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Preface

Present master thesis is conducted on the 3rd and 4th semester of the Master of Science in
Structural and Civil Engineering at Aalborg University Esbjerg by Laura Nim Pedersen and
Tommy Bank in the period from September 2nd 2019 to June 10th 2020.

The aim of the project is to evaluate well established calculation methods and assumptions
in danish geotechnical practice. It is purely a numerical study, performed in PLAXIS, with
a primary focus on the bearing capacity of shallow foundations on frictional soil in the ul-
timate limit state. Two and three dimensional solution techniques are assessed and their
discrepancy sought quantified. In continuation of this, a novel yield surface by Professor
Lars Damkilde is investigated. Opposed to the traditional Mohr-Coulomb criterion, it is
possible to include effects of the intermediate principle stress in the proposed yield surface.

The report is divided in chapters indicated with Y heading, sections indicated with Y.Y
heading and subsections indicated with Y.Y.Y heading. Source references are denoted by
square brackets; [X]. X being the reference number corresponding to the number in the bib-
liography at the end of the report. Equations, figures and tables are indicated by (Y, Z), Y
being the the chapter number, Z being the equation, figure or table number. Each figure has
a caption below the figure, and each table has a caption above the table.

Following software has been utilized during the making of the project; MATLAB R2018a,
PLAXIS 2D 2019, PLAXIS 3D 2019, Ipe 7.2.14, Texmaker 5.0.2, SciTE 4.3.3, Microsoft Visual
Studio 2019, Intel Parallel Studio XE 2020 with Intel Fortran Compiler 19.1. It should be
noted, that Aalborg Universities license for the full version of PLAXIS with VIP functions,
unexpectedly ran out during the making of the project and was not renewed. For the better
part of the spring 2020 until completion an introductory demo version of PLAXIS was used.
User defined soil models and remote scripting is not possible for this version. Furthermore
the meshing is limited to 50.000 element.

A special thanks go to the main supervisor Lars Damkilde for guidance and counsel during
the project period. Associate Professor Amin Barari and research assistant Francisco Manuel
Garcia Rodriguez are thanked for welcoming us as guests for lectures in Aalborg.

Aalborg University Esbjerg, 10/06-2020
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Nomenclature

Greek letters
α

ρt
ρc

parameter
β Curvature parameter
∆ Finite increment
δ Residual
γ General specific weight
λ Plastic multiplier
µ Slope of yield criterion in

the compressive meridian
plane

ν Poisson’s ratio
ϕ Friction angle
ψ Dilatancy angle
ρ Deviatoric stress
σ′c Effective uni-axial com-

pressive strength
σ Standard deviation
σ′t Effective uni-axial tensile

strength
σm Mean stress
τ Shear stress
θ Lode angle
εa Axial strain
εV Volumetric strain

Matrices and Vectors
B Strain interpolation matrix
D Elastic constitutive matrix
ε Strain vector
K Stiffness matrix
P Load vector
σ Stress vector
σ∗ Stress vector in trans-

formed coordinate system

Symbols
A0 Corrected area
′ Apostrophe indicating ef-

fective parameters
c Cohesion
c* ρc normalized deviatoric

centre of curvature
d Depth factor
ds Relative density
E Young’s modulus
e Void ratio
Eoed Oedometer modulus
f Yield criteria
G Shear modulus
g Flow rule
i Inclination factor
ID Density index
i,j Counter variables
K Bulk modulus
k Frictional coefficient
K0 At rest soil pressure coef-

ficient
N Bearing capacity factor
p Hydrostatic pressure
q Surcharge
R Ultimate bearing capacity
r ρc normalized radius
s Shape factor
Sw Degree of saturation
u,v,w Displacement coordinates
x,y,z Cartesian coordinates
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Chapter 1

Introduction

The main focus of present report is to investigate the possibly untapped potential of soil
as a structural material. All civil engineering structures are by some means supported by
contact with soil and so geotechnical design is always a part of any given project. In con-
junction with civil structures becoming larger and availability of natural resources limited,
this drives a desire to push designs to the limit. It is expected that the offshore industry
will be amongst the frontrunners in developing and implementing new solutions and tech-
nology to make advancements within geotechnical structures. With increasing sizes of e.g.
wind turbines, where the supporting structures have a large degree of reproducibility, at
least within the same project, optimizations can prove very beneficial. The findings can
eventually benefit all branches of geotechnical engineering, but designers involved in one
off projects such as residential buildings simply do not have the same incentive to drive the
development.

Geotechnical engineering is a notoriously experience based field, which to a great extend is
justified, considering the unpredictable nature of soils. A downside to this is, in the authors
perception, a industry where rules of thumb, that are not necessarily well-document, be-
comes the norm. This has lead to design practices that can potentially be vastly conservative
or result in an actual level of safety below what the designer predicts. A classic example
from geotechnical practice in Denmark is a correction of the friction angle when dealing
with problems that can be considered as being in a plane strain condition [1]. A case of this
was quickly discovered by the authors when reviewing a calculation example of a simple
geotechnical problem in a widely used teaching material at the undergraduate level [2]. The
bearing capacity of a pad foundation is investigated using well-known bearing capacity for-
mulae with a plane friction angle. This is clearly a three-dimensional problem. Even so a
correction on the friction angle is made, which is in accordance with the National Annex of
the Eurocode, but does not appear to be particularly judicious.

The non-linear nature of soil as a structural material dictates constitutive models that ac-
count for both the elastic and plastic behaviour during loading/unloading. This constitutive
relation comprise a yield criterion, which controls whether stress points in a soil domain is
in an elastic state or yielding. The ability of a yield criterion to describe the actual physical
response of the soil is very much dependent on its complexity and possibilities of obtain-
ing the proper descriptive parameters. Many yield criteria used in practical geotechnical
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engineering spring from traditional theory presented by e.g. Coulomb (1776) and later on
generalised by Mohr (1882) [3].

σ1

σ2

σ3

p

Figure 1.1: Mohr-Coulomb yield surface in principal stress space.

A lot of geostructural analyses is continuously carried out using the Mohr-Coulomb crite-
rion. One of the primary reasons for this is most likely the relatively simple procedure of
calibrating the criterion to strength characteristics obtained from experimental results. A
pronounced weakness of the Mohr-Coulomb criterion is, that it is generated solely from a
compressive friction angle. Thus disregarding the increasing friction angle when approach-
ing a tensile triaxial state. Furthermore, the neglection of the influence of the intermediate
principal stress affects the accuracy. The counterpart to this is the Drucker-Prager yield sur-
face (1952) in which all principal stress are equally influential [4]. Though a great number
of more or less advanced yield criteria are proposed. Many often suffer from unphysical
parameters that can be difficult to quantify and interpret. Adding to this, many criteria
are restricted in their application and are only valid for certain materials or types of anal-
ysis. This report investigates a general parametric yield surface format proposed by Lars
Damkilde, that seeks to encompass a number more traditional yield surfaces whilst being
versatile and providing a more precise approximation of the physical phenomena involved.
Important capabilities of the proposed yield surface are presented in chapter 3.

Progressive advancements in computer technology pave the way for solving increasingly
complex numerical problems. With the possibility of performing a great number of com-
putations within a reasonable time frame, there is an incentive to develop more accurate
models. Assumptions and simplifications, which were previously essential to achieve re-
alistic computation durations, might not be as crucial. This could e.g. be analysing three-
dimensional problems in a plane strain configuration, being the only viable option at the
time. Numerical analyses carried out in this report will to the extend possible be carried out
in the commercial finite element software PLAXIS. This is to the authors knowledge by far
the most widely used software in the geotechnical industry and hence considered the most
relevant. The standard implementation of the Mohr-Coulomb model in PLAXIS will serve
as a benchmark for the analysis to be performed.
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Figure 1.2: Three dimensional finite element mesh.

Project Scope

This thesis aims at investigating the validity of three common design practices for frictional
soils in geotechnical engineering stated as

• Analysing structures in plane strain with a increased friction angle

• Analysing structures in axisymmetry with a triaxial friction angle.

• Using the Mohr-Coulomb yield criteria in elasto-plastic finite element analysis.

The influence of the intermediate principal stress and plane strain representation of classical
geotechnical problems is scrutinized by analysing long structures of altering proportions in
2D and 3D finite element models. In particular the correction of the friction angle, when
treating a problem in plane strain as done in danish practice, is sought quantified, whether
this justifies or diminishes the use of it. Traditional bearing capacity formulae serve as a
indicative benchmark, to assess the validity of the results obtained. To couple present re-
port with a business that is expected to drive the development within the field, offshore
foundations such as circular gravity base are investigated. The validity of common design
approaches are examined and compared with both axisymmetric and three-dimensional nu-
merical models. Furthermore, the potential gains, which can be achieved by utilizing a more
versatile yield surface, are quantified. The key aspect throughout the studies is the applica-
bility and feasibility of findings in a commercial context. This prescribes coherence between
the modelling to be performed and field surveys as well as laboratory tests, involved in
determination of soil characteristic.

This thesis is limited to investigating frictional soils. Partly contributed to the fact that the
effect of accounting for a tensile friction angle is very pronounced for these materials. The
soils used throughout the report are G-12 sand on which Bønding (1977) have performed
true triaxial test [5] and Baskarp sand no. 15 where Ibsen (1994) have performed compres-
sive triaxial test [6]. The former contains a large amount of data with individual control over
all three principal stresses, but only at failure. The latter have more common triaxial test
results, but contains measurements before failure occurs, so that the elastic characteristics
can be properly assessed. The Mohr-Coulomb model is put a stake by comparing it to a
general parametric yield surface format. This is done on the G-12 sand as this include data
on the intermediate principal stress. The General Parametric Yield Surface format is incor-
porated in PLAXIS as a user-defined material model programmed in Fortran and compiled



4 Chapter 1. Introduction

as a dynamic link library. Performance of the different criteria along with a rating of the
complexity involved in setting them up, is evaluated by analysis of a simple shallow foun-
dation. The analyses performed throughout the thesis are written in python language and
run in PLAXIS through a remote scripting server, which offers a very effective alternative to
simply using the graphical user interface.

Prerequisites

Compression is often taken positive in geotechnical context, but the sign convention used
in PLAXIS is adopted throughout this thesis. This being tension positive and compression
negative [7]. The ordering of principal stresses throughout the report is σ1 > σ2 > σ3. The
thesis is limited to ultimate limit state analysis. Even so findings are likely to influence other
limit states at a structural level. The elastic behaviour will only be treated to the extend
of making for a reasonable estimate of the response. Plastic behaviour, such as hardening,
influencing deformations are disregarded for the purposes of this project. All analyses per-
formed are drained and time-independent. Although present report only investigates soils,
the principles and models are by no means limited to this material.
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Chapter 2

State of the Art

This chapter introduces a number of widely recognized assumptions and design practices
in geotechnical engineering. It is important to mention that this is the authors perspective
of the status quo. Furthermore, some of the fundamental theory used throughout the thesis
is presented for completeness. There is without a doubt both regulatory and internal dis-
crepancies between practitioners throughout the world.

Numerous geotechnical parameters are presented, followed by a short description of a tra-
ditional triaxial test procedure to determine the strength of soil. The Mohr-Coulomb yield
criteria is described, as this is one of the most extensively used constitutive models for fric-
tional materials. Some widespread solution techniques for solving geotechnical problems
are presented. Today and especially historically simplifications allowing three dimensional
problems to be solved in a two dimensional framework are essential in geotechnical ap-
plications. Therefore plane strain and axisymmetric configurations are presented. Lastly
procedures for determining ultimate bearing capacities both analytically and numerically
are introduced.

Soil has seemingly endless variations of composition and behaviour, making it incredibly
hard to model accurately. Non-linearities may occur at both micro- and macroscopic levels,
likewise in both the elastic and plastic regimes [8]. To generate manageable models, sim-
plifications are therefore inevitable. A very essential adaptation for practical geotechnical
engineering purposes is to treat soil volumes as continua. This is assessed as being the most
viable compromise by e.g. comparing the size of common geotechnical structures to particle
sizes of soils. Other approaches, such as modelling soils as discrete particles, is to the au-
thors knowledge not used extensively outside academia. As such this thesis will only model
soil with a continuum approach.

2.1 Classification of Soil

In general classification of soil involves a geological assessment and geotechnical classi-
fication. The former will not be discussed in this thesis. This section describes various
geotechnical parameters to be used when analysing problems in soil. Specific values for the
parameters are stated when appropriate throughout the report. Two different sets of test
data is used to elucidate the procedures going in to determining the relevant properties of
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soils. Baskarp sand no. 15 has been for soil testing at Aalborg University for several years.
Accordingly the soil is very well described and a considerable amount of test data is avail-
able. The primary interest for this thesis is the compressive triaxial tests performed, which
is described in 2.1.2. This serves as the basis for describing the conventional procedures in
geotechnical design. To comply with the scope of this project, other test types are necessary.
Bønding performed true triaxial test on G-12 sand and the results from this study serve as
the basis for investigations, where stress states different from compressive triaxial are im-
perative. The more unconventional testing procedures are described in 3.3.

2.1.1 Geotechnical Parameters

This section goes through the parameters relevant to this study only, as a exhaustive list of
parameters in geotechnical engineering would be fierce.

Void ratio defines the ratio between voids and solids in a soil volume, whether the voids
are composed of air, water or a combination. As such it can be seen as a measure for how
well packed a soil volume is. Generally a relatively low void ratio indicates a dense soil,
while a relatively high void ratio indicates loose soil. It is important to mention that void
ratios of the same numeric value, does not necessarily imply similar quality. The grading
of the soil must be taken into consideration, which motivates another measure as presented
in the subsequent paragraph. The void ratio is obviously changed when a soil volume is
strained.

