
Summary

Session-based recommendation considers the task of recommending items to users
based on their interactions with the system during an ongoing session. The funda-
mental challenge of such recommender systems is thus to accommodate the user’s
current preferences in order to produce satisfactory recommendations.

In this thesis, we consider the session-based, next-item recommendation prob-
lem in the context of music where tracks must be recommended to a user based on
what they have recently consumed, and what they are currently listening to. We
attempt to push the current state-of-the-art further by considering two distinct
directions for possible improvement: We first investigate whether awareness of im-
plicit feedback during a session can help better capture short-term preferences and
thereby improve recommendations. Specifically, we attempt to exploit the action
of skipping a track in order to capture shifts in consumption motivations, or intent.
Secondly, we consider how long-term preferences can be exploited in combination
with short-term preferences—effectively transforming an otherwise session-based
system into a session-aware system—in order to better understand a user and the
natural development of their short- and long-term preferences.

In an effort to assess the merit of our proposed directions, we implement the
state-of-the-art attentive neural network architecture, STABR. By combining bidi-
rectional gated recurrent units with an attention mechanism, STABR generates
recommendations for the currently active session based on the previous tracks and
item features in the form of community-created tags associated with those tracks.

In order to address the first idea of employing implicit feedback in the form of
skips, we customise STABR’s gated recurrent units to be aware of whether a track
has been skipped or not using additional embedded input. As to further evaluate
the potential of skips as predictors for next-track recommendation, we extend a
simpler, non-neural approach, namely session-based k-nearest neighbours, to also
account for skips. Specifically, we use the similarity of sessions in terms of which
tracks have been played to compute new recommendations. We then test the effect
of only measuring similarity between sessions based on non-skipped tracks.

We address the second idea of incorporating long-term preferences by extending
STABR with two additional gated recurrent unit networks, which generate hidden
state representations of a user’s previous sessions. We consider two variations for
employing the long-term preferences of a user: The first variation uses the repre-
sentation of previous sessions directly in the attention mechanism in order to assign
attention weights based on the long-term preferences. The second variation uses
the representation as an initial hidden state for the bidirectional gated recurrent
units employed by STABR in order to generate new hidden states which are aware
of a user’s long-term preferences.

In order to determine the effectiveness of the extensions made to the STABR
architecture, we evaluate using two distinct real-world datasets, each containing lis-
tening events from users of the online music database and social network, Last.fm.
Additionally, we compare the results to a selection of baselines based on neural
networks, matrix factorisation, and k-nearest neighbours. We find that, for the
data used in our experiments, implicit feedback in the form of skips does not
constitute a good predictor for session-based recommender. This is evident as
both STABR and session-based k-nearest neighbours experience a drop in perfor-
mance when extended to be aware of skips. More promising results are obtained
by taking long-term preferences into consideration. While employing a long-term

preference representation in the attention mechanism of STABR does not improve
performance, an improvement is observed when using the representation as an ini-
tial hidden state for the bidirectional gated recurrent units in STABR. While the
improvement is small, we believe that it warrants further research in this direction.

In addition to the results related to skips and long-term preferences, we also
find that complex neural approaches such as STABR may not always be justified
over simpler approaches such as k-nearest neighbours. Indeed, while architectures
such as STABR consistently perform well in terms of mean reciprocal rank, they
are occasionally outperformed in terms of hit rate. As such, what constitutes the
best approach both depends on the data at hand, but also in large part on which
practical problem the system ought to address.

Exploring Skips and Long-Term Preferences in Session-based
Music Recommendation

Peter Vergerakis
Department of Computer Science

Aalborg University
Aalborg, Denmark

pverge15@student.aau.dk

Joachim Valdemar Yde
Department of Computer Science

Aalborg University
Aalborg, Denmark

jo@ch.im

ABSTRACT
While traditional recommender systems aim to help users find items
that they may generally like, session-based recommenders face a
unique challenge in that they are required to recommend items
a user may enjoy in the immediate or near future. Thus, consid-
erations of context and short-term preferences become crucial in
the pursuit of computing satisfactory recommendations. In recent
research, neural-based approaches leveraging recurrent neural net-
works and attention mechanisms have been successfully applied in
fields such as e-commerce and music. Indeed, with the increasing
popularity of on-demand music streaming services, session-based
recommendation has become more pertinent than ever. In this
paper, we implement the state-of-the-art neural attentive-based
architecture STABR, and propose two extensions: One focused on
short-term preferences through implicit feedback in the form of
skips, and another focused on long-term preferences using prior
sessions. We conduct experimentation on two distinct datasets,
and compare STABR and our extensions to a range of alternative
techniques in order to discuss the generalisability of STABR, the
efficacy of our extensions, and to illuminate the performance of
complex neural models compared to simpler approaches. We find
that implicit feedback in the form of skips adds more noise than sig-
nal. We further find that accounting for both short- and long-term
preferences in the same model using prior user sessions produces
promising results warranting further research. Additionally, our
results suggest that complex neural models do not consistently
outperform simpler approaches such as k-nearest neighbours in
session-based music recommendation.

1 INTRODUCTION
The continued popularity of on-demand music streaming services
exposes an ever-increasing number of users to fast-expanding li-
braries of readily-available music. Applying recommender systems
has proven an effective solution to help users comfortably explore
such complex information landscapes [3, 50]. However, compared
to other fields commonly served by recommender systems such as
e-commerce and movies, music is unique in both its abundance and
disposable nature as well as its consumption. Indeed, the vast major-
ity of users consume dozens of tracks in succession as they go about
their day [8]. This consumption, moreover, commences in different
contexts, both spatial and temporal, e.g. during an early-morning
jog, a late-night reading session, or whilst commuting [44]. It is
thus only reasonable to assume that sessions differing in context
also differ in content; effectively making the individual tracks of a
specific session and their order important indicators of the current
context and intent [12]. Yet, conventional recommender systems

typically disregard such sequential information as they seek to infer
static relevancy between users and items. Systems based on matrix
factorisation, for instance, may be effective at modelling the general
preferences of a given user by analysing their past interactions with
the system, but they do not model the order of these interactions
[15, 22]. This static representation is problematic because it fails
to accommodate both short- and long-term preferences, and, as
a direct consequence, does not adequately account for how the
preferences of a given user naturally evolve over time [23, 47].

In contrast to conventional recommender systems, session-based
recommender systems seek to predict the next item of interest by
modelling a user’s short-term preferences using their current ses-
sion. This is typically achieved by exploiting implicit feedback given
to the system by the user, e.g. in the form of clicks [29]. The mod-
elling choices for these recommenders include both Markov chains,
e.g. the Factorizing Personalized Markov Chain (FPMC) model [32],
and various recurrent neural networks (RNNs) models [5, 27, 31, 45].
However, where solutions based onMarkov chains only model local
sequential patterns between adjacent interactions [5], RNNs can
successfully model multi-step sequential behaviours [15, 31, 37].
In either case, such session-based recommenders typically embed
a user’s long-term preferences into a static representation [5]. As
such, this approach only addresses half the shortcomings facing
conventional recommender systems because long-term preferences
present a varying degree of importance depending on the current
short-term, sequential dynamics [43, 48]. In the context of music,
the relative importance of long-term preferences depends on the
current intent of the user. A user might have a session in which they
wish to discover new artists as opposed to listening to known ones;
or theymight have a session in which they wish to merely enjoy old-
time favourites. Whilst there is no financial loss or significant loss
of time as a result of a poor track being recommended—compared
to a poor book or movie recommendation, for instance—the flow
in which the user may find themselves can be disturbed, causing
annoyance or frustration with the service. A good session is thus,
in many ways, a session which runs passively and succeeds in
satisfying the evolving desires of the user in the given context.

Indeed, in contrast to other sequential or session recommenda-
tion scenarios such as e-commerce, the shift from one item to the
next does not necessarily constitute an active action by the user as
most streaming services allow the transition between tracks to pass
passively. In fact, the only definitively active actions a user gen-
erally makes during a given session—beyond starting and ending
the session—are those which disrupt the playback. This includes
pausing, replaying, and skipping; actions which can be considered
neutral, positive, and negative signals, respectively. While the sen-
timent of these signals can be more or less precisely determined,

1

their underlying intents cannot. Skipping a track should not be
unequivocally interpreted as the user not liking that specific track,
for instance: The current context might prompt the user to skip a
track they otherwise would have enjoyed in a different setting.

Given this nature of music sessions, it is reasonable to assume
that any system intended to produce accurate next-item recommen-
dations should accommodate such non-linear and non-monotonic
relationships as to better capture the consumption motivations of
individual users [20, 46]. In this regard, RNNs feature great flexi-
bility in capturing such relationships. However, traditional RNNs
face issues handling long-range dependencies due to the problem
of vanishing gradients, ultimately reducing their efficacy in dealing
with long-term preferences [2, 16]. This limitation has been par-
tially overcome using both long short-term memory units (LSTMs)
[17] and gated recurrent units (GRUs) [6], achieving great success
in fields such as machine translation and image processing [7, 37].
Ultimately, however, the performance of both LSTMs and GRUs
will eventually deteriorate as the length of the input increases [1, 6].
In order to address this shortcoming, Bahdanau et al. proposed
attention-based encoder-decoder networks [1]. They showed that
the introduction of an attention mechanism—carefully selecting
hidden states across all time steps depending on what is deemed
the most relevant for the current step—enables models to better
accommodate long-range dependencies.

In this paper, we explore possible new research directions within
attention-based, next-item music recommendation. We implement
the current state-of-the-art attention-based recommender system,
STABR, as proposed by Sachdeva et al. [33], and examine possible
extensions seeking to (a) incorporate active user actions; and (b) bet-
ter accommodate long-term preferences. