Application of Inference Methods
and Caching for Real-time Medical
Diagnosis using BN20O Networks

An investigation of exact and approximate methods, and their use
for asking questions

Jens Engholm Aggerholm
Casper Skov Mathisen

Computer Science, mil010f20, Spring Semester 2020

Master Thesis Report

AALBORG UNIVERSITY
STUDENT REPORT

Title:

Application of Inference Methods and
Caching for Real-time Medical Diagnosis
using BN20 Networks

Theme:
Variational inference, BN20O networks,
medical diagnosis

Project Period:
Spring Semester 2020

Project Group:
mil010f20

Participants:
Jens Engholm Aggerholm
Casper Skov Mathisen

Supervisor:
Thomas D. Nielsen

Page Count:

Date of Completion:
June 11, 2020

Computer Science
Aalborg University
http://www.aau.dk

Abstract:

This paper is an investigation of infer-
ence methods in graphical models ap-
plied in clinical decision support set-
tings. We implement both exact and
approximate algorithms designed for in-
ference in BN20 networks. As for the
exact algorithms we use Quickscore, for
which we suggest two caching strategies
that can prove useful in an active diag-
nosis setting, where questions are asked
to a patient and probabilities of interest
need to be updated on the fly.

For the approximate algorithms we use
variational methods that allow us to cal-
culate upper and lower bounds on like-
lihoods as well as on posterior probabil-
ities.

Finally we suggest an entropy based
criteria for asking questions to a pa-
tient during active diagnosis and eval-
uate such methods on artificial patient
cases.

We find that each of the caching meth-
ods are able to provide a significant
speedup for exact inference in an ac-
tive diagnosis setting. The entropy
based questioning method shows some
promise in certain cases, but currently
requires too much time for slightly

larger cases.

http://www.aau.dk

Preface

This report is a master thesis marking the completion of the master program in
computer science at AAU. The report contains some material that has been reused
from a report published earlier by the same authors [1|. This has been noted in the
top of the relevant sections. We would like to extend our thanks to Thomas Dyhre
Nielsen for his supervision throughout this project.

iii

Summary

This paper is an investigation of inference methods in graphical models for applica-
tion in clinical decision support systems (CDSS). CDSS aid health professionals in
providing health services towards patients. This can be by guiding a clinician through
the diagnose process by suggesting the next test to perform or the next question to
ask the patient, as a step on the way towards the final diagnosis. We look at different
ways to choose a question to ask in order to diagnose a patient, as well as how to
determine the probabilities needed to both update probabilities based on the answer,
and those needed to choose the questions themselves.

We implement both exact and approximate algorithms designed for inference in
BN20 networks, in order to investigate how useful the different inference algorithms
are, and which advantages they have over each other.

The algorithm we are using to determine exact probabilities is Quickscore, which
is an algorithm based on certain factorizations that have reduced the complexity of
inference from being exponential in the number of diseases, to being exponential in
only the number of positive findings. Based on this algorithm we suggest two caching
strategies that can prove useful in an active diagnosis setting, where questions are
asked to a patient and probabilities of interest need to be updated on the fly.

For the approximate algorithms we use variational methods that allow us to cal-
culate upper and lower bounds on likelihoods as well as on posterior probabilities.
We evaluate these bounds in order to help determine whether these can be useful
both during the questioning process and for the final diagnosis.

Finally we suggest an entropy based criteria for asking questions to a patient
during active diagnosis and evaluate such methods on artificial patient cases.

We find that each of the caching methods are able to provide a significant speedup
for exact inference in an active diagnosis setting. The entropy based questioning
method shows some promise in certain cases, but currently takes too long for slightly
larger cases.

The project that this report documents was proposed in collaboration with Am-
bolt ApS, who also provided the necessary data for experiments.

v

Contents

[Preface]

[1 Introduction|

1.1 Probabilistic representation|

1.2 Diagnosigl . . .

[2.2.1 Noisy-or|

[2.2.2 Jensen’s Inequality|o

3 eory
3.1 Questions| . . .

[3.1.1 Entropy based questioning|.

[3.1.2 Relevant findings| 0L

3.2 Quickscore]. . .

[3.2.1 Absorbing negative findings|o

[3.2.2 Caching strategies|
B.3_ Variational Inferencel L.

13.3.2 Upper bound transformations|

[3.4 Optimisation of lower bound|.

[3.4.1 Combining exact and transformed findings/.

[3.4.2 Calculating both bounds|.

4 Experiments|

iii

iv

10
10
11
11
12
14
15
21
21
22
24
27
27
28

vi

Contents

[4.3 Caching for sequential joint inding probabilities|. 32
[4.4 Caching for multiple posterior probabilities] 34
[4.4.1 Joint finding probability approximations| 34
[4.5 Bounds on posteriors|o 35
[4.6 Question strategies| Lo 37
FBT Case Il . o o o oo oo e 37
462 Case 2 e 39
B3 Casedl . - o o o o 39
[4.6.4 Aggregate cases|.o 42

[5_Conclusionl 44

Chapter 1

Introduction

lsection 1.1] and [section 1.3 are based on [1].

Computer systems within the healthcare sector mainly serve the purpose of storing
and maintaining electronic medical records of patients along with processing this
information in order to enhance the medical care service provided by professionals.
Computer systems that supports the clinical decision making process exists in various
forms and are generally categorised as Clinical Decision Support Systems(CDSS).
These systems can vary in different ways|2, |11]; for instance in the type of output a
CDSS generates can range from simple warnings and reminders to suggestions during
diagnosis and prescription. Also the timing in which support is offered can vary.
Support can be provided before, during or after a diagnosis setting takes places. A
CDSS can furthermore be specialised to deal with certain areas of medicine or it can
be designed with the aim of supporting general clinical diagnosis. Common for all of
these systems is that they require an input consisting of some form of patient medical
data and a mechanism for reasoning about this data in order to provide an output
for interpretation by a health professional.

The role of a CDSS can be to provide "the answer" in the form of a final diagnosis
of a patient, or it can be to simply suggest the next question to ask or the following
test to perform, given a patient’s known health record.

A CDSS can be non-knowledge based or knowledge based[2]. Within the non-
knowledge based domain, artificial neural networks (ANNs) can be mentioned as
a tool. An ANN can be trained on databases containing diagnosis examples and
doesn’t need parameters to be specified by experts. However the results provided by
these methods often lack in reliability and are difficult to explain. Furthermore these
models require large amounts of data to be configured.

A knowledge based system on the other hand requires model parameters to be
provided. These could be in the form of probabilistic connections between diseases
and symptoms. Graphical models such as Bayesian Networks serve as candidates for
this expert knowledge to be compiled into. These types of models are comparably
more interpretable than their ANN counterparts.

This project was originally proposed in collaboration with Ambolt APS that is

2 Chapter 1. Introduction

developing IntMed. IntMed is a commercial decision support tool developed in part-
nership with doctors, which aims to support the process of diagnosis by suggesting
question to ask a patient based on the already established knowledge base and records
of the patient. IntMed uses a combination of gathered medical data statistics and
expert knowledge that are processed into probabilities regarding diseases and their
associations with symptoms.

1.1 Probabilistic representation

Graphical models have often been applied in the medical domain|6], in order to repre-
sent a distribution over multiple random variables and their dependencies. Bayesian
Networks, which are a specific type of graphical model, are well suited for medical
diagnosis, since these types of networks can handle the uncertainties that are inherent
within this domain. They serve as tools for updating prior beliefs after taking evi-
dence into account, such as a set of patient symptoms. The majority of CDS systems
that utilise some form of probabilistic reasoning, use these belief networks as their
framework for representing the domain dependencies|§].

A Bayesian network consists of a number of random variables representing an
event in the domain, and directed edges representing the relation between these vari-
ables. For each variable node in the network we have a conditional probability dis-
tribution that depends on the parent variables.

The knowledge base of the IntMed system contains information about diseases,
their prevalence and which findings they cause. It also contains demographic data,
such as which people are more likely to suffer from certain diseases, which diseases
are likely to result in other diseases, and which bodypart a symptom is related to.
Some of this comes from statistical data, combined with expert knowledge regarding
the relation between diseases and findings, and also between diseases.

We represent part of this data as a Bayesian network. More specifically we extract
the diseases with prevalences to determine prior probabilities, along with symptoms
and the relations between these and their disease parents, i.e. the chance of a symp-
tom manifesting itself given that a specific disease is present.

Any demographic data can be compiled into the network by selecting only the
data corresponding to the specific patient demographic. This results in a two-layer
(bipartite) Bayesian network with diseases d;, and symptoms, or more generally find-
ings, f;. The findings are modelled using noisy-OR|10| over the disease parents, which
assumes that each disease works independently to cause the finding. This significantly
reduces the number of probabilities that needs to be specified in the model.

The structure which we have just described is called a BN20 network and is
illustrated in It means a Bayesian Network with 2 layers using noisy
OR. This is similar to the structure used by the QMR-DT|7] model.

1.2. Diagnosis 3

Figure 1.1: A BN20O network over the relationship between some diseases and the symptoms they
cause individually

1.2 Diagnosis

In order to diagnose a patient, one first has to learn which symptoms the patient has.
Some of these symptoms may be provided directly by the patient, while it might be
necessary to ask about others. Since there are a lot of potential symptoms, a person
performing diagnosis needs to know which questions are relevant to ask and which
are best at narrowing down potential diagnoses.

One way of doing this is by assigning a value to each possible unknown symptom
that serves as a score determining how good a specific question is in the current
moment. The questions would then be sorted according to this score in decreasing
order, and the top ones would be the best questions to ask based on the criteria the
score was assigned on. In this report we suggest a entropy based criteria for the
scoring of questions.

Returning to the diagnosis problem itself, there are different ways of giving a
diagnosis. The simplest way is to simply provide a ranked list of individual diseases
that might be causing some of the symptoms. This could potentially be expanded by
allowing one or more preexisting diseases that are always present alongside the disease
being looked at. But a more ambitious goal would be to search for the configuration
of diseases that is most likely to be causing the symptoms. Feili Yu et al. |3} [14] takes
this maximum a posteriori (MAP) configuration approach using a variety of heuristic
algorithms to find these configurations that explains the observations.

1.3 Inference

A common task when working in Bayesian networks is that of inference. This is the
process of updating probabilities on variables in the network, based on evidence on
other variables. In the context of medical diagnosis a relevant probability to infer
could be the posterior marginal P(d; | f); the probability of having a certain disease
d;, given a set of known findings f. This would correspond to making observations
on a set of symptoms and from that adjust the belief in the prior probabilities for
the possible diseases. Probabilities on this form are found through the process of
marginalising out variables we are not interested in, by summing over all possible
instantiations of those variables, the complexity of which depends on which order it
is done.

4 Chapter 1. Introduction

Common inference algorithms can typically not be used in the domain of diagnosis
because of the high number of connections between some diseases and symptoms.
Some symptoms have a high number of disease parents, and the complexity of the
common inference algorithms is so that the calculations become intractable.

