
SUMMARY

Gesture recognition is becoming an increasingly popular classification problem, with the rise in demand
for reliable gesture recognition in various fields. Different technologies can be used for collecting data
for said classification problem, most common among them is surface electromyography and force myo-
graphy. In our pre-thesis, we explored the potential of using deep neural networks for force myography
hand gesture recognition, and found it to perform comparably to traditional classification algorithms,
such as linear discriminant analysis and support vector machines.

A common issue with neural networks and other machine learning approaches is that they are reliant
on sufficient data for training, which is often difficult to obtain. As such, in this paper we explore the
potential of using transfer learning to obtain a better prediction accuracy, by leveraging multi-source
data collection.

In addition, we observe from the literature, on the field of force myography gesture recognition, that a lot
of studies use custom hardware and do not publish their data, making it difficult to accurately compare
or reproduce results. We address the reproducibility problem by making the dataset publicly available, by
using a commercially available device for data collection thus ensuring the reproducibility of our results.
Making the dataset publicly available should further allow easier entry into this field of research, by
reducing the necessity of gathering new data.

Our benchmark dataset includes data collected from 20 people. For each person we have recorded 5
seconds of data for each of a set of 18 unique gestures repeated 5 times. By recording data at a very high
frequency compared to what we have observed from other studies, we hope to accommodate as many
applications as possible, as the data can be down sampled to a lower frequency as desired.

We use hyperparameter optimisation to find the best one, two and three layer configurations for our
baseline model, and train all of our models using the three respective configurations. Furthermore, we
also go into detail of how our data is split during hyperparameter optimisation, training and evaluation of
our models. Using the aforementioned models, we explore the performance of the different architectures,
showing that while transfer learning has the potential to improve performance, one can easily end up
with negative transfer, making further research on how to best apply transfer learning for this task
necessary. Additionally we explore how the models performed with respect to individual gestures for
some subjects, showing that careful selection of which gestures to use is necessary as some gestures are
difficult to distinguish from one another.

Finally, it is our hope that the benchmark dataset we have constructed and made publicly available, may
contribute to the advancement of the fields of gesture recognition and transfer learning.
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ABSTRACT
Force myography has recently gained increasing attention for hand
gesture recognition tasks. In this paper, we attempt to improve
gesture recognition accuracy by utilising data frommultiple persons
using transfer learning. We experiment with both a progressive
neural network architecture and a variation, a combined progressive
neural network which seeks to learn more generalised features
from the source domains. We show that while transfer learning
can improve performance over a fully-connected neural network,
care needs to be taken lest one end up with negative transfer. In
the process, we note a lack of publicly available benchmark data in
this field, with most existing studies collecting their own data often
with custom hardware and for varying sets of gestures. This limits
the effectiveness of such transfer learning approaches as well as the
ability to compare various algorithms. We therefore also contribute
to the advancement of this field by making accessible a benchmark
dataset, collected using a commercially available sensor setup from
20 persons covering 18 unique gestures. We hope that others may
utilise our data for similar transfer learning approaches, while also
allowing further comparison of results and easier entry into the
field of force myography gesture recognition.

1 INTRODUCTION
Gesture recognition is increasingly becoming more popular, as it
can be used in various fields, such as rehabilitation in healthcare,
smart-homes where gestures can be used as commands, and pros-
thetic limbs [11, 15, 22]. Different technologies can be used for
collecting gesture recognition data, most common among them is
Surface Electromyography (sEMG) which measures the electrical
signals when activating the muscles, and Force Myography (FMG)
which measures the mechanical activity of the muscles, i.e. how a
muscle changes shape when it is used [23]. While feature extrac-
tion is important for sEMG to extract useful information due to its
inherent noisy nature, FMG does not require feature extraction to
extract useful information [5, 7].

The most popular classification algorithms using FMG data are
Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM), however not much research has been devoted to the use
of deep neural networks [23]. In our previous work [2], we ex-
plored the potential of deep neural networks for FMG hand gesture
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recognition by comparing it with LDA and SVM. We showed that
there was potential in utilising deep neural networks for FMG hand
gesture recognition.

Recent studies in this field often collect their own data, e.g., differ-
ent sets of gestures, using their own custom hardware [3, 9, 13, 14].
This creates a reproducibility problem where the custom hardware
settings cannot be exactly configured by other researchers and
the results obtained on different setups cannot be effectively com-
pared to each other. We argue that using a commercially available
product eases the hardware configuration issues and publishing
a FMG benchmark dataset collected using the product makes the
comparison of different results easier. In addition, having a publicly
available dataset allows for easier entry into the field of FMG hand
gesture recognition, as it will not require everyone entering the
field to first collect their own data.

Transfer learning is a relevant topic for hand gesture recognition,
as it allows the re-use of previously collected data. The idea of trans-
fer learning is that previous learned knowledge can be transferred
to new domains, to speed up the learning process and or increase
performance. However in order to transfer knowledge from a source
domain, it is important to knowwhat to transfer, how to transfer and
when to transfer. As such, there are three main categories of transfer
learning, namely Inductive, Transductive and Unsupervised. The dif-
ferent categories can provide information into what to transfer, as
Inductive transfer learning requires the tasks to be different for both
source domain and target domain. Transductive transfer learning
requires the task to be the same for both source domain and target
domain, and Unsupervised transfer learning is similar to Inductive
transfer learning but the focus is on unsupervised learning in the
target domain [17].

In this paper we will use deep learning models with Transduc-
tive transfer learning. Specifically, we will use domain adaptation
transfer learning using Progressive Neural Networks (PNN) and
compare the results to a baseline model architecture that does not
utilise transfer learning. In addition, the collected data is made
publicly available1 for the sake of reproducibility and such that
those entering the field of FMG hand gesture recognition can use
this data in their research. Henceforth we will refer to the people
that data has been collected for as subjects.

1https://github.com/exoskelebox/force-myography-hand-gesture-recognition-
benchmark-data
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2 RELATEDWORK
In our previous work [2] we looked into approaches used for hand
gesture recognition in the literature. We implemented several deep
learning algorithms to evaluate the potential of introducing deep
learning to FMG hand gesture recognition. Furthermore we also
assessed the potential of using transfer learning for FMG hand ges-
ture recognition, as has been done with sEMG [8]. [8] has shown
promising results by utilising transfer learning, as transfer learning
can minimise the amount of samples required to effectively iden-
tify gestures thereby reducing the training time, and increase the
overall accuracy for a given subject [16, 21]. Transfer learning for
sEMG hand gesture recognition has been done using an variation of
PNN [8]. PNN’s architecture starts with single model, or a column,
for a given task. When it switches to a new task the parameters
of the previous model is frozen and a new column is instantiated.
The newly instantiated column also receives input from the frozen
model via lateral connections, such that it can learn from previous
learned features. The lateral connections are layer-by-layer con-
nected with the newly created column [18]. An issue with PNN,
however, is that with a large sequence of tasks, the complexity
quickly becomes problematic as the number of columns and lateral
connections grow. [8] thus used a variation of PNN, where rather
than training a column for each subject in their pre-training dataset,
they trained a single column on all the subjects of the pre-training
dataset and then included this single pre-trained column for the
final model according to the PNN method.

It is beneficial for transfer learning to have a large set of source
domain data to draw from, and it is easier to transfer knowledge
if the data distribution is similar to the target domain. It would
therefore be helpful if similar datasets were publicly available. We
review four independent research papers that utilise FMG data
to uncover their data collection process. In the first paper we
examined [3], data was collected using a custom armband with
8 sensors wrapped around the upper forearm. Data was collected for
10 subjects each performing 6 gestures with a sampling frequency
of 10Hz. In the second paper, data was collected using a custom
wristband with 15 sensors wrapped around the wrist. Data was
collected for 10 subjects each performing 6 gestures 12 times with
a sampling frequency of 30Hz [9]. In the third paper, data was
collected using a custom armband with 16 sensors wrapped around
the upper forearm. Data was collected for 12 subjects each perform-
ing 48 gestures 5 times with a sampling frequency of 10Hz [13].
In the fourth paper, data was collected using a custom armband
with 16 sensors on the dorsal side and 16 sensors on the volar side
of the forearm. Data was collected for 6 subjects each performing
17 gestures 4 times with a sampling frequency of 100Hz [14]. In
addition, none of these studies have made their data publicly avail-
able.

In summary, we observe that there is a lack of a publicly avail-
able FMG datasets, which precludes using them for transfer learn-
ing. Furthermore, their collection process varies widely in method
and execution, making it hard to perform any kind of meaning-
ful method comparisons to assess the performances of different
methods and to identify the state-of-the-art methods.

3 PROBLEM DEFINITION
Transfer learning uses domains 𝐷 and tasks𝑇 , where in 𝐷 we have
a source domain 𝐷𝑠 , and a target domain 𝐷𝑡 for which we want to
transfer knowledge to. A domain consists of a feature space𝑋 and a
marginal probability distribution 𝑃 (𝑋 ), where 𝑋 = {𝑥1, ..., 𝑥𝑛} and
a task 𝑇 = {𝑌, 𝑓 (·)} where 𝑓 (·) is a predictive function and 𝑌 the
label space [17]. There are various approaches to transfer learning
depending on how knowledge can be transferred effectively from
source domain to target domain [17].

We utilise domain adaptive transfer learning, where we assume
that 𝐷𝑠 and 𝐷𝑡 are different but 𝑇𝑠 and 𝑇𝑡 are the same [17], which
is appropriate for our problem, as we have different domains (i.e.
different subjects) but the gesture recognition task for all domains
is to recognise the gestures shown in Figure 1.

4 DATA COLLECTION
We collect data from a total of 20 subjects, and describe the collected
data for each subject as well as the protocol we follow during
our data collection process. For each subject we collect contextual
information, fit the sensors, perform calibration and collect sensor
readings.

4.1 Equipment
For this study we use a setup of 2 BIOX Armbands2, one with 7
sensors for the wrist and a larger one with 8 sensors for the forearm.
We connect both sensors to our laptop, and during data collection
we gather sensor readings from both sensors with a frequency of
975Hz-1000Hz, limited by our laptops processing speed.We sample
at the highest frequency possible, to avoid limiting the potential
applications, as the data can be down sample to a lower frequency
as appropriate.

4.2 Consent
All data is gathered from volunteers. Before any data is collected,
subjects are presented with a disclaimer informing them of what
data wewill collect and howwe intend to use it, including informing
them of our intent to make the data publicly available:

We are a research group at Aalborg University at-
tempting to break new ground in the field of gesture
recognition, and we need your data to do so. We will
collect data such as your age, gender, fitness as well
as record your arm / wrist while you do different ges-
tures. That is to say, we will not collect any personally
identifiable information (PII) such as your name, ad-
dress etc. By participating in our data collection, you
agree to have your data shared in a public dataset. We
share the data such that our results may be reproduced
and improved upon in the future.

4.3 Subject Information
The subjects are presented with a form and asked to provide some
contextual information that we expect to have some impact on
the gesture identification process. As part of this, we measure the
circumference of wrist and arm at the locations we will apply the

2https://www.bioxgroup.dk/product/biox-armband/
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(a)
Neutral closed

(b)
Neutral rest

(c)
Neutral open

(d)
Neutral wide

(e)
Neutral flexion

(f)
Neutral extension

(g)
Supine closed

(h)
Supine rest

(i)
Supine open

(j)
Supine wide

(k)
Supine flexion

(l)
Supine extension

(m)
Prone closed

(n)
Prone rest

(o)
Prone open

(p)
Prone wide

(q)
Prone flexion

(r)
Prone extension

Figure 1: Gestures.

sensor armbands. For the armband with 7 sensors, this is ∼ 5 cm
below the wrist, while the 8 sensor armband is below the elbow at
the maximal bulge of the forearm. The contextual information is
described below and the distribution of the data is noted in Table 1.

Age Research has shown that ageing reduces jointmobility [12]
which we expect to impact subjects performance of the re-
quested gestures. Additionally age has effects on the mechan-
ical properties of soft tissue (e.g. elasticity, density, thick-
ness) [19] which we also expect to affect gesture identifica-
tion performance.

Gender Research shows that there are physiological differ-
ences [4] including variation in wrist joint mobility [6, 20]
between genders. As such, we expect that the differences
will affect gesture identification.

Handedness As the joint mobility might be better in the dom-
inant hand.

Weekly Exercises As what we measure is the mechanical ac-
tivation of the muscles we expect that physical fitness will
impact the readings. We have therefore asked each subject
to give the number of days per week when they exercise for
at least half an hour.

Injury If a subject has an injury or condition that affects the
mobility of the wrist or forearm this will likely impact the

gesture identification. As such, we have asked the subjects
whether they have an injury that affects their wrist or hand
mobility.

Wrist and Forearm circumference We expect that thewrist
and forearm circumference will affect gesture identification
as it will impact howwell the sensor armbands fit the subject.

Gender 17 Male, 3 Female
Age 23.85(±1.53)
Handedness 18 Right, 2 Left
Weekly Exercise 2.35(±1.79)
Injury 1 Yes, 19 No
Wrist circumference 17.86(±1.07)
Forearm circumference 26.9(±1.66)

Table 1: Subject Distribution. For numeric properties, popu-
lation mean and standard deviation is given.

4.4 Sensor Fitting
The armband is laid on a flat surface with the cables to the left
and we ask the subjects to lay their right forearm on the middle of
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the armband with the wrist prone, such that the armband match
the measured location. Once the subjects have positioned the arm
correctly we close the armbands.

