
Utilizing Mixture Density Networks for Travel Time
Probability Distribution Predictions

Holm, Mikkel Elkjær
meh15@student.aau.dk

Kirkeby, Laurids Vinther
lkirke15@student.aau.dk

Department of Computer Science, Aalborg University, Denmark

June 12, 2020

Abstract

This paper concerns prediction of travel
time distributions for road segments. The
approach is a mixture density network,
which is a combination of deep neural net-
works and mixtures. This approach al-
lows better representation of travel time
distributions than more traditional meth-
ods that only consider the mean travel time.
The data set used in this paper is provided
by a research group from Aalborg Univer-
sity consisting of a large amount of float-
ing car data. The data is pruned, map
matched and reduced to a topological road
network. The model is trained with spe-
cial features such as points of interest and
neighborhood embedding. This has helped
the model achieve a low negative log likeli-
hood score. This model can then be used to
generate routes between origin-destination
node pairs using various pathfinding algo-
rithms.

1 Introduction

Travel time prediction is an important tool
in several different applications, such as
route finding, congestion analysis and traf-

fic forecasts. Traditionally, travel time pre-
diction was done with simple mathematics,
such as multiplying the speed limit with
how far was needed to be traveled on road,
and added time for what was the expected
waiting time in intersections. Today, as
travel time data has become, plentiful it is
possible to create statistics and travel times
for each road. However, the old method is
often defaulted to when traveling on a road
where little or no data exists for.

With the advent of powerful machine
learning tools such as deep neural net-
works it is possible to create models for
predictions of travel time. This increased
the precision of the travel time prediction
greatly[1] and made it possible to predict
travel time for roads where little data ex-
ists. When creating routes that use the
travel time predictions, it can be useful to
use a probability density function of the
travel time rather than a single mean value.
The idea is that roads where the variance is
low are preferable to roads where the vari-
ance is high. The lower variance guarantees
more accurate travel time, which is useful
in real life scenarios where there may be
another route that is faster on average but
has a higher variance. Given a deadline,

1

mailto:meh15@student.aau.dk
mailto:lkirke15@student.aau.dk

the lower variance route can be preferable
in order to eliminate risk of being late.

In this paper we propose a system that is
able to train a model for travel time predic-
tion from a float car data set, utilizing novel
features such as distance to point of inter-
ests. The system uses the model to make
travel time predictions on a given road net-
work, and use those predictions to make
routes from point a to point b.

The rest of the paper is structured as
follows. Firstly, there is some related work
to the problem, as to help create a basic
understanding of the problem. This is
followed by the problem statement and
the proposed framework for the system, as
well as the theoretical background for the
predicting and route finding. Then some
experiments where our solution is tested
against common machine learning models,
features are evaluated and the routes are
tested. Finally, we will discuss the results
of the experiments and conclude on the
paper, as well as describe what could be
improved on in the system in the future
combined with other interesting future
works.

As a motivating example of why a
probability distribution can improve travel
time predictions, especially when there is a
deadline for arrival, see Figure 1.

The probability distribution of road 1 has
a faster mean travel time than that of road
2, but the variance is much higher. How-
ever, road 1 has a risk of being slower than
road 2. Hence, road 2 provides a more reli-
able travel time, as its mean is much more
frequently achieved, which can be crucial
when creating routes that require a lower
uncertainty threshold. Furthermore, in cer-
tain situations like for lorry drivers, the re-
ward of arriving a bit earlier due to taking

Figure 1: Travel time probability between two
roads of equal length

a route with high variance is not necessar-
ily worth the risk of being late, as they can
only drive for a certain amount of hours.

A traditional machine learning model is
not able to capture the variance and stan-
dard deviation and would only get the mean
whereas by predicting probability distribu-
tion function with a mixture density net-
work we are able to overcome that limita-
tion while still being able to predict precise
mean values.

1.1 Related Work

The problem of accurately predicting es-
timated time of arrival (ETA) is widely
studied in the Geographic Information Sys-
tem (GIS) community and two major cat-
egories of solutions have been established,
the model-based solutions and the data-
driven solutions[2]. It should be noted
that even though predicting and estimat-
ing travel time is often used interchange-
ably there is an important difference. Es-
timating travel time is trying to find the
travel time of an already travelled route.
Predicting is trying to find the travel time
for routes for which the data is not available
yet. We are trying to do the latter.

An example of a simple model-based so-

2

lution for predicting travel time is to use an
intuitive physics based solution by divid-
ing and summing the distance and speed
limit of each road segment and add the
expected waiting time at each intersection
of the path. This follows the basic idea
behind all route-based solutions i.e. di-
vide the travel time finding problem for the
whole route into sub-problems of finding
the travel time for each segment and the
time waiting at intersections. This could
also include finding the average speed for a
route segment. The simple approach op-
erates under a number of naive assump-
tions; (1) the driver will keep pace with the
speed limit of each road segment; (2) the
expected waiting time at each intersection
is static; (3) external factors such as traffic
and weather are non-influential. Other ap-
proaches include to model the kinematics of
traffic flow and queuing behavior to predict
how the travel time will be under different
traffic assumptions[3][4].

To overcome some of those problems, ma-
chine learning is often used in model-based
solution by creating a model for predicting
the travel time for each route segment or
in a intersection by using historic data and
regress on it. There are several different
methods for doing this, but all come with
certain drawbacks. Firstly, spatial tempo-
ral data tends to be sparse over the whole
road network, and will often not be enough
to get the real time traffic patterns for the
whole network. Secondly, as traffic pat-
terns are dynamic it is not a guarantee that
a good prediction for the same day under
the same conditions are the same. Thus it
can be hard to predict the correct travel
time even for a model. Furthermore, as
the problem have been divided into smaller
sub-problems there are a greater amount
of accumulation of errors in the final pre-

diction. And lastly, different people drive
differently and without personalised data it
can be hard to predict how a user behaves
in reality, which can have an effect on the
travel time and the traffic flow as a whole.

