yes PRelu(0.25) yes
Dropout(0.1) 32x32x128 - - - - yes
Conv 16x16x256 3 2 yes PRelu(0.25) yes
Dropout(0.3) 16x16x256 - - - - yes
Conv 8x8x512 3 2 yes PRelu(0.25) yes
Dropout(0.3) 8x8x512 - - - - yes
Conv 4x4x1024 3 2 yes PRelu(0.25) yes
Dropout(0.5) 4x4x1024 - - - - yes
Fully Connected 2048 - - yes PRelu(0.25) yes
Dropout(0.5) 2048 - - - - yes
Fully Connected 1 - - - Sigmoid yes

Table A.2: Original CoGAN discriminator architecture for 128x128 image experiments

95

96

Discriminator Output shape Kernel Stride BatchNorm Activation Shared
Input - 100 - - - yes
Input 100 - - - - yes
Fully Connected 32768 - - - - yes
Reshape 4x4x2048 - - - - yes
ConvTranspose 4x4x1024 4 2 yes PRelu(0.25) yes
ConvTranspose 8x8x512 4 2 yes PRelu(0.25) yes
ConvTranspose 16x16x256 4 2 yes PRelu(0.25) yes
ConvTranspose 32x32x128 4 2 yes PRelu(0.25) yes
ConvTranspose 64x64x64 4 2 yes PRelu(0.25) yes
ConvTranspose 128x128x32 4 2 yes PRelu(0.25) no
ConvTranspose 256x256x3 3 1 yes Tanh no

Table A.3: CoGAN generator architecture for 256x256 image experiments

Discriminator Output shape Kernel Stride BatchNorm Activation Shared
Input 256x256x3 - - yes - no
Conv 256x256x32 5 2 yes PRelu(0.25) no
Conv 128x128x64 5 2 yes PRelu(0.25) yes
Conv 64x64x128 5 2 yes PRelu(0.25) yes
Dropout(0.1) 64x64x128 - - - - yes
Conv 32x32x256 3 2 yes PRelu(0.25) yes
Dropout(0.3) 32x32x256 - - - - yes
Conv 16x16x512 3 2 yes PRelu(0.25) yes
Dropout(0.3) 16x16x512 - - - - yes
Conv 8x8x1024 3 2 yes PRelu(0.25) yes
Dropout(0.5) 8x8x1024 - - - - yes
Fully Connected 2048 - - yes PRelu(0.25) yes
Dropout(0.5) 2048 - - - - yes
Fully Connected 1 - - - Sigmoid yes

Table A.4: CoGAN discriminator architecture for 256x256 image experiments

Appendix B Classifier architectures
for semantic loss

Digit Classifier Shape Kernel Stride Activation
Input 32x32x3 - - -
Conv 32x32x32 3 1 LeakyReLU(0.3)
Conv 32x32x64 3 1 LeakyReLU(0.3)
MaxPool 64x64x64 2 1 -
Dropout(0.25) 64x64x64 - - -
Fully Connected 128 - - LeakyReLU(0.3)
Dropout(0.5) 128 - - -
Fully Connected 10 - - Softmax

Table B.1: Pretrained classifier architecture used in the semantic loss for MNIST2edge and
MNIST2SVHN

Digit Classifier Shape Kernel Stride Activation
Input 128x128x3 - - -
Conv 128x128x32 3 1 LeakyReLU(0.3)
Conv 128x128x64 3 1 LeakyReLU(0.3)
MaxPool 256x256x64 2 1 -
Dropout(0.25) 256x256x64 - - -
Fully Connected 128 - - LeakyReLU(0.3)
Dropout(0.5) 128 - - -
Fully Connected 13 - - Sigmoid

Table B.2: Pretrained classifier architecture used in the semantic loss for the CelebA variants

97

Appendix C Python script for WD
and JSD experiment

1 import m a t p l o t l i b . pyplot as p l t
2 import seaborn as sns
3 import numpy as np
4 import sc ipy
5

6 def JSD (P , Q) :
7 _P = P / np . l i n a l g . norm (P , ord =1)
8 _Q = Q / np . l i n a l g . norm (Q, ord =1)
9 _M = 0 . 5 ∗ (_P + _Q)

10 re turn 0 . 5 ∗ (sc ipy . s t a t s . entropy (_P , _M) + sc ipy . s t a t s . entropy (_Q , _M
))

11

12

13 amount_of_samples = 100000
14 p_const = np . random . normal (0 , s i z e =amount_of_samples)
15 q1 = np . random . normal (1 0 , s i z e =amount_of_samples)
16 q2 = np . random . normal (1 5 , s i z e =amount_of_samples)
17 q3 = np . random . normal (2 0 , s i z e =amount_of_samples)
18

19 p_l inspace = np . l i n s p a c e (p_const . min () −1, p_const . max () +1 ,
amount_of_samples)

20 p_pdf = sc ipy . s t a t s . norm . pdf (p_l inspace)
21

22 d i s t s _ j s d = []
23 d i s t s _ j s d 2 = []
24 dists_w = []
25 f o r i in range (2 1) :
26 q = (np . random . normal (i , s i z e =amount_of_samples))
27 q_l inspace = np . l i n s p a c e (q . min () − 1 , q . max () + 1 , amount_of_samples)
28 q_pdf = sc ipy . s t a t s . norm . pdf (q_ l inspace)
29

30 d i s t _ j s d = JSD (p_pdf , q_pdf)
31 dist_w = scipy . s t a t s . w a s s e r s t e i n _ d i s t a n c e (p_const , q)
32

33 d i s t s _ j s d . append (d i s t _ j s d)
34 dists_w . append (dist_w)
35

36 sns . d i s t p l o t (p_const , l a b e l = ’p ’)
37 sns . d i s t p l o t (q1 , l a b e l = ’ q1 ’)
38 sns . d i s t p l o t (q2 , l a b e l = ’ q2 ’)
39 sns . d i s t p l o t (q3 , l a b e l = ’ q3 ’)
40 p l t . p l o t (d i s t s _ j s d , l a b e l = ’ JSD ’)
41 p l t . legend ()
42 p l t . show ()
43

98

99

44 sns . d i s t p l o t (p_const , l a b e l = ’p ’)
45 sns . d i s t p l o t (q1 , l a b e l = ’ q1 ’)
46 sns . d i s t p l o t (q2 , l a b e l = ’ q2 ’)
47 sns . d i s t p l o t (q3 , l a b e l = ’ q3 ’)
48 p l t . p l o t (dists_w , l a b e l = ’WD’)
49 p l t . legend ()
50 p l t . show ()

Bibliography

[1] Patrick Alminde and Markus H. Juul-Nyholm. “Deep Generative Models for
Image Generation - An Investigation of GAN and VAE Models”. In: AAU
library (Jan. 2020).

[2] Martin Arjovsky and Léon Bottou. “Towards Principled Methods For Train-
ing Generative Adversarial Networks”. In: ICLR (Jan. 2017).

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”.
In: PMLR (Dec. 2017).

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normaliza-
tion”. In: ArXiv (2016).

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Train-
ing for High Fidelity Natural Image Synthesis”. In: ICLR (Sept. 2018).

[6] Xi Chen et al. “InfoGAN: Interpretable Representation Learning By Informa-
tion Maximizing Generative Adversarial Nets”. In: NIPS (July 2016).

[7] Yunjey Choi et al. “StarGAN: Unified Generative Adversarial Networks for
Multi-domain Image-to-Image Translation”. In: IEEE CVPR (2018).

[8] Yunjey Choi et al. StarGAN v2: Diverse Image Synthesis for Multiple Domains.
2019. arXiv: 1912.01865 [cs.CV].

[9] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: AISTATS (2010).

[10] Ian Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. In:
NIPS (Apr. 2017).

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[12] Ian Goodfellow et al. “Generative Adversarial Nets”. In: NIPS (June 2014).

[13] Ishaan Gulrajani et al. “Improved Training of Wasserstein GANs”. In: NIPS
(Dec. 2017).

[14] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: ICCV (Feb. 2015).

[15] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium”. In: NIPS (June 2017).

[16] Judy Hoffman et al. “CyCaDa: Cycle-Consistent Adversarial Domain Adap-
tation”. In: MLR (Dec. 2019).

[17] Xun Huang et al. “Multimodal Unsupervised Image-to-Image Translation”.
In: ECCV (Aug. 2018).

100

https://arxiv.org/abs/1912.01865
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 101

[18] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: JMLR (2015).

[19] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial
Networks”. In: CVPR (Nov. 2016).

[20] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[21] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-
time style transfer and super-resolution”. In: European Conference on Computer
Vision. 2016.

[22] Alexia Jolicoeur-Martineau. “The relativistic generator: a key element miss-
ing from standard GAN”. In: ArXiv (Sept. 2018).

[23] Animesh Karnewar and Oliver Wang. “MSG-GAN - Multi-Scale Gradients
for Generative Adversarial Networks”. In: ArXiv (Nov. 2019).

[24] Tero Karra et al. “Progressive Growing of GANs for Improved Quality, Sta-
bility and Variation”. In: ICLR (Feb. 2018).

[25] Tero Karras et al. “Analyzing and Improving the Image Quality of Style-
GAN”. In: ArXiv (Dec. 2019).