Density index is a measure of how the in-situ void ratio compares to a maximum and
minimum void ratio determined by standardised testing. It takes on values between 0 and
1, which can be interpreted as a scale ranging from very loose to very dense sediments. This
is evident from

ID =
emax − e

emax − emin
(2.1)

where emax represents the loosest possible state of the soil and emin the densest. Regardless
of the initial state of the soil it will eventually reach a critical state when stressed sufficiently.
This is illustrated in figure 2.1.

εa

Dense

Medium

Loose

ρ

a)

εV

εa

Dense

Medium

Loose

b)

e

εa

Loose

Medium

Dense

c)

Figure 2.1: Soil behaviour from different density indices.
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Loose sediments experience compression until the critical state is reached. Whereas medium
and dense sediments experience compression in the beginning and afterwards dilatation
will occur. The density index is a good measure to assess what behaviour can be expected
from the soil being analysed. As the illustration in figure 2.1 indicates it could improve
accuracy to include a plastic strain softening measure for dense sand. This is not accounted
for in perfect plasticity and so the initial void ratio used in analysis does not influence the
ultimate bearing capacity. There is no explicit definition for when a soil is loose or dense,
and so throughout this thesis the terminology for the two soil types investigated will be as
shown in table 2.1. Fittingly these tests are both performed on three levels of compaction.

Table 2.1: Soil compactness.

Material Loose Medium Dense
Baskarp sand no. 15 ID = 0.01 ID = 0.51 ID = 0.80 emin = 0.549 emax = 0.858
G-12 sand ID = 0.29 ID = 0.68 ID = 0.88 emin = 0.510 emax = 0.850

Specific weight and density may refer to a number of quantities in geotechnics. The con-
ventional nomenclature for these is listed in table 2.2.

Table 2.2: Density and specific weight.

Parameter Description
γ [kN/m3] General specific weight
γd [kN/m3] Specific weight for dry soil
γw [kN/m3] Specific weight for water
γm [kN/m3] Specific weight for fully saturated soil
γ′ = γm − γw [kN/m3] Reduced specific weight
γs [kN/m3] Specific weight for solids
ds = γs/γw [−] Relative density

The general specific weight is determined as

γ =
ds + eSw

1 + e
· γw (2.2)

where e is the void ratio and Sw is the soil’s degree of saturation. As in many disciplines the
specific weight of water is usually set equal to 10 kN/m3. The fully saturated specific weight
can be found by setting the degree of saturation equal to one and equal to zero to find the
dry specific weight. For frictional soils a relative density of around 2.65 is quite common [3,
p. 28]. This is confirmed by the soil samples used which are determined as 2.64 and 2.65
through preparatory tests.

Poisson’s ratio is the well-known measure of expansion or contraction perpendicular a
stressed surface in a solid. In soils this parameter is by no means a constant. Many frictional
soils may experience contractive volume strains at lower stress level followed by dilative
behaviour when the load is increased [6]. A number of other factors, such as undrained
behaviour, may also dictate the properties of the poisson’s ratio used for analysis of problems
in soil. For the relatively simple structures and load cases investigated in this thesis, it is
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thought sufficient to simplify the matter. Typically frictional soils will be in the range of 0.1
to 0.4 [9]. For offshore structures, if not determined in other ways, Poisson’s ratio is often
assumed to be equal to 0.3 for coarse soil as sand, which is used in this project [10].

Stiffness modulus in soil has a large degree of variability. It is susceptible to changes
depended on the stress level and history, which may stem from external loads or merely
the variation in confining pressure with depth. For linear elastic models this will inevitably
result in a compromise where the stiffness will be over- or underestimated. If using the ini-
tial tangent modulus the stiffness will in most cases deviate from the real behaviour almost
immediately and underpredict strains significantly.For the purposes of this study a secant
modulus at 50% strength is utilized as Young’s modulus. This is quite common for problems
involving loading of soils. Unloading and reloading problems will often behave somewhat
stiffer. Alternative stiffness moduli are often used in geotechnical calculations, depending
on the test procedure. It is possible to use these in the Mohr-Coulomb model in PLAXIS,
where the relationship between these and Young’s modulus is defined by Hooke’s law.

The shear modulus is given by

G =
E

2(1 + ν)
(2.3)

The Bulk modulus is given by

K =
E

3(1− 2ν)
(2.4)

The Oedometer modulus is given by

Eoed =
(1− ν)E

(1− 2ν)(1 + ν)
(2.5)

Cohesion is one of two major contributors to how shear strength of soil is traditionally
assessed. It is the stress independent term denoted c in Mohr-Coulomb’s failure criterion,
which is presented in section 2.2.1. In the context of this study only the effective cohesion,
c′, is of interest. A common rule of thumb in danish geotechnical practice for friction angle
is to assume no cohesion for frictional soil. This is undoubtedly a safe assumption, but also
justified. Even coarse grained sands can exhibit an apparent cohesion from testing, which
might not be physically reasonable. Coarse grained soil may be cohesive when moist, but
not when either dry or saturated. The potential pitfalls from this is exemplified through
classical bearing capacity formulae in section 2.3.2.

Friction angle is the second parameter contributing to the shear strength. This is the stress
dependent term in Mohr-Coulomb’s failure criterion and denoted ϕ. It is also called the
internal angle of friction. As for the cohesion, only the effective friction angle, ϕ′, is used. It
is widely recognized, and has been for more than a century, that the friction angle is stress
dependent [11]. Even so a linearised angle is still used extensively, due to its simplicity. This
is elucidated in reviewing the Mohr-Coulomb criterion in section 2.2.1.

Both the cohesion and the friction angle is conventionally found from triaxial tests. The
friction angle obtained from such tests is denoted ϕ′tr. It obviously stems from a very specific
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stress state and so may not be applicable to all solution techniques in geotechnical problems.
A clear-cut example of this is analysis performed in a plane strain configuration, where the
stress state deviates from triaxial condition. Comparison of test results from triaxial and
biaxial experiments have indicated a apparent increase in friction angle for plane problems
[3]. In Denmark this is traditionally accounted for by increasing the friction angle obtained
from triaxial testing, thus introducing what is known as a plane friction angle, ϕ′pl . For many
years this was done by simply increasing ϕ′tr by 10%. This still serves as the upper limit for
the increase, which is determined in terms of the density index as given by

ϕ′pl = min
{

1.1ϕ′tr
ϕ′tr(1 + 0.163ID)

}
(2.6)

The increase of friction angle has a potentially huge impact on the ultimate bearing capacity
of a geotechnical structure. This motivates a scrutinization of this seemingly rather crude
relationship and further poses the question, when is plane strain a valid assumption.

Dilatancy angle can be viewed as a measure of how the volume of soils will behave during
failure, denoted ψ. In layman terms it can be expressed as how much interlocking grains
must "lift" to pass each other, which it of course must, for failure to occur. From this it is
easy to imagine that densely compacted grains must overcome a relatively steep "climb",
whereas loosely packed sidements might succumb with more ease.

ψ

Figure 2.2: Interpretation of dilatancy angle.

It is common to use a constant dilatancy angle when modelling soil, although this deviate
from the real behaviour. The quantity is often found by a simple relation with the friction
angle [12]

ψ = φ− 30 (2.7)

This, to the authors knowledge, generally predicts a lower angle than what can be measured
from testing. The angle can be approximated from a linearisation of the axial and volumetric
strains in a conventional triaxial test, as illustrated below.
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-1

−1 + sin(ψ)

2sin(ψ)

εa

εv

−1 + 2ν

Figure 2.3: Determination of dilatancy angle.

From this it is seen that the dilatancy angle can be determined as [13] shown in equation
2.8.

ψ = sin−1

( dεV
dεa

dεV
dεa
− 2

)
(2.8)

2.1.2 Conventional Soil Testing

In attempt to find the strength of a given soil test, a widely recognized procedure is con-
ducting a compressive triaxial test. This is a fundamental test in soil mechanics, described
in present section.

A cylindrical soil test is exposed to an axisymmetrical stress condition. The stresses are
ranked with the vertical stress being the largest compressive principal stress and the hori-
zontal stresses being the smallest. In a compressive triaxial test the intermediate principal
stress coincide with the latter, as depicted in figure 2.4.

−σ3

σ1 = σ2 > σ3−σ1 = −σ2

Figure 2.4: Principle of compressive triaxial test.

The test is put in a chamber between two plates at the top and bottom, the upper being a
pressure head. The plates are stiff and ideally smooth by applying rubber membranes with
silicone in between, to avoid inexpedient deformations. The test is put under an isotropic
constant pressure via fluid inside the chamber. The tests are set up with different chamber
pressures to mimic different in-situ stresses. A stress increase is made by the pressure head
and the deviator stress is determined as the applied load, P, on the top surface, A, of the soil
test presented in equation 2.9.

σ3 − σ1 =
P
A

(2.9)
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The soil test experience relatively large deformations and the top surface expands, assuming
that the soil test remain cylindrical under compression. To account for this a corrected area
of the top surface, used to find the deviator stress at a specific stress condition, is formulated.
The corrected area is calculated based on the area without load, A0, the volume strain, εV ,
measured by the water squeezed out of the soil test, and the vertical strain, εa, measured
directly by the vertical deformation of the soil test. Calculation of the corrected area is
presented in equation 2.10.

A = A0
1− εV

1− εa
(2.10)

Rewriting equation 2.9 in terms of equation 2.10 the deviatoric stress is determined as

σ3 − σ1 =
P(1− εa)

A0(1− εV)
(2.11)

By gradually applying load and collecting data until the soil sample fails, it is possible to
obtain both elastic and strength characteristics. The results are often presented as in figures
2.1a and 2.1b.

2.2 Elasto-Plastic Constitutive Modelling

In an attempt to simulate the real soil behaviour in a feasible manor, an elasto-plastic
framework is somewhat indispensable in geotechnical engineering. The constitutive mod-
els formed from such a framework are plentiful and of varying complexity. To keep this
study concise, only relatively simple elasto-plastic concepts and models are investigated.
This implies that well-documented or physically justified formulations are key. A com-
monly accepted idealisation for modelling soils is to assume a linear elastic perfectly plastic
solid. This implies that the loading and re-loading path have the same slope, as in the
one-dimensional example in figure 2.5. The approximation is often accompanied by an
assumption of homogeneity and isotropy.

σ

ε

Plastic

E
la
st
ic

Reloading

Yield

Unloading

Figure 2.5: Linear elastic perfectly plastic stress-strain relation.

A linear elastic perfectly plastic material model contain the following three basic elements
[8]:

• A law defining the elastic stress-strain relationship.

• A yield criterion initializing plastic flow, denoted f .
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• A plastic flow rule defining plastic stress-strain relationship, denoted g.

This can also be extended to include a hardening law, where e.g. strength parameters vary
with the plastic strains. This will obviously invalidate the assumption of perfect plasticity.

The linear elastic stress-strain relation is often given by the generalized hooke’s law [14],
expressed in cartesian coordinates in equation 2.12. This could also be a anisotropic or
non-linear elastic law, but that is outside the scope of this thesis.

∆σ′xx
∆σ′yy
∆σ′zz
∆τxy
∆τxz
∆τzy


=

E′

(1 + ν′)(1− 2ν′)



1− ν′ ν′ ν′ 0 0 0
ν′ 1− ν′ ν′ 0 0 0
ν′ ν′ 1− ν′ 0 0 0
0 0 0 1

2 (1− 2ν′) 0 0
0 0 0 0 1

2 (1− 2ν′) 0
0 0 0 0 0 1

2 (1− 2ν′)





∆εxx
∆εyy
∆εzz
∆γxy
∆γxz
∆γzy


(2.12)

A yield criterion defines whether a material is in a elastic or plastic state, see figure 2.6. In
a multi-axial stress state a yield criterion can be visualized as a surface in principal stress
space. After yielding the stresses rearrange whilst the strains can still increase. In the case of
linear elastic perfectly plastic behaviour, no material fracture is modelled and so strains can
in principle increase indefinitely at the material level. At a structural level some plasticity
will develop locally even at low load levels, but the adjacent zones may still be in an elastic
state. Here failure occurs when an entire surface is in a plastic state and a uncontrollable
mechanisms forms.

σ2

σ1

f(σ)< 0

f(σ)= 0

Elastic

Elasto-plastic

Impermissible
f(σ)> 0

Figure 2.6: Yield function.

A flow rule, also known as plastic potential, dictates the direction of plastic strains after
yielding has occurred. Overall there are two types of flow; associated and non-associated.
In general the real behaviour of soil obey to non-associated flow. Even so, associated flow is
often assumed, amongst other things to avoid some difficulties in solving numerical prob-
lems with a non-associated flow rule. Associated flow is also the assumption throughout this
report. This prescribes a potential surface which equals the yield surface. In other words,
the plastic strain increments are co-directional with the normal to the yield surface. This is
known as the normality condition. In using such an assumption for soils, it is necessary to
make corrections on the parameters used to generate the yield surface and plastic potential
surface. This is exemplified in figure 2.7.
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Figure 2.7: Yield surface and plastic potential in meridian plane.

