
DT106F20 Aalborg University

Partitioned Graph Convolution using Adversarial and
Regression Networks for Road Travel Speed Prediction

Jakob Meldgaard Kjær - jkjar14@student.aau.dk
Lasse Kristensen - lkri15@student.aau.dk
Mads Alberg Christensen - mach15@student.aau.dk

Supervisor:
Bin Yang - byang@cs.aau.dk

Department of Computer Science, Aalborg University, Aalborg, Denmark.

ABSTRACT
Access to quality travel time information for roads in a
road network has become increasingly important with
the rising demand for real-time travel time estimation
for paths within road networks. In the context of the
Danish road network (DRN) dataset used in this paper,
the data coverage is sparse and skewed towards arterial
roads, with a coverage of 23.88% across 850,980 road seg-
ments, which makes travel time estimation difficult. Ex-
isting solutions for graph-based data processing often ne-
glect the size of the graph, which is an apparent problem
for road networks with a large amount of connected road
segments. To this end, we propose a framework for pre-
dicting road segment travel speed histograms for dataless
edges, based on a latent representation generated by an
adversarially regularized convolutional network. We ap-
ply a partitioning algorithm to divide the graph into dense
subgraphs, and then train a model for each subgraph to
predict speed histograms for the nodes. The framework
achieves an accuracy of 71.5% intersection and 78.5% cor-
relation on predicting travel speed histograms using the
DRN dataset. Furthermore, experiments show that parti-
tioning the dataset into clusters increases the performance
of the framework. Specifically, partitioning the road net-
work dataset into 100 clusters, with approximately 500
road segments in each cluster, achieves a better perfor-
mance than when using 10 and 20 clusters.

INTRODUCTION
Graph convolutional networks (GCN) have seen a rise in
importance within the transportation domain, with the
increasing demand for real-time travel time estimation for

paths within road networks. Analysis of traffic data from
road networks is important for a variety of applications,
such as path navigation [1], traffic forecasting [2], and
ride-sharing services [3]. GCNs utilize strategies that con-
volute a graph into a low-dimensional feature space that
preserves the structure of the graph data, such as edge
features, vertex features, and the topology of the graph.
However, a problem that often arises for GCNs in the
transportation domain, is that the models generally work
well on smaller graphs, but decrease drastically in either
efficiency or precision when handling larger networks. For
example, GCNs utilizing an embedding strategy based on
the adjacency matrix of the graph, such as Kipf & Welling
[4], suffer from time-expensive multiplication with larger
matrices, with a per-vertex time complexity of O(n2.376)
[5]. On the contrary, neural networks utilizing probabilis-
tic models, such as node2vec [6] or DeepWalk [7], are more
scalable to larger graphs, but suffer in accuracy compared
to the adjacency models [4], as the probabilistic models
only capture the similarities in global graph structure and
local neighborhood for each vertex, and not the features
of the nodes.

These problems are especially apparent for graphs based
on road networks, as the amount of road segments in these
networks can be in the millions. For example, the network
used in this paper, the Danish road network, has 850,980
unique road segments 1, with a data coverage of 23.88%,
which is a low amount of road segments compared to road
networks of larger countries. With the amount of nodes
in this graph, having access to a computationally efficient
embedding strategy is important. Furthermore, as each

1According to OpenStreetMap.org, October 2019.

1

DT106F20 Aalborg University

road segment in the network contains multiple features
that can be used to further increase the accuracy of the
embedding, having an embedding strategy that utilizes
these extra node features is important for the precision of
the embedding.

Recent work in graph-based neural networks have studied
ways to increase the quality of the latent representation
of the graph. For example, one paper introduces an ad-
versarial training scheme to the autoencoder structure,
to learn a better latent representation [8]. Another pa-
per presents an approach that uses inductive learning to
embed the nodes of a graph [9]. Instead of using the tra-
ditional embedding approach of training a distinct vector
for each node, this paper trains aggregator functions that
are able to aggregate the node features from a node’s lo-
cal neighborhood. On the contrary, other work in graph-
based neural networks have studied how to handle the
computational downsides that occur when training larger
graphs. For example, one paper introduces a batching
strategy that first partitions the graph, and then stochas-
tically combines these partitions into a number of sets
with the same amount of partitions, to form sub-graphs
with reduced cross-batch variance [10]. They then use
each of the sub-graphs as a batch to perform a stochastic
gradient descent update. This lowers the amount of mem-
ory required to train the model, which enables training
of, in theory, arbitrarily large graphs.

In this paper, we propose a novel framework that incor-
porates theory from both areas of the current research.
The framework is inspired by the embedding strategy and
adversarial training scheme from Pan et al. [8] and the
stochastic batching approach introduced by Chiang et al.
[10]. Following our earlier work [11], the framework is able
to embed a large road network in clusters, used for pre-
diction of a histogram of travel speed for a specific road
segment within the network, for the purposes of combat-
ing data sparseness in road network travel data. Our
contributions can be summarized as follows:
• We propose a novel GCN framework for dynamic pre-

diction of travel speed histograms for road segments in
a large road network. Our framework is able to predict
travel speed histograms based on sets of adversarially
regularized embeddings, each set learned from a dense
subgraph of the road network.

• We propose a node2vec-based model for static predic-
tion of travel speed histograms for road segments in a

road network. This model is able to construct embed-
dings that retain feature information for road segments
in a road network, and predict travel speed histograms
by using them as input to a regression model.