With the advent of mass tracking of cars
and traffic it has become possible to look
at historical data to statistically predict the
future and detect travel time patterns. This
is the so called data-driven approach. At
the most general level, a data-driven ap-
proach could be to take all the historical
data for a given road and average the travel
time. There are a number of problems with
this as it does not take all factors into ac-
count, such as difference of day, weather,
season etc. It assumes that for any given
day, the travel time is static. Machine
learning models help with this, as it is pos-
sible to use many different features and real
time data to make a prediction on a road
under different conditions. Common mod-
els for predicting travel time include mod-
els that are parametric such as linear re-
gression[5], Kalman filters[6], and models
that are non-parametric, such as different
deep neural network[7][8]. Recently, there
have been efforts in predicting the travel
time probability distribution to capture a
whole range of possible travel times and
how likely they are, rather than a simple
mean value[9]. In Travel-Time Prediction
Methods: A Review[1], they found that the
non-parametric solutions worked the best
as they had the lowest mean average per-
centage error In our own work Estimat-
ing Travel Time Probability Distributions
using a Mixture Density Network[10] we
explored different state-of-the-art ways of
predicting travel time probability distribu-
tions and found that of the neural networks,
Bishop’s Mixture Density Network[11] was
the best fit for us. When creating a model

3

for travel time there are two main goals ei-
ther predicting for a whole route or predict
it for each road segment and piece them
together as the route grows. The problem
with the former is that, it has a hard time
predicting travel time for routes that are
not recorded in historical data, routes of
radically different lengths than the histori-
cal data could have a large impact on the
preciseness of the prediction, but it does not
get effect by the accumulation of errors that
the latter method would. The latter on the
other hand have the advantage of being able
to create a general model for a road, but re-
quires a large amount of diverse historical
data and a decent cover of the road net-
work for which the model is created. We
have chosen to go with trying to predict
the travel time for each road segment, as
we believe that the accumulation of errors
can be overcome and that a general model
for roads is more advantageous.

1.2 Problem Definition

Based on the introduction and the related
work we define the following problem defi-
nition:

Given road graph G(N,E), the map
matched data set D = {R} and aug-
mented data Arg, is it possible to
learn and predict the travel time dis-
tribution P (td|e,Arg), where td is the
travel time distribution, and e ∈ E in
such a way that it is possible to create
a route r = [ei] utilizing that data?

Where the terms are defined as follows:
Street network: A street network is

represented by a directed graph G(N,E),
where N is the nodes of the graph repre-
senting intersections and E is the edges
between the nodes representing road seg-
ments.

Observations: An observation
o = (p, t, v) is a GPS recording, where
p is the longitude and latitude, t is the
timestamp and v is the velocity of the car.

Trip: A trip T = [oi] consists of a
number of consecutive observations.

Map matched data: Map matched
data is calculated based on a map match-
ing algorithm and each point is matched
directly to a road segment. It is given by
R = (T, o, d, tt, rt, d), where T is the trip
and contains an ID, which the data belongs
to, o and d are the origin and destination
nodes, respectively, where o, d ∈ N . tt is
the travel time, rt is the recorded time of
day and d is the distance traveled.

Augmented data: Augmented data
denoted by Arg are the features that de-
scribe the road network data, this includes
point of interests (POI), road type, max
speed, network embedding of the road edge
and its neighbours and neighboring data.

2 Approach

2.1 Data Processing

Name Description Datatype

TripId Trip identifier BigInt
BoksId Car identifier BigInt
LocalDate Local date Date
LocalTime Local time Time
Lon Longitude Real
Lat Latitude Real

Table 1: The floating car data (FCD) table
schema.

A data set of 1.1 billion floating car data

4

for cars driving in Denmark over the pe-
riod April 2012 - December 2014 was ob-
tained from an ongoing research project at
Aalborg university. The format of the data
can be seen in Table 1. To be able to use
the data for the purpose of this project,
some modification of the data was needed.
Firstly, each data point was map matched
to a road network retrieved from Open
Street Maps (OSM). The map-matching it-
self was done by using the Open Source
Routing Machine (OSRM), which is able to
return map-matched data points as an ar-
ray of route objects, which in sequence cre-
ates a route. Each route object has a confi-
dence interval of map-matching between 0
and 1. Route objects are only kept if their
confidence interval is above 0.85, as it oth-
erwise can be too unreliable. Routes that
had a route object disregarded was short-
circuited to the next route element that had
an good confidence interval. Each route ob-
ject is further divided into route legs which
have the form (w1, w2, w3), which represent
a route between two way points. These
have the node property from OSM. Thus,
the last step was to divide all the route legs
into their pair data e.g. (w1, w2), which
represents an edge from waypoint 1 to 2
and record the time it took from when
the car passed waypoint 1 to waypoint 2.
The data size is reduced further by creat-
ing a topological road network graph that
merges edges, that do not end or start in
a intersection. Therefore, all elements in a
road network from intersection i to j could
be merged and their travel time added to-
gether. At the end of the data processing,
there are only 42.5 million of data-points in
the form of Table 2. This is a significant re-
duction of the starting data set, which also
makes it significantly faster to train on. A
full flowchart of the process can be seen in

Figure .

Table 2: The edges table schema.

Name Description Datatype

TripId Trip identifier BigInt
BoksId Car identifier BigInt
Source Starting node BigInt
Destination Ending node BigInt
TravelTime Travel time Double
DateTime Date and time Timestamp
Distance Distance Double

2.2 Feature extraction

To make precise travel time distribution
predictions, it is important to have a rich
set of appropriate features while not so
large that some of features detract from
the ability of the model to learn and pre-
dict[12]. It is also important to select fea-
tures so that the data leakage problem does
not occur[13]. We have selected three ma-
jor categorize of extracted features: spatial,
temporal and augmented.