The subjects are instructed to sit such that there is ∼ 1 m free
space in front of them and ∼ 0.5 m to their sides and back. We then
ask them to position their arm such that the upper arm is parallel
to the body, the elbow does not touch their side, and their forearm
is perpendicular to the upper arm. We then inform them to hold
their elbow as still as possible and keep their forearm horizontal
and straight in front of them.

When the subjects are positioned correctly, we give them a re-
mote controller and instruct them to follow the prompts on the
screen and to click the remote when they have assumed the dis-
played gesture. They must then hold the position shown until the
data collection is done and a new gesture is shown. During the
calibration and collection processes, we will keep watch to ensure
the correct execution of the gestures. Should we see any errors we
will intervene and ask them to redo the gesture and give directions
for correct execution.

4.5 Calibration
Calibration is performed because the sensors will likely only utilise
part of the possible output range. We thus perform calibration in
order to better utilise the full output range of the sensors. In order
to capture the upper limit of the subjects muscle activation, the
subjects are told that they should try to exert their muscles as much
as possible when the sensors were being calibrated. Since the two
sensor armbands are activated differently for each gesture, they
are calibrated separately using the two gestures that we found to
best activate the sensors of the respective armband. These gestures
were Figure 1a and Figure 1r for the arm and wrist, respectively.

A side-effect of calibration is that the resting value3 of the sensors
is also increased, depending on the number of calibration steps (i.e.,
how much the sensitivity is increased). Since the armbands are
calibrated separately they will likely require a different number of
calibration steps, leading to different resting values. For this reason
we record the number of calibration iterations for both armbands
for each subject as well as the final sensor values on calibration in
the belief that this could be used to account for these factors.

4.6 Data Collection
The subjects are instructed that they do not need to exert maximum
force during the data collection, and that they should proceed at
their own pace, resting between gestures as necessary. We collect
data for a set of 6 hand gestures (closed, rest, straight, wide, flexion
and extension) with 3 different wrist positions (neutral, prone and
supine), resulting in a total of 18 different gestures which can be
seen in Figure 1. We collect data for each gesture 5 times, each time
collecting 5 seconds of sensor readings at a frequency of 975Hz-
1000Hz.

In addition to the value of each sensor we record a label sig-
nifying which gesture was performed, as well as which subject
performed it. Each reading has a timestamp, though only the time
difference in-between sensor readings of the same subject is valid,

3The resting value is the value the sensors outputs when no pressure is exerted on
them.

not the time of day due to the implementation of the timer. As we
collected data over several repetitions of the gestures we have also
included a numeric indicator of which repetition the reading is
from.

The collected data is of the form ⟨𝑎𝑟𝑚_𝑠𝑒𝑛𝑠𝑜𝑟𝑠, 𝑤𝑟𝑖𝑠𝑡_𝑠𝑒𝑛𝑠𝑜𝑟𝑠,
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝐼𝐷, 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝐼𝐷⟩ where 𝑎𝑟𝑚_𝑠𝑒𝑛𝑠𝑜𝑟𝑠
is a 8 dimensional vector and 𝑤𝑟𝑖𝑠𝑡_𝑠𝑒𝑛𝑠𝑜𝑟𝑠 is a 7 dimensional
vector of sensor readings.

4.7 Risks and Assumptions
There are a couple of areas of potential risk with our data collection
protocol.

With respect to the contextual information, we rely on the sub-
jects to provide the information which may have inaccuracies, es-
pecially on fields such as frequency of exercise where subjects may
embellish their details.

Furthermore, there is some degree of inaccuracy in regards to
the wrist and arm measurements. Though we try to measure as
consistently as possible, when dealing with something as inherently
soft as an arm it is difficult to manually measure at exactly the same
tightness each time.

The same applies to the fitting, which while we strive for con-
sistency, likely exhibits some degree of variance, which could lead
to difference in the needed calibration and subsequent data col-
lection. As described in subsection 4.5, we include the calibration
information in order to alleviate this issue.

In regards to the gesture data collection, we choose to let the
subjects determine their own pace, signalling when they have as-
sumed the next gesture. While we supervise the data collection,
and ask the subjects to redo any gestures where we observe errors,
it is possible that some subjects may push the button a bit too early.

Additionally since we leave it up to the subjects to decide when
and how long they need to rest between gestures, there may be
some variance in their fatigue levels throughout the data collection.

5 FEATURE ENGINEERING
We use domain knowledge to engineer the features in our dataset.

5.1 Subject Information
As wemention in section 4, we gather contextual information about
every subject as we believe it can aid in hand gesture recognition.
The idea behind wanting to have these extra features, for example,
is to evaluate if a model is able to better classify the gestures, if the
model knows the age of the subject. Unfortunately, due to COVID-
19 [1], we are unable to collect data from a significantly diverse
demographic and have thus decided not to utilise the contextual
information.

5.2 Feature Scaling
Based on findings in our previous work [2], we implement scal-
ing. We scale the dataset to take into account how the calibration
functions, so as to normalise the data while considering the resting
values of the sensors.

Let 𝐷 be the raw dataset collected for a given subject, consisting
of 15 dimensional vectors containing a sensor reading from each of
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Figure 2: PNN Overview. Given 3 subjects with domains 𝐷𝐴, 𝐷𝐵 and 𝐷𝐶 , assume 𝐷𝐴, 𝐷𝐵 ∈ 𝐷𝑆 belong the source domain and
𝐷𝐶 = 𝐷𝑇 is the target domain. First in a model𝑀𝐴 containing a single ’column’𝐶𝐴 is trained for 𝐷𝐴. Then that models weights
are frozen and a new model 𝑀𝐵 is created in b with 2 columns, 𝐶𝐴 and a new 𝐶𝐵 , with lateral connections from the 𝐶𝐴 to 𝐶𝐵

through adaptors 𝐴𝑑 . This model is trained on 𝐷𝐵 and the process is then repeated with the weights being frozen and a new
model𝑀𝐶 being created in c with an new column𝐶𝐶 and lateral connections from both columns𝐶𝐴 and𝐶𝐵 . This model is then
trained on the target domain 𝐷𝐶 . The model thus increases in size with the number of source domains.

the sensors. Let𝑑𝑖 be the set of data readings from sensor 𝑖 , and𝑑 𝑗 be
the 𝑗 th sample of 𝐷 . The 𝑗 th reading of sensor 𝑖 is thus 𝑑𝑖

𝑗
. For each

𝑑𝑖
𝑗
∈ 𝐷 we subtract the minimum reading for the corresponding

sensor,𝑚𝑖𝑛(𝑑𝑖 ), and divide by the overall maximum reading across
every sensor𝑚𝑎𝑥 (𝐷) =𝑚𝑎𝑥 ( {𝑚𝑎𝑥 (𝑑𝑖 ) |𝑖 ∈ {1, ..., 15}} ) which is
also adjusted by −𝑚𝑖𝑛(𝑑𝑖 ).

𝑆𝑐𝑎𝑙𝑒 ( 𝑑𝑖𝑗 ) =
𝑑𝑖
𝑗
−𝑚𝑖𝑛(𝑑𝑖 )

𝑚𝑎𝑥 (𝐷) −𝑚𝑖𝑛(𝑑𝑖 )
(1)

We consider the local minimum of each sensor, as the resting
values may be different due to calibration (see section 4). We are also
interested in preserving the relative values between the sensors,
we therefore consider the global maximum of the sensors, as the
amount of force exerted vary when performing different gestures.
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6 MODELS
In our previous work [2] we have shown that simple deep learning
can perform as well as the most commonly used models SVM and
LDA. Therefore, we experiment with different deep learning models
to evaluate the potential of applying transfer learning to this task.

6.1 Fully-Connected Neural Network
Our non-transfer learning baseline consists of a series of Fully-
Connected Neural Network (FCNN) layers, using the ReLU acti-
vation function, followed by a Softmax layer. In order to avoid
overfitting we apply dropout between each layer. This architecture
also serves as the basis for the columns of our transfer learning
approaches. As we consider a non knowledge transfer setup, we
train a baseline model for each subject.

6.2 Progressive Neural Network
PNN was proposed by [18] as a way of applying transfer learning
to a sequence of tasks while avoiding catastrophic forgetting. Fig-
ure 2 shows the training process of a PNN model with 3 domains, 2
source domains and 1 target domain. It works by preserving mod-
els trained on the source domains as columns, 2a+2b, which are
then frozen and connected to the target column for the target task
through lateral connections in Figure 2c. These lateral connections
go through adapters that serve to provide dimensionality reduc-
tion on the source inputs, and aid in learning how best to draw on
the pre-trained columns. Dimensionality reduction is performed to
reduce the total number of parameters as the number of columns
increases [18]. The reason for freezing all the source columns, is
that during back propagation we only want to adjust the weights for
the target column, as the source columns already have been trained
and are only used to transfer knowledge. Because no changes are
being made when the weights are frozen for the source columns,
we prevent catastrophic forgetting while the current column can
draw on all previously learned features across all layers.

6.3 Combined Progressive Neural Network
As the PNN architecture exhibits quadratic growth in the number
of parameters when increasing the number of source domains [8],
there is a limit to the number of source domains we can reasonably
draw on. Hence, if we want to be able to learn from a large set of
source domains we need an alternative to having a column for each.
One possible approach, which was proposed by [8], is to combine
the source domain datasets and only train a single column on this
combined source domain as seen in Figure 3a. Like the PNN, the
source column is then connected to the target column with lateral
connections through adapters, as seen in Figure 3b. Combining the
source domains is possible because, unlike what the original PNN
was proposed for [18], we do not have different tasks in addition to
the different domains. We can thus combine the source domains
and train a single column to learn the general features across the
source domains which are helpful for our task. With Combined
Progressive Neural Networks (CPNN) it is thus possible to draw on
a large number of source domains without increasing the number
of parameters of the model.

Ms

CS

Dense

Dropout

Output

Dense

Dropout

Dense

Dropout

Softmax

Feature layer

DS

DA DB

Output

(a)

MT

CS CT

Dense

Dropout

Output

Dense

Dropout

Dense

Dropout

Softmax

Dense

Dropout

Output

Dense

Dropout

Dense

Dropout

Softmax

DC

Feature layer

Ad

Ad

Ad

(b)

Figure 3: CPNNOverview. Given 3 subjects with domains𝐷𝐴,
𝐷𝐵 and 𝐷𝐶 , assume 𝐷𝐴, 𝐷𝐵 ∈ 𝐷𝑆 belong the source domain
and 𝐷𝐶 = 𝐷𝑇 is the target domain. Different from the PNN,
all source domains in 𝐷𝑆 are combined to train a single col-
umn𝐶𝑆 in a. Then, like with PNN, that columns weights are
frozen and in b a new column𝐶𝑇 is created with lateral con-
nections from 𝐶𝑆 through adapters 𝐴𝑑 . This model is then
trained on the target domain 𝐷𝐶 . As such, unlike with the
PNN, the size of the model will not change regardless of the
number of source domains.

7 HYPERPARAMETER OPTIMISATION
For Hyperparameter Optimisation (HPO) we utilise Bayesian opti-
misation in which previous trial scores are exploited to determine
what combination of Hyperparameters (HPs) should be explored
next to get a better score [10]. In terms of scoring, we perform leave
one group out cross-validation on the repetitions for all subjects
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# Dense 1 Dense 2 Dense 3 Dropout Score

1 256 - - 0.4 79.51%
2 256 - - 0.5 79.45%
3 128 - - 0.5 79.32%
4 256 - - 0.2 79.23%
5 256 - - 0.1 79.06%

6 256 32 - 0.1 79.23%
7 128 128 - 0.2 79.10%
8 64 256 - 0.4 78.93%
9 64 64 - 0.2 78.90%
10 128 128 - 0.3 78.82%

11 256 64 32 0.1 79.27%
12 64 128 64 0.4 79.16%
13 256 64 32 0.2 79.16%
14 256 64 32 0.4 79.16%
15 128 32 128 0.2 78.87%

Table 2: FCNN HPO Results.

and use the evaluation mean as the score - the repetition used for
holdout testing we mention in section 8 is not included. To reduce
the complexity of the task, we focus solely on the FCNN, which
should apply to the PNN and CPNN, seeing as the architecture of
the FCNN is identical to that of the columns in the PNN and CPNN
with the exception of the adapter layers.

We perform three independent HPO searches for one, two and
three hidden layers respectively. Based on preliminary testing, we
have determined the range for each HP in the search space. The
search space for each hidden layer includes the number of neurons
limited to the set {32 , 64, 128, 256} as well as the dropout rate lim-
ited to the set {.0, .1, .2, .3, .4, .5}. Our reasoning for not including
more hidden layers is that the size of the search space exhibits
exponential growth as the number of hidden layers 𝑛 increases,
with 4𝑛 × 6 possible combinations of HPs, which quickly becomes
unfeasible.

We run each HPO search for 10 trials and note the best scoring
trials in Table 2. From the results, we observe that the single layered
FCNN with 256 neurons and a dropout rate of 0.4 achieves the
best score, with the best performing two and three layered FCNN
performing ≈ .25% worse but within .05% of one another, which
suggests that the FCNN favours a shallow architecture.

From this point forth, we will use the HPs from the best perform-
ing trial for one, two and three hidden layers respectively for our
models and compare the results with one another.

