
Aaalborg University – Computer Science (IT)

Student: Ivan Iliev

Supervisor: Bin Yang

Summary of Master Thesis

This Master Thesis belongs to the specialization branch of Database Technologies (spDT).

Moreover, it focuses on the research field of Stochastic Taxi Demands prediction. In details,

this thesis proposes a multitask probabilistic machine learning model which can approximate

distributions of demands between source regions and destination regions. Furthermore, the

proposed model takes as an input a sequence of origin-destination matrices (OD-matrix) and

it outputs distributions of approximated demand for each of the OD pairs in the OD-matrix.

The proposed model can approximate these distributions with the help of Mixture Density

Networks (MDN). MDNs are artificial neural networks that can approximate conditional

probability densities. In this project’s case, MDNs are used to approximate taxi demands, and

these demands are represented via Gaussian Mixture Models (GMM). Additionally, the

proposed model relies on Long Short-Term Memory Networks (LSTMs) which are a state-of-

the-art neural network that can learn long-term dependencies between the sequential inputs.

Finally, as already mentioned, it is a multitask model, meaning, there is a task which

approximates the demand for each of the OD-pairs of the OD-matrix, and all of these tasks

are combined via a shared layer and can learn from each other so the overall accuracy of the

model is improved.

This 10th semester Master Thesis is an extension of the work done during the 9th semester.

In the 9th semester it was discovered that MDNs are sensitive type of neural networks and to

train them properly, a dropout regularization technique needs to be used, also, they seem to

work very well with big batch sizes and a lot of training epochs. For the Master Thesis it was

decided to try to build a model which is a multitask model and it will include multiple MDNs

as output layers, each of these MDN layers is approximating demand for a particular OD-pair.

Interestingly, what was discovered during the experiment when the multitask model was built

is that training an MDN can lead to a NaN loss. Especially, in the case when an MDN layer is

directly connected with a ReLU activation layer. It turned out, there are papers which propose

techniques for solving this NaN problem, these techniques were not used and implemented

in the proposed model. Instead, LSTM was directly connected to the MDN layer(s), and the

NaN loss issue never appeared. Eventually, it was discovered that a multitask model with

multiple MDNs as output layers can be build and trained successfully. Interestingly, in the

ablation study it was discovered that the multitask MDN model performs worse in terms of

accuracy compared to a multitask single value prediction model. The exact reason for this is

still not know, even though, it was examined that identical models, one of which outputs

single value of demand, another with an MDN as an output layer and approximating

distribution of demands, have the same RMSE and MAE when evaluated.

Predicting Stochastic Demand using a Multi-Task Recurrent Mixture Density
Network

Ivan Iliev
Aalborg University
Aalborg, Denmark

iiliev18@student.aau.dk

Abstract
Recently, on-demand ride-sourcing mobile applications
have increased their popularity. Being able to accurately
predict taxi-demands can reduce the waiting times for
the passengers, additionally, help the service providers
with the organization of their taxi fleet. This paper pro-
poses a moderate machine learning model, which is able
to predict demands between sources and destinations
for a small neighbourhood in Manhattan, New York.
The components that have been used to build the proba-
bilistic machine learning model are Long Short-Term
Memory Neural Networks (LSTM), Mixture Density
Networks (MDN) and Multi-Task Learning.

Introduction
Ride-haling services provided by Uber and DiDi have be-
come a common and suitable way of transportation for the
citizens of the big metropolises. These companies manage to
provide services to their customers with the help of mobile
applications. As a result, the orgin and the destination of the
customer’s order are known in advance (i.e. before the taxi
has arrived to pick the customer).

The problems that these companies are facing are to re-
duce the waiting times for their customers, also, to reduce
the number of the empty taxi-rides. As a consequence, by
solving the above mentioned problems the ride-sourcing ser-
vice providers will be able to increase their profits and cus-
tomers’ satisfaction, additionally, reduce the traffic conges-
tion and the carbon emissions (i.e. benefiting the climate).

Unquestionably, there is a lot of incentive to have a fore-
casting model which can accurately predict future taxi de-
mands. A lot of research has been done in this area of
designing intelligent transportation systems. In the begin-
ning, researchers were building predictive models [10] based
on GPS trajectory data. However, a proper model cannot
be built solely upon trajectory data, as the trajectory data
cannot reveal the exact mobility patterns of the passen-
gers [16]. In detail, in the GPS trajectory data it is hard to
make a distinction between an actual customer order and
an empty taxi-ride. Lately, the researchers have been given
spatial-temporal data which contains taxi requests and or-
ders. Interestingly, after doing some data pre-processing a

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

big metropolis such as New York or Beijing can be parti-
tioned into many non-overlapping regions. Then all of the
taxi orders can be grouped by a source and/or destination
region(s). Papers such as [17] managed to achieve great re-
sults in predicting the number of taxi requests that can arise
from the different regions of a city. Nevertheless, being able
to predict only demand from an origin region is not enough.
Instead, a taxi company can better optimize their fleet if the
demand between an origin region and a destination region
can be predicted.

Figure 1: Ride sharing example

To demonstrate, the icons in green in fig. 1 are predicted
by some machine learning model future customers. The or-
ange triangles are their desired destinations (customers 1 and
3 have the same desired destination) and the taxi icon is the
taxi that has to satisfy the requests of the customers. Each of
the customers in the fig. 1 is to travel to a different region
than their source region. There are a few ways that the taxi
driver can approach these tasks (i.e a task meaning to pick-
up a customer from their source region and drop-off him off
at the desired destination region), depending on the informa-
tion that the taxi driver has.