Spatial features: A major influence on
the prediction of the travel time distribu-
tion is geospatial and structural attributes
of the road segments. One of the most im-
portant features here is the length of the
road, as it is linearly linked to the travel
time of the road, this can be seen in cor-
relation schema in Figure , where there is
almost a 1 to 1 correlation. Another feature
is how far away a specific point of interest
is from the road edge. These points of in-
terest could be facilities with a high influx
of traffic, such as schools or office buildings,
this can be used to enhance prediction, as
congestion is a factor for travel time at dif-
ferent times of the day. Furthermore, virtu-
ally identical roads can vary widely in travel

5

time based on where they are located, such
as close to important POI or out in the
country side. We propose that this can be
captured by using the distance to the near-
est POI as a feature. The length of an road
edge is retrieved from the data set. The
point of interest are obtained by choosing
areas of high influx of traffic, figuring out
how far an edge is from the nearest point of
interest of that type and saving it. To do
this we have made use of the API Overpass
Turbo[14], which is able to retrieve nodes
that have a specific type of POI. The POI
types can be found in OSM[15]. The API
calculates the distance from the POI to the
nearest road edge. This is a fairly costly
process but only needs to be done once for
each POI. In this project we have used hos-
pitals and schools as POIs, as they have a
large amount of in and out traffic.

Temporal features: Another influence
on the travel time distribution is the tem-
poral information of when the road seg-
ment was driven on. There are two fea-
tures of temporal information that can be
extracted, namely rush hour or not rush
hour. Additionally, there is the season for
when the record of FCD was taken. Rush
hour or not has an effect because of the in-
creased risk of congestion, the choice was
made to keep it at only two values instead
of every hour of the day, as the two defi-
nitions of time of day represent thoroughly
represents the traffic patterns. The season
has an effect, as weather and road condi-
tions vary widely based on the season of the
year. In the winter months for an example,
the road can be icy and thus force the driver
to drive slower, similar in the autumn rain
can slow down the driver, while in summer
the conditions are more optimal. The infor-
mation is gathered from the timestamps of
travel trajectories where the hours 7-9 and

15-17 are marked as rush hour[16].

Augmented features: Augmented fea-
tures is all additional features that can be
retrieved based on the data from outside
sources, which are not included in the above
two classes, rather than from the road tra-
jectories themselves. As the speed limit
dictates how fast it is legal to drive on a
road, it will have great influence on the
travel time. As the speed limit is impor-
tant, so is the type of road, as some types
of roads are more prone to congestion than
others and some are designed to let the traf-
fic flow more smoothly. Another feature is
the roads’ neighboring roads, as the speed
limit and type etc. of adjacent roads have
a great effect on the travel time for the
road. Recently, there have been achieved
results by using node2vec[17], which takes a
number of random walks around a node of
a predetermined length and embeds those
routes using a skip-gram model much like
word2vec embeds sentences. node2vec is
used to transform a node into an embedding
vector as a way to capture its surrounding
network’s structure. They found that even
though node2vec is designed for capturing
structural information of social networks, it
could be used to some extend for embed-
ding roads, which helped with classifying
roads. As such we have chosen to not only
embed the road with node2vec but also the
neighboring roads for the same reason as to
why the adjacent routes features are impor-
tant for the prediction. The max speed and
road types have been found by matching
the recorded edges with the OSM network
of Denmark. The embedding was done by
using node2vec for each node in the graph
for the road network of Denmark and then
summing the two nodes that represent an
edge’s vectors together and save the result-
ing vector to the edge.

6

2.3 Mixture density network

The basic idea behind a mixture density
network is to modify a deep neural net-
work in such a way that it is able to capture
multi-modal probability distributions. This
meaning that the DNN provides the param-
eters for the different distributions, which
is then mixed together by some weight that
the DNN also provides[11]. The overview
can be seen in Figure 2, which has input
vector X, a single hidden layer which out-
puts the distribution parameters, and the
mixture parameter which mixes the distri-
butions and outputs a vector of the mixed
distributions. The advantage of MDN is the
ability for it to predict multi-modal distri-
butions rather than just a single Gaussian
distribution[11].

X

h3

h2

h1

y

Figure 2: Mixture density network overview

The conditional probability of a mixture
is defined as:

p(y|x) =
C∑
c=1

αc(x)D(y|λ1,c(x), λ2,c(x), ...)

(1)

c denotes the mixture index. The mixture
index depends on the assigned amount
of components. More than one compo-
nent results in a multi-modal output.

α denotes the mixing parameter, which is
conditioned on the input x.

D denotes the distribution to be mixed, in
this case there are two output elements
to be mixed.

λ denotes the various parameters of D for
which there can be multiple, as in this
case the interest is in finding the PDF
for a Gaussian distribution, as such
there are two parameters µ and σ. If it
was a truncated Gaussian there would
be up to four parameters.

λ1 denotes to the conditional standard de-
viation µ(x).

λ2 denotes the conditional variance σ(x).

To summarize, it calculates how likely
the value y is to be drawn from a mixture
distribution [D.

A single layer deep neural network
(DNN) with ReLU activation is modified.

h1 = max(W>
1 x+ b1, 0) (2)

α(x) = softmax(W>
α h1(x) + bα) (3)

λ1(x) = (W>
λ1h1(x) + bλ1) (4)

λ2(x) = nnelu(W>
λ2h1(x) + bλ2) (5)

WhereW is the weights and b is the bias.
As can be seen the hidden layer is used as
input in the output parameters. λ2 has a
non negative activation function as it must
not become negative as a Gaussian requires
a positive standard deviation.

arg min l(Θ)
Θ

= − 1

|D|
∑

(x,y)∈D

log p(y|x)

(6)
The loss function used to train the model

and thus back propagate change is the neg-
ative log likelihood (NLL), which takes the

7

negative log of the conditional probability
as seen in Equation 1.