Consider for example the junction tree algorithm described in [9]. It works by
moralizing and triangulating the network graph, and identifying the cliques within
it. Moralizing is done by adding edges between parent nodes and making the graph
undirected. Triangulation makes sure that there are no cycles longer than three nodes
without a chord, which is an edge that is not part of the cycle connecting two nodes
in the cycle. The cliques can then be identified to form the junction tree by making a
maximum spanning tree on the number of shared variables. The added edges on the
graph correspond to those that would be added if using variable elimination, with
each clique corresponding to a set of potentials. Inference can then be performed
using a message passing algorithm on the resulting junction tree.

The problem with this method, is that the complexity of inference increases ex-
ponentially with the size of the largest clique in the moralized, triangulated graph
[5]. Consider for example the findings cough and fever which have 23 and 19 causes
respectively in the IntMed data set. This results in clique sizes of at least 24 and 20,
i.e. the finding and its parents. It is conceivable other large cliques might form due
to moralizing and triangulating shared parents.

Going back to the QMR-DT database, this becomes a problem for a lot of standard
diagnosis cases. In [5] Jaakkola and Jordan work with a set of cases where the median
size of the maximal clique is 151.5 nodes. This renders the junction tree algorithm
intractable in this context.

One solution is to find a specialised algorithm, that reduces the complexity for
the specific type of network we are working with. One such algorithm is Quickscorel|4]
which makes use of certain factorizations in the probabilities of findings in order to
reduce the complexity to being exponential in the number of positive findings. In
this paper we present two caching strategies applied to the Quickscore algorithm
that becomes useful when calculating multiple posteriors P(dg|f) for k = m...n and
when calculating likelihoods of findings sequentially.

Another solution to the problem of doing inference is to consider approximate
inference algorithms, which seek to gain speed by compromising on accuracy on the
sought after probabilities. Shwe and Cooper [12| experimented with stochastic sam-
pling methods using "likelihood-weighted sampling" and obtained reasonable results
for some difficult cases for the QMR-DT network.

Vomlel and Tichavsky suggest reducing the size of the inference problem, for
example through methods such as tensor decomposition|13|, which is able to reduce
the size of the conditional probability tables (CPTs), and is shown to provide smaller
CPTs than alternatives such as parent divorcing.

An alternative for approximate inference is that of variational inference. The
variational approach seeks to replace certain distributions with simpler ones using
variational parameters. This replacement of parameters renders the calculation an

1.3. Inference 5

approximation and the objective then becomes to find the parameters that result in
the best approximation.

In [5] Jaakkola and Jordan present the idea of replacing the certain conditional
probabilities of some of the positive findings with upper and lower bounds. These
bounds are possible to absorb into the priors in time linear in the number of diseases,
while reducing the exponent when handling the remaining findings. As we will show
one of the advantages of this variational approach is that it allows us to provide
bounds on the likelihoods themselves as well as on posterior probabilities. We im-
plement this variational method and evaluate it on cases we generate based on the
provided data set. All experiments will be run with data provided by Ambolt ApS.

Chapter 2

Preliminaries

lsection 2.1} [section 2.2| and [subsection 2.2.1| are based on [1]

2.1 Bayesian networks

The fundamental tool we use to represent the causal relationships within the domain
is Bayesian networks. These are well suited to capture the inherent uncertainty within
the medical domain in a quantitative way.

The structure of a Bayesian network consists of a set of variables X along with a
set of directed edges between these variables. The structure must be so that there is
no cycles. Each variable in X can take on a finite number of states that are mutually
exclusive. A Baysian network specifies the joint probability over the variables in the
network:

P(x) = [] Plalma), (2.1)
acX
where 7, are the parents of variable a. Therefore all variables has to have a conditional
probability table that specifies the probability over each of the states of the variables
given the state of its parents.

2.2 BN20 network

One specific type of Bayesian network that is suitable for the domain of diagnosis are
BN20O networks . These are bipartite graph structures with the top layer
containing diseases with edges connecting to findings (symptoms) which are located
in the bottom layer. This represents the causal direction in the relationship between
diseases and symptoms; a given disease can cause a patient to experience one or
more symptoms. These connections quantify the probability with which a disease,
if present alone, causes a finding. These probabilities along with the probabilities of
having each disease individually (the priors) is exactly the data that is available to
us. Therefore the data fits directly into these types of models without any alteration.

2.2. BN20 network 7

Figure 2.1: A BN20 network over the relationship between some diseases and the symptoms they
cause individually

Certain observations are in order for this network. Multiple diseases can be present
at the same time because they are not assumed to be mutually exclusive. The diseases
are marginally independent and the findings are conditionally independent given an
instantiation on the diseases.

The BN20 network specifies probabilities of the form:

P(f,d) = [P(fild) [] P(dw), (2.2)
i k

where f and d are binary vectors giving the state (present/absent) of findings and
diseases respectively.

2.2.1 Noisy-or

Often a finding will have multiple disease parents that can cause that finding to be
present. If some finding f; had a large number of parents, we would traditionally
have to specify p(f;|d) for each configuration d of the parents m; of the finding. This
would cause the number of parameters of the model to grow exponentially with the
number of parents for each finding. The number of configurations grows in O(2"),
where n is the number of parent diseases, which means at just 10 disease parents we
must already specify more than 1000 probabilities for that finding, and at 20 disease
parents it grows to over a million.

BN20O networks seek to avoid this by assuming noisy OR-gates to specify the
probability of a finding given the state of its disease parents. The Noisy OR-gate
was originally proposed by Pearl|10] and the underlying intuition is that multiple
conditions can work independently to cause a certain effect. Say for instance that a
certain set of diseases are known to cause a common symptom like fever. The more
of these diseases that a patient has, the more likely he would be to develop a fever.
Additionally if the patient has a disease that is not associated with fever, this fact
would not decrease the probability of him developing a fever.

By introducing noisy OR-gates we decrease the number of parameters needed
to be specified in the Bayesian network significantly. With noisy OR we only need
to specify one parameter for each disease parent of a symptom, and that is the
probability that disease, when present alone, will cause the symptom.

Consider a finding f; which can potentially be caused by two diseases d; and ds.
The probability of f; being present, denoted by f;r, given that only one disease d; is

8 Chapter 2. Preliminaries

present is
P(f;only di) = q1.
Conversely the probability of that finding not being present is

P(fii‘only d]_) =1- P(f+|0nly dl) =1 q1

Now suppose a disease configuration (an assignment of 0 or 1 to all diseases) d
is given. A symptom is not present if all of the present diseases d* fail to cause the
symptom:

P(f7|d) = [P(f; lonly dj)% = T](1 — ai)® (2.3)
J J

This is the noisy-OR model. Now the probability of a single negative finding
can be found by marginalising out the disease variable from the joint probability
distribution:

P(f7) =Y P(fi 1) P(d). (2.4)
d

Using noisy-OR, and the assumption that diseases are marginally independent,
this can be written as

P(f;) = ZHP(fi_]only dj>dj Hp(dj) (2.5)
d j J
The probability of multiple negative findings can similarly be found by:

P(f7) =) P(f|d)P(d). (2.6)
d

Assuming the findings are independent given a disease instance, this becomes

P(f7)=>_ 11 pf ld)p(d)

d fief-

=>" 11 II»(f lonly dj)%p(d) (2.7)
d fief— Jj

=> " TI TIQ = @)% [o)),
d fief= J J

where g;; is the probability that disease d; if present alone will cause finding f;.
The corresponding probability for a positive set of findings becomes:

P(rY=>"T] (t— I] @ =a) | I »(d) (2.8)

d f.eft djedt djed

This expression does not factorise over the diseases as does, and
the number of terms grows exponentially with the number of positive findings mak-
ing it computationally more expensive to perform the summation over the disease

configurations compared to [Equation 2.7]

2.2. BN20 network 9

2.2.2 Jensen’s Inequality

A function f(x) is said to be convex if every cord connecting two points on the
graph of f lies on or above the function. If f has the opposite property where every
connecting cord lies on or below the function, then f is said to be concave. It can
be shown that for any set of points x;, the following inequality holds for a convex

function f:
f (Z)\ifﬂi) < Z Nif(x;), (2.9)

where we require that >, \; = 1 and A; > 0 and the inequality is reversed if f is
concave. This relationship is called Jensen’s inequality.

Chapter 3

Theory

until and including subsection 3.2.1, and [subsection 3.3.2| are based on [1]

3.1 Questions

Often during the diagnosis of a patient there exists a starting point, or point of
origin|2], from which the diagnosis will be based on. This point of origin can be in the
form of the patients medical records, previously diagnosed diseases or the symptoms
that the patient is describing when seeing the physician. In practice two individual
physicians can have the same point of origin, and still follow different paths consisting
of different tests and questions to the patient. This difference in the steps taken by
two different physicians can be due to varying experience or domain of expertise, or
simply due to one of them having a hunch that the other did not have. This raises
the question of what principles should guide the question apparatus that determines
the next question to ask or the next test to perform, based on the already obtained
knowledge.

Different criteria for determining the next questions could be justified. One guid-
ing principle might be to ask that question which, when answered, has the potential
to reduce the set of possible diseases the most. The potential benefit from such a
strategy would be to rapidly reduce the size of the set of diseases under consideration.

Provided we have no method of determining which questions have the biggest
impact, we would have to rely on choosing the questions to ask either randomly or
in some predetermined order. If we do not otherwise limit the pool of questions, this
means that we are very likely to ask about a finding that is negative, due to the
limited number of findings being caused by a disease compared to the total amount
of findings in the network. There is also no guarantee on the impact the findings will
have on the disease posteriors.

10

3.1. Questions 11

3.1.1 Entropy based questioning

Here we present a question strategy based on entropy. Specifically we introduce a
value function V', which is defined as the negative sum of the binary entropy of each
disease posterior P(d;|f) of the diseases under consideration|9):

V(DIf)

= " Ent(di|f) =YY P(di|f)logP(di| f)
7 7 d;
' (3.1)
= leiglog(eig) + (1 = cip)log(1 — cip)],

)

where V(D|f) represents the value of the current posteriors over the individual dis-
eases given the known set of findings f up until this point, and ¢;y = P(d; = 1[f).

Since the entropy can be interpreted as the uncertainty of a random variable, we
seek to minimise this quantity, and therefore maximise the introduced value func-
tion. The intuition behind the approach is, that we score questions according to how
much they are able to reduce the overall uncertainty, when answered. The best next
question to ask will then be the one that increases the value function the most. The
answer to the next question is unknown until it is asked. Therefore we choose the
next question based on the finding which has the highest expected value EV:

EV(filf) = P(fTIHV(DILf,) + P(fTIHV(DIL £ (3.2)

This quantity can be calculated for all the findings under consideration, and then
sorted. That finding which then has the highest expected value, will, according to
this method, serve as the best candidate for the next question.