1. In the first case, let’s imagine that the desired destinations
of the customers are unknown for the taxi driver. For in-
stance, a model which can only predict demand from a

source region is used. Logically, since the destinations
(the orange triangles) are not known, what a taxi driver
can do is to follow a greedy approach and always pick
the customer who can be reached the fastest. Initially, the
customer that the taxi can reach the fastest in fig. 1 is
customer 1. Following, the sequence of picking-up and
dropping-off the customers for the taxi driver will be: [1,
3, 4, 2]. As it can be seen in fig. 1 if the taxi driver follows
the greedy approach, there will be an empty-ride between
the different orders. In detail, as the taxi driver delivers
customer 1 to the desired region, the taxi driver has to
go to the upper regions to pick customer 3, following, as
customer 3 is delivered, the taxi has to go for customer 4,
finally, it will be customer 2’s turn. It is obvious, that there
will be an empty ride between the different customer or-
ders and it is because of the wrong approach of the taxi
driver, which is related to the fact that the destinations of
the customers are unknown. Therefore, such models that
predict demands only from origins and discard the desti-
nations can hardly be used.

2. In the second case, a machine learning model which can
predict demand between origins and destinations is used.
Moreover, the destinations of the passengers are known
and the taxi driver is aware of them. Therefore, as it can be
seen in fig. 1 there are 3 orders which can be done one af-
ter another (i.e. in the order of [2, 4, 3]) and the taxi driver
will not be doing any empty-rides between them. Interest-
ingly, these are origin-destination pairs that are linked. In
detail, the taxi driver will start with customer 2, then, as
customer 2 is delivered, customer 4 can be picked without
having to do an empty-ride to another region, eventually,
there will be only one empty-ride in total and will be the
one to pick customer 1. As it can be seen it is vital to know
the destination regions of the customers. In the first case,
there are 3 empty-rides for the taxi driver, in this case it is
only 1 empty-ride.

3. In the third case, just as in the second case, the demands
between sources and destinations are known. The differ-
ence is in this case the concept of ride-sharing is imple-
mented. Meaning, the taxi driver can fulfill all of the cus-
tomers’ orders without having to do even a single empty-
ride. As it can be seen in fig. 1, customers 1 and 3 have the
same desired destination. Therefore, if they are willing to
share a taxi, when the taxi driver picks up customer 3, the
taxi may go to the region of customer 1 to pick him up,
eventually, both of them will be delivered to the desired
destination region. This final case presents the most opti-
mal way that these orders can be fulfilled. According to
[2], 80% of the rides in Manhattan can be shared by two
people. The only downside of it is it requires a detour for
one of the customers.

As it is already shown in this paper (i.e. with the examples
above) and mentioned in others [16] and [9], only knowing
the demand that can arise from a particular source region of a
city is not enough. Demand between origin and destinations
needs to be known. When the destinations of the customers
are discarded (i.e. as in the first case example), the mobil-
ity patterns of the passengers cannot be revealed, and that

makes it hard for the taxi companies to optimize their fleet.
Recently, papers such as [16] and [9] propose models

which can predict demands between origins and destina-
tions. They present the problem as OD-matrix (Origin-
Destination matrix) prediction or Origin-Destination de-
mand prediction. This paper, also focuses on the problem of
OD-demand prediction. In comparison, with the other mod-
els which can only predict a single value of demand between
an origin and a destination, the proposed model in this pa-
per uses a MDN (Mixture Density Network) [3] and can ap-
proximate a distribution of demands between an origin and a
destination. The motivation for using MDN is it has proven
to be sufficient for creating probabilistic predictive models
for various kinds of problems, such as speech synthesis [18],
wind production [7], price volatility prediction [13] and oth-
ers.

MDNs have the ability to approximate distributions and
mixture models of any kind. In this project’s case, when
the demands data is fitted into a distribution, then, there is
a great chance this distribution will be a multi-modal one.
For instance, between an origin and a destination there can
exist a two or three very different demand outcomes which
have an equally high probability of happening. This is the
kind of information which the MDN will be able to pre-
serve. In comparison, a single value prediction model will
average this multi-peak information, hence, it will be lost.
Interestingly, when a model can approximate distributions of
demand, then, that model can be used to design taxi-fleet op-
timization algorithms. Later in this introduction, simple sta-
tistical analysis have been done and will show multi-modal
distributions and other kind of distributions exist in the data.

In the example in fig. 1 for simplicity reasons, the demand
in each area was represented only of a single customer. In re-
ality, the demands are varying, and in the central areas of a
city during peak hours there can be even up to 80 persons
who are willing to take a taxi ride between two particular
locations. Most of the times, these varying demands are rep-
resented with multi-modal distributions, which are distribu-
tions with multiple peaks. Therefore, for the proposed in this
paper model, it was decided that the demand distributions it
will approximate will be mixture model distributions of type
GMM (Gaussian Mixture Model) [12] with more than one
Gaussian components. The motivations for choosing exactly
GMM and not some other kind of mixture model are the fol-
lowing: firstly, there are many papers that have proven using
MDN to approximate GMMs is optimal and produces accu-
rate results [13, 7, 18]. Secondly, the distributions that can
be observed in the historical data are of many types (Multi-
modal, Poisson, Normal, Exponential and others).