2.4 Route Generation

Creating routes from the graph is a shortest
path problem. Depending on the size of the
graph and other requirements for the sys-
tem, various algorithms can be applied for
pathfinding. A* with an admissible heuris-
tic or contraction hierarchies can be used to
find great routes on larger graphs, whereas
algorithms like Dijkstra’s can be used if the
absolute best route is required, at the cost
of higher a computational complexity. The
main scope of this project is not pathfind-
ing algorithms but rather the predictions of
travel time distributions. Thus, the testing
of the model will be conducted using a sim-
ple implementation of Dijkstra’s algorithm.
This ensures that the best route prediction
based on the model is selected for compar-
ison.

2.5 Architecture

Based on the feature extraction, route cre-
ation and theory we propose the system il-
lustrated with a flowchart in Appendix B.

The system is divided into two parts.
A machine learning module that takes his-
torical floating car data, extracts features,
trains a model and creates a travel time
augmented graph. The second part is a
route finding module which uses the graph
together with time information to create a
route given by a start and an end point.

2.5.1 Machine learning architecture

The machine learning module have been ex-
panded in Figure 3

From the top, a selection of POI cat-
egories are selected and passed for coor-

FCD

merge FCD records
with graph data

Overpass turbo

Road network graph

POI selection input

Nearest POI finding

Node2vec embeddingModel input feature
dataset

OSM

MDN training Trained Model

predict road edges
travel time

fresh Road network
graph

Route finding

Current datetime

Figure 3: Machine learning architecture that
takes a dataset of floating car data and a list of
Point of interests and transforms the FCD into
trainable features and augments them with outside
information and embedding of the graph. The out-
put is a road network graph with a predicted travel
time probability distributions

dinate retrieval from the Overpass Turbo
API. Afterwards, each edge of the road net-
work, which is retrieved from the Open
Street Map, is iterated through and the
nearest POI in each POI category is found
and saved to the road graph. Then each
road is embedded by using word2vec, the
embedding is saved to the graph. When
that is complete, it is possible to get
the neighboring embedding by finding the
neighborhood of the edge and summing the
embedding vectors. At the same time, the
features of the edge’s neighbours are also

8

found and added to the edge. From a
database, the floating car data is retrieved,
cleaned and filtered so that it can be used
as features. Each row in the FCD data
set is then matched up with their matching
edge in the augmented road graph and the
graph variables are used as additional fea-
tures. The label is extracted from the data
set and the model is trained and saved. The
model is then used to predict the travel time
probability distributions, which are saved
to a fresh road graph and sent to the route
finding module.

3 Experiment

The experiments are divided into two differ-
ent parts experiments on the machine learn-
ing and experiments on the route genera-
tion.

3.1 Machine learning experi-
ments

We evaluate the accuracy of the machine
learning part and its features on a set of
real world travel trajectory data of travel-
ing cars equipped with GPS and tracked
over several years. We evaluated our data
set and how the features we selected are re-
lated in it. We also test our model with
different mixtures against a null model, a
linear regression, and a deep neural network
that are modified in such a way that they
also can predict a travel time distribution.
Furthermore, we conduct an ablation study
to find out how well our selection of features
help the model predict the travel time dis-
tribution.

3.1.1 Data set

The data set is comprised of 1.1 billion dif-
ferent data rows of floating car data from all

around Denmark, retrieved from an ongo-
ing research project at Aalborg university.
The data is processed into a format that
can be used for training as described in sec-
tion 2, such that there only are 42.5 million
rows of data. The data is further filtered
by removing rows where the travel speed
is above 155km/h and under 1km/h as the
values likely were erroneous and lessened
the models prediction effectiveness. Roads
that connect the different islands by ferry
were also disregarded. After filtering, there
is around 36.7 million rows to train on. To
ensure that there is a good coverage of the
road network of Denmark, the floating car
data has been plotted into a heat map based
on how often a node in the road network
was visited in the data set. As can be seen
in figure Figure 4, most of the floating car
data is centered around northern Jutland
more specifically Aalborg, but a wide area
of the country is covered. More specifically,
out of the 861 thousand edges in the road
network for Denmark 212 thousand edges
have been visited which is around a 25%
coverage

To explore the data set to see how im-
pactful the training features are, a selection
of descriptive statistics for the features have
been calculated and can be seen in Table 3.
One hot features are disregarded, as their
value can only be 1 or 0. In Figure 12, the
correlation between features can be seen.
Travel time, length and the neighborhood
attributes have the largest standard devia-
tion, which can be expected, as they have
the largest range of values, as roads can be
a wide variety of length and thus travel time
which is also accounted for in the neighbor-
ing nodes value. More interesting is that
there is almost a 1 to 1 correlation between
travel time and length of a road, further-
more the maximum speed, neighborhood

9

Figure 4: Heat map that denotes the number of
times a node is visited by a driver. The more visits
the more red a node is

attributes and motorways have a large cor-
relation and schools have a small correla-
tion to travel time but is still noticeable.
This can be attributed to that schools are
in areas with high traffic influx.

3.1.2 Experiment Setup

The linear regression, DNN and MDN
model were implemented in Python us-
ing tensorflow 3.0 and trained on a single
Nvidia 980ti GPU on a system with 16Gb of
RAM. The travel time is used as the train-
ing label, and the holdout method was used
where the data was divided between 80%
training and 20% testing data. 20% of the
training data is used for a validation set.
The model was trained with batch of size
35000 over 500 epochs or until the differ-
ence between training gain of the epochs
became very small. As the size of the data
set is large at around 4.3Gb, the model was
trained in chunks of the dataset at a time,
each chunk was 8000000 rows long, as such
the data was divided into 5 chunks, each

with their own validation. In each layer of
the model there are 200 nodes, the model
has 2 layers of conventional deep neural net-
works before using 3 MDN layers in par-
allel. Before chunking, the data was ran-
domized as to lower over-fitting. A typ-
ical training took around 10 minutes and
each chunk usually ended before 500 epochs
was reached. Usually, it took 100 epochs to
reach convergence for the first chunk and
round 20 epochs for the remaining.