8 TRAINING AND EVALUATION
As mentioned in section 4, we collect data for a series of repetitions,
each repetition covering 5 seconds of data for every gesture. Of the
5 total repetitions we collect for each subject, we will use the last
repetition for testing and the remaining repetitions for training. We
believe this best fits a case where a person may equip the device and
collect some initial data to train a model that should then perform
predictions on subsequent actions. For each of the models, we split
the training data into a training and validation set 75/25% and

utilise early stopping monitoring the validation loss delta with a
patience of 5 and delta threshold of 0.001 to determine when to
stop training.

8.1 FCNN
For the baseline FCNN model, we train a model for each subject
using the data for the last repetition as test data and the remainder
as training data.

8.2 CPNN
During the training of CPNN we start by combining the data for
all subjects except the one we want to train the current model for.
This combined dataset includes all 5 repetitions for these subjects.
With this combined dataset we pre-train a model as described in
section 6. We then take the data for the target subject and separate
the last repetition for testing as mentioned above, before training
on the remaining repetitions.

8.3 PNN
For the PNN, we train a column for each source subject, using all
repetitions gathered for that subject. When all the source columns
have been trained, we separate the last repetition of the target sub-
jects data for testing and train the target model with the remainder.

9 RESULTS
Based on the best model configurations in section 7 we fit three
FCNN, CPNN and PNN models. The performance of the models can
be seen in Table 3 and Figure 4 shows the per subject accuracy for
the FCNN, CPNN and PNN models with the highest mean accuracy.
Based on the best and worst subject models of each architecture
we construct a confusion matrix such that we can observe the
classification differences for each model.

9.1 FCNN
Looking at the test results in Table 3, we observe that, contrary to
the HPO results seen in Table 2, the deeper models outperform the
shallower ones.

Looking at the confusion matrix for our best and worst perform-
ing FCNN subject models in Figure 5, we observe some noteable
misclassifications. Looking at the confusion matrix for our worst
performing FCNN model in Figure 5a, we observe that the gesture
supine closed is predicted correctly, however the model cannot dis-
tinguish between supine closed and supine rest, both of which it
classifies as supine closed. Likewise in the confusion matrix for our
best performing FCNN model in Figure 5b, we observe that the
model cannot distinguish between supine straight and supine wide
as well as prone rest and prone wide.

9.2 CPNN
As mentioned in subsection 6.3 the columns of our CPNN models
are based on the FCNN architecture, and we have trained 3 CPNN
models based on our HPO. CPNN accuracy for the first two model
configurations, shows a higher mean accuracy than FCNN and PNN,
however the mean accuracy for CPNN when using three layers is
worse than that of FCNN.
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# Dense 1 Dense 2 Dense 3 Dropout FCNN CPNN PNN
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

1 256 - - 0.4 77.59% 13.20% 78.12% 12.83% 76.65% 13.55%
2 256 32 - 0.1 77.81% 13.06% 78.28% 12.88% 75.42% 14.24%
3 256 64 32 0.3 78.14% 12.63% 77.11% 14.01% 76.27% 12.11%

Table 3: Evaluation Results. Mean accuracy 𝜇 and standard deviation 𝜎 . Optimal number of neurons per layer and dropout rate
were identified by hyperparameter optimisation, described in section 7.

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 23 24
subject id
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Figure 4: Subject Model Accuracies.

Looking at the confusion matrix for our best and worst perform-
ing CPNN subject models in Figure 6 and compare with Figure 5,
we observe some interesting differences. The worst performing
subject model correctly classifies prone closed, but has a harder time
classifying gestures such as prone flexion and neutral rest. The best
performing subject model has a hard time classifying neutral wide
as it is often misclassified as neutral straight.

9.3 PNN
We also based our PNN models on the best performing baseline
FCNN HP settings. Our PNN models performed worse than the
FCNN and CPNN models regardless of the number of layers, as can
be seen in Table 3.

As can be seen in Figure 7, PNN classifies gestures for the best
performing subject model better than CPNN and FCNN, however,
looking at the worst performing subject model, we can see it has a
harder time classifying the gestures than CPNN and FCNN.