To demonstrate, let S = {v1, v2, v3, ..., vn} be a sample
series of hourly taxi demands between a particular origin
and a particular destination in Manhattan, New York. (The
series is sampled from the 2018 NYC Yellow taxis data set).
Then, a simple statistical analysis can be done on the series
S with the help of the following PDF (Probability Density
Function) called HPDF (abbreviation for Historical PDF):

HPDF (vobserved) = P (vm|vm−1 = vobserved) (1)

Figure 2: Historical taxi demands PDF when HPDF (3)

Fig. 2 represents a historical taxi demands PDF when
HPDF (3), the x-axis represents the different taxi de-
mand outcomes and the y-axis represents the probability of
each outcome in percentages. To clarify, what the function
HPDF does is showing taxi demands for the next hour
based on the previous hour, where the previous hour is equal
to particular value (in the case of fig. 2 that particular value
is 3). Meaning, fig. 2 shows what kind of taxi demands can
occur given that in the previous hour a demand of 3 taxi or-
ders has been observed. Interestingly, fig. 2 looks a lot like
a Poisson distribution. Next, it is examined what will be the
historical taxi demands PDF when HPDF (30).

Figure 3: Historical taxi demands PDF when HPDF (30)

Fig. 3 represents the historical taxi demands when in the
previous hour a demand of 30 taxi orders has been observed.
As it can be seen, the distribution in fig. 3 is very different
from the distribution in fig. 2. In contrast, the distribution in
fig. 3 looks similar to a Binomial distribution or to a GMM
with 2 components. Interestingly, there is an equal chance
of 8% that the demand will be of 13 or 22 people. These
are the very different outcomes that have an equal chance of
happening and this is the kind of information that should not
be neglected. Also, the motivation for using MDN and not a
single value prediction model which will average all of the

outcomes and use that as a prediction. The more the data is
being explored, the more different kinds of distributions can
be found. Eventually, after this analysis have been done and
for simplicity reasons - GMM was selected as the kind of
distribution to represent the demand between an origin and
a destination.

The data set which was used to train the proposed ma-
chine leaning model is the 2018 NYC Yellow-taxi data set
(using only the data for the Manhattan borough). In the data
set - Manhattan has been split into 60 non-overlapping re-
gions, which leads to a possible 60 × 60 = 3600 origin-
destination pairs for which demand can be predicted. Nev-
ertheless, it was decided that a simple predictive model will
be built which will focus only on small subset of the regions.
One of the reasons for the decision, is due to the time limi-
tations of the project. The other reason is that there aren’t
many papers which have tried to build a Multitask-MDN
machine learning model or any machine learning model
which can approximate multiple distributions at the same
time (especially in the field of designing intelligent trans-
portation systems). Additionally, according to [9], in Bei-
jing there are city management rules which bound the taxi
drivers to a small number of regions. Moreover, if the taxi
drivers are to receive an order which is out of their bounds,
they have to reject it. Therefore, this model can easily be
used by the taxi companies which operate in metropolises
where driving restriction policies of this kind are in place.

The proposed in this paper model is a Multitask LSTM-
MDN model. Multitask [5] meaning that there is a separate
task approximating the demands for each of the sources and
the destinations. Then, all of these tasks are trained together
in a single machine learning model. LSTM [8] standing for
Long Short-Term Memory network and is a type of RNN
(Recurrent Neural Network) which is good at capturing the
sequential dependencies between the inputs (i.e. the inputs
coming from the different time steps). MDN [3] standing
for Mixture Density Network, which was already mentioned
and is a type of neural network which can conditionally ap-
proximate mixture models (in this paper’s case GMMs).

Preliminaries
In this section, notations are defined to present in mathemat-
ical terms the problem that is solved. Additionally, a brief
introduction and definitions have been provided for the dif-
ferent machine learning components that were used to build
the model.

Regions: L = {l1, l2, .., ln} is the set of non-overlapping
regions. For example, l1 could be the Financial District in
Manhattan, New York.

Time intervals: T = {t1, t2, .., tm} is the set of evenly
partitioned time intervals. For example, t1 corresponds to
the time span between [2018/01/01 00:00] and [2018/01/01
01:00].

Taxi ride: o is a triple (o.s, o.d, o.t) where o.s and o.d
are the source and the destination regions of the customer
order, and {o.s, o.d} ⊆ L. The last argument of the triple
o.t represents the time interval in which the customer order
belongs to and o.t ∈ T .

Demand: the number of customers’ orders taken between
a source region s and a destination region d for a given time
interval t. Mathematically expressed as:
yts,d = |{ o : o.t ∈ Tt ∧ o.s ∈ Ls ∧ o.d ∈ Ld}|
where | · | denotes the cardinality of the set and t, s, d are

particular indexes of the corresponding sets for time inter-
vals (i.e. t is index in T) and for locations (i.e. s and d are
indexes in L).

OD-matrix: In each time interval t for any source region
s and any destination region d, the total travel demand is
denoted as rs,d, then, all these demands are put in a matrix
Mt ∈ NL×L (since any region can be reached from any
region). Moreover, an OD-matrix is a matrix with the de-
mands for all of the source and destination region pairs for
a given time interval. For example, in fig. 4, on the left im-
age it can be seen how the southern part of Manhattan has
been partitioned into non-overlapping regions. On the right
image in fig. 4, the formed OD-matrix of these regions is
presented. Note, an OD-matrix represents all the demands
between sources and destinations, and it is associated with a
particular time interval.