Based on testing we have found that this method performs better if the value is
shifted into the positive range, i.e. by adding approximately 0.301 to the contribution

from each posterior in

V(D|f) = (0.301 + [eiplog(cip) + (1 = cip)log(1 — cip)]), (3.3)

7

3.1.2 Relevant findings

A different approach to the above is to determine which diseases and findings are
relevant for the current case. If a patient goes to the doctor and describes a set of
symptoms, then it is to be expected that the disease(s) to be diagnosed are among
the parents of those findings. In the example given by a single symptom f3
is provided, which is related to two diseases d; and dy. These represent the possible
causes for said symptom.

If we wish to determine which of the two diseases is causing the known symptom,
then we will have to ask additional questions, more specifically we want to know
about the findings that can be caused by the relevant diseases. Looking once again

12 Chapter 3. Theory

Figure 3.1: The dark gray finding f3 is a known present symptom. The light gray diseases d; and
ds are its parents and possible explanations for f3. The light gray findings f1, fa, f5, f6 are children
of those two diseases, and are therefore possibly present findings given the diseases. The dashed
findings and diseases are not relevant for the finding f3, as they are not directly contributing to the
same set of diseases.

at the findings that can be caused by the two diseases are, excluding the
initial finding, f1, f1, f5 and fg. The dashed remaining diseases and findings are not
going to be considered initially.

This does not rule out the possibility of the complete diagnosis containing diseases
that are not in the set of parents, but that would mean that the patient did not
notice or find some unmentioned symptom relevant, and that the disease causing
said symptom would not be able to cause any of the initial findings. If we update the
set of relevant diseases after each question, then we would catch the case where the
disease becomes a possible parent to any of the currently known findings.

By limiting the search scope in this way, we are able to reduce the time it takes for
each step of the questioning algorithm - both in terms of determining which question
to ask, and when providing the posterior probabilitiesP(d; | f) afterwards.

This method of reducing the search space can be combined with the previous
methods in order to reduce the number of findings and diseases that must be iterated
over. Care must be taken that we do not break them, for example if we were to
calculate the entropy over a different set of diseases for each potential question.

As you learn about more and more positive findings, the number of parent diseases
naturally grows. This means that the time to perform inference also grows. One way
to get around this is to signify certain positive findings as being key symptoms. The
potential key symptoms include anything from a small subset of the initial findings,
for example more urgent symptoms, all the way to including a number of questions.
With the help of these key symptoms it is possible to focus on determining the more
likely causes for these findings, rather than spreading the questioning effort across all
of the encountered findings and diseases. We do not focus on these key symptoms
beyond limiting the relevant findings to be based on only the initial findings.

3.2 Quickscore

Quickscore is an algorithm that exploits a certain factorization for the BN20O net-
workl4, |1], which gives a simplified expression for the probability P(f;) of a negative

3.2. Quickscore 13

finding f;” as a product over the diseases, given by:

n
P =11 [P(£ lonly dj)P(dF) + P(d;)} . (3.4)
j=1
This probability is of the same form as that requires summation over
all disease configurations.
The two calculations have a significant difference in their complexity;
is a sum over 2" terms while is a product over n terms.

The probability for multiple negative findings using Quickscore becomes

=111 II P lonly dj)P(df) + P(d;) | - (3.5)
J=1 | fief~

This can be found by combining |[Equation 2.5 [Equation 2.7]and the above expression
for a single negative finding.

We now return to the task of calculating the probability of positive findings,
starting with finding the probability of two positive findings, namely:

P(f f5) —ZP (fiH1d)p(f5"|d)P(d)

= Z [1— P(fy|d)][1 — P(f |d)]P(d)
=Y P(d)- > P(fld)P ZP F 1) P) + " P(f) P(fy |d)P(d)
d

d d
(3.6)

The first term in the above expression is 1. The following three terms are just
P(fy),P(fy)and P(f, f2_) respectively, so this can be rewritten using|Equation 3.5

P(fif 1) =

P(fy lonly d;)P(d]) + P(d;)]

(3.7)

’:1: I :]:

[P(fy lonly dj)P(d]) + P(d;)]

.
Il
R

+
:]:

[P(fy lonly d;)P(f5 lonly dj)P(d]) + P(d})]

.
I
—

According to |4] the above expression generalises to an arbitrary set of findings
by:

P(ft)= > (-n] I P lonly dj)| P(df)+ P(d;)], (3.8)

freaft Jj=1 Jief'Uf~

14 Chapter 3. Theory

where the negative findings f~ are also included. 2f " is the power set of the
positive findings f7.

In itself Quickscore gives the probability of a specific finding configuration P(f) =
P(f*,f7) where f = fT U f~ are the present and absent findings. We can modify
the algorithm slightly using the product and chain rules to calculate the posterior
probability of a specific disease d; as follows:

by) P d) _ P L)P)
P(f) P(f)
Calculating P(f|dj+) can be done by setting P(dj) = 1 in the Quickscore algo-
rithm, as stated in the Quickscore paper |4]. Similarly the probability of not having
a disease can be determined by setting P(dj) =0.

(3.9)

3.2.1 Absorbing negative findings

In this section we take a closer look at how negative findings can be absorbed it-
eratively when calculating posteriors for the diseases of the form P(dg|f~). Here
we consider one negative finding but this could be expanded to multiple negative
findings:
P(dy | f7) o< Y P(f; | d)P(d), (3.10)
d\dy,

where the sum is over the diseases except dj:

S P(fi 1d)Pd)=> [[Q-a)%Pd,) [] Pldn)

d\dk d\dk]671'1 h¢7r1
= (1= qp)™P(dr) Y [T = @)™ P(d;) T] Pldn) (3.11)
d\dy, Jif;g hém;
j

oc(1 = qik) ™ P(dy),

where we have split the product over the disease into to those that are parents of
fi and those that are not, and then moved the factors involving k outside of the sum.

The probability P(d; |f;") can now be found by setting d, = 1 in the the above
expression and normalising, which gives us:

(1 - qu) P(d})

(1 — qi) P(dy) + P(d;,)
This expression can be used iteratively to absorb negative findings, when calculating
probabilites of the form P(dy | fT, firs s [)

P(df | f7) = (3.12)

Say now that we want to calculate the likelihood P(fT, f;7) of a set of positive
findings f* and a single negative finding f;”. We could write this out as:

ZP (fHa) JT = @) P(dy) T] Pld)) (3.13)

JE™; jém;

3.2. Quickscore 15

We can move the factors regarding the negative finding as well as the prior probability
into a new probability distribution P’(d) given by:

P'(d) =[] (0 —ap)®Pldy) [] Pdy), (3.14)

JET; Jjém;

which is simply obtained by multiplying P(d; = 1) with (1 — g;;) for each disease
parent d; of finding f;. After this update we have:

P(f*,f7)=>_P(fT|d)P'(d), (3.15)
d

where the updated P’(d) has replaced the original distribution. This absorption
can be performed for an arbitrary number of negative findings.

3.2.2 Caching strategies

In this section we present two different caching strategies that can be used when
calculating probabilities using the Quickscore algorithm presented in the previous
section. The first caching strategy pertains to the calculation of posterior probabilities
P(dg|f) for two or more different diseases dj. This is an extension of the caching
method used in |1].

The second strategy is relevant when we seek the joint probability P(fm, ... n)
of findings in a sequential way; first P(fi,, ..., fn) then P(fm,..., fn, fn+1) and so
on. This is useful both when we learn of additional findings during the questioning
process, as well as when we apply the entropy based question strategy presented in
lsubsection 3.1.1} In this setting we need to determine the probability P(f;|f) of a
finding f; given a set of already known findings f = f™ U f~, for a set of candidate

findings f; € f¢: P f)

P(filf) = P

We can also reuse the calculations of P(f;, f) to perform posterior calculations
P(d; | fi, f) given those same findings, which is especially of interest when calculating
the entropy for each possible question.

Once a finding fi has been chosen as the next test, it is added to the set of known
findings f < fU fx, and it is removed from the set of candidate findings f¢ < f¢— f%.
The process is now ready to be repeated with the updated set of known findings and
candidate findings. Since we already know the probability P(f) of the known set of
findings f we can exploit the sequential caching when we seek to determine P(f, f;).

We first present the strategy for calculating multiple posteriors, and then the
strategy for sequential joint probabilities.

Multiple posterior caching

The brute force way of calculating P(dg|f) for m different diseases, would be to
repeatedly calculate m times; once for each disease. This results in 2m

16 Chapter 3. Theory

calculations in total, since each of these requires two applications of
This method fails to exploit the common finding probability P(f) that could be

calculated once at the outset and then used for each posterior, since this doesn’t
change for the different diseases. This already cuts the number of calculations in
half, leaving us with m + 1 joint probabilities.

Let us take a look at the complexity of calculating the joint probability itself from
Equation 3.8 The sum over the powerset has a complexity of 2!/ I, Then we get to
the product over all diseases, that we must compute for each of the powerset elements
f’. Let us call the number of factors n. Then we get to the inner product over finding
probabilities P(f;” | only d;), for a subset of the present findings f' C fT, and all
of the negative findings f~. The number of negative findings remains constant for a
given calculation. The number of positive findings goes from 0 to |f*|. The average
cardinality of the sets in the powerset of fT is [fT|/2. This gives a total complexity

for a single joint probability of 2/ |(n(|f~| + @)) Say that we want to calculate

m, posteriors. This would have a complexity of (m + 1)(2/ " (n(|f~| + @)))
However there are further possibilities for caching optimisations that requires in-

vestigation of the Quickscore expression presented earlier in[Equation 3.8 and restated
here with colours indicating which calculations are being cached:

P(ft,) = Z (=)l § i ([Hfief,uf_ P(f; |only dj)] P(dj) —i—p(d]-_)) .
freaft
(3.16)

We introduce two data structures A and B which hold the precalculated values
that will be utilised when calculating the final posteriors of interest.

A holds the calculations marked with blue in the expression above. That is, each
entry in A is calculated by taking the product of the inhibitors P(f; |only d;) (which
is equal to 1 — g;;) over f (the positive findings associated with the current term of
the summation) and f~ (the negative findings) given that only d; is present. This
means that the entries in A will be indexed by f* and a disease d; so the number of
entries in A will be |2/ | Ny, where Ny is the total number of diseases.

The second data structure B is a derivative of A, and it holds the calculation
marked with red above. Each entry in B holds one instance of this calculation. That
is, entries in B are indexed by a set of findings f/ and is calculated as a product over
the discases; hence the number of entries in B is [2/7].