If the plastic potential was simply put equal to the yield surface without corrections, it would
overestimate dilatancy. Numerous studies show that increase in the dilatancy angle causes
a considerable increase in the ultimate bearing capacity [15]. To bypass this, a modification
to the strength parameters was proposed by Davis (1968). This leads to a reduction of the
friction angle and cohesion. The dilatancy angle is set equal to the modified friction angle,
thus obeying the theory of associated plasticity. The modified friction angle and cohesion is
given by

ϕ′mod = tan−1
(

sin(ϕ′)cos(ψ)
1− sin(ϕ′)sin(ψ)

)
∧ c′mod = c′

(
cos(ϕ′)cos(ψ)

1− sin(ϕ′)sin(ψ)

)
(2.13)

known as Davis formula [16]. The parameters to be used in analysis with associated flow is
as stated below for clarification.

c′mod ∧ ϕ′mod ∧ ψmod = ϕ′mod (2.14)

Elasto-plastic refers to material behaviour that is either purely elastic or a combination of
purely elastic and purely plastic components. When a soil volume is subjected to notable
loading it will undergo both elastic and plastic strains. In other words some strains are
reversible and some are irreversible. This means there is no unique relationship between
stresses and total strains once yielding occurs and so the constitutive stress-strain relation is
expressed in incremental form [14].

∆σ′ = D′ep∆ε (2.15)

Here stated for effective stresses and with the constitutive matrix dependent on the stress
state and history. The total strain increment is composed of elastic and plastic components.

∆ε = ∆εe + ∆εp (2.16)

The stress increment can be determined from the elastic strains and the elastic constitutive
matrix

∆σ = D′∆εe (2.17)

Combining equation 2.16 and 2.17, the stress increment is given by the total and plastic
strain increments.

∆σ = D′(∆ε− ∆εp) (2.18)

The plastic strain increment is defined from the flow rule with a plastic multiplier.
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∆εp = ∆λ
∂g
∂σ

(2.19)

Turning towards more specific procedures used in PLAXIS, the actual stress state is found
at step i in an incremental process as

σi = σi−1 + ∆σ where ∆σ = D′∆ε− ∆λD′
∂g
∂σ

(2.20)

When the soil is in a plastic stress state is must satisfy the yield criterion f (σ + ∆σ) = 0 and
consequently also its derivative. This is known as the consistency equation(

∂ f
∂σ

)T

∆σ = 0 (2.21)

Substituting 2.20 into 2.21 the plastic multiplier can be isolated

∆λ =

(
∂ f
∂σ

)T
D′∆ε(

∂ f
∂σ

)T
D′
(

∂g
∂σ

) (2.22)

2.2.1 The Mohr-Coulomb Model

This section describes the Mohr-Coulomb yield criterion in its basic form and addresses the
specifics towards its implementation in PLAXIS. The Mohr-Coulomb model refers to "the
linear elastic perfectly plastic model with Mohr-Coulomb failure criterion" [9]. There are
more advanced soil models in PLAXIS, where features are added or replaces parts of the
Mohr-Coulomb model. The Hardening Soil model with small-strain stiffness is an example
which, with the Mohr-Coulomb model as the basis, accounts for more effects as the names
implies.

The Mohr-Coulomb yield criterion is till this day, in spite of more or less obvious short-
comings, still used to a great extend by practitioners in the geotechnical society. The cri-
terion, as it is known today, is formulated from the major and minor principal stress, thus
disregarding the intermediate principal stress. This facilitates a relatively simple calibration
procedure from conventional compressive triaxial tests. This is a huge contributor to the
criterion’s popularity.

The Mohr-Coulomb criterion is in modern tongue a hybrid. It stems from two criteria,
namely the Coulumb failure criterion (1776) and the Mohr criterion (1900) [4]. Starting
with the former, and without going into the history behind it, Coulomb suggested that soils
exhibited stress-independent and stress-dependent strength parameters. Namely cohesion
and friction angle. By plotting test results in a σ− τ diagram, probably from the likes of a
direct shear test, he formulated the Coulomb failure criterion. This proposes a straight line,
through stresses at failure obtained from tests, which defines when a material is yielding as
shown in figure 2.8.
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τf = c− σf · tan(ϕ)

Datapoints

Figure 2.8: Coulomb failure criterion found by datapoints from shear strength tests.

Here τf is the shear stress and σf is the normal stress, on the failure plane. The material
parameter c represent the cohesion and is defined from the intersect with the τ-axis. ϕ is
the friction angle and is defined as the slope of the tangent line. From this it is clear that the
friction contribution to the shear strength is proportional with the normal stress. It was later
discovered by Terzaghi (1925) [17] convenient to analyse soils in terms of effective stresses,
in which Coulombs failure criterion reads:

τf = c′ − σ′f tan(ϕ′) (2.23)

Mohr suggested that failure was a arbitrary function dependent on the normal stress on a
plane. Visually this can be represented as a tangent line to Mohr’s circles of stress, with the
limitation that no part of the circles can extend beyond the line, as seen in figure 2.9.

τ

σ

τ = h(σ)

Mohr’s circles

Figure 2.9: Mohr failure criterion; a non-linear envelope tangent to Mohr’s circles.

Although the origin of the combination of the criteria is unknown, it still serves as a persist-
ing and well-renowned yield criterion for frictional and cohesive materials. The hybrid is
popularly known as the Mohr-Coulomb criterion. Simply put, it can be seen as a idealised
linear tangent fit to Mohr’s circles, see figure 2.10.
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Figure 2.10: Mohr-Coulomb failure criterion.

In a modern day context the yield criterion is traditionally fitted to effective principal stresses
resulting from compressive triaxial testing at varying confining pressures. The fitting proce-
dure is explained further in section 4.3.1. Expressing τf and σ′f in terms of principal stresses
as shown in figure 2.11

τ

σ
σ

′

3 σ
′

1

ϕ

σ
′

f =
σ
′
1+σ

′
3

2 +
σ
′
1−σ

′
3

2 · sin(ϕ′
)

τf =
σ
′
1−σ

′
3

2 · cos(ϕ′
)

c

Figure 2.11: Mohr-Coulomb from principal stresses.

from which the yield criterion can be formulated as

f (σ′1, σ′3) = 2c′cos(ϕ′)− (σ′1 + σ′3)sin(ϕ′)− (σ′1 − σ′3) (2.24)

Bearing in mind the conventional ordering of principal stresses σ′1 ≥ σ′2 ≥ σ′3, the uni-axial
compressive and tensile strength from f (0, σ′c) = 0 and f (σ′t , 0) = 0 respectively, can be
found.

σc =
2ccos(ϕ′)

1− sin(ϕ′)
∧ σt =

2ccos(ϕ′)

1 + sin(ϕ′)
(2.25)

Another often used and elegant form of the criterion in terms of principal stresses read

f (σ′1, σ′3) = k′σ′1 − σ′3 − σ′c (2.26)

where the frictional coefficient, k, and the uni-axial compressive strength, σc, is given by
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k′ =
1 + sin(ϕ′)

1− sin(ϕ′)
∧ σ′c = 2c′

√
k′ (2.27)

This visualizes as follows in the σ1-σ3 plane

σ3

σ1
k

1

σc

Figure 2.12: k and σc in σ1-σ3 plane.

In three dimensional principal stress space the Mohr-Coulomb criterion visualises as a sur-
face comprised of six linear segments. These each represent altering ordering of the princi-
pal stresses. As such, formulating the entire yield surface ensures independence towards the
ordering of principal stresses. Graphically the yield surface, depending on its strength pa-
rameters, resembles figure 2.13 in the principle stress space, deviatoric plane and meridian
plane.
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θ = 30o θ = 0
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Figure 2.13: Mohr Coulomb yield surface presented in a) Principle stress space b) Deviatoric plane c) Meridian
plane.

The yield surface described by the Mohr-Coulomb yield criterion has a fixed ρt/ρc ratio,
proportional to the friction angle, see figure 2.14. It is convenient to establish this ratio from
a Mohr-Coulomb criterion in Haigh-Westergaard coordinates [18]

f (p, ρ, θ) =
√

2psin(ϕ′) +
√

3ρsin
(

θ +
π

3

)
+ ρcos

(
θ +

π

3

)
sin(ϕ′)−

√
6ccos(ϕ′) (2.28)

where p is the hydrostatic pressure, ρ is the deviatoric stress and θ is the lode angle. The
deviatoric stress at yielding for uni-axial tension and compression in the π-plane can be
found from f (0, ρt, 0) = 0 and f (0, ρc, π

3 ) = 0. By substituting c with the expression from
equation 2.25 the deviator stresses are found as

ρt =

√
6σ′c(1− sin(ϕ′))

3 + sin(ϕ′)
∧ ρc =

√
6σ′c(1− sin(ϕ′))

3− sin(ϕ′)
(2.29)

in terms of the uni-axial compressive strength. From this the ratio between the two quantities
can be established.
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ρt

ρc
=

3− sin(ϕ′)

3 + sin(ϕ′)
(2.30)

0 30 60 90
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Figure 2.14: ρt/ρc ratio for friction angles ranging from Tresca to Rankine.

The difference between the triaxial compression and extension extrema can be further clari-
fied from inspecting Mohr’s failure mode criterion. This postulate that there are two possi-
ble failure planes which forms the angle β with the largest principal stress, as visualised in
figure 2.15. This shows a classic failure mechanics under a footing.

−σ3

−σ3

−σ1

−σ1

β = 45 + ϕ
2 Failure line

β = 45 + ϕ
2

Figure 2.15: Failure planes for triaxial compression (left) and extension (right).

The Mohr-Coulomb Model in PLAXIS consist of five basic parameters and an optional
sixth if tension cut-off is used.

Table 2.3: Basic parameters in the Mohr-Coulomb model.

Parameter Description
E [kN/m2] Young’s modulus
ν [−] Poisson’s ratio
c [kN/m2] Cohesion
ϕ [o] Friction angle
ψ [o] Dilatancy angle
σt [kN/m2] Uni-axial tensile strength

The linear elastic part of the Mohr-Coulomb model is based on Hooke’s law as given in
equation 2.12. The perfectly plastic part of the model obey the Mohr-Coulomb yield crite-
rion. It is formulated as in equation 2.24 with altering orders of principal stresses to form a
total of six segments. The flow rule implemented is non-associated with a form similar to
the yield surface. It reads
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g =
1
2
(σ′1 − σ′3) +

1
2
(σ′1 + σ′3)sin(ψ) ≤ 0 (2.31)

and like the yield surface is formulated for six segments, with alternating order of principal
stresses [9]. If tension cut-off is used, this is simply modelled as a restriction on the principal
stresses to take any positive value in its default setting. It is though possible to define a
allowable tensile stress, σt.

f4 = σ′1 − σt ≤ 0 ∧ f5 = σ′2 − σt ≤ 0 ∧ f6 = σ′3 − σt ≤ 0 (2.32)

2.3 Solution Techniques

This section presents the solution techniques for geotechnical problems used in this thesis.
This is by no means an exhaustive list, but offers some insight to both the simplicity and
complexity that calls for a deliberate approach to the problem at hand. Besides the pro-
cedures explicitly stated in this section, the program "ABC - Analysis of Bearing Capacity
Version 1.0 Build 1" developed by Martin (2004) is used for benchmarking. In short, this uses
the method of stress characteristics in a finite difference scheme to solve classical bearing
capacity problems. For further details see [19].

2.3.1 Plane Strain and Axisymmetry

Plane strain is often assumed for geotechnical structures that are significantly larger in one
dimension, compared the two other. Tunnels, strip footings, retaining walls and breakwaters
are cases of structures which often exhibit such geometric characteristics. These problems
can be solved in a plane strain configuration, provided that not only the geometry, but also
the loading is continuous. Figure 2.16 illustrates an example in cartesian coordinates, where
the structure is much longer in the z-direction compared to the x- and y-direction.

y, v

z, w
x, u

1

y, v

x, u

Figure 2.16: Plane strain example.

The displacement out of plane relative to those in the x-y plane is close to zero, as adjacent
material constrains it. This leads to the assumption of w = 0. Furthermore the u and v
displacements are considered independent of the z-coordinate. This leads to the following
strains being set equal to zero.

εzz =
∂w
∂z

= 0 ∧ γyz =
∂w
∂y

+
∂v
∂z

= 0 ∧ γxz =
∂w
∂x

+
∂u
∂z

= 0 (2.33)
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This ultimately reduces the size of the problem considerably, resulting in the constitutive
relation being formulated as below.

∆σ′xx
∆σ′yy
∆σ′zz
∆τ′xy

 =


D′11 D′12 D′13 D′14
D′21 D′22 D′23 D′24
D′31 D′32 D′33 D′34
D′41 D′42 D′43 D′44




∆εxx

∆εyy

0
∆γxy

 (2.34)

It is common to temporarily exclude ∆σzz. This simplifies to a two-dimensional problem.
It should be noted that non-zero entries of the material matrix must be independent of the
out-of-plane stress.

Axisymmetry can be utilized for structures that possess rotational symmetry. Examples
of these include circular footing, circular piles and cylindrical triaxial tests. The latter is
of course not a structure as such, but still a good example. Much like in the plane strain
configuration the loading must be uniform or alternatively centrally placed. An example in
cylindrical coordinates is shown in figure 2.17.

r, u

θ, w

z, v

1 rad

z, v

r, u

Figure 2.17: Axisymmetric example.

Due to symmetry displacements in the θ-direction are zero and displacements in the r and
z directions independent of θ. This leads to the following zero strains.

γrθ =
1
r

∂u
∂θ

+
∂w
∂r
− w

r
= 0 ∧ γzθ =

∂w
∂z

+
1
r

∂v
∂θ

= 0 (2.35)

As exemplified in the above it is usual to use cylindrical coordinates for such problems. This
leads to the following reduced constitutive relation.