• We achieve results of 71.5% intersection and 78.5% cor-
relation on a road network dataset consisting of approx-
imately 50,000 nodes and 100,000 edges.

RELATED WORK
Models for Graph Embedding

Graph embedding refers to the process of learning a rep-
resentation of the nodes and/or edges of a graph, often
resulting in a lower-dimensional representation, with the
goal of retaining as much information about the graph
as possible. These models have shown their applicability
in a variety of application domains, such as social net-
works [7], image denoising [12], anomaly detection [13],
and road network analysis [14].

Random-walk based models, such as Grover & Leskovec
[6] and Perozzi et al. [7], expand upon the Word2vec skip-
gram model for natural language processing by Mikolov
et al. [15], to adhere to representation learning of graphs.
These models only consider the topology of the graph as
information, and the objective of the models is to retain
as much information about the topology as possible. As
a result of this, additional features, such as node context,
will not be taken into consideration when constructing the
latent representation of the graph. The work by Mikolov
et al. [15] has also been extended to the transportation
domain. Liu et al. [16] introduce Road2Vec, a neural net-
work that learns road segment embeddings that capture
the road interaction in urban road systems. Here, two
road segments that frequently co-occour in travel routes
should have a similar vector representation, similar to
how two words that frequently co-occur in a sentence have
similar representations in Word2vec [15].

Jepsen et al. [14] investigate whether or not existing net-
work embedding methods are suitable for analysis tasks of
a road network where only the network structure is avail-
able, specifically predicting the speed limit and road cate-
gory of the roads. With only the network structure avail-
able, they rely on a high presence of homophily, which
results in them using the model by Grover & Leskovec [6]
as the embedding technique.

With the work of Kipf & Welling [4], autoencoders have

2

DT106F20 Aalborg University

gained popularity in addressing the problem of learning
a robust, lower-dimensional representation of a graph.
Here, convolutional layers are used to reduce the dimen-
sionality of an input adjacency matrix representing the
graph. Thereafter, the matrix is reconstructed using an
inner product decoder between the latent variables. Ad-
ditionally, the autoencoder structure allows node content
to be incorporated in the latent representation. Expand-
ing on this, Pan et al. [8] propose ARGA, a framework
for graph embedding using the Kipf & Welling [4] au-
toencoder and an adversarial regularizer. Here, the reg-
ularizer uses an adversarial training scheme to force the
latent representation to match a distribution, such as a
Gaussian distribution. The adversarial training scheme is
a neural network in itself, with its own weights, and the
goal is for this model to be unable to distinguish between
the latent representation and the values sampled from the
distribution.

Models for Convolution on Large Graphs

Recently, a branch of research in graph convolutional net-
works has focused on ways to allow larger graphs to be
embedded, by improving on the computation time and/or
memory usage of the models used to embed the graph.
Since graph convolutional layers use the interaction be-
tween nodes to embed the graph, the loss term in a GCN
is dependent on a large amount of nodes. Specifically, to
be able to utilize back propagation in GCNs, it requires
storing the intermediate embeddings for all model layers
in memory. The research can be divided in two categories;
sampling-based and clustering-based models.

Research has been done in the area of selective sampling,
i.e. reducing, or specifying, the area in which neighbors
are sampled to embed a node. Hamilton et al. [9] pro-
pose a model that restricts the neighborhood size for each
layer, by using Monte Carlo approximation to decide on
neighborhood samples of a fixed size, to be used during
back-propagation. Similarly, Chen et al. [17] use Monte
Carlo approaches and importance sampling to reduce the
size of the sampled neighborhood. Chen et al. [18] pro-
pose a model that uses a variance reduction technique to
reduce the size of the neighborhood, leading to a reduc-
tion in computation time while retaining the quality of
the embedding, even when reducing the neighborhood to
two samples per node.

Instead of following the approach of handling larger

graphs by reducing the size of the sampled neighbor
nodes, Chiang et al. [10] propose a GCN model that uti-
lizes clustering algorithms to exploit the clusters appear-
ing in a graph. The model partitions the input graph into
dense subgraphs, and then uses the subgraph to calculate
the stochastic gradient descent for the batch, reducing
the amount of neighbor nodes needed to embed a node.

PROBLEM DEFINITION AND FRAME-
WORK
A road network graph is represented as H = {I,R},
where I is a set of nodes representing intersections in
a road network, and R is a set of road segments between
intersections. The line graph of graph H is represented
as G = {V,E,X}, where V = {v1, · · · , vn} represents the
road segments, i.e. the edges, of graph H, E is a set of
edges representing an intersection between two road seg-
ments, and X ∈ RN×F is a set of features for each road
segment vi ∈ V where N is the number of nodes and F is
the number of features in G. The topology of line graph
G is represented by an adjacency matrix A ∈ RN×N ,
where Ai,j = 1 if a car can drive directly from the first
road segment to the second, i.e. if a car can go from vi
to vj via an intersection. The features of each node vi
are represented by xi ∈ X. A road segment travel speed
histogram is a k-tuple Hist = (b1, · · · , bk), where each
bucket bi represents the proportion of vehicles travelling
at a specific speed interval on road segment vi.

Given a large graph G, our purpose is to predict a travel
speed histogram for the nodes without data in G, based
on a low-dimensional representation of the graph. With
an adjacency matrix A and feature matrixX as input, the
low-dimensional representation should preserve informa-
tion that allows for accurate prediction of the histograms.