The pseudocode for calculation of the data structures A and B is presented in

3.2. Quickscore 17

algorithm 1

Algorithm 1: Construction of datastructures A and B for calculating mul-
tiple posterior values P(dj|f)

1 Input : findingsf—, fT;

2 Output : (4, B), P(f~, f7);

3 A=[]27F|,Ny]; // Initialize two dimensional array A

4 B=[2/"|]; // Initialize one dimensional array B

5 P(f7.f)=0;

6 for f in 2/* do

7 bf/ = 1,

8 for j in d do

9 ap;=1;

10 for i in f'U f~ do

11 ‘ af/jeaf/j-(l—qiﬁj);

12 end

13 A(f'4) « ap;

14 by 4= by - (ap P(dF) + P(d}))

15 end

w6 | P(f, f) « P(f,)+ (~D)M -by; // The finding probability
// is the sum of entries in B with correct sign

17 B(f') « by

18 end

Once the dictionaries A and B have been constructed, we can use these to calculate
each of the posteriors of interest, by performing one iteration through the entries in
B per posterior of interest. To see this we have to consider the content of B.

First off we make the observation that the only difference in the calculation of P(f|dy)
and P(f|d;) is that the corresponding prior probability P(d; = 1) is set to 1 when
iterating over dj or d; respectively.

Since the entries in B correspond to the product marked with red for a given element
of the powerset 2/ " in we can calculate the finding probability simply
by adding the cached terms from B while keeping the correct sign in every addition
according to this equation (line 16|in jalgorithm 1).

However if we want the probability P(f | dx) of the findings f given a dis-
ease dj, we need to consider the contribution to the product from the changed
prior probability. To do this we simply need to divide out the factor [[, P(f;
only dk)P(dz)—&—P(d;) pertaining to disease d,, and multiply with the entry A(f, dy)
for each sum element in B, since the effect of this is to set P(d;") = 1 in the product
over the diseases. This step essentially replaces specific factors in the elements of
B with new factors that incorporate the information from the disease which we are
conditioning on. Let the diseases of interest be dg. If we are querying N, = |dg]

18 Chapter 3. Theory

different disease posteriors, this is how many times we sweep over the elements in B.
The utilisation of A and B for calculation of the posteriors in dg is presented in
The expected savings of using this caching method, is that we no longer have

to perform the full calculations inside the sum over the powerset for each poste-

rior we want to calculate. We recall that we originally had a complexity of (m +

DEV () + |f—2ﬂ))) to calculate m posteriors. With the presented caching strat-
egy it becomes possible to reduce this. First we can calculate the A and B, which is
of complexity 2/ (n(|f~| + @)), where we can simultaneously calculate the likeli-
hood P(f). We then want to calculate all m posteriors. For each posterior we sum
together 21 I terms each with an adjustment (a division and a multiplication) that
takes constant time. These terms are what is contained in B, so performing this
sweep m times has complexity m - 2!/ I

Putting it all together this gives us a complexity of 2/ (n(| f~|+ @))—l—m@‘fﬂ).
Importantly, the complexity from inside the joint probability calculation, regarding n
and m, has been separated from the additional complexity of the posterior calculation
regarding m. The first presented brute first strategy requires (m+ 1)n iterations over
27+ while with the suggested caching we require m + n.

Algorithm 2: Utilisation of datastructures A and B for calculating multiple
posterior values P(dg|f)

1 Input : dictionaries(A, B), query diseases dg = {d;};

2 Output : PQ;

3 PQ =[|dg|] ; // Initialise array of size |dg| that holds the
posterior of each disease of interest

4 for j in dg do
5 posteriory <= 0 ;
6 for f in 2/t do
7 sign « (=11
B(f) 'y
— — — - A(f,7);
® ¢ A apanira A7)
9 posteriory < posteriory + sign - e;
10 end
11 PQ(j) « posterior,
12 end

Sequential joint probabilities

The second caching strategy we present is relevant in settings where we seek joint
probabilities of findings in a sequential way. Say we want to know the probability
P(f1) of a single finding f;. Then we want to know the probability P(f1, f2) of this

3.2. Quickscore 19

first finding and a second finding fo. Then we add another finding and so forth. This
could be achieved by repeatedly applying each time with the set of
findings of interest. This method would be the brute force way to calculate these
probabilities, but as in the previous section this method fails to exploit possibilities
for caching, since some of the same calculations are being carried out multiple times
each time a finding is added to the pool. Recall that the complexity of calculating
the joint probabilities for a given set of findings is (211 (n(|f~| + lfTﬂ))

This caching strategy is mainly concerned about updating the datastructure A.
We do not explicitly mention B, but it could be updated using the results added to
A. A is initialised once the first finding probability P(f1) is requested. Every time a
finding f; is added, that is going from P(f1,..., fx) to P(f1, ..., fx, fi), A is updated.
The update of A happens in one of two ways determined by the new finding f; being
positive or negative.

When a new negative finding is added we simply update all of the entries in A.
Noting again that A holds the calculation coloured with blue in we
see that we need to multiply each entry with P(f; |only d;) where f; is the new
finding and d; the disease which we are currently iterating over. This operation
requires a sweep through all of A so the finding probability can be calculated while
simultaneously updating the data structure with the new information from the new
finding. The algorithm that updates A with a new negative finding is presented in

algorithm

Algorithm 3: Algorithm for updating the data structure A with the infor-
mation from an added negative finding f;

1 Input : dictionary A, new finding fj;

2 Output : updated dictionary(A’), updated finding probability Pyeyws;
3 P(f)«<0;

4 for f' in 21 do

5 sign (—1)|f/| ;

6 prod < 1;

7 for i in d do

8 A(f'1) < A(F 1) - (1= a5,0);

9 prod < prod - (A(f',i)P(d}) + P(d;));
10 end

11 P(f) < P(f) + sign - prod
12 end

When the new finding f; to be added is positive, we need to add new entries to A.
The number of new entries in A is equal to the number of existing entries, so the size of
A is doubled. This is because the powerset in is over the set of positive
findings which is now expanded with a new member. The already existing entries in
A does not need to be altered. When expanding A to include the information from

20 Chapter 3. Theory

the new finding, we simultaneously want to calculate the new finding probability.
When the new finding is positive we update the finding probability by adding new
terms to the old probability. This again is because adding a positive finding leads
to extra terms stemming from the powerset over the positive findings. This extra
contribution is saved in P44 in which is the algorithm for updating A
when adding a positive finding.

Algorithm 4: Algorithm for updating the data structure A with the infor-

mation from an added positive finding f;

Input : dictionary A, new finding f;, old finding probability : Pyq4;
Output : updated dictionary A’, updated finding probability Pyey ;
Podga <05
for f' in 27t do
Sign <— (—1)|f/‘ ;
prod < 1;
for i in d do
AU fiyd) = A0 - (1= ag0)
prod < prod - (A(f U f1,i)P(d}) + P(d;));
end
Poda <+ Padqa + sign - prod ;
end
fre=frufi;
Pnew <_P01d+Padd
In the calculation for the new entries in the updated A is carried out based
on the already existing entries in A. In the contribution to the old probability
is accumulated in the P,4q variable before being added to the old probability in
[line 141
So to reiterate, the complexity of the naive way of calculating the joint probability
when a finding is added is 21/ "+ (n(|f | + W%) if the new finding is positive and

2l /] (n(|f~|+1+ |fT+|) if this is negative. Using this caching strategy, we are able to
reduce the complexity of adding both positive and negative findings. Since adding a
negative finding is only updating the existing entries by multiplying the new factor
onto the entries in A, the complexity is of this is olf +|(n). When adding a positive
finding we only have to be concerned about the new powerset elements, for which the
complexity is 2l "1 This caching exploits the already existing entries in A in order
to reduce a complexity of n(|f~| + ‘fTﬂ) into n. This means we end up with the
same complexity for adding both negative and positive findings, noting that positive
findings increases the complexity for adding subsequent findings exponentially.

All of the caching strategies described above, can be optimised further by only
considering relevant disease parents when doing iterations such as the one in in
Relevant disease parents of a finding are those diseases with a connection
to the finding - that is, d; is a relevant parent of f; if and only if ¢;; # 0. Furthermore

© 00 N OO A W N =

-
- o

e e
BROWw N

3.3. Variational Inference 21

in some settings it is possible to achieve speedup by absorbing the negative findings.
These modifications will not be discussed here.

The experiment section of this report will demonstrate runtime performance of
these methods compared to their brute force counterparts.

3.3 Variational Inference

In the previous sections we presented methods involving Quickscore as an algorithm
for exact inference in BN20 networks. However some probabilities of interest quickly
become intractable using only exact methods. This could for instance be the cal-
culation of the likelihood P(f) of a large number of positive findings. Previously
we showed how negative findings can be dealt with in time linear in the number of
associated disease parents, and how this was not the case for positive findings.

In this section we introduce variational methods that can be combined with ex-
act inference methods in order to achieve tractable approximations to otherwise in-
tractable probabilities. Specifically we show how introducing upper/lower bounds on
single conditionals P(f;|d) provide upper/lower bounds on the likelihoods as well as
posteriors.

3.3.1 Lower bound transformations

Here we introduce the transformation necessary to calculate lower bounds on joint
probabilities of findings. This is done by introducing lower bounds for each of the
conditional probabilities individually in order to get a lower bound on the likelihood
of the findings|[5]. We start out by considering the conditional probability of a positive
finding in the exponential form:

P(ffld) =1-P(f7|d) =1 - [[(1 - a)®
J
=1 QZOQHj(1*Qij)? (317)
— 1 — e 2i%b%

_ (log(i—e) _ f(@)

Y

where f(z) =log(1—e™"), x =}, 6;;d; and 0;; = —log (1 — g;;). By introducing
the leak probability 6;y for each finding (this could represent a finding being caused
by some fault not included in the model) and applying Jensen’s inequality to the

22 Chapter 3. Theory

concave function f, we get:
FOi0+ Y 0i5d))
J

> S gyuf (010 + 224
; djli
0;;
= ajild;f (B0 + —L) + (1= d;) f(0i0))-
j

) (3.18)

djli

Here we have introduced a distribution g.; over the diseases for each finding.
Making use of the fact that) ;45 = 1, we can rewrite the last expression and state
the inequality as:

FO+Y_0i5d5) > f(Bio) + > ajids[f (00 + qu) — f(i0)] (3.19)
j j I

Substituting this lower bound on f into [Equation 3.17] we get the variational
lower bound evidence:

F(0i0)+3; 45135 1f (Bro+ j;‘fi)—F(6io)]

P(fi"ld,q;) = e
_ ef(9i0)+2j leidjgij’

(3.20)

where we have introduced the auxiliary function g;; = f(60 + 5;‘32) — f(6i0). We

now have a lower bound for the individual conditionals:

P(ffld) > P(f;"|d, q) (3.21)
In the the exponent is a sum over the diseases d;. With this

transformation it becomes possible to absorb the lower bound transformation of a
positive finding into the priors in time linear in the number of associated diseases.

3.3.2 Upper bound transformations

It is possible to replace the exact probabilities P(f;r | d) for positive findings with
corresponding upper bounds on the probabilities P(f;“ | d,&). The way this is done
is described in [5} |1], which gives us the following expression for the conditional
probability of a given positive finding f;r:

P(f | d) < P(f | d,&) = 8% Ot =f" (&), (3.22)

where &; is called a variational parameter and can be optimised to produce a tighter
upper bound.