Figure 4: Origin-Destination matrix example

Demand prediction: Is to approximate conditional prob-
ability densities of demands for all of the OD-pairs for
hour t + 1, given a sequence of observed OD matrices
{M1,M2, ..,Mt} until hour t.

Gaussian Mixture Model
A Mixture model is a probabilistic distribution which is
composed of multiple distributions (referred to as compo-
nents) and corresponding weights Φ which are per compo-
nent. Therefore, a Gaussian Mixture model is a distribution
which is formed from the weighted combination of more
than one Gaussian distributions [12]. A Gaussian distribu-
tion by itself is a continuous distribution (i.e. a distribution
with infinite number of outcomes) and it is defined with a
mean µ and a variance σ2. In fig. 5, the blue, the orange and
the green curves represent Gaussian distributions with dif-
ferent means and variances. The red dashed line represents a
Gaussian Mixture Model which is composed from the three
Gaussian distributions and the corresponding weights are
equally distributed.

Getting a probability from a Gaussian Mixture model
with K number of components is defined in eq. 3. Since a
Gaussian Mixture model is a linear combination of multiple
Gaussian distributions (i.e. each component gets its impact),

Figure 5: Gaussian Mixture Model example

then, there is a constraint that the coefficient weights Φ must
sum to 1. In mathematical terms:

K∑
i=1

φi = 1. (2)

Following, is eq. 3 which defines a GMM density.

P (x) =

K∑
i=1

φiN
(
x|µi, σ2

i

)
(3)

Where N is a Gaussian Density Function and it is ex-
panded as the following equation:

N
(
x|µi, σ2

i

)
=

1√
2πσ2

i

exp

(
− (x− µi)2

2σ2
i

)
(4)

Where exp is an exponential function and it is defined as
the following:

exp(x) = ex (5)

Mixture Density Network
Mixture Density Network is proposed by C.M. Bishop [3]
and is a type of Artificial Neural Network which can approx-
imate conditional probability density functions (i.e. includ-
ing all the different kinds of mixture models). In this project
and as mentioned earlier, it is used to approximate GMMs
of demands between origin regions and destination regions.

The MDN layer is a layer which is placed as an output
layer of a machine learning model. Unlike the single value
prediction output layers, which in most of the cases use
MSE (Mean Squared Error) to propagate error, the MDN
uses the NLL (Negative Log Likelihood) error function.

Machine learning data is split into input features X and
output labels Y . In fig. 6 a simple MDN architecture is pre-
sented. The model in the figure takes X as an input and it

approximates Y via a 2 component GMM (the yellow cir-
cles), in mathematical terms: P (Y |X).

When X is passed to the Neural Network in fig. 6, then,
the Neural Network (the box in grey) outputs a vector Z
(the circles in red). Afterwards, vector Z is transformed into
a GMM with the help of softmax, linear and exponential
activation functions. Note, that |Z| = (c + 2) × k, where c
is the number of predicted features and k is the number of
GMM components.

In order for the neural network to set the correct values
of the Z vector, a NLL of Y is taken and the NLL cost is
propagated back to the corresponding Z neurons with cor-
responding derivative functions. To read more about how
back-propagation works in a MDN, it can be found in C.M.
Bishop’s paper [3].

Figure 6: Mixture Density Network

There is a motivation for choosing the softmax, linear and
exponential activation functions. There are two constraints
that need to be met when producing GMMs. Firstly, as men-
tioned in the GMM section, the mixing coefficients Φ need
to sum to 1 (a constraint described in eq. 2). C.M. Bishop
proposes this to be solved with the help of the softmax acti-
vation function [3] and it is defined as:

φi =
exp(zφi)∑k
j=1 exp(z

φ
j)

(6)

Where exp is the same as in eq. 5 and zφi corresponds
to a particular mixing coefficient neuron of vector Z. For
instance, in fig. 6 the mixing coefficient φ1 is mapped from
zφ1 which is the mixing coefficient neuron of vector Z for the
first GMM component (in the figure it is the red z1).

The second constraint which is needed in order to pro-
duce a GMM is that the variances σ2 (in fig. 6 and in the
following equations denoted just as σ) need to be positive.

In order to achieve this, C.M. Bishop [3] proposes the use of
exponential activation function:

σi = exp(zσi) (7)

Where exp function is the same as in eq. 5 and zσi corre-
sponds to a particular variance neuron of vector Z.

Finally, since the two constraints for producing GMMs
have been met, then, the only missing part to transform vec-
tor Z into a GMM is the means µ of the components. Since,
the means can take negative or positive scalar values, then,
their values can be fetched directly from vector Z:

µi = zµi (8)

Where zµi corresponds to a particular mean neuron of vec-
tor Z.

The error function which is used to propagate the error
when training is a standard NLL error function and is de-
fined as:

NLL = −
∑
q

ln(

K∑
i=1

φi(x
q)×N(yq|µi(xq), σi(xq))) (9)

Where q is a training sample composed of x and y, ln is
a natural logarithmic function, and N is a Gaussian density
function and it is the same as in eq. 4.