Framework Overview

The objective of this research is to predict a travel
speed histogram for the nodes in a large graph G =

{V,E,X}, by partitioning the graph into s subgraphs
Ĝ = [G1, · · · , Gs] and embedding each subgraph sepa-
rately. The latent representation of each subgraph Gs is
trained to predict travel speed histograms for the nodes
in Gs. The framework introduced in this paper is in-
spired by two existing studies: Pan et al. [8] and Chiang
et al. [10]. Figure 1 shows an overview of the model
architecture, where each subgraph Gs ∈ Ĝ, represented
by an adjacency matrix A and feature matrix X, is used

3

DT106F20 Aalborg University

Figure 1. Framework architecture for Partitioned Graph Convolution using Adversarial and Regression Networks for Road Travel Speed
Prediction. The topmost component is the graph convolutional network, where the encoder encodes an adjacency matrix A and node
feature matrix X into a latent representation Z. The decoder decodes the latent representation with the purpose of predicting travel
speed histograms. The bottom component is the adversarial network that is used to force the latent representation to match a Gaussian
distribution.

as input to its own model, giving s trained models for s
subgraphs.

The framework consists of three distinct modules: the
graph partitioning algorithm, the adversarially regular-
ized convolutional network for convoluting the nodes of
each subgraph to a set of low-dimensional vectors, and
a regression model to train the vector embeddings to
predict traversal speed histograms. Additionally, we in-
troduce a random-walk based road network embedding
strategy that utilizes the node2vec model from Grover
& Leskovec [6] to capture topology and features. This
model is used as a way to compare the graph convolution
model to a model that uses the probabilistic approach of
random-walk. It should be noted that, even though the
output of both the convolution-based and node2vec-based
model is similar, i.e. travel speed histograms for road seg-
ments in a road network, the way that they achieve this
result is quite different. The node2vec-based strategy is
static in the way that it handles new nodes, as it em-
beds the entire road network at the same time so that
any road segment can be directly compared to another
from the start, which means that introducing a new node,
such as when a new road has been introduced to the road
network, will require re-embedding the entire road net-
work. On the contrary, the convolution-based model is
more dynamic in handling new nodes, as the model only
embeds a node when predicting a histogram for the node.

This means that new nodes will not require a complete
re-embedding of the road network. The three modules of
the framework are as follows.

• Graph Partitioning. The graph partitioning algo-
rithm takes graph G as input, alongside the amount
of partitions and batches wanted, and outputs a set of
tuples containing an adjacency matrix Ai and feature
matrix Xi for each partitioned subgraph Gi.

• GCN with Adversarial Network. The graph con-
volutional network takes one tuple from the graph par-
titioner as input, i.e. an adjacency matrix Ai and fea-
ture matrix Xi, and convolutes the graph into a lower-
dimensional latent representation Zi. The network also
includes a regression model that predicts a travel speed
histogram for a road segment, by decoding the latent
representation of the segment to the dimensions of the
histogram. Additionally, an adversarial network takes
the latent representation and forces it to suit a prior
distribution using an adversarial training scheme. The
purpose of the adversarial network is to distinguish
whether a latent vector z ∈ Zi is from the prior dis-
tribution or the encoder.

• node2vec Feature Inclusion Model. The node2vec
feature inclusion model takes a weighted directed graph
G as input, and generates a set of node sequences from
the graph using random-walk. The model then uses
Word2vec [15] to vectorize the graph nodes based on
the sequences. In addition to the topology, the se-

4

DT106F20 Aalborg University

quences are used to embed the features of the node.

METHODOLOGY
a Graph Partitioning

Inspired by Chiang et al. [10], the graph partitioning al-
gorithm aims to partition graph G = {V,E,X} into s

dense subgraphs: Ĝ = [{V1, E1, X1}, · · · , {Vs, Es, Xs}].
The dense subgraphs are identified using the METIS [19]
partitioning algorithm. METIS aims to partition the
graph so that within-cluster edges are more prevalent
than between-cluster edges, leading to the identification
of the dense clusters of the graph. Intuitively, this also
means that the neighborhood of a given node is most
likely included within the partition that the node belongs
to.

Additionally, we also employ the stochastic multiple par-
titions approach from Chiang et al. [10]. Instead of only
considering one partition as a batch for a stochastic gradi-
ent descent update, we stochastically combine q partitions
together to form a single batch V = {V1∩· · ·∩Vq}. In ad-
dition to each partition’s nodes and edges being included
in the batch, the between-cluster edges, i.e. the edges
between partitions that were part of the original graph,
are re-added to the graph. The approach of having mul-
tiple partitions in a single batch reduces the across-batch
variance, and leads to an improved convergence rate [10].

b GCN with Adversarial Network

The GCN module draws inspiration from Pan et al. [8]
and their ARGA framework. Given an adjacency ma-
trix A and feature matrix X, the encoder produces an
embedding matrix Z ∈ RN×M , where M is the embed-
ding dimension, with each row vector zi ∈ Z represent-
ing a vertex in the graph. The architecture of the de-
coder depends on whether the dataset is road data or
the Cora dataset. For road data, the decoder predicts a
speed histogram for each vertex, and as such the output
of the decoder is a matrix Y ∈ RN×k, where k is the
amount of buckets in the speed histogram. For classi-
fication on the Cora dataset, the output of the decoder
is Y ∈ RN×C , where C is the amount of paper topics,
i.e. labels. The encoder and decoder are accompanied by
a discriminator that aims to distinguish between embed-
dings created by the encoder and random numbers drawn
from a normal distribution, producing a discrimination
matrix B ∈ RN×1. This is done to force the encoder to

create embeddings that match a normal distribution in
order to reduce overfitting.