3.3. Variational Inference 23

Unlike the corresponding exact probability, this upper bound, like the conditionals
P(f;|d) of negative findings, factorises over the diseases, which means significant
computational savings can be achieved just as with the lower bound transformed
findings in the previous section. Once a positive finding has been transformed, i.e.
variationally approximated, the joint probability is now an upper bound:

£)=>_P(fHd)P(d) <> P(f|d,&)P(d).
d d
= P(fl¢)

Furthermore it is now possible to absorb the transformed findings into the disease
priors:

(3.23)

ZP (f*|d,)P ZHP (f;"1d.€) HP
—ZHe&“d) HP (3.24)
_ZHHefzeud f (gz)HP

1 JET;

where we used the explicit representation of P(f;"|d,£) and m; are the disease
parents of finding f;. From we see how the transformation turns the
conditional into factors that can be multiplied onto the priors instead of leading to an
exponential number of terms that needs to be summed over as the exact conditionals
did.
P(f|€) is an upper bound approximation for some values of the parameters {. The
objective is to find the assignment of values that minimises this bound. If we assume
that the indices of the findings we wish to approximate is a, the upper bound becomes:

p(H 19 =TI P 1 d.&) | p(fF | dyp(d)
d i€a
—Z Hszld&)| P(d] f)p(fF) (3.25)

OCE{HP(fi | daéi)},

i€a

where bayes rule was used to rewrite P(f.F|d), P(f") is the proportionality constant
and the expectation is wrt. the posterior of the diseases given those findings we treat
exactly (i.e. do not transform). Reintroducing the explicit form for the transformed

24 Chapter 3. Theory

conditional, we get:
P/l x B {H 5 9ijdj—f*(£i)}

i€a

— H P ()) {H oS 225 0d; } ,

i€a i€a

(3.26)

where the factors independent of the summation has been moved outside the
expectation. Taking the logarithm, this becomes:

log P(f* &) =C=>_f*(&)+1log E{ [e %% } (3.27)
i€a i€a

Here C' is just the log likelihood of the positive findings. The above expression

is the objective function that is to be minimised wrt. the variational parameters &

when we seek upper bounds.

3.4 Optimisation of lower bound

The lower bound on the likelihood P(f*|q) for a set of positive findings has some
value for some assignment of the variational parameters q. We seek the assignment
of values to the variational parameters that maximise this lower bound. This can be
considered as a maximum likelihood estimation problem, where d is a latent variable
and f the observation, the probability of which is governed by ¢. In this context the
EM algorithm can be used to maximise the likelihood P(f"|g). The EM algorithm
provides sequential updates to the ¢ parameters so that the log likelihood increases
monotonically with each update.

The EM algorithm consists of performing an E step where the posterior P(d|f*, ¢°'?)
for the old setting ¢®¢ of the variational parameters is evaluated. In the following M
step the expectation with respect to P(d|f, ¢°¢) of the complete data log likelihood
log P(f,d|q) is maximised with respect to g. This will serve as the new assignment
to the variational parameters:

g"" = argmax Y P(d|f,q"")log P(f,d|q) (3.28)
q d

= arg max E{log P(f,d|q)} (3.29)
q

3.4. Optimisation of lower bound 25

These two steps are repeated until the q parameters converge. Considering the ex-

pectation in we have:
Eflog P(f,d|q)} = E{log P(f|d, q)P(d)} (3.30)

=E {Zlog P(flﬂd, q) + log P(d)} (3.31)
=D _E{log P(fld,q)} + C, (3.32)

where C'is a constant that is not dependent on q. There is variational parameters
associated with each transformed finding and these are independent across findings.
Therefore the maximisation of consist of separately maximising each
term with respect to the corresponding q.; parameters. Using the explicit form for

P(f{71d, q) we get:
E{log P(f;"|d,q)} = f(bi0) + ZE{dejﬁgij}

J
(3.33)
= f(0i0) + > Pl 7,47 d;q50:9:5-
Jj o dj

Recalling that g;; = f (6,0 +

i

o-) = f(0io), we have:

E{log P(f;"|d,q)} = f(bi0) + Zp(dj =1|f7, qud)(Jjﬁ[f(@io + gm) — f(0i0)]

; jli

= F60) + Y B{d;}ail O + jf))

= f(bi0) + Z Yij (@jli)

where we have introduced y;; and used the fact that d; € 0, 1.

We seek to optimise the above expression with respect to ¢.; parameters. Accord-
ing to [5] this optimisation can be carried out by performing the following update
while also normalising the ¢ parameters:

ayij(Qjﬁ)
Qjls < qj\iT
y 0 0 0 (3.34)
= ¢ B{d;} | f(0i0 + =) — f(bi0) — [(Bi0 + —L)—
il 9li 4jli

Expectation value

In each step of the iterative updates to the ¢ parameters in [Equation 3.34] we need
the expectation E{dy} of a single disease with respect to P(d|fT,¢°¢). This section

26 Chapter 3. Theory

derives the explicit result for this calculation that is needed in order to perform the
optimisation of the lower bound.
Writing out the expectation, we have:

E{dy} => P(d| f*, q""ds
d

= P(d =1 f+, ¢ (3.35)
B P(dk — 17f+ ’ qold)
P(f*]god) 7

where we again make use of the fact that disease variables are binary, i.e. d € {0,1}.
We now focus on the numerator; the probability of f* and disease dj:

P(f*,dx | ¢ =Y P(f*,d|¢")

d\dy,

=Y P(f*|d,¢"*)P(d).

d\dg,

(3.36)

In the conditional probability P(f¥|d, ¢°'?) we can choose to treat some of the findings
exactly and transform the rest, i.e. approximate these individual conditionals with a
lower bound. Splitting the conditional probability P(f¥|d,¢?) into the findings f.
that are treated exactly and those that are approximated having indices i € a, we
have:

P(f*de | ¢ =Y \TTPUT 1 d.gSh | PO | d)P(d)
d\dy Li€a .
=S TIPS 1 d a5 | P £)P(f)
d\dy Li€a | (3.37)
= PUD Y [J e ot IO P 1)
d\dj, i€a
= P Y [e tmonttI0OP(a] 1),
d\dy J

where the explicit form of the transformed conditional from [Equation 3.20| has been
inserted. Moving factors f(6.9) involving the background cause outside in a constant
Co and then moving the factor that is not summed over outside the summation, we
get:

3.4. Optimisation of lower bound 27

P(f* di | %) = P(£)Co [D eXica i P(d | f1)
g d\dg
= P(f)CoeXica st p(dy | f5) [T D exicatsioudip(d] £)
J#k d\dy,
x eXica Qk\igikdkp(dk ‘ feJr)
(3.38)

Normalising the above expression we get the desired expectation value from
tion 3.3l

eXica Wlidikdh P(dy =1 | f)
iEan\iQikdkP(dk =1] fe+) + P(d, =0 | f;_)

E{di} = (3.39)

3.4.1 Combining exact and transformed findings

Once a set of variational parameters for the findings we wish to transform have been
obtained, the likelihood of the findings can be split into two factors; a factor that is
the probability P(f.) of the positive findings that is treated exactly and another factor
F(ftlq, fe) (for the lower bound) that is dependent on the variational parameters (g
for the lower bound and ¢ for the upper bound):

P(fla) =Y P(fld)p(d) (3.40)
d
= P(fo) [T ebee oot 10O P(dy|) (3.41)
J o dj
= P(fe)F(ft|Qa fe) (3'42)

The above expression relates to the lower bound but a similar expression exists
for the upper bound with the corresponding upper bound factor F(f;|&, fe).

3.4.2 Calculating both bounds

Having described how a set of conditional probabilities can be transformed in order
to achieve either an upper bound P(f | &) or a lower bound P(f | ¢) on the sought
after probability P(f), we will now describe the steps our algorithm goes through in
order to calculate an interval wherein the true joint probability lies.

We describe the case where the set of transformed findings f. are the same for
both the upper and lower bound. This case is particularly efficient to calculate since
many of the calculations can be reused in both bounds as we shall see.

Both the upper and lower bound can be written as the product of the probability
of the exact findings and a factor that is dependent on the transformed findings f;

28 Chapter 3. Theory

for a given set of non-transformed findings and variational parameters:

P(f18) = P(f)F(fe | & fe) (3.43)
P(f1q) =P(f)F(fi | q, [e)- (3.44)

This shows that the probability of the exactly treated findings can be calculated
once at the outset and then multiplied with the upper bound factor and lower bound
factor in order to get the respective bounds.

During the optimisation of both the £ and g parameters, we will need to calculate
posterior probabilities P(d;|f.) given the non-transformed findings. In this step we
also calculate the finding probability P(f.) and since we are transforming the same
findings for the upper and lower bound, all these calculations can be reused in both
contexts. Furthermore we do not calculate the posterior for each disease d;, but only
the relevant ones. The relevant diseases are those that are parent to at least one of
the transformed findings. These are the steps of the algorithm:

1. Given a set of positive findings f and a number n.,q.¢ of these findings to treat
exactly (i.e. not transform); sort the findings according to some given criteria.
Take out the first negzqc findings (fe) to be treated exactly and designate the
remaining findings as transformed findings (f,).

2. Calculate posterior P(d;|f.) for j € w(f;), where m(f;) is the set of diseases
that are parent to at least one transformed finding.

3. Minimise upper bound: Calculate the best £ parameter for each transformed
finding by performing gradient descent to minimise the objective function from

4. Maximise lower bound: Calculate the best ¢. distribution by iteratively

applying the update rule from until convergence.

5. Given the variational parameters £ and ¢, calculate the factors F(f; | &, fe) and
F(ft | ¢, fe) and multiply these with the probability of the findings P(f.) in
order to get the upper and lower bound respectively.

The criteria we use for selecting findings to transform follows the delta method
described in [1}, 5.

3.5 Interval Bounds on Posteriors

Using the equations shown so far we are able to provide both upper and lower bounds
on joint probabilities. This is useful if we are looking for approximations to the
likelihoods, but by themselves they cannot be used to provide bounds on posterior
probabilities. Trying to do so would mean the numerator and denominator in the
posterior calculation would both be off in the same direction but by different
amounts, giving no guarantees on the result.

3.5. Interval Bounds on Posteriors 29

However if we know both bounds, it is possible to provide interval bounds on the
posterior probabilities. A way of doing this is presented in [5] and can be seen below:

+ . + .
- _P(f 7d] | q)+) S P(d] | f+) S m P(f 7dj |£)+ — .
P(f ’d]‘€)+P(f ’d]’(Z) P(f)d]‘€)+P(f ’d]‘Q)

(3.45)

Since we are calculating the positive posterior probability P(d}L | 1) we can
rewrite the formula as follows:

P(f*,d} | q)
P(F5.d; 16+ P(d7 | q)

+ gt
<P | f) < f(f 4 19 —.
! P(f+7dj |§)+P(f+adj ‘q)
(3.46)
Since P(d;-Ir | 1) = P(f*,d;“)/zdj P(f*,d;) the above inequality is on the
following form:

(x —) T (x + 0y)
o) T @—0) “aty " @0t (o)

(3.47)

where z = P(fT, d;-“), y=P(f", d;) and ¢; and &, are both positive and represent
the difference between the exact probability and the bounds. Note that the values
are not necessarily the same across the inequalities.

To see the validity of this inequality we first consider the right side fraction, i.e.
the upper bound on the posterior. Having a §; > 0 will only decrease the denominator
which in turn increases the fraction. Having a d,, > 0 will increase both the numerator
and denominator but the numerator will increase by a greater factor, hence increasing
the overall fraction. Similar arguments can be made to show that the lower poster
bound is valid.

This provides us with a tighter bound, since we are able to normalize using the
same bound for the same joint probability in both the numerator and denominator,
compared to a naive approach of normalizing using the opposite bound only.

In order to calculate the joint probabilities used in [Equation 3.46, we can rewrite
them using the chain rule. Here it is shown for the upper bound probabilities:

P(f*,d; [&) =P(f",] dj,)P(dj,| §) = P(f",] d;, §)P(d;) (3.48)

where the £ parameter disappears from the prior probability, since the prior does not
depend on it.

An obvious use case for these interval posterior bounds, is to use them as a
substitute for the exact probabilities to be presented to the doctor. Whenever the
number of positive findings grows beyond what can be handled in real time, we can
output these approximate bounds instead, which the doctor can use in the immediate
assessments of the situation. If exact probabilities are still needed, then these could
be provided as soon as they are available.

It could also be considered how this might be used in order to speed up the
questioning method that is being used. In the simplest case we could just substitute

30 Chapter 3. Theory

the posterior probabilities with either of the bounds. It might also be possible to
use it in a way, such that we maximize or minimize the impact the bounds have on
choosing the question. For example we might consider the entropy from either of
these bounds, or some combination thereof.

Chapter 4

Experiments

In this part of the report we will be presenting results from running experiments
using the various algorithms presented so far. We will present results for the caching
algorithms for posteriors and sequential probabilities, approximations to likelihoods
and posteriors and finally the question strategy.

For the caching algorithms we compare their processing time compared to the
brute force alternatives. For the variational methods the accuracy of the approxima-
tions will be presented along with processing time for some of the runs. The question
strategy will be evaluated by investigating how many questions needs to be asked
before present diseases are ranked high on a list sorted by disease posteriors.

This chapter contains descriptions of the data we a working with that was provided
by Ambolt. From this data we were able to generate artificial patient cases that we
can run our experiments on.

In experiments with variational methods we always have to decide which findings
to transform and which findings to treat exactly. We use the delta method presented
in [1] and 5] which is a heuristic for determining which findings are the best candidates
for transformation. The findings that, when transformed, move the approximation
result away from the true probability by the least amount, are the best ones to
transform.

4.1 Data

The data used to build the BN20 network, consist of 833 diseases along with their
prior probabilities. About half of these have a prior probability of < 0.01% and
the maximum prior has a value of 0.6 belonging to the disease 'Mavekatar’ (see
[Figre 4.1a).

The noisy-OR parameters g;; are also readily available to us from the data set.
We have 3965 ¢ parameters specifying the relationship between diseases and 440
symptoms. The ¢ parameters are mostly centered around 50% (see |[Figure 4.1b|).

The full data set contains detailed information such as which demographics a

31

32 Chapter 4. Experiments

2000 4

1750 -

1500

g

1250 4

g
]
2 1000 4

Freguency
Fre

-
<

750 4

500 4

250 4

04
0.0 01 0z 03 0.4 05 0.6 0.0 0.2

0.4 0.6
Probability Probability

08 10

(a) Histogram over the probabilities with a logscale (b) Histogram over the ¢;; parameters needed to
on the y-axis. specify the noisy-OR gates.

Figure 4.1

certain disease prior pertains to, in which body part a symptom is experienced,
which diseases can lead to other diseases and more. This type of information us not
something we include for the purposes of our experiments. We extract and compile
disease priors and q parameters according to a predefined demographic.

4.2 Synthetic Data

A patient case represents the diseases present in a patient along with the symptoms
they are experiencing.

Specific cases can be generated by using the data encoded in the model. First we
have to decide which diseases are present. This can be done by sampling each disease
node according to its prior. Alternatively the presence of a set of diseases could be
set manually if we wish to generate cases containing specific diseases.

Once the disease layer has been instantiated each symptom can now similarly
be assigned a 1/0 value based on the presence of the disease parents that can cause
the symptom along with the noisy-OR gate assumption. The more present disease
parents a symptom has, the more likely the symptom is to be present.

4.3 Caching for sequential joint finding probabilities

This section presents the results for using our caching strategy when determining
probabilities of the form P(f,, ..., fn) sequentially. We run two experiments for this
setup with the purpose of examining the runtime for the caching method vs the brute
force method; One where only positive findings will be added, and one where positive
and negative findings are added alternatingly. The caching method uses
and when a finding is added to the set of findings of interest, whereas the
brute force method simply uses Quickscore in a straightforward manner and restarts
calculations each time a finding is added.

4.3. Caching for sequential joint finding probabilities 33

Caching vs Non-caching runtime for P(f+)

Caching vs Non-caching accumulated runtime for P{f)

@ caching -
140 nocaching b @Ch'””g
nocaching
120 250
100 W 200
o
— E
- 1] =
z T 150
5 g L4 k]
2 .
£ 100
o g
° B
0 50 .
. "*
0{ @ » o ®» @ @ @ L
e — 0] e s e e o avseeseel?®
01 23 4 5 6 7 8 91011 1213 1415 — T T T T T T T T T T T T 1T
questions 01 2 3 45 6 7 B 0101 12 13 14 15

question
(a) Runtime for caching strategy when calculating

joint positive finding probabilities sequentially. (b) The accumulated processing time from (a)

Figure 4.2
Caching vs Non-caching runtime for P(f)
0 . . .
& caching Caching vs Non-caching accumulated runtime for P(f)
5 nocaching e caching
& nocaching
20
)
— . T
515 £ 60
E =
= I
10 3 @
E L]
5 L4 g
. @
. 0 .
.
’ 3e° °
01 234567891011121314151617181920212223 o sscscsccsasaensaidiV

questions 012345678 91011121514151617151920212223

) . . # questions
(a) Runtime for caching strategy when calculating

joint finding probabilities sequentially and positive (b) The accumulated processing time from (a)
and negative findings are added alternately.

Figure 4.3

The results from the experiments focusing on the positive findings is seen in
Here a positive finding is added at each step along the x-axis. The y-axis
gives the time required to add that finding. In the acummulated runtime
is plotted. That is, the point at x = 12 gives the processing time required to calculate
the probabilities up to and including question 12.

In we present the performance of the caching strategy in the set-
ting where the questions asked are alternating between having positive and negative
answers. shows the corresponding acummulated runtime.

As expected the caching method shows some savings in processing time. Specif-
ically the plots over the accumulated run times suggest that for a given number of
questions, the time it takes to calculate the probability of the associated findings
using caching, is less that half of that of the brute force alternative.

34 Chapter 4. Experiments

4.4 Caching for multiple posterior probabilities

Experiments with the caching algorithm for calculating multiple posteriors P(dj|f)
for k = m,...,n was evaluated on a case with 25 positive findings. We calculate the
posterior for a set of diseases given a set of findings that is varied by alternately
adding one of the positive findings and a random negative finding. The diseases over
which we calculate the posteriors are chosen as the diseases that are a parent to at
least one of the positive findings. This amounts to 422 posteriors for this specific
case.

We compare two methods for calculating these posteriors. The first is through a more
or less direct application of Quickscore. Since P(dy = 1|f) = P(dx = 1, f)/P(f)
two calls to Quickscore can be used to calculate quantity; first a call to determine
P(d; =1, f) and then another to determine P(f). Since P(f) doesn’t change as dj
changes, saving this result once it has been retrieved the first time is a straightforward
caching to utilise when calculating posteriors and will be used for the first base
method, which we are comparing to. We could chose to compare our caching strategy
to a completely brute force method, but since this first caching step is almost trivial
we chose to include it, along with iteration over only relevant disease parents. We
still refer to this base method as a non caching method despite of this minor level of
caching. Our presented caching strategy (algorithm 1| and falgorithm 2)) still provide
significant speedup compared to the non caching method as can be seen in[Figure 4.4a]
The fast caching method (blue) also absorbs negative findings since in this setting
all findings are known at the outset, unlike the previous section where findings were
added iteratively and therefore could not be absorbed.

In order to check that the two methods indeed produce the same results we compare
the 422 posteriors generated by calculating the ratio of the caching result to the non
cached result, which ideally would be one. We only compare the posteriors calculated
after 10 findings has been added. In[Figure 4.4b]is a boxplot over these ratios showing

that the vast majority is concentrated around 1 with a few outliers within one percent.

4.4.1 Joint finding probability approximations

In this section we present results for the variational methods. We show how the
upper /lower bound algorithm provides a more narrow interval wherein the true like-
lihood P(f) lies as the number of findings that are being transformed (i.e. approx-
imated) decreases. This can be seen in where the log likelihood upper
and lower bounds are shown in colours along with the log of the true probability,
obtained via Quickscore, drawn as a line. This is an evaluation on a case with 15
positive findings. The lower bound proves to be much more crude compared to the
upper bound as the number of transformed findings increases, whereas the upper
bound gives much more useful results even when a large portion of the findings are
being transformed. In we show the processing time for calculating the
bounds in for each number of transformed findings. The processing time
for the exact calculation was 48.9 seconds.

4.5. Bounds on posteriors

Posterior calculations caching vs no caching

® caching []
0 no caching

time (s}

*e
0|1 eeSSecenstossnete

0 5 » = » =
questions

(a) Runtime for posterior caching algorithms(blue)
presented in [algorithm 1| and [algorithm 2| vs non
caching alternative (orange). The number of findings
under consideration varies along the horizontal axis,
and at each step the posteriors for 422 diseases are
calculated.

35

1000

g
0.999 8
0.998
0.997 o
0.996
0.995
0.994
0.993
0.992 o

(b) Boxplot of ratios between the posteriors P(dy|f)
calculated with the caching method and the non
caching method after 10 findings has been added.
The vast majority of these ratios are concentrated
around 1 indicating that the two methods produce
the same probabilities with only a few outliers where

the caching method produced a slightly smaller result.

Figure 4.4

The overhead associated with transforming only a small number of the findings
while treating the rest exactly (i.e. not approximating them) is too great to render
the method useful. However this processing time decreases rapidly as the number of
findings being transformed increases, bottoming out at 8 transformed findings. The
fact that the processing time is not monotonic shows that we can sometimes achieve a
better approximation (a more narrow bound) in less time. In this case, for instance, a
better and faster bound is achieved by transforming 8 findings than by transforming
9 or more findings.