∆σ′r
∆σ′z
∆σ′θ
∆τ′rz

 =


D′11 D′12 D′13 D′14
D′21 D′22 D′23 D′24
D′31 D′32 D′33 D′34
D′41 D′42 D′43 D′44




∆εr

∆εz

∆εθ

∆γrz

 (2.36)
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2.3.2 Bearing Capacity Formulae

For the footings investigated, classical and well-renowned bearing capacity formula serve
as a indicative measure to assess the results. A lot of the formulae still in use worldwide
stem from Terzaghi’s (1943) work [3]. It is based on the assumption of superposition of three
contributions to the resistance of a infinitely long strip footing. The soil is a Mohr-Coulomb
soil with a cohesion, friction angle and specific weight. Furthermore, a perfectly rough
footing is assumed implying that the friction angle between the base and the soil coincides
with the friction angle of the soil itself. Terzaghi’s bearing capacity equation in the general
case is not exact, but conservative. In its basic form Terzaghi’s bearing capacity reads

R = Rγ + Rq + Rc =
1
2

γb2Nγ + qbNq + cbNc (2.37)

In danish geotechnical practice a modified version of the bearing capacity formula by Brinch-
Hansen (1970) is used

R′

A′
=

1
2

γ′b′Nγsγiγ + q′Nqsqiqdq + c′Ncscicdc (2.38)

The ultimate limit load is the sum of the three contributions related to the cohesion, sur-
charge and specific weight. The bearing capacity factors Nγ, Nq and Nc are solely based on
the friction angle of the soil for drained conditions. The expressions for the bearing capacity
factors assume the soil to be a perfectly plastic material obeying an associated flow rule with
the friction angle equal to the dilation angle. Nq and Nc have exact plasticity solutions based
on closed-form expressions by Prandtl (1921) and Reissner (1924) under the assumption of
an associated flow rule for the material [3].

Nq =
1 + sin(ϕ)

1− sin(ϕ)
eπtan(ϕ) ∧ Nc =

Nq − 1
tan(ϕ)

(2.39)

Nγ on the other hand has been subject to many suggestions and alterations throughout his-
tory. In the norms and literature of today there are still a number of different expressions,
some of which is listed below in table 2.4.

Table 2.4: Bearing capacity factor Nγ.

Source Nγ

Eurocode 7 [10] 2(Nq − 1)tan(ϕ)

Eurocode 7, DKNA [1] 1
4 ((Nq − 1)cos(ϕ))

3
2

DNV no. 30.4 [20] 1.5(Nq − 1)tan(ϕ)

Martin, 2005 [21] Numerical solution

The numerical discrepancy between them is illustrated in figure 2.18.
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Figure 2.18: Bearing capacity factor Nγ as function of friction angle.

To put this in perspective resulting bearing capacities from the two extrema is shown in
table 2.5. For this specific set of parameters there is an increase in bearing capacity of more
than 30% from the more conservative solution.

Table 2.5: Bearing capacities for A′ = 1 m2, c′ = 0 kN/m2, q′ = 0 kN/m2 and γ′ = 20 kN/m3.

Equation 2.38 ϕ = 30o ϕ = 35o ϕ = 40o

Eurocode 7 60 kN 136 kN 318 kN
DNV no. 30.4 45 kN 102 kN 239 kN

As mentioned in section 2.1.1 the cohesion is often set to zero for frictional soils in danish
geotechnical practice. For soils which fall somewhere in between perfectly cohesive and
frictional, this choice may come at a rather large expense or on the other hand possibly fatal
consequences. Table 2.6 shows a fictitious example of this.

Table 2.6: Influence of cohesion on bearing capacity for A′ = 1m2, q′ = 0kN/m2 and γ′ = 20kN/m3.

Equation 2.38 ϕ = 30o ϕ = 35o ϕ = 40o

c = 2 kN/m2 116 kN 213 kN 433 kN
c = 0 kN/m2 44 kN 102 kN 253 kN

This simple example reveals the hazards of using a spurious cohesion or the loss by not
using a cohesion which is actually accountable, depending on the viewpoint.

Specifically in the context of this study, circular footings are of great interest. Such structures
are usually approximated as an equivalent square, when using bearing capacity formulae.
Studies have shown that for square and circular footings of equivalent area, the square have
a larger bearing capacity [22]. This intuitively discredits the assumption for circular footings.
It can though still be justifiable if used with the shape factor, sγ, proposed by Brinch-Hansen
(1970). This should lead to conservative results in both cases, as will be discussed further in
chapter 5.

2.3.3 Non-linear Finite Element Method

Solving geotechnical boundary value problems with a traditional linear finite element method
is rarely sufficient. The method has though been adapted to cope with non-linearities of the
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constitutive models used for soils. Several procedures accommodate this need. Common for
them all is that either load or displacement boundary conditions are applied incrementally
and equilibrium is sought iteratively. Finite element analyses in this thesis are conducted
in PLAXIS. For the standard Mohr-Coulomb model implemented in the software a linear
stiffness iteration method is used. In user defined models it is possible to use either a linear
stiffness, full Newton-Raphson or modified Newton-Raphson iterative method. For the pur-
poses of this study the standard procedures in PLAXIS is utilized and user defined models
will be programmed coherently. An advantage of the linear stiffness iterative method is that
it operates with the elastic stiffness matrix for all steps in the calculation procedure. This
implies that the stiffness matrix only needs to be formed and decomposed at the first calcu-
lation step [23]. Linear stiffness iterative procedures are illustrated in figure 2.19. A disad-
vantage to this procedure is that it generally requires more iterations, than its counterparts,
to reach a solution point. This becomes obvious by comparing to the full Newton-Raphson
where a tanget stiffness matrix is formed at every iteration.

f j=1
in

f i=1
ex

f0ex

δvj=1 δvj=2

∆f j=2

vi=1

f j=2
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f

v
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a)

δvj=2

δvj=2

f j=2
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f j=1
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∆v

v0 vi=1

f

v

f i=1
ex

b)

Figure 2.19: Iterative process illustrated for a) Prescribed force b) Prescribed displacement.

The overall idea is to approximate the non-linear behaviour with piecewise linear segments
between solution points which are determined iteratively. The key steps for solving this is
explained for a load controlled incremental procedure in this section. From a specified load
increment a displacement increment is determined as

∆v = K−1∆ f (2.40)

From this displacement a strain increment is computed through the strain interpolation
matrix

∆ε = B∆v (2.41)

From this increment the constitutive stresses are calculated as in section 2.2 and the resisting
force in the system can be determined.

fin =
∫

V
BTσdV (2.42)
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The external force is the sum of the previous and current increments. A residual is deter-
mined as the difference between the external force and the resisting force.

∆ fres = fex − fin (2.43)

This residual force is then used to determine a displacement adjusting the one from the
present iteration

δv = K−1∆ fres (2.44)

which is added to the initial displacement increment. This procedure is repeated until the
residual force reaches a user specified margin of error. The full calculation process for load
controlled and displacement controlled analysis is outlined schematically in the following
flowcharts.
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Input

From elastic stiffness matrix K =
∫

BTDeBdV

First step i = 1
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Figure 2.20: Finite element calculation process based on the elastic stiffness matrix with load control [23]
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Figure 2.21: Finite element calculation process based on the elastic stiffness matrix with displacement control
[24]. u is a vector containing all zeros, except for ones at prescribed displacements.
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Chapter 3

The General Parametric Yield Surface
Format

This chapter provides a brief introduction to a general parametric yield surface format,
proposed by Lars Damkilde. The yield criteria is proposed in three versions of increasing
complexity and hereby also capabilities of representing material behaviour. The models are
not described in their entirety in this thesis, which rather focuses on some select key features
and how these deviate from the constitutive models most frequently used by practitioners
today. A more thorough mathematical description is presented in [25]. The general para-
metric yield surface is able to emulate a large variety of acknowledged yield criteria, but
for the purposes of this thesis the Mohr-Coulomb criterion will serve as a benchmark. The
variability is illustrated in figure 3.1.

σ1

σ3

σ2

Figure 3.1: Deviatoric variability of the general parametric yield surface format.

3.1 Fundamental Principles for Formulation

The yield surface is conveniently formulated from a coordinate system in which one axis
coincide with the hydrostatic axis and the two other axis lie in the π-plane.
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Figure 3.2: Rotation of coordinate system.

The transformation to this coordinate system from principal stresses is given by
σ∗1
σ∗2
σ∗3
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σ1

σ2

σ3

 (3.1)

By inspecting this it is clear to see that the hydrostatic stress can be found from σ∗1 and the
deviator stress from σ∗2 and σ∗3 as

p =
σ∗1√

3
∧ ρ =

√
(σ∗2 )

2 + (σ∗3 )
2 (3.2)

through simple geometric relations. In its simplest form the criteria is defined from a center
and radius based on strength parameters for the material to be modelled. This can be vi-
sualized as tracing a circle in the deviatoric plane, where the criteria holds true for the part
of the circle enclosed by the deviatoric region for which the chosen ordering of principal
stress applies. Like the Mohr-Coulomb yield criterion there is sixfold symmetry which can
be exploited to formulate the criterion for all arrangements of principal stresses.

σ∗1

σ3

c̄∗

r̄

σ2σ1

σ∗3
σ∗2

Figure 3.3: Principle sketch forming the deviatoric geometry of the yield surface. c∗ and r represent
ρc-normalized center and radius.

One of the absolute essential features of the novel yield surface, compared to the Mohr-
Coulomb criterion, is the ability to include effects stemming from variation of the interme-
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diate principle stress. This is done by introducing parameters α and β, which controls the
ρt/ρc-ratio and the side curvature respectively. This is illustrated in figure 3.4. Essentially the
parameters control where the center is placed and the magnitude of the radius. The specific
formulations relating α and β to the center and radius will not be reviewed in this thesis,
but are included in the source code for the PLAXIS implementation of the yield criteria.

σ3

σ1

ρt

General Parametric Yield Surface

Adjust with α Mohr-Coulomb

ρc

Adjust with β

Figure 3.4: Visual representation of the implications from adjusting α and β.

The simplest form of the general parametric yield surface result in a discontinuous devia-
toric trace, which can be an issue in numerical solutions. This is obviously not true if the
parameters are set so that the criteria emulates Drucker-Prager. The apex in the meridian
plane pose the same issue, regardless of the shape in the deviatoric plane. To avoid non-
unique gradients at the discontinuities, the yield criteria can be extended to include a corner
rounding in the deviatoric plane and apex rounding in the meridian plane.

This thesis only perform analysis using the general parametric yield surface with a linear
trace in the meridian plane. The compressive meridional eccentricity is defined as in the
traditional Mohr-Coulomb yield criterion. From this ρc can be expressed as a function of the
hydrostatic pressure

ρc = µ

(
p− σc

k− 1

)
∧ µ =

1− k√
2/3(k/2 + 1)

(3.3)

where σc and k are as in the Mohr-Coulomb criterion and µ is the slope of the yield criteria
in the compressive meridian plane. The resulting ρc is then used to scale the yield function
according to the relevant stress level. In this manner the well-known parameters for cohesion
and friction angle is used to formulate the meridional variation.

3.2 Overview of Versions

The three different versions of the proposed yield functions are all formulated in the same
format with some underlying differences. The straight line distance between the center and
the stress point is determined and the radius is subtracted. As such a negative value of the
yield function represent an elastic state, as per usual. Common for all formulations, only
the deviatoric components of the σ∗ are stated directly in the yield function.

σ∗
d =

{
σ∗2
σ∗3

}
(3.4)
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The σ∗1 component is indirectly represented in ρc which scales the function to the proper
hydrostatic stress level.

The 4 parameter General Parametric Yield Surface has linear variation on hydrostatic pres-
sure and a discontinuous deviatoric trace. The parameters are as introduced in the funda-
mental formulation of the yield criteria. Namely ϕ, c, α and β.

f (σ) = ‖σ∗
d − c∗1 ρc‖ − r1ρc (3.5)

σ1 σ2

Compression

Tension

σ3

a)

ρ

p
Tension

Compression

b)

Figure 3.5: a) Deviatoric trace, b) Meridional plane.

The 7 parameter General Parametric Yield Surface has linear variation on hydrostatic pres-
sure and a continuous deviatoric trace. The version introduces corner and apex roundings
to improve performance in numerical analysis. This is done by introducing parameters β2,
β3 and β4 controlling roundings at the two deviatoric corners and meridional apex respec-
tively. The yield function now operates with three regions per sixth of the full deviatoric
trace. The apex rounding is inherent in the determination of ρc.

fn(σ) = ‖σ∗
d − c∗nρc‖ − rnρc (3.6)

σ1 σ2

Compression

Tension

σ3

a)

p

Tension

Compression

ρ

b)

Figure 3.6: a) Deviatoric trace, b) Meridional plane.

The 10 parameter General Parametric Yield Surface with non-linear variation on hydro-
static pressure and continuous deviatoric trace. Although not used in analysis for this thesis,
this criteria is briefly presented to illustrate the capabilities of the format. The meridional
non-linearity can in principle be formulated from any appropriate function, which may al-
ter the number of parameters required. The version with 10 parameters is formed from the
Bolton criterion and can be explored further in [25].
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fn(σ) = ‖σ∗
d − c∗n(p)‖ − rn(p) (3.7)
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Figure 3.7: a) Deviatoric trace, b) Meridional plane.

3.3 Unconventional Soil Testing

To utilize the capabilities of the proposed General Parametric Yield Surface, it is necessary
to revise the soil tests to be conducted within a given project. The fact that a variation of the
intermediate principal stress does influence the behaviour of a soil volume, becomes very
apparent in true triaxial test results, as depicted in figure 3.8.
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Figure 3.8: Development of friction angle from triaxial compression approaching triaxal extension.

The Mohr-Coulomb yield criterion operates with a fixed ρt/ρc relation. The validity and pos-
sible correction of this can be evaluated by conducting triaxial extension test. Many studies
has shown, that ρt is underestimated, indicating that a larger elastic domain can be mod-
elled if extension tests are implemented as a fundamental test in soil mechanics. Thus, as
an alternative to conventinal compressive triaxial test, this thesis proposes true triaxial tests
and triaxial extension tests to find more accurate strength parameters.
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Extension Soil Testing It is not possible to extend soil by pulling, hence an extension test
can not be conducted reverse to the compression triaxial test. An extension triaxial test is
made with pressure on the sides of the specimen allowing axial displacements. The soil test
is loaded in the horizontal direction with the largest compressive principal stress as depicted
in figure 3.9. Opposed to the compressive triaxial test, the intermediate principal stress will
coincide with the largest compressive stress.

−σ1

σ1 > σ2 = σ3−σ2 = −σ3

Figure 3.9: Extension triaxial test.

True Triaxial Soil Testing The conventional triaxial test uses only the largest and smallest
stress to find strength parameters, which is a very conservative approach as the assump-
tion of −σ1 = −σ2 is the stress combination, that gives the absolute smallest triaxial friction
angle. In attempt to simulate more realistic strength parameters, the relation between the
friction angle and the intermediate principle stress is investigated by the true triaxial test,
which is described in this section. For a more thorough description of the true triaxial test
see [5]. It is important to mention that there are a number of different apparatus for these
test with slight differences. The overall principle is though the same.

The principle of the true triaxial test is that stresses can be controlled in three different
directions and so samples are typically are cubical or rectangular prisms. This allows for
exact control of the magnitude of the intermediate principle stress, in relation to the major
and minor principal stress. There are pressure heads on two opposing horizontal sides and
one at the top. The bottom plate is fixed. The minor principal stress is controlled by a
vacuum in the sample. The principle of the true triaxial test is depicted in figure 3.10.

−σ3

−σ1

−σ2

σ1 ≥ σ2 ≥ σ3

Figure 3.10: True triaxial test.

The stiff and smooth pressure heads are applied as in the conventional triaxial test. The
volumetric strains can be calculated by measuring the axial strain in all three directions in
the usual way and found from equation 3.8.

εV = ε1 + ε2 + ε3 (3.8)

By testing at different intermediate stress levels, it is possible to approximate a better yield
surface.
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Chapter 4

Modelling

This chapter goes through how the specific material models in present report are calibrated
and utilized in numerical analysis. Besides this, some general considerations for geotech-
nical problems solved in a elasto-plastic finite element framework are presented. Some
represent specific considerations related to determination of the ultimate bearing capacity
for footings. Others are more general for finite element analysis. As in all aspects of en-
gineering it is important to be aware of what output and accuracy you expect from your
models.

4.1 General Considerations

The initial stresses in a soil domain are generated through the K0 procedure in PLAXIS.
This is simply relating the vertical and horizontal stresses through the relation

σ
′
xx = σ

′
yy = σ

′
zzK0 = (γ′d + p)K0 (4.1)

Here, stated for a three dimensional case. K0 is the at rest soil pressure coefficient approx-
imated as in equation 4.2. γ is the specific weight, d is the depth and p represents any
potential surface pressure.

K0 = 1− sin(φ′) (4.2)

The procedure is suitable for the analysis performed in present thesis, but alternatives must
be used when dealing with e.g. sloping surfaces or soil layers with a geological history
affecting the lateral soil pressure.

The stiffness of the structure affects how the stresses are distributed [3] in the soil volume.
This is conveniently illustrated under the assumption of linear-elastic, isotropic and homo-
geneous soil, in figure 4.1. Two extrema are represented by a rigid structure and a flexible
structure. The former will theoretically produce infinitely large stresses at the edge of the
structure and a uniform settlement profile. The latter produces a uniform stress distribution
under the entire footing and a concave settlement profile, see figure 4.1.
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q

q

σm
settlement

Figure 4.1: a) Elastic footing. b) Rigid footing.

The analysis performed in chapter 5 are all conducted with a prescribed surface or line
displacement, simulating a rigid footing.

The soil-structure interface varies from rough to smooth, and the two extrema are de-
scribed in present section. In attempt to simulate the soil-structure interaction of the two
extrema in PLAXIS the aforementioned displacement is applied in a plane strain analysis
of a strip footing. The displacement of the structure is constrained horizontally to emulate
a completely rough interface and is released to create a completely smooth interface. The
corresponding failure modes a depicted in figure 4.2.

a) b)

Figure 4.2: a) Failure mode rough interface b) Failure mode smooth interface

As a result of the failure mechanisms, the smooth solution will result in a lower load at fail-
ure, as less soil, opposite the rough solution, move towards the outer edge and the surface,
when the strip footing is loaded.

In general the soil will not behave as neither fully smooth or rough, hence a specific interface
strength between 0 and 1 can be specified in PLAXIS by prescribing a specific strength
reduction factor, which gives a more realistic suggestion on the strength of the interface.
The reduction factor relates the friction angle of the soil volume and the friction angle in the
interface as

Rint =
tan(δ)
tan(ϕ)

(4.3)

Where δ is the interface friction angle. This is often troublesome to quantify and a complete
study in its own. When a user defined material model is utilized the interface must be
defined explicitly through a set of strength parameters for the interface, e.g. the friction
angle and cohesion.

The domain size in geotechnical finite element models have a sufficient extent to represent
the relevant behaviour of the soil. The stress field must be able to develop to an extent
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where variations are no longer of any practical influence [26]. Some guidelines for deciding
a proper domain size do exist, but it is troublesome to generalize such, as it is essentially
a problem specific matter. To facilitate better decision-making a minor investigation of the
influence of domain size is performed. The necessary depth of the domain depends on
what the designer wants out of an analysis. An accurate displacement response requires a
relatively deep domain, which intuitively makes sense as noticeable settlements will occur
to a considerable depth. This is demonstrated through a depth variation of the soil domain
for a strip footing in plane strain analysis.
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Figure 4.3: Displacements with depth variation.

There is no convergence as such, as minor settlements will accumulate, even at great depths.
The rate of the increase does though decrease and the credibility of the results could be en-
hanced by incorporating a stiffness increase with depth. The ultimate load bearing capacity
is nearly constant for all the depths represented.

Care must be taken so the analysis do not suffer boundary effects leading to e.g. unrealistic
failure modes. For the structures under investigation the depth of the soil domain needed
for the stress field, is by far sufficient for the failure mechanism. The horizontal extend of
the domain must though be carefully chosen based on the applied strength parameters and
yield criterion. This is illustrated in figure 4.4.

a) b)

Figure 4.4: a) Correct failure mode b) False failure mode

Choosing a very large domain compared to the structure will undoubtedly bypass all the
issues addressed. This will though be costly in computational time, without any substantial
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benefit towards the accuracy of the solution. The designer should aim at a compromise
which suits the problem at hand.

Meshing is, as in all finite element analysis, a key aspect in obtaining acceptable approxi-
mations of a geotechnical problem. The mesh must be sufficiently fine to obtain a solution of
the desired accuracy. On the other hand, calculation time is preferably kept at a minimum.
PLAXIS does not offer the most sophisticated options for mesh generation. The global ele-
ments are sized from a factor multiplied onto the diagonal of the soil domain. Any desired
local refinements are then generated for a selected area or volume by a factor multiplied
onto the global element size. These refinements range between 1/32 to 8 in PLAXIS 2D and
between 1/16 to 8 in PLAXIS 3D, where values above 1 obviously coarsens the mesh. This
procedure may cause a unwanted fineness of the global element in order to obtain a desired
local fineness, which ultimately affects the calculation time. This is illustrated through a
numerical example with of a strip footing in plane strain analysis.

Table 4.1: Convergence of mesh refinement. Global mesh value 0.2, except for the finest mesh.

Refinement 1/2 1/4 1/8 1/16 1/24 1/32 (1/43)

Elements 113 270 773 2516 5352 9015 15922
Nodes 963 2237 6307 20333 43105 72487 127865

Calc. time [s] 32 41 110 414 891 1742 3121
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Figure 4.5: a) Finite element model b) Convergence of bearing capacity

The solution does converge to an extend suitable for most analysis within the given frame-
work of the refinement. If more accuracy is required it is necessary to refine the mesh
globally to obtain the desired element size locally. This undoubtedly requires more ele-
ments, than if the local refinements could be performed more freely, as illustrated in figure
4.5.

4.2 User Defined Material Model in PLAXIS

In PLAXIS it is possible to create a user defined soil model. This model is programmed
in Fortran language and compiled as a dynamic link library, which is then added to the
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"UDSM" sub-folder of the PLAXIS program directory. This section is intended to provide a
brief overview for the generation of a user defined soil model subroutine for PLAXIS. For
a thorough description of the structure and options for subroutines see [PLAXIS MANUAL
MATERIAL MODELS]. Furthermore the specific choices made for the particular model pro-
grammed for this thesis are presented. The subroutine is written in fixed form fortran with
implicit double precision merely to stay consistent with models provided by PLAXIS. The
structure of the subroutine is:

Subroutine User_Mod (IDtask, iMod, IsUndr, iStep, iTer, Iel, Int, X, Y, Z,
Time0, dTime, Props, Sig0, Swp0, StVar0, dEps, D,
Bulk_W, Sig, Swp, StVar, ipl, nStat, NonSym, iStrsDep,
iTimeDep, iTang, iPrjDir, iPrjLen, iAbort)

Some of the parameters stated are provided by PLAXIS as input to the subroutine, while
others are intended as an output from the subroutine. An overview is presented in table 4.2.
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Table 4.2: Parameters in subroutine. Inputs are provided by PLAXIS and outputs are provided by the user. The
values listed are specific to the model programmed in present thesis.

Name Description I/O Type Value
IDtask Task called by PLAXIS I Integer 1:6
iMod Selection of model I Integer 1
IsUndr Drained or undrained I Integer 0:1
iStep Calculation step I Integer -
iter Iteration number I Integer -
Iel Element number I Integer -
Int Local stress point I Integer -
X, Y, Z Global coordinates for stress point I Real -
Time0 Time I Real -
dTime Time increment I Real -
Props Model parameters I Integer 1:10
Sig0 Stress and variables I Real -
Swp0 Excess pore pressure I Real -
StVar0 State variables I Real -
dEps Strain increment I Real -
iPrjDir Project directory I Characters -
iPrjLen Length of directory name I Integer -
D Material stiffness matrix O Real -
Bulk_W Bulk modulus of water O Real -
Sig Constitutive stress O Real -
Swp Excess pore pressure O Real -
StVar State variables O Real -
ipl Plasticity indicator O Integer 0:2
nStat Number of state variables O Integer 0
NonSym Non-symmetric D-matrix O Integer 0
iStrsDep Stress dependent D-matrix O Integer 0
iTimeDep Time dependent D-matrix O Integer 0
iTang Tangent D-matrix O Integer 0
iAbort Force calculation to stop O Integer 1

There are essentially six tasks that a user defined soil model programmed for PLAXIS must
be capable of solving, see table 4.3. These tasks are called from the subroutine via the integer
input from PLAXIS, named IDtask.
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Table 4.3: Tasks in user defined soil model in the sequence called by PLAXIS.

IDtask Intended task
4 Return the number of state variables
5 Return matrix attributes
1 Initialize state variables
3 Create effective material stiffness matrix
2 Calculate the constitutive stresses
6 Create elastic material stiffness matrix

As a linear stiffness iteration method is chosen, much like the standard PLAXIS models,
tasks 3 and 6 will coincide. More generally task 6 is used to determine a relative stiffness
parameter relating the actual stress state to that of a fully elastic body, given by equation
4.4. This is used as a control parameter, which approaches zero at failure, in determination
of the global error of the solution.

CSP =
∫ ∆ε∆σ

∆εD′∆ε
(4.4)

No state variables are used in the general parametric yield surface model written. This
means that task 4, 5, 1, 3 and 6 are only called in the beginning of each calculation phase, so
that each step basically have the same offset. Task 2 is called at every iteration. This is also
the only task, which for the model programmed in this thesis, must be treated meticulously,
as the other tasks are rather trivial. For the purposes of this thesis it is chosen to implement
the general parametric yield surface in its simplest form. Besides the principles outlined
in chapter 3 a simple tension cut off is introduced. In essence it functions much like the
apex rounding, merely without the smooth approximation. A parameter βt can be chosen
between 0 and 1 where the former allows no positive hydrostatic stress states and the latter
indicates no tension cut off.

p

ρ

papex

papexβt

Figure 4.6: Simple tension cut off procedure in user defined soil model.

4.3 Calibration of Material Models

As mentioned in section 2.2.1 the standard Mohr-Coulomb model in PLAXIS is composed
of a elastic law, a yield criterion and a flow rule. The same applies to the user defined model
programmed, which will be referred to as the General Parametric model. The difference lie
in the yield criteria and consequently also the flow rule. The calibration of elastic parameters
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are identical for both models. The parameters to be calibrated for the Mohr-Coulomb model
is as stated in table 2.3. Data from compressive triaxial tests performed on baskarp sand no.
15 is used to illustrate calibration of elastic parameters and the more conventional fitting
methods for the Mohr-Coulomb yield criteria. Data from true triaxial tests on G-12 sand is
used to calibrate both the Mohr-Coulomb model and the General Parametric model, to be
used in comparative analyses.

The secant modulus is found at 50% of the deviatoric stress at failure as illustrated in
figure 4.7. From this point the secant modulus is found from Hooke’s law by E50 = ρ50/ε50.

1

E50

ρ

ρ50

ρfailure

ε50
ε3

Figure 4.7: Secant modulus

Depth variation of stiffness can be modelled to increase the accuracy of the load-displacement
response. In PLAXIS this can be done by specifying young’s modulus at a reference level
and linearly increasing this with depth.