3.1.3 Loss function

The most common loss functions used to
evaluate the models are the mean squared
error and the negative log likelihood. MSE
was chosen as it is very commonplace in ma-
chine learning and gives an intuitive com-
parisons between the different models and
their performance. The negative log likeli-
hood was chosen as the second loss value,
as it calculates the probability that the test
value should be drawn from a probability
density mixture given the parameters gen-
erated by the network, as such if the nega-
tive log likelihood is high it is unlikely that
the mixture generated by the model is cor-
rect.

3.1.4 Results

Table 4 shows the results of training the
different models where the # is the number
of mixtures used when training the model.
As can be seen, all models perform better
than the NULL model, which suggests that
there is some relation between the features
and the label feature. Furthermore, it can
also be seen that the DNN and MDN out-
perform the linear regression model, which
suggests a non-linear relationship between
the features and the label as expected. This
will further be proven by the ablation study

10

count mean std min 25% 50% 75% max

traveltime 36723233 19.55 28.53 1.00 4.33 10.00 24.00 400.000
length 36723233 411.41 833.90 2.08 52.70 125.93 407.11 11380.40
hospital 36723233 18.02 8.97 0.02 12.51 19.92 22.72 66.21
embedding 36723233 2.05 0.16 0.17 1.96 2.06 2.15 3.68
school 36723233 4.26 3.84 0.01 1.22 2.76 6.42 22.62
max speed 36723233 75.20 19.25 10.00 60.00 80.00 80.00 130.00
neighborhood emb36723233 2.03 0.13 0.52 1.97 2.05 2.11 4.86
neighborhood att 36723233 357.28 392.57 7.04 99.49 174.43 518.63 7375.00

Table 3: The table describes the data for the different features in the dataset. Count is the number
non-null values, mean is the mean value of a feature, std is the standard deviation, min is the minimum
of the values, the percentages describe the quartiles and max is the maximum of the values the feature
ever takes.

later.

There is a slight advantage in the MSE in
the DNNmodel over the MDNmodel of any
mixture. This was expected since the MSE
takes the mean value of the probability dis-
tribution, and as there are more peaks in a
mixture it will be different from the single
curve distribution. This can also be seen in
the figure, as the one model with MSE close
to the DNN is the MDN model with 1 mix-
ture. It can also be seen in the table that
MDN is better with a NLL loss-function,
which is expected as it finds the probabil-
ity that the predicted values are in a prob-
ability distribution, given by the predicted
probability distribution function. It was
found that 3 mixtures was the best when
it came to NLL with a value of -0.017. If
the number of mixture increases more there
is a slight increase in NLL loss. In the fur-
ther experiments, a mixture of 3 is used.

Model MSE NLL

NULL 1.222 1.530
LR 0.576 1.229
DNN 0.082 1.005

1 MDN 0.095 0.061
2 MDN 0.105 -0.004
3 MDN 0.110 -0.017
4 MDN 0.115 0.030
5 MDN 0.121 0.002
6 MDN 0.122 0.009
7 MDN 0.121 0.023

Table 4: Loss function test results for all models
where lower is better. The null model is created by
sampling random values in the evaluation methods
within some reasonable interval based on the test
data.

11

Model NLL ∆

MDN_base -0.017 0
MDN_length 0.410 0.427
MDN_time 1.497 1.514
MDN_neighbours 1.219 1.226
MDN_road 1.217 1.224
MDN_POI 1.054 1.061
MDN-v 0.148 0.155
MDN-pv 0.149 0.156

Table 5: Ablation study results, MDN_base is
the baseline model with all features, ∆ column is
the difference in loss function. MSE loss are not
used as the interest was in seeing how the model
performs when predicting probability distributions

To study the effect of the different
features on the training, the mod-
els MDN_time, MDN_neighbours,
MDN_road, MDN_length and MDN_POI
were created, which are models with only
that respective category of features.
MDN-v is the model without embedding
values and MDN-pv is the model without
embedding values or POIs. Their loss
values and delta change can be seen in
Table 5. MDN_length has the smallest
stand alone NLL loss, which would suggest
as very close relationship to travel time
as can also be seen in Figure 12. It can
also be seen that POI is second, which
would suggest that there is some relation
that is not evident in the correlation table.
Furthermore, we can see that no model
outperforms the model with all features,
which would suggest that no feature is
redundant.

An example of the PDF predictions for
5 different roads can be seen in Figure 5
graphically where we can see that differ-
ent roads have different variance and such
a smaller probability for the mean value.

0 1 2 3 4 5 6
log(travel time in seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p(
lo

g(
tra

ve
l t

im
e

in
 se

co
nd

s)
 |

ro
ad

 fe
at

ur
es

)

road segment 10
road segment 500
road segment 2000
road segment 10000
road segment 50000

Figure 5: Probability distributions for five road
segments. The x-axis denotes the travel time and
the y-axis denotes the probability

3.2 Route Examples

The following are comparisons of some
routes generated from Origin-Destination
pairs. These examples provide a simple vi-
sual comparison of the routes generated by
the system when compared to a state-of-
the-art tool.

Figure 6: Example route 1 generated from the
model

12

Figure 7: Example route 1 generated with Google
Maps

Figure 8: Example route 2 generated from the
model

Figure 9: Example route 2 generated with Google
Maps

For the first OD pair example, the routes
generated were near identical to each other.

The second example is more interesting,
as the routes vary a little bit from each
other. The travel time estimation from
Google is however the same, if the greyed
out path is selected. The two systems pro-
duce fairly similar results for the given OD
pairs.