4.5 Bounds on posteriors

Having presented the bounds on the likelihood of findings, we now turn to task
of calculating bounds on the posteriors P(d;|f). We present three such cases in
Here we see how the bounds become more narrow as the number of
transformed findings decreases. We evaluate the posterior for a selected disease in
three different cases with 11, 12 and 17 positive findings respectively. All three plots
show that the crudeness of the bound increases rapidly as more and more findings are
approximated. It should be noted how large an effect changing the number of findings
to transform can have on these bounds. All plots show jumps in the lower bound
by factors on the scale of ¢!¥; e.g. when going from 7 to 6 transformed
findings.

We now try to fix the number of findings that we transform and give posteriors for
multiple diseases for a specific case. In we present a histogram over the
interval sizes, i.e. the upper bound minus the lower bound, for relevant posteriors.
This case has 14 positive findings and 5 of these were transformed. The histogram

36

Upper and lower bounds on finding probability P(f)

0.00
-10.00
s *
-20.00 | e o o o o * o "
' T e,
= —30.00
‘&— * @ 9
= .
£ 40.00 | o .
.
~50.00 1 .
~60.00 | .
B I e e S e P M e o
1 2 3 4 5 6 7 6 8 101 1 13 4
of transformed findings
(a) Bounds on the joint probability P(f) with the

number of transformed findings varying along the x-
axis. This is for a case with 15 positive findings.

time(s)

(b) The runtime for the corresponding number of

Chapter 4. Experiments

.
100 -
a0 4
&0 |
.
404
20 4 .
.
® o 0 0 0 ® 0 0 o o
D-IIIIIIIIIIIIII
1 2 3 4 5 6 7 8 9 1011 12 13 1

of transformed findings

transformed findings

Figure 4.5

o L
s s . . . e ©® ¢ @ 0o o . o » roo
e 4 . .
-5 . F-01 . I-05
6 4 . s
L b .
= -10 02 - T g Lo
+ + + »
= 03 = =
= .] = | _
31 15 < 31 _10 4 15
o [) a o
o F-04 7
g . £ B 42 L F-2.0
=20
I-05 .
_1a | 25
—25 . F-06 .
16 4 . F=3.0
— 07 -
T T T — T T T — T T T T T T T ;
1 3 4 5 3 7 8 9 10 11 1 2 3 4 5 & 7 8
transformed findings # transformed findings
(a) Case with 11 positive findings (b) Case with 12 positive findings
§ L 4 - - L - - L - * 0
=10 4
-1
s .
_ =20 A —
z . b2
+ +
= =
= 5
g * . 52
@ =
= k-]
-40 . -4
—50 4 . ==
T T T T T T T T T T
8 9 10 11 12 1= 14 15 16 17

transformed findings

(c) Case with 17 positive findings

I Pid iIF4FY

Figure 4.6: Bounds (magenta and green points) on the posterior P(d; | f*) (solid) for different
selected diseases with a varying number of findings being transformed. is a case with 11
positive findings, has 12 positive findings and 17 positive findings.

4.6. Question strategies 37

interval sizes interval sizes
100
140
80 120
100
T &)
2]
o o
3 3
4 4
E a0 E @
20
20
0 04 : —_— :
0o 01 0z 03 04 05 06 o7 (k] 00 02 04 06 (k] 10
interval size interval size

(a) The interval size on posterior bounds for 195 rel- (b) The interval size on posterior bounds for 195 rel-
evant diseases for a case with 14 positive findings, evant diseases for a case with 14 positive findings,
where 5 of these were transformed. where 7 were transformed.

Figure 4.7: Caption

shows that the majority of the bounds sizes are concentrated at the lower end of the
scale, meaning that many of the provided bounds are narrow. A few bounds prove
to be quite useless with sizes of one half or more.

In [Figure 4.7D] we present the same plot only now 7 findings are transformed. This
also shows how sensitive the posteriors bounds are to the number of findings being
transformed. Transforming only 2 more findings renders almost all of the bounds
useless.

4.6 Question strategies

In this section we run experiments on different cases in order to see the effect of the
different questioning methods. We also compare the performance over many different
cases for the random and entropy based methods on relevant findings.

The text above each plot includes the settings and case it has been run with. The
present diseases and their priors are denoted by ’d:’, the present findings by ’f:’, the
initial findings by ’init:” and the questions being asked by ’q:’. The sign after initial
findings and questions correspond to whether said finding was present and absent.
Some of the plots will show the ranking of the diseases which is obtained by sorting
the posteriors from high to low. This means that a good question strategy will ask
questions that quickly lower the rank of the correct diseases.

4.6.1 Casel

The first case we consider has a disease with a prior probability of 0.3, and we initially
know about 1 of the 3 findings. This in itself brings the posterior probability close
to around 0.75, ranking it 1st out of all disease posteriors.

This can be seen in where the green line represents the posterior over
the present disease. For this run we are asking completely random questions, which

38

Pid_i|f)

(a) Run with random question choices, without using
relevancy to limit the question pool, and displaying

Diagnosis Probability (random, none, all)
d: {737: 0.3} - [8, 9, 62]
init:62+
q: 11- 257- 38- 218- 410- 404- 399- 267- 269- 372-

10

0.8 4

0.6 1

questions asked

all disease posteriors.

Pid_i|f)

(c) Run where questions were selected only among
the finding that were relevant given the initial finding.

Diagnosis Probability (random, initial, viable)
d: {737: 0.3} f: [8, 9, 62]

init:62+
q: 119- 160- 80- 8+ 75- 6- 28- 69- 172- 310-
10 ——r
A

0.8

A——K_

NS

0.6 L
0.4
0.2
0ol % ¥) L A 7 7 T

T
] 1 2 3 4 5 B 7 8 9 10
questions asked

Pid_ilf)

Chapter 4. Experiments

Diagnosis Probability (random, neone, viable)
d: {737: 0.3} - [8, 9, 62]
init:62+
q: 224- 47- 36- 393- 207- 301- 128- 126- 238- 235-

10

081

06

044

0.2 1

o0

b 4

T

o 1 2 3 4 5 & T 8 9 10
questions asked

(b) Similar to (a), but only showing diseases related
to the initial findings. It is a separate run on the same

case.
Diagnosis Probability (entropy_single, initial, viable)
d: {737: 0.3} f: [8. 9, 62]
init:62+
q: 84 211- 9+ 80- 150- 173- 160- 41- 28- 163-
Lo P ———— i~ —
081 /
£
06
;.
* 4

0o

- - -
o 1 2 3 4 5 6 7 8 9 10
questions asked

(d) Run using the entropy method on the findings
that were relevant given the initial finding.

Figure 4.8: Case 1

4.6. Question strategies 39

are not improving the probability of the present disease noticeably.

By simply switching to displaying only diseases which are related to the initial
findings as shown in we are able to isolate the correct disease posterior,
increasing our relative confidence in the diagnosis.

In we change which findings we consider for questioning, to only
ask about those that are relevant given the initial findings. That is; pick out the
disease parents of the known present symptoms and consider only the child findings
of these diseases. This causes the diagnosis to improve significantly, with increased
posterior probability of the correct disease, and reduced posterior probability of all
other diseases. Although this is with the exception of the 3rd question, after which
the diagnosis became less certain until the next question.

In we apply the entropy based method. This starts by choosing
another positive finding, which is able to both increase the posterior probability of
the present disease, as well as reduce the probability of the other relevant diseases
that are not present, both of which are desirable outcomes of a questioning strategy.
But after this there is no further significant improvement, although it does bring the
posterior of the least likely disease close to 0.0.

4.6.2 Case 2

For this case we start with asking random questions among the relevant findings. This
can be seen in There is no guarantee that it will ask a good question
within a reasonable number of questions, so it might be the case that the graph would
have showed no improvement at all in the ranking of the present disease. It could
also have happened that the first few question causes the present disease to become
the most likely diagnosis.

In we apply the entropy based method to this case. We see a slow
improvement in the probability of the present disease, but it occasionally gets worse
again. We also see a reduction in the posterior probability of the most likely, but
incorrect, disease.

Looking at the plot for the disease ranking in We see that the present
disease is occasionally ranked number 1, but does not stay that way.

4.6.3 Case 3

The plots in |[Figure 4.10a) and [Figure 4.10b| both chose random questions among the
pool of relevant findings. Although the first one got lucky with the questions it asked,
the second one does not manage to increase the posterior probability of the present
disease much at all. In these cases the present disease achieves decent rankings (1 and
4), but in our posterior says the disease is probably not present, and in
we still think another disease might also be present with a probability
of about 0.6.

shows the entropy based method applied to the case. For the first 6

question there is an improvement in the probability of the correct disease, but after

40 Chapter 4. Experiments

Diagnosis Probability (random, initial, viable)
d: {175: 0.01}
f- [51. 62, 80, 119, 310]
init:51+
q: 217- 168- 314- 90- 63- 32- 23- 297- 34- 164- 22- 307- 103- 263- B4-
80+ 110-172- 183- 203-

10

084

0.6 1

Pid_i|f)

0.4 1

01234567 8910111213141516171819 20
questions asked

(a) Random questioning with relevant findings.
Diagnosis Rank (entropy_single, initial, viable)

Diagnosis Probability (entropy_single, initial, viable)
d: {175: 0.01} d: {175: 0.01}
f- [51. 62, 80, 119, 310] f- [51, 62, 80, 119, 310]
init:51+ init:51+
q: 150- 72- 157- 39- 176- 1- 49- 8- 193- 24- 50- 315- 98- 7- 269-

(1:0150- 72-157- 39- 176- 1- 49- 8- 193- 24- 50- 315- 98- 7- 269-

0.8

Pid_i|f)

T
15

— T
10 11 12 15 I

— T T T T T 1T
2 3 45 6 7 8 9
questions asked

o1 2 3 45 6 7 8 5% 1011 12 13 14 15 6:;.
questions asked

(b) Entropy method used for questioning, also among (c) Ranking of the diseases from the entropy based

relevant findings. run in (b). Lower rank is better.

Figure 4.9: Case 2

4.6. Question strategies

Diagnosis Probability (random, initial, viable}
d: {145: 0.01}
f: [22, 48, 66, 117, 202, 261]
init:22+
q: 111- 237- 66+ 15- 299- 315- 72- 12- 117+ 232- 110- 202+ 24- 203- 29-
10 51- 150- 128- 163- 26-
T

08

06

Pid_i[f)

04 |

02

0.0 LA LA AL A S S A S A
8 91011121314151617 1519 20
questions asked

#

(a) Random questioning with relevant findings.

Diagnosis Probability (entropy_single, initial, viable)
d: {145: 0.01}
f:[22, 48, 66, 117, 202, 261]
init:22+
q: 176- 23- 72- 214- 24- 12- 150- 170- 88- 9- 313- 269- 340- 319- 205-
237-232- 211- 212- 310-

10

0.8

06

Pid_i|f)

04

02

i — e -
== oas-sasaaas-Co" 20
0123456 789101112131415161716819 20
guestions asked

(c) Entropy based questioning with relevant findings.

