Estimating Travel Cost Distributions of Paths in Road
Networks using Dual-Input LSTMs

Christopher Hansen Nielsen
Department of Computer Science, Aalborg University
Aalborg, Denmark
chnil5@student.aau.dk

ABSTRACT

Thanks to recent advances in sensor technologies, detailed
travel cost information are becoming increasingly available.
Such data provide a solid data foundation to capture traffic
uncertainty, e.g., in the form of travel cost distributions. We
study the problem of estimating travel cost distributions of
paths in a road network using floating car data. We consider
two different distributions structures, namely histograms
and Gaussian Mixture Models. Given a path and a departure
time, we aim at estimating the travel cost distribution of the
path. To this end, we propose a dual-input long-short term
memory (DI-LSTM) model. We introduce two new gates with
the purpose of combining two input distributions in every
iteration, where one distribution is an edge’ distribution, and
the other is the distribution of the pre-path until the edge,
which is obtained from the previous DI-LSTM unit. Empirical
studies on a large trajectory dataset offer insight into the
design properties of the DI-LSTM and demonstrate that DI-
LSTM out-performs classic LSTM, especially for longer paths.
Furthermore, we determine that Gaussian Mixture Models
has the potential to be a better suited distribution structure
than histograms.

1 INTRODUCTION

The quality of a wide variety of intelligent transportation
services, e.g., advanced traffic management and autonomous
driving, relies on accurate travel cost information. We are
now witnessing increasing needs for high-resolution travel
cost information that fully captures traffic uncertainty, which
helps improve user experience and service quality. Simply
using average costs may not suffice anymore.

For example, considering travel speed as the cost, when
an autonomous taxi follows a path to an airport with a tight
deadline, having the speed distribution helps the taxi better
understand the risk of being late, which cannot be achieved
by only using the average speed. Assume that the path has a
speed (km/h) distribution of {([20, 30), 0.2), ([30, 40), 0.3), ([40,
50), 0.5)}, meaning that the probability of the traveling speed
on the path from 20 to 30 km/h is 0.2, from 30 to 40 km/h is
0.3, and from 40 to 50 km/h is 0.5. If the path is 30 km, we are
able to derive a travel time (minutes) distribution: {((36, 45],
0.5), ((45, 601, 0.3), ((60, 90], 0.2)}. If the deadline is 60 minutes,

1/8

Simon Makne Randers
Department of Computer Science, Aalborg University
Aalborg, Denmark
srandel5@student.aau.dk

the taxi has a 20% risk of running late. In contrast, when only
using average speed, which is 36 km/h, we derive an average
travel time of 50 min, which is unable to accurately assess
the risk of arriving late. This may result in unpleasant results,
e.g., missing a flight or waste of time.

With the increasing digitization of transportation, large
amounts of floating car data (FCD) are becoming available.
We aim to exploit such data for accurately estimating the cost
distribution of a path. However, this is non-trivial due to the
data sparseness challenge. A road network often has expo-
nentially many meaningful paths; it is thus almost impossible
to have sufficient trajectory data to cover all possible paths
to derive their distributions, even with large amounts of tra-
jectories [2]. In contrast, it is more likely to have trajectories
on all edges to derive cost distributions for the edges. In case
that the trajectory data is also too sparse to cover all edges,
studies exist that are able to propagate cost distributions
from edges with trajectory data to edges without trajectory
data [3]. Thus, we consider a problem setting where we have
cost distributions of all edges in a road network. The target
is to estimate the cost distribution of an arbitrary path in the
road network.

To solve the path cost distribution estimation problem,
we present a dual input long short term memory (DI-LSTM)
model. Given the cost distributions of the edges in a path,
DI-LSTM is able to accurately estimate the cost distribution
of the path. We introduce two new gates, a combine gate and
an additional input gate, to thoroughly capture the dependen-
cies among the edges’ cost distributions, which improves the
accuracy when comparing to classic LSTM. Specifically, the
combine gate combines two input distributions—a cost dis-
tribution of an edge and a cost distribution of the pre-prath
until the edge, which is obtained from the previous DI-LSTM.
The additional input gate produces a cost distribution of the
new pre-prath, including the current edge, which is then fed
into the next DI-LSTM. Each cost distribution is accompanied
by the length of the edge/pre-prath it represents.

The main focal points of this work are summarized as
follows. First, we formalize the path cost distribution estima-
tion problem. Second, we propose a novel dual-input LSTM
to better capture the dependencies of edge cost distributions
and thus improve accuracy. Third, we demonstrate that the

Estimating Travel Cost Distributions of Paths in Road Networks using Dual-Input LSTMs

proposed model outperforms multiple baselines using a large
real-world trajectory dataset.

2 PRELIMINARIES

We introduce important concepts and formulate the problem
on path cost distribution estimation.

Road Networks: A road network is modeled as a graph
G = (V,E), where V is a set of vertices and a vertex v; € V
represents a road intersection, and E C V XV is a set of edge
and an edge ex = (v;,v;) represents a road segment.

Paths and Trajectories: A pathP = (e, ez, €3,...,€p) 1S
a sequence of edges, where two consecutive edges in the path
e; and e; 1, where 1 < i < n—1, must share a vertex such that
it is possible to traverse from e; to e;;. A sub-path of path P
is a sub-sequence of the edges in P. Pre-path P\) of path P is
a sub-path of P with the first j edges. For example, given path
P = (ey, ey, €3, €4, €5), we have pre-path PO = (e, e5, €3).

A trajectory is a sequence of trajectory records that corre-
spond to a trip on a path. Here, a trajectory record is in the
form of (e;, t;, d;), indicating that a vehicle traversed edge e;
at timestamp t; with duration d;.

Travel Cost Distributions: We consider two distribu-
tion structures; histograms and Gaussian Mixturee Models.

A histogram is a collection of (bucket, probability) pairs
with each bucket representing a speed range [I, u) that is
specified by a speed lower bound [and speed upper bound
u. The probabilities over different buckets in a histogram
sum to 1.0. Two histograms are homogeneous if they have the
same buckets. In this paper, we use homogeneous histograms
to represent the speed distributions of different edges and
paths, where each histogram has 22 buckets, and each bucket
represents a speed range of 2 m/s, thus covering speeds up
to 44 m/s.

To obtain a histogram for an edge, we consider all avail-
able trajectory records on the edge. Then, we distribute these
trajectory records to different buckets and derive the cor-
responding probabilities. For instance, assume that in total,
100 trajectory records exist on edge e;, and 20 out of the 100
trajectory records have speeds 10 m/s to 12 m/s, then the
probability of bucket [10, 12) is 0.2.

Similarly, we are able to derive a speed histogram for a
path using trajectories that occurred on the path. However,
due to the data sparseness challenge, many paths are without
any trajectories.

A Gaussian Mixture Model is a probabilistic model de-
signed for representing multiple sub-distributions within the
overlying distribution. Given enough components, a Gauss-
ian mixture is capable of modeling an arbitrary number of
probability densities [1]. We choose a Gaussian mixture over
a single Gaussian distribution, as the underlying data can be
multi-modal - meaning there can be multiple peaks.

2/8

Nielsen & Randers

C
PIN) = > ae()D(ylpe(x), 0c(), ..)

c=1

(1)

The conditional probability for a mixture is defined as seen in
equation 1. Here c denotes the index of the respective mixture
component, a denotes the mixing parameter, D represents
the corresponding distribution, u represents the mean, and
o is the standard deviation. Using a Gaussian mixture allows
us to model a multi-modal problem while representing the
overall distribution uniformly. This is essential as we aim
to use the Gaussian mixture as input for a neural network
and thus need a uniform structure. Similar to how we obtain
the histogram distributions, we identify all edges and paths
with at least five trajectory records and construct the corre-
sponding Gaussian mixture model using a Mixture Density
Network [1].

One advantage of using Gaussian mixtures is that it also
allows the consideration of travel time as opposed to travel
speed distributions, as the Gaussian mixture retains the same
uniform structure. We can still use the same number of mix-
tures in the Gaussian, whereas if we were using a histogram,
we would have to increase the range of the buckets, or in-
crease the number of buckets in order to represent travel
time in such a data-structure. This also allows us to consider
the travel time problem, rather than only travel speed. We
can then consider both travel time and travel speed as a cost.

Mixture Density Network: In order to obtain the Gauss-
ian mixtures we utilize a Mixture Density Network (MDN)
[1]. An MDN is a class of Deep Neural Networks, which
is designed to model general conditional probability densi-
ties. As specified previously, we are interested in generating
Gaussian mixtures. As such, we specify the output layers of a
standard MDN to specifically predict Gaussian mixtures. We
employ a fully connected layer with ReLU as activation to
get a hidden representation before we pass it through three
different layers to get the @, o, and p values.

h(x) = FC(x)
a(x) = 5(FC(h(x))
o(x) = ELU(FC(h(x)) +1
u(x) = FC(h(x)
We enforce the standard deviation to be o(x) > 0 by using a
variation of the ELU activation with an offset of +1. Lastly,
as the output layer, the MDN employs a concatenation layer
to combine the three parameter-vectors, as seen in equation

2. The MDN utilizes a Negative Log-Likelihood (NLL) loss
function.

MDN (x) = CONCAT (a(x), o(x), pt(x)) (2)

Department of Computer Science, Aalborg University

Since the MDN does not need any truth labels for the training
process, we can identify all edges, with at least five observa-
tions, that are not part of a path, and use these for training
the MDN. This allows us to use the same data as with the
histograms for representing the edges. The difference is that
this time, the data is being passed through the MDN and
converted to Gaussian mixtures instead of being histogram
distributions.

Path Cost Distribution Estimation: Given a departure
time ¢, a path P = (e, ey, ..., €,), and the travel cost distri-
bution D(e;) of each edge e; € P, path cost distribution
estimation aims at estimating the travel cost distribution
D(P) of path P.

3 DUAL INPUT LSTM

We propose a dual input long short term memory (DI-LSTM)
model to solve the path cost distribution estimation problem.
We choose LSTM as the foundation as it is shown to be
effective in capturing dependencies in the input sequences.
In our setting, a path is a sequence of edges; it is thus essential
to capture the dependencies of the cost distributions of the
edges in the path to accurately estimate the cost distribution
of the path. To better fit this problem setting, we introduce
two new gates inside an LSTM unit, which are detailed in
the following.

DI-LSTM Units

Figure 1 shows a DI-LSTM unit. The basic structure resem-
bles a classic LSTM unit with gating mechanisms, such as a
forget gate, an input gate, and an output gate, and multiple
hidden states, such as c(i) and h(i). The gates of an LSTM
unit are defined as:

ir = o(w;i[hi—1, x:] + b;)

fir = o(wg[he—1, x:] + by)
0; = o(wo[hi—1,x;] +b,)

where i;, f;, and o; represents the input, forget, and out-
put gate respectively - wy represents the weights of gate
X, hy—1 represents the output of the previous LSTM unit, x;
represents the current input, and b, is the bias for gate x.
Next, we elaborate the two new gates—a combine gate and
an additional input gate, which are highlighted in Figure 1.

Combine Gate: The combine gate combines two input
distributions. The first input is the edge distribution D(e;).
The second input is an aggregated distribution that repre-
sents the pre-path P~ until edge e;, which is the output
of the additional input gate from the previous DI-LSTM unit.
Both distributions are passed in along with their respective
edge/pre-path length.

We introduce two variations of the combine gate—a math
gate specifically designed to combine histograms, and a

3/8

Nielsen & Randers
h(i)
) ‘Y
c(-1) X + 0]
"
Gate Gate @ Gate
h(i-1) (CG(i) 1
| Combine Additional | .
D(P-L) Gate Input Gate T(P')

p(ei)
Figure 1: The Dual-Input LSTM unit.

Multi-Layer Perception (MLP) gate designed to consider all
distribution types.

Math gate (MG): The math gate normalizes the two input
distributions based on the lengths of edge e; and the pre-
path PU=V_ Specifically, the k-th bucket of the combined
distribution, denoted as CGys(i)[k], has the normalized
probability shown in Equation 3.

, D(e;) [k] * ej.len + D(PUD)[k] » P4~ Jen
CG k] = . 3
w6 () [k] ei.len+PU=1) len)

MLP gate (MLPG): The MLP gate, see equation 4, employs
fully connected layers with ReLU as the activation functions
in the internal layers and either an MDN or a softmax (de-
noted by §(-)) as the final layer, as it makes sure the output
represents a meaningful distribution.

CGup(i) = 6(FC(D(e), D(P'™)))
Additional Input Gate: After computing the hidden
state h(i) inside an LSTM unit, we apply an additional in-
put gate (AIG) to force it into a meaningful distribution,
which represents the distribution of pre-path PV, The AIG
is achieved by passing the hidden state h(i) through ¢ layer,
which gives:

AIG(i) = D(PY) = §(FC(h(i))) (5)

The Full Model

Figure 2 shows a histogram variation of the full model with a
sequence of DI-LSTM units and some fully connected layers
in the end. The i-th DI-LSTM unit takes an input edge e;’s
distribution D(e;) and an additional input D(PU~V) that is
obtained from the additional input gate of the previous DI-
LSTM unit. Each distribution is accompanied with the length
of the edge as a local feature. Meaning the input size in this
variation is 23 variables. A special case is the first DI-LSTM
unit where we do not have a DI-LSTM unit in front of it. It
takes two inputs D(e;) and D(P(). Since P(Y) only includes

Estimating Travel Cost Distributions of Paths in Road Networks using Dual-Input LSTMs

the first edge e; in path P, we have D(P(") = D(e;), which
can be obtained directly.

Departure
time t
FC Softmax FC RelLU layerf“—
D(P) layer with dropout
h(n)
c(1) c(2) c(3) c(n-1
DI-LSTM DI-LSTM | —» : DI-LSTM
e h(2) h(3) h(n-1
h(1)
T |]
D(PW) D(ez) D(P?) D(es) D(P*V) D(en)

Figure 2: Full DI-LSTM Model.

The output vector h(n) from the last DI-LSTM unit is
concatenated with the departure time information and then
fed into a fully connected layer with ReLU as the activation
function. We consider time of day as the departure time
information and is encoded into a 24-dimensional one-hot
vector. We also use dropout in this layer to avoid over-fitting.
Finally, we apply a fully connected layer with softmax as the
activation function to produce the final output vector D(P)
that represents the speed distribution of path P.

Loss Function

We design a loss function that measures the discrepancy
between a ground truth distribution, denoted as D; and an
estimated distribution, denoted as D,. In particular, the loss
function Equation 6 combines two metrics that measure the
similarity between two distributions— Kullback-Leibler (KL)
Divergence and Histogram Intersection.

Loss(Dy, Dy) = KLD(Dy, D) + (1 — INT(Dy, D3))

where

(6)

Dy [i])
2

N
KLD(Dy.D;) =) D[] log(5 H

i=1

N
INT(Dy, D) =)" min(Ds [i], Dai])

i=1
and N is number of buckets in a histogram. Here, a small
KL divergence value indicates that the two distributions
are similar, while a small intersection value indicates that
they are dissimilar. Since the intersection value is between
0 and 1, we use (1 — Int(Hy, Hy)) in the loss function. Thus,
minimizing the loss function ensures accurate estimation.

W.r.t the Gaussian mixture models, we integrate over the

probability density function (PDF) generated from the Gauss-
ian mixture to achieve a similar bucket structure to that of
histograms, an example of this can be found in figure 5a.
Allowing us to use the same loss function.

4/8

Nielsen & Randers

4 EXPERIMENTS

Data. We use a large GPS data set with 1,107,684,238 GPS
points, collected on the Danish road network during the pe-
riod 2012-04-01 to 2014-12-20. After map matching, we select
90,688 paths that are traversed by at least five trajectories,
and thus we are able to derive ground truth cost distribu-
tions for the paths. We then categorize these paths into four
different groups w.r.t. path cardinalities (i.e., the number of
edges in the paths): short, medium, long, and very long. The
average path lengths in kilometers (KM) are summarized in
Table 1. For each path cardinality, we randomly choose 10%
as testing data and the remaining 90% as training data.

Table 1: Path Categories.

‘ Short ‘ Medium ‘ Long ‘ Very Long
Cardinality | [2,30] | [31,70] | [71, 115] | [116, 169]
Length (KM) | 257 | 17.02 28.58 41.36

Baselines. We consider five different methods. (1) Length-
based normalization (LBN): we normalize the edge distribu-
tions w.r.t. their edge lengths and then aggregate the nor-
malized distributions using Equation 3, i.e., the math gate, to
obtain D(P). (2) Linear regression (LR): we consider estimat-
ing D(P) as a regression problem and use LR as a non-deep
learning method. (3) classic long short term memory network
(LSTM); (4) DI-LSTM using the math gate (DI-LSTM-MG);
(5) DI-LSTM using the MLP gate (DI-LSTM-MLP).

Evaluation Metrics. We employ three popular metrics that
are able to quantify the similarity between two distribu-
tions. These include Intersection and KL Divergence, which
are already introduced when introducing the loss function in
Section 3. The third metric is Correlation, defined as follows.

SN (Dy[i] = Dy)(D2[i] - Dy)
SN (Di[i] = Dy)%(De[i] — Dy)?

where Dy ﬁ Zﬁil Di[j] and N is the total number of
histogram buckets. Note that lower KL divergence values
and higher intersection and correlation values suggest the
estimated distributions are more accurate. Similar to the loss
function, we integrate over the PDF, allowing us to utilize the
same metrics for evaluation when considering the Gaussian
mixtures.

COR(Dl, Dg) =

Histogram Experiments

In the first set of experiments, we explore the histogram
distribution structure. We consider all baselines and models
in this set of experiments.

Preliminary Results. We start by testing the two gates,
MLPG and MG, separately. We train the MLPG on 90% of

Department of Computer Science, Aalborg University Nielsen & Randers
Table 2: Mean accuracy for histogram representations.

Method All Paths Short Medium Long Very Long

COR INT KLD | COR INT KLD | COR INT KLD | COR INT KLD | COR INT KLD
LBN 0.405 0313 1449 | 0.657 0.532 1.014 | 0.417 0.320 1394 | 0.352 0.261 1.626 | 0.285 0.233 1.660
LR 0.496 0.435 2.546 | 0.715 0.588 0.717 | 0.405 0.366 2.725 | 0.418 0.378 3.208 | 0.636 0.543 2.093
LSTM 0.810 0.684 0478 | 0.782 0.654 0.528 | 0.832 0.701 0.423 | 0.761 0.645 0.587 | 0.877 0.746 0.337
DI-LSTM-MG | 0.805 0.678 0.504 | 0.757 0.631 0.588 | 0.836 0.700 0.424 | 0.750 0.640 0.645 | 0.877 0.735 0.343
DI-LSTM-MLP | 0.821 0.692 0.450 | 0.783 0.657 0.528 | 0.834 0.698 0.417 | 0.789 0.666 0.527 | 0.890 0.756 0.313

paths with a cardinality of 2, using the remaining 10% for
testing and since the MG cannot be trained, we just test on
the same 10% testing data. Table 3 reports the mean perfor-
mance of the two gates. We see that the MLPG performs
significantly better than the MG, indicating that there ex-
ists complex correlations between edge distributions, that a
simple equation cannot completely capture.

Table 3: Mean Gate Accuracy.

Gates | COR INT KLD
MG | 0427 0464 1.69
MLP | 0.758 0.645 0.611

Results. We report the mean accuracy w.r.t. different path
categories in Table 2 using 10-fold cross-validation. Similar
to the base gate performance, LBN performs the worst. Sim-
ply aggregating edge distributions and normalizing them
according to edge lengths is very inaccurate. This suggests
that there exist complex relationships among the edge dis-
tributions, and they are not proportional to the lengths. LR
also performs poorly as LR is unable to capture non-linear
relationships among the edge distributions.

The deep learning-based methods, i.e., LSTM, DI-LSTM-
MG, and DI-LSTM-MLP, achieve significantly better results
compared to LBN and LR, as such deep learning models can
capture complex and non-linear relationships. More specifi-
cally, the DI-LSTM-MLP achieves better accuracy than DI-
LSTM-MG does. This is consistent with the previous observa-
tions that complex and non-linear correlations among edge
distributions exist, and a simple length based normalization
does not work well.

To further this, looking at the performance of the base
gates, MLPG and MG, we see that MLPG outperforms MG
with a relative difference of 77.59%, 63.94%, and 38.99% in
COR, KLD, and INT respectively. Whereas, looking at the
full models, the DI-LSTM-MLP outperforms the DI-LSTM-
MG with a relative difference of 2.05%, 10.75%, and 1.93% in
COR, KLD, and INT respectively. This indicates that while
there is large difference in the separated gate performance,
it does not appear to be as impactful as expected in the
full model. We speculate this is caused by the fact that the
MG is deterministic whereas the MLPG is not. Specifically,

5/8

we expect that the deterministic feature of the MG allows
the LSTM unit around it to be trained accordingly, as it
quickly learns that the outcome of the MG deterministic,
whereas it has a harder time learning the outcome of the
MLPG. This is consistent with earlier observations of less
optimized versions of the MLPG, where the baseline LSTM
would also outperform the DI-LSTM-MLP model.

When considering the different path categories, we notice
that DI-LSTM-MLP becomes more superior when estimating
distributions for long and very long paths. This is important
because the longer a path is, it is less likely that we have
trajectories occurred on the path. Thus, the need is greater
to estimate the speed distribution for such long and very
long paths.

Figure 3 shows a box plot for correlation-based accuracy.
The results are consistent with the observations from table 2.
Interestingly, we see that the median value for most cate-
gories is significantly better than the mean value, suggesting
that, while the model produces some poor results, the major-
ity of the time it will produce predictions which are better
than the mean result. We see again, that the LBN and LR
perform the worst, and also spread over larger ranges. In
contrast, the LSTM family has smaller ranges, and DI-LSTM-
MLP performs the best, i.e., having the smallest ranges.

—— LBN — LR — LSTM

(i

Medium

—— DI-LSTM-MG —— DI-LSTM-MLP

1.04

0.8

[oe]

0.6

)]

0.44

0.2

0.04

Short Lolng Very'Long
Figure 3: Box-plot of correlation for the histogram experi-
ments, with median (solid line), mean (dashed line), and 10,

25, 75, 90 percentiles.

Estimating Travel Cost Distributions of Paths in Road Networks using Dual-Input LSTMs

Nielsen & Randers

Table 4: Mean accuracy for Gaussian mixture representations - TG and SG denotes the speed and time Gaussians respectively.
Furthermore, GRAN denotes the SG performance evaluated using 22.

Type | Method All Paths Short Medium Long Very Long
COR INT KLD | COR INT KLD | COR INT KLD | COR INT KLD | COR INT KLD
TG LSTM 0.891 0.786 0.37 0.562 0.459 2.885 | 0.930 0.796 0.083 | 0.954 0.865 0.086 | 0.972 0.885 0.054
DI-LSTM-MLP | 0.929 0.829 0.118 | 0.597 0.462 1.019 | 0.969 0.854 0.020 | 0.979 0.896 0.032 | 0.969 0.882 0.047
SG LSTM 0.645 0.544 0.669 | 0.633 0.568 0.682 | 0.635 0.555 0.663 | 0.640 0.522 0.701 | 0.687 0.534 0.625
DI-LSTM-MLP | 0.565 0.480 0.875 | 0.563 0.516 0.883 | 0.560 0.495 0.867 | 0.556 0.453 0.902 | 0.594 0.458 0.857
GRAN LSTM 0.702 0.581 0.560 | 0.692 0.604 0.571 | 0.697 0.593 0.549 | 0.690 0.554 0.598 | 0.752 0.584 0.503
DI-LSTM-MLP | 0.619 0.513 0.7583 | 0.618 0.548 0.766 | 0.617 0.528 0.750 | 0.604 0.484 0.789 | 0.653 0.494 0.726
Gaussian Mixture Model Experiments —— LSTM-TG ~ —— DI-LSTM-MLP-TG ~ —— LSTM-SG =~ —— DI-LSTM-MLP-SG
In the previous set of experiments, we considered only the 1.0 - - T
performance of histogram speed distributions. In this sec- 0.8 ?
tion, we explore the differences between travel speed and
travel time distributions, as well as looking at the potential 0.6 I I
difference between Gaussian mixture speed distributions and
histogram speed distributions. As reported in table 2, the 0.41
DI-LSTM-MLP model achieved the best results, and as such, 0.2
we will employ this model for the next set of experiments.
Results. As explained, the DI-LSTM-MLP is employed 0.01 . ‘ . ‘
for these experiments; however, we also consider the LSTM Short Medium Long Very Long

model as the baseline. Furthermore, we also consider the
same path categories. For these experiments, the Gaussian
mixtures are predicted with eight mixtures. Eight mixtures
are chosen as it gives a similar input size in the models, as
the histogram distributions.

Table 4 reports the mean accuracy for the two models
w.r.t both speed (SG) and time (TG) Gaussian mixtures. We
see that the TG distributions achieve excellent results, both
for the LSTM and DI-LSTM-MLP model. Specifically, we see
that the DI-LSMT-MLP model continues to show the best
results as determined in the previous set of experiments.
However, looking at the SG distributions, we see that the
LSTM achieves the best performance and that, in general,
the speed distributions achieve significantly worse results.

As also observed with the previous experiments, we see
that all models perform the worst on almost all metrics in the
short path category, with the exception of the intersection
metric for the SG data. Interestingly, we see that the TG data
achieve significantly worse performance in the short paths
compared to all other models and especially if compared
to the results it produces for the other path categories. We
expect this is due to the unlimited range of the time data,
where observations are not locked to a specific range such as
the speed data. This results in much more varied data, which
is harder for the model to capture. Also, following previous
results, we see that the models achieve better results in the
longer path categories. This is, however, mostly the case for
the TG data, as we see the SG data being more stable across
all categories. This is illustrated in figure 4.

6/8

Figure 4: Box-plot of correlation for the Gaussian mixture
experiments, with median (solid line), mean (dashed line),
and 10, 25, 75, 90 percentiles.

Initially, we expected the performance difference of the
LSTM and DI-LSTM-MLP on the SG data, was due to possible
error margins in the Gaussian mixtures generated by the
MDN. However, considering the high accuracy of the TG
data, we now believe the issues of the SG data performance
are a result of under-fitting of the models. When considering
the SG data, the length of each edge suddenly becomes much
more important for the model, as the length of each edge
has a much more significant impact on the overall speed of
the path. Whereas with TG data, the raw travel time of the
edge is sufficient for the model to arrive at the total travel
time of the path.

In other words, we expect the two data structures to
achieve much closer results if we can better fit and opti-
mize the models, as, in theory, the speed and time should be
interchangeable as long as we also have the length.

Comparing Speed Gaussians to Speed Histograms: An-
other interesting experiment, is that we can compare the
results of the SG distribution to the results of using his-
tograms. Since we consider the same evaluation metrics for
both structures, one approach is to simply just compare the
mean performance values. Here, we see that the histograms
achieve significantly better accuracy. We expect again that
this is attributed to the under-fitting of the models on the
SG data.

Department of Computer Science, Aalborg University

0.03

0.01

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Speed(m/s)

(a) A Gaussian mixture integrated into 44 buckets.

0.04

0.02

0.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Speed(m/s)

(b) A Gaussian mixture integrated into 22 buckets.

Figure 5

Another approach to this problem is to evaluate the Gauss-
ian mixture under the same conditions as the histograms,
e.g., in 22 buckets. In figures 5a and 5b, we show how we
can integrate a Gaussian mixture into a different number of
buckets. The results of evaluating the Gaussians under the
same conditions as histograms are reported in the last row
of table 4. We observe that compared to the other SG results
reported in the same table, the performance has increased
significantly for both models. However, if we compare these
new results to those in table 2, we see that the histogram mod-
els have much higher accuracy across all metrics and path
categories. This is again attributed to the general bad per-
formance of the SG models; however, we do see an increase
in the performance. This indicates that if the Gaussian mix-
tures have lower accuracy than the histograms, the Gaussian
mixtures could achieve similar or better accuracy under the
same conditions.

5 FUTURE WORK AND OUTLOOK

One interesting avenue for future work and potential im-
provement for the model is the idea of considering more
local features of edges in the road network. Currently, we
consider the length of an edge as a local feature. However,
we could also consider local features such as road type, speed
limit, and road quality and see if such features could improve
the performance of the model.

7/8

Nielsen & Randers

Another type of feature we could consider is the edge-
to-edge relationship feature. We consider the edge-to-edge
relation features to be features that describe the transition
of one edge to another. Examples of this could be the angle
between them or intersection type, where traffic lights could
indicate that the next edge has a longer travel time compared
to intersections, where there are no required stops. We expect
that the DI-LSTM-MLP model would be able to better capture
such edge-to-edge features, as we can consider two edges at
a time in the MLPG. Thus allowing us to better define the
importance of such features.

In terms of the Gaussian mixture experiments, we still
have many things we wish to improve. Due to time limita-
tions, we did not manage to optimize most of the models
for the experiments we considered, and we did not have the
time to complete more than a 3-fold cross-validation. As
explained in the experiments section, we expect the poor
performance of the speed Gaussians to be partly a result of
too few epochs and, in general, a un-optimized model.

6 RELATED WORK

Most existing studies consider deterministic travel speed es-
timation and prediction. For example, DCRNN [4] integrates
diffusion convolution into RNN to enable travel speed predic-
tions for all edges, but not for paths. Wu et al. [8] introduces
Graph WaveNet, a CNN framework that does not rely on
a recurrent neural network to capture the temporal depen-
dencies in the data. This method relies on stacked layers of
dilated causal convolution to capture temporal sequences of
longer range than traditional RNN-based approaches.

We categorize related studies into Table 5, where we con-
sider estimating deterministic vs. stochastic speeds for edges
vs. paths. In this paper, we focus on the setting of estimat-
ing stochastic speeds for paths, where the most relevant
study [5] only works for paths with two edges. In contrast,
we are able to estimate speed distributions for any path.

Table 5: Related Work.
Deterministic Speeds
(4, 8]

[6, 7]

Stochastic Speeds
(3]
(5]

Edges
Paths

7 CONCLUSIONS

We present a novel dual-input LSTM (DI-LSTM) network for
estimating travel cost distributions for paths. Experiments
show that DI-LSTM has a great potential to achieve accu-
rate estimation when considering histogram representations,
outperforming several baseline models, including a standard
LSTM model. This is especially true for longer paths. Fur-
thermore, initial experiments with Gaussian mixture model

Estimating Travel Cost Distributions of Paths in Road Networks using Dual-Input LSTMs

representations show a greater potential for accurate esti-
mation. Results considering travel time Gaussian mixture
models further shows the potential of the DI-LSTM model.
However, the results of speed Gaussian mixture models show
a worse accuracy. We expect this is a result of un-optimized
models, which is more apparent in the results of speed Gauss-
ian mixtures. This indicates a need for further research and
experimentation.

REFERENCES

[1] Christopher M Bishop. 1994. Mixture density networks. (1994).
[2] Chenjuan Guo, Bin Yang, Jilin Hu, and Christian S. Jensen. 2018. Learn-
ing to Route with Sparse Trajectory Sets. In ICDE. 1073-1084.

8/8

Nielsen & Randers

[3] Jilin Hu, Chenjuan Guo, Bin Yang, and Christian S. Jensen. 2019. Stochas-

tic Weight Completion for Road Networks Using Graph Convolutional

Networks. In ICDE. 1274-1285.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion Con-

volutional Recurrent Neural Network: Data-Driven Traffic Forecasting.

arXiv:cs.LG/1707.01926

Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. A

Hybrid Learning Approach to Stochastic Routing. In ICDE. 2010-2013.

Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When

Will You Arrive? Estimating Travel Time Based on Deep Neural Net-

works. In AAAL

[7] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to Estimate the
Travel Time. In SIGKDD. 858-866.

[8] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chenggqi Zhang.
2019. Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In
IFCAI 1907-1913.

[4

flan)

[5

=

G

—

http://arxiv.org/abs/cs.LG/1707.01926

	Abstract
	1 Introduction
	2 Preliminaries
	3 Dual Input LSTM
	DI-LSTM Units
	The Full Model
	Loss Function

	4 Experiments
	Histogram Experiments
	Gaussian Mixture Model Experiments

	5 Future Work and Outlook
	6 Related Work
	7 Conclusions
	References