E′(y) = E′re f + (yre f − y)E′inc f or y < yre f

E′(y) = E′re f f or y > yre f
(4.5)

In practice this linear approximation can be fitted to the elastic moduli obtained at various
confining pressures from triaxial tests. The depth equivalent to the confining pressure is
obtained from the at rest earth pressure

y = − σ
′
1

γ′K0
where K0 = 1− sin(ϕ′) (4.6)

Test results indicate that the stiffness varies non-linear and so the linearisation inevitably
under- or overestimates the stiffness through the soil volume. The specific moduli used for
analysis in this thesis are extrapolated so that the reference level is at the footing level.
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Figure 4.8: Depth dependent stiffness for a) loose b) medium c) dense.

The dilatancy angle is determined from a compressive triaxial test as the maximum rate
of volumetric strain relative to the axial strain. The angle ψ is determined as in equation 2.8.
This is done under the assumption that the elastic strains are negligible compared to the
plastic strains. The results from baskarp sand no. 15 is shown for loose, medium and dense
deposits in figure 4.9.
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Figure 4.9: Dilatancy angle illustrated for a) loose b) medium c) dense.

There is a clear tendency for the dilatancy angle to decrease with confining pressure. For
the analysis to be performed in this thesis the mean dilatancy angle will be utilized. These
all lie well above the often used simple relation from equation 2.7, as shown in table 4.5.

Table 4.4: Comparison of dilatancy angles for baskarp sand no. 15.

Loose Medium Dense
ψ = ϕ′ − 30 [o] 1.13 5.32 9.02

ψ [o] 3.30 10.70 14.99

Observations from true triaxial tests do not show the tendency of decreasing dilatancy angle
with confining pressure, or more fittingly in this case hydrostatic pressure. A least squares
fit nearly coincide with the mean angle of all tests, see figure 4.10. Although not substan-
tial to disprove the broadly accepted decrease in dilatancy angle with increasing confining
pressure, it supports the use of a mean angle for the purposes of this study.
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Figure 4.10: Dilatancy angle from true triaxial test for a) loose b) medium c) dense.

As for the results obtained from the more conventional triaxial test, the data evidently sub-
stantiate the conservatism of equation 2.7. This holds true for both the compressive triaxial
equivalent results and the entire dataset, which also contains values approaching an exten-
sive triaxial state.

Table 4.5: Comparison of dilatancy angles for G-12 sand.

Loose Medium Dense
ψ = ϕ′ − 30 [o] 1.50 6.22 10.67

ψ [o] 3.39 13.03 19.36

4.3.1 The Mohr-Coulomb Model

As shown in section 2.2.1 a failure line can be fitted as the best possible tangent to Mohr’s
circles in a σ-τ diagram. This is likely to become incomprehensible as the amount of tests
to be fitted increases. On the other hand more tests and hence more data will undoubtedly
increase the credibility of the model. To generate the Mohr-Coulomb criterion from larger
datasets it is common practice to present stresses at failure in points rather than Mohr’s
circles. The principle is illustrated in figure 4.11
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σ1 − σ3

ξ

b

Datapoints

Figure 4.11: Conventional fitting procedure of the Mohr-Coulomb yield surface.

The confining pressure is plotted against the deviatoric stress. The procedure is performed
on baskarp sand no. 15, as seen in figure 4.12.
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Figure 4.12: Conventional fitting procedure of Mohr-Coulomb for a) loose b) medium c) dense.

By linear least squares regression a line is fitted to the data points. The friction angle and
cohesion can then be determined through the relations in equation 4.7 [3] and the resulting
parameters are shown in table 5.3.

ϕ′ = sin−1
(

1
1 + 2tan(ξ)

)
∧ c′ = btan(ξ)tan(ϕ′) (4.7)

Table 4.6: Strength parameters for baskarp sand no. 15

Loose Medium Dense
ϕ′ [o] 31.13 35.32 39.02
c′ [kPa] 5.27 10.00 14.49

The fittingness of the procedure is illustrated with residual plots in figure 4.13 and corre-
sponding statistics in table 4.7.
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Figure 4.13: Residual plots.
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Table 4.7: Evaluation of calibrations. All values in [kPa].

Baskarp sand no. 15 Loose Medium Dense

f (σ) = 1
N

N
∑

i=1
f (σi) 0.0001 0.0017 0.0011

σ =

√
1
N

N
∑

i=1
( f (σi)− f (σ))2 11.04 30.03 37.84

max(| f (σi)|) 21.46 58.30 68.69

The deviations show a clear weakness of the linearisation involved in the fitting. The error
becomes more renounced by increase in both the density index and confining pressure. At
a first glance the numeric deviations from the yield criterion seem vast. It must be noted
though that some of the tests involved are performed at relatively high stress levels. By sim-
ulating a triaxial test with the Mohr-Coulomb model in PLAXIS the discrepancy between
the measured results and the model become very apparent, as seen in figure 4.16.

Generally the deviations are reasonable, in ultimate limit state context, but at the lower
stress levels the deviator stress is significantly higher for the model. This most likely occurs
as the cohesion is determined from a linear fit to all data points, which will overestimate the
cohesion at lower stress levels. From compressive triaxial test simulations performed with
and without cohesion for all other parameters equal the ratio between the deviator stress
increasing rather exponentially towards lower stress levels as illustrated in figure 4.15.

0 200 400 600
0

0.5

1

1.5

2

2.5

3

Figure 4.15: Significance of cohesion depending on stress level.

Implications on the stress-strain response when shifting to modified strength parameters are
also elucidated through numerical soil tests seen in figure 4.16.
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Figure 4.14: Simulated soil test of the Mohr-Coulomb model. a) Stress-strain b) Axial strain-Volumetric strain.
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Figure 4.16: Simulated soil test of the Mohr-Coulomb model. a) Axial strain vs. volumetric strain b ) Axial
strain vs. deviator stress.

4.3.2 The General Parametric Model

Under the presumption that true triaxial test results are available the calibration procedure
outlined in table 4.8 is recommended. It is clearly important to be aware of the test results
a yield surface must be fitted to. Caution must be exerted in calibrating e.g. a Mohr-
Coulomb setting of the general parametric yield surface from true triaxial test results. Even
a slight change from a fully compressive triaxial state can discredit the use of a conventional
fitting procedure and produce a yield surface on the unsafe side. The proposed procedure
intuitively promotes a clear distinction between the stress states in a data set.

Table 4.8: Calibration procedure for the general parametric yield surface.

Iteration Parameters Data
1 ϕ′, c′ σ1 = σ2 > σ3

2 α σ1 > σ2 ≈ σ3

3 β σ1 > σ2 > σ3

The procedure in table 4.8 is an iterative procedure with offset in a conventional fitting
of Mohr-Coulomb to determine the friction angle and cohesion. The α parameter is then
determined as a least squares fit with the two preceding parameters fixed. This is then
repeated for β with the three preceding parameters fixed. Table 4.9 and figure 4.17 illustrates
the procedure for loose G-12 sand.

Table 4.9: Calibration procedure for the general parametric yield surface for loose G-12 sand

Iteration ϕ′ c′ α β

1 31.50 0.76 0 10−4

2 31.50 0.76 0.26 10−4

3 31.50 0.76 0.26 0.08
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Figure 4.17: Steps in calibration procedure, loose G-12 sand. a) Iteration 1 b) Iteration 2 c) Iteration 3

This calibration is performed on both the loose, medium and dense sediments. The resulting
parameters are shown in table 4.10 and the residuals are shown in figure 4.18 .

Table 4.10: Boending Parameters

ID ϕ′ c′ α β

Loose 31.50 0.76 0.26 0.08
Medium 36.22 0.04 0.28 0.48
Dense 40.67 2.84 0.25 0.81
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Figure 4.18: Residual plots of yield function for a) loose b) medium c) dense.

The fittingness of the parameters obtained from this calibration procedure is evaluated in
table 4.11. Generally the higher stress levels tend to deviate more from the yield criterion
numerically. Relative to the hydrostatic stress the deviations are though continuously in the
same order of magnitude.
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Table 4.11: Evaluation of calibrations. All values in [kPa].

G-12 sand, iterative Loose Medium Dense

f (σ) = 1
N

N
∑

i=1
f (σi) 0.429 0.168 -0.096

σ =

√
1
N

N
∑

i=1
( f (σi)− f (σ))2 1.953 3.908 4.333

max(| f (σi)|) 5.661 9.770 8.010

The calibration procedure incidentally also promotes the use of the general parametric yield
surface, even if true triaxial tests are not available. If only conventional compressive triaxial
test results are available, the calibration is simply the first iteration. Likewise if only fully
compressive/extensive triaxial test were conducted the first and second iteration can be ap-
plied.

Due to the novelty of the yield surface format, there is limited resources for benchmarking
the proposed procedure. To assess the parameters, a comparison is made to those obtained
in [25]. This calibration was performed on the exact same set of data. The parameters and
fittingness can be reviewed in tables 4.12 and 4.13.

Table 4.12: Parameters for general parametric yield surface from [25]

ID ϕ′ c′ α β

Loose 30.50 2.94 0.19 0.13
Medium 36.90 0.91 0.12 0.62

Dense 41.40 3.92 0.15 0.88

Table 4.13: Benchmark, deviation from table 4.11 shown in brackets. All values in [kPa].

G-12 sand, [25] Loose Medium Dense

f (σ) = 1
N

N
∑

i=1
f (σi) 0.350 (-0.073) -11.036 (-11.204) -24.821 (-24.725)

σ =

√
1
N

N
∑

i=1
( f (σi)− f (σ))2 1.906 (-0.047) 5.775 (+1.867) 10.116 (+5.783)

max(| f (σi)|) 6.734 (+1.073) 22.151 (+12.381) 42.815 (+34.805)

There is a clear discrepancy between the two calibrations. By fitting the parameters to the
appropriate stress states there is a significant increase in the accuracy of the yield surface.
Furthermore the apparent cohesion in the sand is not as significant. This is likely due to the
exclusion of stress states that are not fully compressive when calibrating the cohesion in the
iterative procedure.
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To check the functionality of the soil model implemented in PLAXIS a series of triaxial tests
are simulated and compared with values from the standard Mohr-Coulomb model. The
deviatoric stress at failure for an extensive, compressive and shear stress states respectively,
can be seen in tables 5.8.

Table 4.14: Deviatoric stress for dense G-12 sand at failure from test simulations of the PLAXIS Mohr-Coulomb
model and the General Parametric model in a Mohr-Coulomb setting. All values in [kPa].

Confining pressure 1 10 100 1000
Compressive triaxial test
Mohr-Coulomb 13.879 42.898 333.084 3234.992
General Parametric 13.879 42.898 333.084 3234.950
Extensive triaxial test
Mohr-Coulomb 3.286 10.155 78.850 765.796
General Parametric 3.289 10.155 78.850 765.796
Direct shear test
Mohr-Coulomb 4.629 14.274 110.439 1073.763
General Parametric 4.608 14.238 110.437 1072.751

The models generally coincide, but there is an unresolved discrepancy in the dilative re-
sponse in the extension test. This is illustrated for dense G-12 sand in figure 4.19. It is most
likely an issue with the stress return in the tensile region of the user defined mode, although
the deviatoric stresses are identical.
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Figure 4.19: Axial strain vs. deviatoric stress and axial strain vs. volumetric strain at 100 kPa confining
pressure.
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Chapter 5

Analyses

In the following chapter different analyses of shallow foundations are performed and com-
mented. Two- and three dimensional finite element models are generated in PLAXIS. The
plane strain and axisymmetric assumptions are investigated with the Mohr-Coulomb model.
The final section in the chapter presents analyses with the general parametric model imple-
mented in PLAXIS. All analysis are performed on centrally loaded foundations at surface
level with a fully saturated soil and a water head at the footing base level, as seen in figure
5.1.

B/2 B/2

WT

Figure 5.1: Centrally loaded foundation.

To facilitate a relatively large number of numerical analyses to be conducted in this thesis an
alternative to operating PLAXIS through the graphical user interface is desired. Although
PLAXIS is in essence reduced to a manageable amount of functionalities, compared to other
finite element software such as e.g. Abaqus, setting up comparable models is still a time
consuming task prone to mistakes and deviations. To avert this it is opted to write all
analyses in scripts. In turn this increases efficiency and eases reproducibility. Another
advantage is that analysis can be setup without necessarily having a PLAXIS license available
on ones local machine and then run when convenient. Standalone scripts are written in
Python, providing a recognisable and widely used coding language. The scripts are then
passed through a remote scripting server, which has a special Python wrapper. In this
manner the python scripts run as PLAXIS commands, ensuring exact reproduction for every
simulation. It is also possible to write and run PLAXIS commands directly, but this is in
the authors perspective a less elegant and intuitive "language". The primary tasks to be
specified in the code are outlined in table 5.1. This is similar to a typical workflow in the
graphical user interface, although not including any flow conditions. An example of a full
script is included in appendix A.
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Table 5.1: Primary tasks in PLAXIS.

Command in Python equivalent Task
s_i.new Start project
g_i.SoilContour Define extend of soil domain
g_i.setproperties Specify model/element type and units
g_i.soillayer Define depth of soil layer
g_i.soilmat Specify soil parameters
g_i.gotostructures Define structures and loads/displacements
g_i.gotomesh Define mesh
g_o.addcurvepoint Preselection of nodes for data collection
g_i.gotostages Define calculations phases
g_i.calculate Calculate phases
g_i.view See calculation results

To verify the plane strain and axisymmetric models analyzed, throughout the chapter, "ABC
- Analysis of Bearing Capacity Version 1.0 Build 1" is used indicatively. This is a well-
renowned solver to determine the ultimate bearing capacity of infinitely long strip footings
and circular footings. It is based on the Mohr-Coulomb yield criteria and an associated flow
rule. This is in line with majority of the finite elements models constructed in PLAXIS for
this study. The three dimensional finite element code in PLAXIS is also deemed verified
if the comparisons are acceptable. The program simply have 10 well-known user specified
options, listed in table 5.2.