41

Diagnosis Probability (random, initial, viable)
d: {145: 0.01}
f: [22, 48, 66, 117, 202, 261]
init:22+
q: 212- 159- 217- 110- 262- 310- 389- 128- 51- 15- 26- 66+ 237- 45- 269-
24- 205- 28- 203- 29-

10

e e ettt 300000

0.8 4

06

Pid_ilf)

044

024

0o -
0123456768 9%91011121314151617 1819 20

questions asked

(b) A different random questioning run.

Diagnosis Rank (entropy_single, initial, viable)
d: {145: 0.01}
f:[22, 48, 66, 117, 202, 261]
init:22+
q: 176- 23-72- 214- 24- 12- 150- 170- 88- 9- 313- 269- 340- 319- 205-
237-232- 211- 212- 310-

T T T
78 910111213141516171819 20
qguestions asked

T T T T T T
0123456

(d) The ranking of diseases under entropy based ques-
tioning.

Figure 4.10: Case 3

42

10 Diagnosis Probabilities (random, initial, viable)

08

06

Pid_clf)

0.4

02

(] T T T T T T T T T T

o 1 2 3 4 5 B 7 B 9 10
questions asked

(a) Probabilities of random method.

Diagnosis Ranks (random, initial, viable)

10

Rank

o 1 2 3 4 5 & 7] 9 10
questions asked

(¢) Rankings of random method.

Pid_i[f)

Rank

10

vk}

06

04

02

oo

10

Chapter 4. Experiments

Diagnosis Probabilities (entropy_single, initial, viable)

o 1 2 3 4 5 & 7] 9 10
questions asked

(b) Probabilities of entropy method.

Diagnosis Ranks (entropy_single, initial, viable)

] 1 2 3 4 5 & 7] 9 10
questions asked

(d) Rankings of entropy method.

Figure 4.11: Comparing the random and entropy based methods based on 10 cases each. The
development in both the posterior probabilities and the corresponding rankings are shown.

that it drops off again. The posterior of the most likely disease does manage to get
reduced despite causing an increase in entropy by becoming less certain. At the same
time we see an increase in posterior probability of two other diseases that are not
present.

Any increase in the posterior probability of the correct disease does not manifest

as an improvement in the ranking as can be seen in [Figure 4.10d]

4.6.4 Aggregate cases

Here we are comparing the performance of the random method in to the
entropy based method in We run 10 cases using each method, asking
10 questions using the specified questioning method.

The random method seems to have mostly straight lines, corresponding to un-
changed probabilities although with some increasing probabilities near the top along
with a few random spread out increases or decreases. The entropy based method on
the other hand seems to have probabilities trending away from 0.5, which could be
expected in general due to that decreasing the entropy of the posteriors. This is great

4.6. Question strategies 43

for posteriors that are already above, while it is not so good if they are below. In that
case it might be suspected that it tries to avoid asking questions that are likely to
cause those posteriors to rise, since that would mean an increase in entropy as they
get near 0.5.

The ranks in these cases already seem pretty good, being mostly in top 5, with a

single outlier in that could be attributed to randomness.

Chapter 5

Conclusion

The presented caching strategies demonstrated how major savings in processing time
can be achieved when using Quickscore in certain settings. Regarding the sequential
finding probabilities, the processing time for adding another finding was more or less
halved. As for the multiple posterior calculations our experiment suggest that for
some cases the caching method offers run time savings on the scale of at least one
order of magnitude.

The effect of the entropy based questioning method is to reduce the entropy for
the individual disease posterior probabilities being considered. This seems to work
great if the posterior probability of the present disease is already close to or above 0.5,
as any increase in this probability is then also a reduction in entropy. If the posterior
is below 0.5 then this doesn’t seem to be the optimal behaviour. For example if we
look back at the present disease starts at a low posterior probability of
around 0.1 and as such has to get over the "hump" that is a probability around 0.5,
corresponding to the highest entropy. If we look at the disease that starts around
0.6, we see that we do actually manage to move it away from 0.5, albeit having to
move past said probability in a single step.

Based on the experiments we can see that a completely random questioning
method does not work, as we do not learn anything new about the diseases that
might potentially be present. But by simply limiting the questions to a pool of rel-
evant questions we are able to improve the performance of random questioning on
small cases. But as the number of relevant findings grows, the likelihood of asking a
good question drops.

The entropy based method performs well in the first case, managing to increase
our already confident belief in the correct diagnosis. However it runs into trouble with
the other cases. As the number of relevant findings and associated diseases grows, the
time it takes to calculate the entropy increases as well. It also experienced difficulties
with increasing the probability of a disease, if this does not already start with a high
posterior probability after the initial findings. When evaluating the entropy based
questioning strategy on cases with multiple diseases results were not promising, as the
belief in the present diseases remained unchanged and low ranked as the questioning

44

45

progressed.

We have demonstrated that it is possible to provide bounds on both joint and
posterior probabilities using the variational algorithms. These bounds could prove
useful both for determining which questions to ask, and for providing bounded pos-
terior probabilities to a clinician doing diagnosis.

However these approximations are very sensitive to which findings are trans-
formed. |[Figure 4.7al and [Figure 4.7b| showed that even small changes in the number
of transformed findings has a major impact on the usefulness of the provided bounds.
This also suggest that different findings contribute differently to the crudeness of the
approximations - likewise this suggest that certain key findings are important to treat
exactly in any given set of positive findings. If we allow the number of exactly treated
findings to become too small, there is no longer room for all of these key findings to
be treated exactly. This might be the explanation for the dramatic jumps away from
the exact result, that could be seen in the evaluation of the approximate methods.

The variational methods are especially relevant when the number of positive find-
ings that needs to be considered is high. The approximations provided by the varia-
tional methods could be used when calculating the expected value to determine the
next question to ask, in order to reduce calculation time. Testing the sensitivity of
the order of suggested questions to approximations in the underlying calculations is
a candidate for future work.

Bibliography

[1]

2]
3]

4]

[5]

(6]

7]

8]
9]

[10]

J. Aggerholm and C. Mathisen. “Inference Methods for Realtime Medical Di-
agnosis in BN20 Networks”. In: (Jan. 2020), p. 37.

Eta S Berner. Clinical decision support systems. Vol. 233. Springer, 2007.

Feili Yu et al. “Multiple disease (fault) diagnosis with applications to the QMR-
DT problem”. In: SMC’08 Conference Proceedings. 2003 IEEE International
Conference on Systems, Man and Cybernetics. Conference Theme - System
Security and Assurance (Cat. No.03CHS37483). Vol. 2. 2003, 11871192 vol.2.

David Heckerman. “A Tractable Inference Algorithm for Diagnosing Multiple
Diseases”. In: CoRR abs/1304.1511 (2013). arXiv: 1304.1511. URL: http://
arxiv.org/abs/1304.1511.

T. S. Jaakkola and M. I. Jordan. “Variational Probabilistic Inference and the
QMR-DT Network”. In: Journal of Artificial Intelligence Research 10 (May
1999), pp. 291-322. 1ssN: 1076-9757. DOI: 10 . 1613/ jair . 583. URL: http:
//dx.doi.org/10.1613/jair.583.

Jianhui Luo et al. “Graphical models for diagnosis knowledge representation
and inference”. In: IEEE Autotestcon, 2005. IEEE. 2005, pp. 483-489.

Blackford Middleton et al. “Probabilistic diagnosis using a reformulation of
the INTERNIST-1/QMR knowledge base. II. Evaluation of diagnostic perfor-
mance”. In: Methods of information in medicine 30 (Nov. 1991), pp. 256-67.
DOI: [10.1055/5-0038-1634847.

Mark A Musen, Blackford Middleton, and Robert A Greenes. “Clinical decision-
support systems”. In: Biomedical informatics. Springer, 2014, pp. 643-674.

Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision
graphs. Springer, 2007.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1988. 1SBN: 1558604790.

46

https://arxiv.org/abs/1304.1511
http://arxiv.org/abs/1304.1511
http://arxiv.org/abs/1304.1511
https://doi.org/10.1613/jair.583
http://dx.doi.org/10.1613/jair.583
http://dx.doi.org/10.1613/jair.583
https://doi.org/10.1055/s-0038-1634847

Bibliography 47

[11]

[12]

[13]

[14]

Murali Sambasivan et al. “Intention to adopt clinical decision support systems
in a developing country: effect of physician’s perceived professional autonomy,
involvement and belief: a cross-sectional study”. In: BMC medical informatics
and decision making 12.1 (2012), p. 142.

Michael Shwe and Gregory Cooper. “An empirical analysis of likelihood-weighting
simulation on a large, multiply connected medical belief network”. In: Comput-
ers and Biomedical Research 24.5 (1991), pp. 453-475.

Jifi Vomlel and Petr Tichavsky. “Probabilistic inference with noisy-threshold
models based on a CP tensor decomposition”. In: International Journal of Ap-
prozimate Reasoning 55.4 (2014). Special issue on the sixth European Work-
shop on Probabilistic Graphical Models, pp. 1072-1092. 1sSN: 0888-613X. DOTI:
https://doi.org/10.1016/j.ijar.2013.12.002. URL: http://wuw .
sciencedirect.com/science/article/pii/S0888613X13002910.

F. Yuet al. “A Lagrangian Relaxation Algorithm for Finding the MAP Configu-
ration in QMR-DT”. In: IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans 37.5 (2007), pp. 746-757.

https://doi.org/https://doi.org/10.1016/j.ijar.2013.12.002
http://www.sciencedirect.com/science/article/pii/S0888613X13002910
http://www.sciencedirect.com/science/article/pii/S0888613X13002910

	Front page
	English title page
	Preface
	Summary
	Contents
	1 Introduction
	1.1 Probabilistic representation
	1.2 Diagnosis
	1.3 Inference

	2 Preliminaries
	2.1 Bayesian networks
	2.2 BN2O network
	2.2.1 Noisy-or
	2.2.2 Jensen's Inequality

	3 Theory
	3.1 Questions
	3.1.1 Entropy based questioning
	3.1.2 Relevant findings

	3.2 Quickscore
	3.2.1 Absorbing negative findings
	3.2.2 Caching strategies

	3.3 Variational Inference
	3.3.1 Lower bound transformations
	3.3.2 Upper bound transformations

	3.4 Optimisation of lower bound
	3.4.1 Combining exact and transformed findings
	3.4.2 Calculating both bounds

	3.5 Interval Bounds on Posteriors

	4 Experiments
	4.1 Data
	4.2 Synthetic Data
	4.3 Caching for sequential joint finding probabilities
	4.4 Caching for multiple posterior probabilities
	4.4.1 Joint finding probability approximations

	4.5 Bounds on posteriors
	4.6 Question strategies
	4.6.1 Case 1
	4.6.2 Case 2
	4.6.3 Case 3
	4.6.4 Aggregate cases

	5 Conclusion