Multitask learning
Multitask learning is a machine learning technique proposed
by R.Caruana [5] and suggests that different prediction tasks
can be trained together to improve the overall accuracy. In
fig. 7 it can be seen, there are two separate models which
approximate GMMs of demands for particular OD-pairs (i.e.
the pairs are 158-234 and 113-234). In contrast, in fig. 8 the
tasks of approximating GMMs are combined via a shared
layer (the neurons in yellow). Furthermore, because of the
shared layer, information can be passed between the differ-
ent tasks and what is learned from one task can help the
others.

Figure 7: Separate task Learning

Figure 8: Multitask Learning

Dropout
Dropout [14] is a simple regularization technique which pre-
vents a neural network from over-fitting. Since, it has been
proposed, it has gained quite a lot of popularity and has been
implemented in most of the machine learning frameworks.
Briefly, when a machine learning model is learning, in many
cases for predictions the model tends to rely too much on
particular weights and neurons, which eventually leads to
over-fitting. What dropout does to remove these dependen-
cies on the particular neurons and weights is to randomly
”drop them out” (meaning to ignore them or zero them out).
According to [11], ”if there is a hidden layer h, then, the acti-
vations in hwhen training will be zeroed out in the following
way: h = h◦m, where ◦ is element-wise multiplication, and
m is a binary mask vector” and |h| = |m|. ”Each value in
the m vector is drawn independently from a Bernoulli(p)”
where p is the chance of keeping a connection (opposite of
dropping it out) and it is treated as a hyper-parameter in the
context of a machine learning model. During testing or vali-
dation, all of the activations remain, but then h is scaled like:
h = p × h. Note, in the different machine learning frame-
works dropout has been implemented in different ways, yet
they are equivalent.

Long Short-Term Memory
LSTM (Long Short-Term Memory Networks) [8] presented
in fig. 9 is a state-of-the-art RNN (Recurrent Neural Net-
work) which does not suffer from the vanishing/exploding
gradient problem. RNN is a type of neural network which
works with sequential data, and it is widely used in the field
of NLP (Natural Language Processing).

Unlike the simple RNNs which transfer only hidden state
(Short-term memory) between the sequential inputs, the
LSTMs transfer cell-state as well (Long-term memory). In-
terestingly, LSTMs have gates which control the inflow of
information, moreover, these gates can learn what data from
the input sequence is important and what data should be for-
gotten.

Figure 9: LSTM cell

The input gate it, decides whether to write to the cell-state
ct by squashing the signal of the previous hidden state ht−1

and the current input xt through a Sigmoid function, later on,
combining it with the output of the input modulation gate gt
via multiplication.

it = σ (Wxixt + Whiht−1 + bi) (10)

The forget gate ft uses the current input xt and the previ-
ous hidden-state ht−1 to tell the cell-state ct what informa-
tion should be erased. The output of the forget gate is in the
range of [0, 1] (i.e. because of the Sigmoid activation), there-
fore, when it is multiplied with the cell-state ct - information
can be ignored (i.e. values will be zeroed out).

ft = σ (Wxfxt + Whfht−1 + bf) (11)

The output gate ot takes care of what information is for-
warded as the next hidden state ht. Furthermore, the cell-
state ct, the input xt and the previous hidden state ht−1 have
an impact on what the hidden state ht will be. Just like in the
input gate it and the forget gate ft, the output gate relies on
the multiplication operation to ignore values. Furthermore,
this gate decides how much of the cell state ct should be
revealed.

ot = σ (Wxoxt + Whoht−1 + bo) (12)

The input modulation gate gt modulates the input xt and
the previous hidden state ht−1 via a Tanh activation func-
tion, which is in the range of [-1,1]. Interestingly, because of
the function’s range (i.e. it includes both positive and nega-
tive values), information can be added or removed before it
is combined with the input gate it. Moreover, this gate de-
cides how much it should be written to the cell state ct

gt = tanh (Wxgxt + Whght−1 + bg) (13)

The equation below shows how the cell-state ct is created
and modified through the sequential inputs with the help of
the forget gate ft, the previous cell-state ct−1, the input gate
it, and the input modulation gate gt.

ct = ft ◦ ct−1 + it ◦ gt (14)

The equation below shows how the new hidden state ht is
created via the output gate ot and the current cell-state ct.

ht = ot ◦ tanh (ct) (15)

Note, in the above described gates equations, the W s are
learnable parameters (i.e. matrices containing weights).

Proposed model
The proposed model in fig. 10 is a many-to-one sequence
model. The model takes as an input a sequence of observed
OD matrices {Mt−n, ..,Mt−1,Mt} until hour t, and it out-
puts a GMM for each OD-pair for hour t+1 (the next hour).
The length of the OD matrices sequence is 14 (i.e. the model
does a prediction for the next hour based on data from the
previous 14 hours). In details, the forward pass to the model
happens in the following order:

1. The OD matrices M are passed to an LSTM layer (in the
picture it is marked as the big A), and the LSTM layer is
composed of 512 LSTM cells.

2. A dropout is applied to the LSTM layer’s output via a
Dropout layer. The dropout frequency or rate is set to 0.3.

3. The dropout is directly connected with multiple MDN
layers. Each of the MDN layers has the task to approx-
imate the demand for a particular OD-pair. The number
of the MDN layers is the same as the number of the OD-
pairs. For example, MDN S-D is an MDN which approx-
imates the demand between a source region S and a des-
tination region D.