The encoder consists of two graph convolution layers with
a Gaussian noise layer in between. Each graph convolu-
tion layer computes

H(l+1) = ReLU
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
where ReLU = max(0, x), Â ∈ RN×N is the adjacency
matrix with an added self-connection for each vertex
(such that Â = A + IN , where IN is the N -dimensional
identity matrix), D̂ ∈ RN×N is the degree matrix from
Â, H(l) ∈ RN×O with H(0) = X is the output of layer l,
W (l) is the weight matrix of layer l, and O is the amount
of output dimensions for layer l. The discriminator is a
three-layer model, where each layer computes

H(l+1) = f
(
H(l)W (l)

)
where

f =

{
ReLU (x) if l ∈ {0, 1}

1
1+e−x if l = 2

The entire model is trained in a supervised manner. The
pseudocode for each training step is outlined in algorithm
1. For the algorithm, Q is random data drawn from the
standard normal distribution, S and T are histograms
with k buckets each, ∇ is the gradient of a loss function
with respect to model weights, mean is the mean of all
matrix elements, max is the element-wise maximum op-
eration, � is the element-wise matrix multiplication op-
eration, JN,1 is a column-vector of ones, and 0N,1 is a
column vector of zeros.

If the model is used on road data, the decoder loss func-
tion is histogram intersection between the predictions and
labels, as seen on line 7 in algorithm 1, while it is cate-
gorical cross-entropy for the Cora dataset, as seen on line
5. On lines 8 and 9, the binary cross entropy loss for the
discriminator’s prediction for encoder embeddings com-
pared to 0N,1, as well as the discriminator’s prediction
for Q compared to JN,1, is calculated.

On line 15 in algorithm 1, the binary cross-entropy loss
is calculated for the embeddings created by the encoder
as well as the predictions by the discriminator. Weights
for the encoder, decoder, and discriminator are updated
according to the loss gradients.

5

DT106F20 Aalborg University

Algorithm 1: Optimization step
Input : Feature matrix X ∈ RN×F

Adjacency matrix A ∈ RN×N

Label matrix Y ∈ RN×C (Cora) OR
Y ∈ RN×k (road data)

1 Q ∈ RN×O ∼ N
(
µ = 0, σ2 = 1

)
;

2 Z = encoder.call (X,A);
3 U = decoder.call (Z);

4 if dataset is Cora then
5 L1 = − 1

N

∑N
i=1 logP [ui ∈ Cui

];
6 else
7 L1 = 1−

∑k
i=1 min (Si, Ti);

8 Update encoder and decoder weights given ∇L1;

9 R = discriminator.call (Q);
10 F = discriminator.call (Z);
11 L2R =

mean
(
max (R, 0)−R� JN,1 + log

(
1 + e−|R|

))
;

12 L2F =

mean
(
max (F, 0)− F � 0N,1 + log

(
1 + e−|F|

))
;

13 L2 = L2R + L2F ;
14 Update discriminator weights given ∇L2;

15 L3 =

mean
(
max (F, 0)− F � JN,1 + log

(
1 + e−|F|

))
;

16 Update encoder weights given ∇L3;

c node2vec Feature Inclusion Model

The node2vec feature inclusion model is a modification
of the random-walk based framework of node2vec [6].
node2vec is a graph-based extension of the Word2Vec
skip-gram neural network, and works by utilizing random-
walk on a graph to generate sequences of nodes to be used
as input to the Word2Vec model. Word2Vec then uses an
unsupervised skip-gram model to embed each node into
a vector of a given number of dimensions. node2vec is,
in general, used to embed the topology of a graph, as
node context is not considered in the skip-gram model.
The node2vec feature inclusion model entertains the idea
of embedding features separately to introduce them to
the model. Essentially, this model embeds the topology
and each feature separately, and then concatenates them
into a single vector. The combined vector is then used as
input to a regression model that predicts a travel speed
distribution based on the vectors.

We introduce two different approaches for embedding the
features of the graph; one that minimizes the size of the

graph using weights, and one that retains the topology
of the road network for the features. We will henceforth
refer to the first approach as the feature graph approach,
and the second as the sequence manipulation approach.
For the feature graph approach, we first do random-walk
on the road network graph to generate the node sequences
for the topology of the road network. Thereafter, we con-
struct a weighted directed graph for each of the n fea-
tures Ĝ = [G1, · · · , Gn] = [{V1, E1}, · · · , {Vn, En}]. The
graphs are constructed as visualized in figure 2. An edge
between two speed limits is added and/or weighted if an
edge between two road segments, i.e. nodes in the road
network graph, with the two speed limits exists. We then
perform random-walk on each feature graph, generating
a set of sequences for each feature. We then embed each
sequence, i.e. the topology and feature sequences, and
concatenate the embeddings to form a single vector em-
bedding for each node in the road network.