Table 5.2: User specified parameters/settings in "ABC".

Parameter/setting Description
c0 [kPa] Cohesion at footing level
k [kPa/m] Increase of cohesion with depth
ϕ [o] Friction angle
γ [kN/m3] Effective specific weight of soil
Strip Plane strain analysis
Circular Axisymmetric analysis
Smooth Completely smooth soil-structure interface
Rough Completely rough soil-structure interface
B [m] Width of strip footing or diameter of circular footing
q [kPa] Surcharge at footing level

5.1 The Assumption of a Infinitely Long Structure

When analysing a bearing capacity problem in plane strain the assumption is essentially an
average solution which applies to the entire length of a structure. The structure is in princi-
ple considered infinitely long. This is a very effective and quite simple solution strategy. In
danish geotechnical practice such problems are often solved with an increased friction angle,
compared to that obtained from laboratory testing. It is of interest to investigate whether
there are any potential pitfalls or untapped bearing capacity in relation to the full three di-
mensional structure. To initiate this study a series of three dimensional shallow foundations
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of altering width and length ratios are analysed. The material modelled is baskarp sand no.
15 for three different density indices. A principle sketch of the model is shown in figure 5.2
and the parameters are shown in table 5.3.

Table 5.3: Parameters for finite element model.

ID Ere f Einc ν c′ ϕ′ ψ σt γ einit

[kPa] [kPa] [-] [kPa] [o] [o] [kPa] [kN/m3] [-]
Loose 3752 413 0.30 4.64 28.01 28.01 0.00 18.86 0.85
Medium 9107 595 0.30 8.98 32.47 32.47 0.00 19.64 0.70
Dense 17186 653 0.30 12.99 36.00 36.00 0.00 20.16 0.61

B
L

Refinement

B = 1/2[m]
L = 1, 2, 4, 8, 16, 32[m]

Figure 5.2: Principle sketch of finite element model.

The model exploits double symmetry, reducing the problem to a quarter of the full domain.
To make the results comparable it is desired to keep the element size constant throughout all
analyses. This is ensured by using a converged mesh as a benchmark and then generating
the same element size for the altering domain size. This is controlled by the mesh value,
denoted MV, as

MV =
MVre f

√
l2
re f + w2

re f + d2
re f

√
l2 + w2 + d2

(5.1)

where l, w and d refer to the length, width and depth of the soil domain respectively. The
averaged bearing capacity per unit area is plotted against the length of the foundation in
figure 5.3.
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Figure 5.3: Ultimate bearing capacity for a 1m wide strip footing with varying length for a) Loose b) Medium
c) Dense.

These results imply that the average bearing capacity converges around a width to length
ratio of 1:64. The averaged bearing capacity reduced with length. This is rather counter-
intuitive in comparison to the the shape factors for the load bearing formulae presented in
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section 2.3.2. To take any possible size effects into account, similar analyses are performed
for different widths of the foundation. The discrepancy between bearing capacity for differ-
ent widths analysed with a width-length ratio of 1:32 and 1:64 respectively is seen in figure
5.4.
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Figure 5.4: Bearing capacity for a) 0.25m wide strip footing b) 5m wide strip footing.

It is evident that the width of the structure does influence how the bearing capacity develops
with increasing length. Furthermore it is observed that the 1:64 ratio, for which the aver-
age bearing capacity is considered converged, result in a close to proportional relationship
between width and bearing capacity. This ratio will be utilized for the three dimensional
models to be compared with the plane strain analyses.

Plane friction angle

Using an increased friction angle in plane strain solution is widely accepted as good practice.
The magnitude of the increase has been subject to change during the past decades, but
generally limited to a maximum of 10%. Current practice prescribes that the increase is
dependent on the density index of the soil. To get a first estimate of the magnitude of
the discrepancy between plane strain and three dimensional solutions a number of generic
models are analysed. Two plane strain solutions are obtained, one with an increased friction
angle and one without. The increase is taken as 10% for all friction angles for the purposes
of this investigation. As a side note this was, to the authors knowledge, historically, best
practice for several years among practitioners. The parameters used for the models are
stated in table 5.4 and the geometry is consistent with the previous study.

Table 5.4: Parameters for initial analyses.

E ν c′ ϕ′ & ψ σt γ einit

[kPa] [-] [kPa] [o] [kPa] [kN/m3] [-]
Regular 15000 0.3 5 25, 30, 35, 40 0 20 0.6
Plane 15000 0.3 5 27.5, 33, 38.5, 44 0 20 0.6

The results of the generic examples are also used to verify the solution with "ABC" as seen
in figure 5.5.
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Figure 5.5: Friction angle against the ultimate bearing capacity for strip footings a) Regular friction angle b)
Plane friction angle c) Deviation 2D-3D d) Deviation 2Dplane-3D e) Deviation 2D-ABC f) Deviation

2Dplane-ABC

As expected there is a clear difference between plane strain and three dimensional solutions.
Furthermore the results show that the correction does reduce the discrepancy significantly.
It also promotes the dependency on the density index, which in general is proportional to
the friction angle.

To elucidate the implications of increasing the friction even further, a more comprehensive
study is undertaken with the soil parameters from table 5.3. A series of plane strain analyses
with altering dimensions and density indices are conducted. This is compared to identical
cases analysed in three dimensional models. The difference between the plane strain analy-
ses without any correction on the friction angle and the three dimensional analyses is shown
in figure 5.6.
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Figure 5.6: Ultimate bearing capacity for strip footings of varying size in PLAXIS 3D and PLAXIS 2D for a)
loose b) medium c) dense.

Expectedly there is a significant difference in bearing capacity for all density indices and
foundation sizes. The same problem is now analysed with corrected friction angles as in
equation 2.6, which dependent on the density index and limited to a maximum increase of
10%. The difference in the angles is shown in table 5.5.

Table 5.5: Plane friction angles.

Loose Medium Dense
ϕ′ 28.01 32.47 36.00
ϕ′pl 28.06 (+0.2%) 35.17 (+8.3%) 39.60 (+10%)

The increase on the loose sand is not of much practical interest. Analysis of a 1m strip footing
reveals an increase in bearing capacity of merely 1.5% and no further analysis are executed
for this sediment. It should be noted though that there is a significant deviation between
the plane strain and three dimensional for this degree of compaction, so an increase would
seemingly be justifiable. Bearing capacities for the medium and dense sands are presented
in figure 5.7.
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Figure 5.7: Ultimate bearing capacity for strip footings of varying size in PLAXIS 3D and PLAXIS 2D for a)
medium b) dense.

The results for the dense sediments are quite contradictory to the observations in figure 5.6.
This is likely owing to inconsistencies in the numerical models. For the medium sediments
the bearing capacity from plane strain analysis with plane friction angle serves as a good
approximation for the smaller foundation sizes, but deviates for the large which is consistent
with the tendency in figure 5.6. Observing the general tendencies for the analyses conducted
a correction of the friction angle dependent on both the density index and the size of the
structure, could prove a feasible alternative to three dimensional analysis.

Comparison of solution strategies

The ultimate bearing capacity for all sizes investigated for the strip footing with the three
density indices are depicted in figure 5.8 for varying widths. The analytical results are cal-
culated using a plane friction angle and the numerical simulations are run with a triaxial
friction angle.
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Figure 5.8: Ultimate bearing capacity obtained from analytical results using Terzaghi and a plane friction
angle, and numerical results for 3D models for a) loose b) medium c) dense.

The gain from running time consuming three dimensional analysis is evident and in today’s
practice the analytical approach is likely reduced to a first approximation at very early de-
sign stages. For all analyses performed it an estimate on the safe side, but caution should
be exerted. For the medium sediment the values closely coincide for the small footings. As
such there is no distinct trend promoting any further increases for the analytical approxi-
mate, even though it generally underestimates the bearing capacity.

5.2 Validity of Analyses Exploiting Rotational Symmetry

For circular footings the conventional method using bearing capacity formulae is to calculate
a square with the same footprint area. In general square footings have a larger bearing ca-
pacity than circular footings as it might be on the unsafe side to do this. Furthermore, many
times the plane friction angle is used even though analysing a circular footing is obviously
not a plane problem, but a three-dimensional problem. This does though seem to gener-
ate overly conservative results, even if using non-associated parameters with a plane strain
friction angle and hereby producing the most favourable conditions within the framework
of the bearing capacity formulae considered best practice. This analysis seeks to investigate
when these assumptions might become critical and which pitfalls should be avoided.

The models used in present analysis is obviously conducted on a case simulating a circular
footing. This is modelled with varying radius, and solely one quarter of the circular foun-
dation is modelled in three-dimensional models. The analysis is made deformation based.
The investigation is performed with associated geotechnical parameters using the modified
formulae on Baskarp sand and on Mohr-Coulomb soil. It is made for all the three types
of relative indices: loose, medium and dense sand and the parameters for this analysis are
presented in table 5.6.
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Table 5.6: Parameters for finite element model.

ID Ere f Einc ν c′ ϕ′ ψ σt γ einit

[kPa] [kPa] [-] [kPa] [o] [o] [kPa] [kN/m3] [-]
Loose 3752 413 0.30 4.64 28.01 28.01 0.00 18.86 0.85
Medium 9107 595 0.30 8.98 32.47 32.47 0.00 19.64 0.70
Dense 17186 653 0.30 12.99 36.00 36.00 0.00 20.16 0.61

Generic examples on a circular footing with increasing friction angle

To initiate investigations, as to whether an increase in friction angle for axisymmetric solu-
tions could be justifiable, a set of generic models are formed. The object is firstly to create an
overview of the discrepancy between axisymmetric and three dimensional solutions. Sec-
ondly any proportionality with increase in friction angle is sought elucidated.

A circular footing of 1m in diameter in both axisymmetry and 3D is investigated to see the
influence of increasing the friction angle and keeping all other parameters constant. The
investigated friction angle span from 25-40o with a interval of 5o. Parameters used in this
analyses are presented in table 5.7 and the models are set up as previously mentioned. To
streamline the models and to have the same errors the models are made with the exact same
elements, waterlevel, meshvalues and coarseness factors etc. If not specified the values in
PLAXIS is set as the default settings or the parameter is not relevant to the results.

Table 5.7: Parameters for initial analyses.

E ν c′ ϕ′ & ψ σt γ einit

[kPa] [-] [kPa] [o] [kPa] [kN/m3] [-]
15000 0.3 5 25, 30, 35, 40 0 20 0.6

Results of the generic example for the 1m diameter circular footing is depicted in figure 5.9
showing the increase of the ultimate bearing capacity when increasing the friction angle.
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Figure 5.9: Friction angle against the ultimate bearing capacity for a circular footing showing a) Bearing
capcities b) Deviation between axisymmetry and three-dimensional c) Axisymmetry against ABC results.

Results of the generic examples shows a fairly good relation between analysing a circular
footing using axisymmetry and three-dimensional models. As expected the three-dimensional
results are much higher than the axisymmetric.

Size effects on circular footings

In this analysis the ultimate bearing capacity for varying diameters is investigated. This is
investigated in both PLAXIS 2D and 3D for the different density indices. The ultimate bear-
ing capacities for circular footings at different sizes along with the deviations are presented
in figure 5.10.
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Figure 5.10: Size effects circualr footing. a) Loose b) Medium c) Dense

A larger load at failure is expected for the 3D models cf. the generic example, and also
this investigation prepare the ground for correcting a parameter, which could be the friction
angle, as for plane strain, in axisymmetry to attain a higher ultimate bearing capacity in
axisymmetric calculations. This investigation also shows, that the ultimate bearing capacity
is not proportional, but more exponential with the friction angle. The results show that the
2D are conservative and that a modification will be a good idea.

Comparison of solution strategies

It is very much used in danish geotechnical practice to convert a circular footing into an
equivalent square footing of same area and use Terzaghi’s bearing capacity formulae to give
a first guess on the necessary size of the footing. The use of this is compared to numer-
ical results conducted from PLAXIS 2D and 3D respectively. Numerically the calculation
methods when analysing a circular footing in axisymmetry and three-dimensions are very
different. This investigation is thus made on a 3D model and an axisymmetric model in the
conventional program PLAXIS to invetigate the difference. Also gains from conducting a
three-dimensional model versus solely an axisymmetric model are investigated.

However, also in the circular footing the cohesion is used in the analytical calculations to
have the best frame of reference to the numerical results as these also utilizes cohesion. The
deviation for all sizes investigated for the three density indices are depicted in figure 5.11.
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Figure 5.11: Ultimate bearing capacity obtained from analytical results using Terzaghi and numerical results
for 3D models for a) loose b) medium c) dense.

5.3 Gain from Approaching a Accurate Yield Surface

The implications of the new yield surface is firstly illustrated at a stress point level. The
increase in deviatoric stresses for different stress states is shown in 5.8

Table 5.8: Deviatoric stress for dense G-12 sand at failure from test simulations of the PLAXIS Mohr-Coulomb
model and the General Parametric model with appropriate α and β parameters.