4 Discussion

As can be seen in Table 4, a mixture with 3
components appears to yield the best re-
sults for the negative log likelihood, and
are almost even with the DNN model in
mean squared error. The reason for the
small difference in result in the MSE for
DNN and MSE can be attributed to that
the MSE assumes a static standard devia-
tion, which has been approximated for the
MDN models. Therefore, it is not necessar-
ily a good comparison fit, but can say a bit
about how the mean values are predicted.
The problem with different standard devia-
tions can be seen as the MDN models; MSE
worsens as the number of components and
thus standard deviations increases. An-
other thing to note in the test is, that to
be able to compare the different models to
the MDN the variance and standard devia-
tion was needed to be constructed outside
their specific model. The way this was done
was to use the predicted variance and std
from the current MDN model, as such the
biases and problems that the MDN would
include in its prediction will necessarily also
be present in the other models that utilize
the values.

There is a risk that the aggressive data
pruning done in subsection 2.1, which helps
the prediction accuracy could remove too
much of the data set to be truly represen-
tative of the whole road network. Most
interesting would be the the pruning of
data with a too small speed, which was
added under the assumption of parking and
pauses, but could just as well model queu-
ing or red lights at a small road. By remov-
ing it, essential behavior and thus travel
time could potentially be lost or simplified
in the predictions. Especially small roads
with lots of intersections would be lost by

13

the pruning. The upper speed on the other
hand does not seem to be a big problem as
some of the values that were pruned were
unrealistic even when accounting for drivers
not adhering to the speed limit.

The model is created under the assump-
tion that years do not differ from one an-
other e.g. May 1. 2019 does not differ in
any way to May 1. 2020. In other words,
the travel times are assumed to be static
when considered from a year to year basis.
This could be true as it would catch differ-
ent holiday traffic but would not catch be-
havior under different weather, which also
could have a huge effect on the travel time.
The largest problem with utilizing so called
real time data would be gathering them and
would be time consuming and maybe not
even very precise as weather in different
parts of the country differ greatly.

Route Generation
It is worth noting that the nodes in OSM

often exist in a specific lane which may have
a direction, effectively forcing the route in
one direction from the origin. This can lead
to results of lower quality due to erroneous
node selection when testing.

Since the Google Maps software is pro-
prietary, it is hard to do a comparison of
methodology. When it comes to travel
time estimation, there is no competition, as
Maps collects real-time location data from
smartphone users to detect congestion and
general speeds.

A challenge for this project is to prop-
erly test its predictions, as the system is
predicting on an edge-basis. Most similar
solutions out there predict travel times for
whole routes, which makes it hard to com-
pare. This system has complexities on an
edge level they might not have and they will
likewise have advantages on things that are
not the main scope of this project. Further-

more, we have not been able to find any
existing fitting benchmarks.

Finally, it should be noted that the model
and the subsequent pathfinding may not
necessarily be as proficient in predicting
travel time in different countries as local
traffic customs and weather in those coun-
tries. To fit the model to another country
would need a new training data specific to
that country.

5 Conclusion

We can conclude that we have successfully
designed and implemented a travel time
prediction system using a mixture density
network with various interesting features.
We were able to map match and reduce a
large data set by 96.14% in order to speed
up model training without losing important
information. Furthermore, we have imple-
mented an MDN with a wide array of good
features which where able to predict the
travel time probability distributions with a
good NLL score of -0.017, which makes it
very likely that the label values are accu-
rately under the PDF. The model was also
able to outperform baseline models with the
exception of DNN, which was expected due
to the characteristics of the MDN. We can
also conclude that the features were useful,
as removing them worsened the accuracy of
the models predictions.

We were able to utilize the predicted dis-
tributions in pathfinding, which generated
routes that appear similar to those gener-
ated by Google Maps.

6 Future Work

As discussed in section 4, the prediction
assumes that the travel time for a given
road at the same day for each year is static,

14

which is not always the case. To alleviate
this problem, so called real time features
could be extracted. These are features that
differs from day to day and would rarely
be the same at the same day in a different
year. One of the features that could be in-
cluded would be weather information, as it
can have a great effect on the travel time.
For example when it rains people are more
susceptible to take the car to avoid the rain
or when it snows the road are icy and thus
travel time is longer than normal. To in-
clude this feature would require to retrieve
the weather information for any day both
historical and real time, in such a way that
it is precise to the local weather at the road
segment which would require access to the
weather stations in proximity to the edge.
This is at the time of writing available by
accessing a large data set of the whole world
by requesting access, but are limited to a
number of requests per day. Alternatively,
the data could be accessed from the Dan-
ish meteorological institute, which requires
constant retrieval, as historical data is un-
available. Another thing that could be done
in the future would be to experiment with
different layers and structure of the model,
as of now, there is only one hidden layer
of 200 nodes between the input and output
of the model. This could be experimented
with different type of layers and nodes to
see if it enhances the precision of the pre-
dictions. This could be done by taking in-
spiration of other state of the art methods
that often merge different models with dif-
ferent structures and loss functions into a
single model in order to improve the results.
Lastly for the machine learning, it could be
interesting to test our model against differ-
ent state of the art methods. As it is very
time consuming to construct these other
models it has not been done in this project

but could give a true measure of how the
model performs.

In the pathfinding module future work
would be experimenting with different kind
of path finding algorithms other than Di-
jkstra to see how it would affect the route
creation. An alternative would be to create
a whole new algorithm, which incorporates
the intrinsic values of probability distribu-
tion to route creation rather than using it in
an ad-hoc method with the mean value and
try to minimize the variance. The variance
could also be better utilized to make con-
fidence intervals of arrival time such that
different routes could be create based on
different confidence intervals e.g. some may
be happy with a large risk of not arriving
on time but have a potentially faster route.