Figure 2. Illustration of node2vec using weigthed feature graphs

Figure 3. Weighted feature graph with incorrect sequencing

The sequence manipulation approach exploits the topo-
logical road network graph to create a set of feature se-
quences to be used as input in the Word2Vec model. For
this approach, we again first generate sequences based
on the topological road network graph, i.e. the leftmost
graph in figure 2, and embed it. Generating sequences
for the topology could, as an example, give the following
sequences of road segment identifiers, using a sequence
length of five:

S1 = [1680, 1384, 1567, 2104, 6405]

S2 = [9306, 1384, 1680, 1567, 2104]

6

DT106F20 Aalborg University

Dataset Task #Nodes #Edges #Features
Cora Node Classification 2,708 5,429 1,433
DRN ≥ 50 Regression 49,544 98,646 14

Table 1. Dataset Statistics

Now, for each feature, we replace the road segment iden-
tifier with its feature value. For example, replacing with
the speed limit of the road segment will give the following
sequences.

S1 = [60, 80, 50, 50, 50]

S2 = [90, 80, 60, 50, 50]

We then use the constructed feature sequences to embed
each feature, and then concatenate the topology and each
feature embedding to form a single vector for each node
in the road network. Doing this, we ensure that the gen-
erated sequences always represent the actual feature se-
quences from the road network, ensuring that we will not
embed a feature using a sequence that is incorrect. This
will not always be the case for the feature graph approach.
For example, figure 3 shows a directed road network graph
and its associated weighted directed speed limit graph.
Using this graph, the sequence S = [50, 110, 80, 50, 110]

can be generated by using a random-walk process on
the speed limit graph. But, according to the road net-
work graph, it is not possible to generate a sequence
with a speed limit of [50, 110, 80]. Therefore, conduct-
ing random-walk on the topological road network graph,
and then replacing the road segment identifiers in the se-
quences with their feature values, will ensure that only
sequences that adhere to the topology of the graph are
generated, resulting in feature embeddings that are more
representative of real-world scenarios.

Model Int. Cor. Bhat. KL div.
Base node2vec 0.443 0.486 0.531 4.010
Feature Graph 0.705 0.637 0.367 2.103
Sequence Manip. 0.741 0.671 0.326 1.472

Table 2. Comparison of node2vec approaches

This is also further solidified by a comparison of the ac-
curacy of the two approaches. Table 2 shows a compar-
ison of using the embedding for prediction, for the base
node2vec algorithm on the topology and the two feature-
inclusion approaches. As can be seen, sequence manip-
ulation beats the feature graph approach across all four
metrics, with a significant improvement in KL divergence.
Furthermore, there is a significant improvement to both

approaches compared to base node2vec, suggesting that
the inclusion of the feature embeddings increases the ac-
curacy of prediction using the generated embeddings. We
will in the experiments be using the sequence manipula-
tion approach as a baseline.

EXPERIMENTS
We evaluate the performance of our framework on two
datasets with two different tasks; the Cora [20] dataset
and the Danish road network (DRN) introduced in [11].
The dataset statistics can be seen in table 1. Further-
more, we evaluate the effectiveness of applying the clus-
tering strategy when using the DRN dataset, in terms
of accuracy vs. execution time. For the DRN dataset,
the amount of travel speed observations necessary for
a node to be considered is set to ≥ 50, with a total
amount of travel speed observations across road segments
of 41,734,487. The model and experiments are imple-
mented using TensorFlow 2.2.0 [21] with the included
Keras API [22]. For all experiments, the travel speed his-
togram consists of 22 buckets Hist = (b1, · · · , b22), with
a bucket spread of 2m/s. This makes the top bucket con-
tain values of 42m/s ≤ i < 44m/s, which means that we
maintain speeds up to ≈ 158km/h.

a Prediction on DRN Dataset

We compare our proposed GCN framework with the
node2vec-based approaches and a reimplementation of
ARGA [8], in terms of accuracy on travel speed histogram
prediction for the DRN dataset. All experiments have
been conducted using the same hardware.

Baselines. We include the following models in the DRN
prediction experiment. All node2vec-based models in-
clude a regression model that takes the embeddings pro-
duced by node2vec as input and predicts a histogram of
travel speed for each node embedding. The regression
model is an MLP with two fully-connected layers, where
the first layer has 32 output neurons and ReLU for ac-
tivation, and the second layer has 7 output neurons and
softmax for activation. For the ARGA model, the exper-
iments have been conducted on a dense subgraph of the
dataset, consisting of approximately 5,000 road segments,

7

DT106F20 Aalborg University

DRN Mean Median
Regression Int. Cor. Bhat. KL div. Int. Cor. Bhat. KL div.
Naive Baseline 1 0.153 0.370 0.603 1.474 0.154 0.401 0.599 1.433
Naive Baseline 2 0.203 0.528 0.467 0.900 0.207 0.588 0.448 0.809
Base N2V 0.443 0.486 0.531 4.010 0.444 0.518 0.530 3.591
N2V Features 0.665 0.734 0.335 1.736 0.714 0.851 0.292 0.571
ARGA TF2 0.517 0.580 0.467 3.258 0.532 0.646 0.454 2.317
GCN w/o adversarial 0.699 0.767 0.330 1.991 0.772 0.904 0.270 0.507
Full GCN framework 0.715 0.785 0.314 1.436 0.773 0.907 0.266 0.446

Table 3. Prediction Results on DRN

due to limitations regarding memory usage. For both the
full GCN framework and the GCN without adversarial,
the experiments have been conducted on a partitioned
dataset of 100 batches.
• Naive Baseline 1: No learning. Instead, compute the

average travel speed histogram of all road segments
with histogram data in the graph, and use it as the
prediction for the road segments without data.

• Naive Baseline 2: No learning. Similar to Naive Base-
line 1, but computing the average travel speed his-
togram for each speed limit.

• Base N2V: The base node2vec algorithm, utilizing
random-walk to generate sequences of nodes to be used
in the Word2Vec skip-gram model. Only the topology
is embedded.

• N2V Features: node2vec with sequence manipulation
for feature embeddings, i.e. our second proposed ap-
proach for the node2vec feature inclusion model.

• ARGA TF2: Re-implementation of ARGA [8] in Ten-
sorflow 2.2.0, with the addition of a regression model
to predict travel speed histograms based on the embed-
dings produced by ARGA.

• GCN w/o adversarial: Our proposed GCN framework
without the adversarial training scheme.

• Full GCN framework: The partitioned adversarial
GCN for histogram prediction. Our full proposed
framework for prediction of road segment travel speed
histograms.

Metrics. The results of prediction on the DRN dataset
are reported in terms of Intersection, Correlation, Bhat-
tacharyya distance, and Kullback-Leibler (KL) diver-
gence, between a predicted histogram of travel speed and
the real histogram. For intersection and correlation, the
higher the value the better, and for Bhattacharyya dis-
tance and KL divergence, the lower the better. Each ex-
periment has been conducted 10 times and we report the

mean and median values of each metric. We use 2/3 of
the dataset for training and 1/3 for testing. For the full
GCN framework, we use 2/3 of each batch for training
and 1/3 for testing.

Parameter Settings. All models have been trained for
2000 epochs, and are optimized using the Adam opti-
mizer. Through a parameter study, the learning rate
of the GCN has been set to 10−3 and the discriminator
learning rate has been set to 10−4. Furthermore, the en-
coder of the GCN has a hidden layer with 32 neurons and
an embedding layer with 16 neurons, and the decoder has
two hidden layers with 256 neurons and an output layer
with 22 neurons. The decoder and the discriminator has
a dropout rate of 30%. The discriminator has two lay-
ers with 64 and 32 neurons respectively, and an output
layer with one neuron. For the node2vec-based models,
the default parameters for the reference node2vec imple-
mentation have been used.

Results. The experimental results on prediction of his-
tograms on the DRN dataset are shown in table 3. It
shows that the full GCN framework proposed in this pa-
per performs best across all metrics except for the KL
divergence mean, where Naive Baseline 2 performs the
best. Furthermore, the median results show that the ma-
jority of the predictions are above 90% in correlation and
77% in intersection, with the KL divergence being sig-
nificantly better compared to the mean. Regarding the
adversarial training scheme, the addition of this shows
an increase in performance for the mean values of each
metric, but not a notable increase for the median. This
indicates that predictions of a lower accuracy, i.e. the
outliers in the dataset, have increased in performance for
each metric with the addition of the adversarial training
scheme.

8

DT106F20 Aalborg University

Cora Mean Median
Classification Accuracy F1 ROC AUC Accuracy F1 ROC AUC
Base N2V 0.690 0.673 0.905 0.684 0.673 0.912
ARGA TF2 0.662 0.649 0.906 0.665 0.647 0.911
GCN w/o adversarial 0.707 0.681 0.906 0.704 0.682 0.905
GCN w/o partitioning 0.653 0.613 0.887 0.663 0.623 0.893
GCN 5 batches 0.422 0.295 0.719 0.456 0.302 0.686
GCN 20 batches 0.269 0.134 0.577 0.296 0.136 0.572

Table 4. Classification Results on Cora

b Node Classification

Baselines. We include the following models in the Cora
classification experiment. Base N2V is node2Vec with
default parameters, as well as an MLP with two fully-
connected layers. The first layer in the MLP has 32
output neurons and ReLU for activation, and the second
layer has 7 output neurons and softmax for activation. All
experiments have been conducted using the same hard-
ware.

• Base N2V: The base node2vec algorithm, utilizing
random-walk to generate sequences of nodes to be used
in the Word2Vec skip-gram model. Only the topology
is embedded.

• ARGA TF2: Re-implementation of ARGA [8] in Ten-
sorflow 2.2.0, with the addition of a regression model
to predict travel speed histograms based on the embed-
dings produced by ARGA.

• GCN w/o adversarial: Our framework without the ad-
versarial training scheme. The dataset is a single clus-
ter, i.e. no partitioning.

• GCN w/o partitioning: Our proposed framework for
prediction of road segment travel speed histograms,
without partitioning the dataset.

• GCN 5 batches: Our proposed framework, with the
dataset being partitioned in 5 batches.

• GCN 20 batches: Our proposed framework, with the
dataset being partitioned in 20 batches.

Metrics. The results of classification on the Cora dataset
are reported in terms of Accuracy, Macro-F1 score, and
Area Under the Receiver Operating Characteristic Curve
(ROC AUC) score. Categorical crossentropy has been
used as the loss function for the regression model in these
experiments. Each experiment has been conducted 10
times and we report the mean and median values for each
metric. We use the training, test, and validation split in-
troduced in [23].