[26] Diederik Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
ICLR (Dec. 2013).

[27] Diederik P. Kingma and Jimmy Lei Ba. “ADAM: A Method for Stochastic
Optimization”. In: NIPS (Jan. 2017).

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: NIPS (2012).

[29] Tuomas Kynkäänniemi et al. “Improved Precision and Recall Metric for As-
sessing Generative Models”. In: NeurIPS (Apr. 2019).

[30] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. “Unsupervised Image-to-Image
Translation Networks”. In: NIPS (2018).

[31] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: ICCV (Dec.
2015).

[32] Mario Lucic et al. “Are GANs Create Equal? A Large-Scale Study”. In: NIPS
(Oct. 2018).

[33] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. “Rectifier Nonlinear-
ities Improve Neural Network Acoustic Models”. In: JMLR (2013).

[34] Liu Ming-YU and Tuzel Oncel. “Coupled Generative Adversarial Networks”.
In: NIPS (2016).

[35] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”.
In: (Nov. 2014).

Bibliography 102

[36] Chris Olah, Vincent Dumoulin, and Augustus Odena. Deconvolution and Checker-
board Artifacts. https://distill.pub/2016/deconv-checkerboard/. 2016.

[37] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks”.
In: ICLR (Jan. 2016).

[38] Cédric Villani. Optimal transport, old and new. https://ljk.imag.fr/membres/
Emmanuel.Maitre/lib/exe/fetch.php?media=b07.stflour.pdf. Springer,
2006.

[39] Ting-Chun Wang et al. “High-Resolution Image Synthesis and Semantic Ma-
nipulation with Conditional GANs”. In: IEEE CVPR (2018).

[40] Lilian Weng. From GAN to WGAN. https://lilianweng.github.io/lil-
log/2017/08/20/from-GAN-to-WGAN.html. 2017.

[41] Y. Bengio Y. LeCun L. Bottou and P. Haffner. “Gradient-based learning ap-
plied to document recognition”. In: IEEE (1998).

[42] Zili Yi et al. “DualGAN: Unsupervised Dual Learning for Image-To-Image
Translation”. In: ICCV (Apr. 2017).

[43] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a
Perceptual Metric”. In: IEEE (Apr. 2018).

[44] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks”. In: ICCV (2017).

https://distill.pub/2016/deconv-checkerboard/
https://ljk.imag.fr/membres/Emmanuel.Maitre/lib/exe/fetch.php?media=b07.stflour.pdf
https://ljk.imag.fr/membres/Emmanuel.Maitre/lib/exe/fetch.php?media=b07.stflour.pdf
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	2 Preliminary theory
	2.1 Neural Networks
	2.1.1 Activation functions
	2.1.2 Backpropagation
	2.1.3 Weight initialisation
	2.1.4 Convolution and Transposed convolution
	2.1.5 Pooling operations
	2.1.6 Batch Normalisation
	2.1.7 Layer Normalisation

	2.2 Generative Adversarial Networks
	2.3 Common issues in GANs
	2.3.1 JSD instability under an optimal discriminator
	2.3.2 Mode collapse

	2.4 Wasserstein GAN
	2.4.1 Wasserstein distance
	2.4.2 Wasserstein distance as a GAN loss

	2.5 Wasserstein GAN with gradient penalty
	2.6 Deep Convolutional GAN
	2.7 Datasets

	3 Problem analysis
	3.1 Coupled Generative Adversarial Networks
	3.2 Metric for model evaluation
	3.3 CoGAN analysis
	3.3.1 Scaling issue
	3.3.2 Domain issue

	3.4 Problem statement

	4 Approaches
	4.1 Feature regularising
	4.2 Controlling learned features
	4.2.1 Semantic loss
	4.2.2 Cycle consistency
	4.2.3 Perceptual loss

	5 Experiments
	5.1 MNIST2edge
	5.2 MNIST2SVHN
	5.3 CelebA
	5.4 CycleGAN datasets

	6 Implementation
	6.1 Main
	6.2 Data
	6.3 Nets
	6.4 Losses and Penalties
	6.5 CoGAN_trainer
	6.6 SCoGAN_trainer

	7 Discussion
	7.1 Domain adaptation and style transfer
	7.2 Joint distribution learning on CelebA variants
	7.3 Combining regulariser terms
	7.4 Perceptual loss
	7.4.1 Perceptual loss values and weight
	7.4.2 CycleGAN dataset results
	7.4.3 Checker board patterns in perceptual loss results

	7.5 Further investigation of semantic loss

	8 Conclusion
	A Generator and discriminator architectures
	B Classifier architectures for semantic loss
	C Python script for WD and JSD experiment
	Bibliography