Another future work would be to test the
model by generating routes and comparing
them to various routes generated by state-
of-the-art tools. This could be done in dif-
ferent environments, under various condi-
tions in order to see how the model per-
forms. This can also be done with mul-
tiple shortest-path algorithm implementa-
tions for more interesting results.

As a last future work item could be to
create an easy to use interface such that it
would be possible for a user to navigate the
system, where they could assign their pre-
ferred confidence intervals and input differ-
ent start and end destinations. This would
also be opportune to include different user
profiles in the system because the optimal
route is not always the fastest, as we have
assumed in this project, but varies from
user to user.

15

A Data processing flowchart

Start

Extract
Trip

Map
Matching

FCD

Trip

Edge
Construction

Graph

Timestamps

Graph
Reduction

Graph

Last trip?

Edges

End

Intersections

Figure 10: Data processing flowchart

16

B Information Flowchart

Trained model

MDN modelGet historical dataFCD Refined features and lableFeature extraction

Predicted travel times Predictor Road network graph

Constructing most probable route

Route finding

Travel time and features

Augmented graph

Start/end pointUser input

Route

Current time Time information

Figure 11: Overview of the flow of information in the system

17

C Correlation Table

18

TravelTime Month_autumn Month_spring Month_summer Month_winter DateTime_False DateTime_True Highway_motorway Highway_primary Highway_residential Highway_secondary Length hospital vector neighbors neighbors_att Maxspeed school

TravelTime 1.000000 0.002627 -0.009697 0.004440 0.002135 -0.022156 0.022156 0.435859 -0.016711 -0.085718 -0.226398 0.950686 -0.045087
-
0.124201 -0.146610 0.565568 0.432753 0.086047

Month_autumn 0.002627 1.000000 -0.348546 -0.391603 -0.338714 -0.025270 0.025270 0.007620 0.003086 -0.004526 -0.004775 0.004214 -0.006847
-
0.005200 -0.004715 0.004651 0.006091 -

0.009745

Month_spring -0.009697 -0.348546 1.000000 -0.322864 -0.279259 0.004520 -0.004520 -0.004844 -0.007952 0.005491 0.006060 -
0.004508 0.002338 0.006709 0.005661 -0.005775 -0.004085 0.002042

Month_summer 0.004440 -0.391603 -0.322864 1.000000 -0.313757 0.040345 -0.040345 -0.003341 0.010427 -0.003503 -0.003658 0.003592 0.009647 -0.001285 -0.001242 0.008496 0.000539 0.013221

Month_winter 0.002135 -0.338714 -0.279259 -0.313757 1.000000 -0.019927 0.019927 0.000027 -0.006607 0.003247 0.003113 -
0.003993

-
0.005145 0.000367 0.000846 -0.008483 -0.003223 -0.005467

DateTime_False -0.022156 -0.025270 0.004520 0.040345 -0.019927 1.000000 -1.000000 -0.046026 -0.005652 0.018606 0.024042 -
0.024194

-
0.026142 0.026347 0.023470 -0.025766 -0.041826 0.011953

DateTime_True 0.022156 0.025270 -0.004520 -0.040345 0.019927 -1.000000 1.000000 0.046026 0.005652 -0.018606 -0.024042 0.024194 0.026142 -0.026347 -0.023470 0.025766 0.041826 -
0.011953

Highway_motorway 0.435859 0.007620 -0.004844 -0.003341 0.000027 -0.046026 0.046026 1.000000 -0.148471 -0.104061 -0.489413 0.529574 -0.081778
-
0.316160 -0.336100 0.567791 0.705619 -

0.032497

Highway_primary -0.016711 0.003086 -0.007952 0.010427 -0.006607 -0.005652 0.005652 -0.148471 1.000000 -0.124412 -0.585123 -
0.019112

-
0.005361

-
0.016239 -0.004493 0.028240 -0.075904 0.080569

Highway_residential -0.085718 -0.004526 0.005491 -0.003503 0.003247 0.018606 -0.018606 -0.104061 -0.124412 1.000000 -0.410104 -
0.113269 0.023790 0.146673 0.089645 -0.182727 -0.016328 -0.016689

Highway_secondary -0.226398 -0.004775 0.006060 -0.003658 0.003113 0.024042 -0.024042 -0.489413 -0.585123 -0.410104 1.000000 -
0.270766 0.044515 0.137290 0.174224 -0.292075 -0.399843 -0.029774

Length 0.950686 0.004214 -0.004508 0.003592 -0.003993 -0.024194 0.024194 0.529574 -0.019112 -0.113269 -0.270766 1.000000 -0.059516
-
0.172837 -0.198805 0.604342 0.516978 0.082356

hospital -0.045087 -0.006847 0.002338 0.009647 -0.005145 -0.026142 0.026142 -0.081778 -0.005361 0.023790 0.044515 -
0.059516 1.000000 0.030513 0.031277 -0.060123 -0.070917 0.212926

vector -0.124201 -0.005200 0.006709 -0.001285 0.000367 0.026347 -0.026347 -0.316160 -0.016239 0.146673 0.137290 -
0.172837 0.030513 1.000000 0.284567 -0.196176 -0.253631 0.028364

neighbors -0.146610 -0.004715 0.005661 -0.001242 0.000846 0.023470 -0.023470 -0.336100 -0.004493 0.089645 0.174224 -
0.198805 0.031277 0.284567 1.000000 -0.242751 -0.279832 -0.003622

neighbors_att 0.565568 0.004651 -0.005775 0.008496 -0.008483 -0.025766 0.025766 0.567791 0.028240 -0.182727 -0.292075 0.604342 -0.060123
-
0.196176 -0.242751 1.000000 0.591731 0.195908

Maxspeed 0.432753 0.006091 -0.004085 0.000539 -0.003223 -0.041826 0.041826 0.705619 -0.075904 -0.016328 -0.399843 0.516978 -0.070917
-
0.253631 -0.279832 0.591731 1.000000 0.090405

school 0.086047 -0.009745 0.002042 0.013221 -0.005467 0.011953 -0.011953 -0.032497 0.080569 -0.016689 -0.029774 0.082356 0.212926 0.028364 -0.003622 0.195908 0.090405 1.000000

Figure 12: Correlation between features

Glossary

DNN deep neural network. 7

ETA estimated time of arrival. 2

FCD floating car data. 4

GIS Geographic Information System. 2

References

[1] M. Bai, Y. Lin, M. Ma, and P. Wang, “Travel-time prediction methods: A review,”
in Smart Computing and Communication, M. Qiu, Ed., Cham: Springer Interna-
tional Publishing, 2018, pp. 67–77, isbn: 978-3-030-05755-8.

[2] Z. Wang, K. Fu, and J. Ye, “Learning to estimate the travel time,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’18, London, United Kingdom: ACM, 2018, pp. 858–866,
isbn: 978-1-4503-5552-0. doi: 10 . 1145 / 3219819 . 3219900. [Online]. Available:
http://doi.acm.org/10.1145/3219819.3219900.

[3] J. Dong and H. Mahmassani, “Stochastic modeling of traffic flow breakdown phe-
nomenon: Application to predicting travel time reliability,” Intelligent Transporta-
tion Systems, IEEE Transactions on, vol. 13, pp. 1803–1809, Dec. 2012. doi: 10.
1109/TITS.2012.2207433.

[4] A. Skabardonis and N. Geroliminis, “Real-time estimation of travel times on sig-
nalized arterials,” Tech. Rep., 2005.

[5] X. Zhang and J. A. Rice, “Short-term travel time prediction,” Transportation Re-
search Part C: Emerging Technologies, vol. 11, no. 3-4, pp. 187–210, 2003.

[6] J. Sun, C. Zhang, S. Chen, R. Xue, and Z. Peng, “Route travel time estimation
based on seasonal model and kalman filtering algorithm,” J. Chang. Univ, vol. 34,
pp. 145–151, 2014.

[7] N. Wisitpongphan, W. Jitsakul, and D. Jieamumporn, “Travel time prediction us-
ing multi-layer feed forward artificial neural network,” in 2012 Fourth International
Conference on Computational Intelligence, Communication Systems and Networks,
IEEE, 2012, pp. 326–330.

[8] S.-Y. Yun, S. Namkoong, J.-H. Rho, S.-W. Shin, and J.-U. Choi, “A performance
evaluation of neural network models in traffic volume forecasting,” Mathematical
and Computer Modelling, vol. 27, no. 9-11, pp. 293–310, 1998.

[9] R. Noland and J. Polak, “Travel time variability: A review of theoretical and em-
pirical issues,” Transport Reviews, vol. 22, pp. 39–54, Jan. 2002. doi: 10.1080/
01441640010022456.

[10] M. Elkær Holm, L. Vinther Kirkeby, and M. Jarlund, Estimating travel time prob-
ability distributions using a mixture density network.

[11] C. M. Bishop, “Mixture density networks,” Tech. Rep., 1994.

[12] I. Guyon and A. Elisseeff, “An introduction of variable and feature selection,” J.
Machine Learning Research Special Issue on Variable and Feature Selection, vol. 3,
pp. 1157–1182, Jan. 2003. doi: 10.1162/153244303322753616.

[13] S. Kaufman, S. Rosset, and C. Perlich, “Leakage in data mining: Formulation,
detection, and avoidance,” vol. 6, Jan. 2011, pp. 556–563. doi: 10.1145/2020408.
2020496.

[14] Martin Raifer, Overpass turbo, 2019. [Online]. Available: https : / / wiki .
openstreetmap.org/wiki/Overpass_turbo.

20

https://doi.org/10.1145/3219819.3219900
http://doi.acm.org/10.1145/3219819.3219900
https://doi.org/10.1109/TITS.2012.2207433
https://doi.org/10.1109/TITS.2012.2207433
https://doi.org/10.1080/01441640010022456
https://doi.org/10.1080/01441640010022456
https://doi.org/10.1162/153244303322753616
https://doi.org/10.1145/2020408.2020496
https://doi.org/10.1145/2020408.2020496
https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://wiki.openstreetmap.org/wiki/Overpass_turbo

[15] osm wiki, Map features, 2019. [Online]. Available: https://wiki.openstreetmap.
org/wiki/Map_Features.

[16] tomtom, Copenhagen traffic, 2020. [Online]. Available: https://www.tomtom.com/
en_gb/traffic-index/copenhagen-traffic/.

[17] Tobias Skovgaard Jepsen, Christian S. Jensen, Thomas Dyhre Nielsen, Kristian
Torp, On network embedding formachine learning on road networks:a case study
on the danish road network, 2019. [Online]. Available: https://arxiv.org/pdf/
1911.06217.pdf.

21

https://wiki.openstreetmap.org/wiki/Map_Features
https://wiki.openstreetmap.org/wiki/Map_Features
https://www.tomtom.com/en_gb/traffic-index/copenhagen-traffic/
https://www.tomtom.com/en_gb/traffic-index/copenhagen-traffic/
https://arxiv.org/pdf/1911.06217.pdf
https://arxiv.org/pdf/1911.06217.pdf

	1 Introduction
	1.1 Related Work
	1.2 Problem Definition

	2 Approach
	2.1 Data Processing
	2.2 Feature extraction
	2.3 Mixture density network
	2.4 Route Generation
	2.5 Architecture
	2.5.1 Machine learning architecture

	3 Experiment
	3.1 Machine learning experiments
	3.1.1 Data set
	3.1.2 Experiment Setup
	3.1.3 Loss function
	3.1.4 Results

	3.2 Route Examples

	4 Discussion
	5 Conclusion
	6 Future Work
	A Data processing flowchart
	B Information Flowchart
	C Correlation Table