Parameter Settings. All models have been trained for
2000 epochs, and are optimized using the Adam opti-
mizer. The dataset has been split randomly, but still
such that there are 20 nodes for each of the seven classes
for training, 30 for validation, and the rest for training.
For the node2vec-based models, the default parameters
for the reference node2vec implementation. Through a
parameter study, the learning rate of the GCN has been
set to 10−4 and the discriminator learning rate has been
set to 10−5. Furthermore, the encoder of the GCN has
a hidden layer with 32 neurons and an embedding layer
with 32 neurons, and the decoder has two hidden layers
with 16 neurons and an output layer with 7 neurons. The
decoder has a dropout rate of 20%. The discriminator has
two layers with 64 and 32 neurons respectively, an out-
put layer with one neuron, and a dropout rate of 50%.
The activation functions for each of the final layers of the
encoder, decoder, and discriminator are linear, softmax,
and linear, respectively. Every other layer has ReLU as
activation function.

Results. Table 4 shows the results of the Cora classifica-
tion experiment. The results show that the our proposed
GCN framework without the adversarial training scheme
performs the best across all metrics except ROC AUC.
This might indicate that, when the task at hand is to
classify a node, and when the dataset consists of few fea-
tures, the adversarial training scheme only adds noise to
the model. As the purpose of the adversarial training
scheme is to regularize the latent representation, when
simple data is handled this only weakens the model. Fur-
thermore, increasing the number of batches from 1 to 5
to 20 lead to a decrease in performance across all metrics.
This might indicate that the tendencies of the dataset has
to be fully represented in each batch, and, in our case, the
smaller batches generated by our partitioning algorithm
is not ideal for representing the Cora dataset.

9

DT106F20 Aalborg University

DRN Mean Computation Memory
Clustering Int. Cor. Bhat. KL div. time usage
(10, 10) 0.647 ± 0.004 0.716 ± 0.006 0.367 ± 0.004 1.832 ± 0.077 00:52:31.233 3.02 GB
(40, 10) 0.647 ± 0.002 0.713 ± 0.003 0.367 ± 0.002 1.821 ± 0.046 00:51:44.747 2.94 GB
(20, 20) 0.673 ± 0.003 0.742 ± 0.003 0.348 ± 0.003 1.682 ± 0.059 00:35:09.294 2.19 GB
(200, 20) 0.673 ± 0.002 0.741 ± 0.003 0.348 ± 0.003 1.678 ± 0.037 00:36:00.298 2.10 GB
(100, 100) 0.715 ± 0.003 0.785 ± 0.003 0.314 ± 0.002 1.436 ± 0.037 00:45:23.527 1.74 GB

Table 5. Effects of Clustering when Predicting on DRN

c Effects of Graph Partitioning

We experiment on whether or not using the graph parti-
tioning module has an effect on the computation time and
accuracy of the model, specifically for prediction of travel
speed histograms on the DRN dataset. As we are not
able to predict on the entire dataset at the same time, we
will here include experiments on having a lower vs. larger
amount of clusters, and the impact of stochastic multiple
partitions on accuracy. All experiments have been con-
ducted using the same hardware.

Baselines. All experiments on the effects of graph par-
titioning have been conducted using the full GCN frame-
work proposed in this paper. The graph partitioning
module has been utilized to create a number of batches,
each trained using its own model. We train each batch
setting once and compute the mean and standard error
of the mean for each experiment.

Metrics. The results are reported in terms of Intersec-
tion, Correlation, Bhattacharyya distance, and Kullback-
Leibler (KL) divergence. For intersection and correlation,
the higher the value the better, and for Bhattacharyya
distance and KL divergence, the lower the better. Ad-
ditionally, we report the computation time and memory
usage of each model. The numbers in the left column of
table 5 represent the amount of clusters generated by the
partitioning module, and the amount of batches created.
For example, (40, 10) indicates that the dataset has been
partitioned in 40 clusters, which have been combined to
form 10 batches, i.e. 4 clusters per batch. If clusters is
equal to batches, e.g. (20, 20), stochastic multiple par-
titions have not been utilized as there is one cluster per
batch. The number of models trained is equal to the num-
ber of batches, and we use 2/3 of each batch for training
and 1/3 for testing.

Parameter Settings. All models have been trained for
2000 epochs, and are optimized using the Adam opti-

mizer. We are using identical parameter settings for the
GCN as the setup used for the DRN experiment seen in
table 3.

Results. The results in table 5 show that, when increas-
ing the number of batches to be trained, and thus re-
ducing the size of each batch, the computation time is
reduced significantly while the accuracy across the four
metrics is increased. What should be noted here is that
the computation time represents the time that the models
have been trained sequentially, while it is fully possible to
train the models in parallel, which makes the per-batch
training time an important factor to study.

For the (10, 10) and (40, 10) settings, the average train-
ing time per batch is approximately 5 minutes and 15 sec-
onds, whereas for the (20, 20) and (200, 20) settings it is
approximately 1 minute and 45 seconds on the same hard-
ware. This is a significant speed-up in training time, while
also achieving better results on all four metrics and reduc-
ing the memory usage. Again, increasing the number of
batches to 100, i.e. the (100, 100) setting, we still see a
significant increase in performance across all four metrics,
while further reducing the per-batch training time to ap-
proximately 27 seconds. The performance increase when
there are more batches indicates that larger batches is not
ideal when predicting on the DRN dataset. The results
also indicate that combining clusters to form batches, us-
ing the stochastic multiple partitions approach, does not
increase the performance of the model. For both exper-
iments where this has been applied, i.e. comparing (10,
10) to (40, 10) and comparing (20, 20) to (200, 20), the
performance of the model has not increased, whereas the
computation time has slightly increased due to the over-
head from the stochastic multiple partitions algorithm.

CONCLUSION
In this paper, we proposed a novel graph convolution
framework for prediction of travel speed histograms for

10

DT106F20 Aalborg University

road segments within a road network. We argue that most
graph convolutional networks used in the transportation
domain suffer from time- or memory-expensive computa-
tion when handling larger road networks. We proposed a
clustered graph convolutional network that learns to pre-
dict travel speed histograms based on the latent represen-
tation, by training a model for each dense cluster identi-
fied using a partitioning algorithm. The network learns
jointly with an adversarial training scheme that forces the
latent representation to match a Gaussian distribution.
Additionally, we propose a node2vec-based model that is
able to embed both the topology and features of a graph,
by concatenating separate embeddings for the topology
and each feature. Experiments show that the GCN frame-
work performs best on the DRN dataset across all metrics
when compared to the baselines, achieving an accuracy
of 71.5% intersection and 78.5% correlation. Further-
more, results show that partitioning the road network into
smaller batches increases the performance of the frame-
work, while reducing the memory usage and per-batch
computation time.

REFERENCES
[1] H. Zhang, H. Wu, W. Sun, and B. Zheng, “Deep-

Travel: a Neural Network Based Travel Time Esti-
mation Model with Auxiliary Supervision,” 2018.

[2] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion Con-
volutional Recurrent Neural Network: Data-Driven
Traffic Forecasting,” 2017.

[3] C. Riley, P. V. Hentenryck, and E. Yuan, “Real-
Time Dispatching of Large-Scale Ride-Sharing Sys-
tems: Integrating Optimization, Machine Learning,
and Model Predictive Control,” 2020.

[4] T. N. Kipf and M. Welling, “Variational Graph Auto-
Encoders,” 2016.

[5] D. Coppersmith and S. Winograd, “Matrix Multipli-
cation via Arithmetic Progressions,” in Proceedings
of the Nineteenth Annual ACM Symposium on The-
ory of Computing, STOC ’87, (New York, NY, USA),
p. 1–6, Association for Computing Machinery, 1987.

[6] A. Grover and J. Leskovec, “node2vec: Scal-
able Feature Learning for Networks,” CoRR,
vol. abs/1607.00653, 2016.

[7] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk:
Online Learning of Social Representations,” Proceed-
ings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining -
KDD ’14, 2014.

[8] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and
C. Zhang, “Adversarially Regularized Graph Au-
toencoder,” CoRR, vol. abs/1802.04407, 2018.

[9] W. L. Hamilton, R. Ying, and J. Leskovec, “In-
ductive Representation Learning on Large Graphs,”
2017.

[10] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and
C. Hsieh, “Cluster-GCN: An Efficient Algorithm for
Training Deep and Large Graph Convolutional Net-
works,” CoRR, vol. abs/1905.07953, 2019.

[11] C. H. Nielsen, J. M. Kjær, L. Kristensen, M. A.
Christensen, and S. M. Randers, “Probabilistic Ap-
proach to Travel Time Estimation using Neural Net-
works,” 2020.

[12] L. Gondara, “Medical image denoising using
convolutional denoising autoencoders,” CoRR,
vol. abs/1608.04667, 2016.

[13] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes,
“A study of deep convolutional auto-encoders for
anomaly detection in videos,” Pattern Recognition
Letters, vol. 105, pp. 13 – 22, 2018. Machine Learn-
ing and Applications in Artificial Intelligence.

[14] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, and
K. Torp, “On Network Embedding for Machine
Learning on Road Networks: A Case Study on the
Danish Road Network,” in 2018 IEEE International
Conference on Big Data (Big Data), pp. 3422–3431,
IEEE, 2018.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient Estimation of Word Representations in Vector
Space,” in 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Workshop Track Proceedings
(Y. Bengio and Y. LeCun, eds.), 2013.

[16] K. Liu, S. Gao, P. Qiu, X. Liu, B. Yan, and F. Lu,
“Road2Vec: Measuring Traffic Interactions in Urban
Road System from Massive Travel Routes,” ISPRS

11

DT106F20 Aalborg University

International Journal of Geo-Information, vol. 6,
no. 11, 2017.

[17] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast Learn-
ing with Graph Convolutional Networks via Impor-
tance Sampling,” 2018.

[18] J. Chen, J. Zhu, and L. Song, “Stochastic Training
of Graph Convolutional Networks with Variance Re-
duction,” 2017.

[19] G. Karypis, V. Kumar, and S. Comput, “A Fast And
High Quality Multilevel Scheme For Partitioning Ir-
regular Graphs,” SIAM Journal on Scientific Com-
puting, vol. 20, 02 1970.

[20] J. Motl and O. Schulte, “The CTU Prague Relational
Learning Repository,” 2015.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefow-
icz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “ TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems,” 2015.
Software available from tensorflow.org.

[22] F. Chollet et al., “Keras.” https://keras.io, 2015.

[23] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Re-
visiting semi-supervised learning with graph embed-
dings,” 2016.

12