10 DISCUSSION
In this section, we discuss our experiments and our benchmark
dataset.
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(a) Worst performing subject, subject id 15. Accuracy 48.39%.
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Figure 5: Confusion matrix for best performing baseline
FCNN based on our results in Table 3.
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(a) Worst performing subject, subject id 15. Accuracy 47.00%.

ne
utr

al 
clo

sed

ne
utr

al 
ex

ten
sio

n

ne
utr

al 
fle

xio
n

ne
utr

al 
res

t

ne
utr

al 
str

aig
ht

ne
utr

al 
wide

pro
ne

 clo
sed

pro
ne

 ex
ten

sio
n

pro
ne

 fle
xio

n

pro
ne

 re
st

pro
ne

 st
rai

gh
t

pro
ne

 wide

sup
ine

 clo
sed

sup
ine

 ex
ten

sio
n

sup
ine

 fle
xio

n

sup
ine

 re
st

sup
ine

 st
rai

gh
t

sup
ine

 wide

Predicted label

ne
utr

al 
clo

sed

ne
utr

al 
ex

ten
sio

n

ne
utr

al 
fle

xio
n

ne
utr

al 
res

t

ne
utr

al 
str

aig
ht

ne
utr

al 
wide

pro
ne

 clo
sed

pro
ne

 ex
ten

sio
n

pro
ne

 fle
xio

n

pro
ne

 re
st

pro
ne

 st
rai

gh
t

pro
ne

 wide

sup
ine

 clo
sed

sup
ine

 ex
ten

sio
n

sup
ine

 fle
xio

n

sup
ine

 re
st

sup
ine

 st
rai

gh
t

sup
ine

 wide

Tr
ue

 la
be

l

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .99 .01 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 .61 .39 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

.03 0 0 0 0 0 0 0 .97 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .91 .09
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .05 .95

Confusion matrix

0.0

0.2

0.4

0.6

0.8

1.0

(b) Best performing subject, subject id 16. Accuracy 95.61%

Figure 6: Confusionmatrix for best performing CPNN based
on our results in Table 3.

10.1 Transfer Learning
Our best transfer learning model, CPNN, performed slightly better
than our baseline FCNN, the PNN model performed worse. This
suggests that there is potential for knowledge transfer but that one
should be careful when applying transfer learning lest one end up
with negative transfer.

10.2 PNN vs CPNN
While CPNN generally performed slightly better than FCNN, our
PNN models performed noticeably worse. This suggests that the
CPNN architectures single pre-trained column better captures more
general features across subjects, which give a better transfer com-
pared to the collection of individually pre-trained columns for PNN
which learn subject specific features for the individual source sub-
jects.
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(a) Worst performing subject, subject id 15. Accuracy 43.90%.
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(b) Best performing subject, subject id 18. Accuracy 96.43%

Figure 7: Confusion matrix for best performing PNN based
on our results in Table 3.
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10.3 Hyperparameter Optimisation
We have performed HPO on the number of neurons in each layer
and the dropout rate to find the best HPs for our task. We did not
include activation functions or learning rate in the search, but as
we used the Adam optimiser, the learning rate dynamically adjusts
during training.

We only performed HPO on the FCNN model, as that also served
as the basis for our transfer learning models. It might, however, be
that the optimal HPs differ for our transfer learning architectures.
As such it might be interesting to perform HPO for these models
as well, including optimising the adapters and possibly having
different HPs for our source and target models.

10.4 Data Collection
We mention in section 5 that we did not manage to collect data
from a sufficiently diverse demographic, and therefore decided not
to use the contextual information. However, we still think that it
is relevant and should be collected and considered under normal
circumstances, as we believe it could help transfer knowledge more
effectively. In general, we would have liked to collect more data, as it
would have enabled us to explore further issues such as comparing
performance between different demographics, or isolate some of
the subjects to be used exclusively for the pre-trained models to
reduce the training time.

11 CONCLUSION
We have collected a FMG benchmark dataset for hand gesture
recognition using a commercially available sensor setup. We have
collected benchmark data for 20 subjects, including contextual
information about the subject, for a total of 18 unique gestures.

The data is collected at a very high frequency at approximately
1000 Hz, to accommodate as many applications as possible, as the
data can be down sampled to a lower frequency as appropriate.

We have used this dataset to show that transfer learning has
the potential to increase recognition accuracy by incorporating
knowledge learned from other subjects. However, negative transfer
may happen. Both the dataset and the source code of the use-case
have been made publicly available on GitHub4. We believe that this
dataset will facilitate research both on FMG based hand gesture
recognition and on transfer learning.

GLOSSARY
CPNN Combined Progressive Neural Networks. 8–11

FCNN Fully-Connected Neural Network. 8–12
FMG Force Myography. 3, 4, 12

HP Hyperparameter. 8–10, 12
HPO Hyperparameter Optimisation. 8, 9, 12

LDA Linear Discriminant Analysis. 3, 8

PNN Progressive Neural Networks. 3, 4, 7–11

sEMG Surface Electromyography. 3, 4
4https://github.com/exoskelebox/force-myography-hand-gesture-recognition-
benchmark-data

SVM Support Vector Machine. 3, 8
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