4. Finally, the MDN layer of each OD-pair outputs 5 GMM
components, which can then be mapped to an actual
GMM.

Figure 10: Proposed model

In the proposed model, the Multitask learning is achieved
by sharing the LSTM and the Dropout layers. They are the
layers that connect all of the different OD pair demand ap-
proximation tasks.

Evaluation
In this section, the proposed model is bench-marked against
other machine learning models and evaluated according to
relevant MDN evaluation metrics. Finally, an ablation study
has been done which considers the proposed model without
the MDN layers.

Evaluation Metrics
There are 3 evaluation metrics that have been used to eval-
uate the proposed model. The first one is average NLL and
it was successfully used in [1]. The other two metrics MAE
(Mean Absolute Error) and RMSE (Root Mean Squared Er-
ror) are standard well-known metrics for evaluating machine
learning models. Nevertheless, if MAE and RMSE are to be
calculated, a method for making a prediction from a GMM
is required. The simplest method to make a prediction from
a MDN is to calculate the expected value of the produced
mixture model [4], which for a GMM is defined as:

E(ŷ) =

K∑
i=1

φi × µi (16)

Where ŷ is a predicted GMM vector containing GMM
components, K is the number of components, φi is the co-
efficient weight of a component, and µi is the mean of a
component.

Average NLL Likelihood tells us how likely is for a true
observed value y to have come from a distribution produced
by an input x. Thus, NLL is the opposite of likelihood, and
for computational simplicity it is logarithmic-scaled. The
lower the average NLL is, the better the proposed model is.
Average NLL is calculated in the following way:

Avg.NLL =
NLL(q)

n
(17)

Where NLL is defined in eq. 9 and q is the training or the
validation samples set, and n = |q|.

MAE MAE is a metric which is computed based on the av-
erage absolute difference between predicted values and true
values. Since it is absolute, MAE is a metric which does
not show the direction of the error (differences). Another, in
MAE all the errors get equally weight and MAE is defined
as:

MAE =
1

n

n∑
i=1

abs(E(ŷi)− yi) (18)

Where abs is a function which returns the absolute value,
and E(ŷi) is the expected value of the predicted GMM, and
yi is the true value.

RMSE RMSE is similar to MAE, nevertheless, in the way
the RMSE is calculated (i.e. the errors are first squared then a
root of the average sum is taken), it puts more weight on the
outliers and the errors that are further away from the mean.
Interestingly, MAE compared to RMSE is very optimistic,
also, MAE can never be greater RMSE. The equation below
shows how RMSE is calculated:

RMSE =

√√√√ 1

n

n∑
i=1

(E(ŷi)− yi)2 (19)

Benchmark Models
The proposed model was bench-marked against another 2
machine learning models. One of which is a MLP-MDN
(MLP standing for Multi Layer Perceptron, which is a sim-
ple feed-forward network), the other one is LSTM-MDN.

MLP-MDN MLP-MDN is a single task model which ap-
proximates the demands for a particular OD-pair. Further-
more, it takes as an input a demands vector of the previous
14 hours, and it approximates a GMM for the next hour. The
model is composed of a single hidden feed-forward layer
[15], dropout layer and a MDN layer. In order to approxi-
mate the demands for the whole OD-matrix, there is an MLP
model for each of the OD-pairs.

LSTM-MDN The LSTM-MDN model is much similar to
the MLP-MDN model, with the only difference that the sin-
gle hidden layer is an LSTM layer instead of a simple feed-
forward layer.

Evaluation results
In the table below, there are the evaluation results from the
validation data-set. These results were taken from the last
training epoch. The lower the Avg. NLL, MAE, RMSE, the
better the model. The ”MT-LSTM-MDN” is the proposed
model in this paper, and it is the one that performs the best.
One thing that stands out in the results, is that the NLL of
the LSTM-MDN and the MT-LSTM-MDN are almost the
same, nevertheless, their MAEs and RMSEs differ by 10%.
Therefore, the Avg. NLL as a metric is not enough to judge
on how accurate an MDN model is.

Model Avg. NLL MAE RMSE
MLP-MDN 2,354 3,541 4,855

LSTM-MDN 2,068 3,454 4,766
MT-LSTM-MDN 2,067 3,106 4,317

Another thing these results prove is that the Multitask
learning does its job and because all of the OD demands
approximation tasks are trained together, the accuracy is im-
proved by 10% compared to the LSTM-MDN model.

Ablation study
In the ablation study, the MDN part from the MT-LSTM-
MDN, LSTM-MDN and MLP-MDN models has been re-
moved. Therefore, now the proposed model and the bench-
mark models are no longer MDN models, but are a single

value of demand prediction models. Likewise, it can be con-
cluded whether the MDN models will have worse accuracy
compared to the single value prediction models. Addition-
ally, since there are no distributions to be approximated in
the single value prediction models, the Average NLL evalu-
ation metric is no longer relevant and it will not be used. Fi-
nally, the error function for the single value prediction mod-
els needs be changed as well. In this paper’s study, the NLL
error function was replaced with the MSE (Mean Squared
Error) function - defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (20)

Where ŷi is a single value of predicted demand.
The table below presents the results from the ablation

study. As it can be seen, comparing the pairs of LSTM-
MDN model vs the LSTM model and the MLP-MDN model
vs the MLP model, their MAEs and RMSEs are almost
equal, meaning, that the LSTM-MDN and MLP-MDN mod-
els are optimal (i.e. no accuracy is lost because of the added
MDN layers). Nevertheless, when comparing the MT-LSTM
model with the MT-LSTM-MDN model, there is a 10 % gap
in the evaluation metrics. The MT-LSTM model is perform-
ing better than the MT-LSTM-MDN model. The reason for
these accuracy differences between the two Multitask learn-
ing models is not known. One could argue that it is because
of the introduced complexity of the multiple MDN layers
in the MT-LSTM-MDN model. Another, could be that the
MT-LSTM-MDN has the potential to be as accurate as MT-
LSTM model when doing single value predictions, but, the
MT-LSTM-MDN was not trained properly.