Confining pressure 1 10 100 1000
Compressive triaxial test
Mohr-Coulomb 13.879 42.898 333.084 3234.992
General Parametric 13.879 42.898 333.084 3234.950
Extensive triaxial test
Mohr-Coulomb 3.286 10.155 78.850 765.796
General Parametric 3.593 11.104 86.220 837.379
Direct shear test
Mohr-Coulomb 4.629 14.274 110.439 1073.763
General Parametric 5.285 16.336 126.840 1231.916

To verify that the General Parametric model implemented in PLAXIS provides credible re-
sults, an example from [25] is used as benchmark. It should be noted that the result is prone
to errors due to differences between the finite element codes, iterative methods and user
defined models. The load-displacement response can be seen in figure 5.12
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Figure 5.12: Load-displacement response of 0.4 x 0.4 m pad foundation.
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There is a 1.67% deviation on the ultimate bearing capacity, which is deemed acceptable
owing to the sources of error stated before. The displacement response is much stiffer in
the benchmark solution and the user defined soil model undoubtedly needs more rigorous
verification on some key features, such as the stress return.

A three dimensional 1m x 64m strip footing is analysed to illustrate the potential gain of
increasing the accuracy of the yield criteria in non-linear finite element analysis. All the
material parameters used in the analysis in present section are summarized in table 5.10.

Table 5.9: Parameters for finite element model.

ID E ν c′ ϕ′ ψ γ einit α β βt

[kPa] [-] [kPa] [o] [o] [kN/m3] [-] [-] [-] [-]
Loose 5000 0.30 0.666 28.29 28.29 19.37 0.75 0.26 0.08 0
Medium 12000 0.30 0.036 33.59 33.59 20.12 0.62 0.28 0.48 0
Dense 20000 0.30 2.592 38.11 38.11 20.58 0.55 0.25 0.81 0

The difference between the ultimate bearing capacities is shown in table 5.10.

Table 5.10: Ultimate bearing capacities. All values in [kPa]

Loose Medium Dense
Mohr-Coulomb 261.1 325.7 850.1
General Parametric, β = 0 263.2 (+0.8%) 337.9 (+3.8%) 930.8 (+9.5%)
General Parametric 263.5 (+0.9%) 352.3 (+8.2%) 1001.5 (+17.8%)

There is certainly a large potential gain in bearing for especially dense sediments, by imple-
menting more accurate material models. To properly quantify the potential increase further
study is needed.
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Chapter 6

Conclusion

The purpose of this study is to elucidate potential pitfalls or gains in elasto-plastic finite el-
ement solutions of geotechnical problems. The two main focuses are the coherence between
two- and three dimensionality, and the accuracy of the constitutive modelling involved in
formulating problems for shallow foundations in the ultimate limit state. In spite of the
computer power available today, large three dimensional finite element models are still time-
consuming to solve, even for problems as seemingly simplistic as the ones analysed in this
thesis. Thus facilitating better two-dimensional approximation is of interest, especially for
practitioners working on tight schedules. This leads to the premise, as to whether best prac-
tice in geotechnical industry is really suitable for transitioning into even more numerical
analysis. Firstly the correction of the friction angle, when treating problems in plane strain
is investigated. This leads to the question as to whether something similar could be justified
for axisymmetric analysis.

The plane strain analyses performed on altering sizes of strip foundations are compared to
equivalent three dimensional analyses. The results clearly validate the use of some correc-
tion to increase the bearing capacity of the plane strain case. The study is by no means
exhaustive, but quite unambiguously reveal a trend for the difference between two- and
three dimensional analyses to be size dependent. Besides this it discredits the possible con-
servatism of very low increases at low density indices. This being said the bearing capacity
is not linearly dependent on the friction angle, but the expression for correcting the friction
angle is. A non-linear expression dependent on the density index and size of the structure
could prove a good solution, but a formulation was not reached in this thesis.

The axisymmetric analyses were also performed on varying sized structures and with dif-
ferent density indices. Much like in the plane strain case, there were trends of significant
discrepancies between the analysis types. Unfortunately the tendencies where not clear-cut,
due inconsistencies in the numerical models. The authors do believe there is a potential in
investigating the relation further, but cannot currently quantify anything specific.

The general parametric yield surface shows great promises of being a substitute or addition
to the Mohr-Coulomb criterion in commercial geotechnical software for a number of reasons.
The more obvious is that it can emulate Mohr-Coulomb, so that nothing would be lost in
this regard. Furthermore the simplicity in its formulation and clear physical interpretation of
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the parameters will most likely appeal to many practitioners. The versatility of the criteria
will likely mean that it can replace a number of criteria. In the authors perspective this
could also promote more familiarity and physical understanding when using numerous
yield criteria in ones day to day routines. There is undoubtedly also a justifiable increase
in strength. This could possibly be exploited even further in combination with advances in
structures manipulating the stresses to more prudent stress states or levels. Although not
rigorously checked for its performance in numerical analysis for the purposes of this study,
the General Parametric model was at a first glance deemed on par with the standard models
implemented in PLAXIS.
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Appendix A

Python Editor Example for PLAXIS 3D

It is very feasible to use Python Editor when analysing geotechnical structures in PLAXIS as
the risk of mistakes is much smaller than if using the graphical user interface. The Python
Editor is used along with the student version and the analyses are based on python cod-
ing implemented in PLAXIS. The python code is programmed in Python Editor for PLAXIS
2D and 3D. Several structures are made in PLAXIS and force-deformation analyses are run.
Structures simulating circular and strip footings are analysed during the project. The python
scripts are made for convenience when editing a structure or parameter in the numerical
model. In this chapter the procedure of setting up a python code for a circular footing in 3D
is described. If not specified, the default settings of PLAXIS is used.

Connecting to PLAXIS application and starting a new project to get the Python Editor to
run properly. If you have a licence from Aalborg University use CodeMeter Control Center
to activate the license. Open PLAXIS 2D Input or PLAXIS 3D Input depending on, what
you are about to model. Go to "Expert" in the top menu and then go to "Configure remote
scripting server". Here, an available server port should be chosen. Most often port 10000
and 10001 is chosen, which are the default ports in PLAXIS. The ports are imported by the
"localhostport" command. Note that it begins with node zero (10000). In the "Configure
remote scripting server" window a user specific code is presented as well. The path of the
scripting libraries are defined and afterwards imported. Now, it is possible to connect to
PLAXIS by the commands used in table A.1 to define the server and start a new project.



Table A.1: Connecting to PLAXIS application and starting a new project.

Connecting to PLAXIS
localhostport = 10000
localhostport_output = 10001

pswrd=’12345789’

plaxis_path=r’C\:\Program Files\Plaxis\PLAXIS 3D\python\Lib\site-packages’

import imp
found_module = imp.find\_module(’plxscripting’, [plaxis\_path])
plxscripting=imp.load\_module(’plxscripting’, ∗found\_module)
from plxscripting.easy import ∗
import math

s_i,g_i=new_server(’localhost’,localhostport,password=pswrd)
s_o,g_o=new_server(’localhost’,localhostport_output,password=pswrd)

s_i.new()

General inputs and project properties are now implemented in the python code by using
the commands in table A.2. The radius of the circular footing and the geometry of the model
domain is defined. The model domain is defined in the xy-plane using "SoilContour". The
general project properties are defined by the type of model and elements. The model is
either a full (3D) or axisymmetric/plane strain (2D) model. The element type used for 3D
models is 10-noded and 15-noded elements for 2D models. The units used in the code are
defined as well.

Table A.2: Defining general inputs and project properties.

General inputs and project properties
b=50
X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4 = 0, 0, 0, 0, 5∗b, 0, 5∗b, 5∗b,
0, 5∗b, 0, 0
Xmin=0
Ymin=0
Xmax=5∗b
Ymax=5∗b
g_i.SoilContour.initializerectangular (Xmin,Ymin,Xmax,Ymax)
g_i.setproperties("ModelType","Full","ElementType","10-Noded","UnitForce","kN",

"UnitLength","m","UnitTime","s")

Afterwards, the borehole is created and the depth of the layer and the water head are defined
as well.



Table A.3: Creating borehole.

Borehole
D_bottom = 5∗b
H_ref = 0

borehole = g_i.borehole(0,0)
g_i.soillayer(D_bottom)
borehole.setproperties("Head",H_ref)

Defining soil material by connecting a material model to the soil material by the "soilmodel"
command. PLAXIS recommend three material models for gravel and sandy soils. Mohr-
Coulomb is one of the recommended models, and the two alternavitives are based on Mohr-
Coulomb, hence solely this is used from PLAXIS in present project. Mohr-Coulomb is the
second material model in PLAXIS, hence 2 is used as the soil model. The two alternative
models are better at calculating deformations and liquefied soils, hence they are not rele-
vant for present project. For further explanation of the models see (citePLAXISmanual-2D-
3-Material-models). Additionally, a user-defined material model is implemented in PLAXIS,
as described in section 3. This is implemented in the Python Editor by using soil model 16,
which stands for user-defined. The parameters of the soil material are defined as well, see
table A.4.

Table A.4: Creating the soil material.

Creting soil material
soilmodel = 2
gammaunsat = 16.36
gammasat = 20.16
nu = 0.3
Emodu = 17186
Einc = 653
yref = 0
Gmodu = Emodu/(2*(1+nu))
Ginc = Einc/(2*(1+nu))
c = 12.99
phi = 36
psi = 36
k_x = 0.001
k_y = 0.001

Importing the defined soil material to the layer by using the commands presented in ta-
ble A.5.



Table A.5: Defining the soil material.

Defining soil material
material = g \_i.soilmat()
material.setproperties("MaterialName", "Sand" ,
"Colour", 964844 ,
"SoilModel" ,soilmodel,
"gammaUnsat", gammaunsat,
"gammaSat", gammasat,
"Gref", Gmodu,
"Ginc", Ginc,
"nu", nu,
"cref", c,
"phi", phi,
"psi", psi)
material.setproperties("perm_primary_horizontal_axis", k_x ,
"perm_vertical_axis", k_y )
material.setproperties("FlowDataModel" , 200 ,
"HydraulicModel" , 1,
"DataSetFlow", 2,
"UsdaSoilType", 0,
"DefaultValuesFlow", True)

g_i.Soils[0].Material = material

A prescribed displacement is used to find the load and displacement at failure, hence the
prescribed displacement must be chosen high enough to find these. A polyline is created
and a surface within the circumference is defined. A surface displacement is put on the
surface with a prescribed displacement in the z direction and no freedom to move in the x
and y direction as these are fixed. The commands are presented in table A.6.

Table A.6: Defining a prescribed displacement.

Prescribed displacement
g_i.polycurve((0,0,0),(1,0,0),(0,1,0),"line",0,b/2,"arc",90,90,b/2,"line",90,b/2)
g_i.surface(g_i.Polycurve_1)

g_i.surfdispl(g_i.Surface_1)

g_i.SurfaceDisplacement_1.Displacement_x="Fixed"
g_i.SurfaceDisplacement_1.Displacement_y="Fixed"
g_i.SurfaceDisplacement_1.Displacement_z="Prescribed"
g_i.SurfaceDisplacement_1.uz=-0.5

Mesh refinement is applied to the model by a mesh value and coarseness factors. A new
polyline almost at the edge of the surface is created. A coarseness factor is added to the line



with regard to mesh refinement. The smaller the coarseness factor, the finer the mesh. A
mesh value is used for the rest of the soil layer in the soil volume. If more lines were added
these could have another coarseness factor. The commands are presented in table A.7.

Table A.7: Defining mesh refinement.

Mesh refinement
g_i.polycurve((b/2+0.01,0,0),(1,0,0),(0,1,0),"arc",90,90,b/2+0.01)

CF=0.03125
MeshValue=0.10

g_i.gotomesh()
g_i.Polycurve_2_1.setproperties("CoarsenessFactor", CF)
g_i.mesh(MeshValue)

Preselection of a node for calculation is chosen for the calculations by use of the "add-
curvepoint" command presented in table A.8. Remember to add the node in the correct soil
volume and layer, if multiple layers are defined.

Table A.8: Preselection of node for calculation

Preselection of node
X_o=b/2
Y_o=0
Z_o=0

g_i.selectmeshpoints()
g_o.addcurvepoint(node, g_o.Soil_1_1, (X_o, Y_o, Z_o))
g_o.update()

Staged construction is defined by different phases in attempt to calculate the ultimate
bearing capacity, see table A.9. Firstly, an initial phase is automatically generated. After-
wards, the first phase is generated. This is where the displacement is activated and estab-
lished. The deformation type is very important. Here, it is a plastic deformation type. Some
of the things, that are easily changed if the calculation is not run properly is the maximum
steps and the tolerated error. For both parameters the accuracy of these applies. They should
not be to high as the calculation time may be to long considering what is gained. On the
other hand it should not be too low as the error might be too high. Thus, it needs to be high
enough to run a proper analysis.



Table A.9: Staged construction.

Staged construction
g_i.gotostages()

g_i.phase(g_i.InitialPhase)

g_i.setcurrentphase(g_i.Phase_1)
g_i.Phase_1.Identification="Installation"
g_i.Phase_1.DeformCalcType="Plastic"
g_i.Phase_1.Deform.UseDefaultIterationParams=False
g_i.Phase_1.Deform.MaxSteps=10000
g_i.Phase_1.Deform.ToleratedError=0.01
g_i.Phase_1.Deform.MaxIterations=60
g_i.Phase_1.Deform.MaxUnloadingSteps=15
g_i.SurfaceDisplacement_1.activate(g_i.Phase_1)

Calculate and view results by using the commands in table A.10. PLAXIS 3D Output is
autoatically opened when using the "view"command. The phases are now calculated and
the results from the selected node can be extracted from the output window.

Table A.10: Calculate and view results.

Calculate and view results
g_i.calculate()
g_i.view(g_i.Phase_1)

Extract results from PLAXIS Output e.g. a force-displacement curve. To extract this one
must open PLAXIS Output and go to "Curve Manager" in the top menu. In the curve
manager the node is chosen as one of the xx and the project as the other. Afterwards the
force in the specific direction and the displacement in the same direction is chosen.
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