Model MAE RMSE
MLP 3,524 4,808

LSTM 3,454 4,751
MT-LSTM 2,952 4,104

The conclusion from the ablation study is when a MDN
model is trained, always try to remove the MDN part of it
and turn it into a single value prediction model. Likewise,
when comparing the two it can be assured that accuracy is
not lost because of complexity.

Experiment
In this section of the report, it is described what data was
used for the machine learning experiment, what was done
to cleanse the data, finally, what issues were faced when the
proposed model was trained.

Data cleansing and data selection
The data-set that was used, and as mentioned in the Introduc-
tion, is the 2018 NYC Yellow Taxi data-set. Interestingly,
in it there are 112 million taxi trips recorded for all of the
New York boroughs. 100 thousands of these trips have a
customer drop-off time happening before customer pick-up
time (i.e. faulty data). There are also samples, with a pick-
up time happening in year 2084 and trips which took more
than 24 hours. All of that data was removed for the train-
ing and validation data-sets. Additionally, it was observed

that in month March there are twice more trips compared to
the other months, thus, the data from March was removed as
well. Finally, the cleansed taxi orders were grouped by the
hour of the customer pick-up time and this was the very final
data-set that was used for the development of the model.

As mentioned in the Introduction, the proposed model ap-
proximates demands for a small part of Manhattan, thus, it
is not the case that all of the Manhattan regions have been
used for the training/validation process. The total number
of regions in Manhattan is 60, the proposed model uses
only 6 of these. In detail, the region ids that were used are:
L = {161, 162, 164, 170, 229, 233}, hence, the total number
of OD pairs is 6 × 6 = 36. Eventually, the train/validation
data-set split is 75% for the training data and both of the sets
have not been shuffled.

Machine Learning setup
The machine learning framework that was used, to develop
the proposed model and train it, is Tensorflow Keras version
2.0. Additionally, in order to be able to create MDN mod-
els, it is required that the package tensorflow-probability is
installed as well.

For the proposed model and the benchmark models, the
number of GMM components that they output per OD pair
is 5. Also, the number of previous hours that is inputted into
the models per OD pair is 14. The optimizer that was used
to train the models is Adam [6] with its default settings.
The batch size was set to 2000 and the number of training
epochs for the benchmark models is 3000 and for the pro-
posed model is 1500.

Findings during the experiment
In the beginning, when the Multitask learning model was de-
veloped, the idea for it was not be an LSTM model. It is well
known that LSTMs can achieve tremendous results when
predicting time-series, nevertheless, a lot of multiplication
is involved which slows down the training process. Another,
machine learning technique for predicting time series is to
use 1D (1-Dimensional) Convolutional neural networks. In
details, these Conv1D networks happen to work very well
with the ReLU (Rectified Linear Unit) activation function.
The ReLU function is an activation function which does not
squash the signal that is being passed to it, furthermore, it is
defined as:

Relu(x) = max(0, x) (21)
Where max returns the bigger value of 0 or x. Hance,

ReLU can return either zero, either a positive value. In-
terestingly, what was discovered during the experiment was
that ReLU can be used successfully to build single predic-
tion models. Nevertheless, it cannot be used to build MDN
models because on the very first training epochs the train-
ing loss would become NaN (Not a Number). This issue
appears, when the calculated error underflows or overflows
due to the limitations of the computer’s hardware (i.e. it can-
not represent too big or too small numbers). According to
A.Brando’s paper (Mixture Density Networks for distribu-
tion and uncertainty estimation) [4], there are 3 cases which
can lead to a NaN loss when a MDN model is trained:

1. ”log(ε), ε ∼ 0 - There is a logarithm of a value that is very
close to zero”.

2. ” 1
ε , ε ∼ 0 - There is a fraction with a denominator that is

very close to zero.”
3. ”ex, x > 1e4 - There is an exponential of a 4 digit value.”

Considering the situation where a hidden ReLU layer
(placed before a MDN layer) returns a vector containing ze-
ros, then, it can happen that some of the α(x) or σ(x) are
zeros, which will eventually lead to the 1st or the 2nd case
of the above mentioned cases from A.Brando’s paper [4]. On
the other hand, as mentioned earlier ReLU is not the kind of
function which squashes the signal, moreover, it is a func-
tion which returns the value itself as long as it is a positive
one. Therefore, if a value returned from a hidden layer is big-
ger than 1000 (i.e. even 800), when passed through the exp
function so the σ(x) can be produced, then, the variances of
the distribution will explode and the training loss will over-
flow, which is the situation described in case 3. There are
tricks and workarounds described in A.Brando’s paper [4]
which can be used so the NaN loss does not appear. In this
paper’s case, it was decided that Conv1D with ReLU layer
will be replaced with a LSTM layer and since it has been
done, the NaN loss has not been observed.

When the LSTM-MDN model was trained, initially, there
was no need for regularization or for an addition of a dropout
layer. Nevertheless, in the image in fig. 11 the training and
the validation loss is presented when training the model
without a dropout layer. The y-axis of the chart is the NLL
loss, and the x-axis is the number of training epochs. As it
can be seen from the chart, the loss is fluctuating with a 0.5
in NLL and it is hardly converging towards a global min-
imum. Changing the hyper-parameters of the model such
as the number of GMM components, the number of LSTM
cells and the learning rate did not help much to make the
training curve smoother. Eventually, after a lot of experi-
mentation, a dropout layer was added right before the MDN
layer and the curve became smoother and converging as it is
in fig. 12.

Figure 11: Training and validation loss without a dropout
layer

Therefore, for the data that was used (i.e. the taxis data),
it is essential to have dropout layer so that there is a smooth

Figure 12: Training and validation loss with a dropout layer

training process which ensures that the global minimum will
be reached and that the training process will not get stuck
into a local minimum as it is in fig. 11.

Conclusion
It is really fascinating and intriguing how MDNs can be used
to approximate distributions. Additionally, how instead of a
single value prediction, there is a collection of predictions
with a probability for each of them. Unfortunately, MDNs
are quite sensitive and when used with real-world data can
lead to a NaN loss training problems. Fortunately, it can be
fixed with gradient clipping, log-sum-exp tricks and other
techniques which can be found in papers like the A.Brando’s
paper [4]. Another, in this paper’s case, it seems like MDNs
take a lot of time to be trained and to converge, which is
partially due to the use of a dropout layer is. In details, be-
cause a dropout layer is randomly ignoring part of the signal
it is being passed, then, it is a requirement that the machine
learning model is trained for longer.

The proposed model in this paper, works for a small
neighbourhood of regions, in real-world scenarios it can be
implemented for cities where driver restriction policies are
in place. Even though, the proposed model losses some of
its accuracy because of the addition of the MDN layers, it is
still a model which can be used in the real-world. Also, it is a
model which outputs multiple GMMs (i.e. there aren’t many
of these). The future work of this project would be to figure
out why exactly the proposed model looses accuracy against
a model without MDN layers. Another, since the Multitask
learning models are not very scalable, it would be interest-
ing to see how much this model can be scaled in terms of
how many OD-pairs it can approximate. Moreover, will it
be able to approximate all of the OD-pairs in Manhattan and
how accurate will it be?

References
[1] R. Alligier. “Predictive Joint Distribution of the Mass

and Speed Profile to Improve Aircraft Climb Predic-
tion”. In: (2020), pp. 1–10.

[2] Javier Alonso-Mora et al. “On-demand high-capacity
ride-sharing via dynamic trip-vehicle assignment”.
In: Proceedings of the National Academy of Sciences
114.3 (2017), pp. 462–467.

[3] Christopher M Bishop. “Mixture density networks”.
In: (1994).

[4] Axel Brando Guillaumes. “Mixture density networks
for distribution and uncertainty estimation”. MA the-
sis. Universitat Politècnica de Catalunya, 2017.

[5] Rich Caruana. “Multitask learning”. In: Machine
learning 28.1 (1997), pp. 41–75.

[6] Trishul Chilimbi et al. “Project adam: Building an ef-
ficient and scalable deep learning training system”.
In: 11th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 14). 2014,
pp. 571–582.

[7] Martin Felder, Anton Kaifel, and Alex Graves. “Wind
power prediction using mixture density recurrent neu-
ral networks”. In: (2010).

[8] Sepp Hochreiter and Jürgen Schmidhuber. “Long
short-term memory”. In: Neural computation 9.8
(1997), pp. 1735–1780.

[9] Lingbo Liu et al. “Contextualized Spatial–Temporal
Network for Taxi Origin-Destination Demand Pre-
diction”. In: IEEE Transactions on Intelligent Trans-
portation Systems 20.10 (2019), pp. 3875–3887.

[10] Luis Moreira-Matias et al. “A predictive model for
the passenger demand on a taxi network”. In: (2012),
pp. 1014–1019.

[11] Vu Pham et al. “Dropout improves recurrent neural
networks for handwriting recognition”. In: 2014 14th
International Conference on Frontiers in Handwrit-
ing Recognition. IEEE. 2014, pp. 285–290.

[12] Douglas A Reynolds. “Gaussian Mixture Models.”
In: Encyclopedia of biometrics 741 (2009).

[13] Christian Schittenkopf, Georg Dorffner, and Engel-
bert J Dockner. “Volatility prediction with mixture
density networks”. In: (1998), pp. 929–934.

[14] Nitish Srivastava et al. “Dropout: a simple way to
prevent neural networks from overfitting”. In: The
journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[15] Daniel Svozil, Vladimir Kvasnicka, and Jiri
Pospichal. “Introduction to multi-layer feed-forward
neural networks”. In: Chemometrics and intelligent
laboratory systems 39.1 (1997), pp. 43–62.

[16] Yuandong Wang et al. “Origin-destination matrix pre-
diction via graph convolution: a new perspective of
passenger demand modeling”. In: (2019), pp. 1227–
1235.

[17] Huaxiu Yao et al. “Deep multi-view spatial-temporal
network for taxi demand prediction”. In: (2018).

[18] Heiga Zen and Andrew Senior. “Deep mixture density
networks for acoustic modeling in statistical paramet-
ric speech synthesis”. In: (2014), pp. 3844–3848.

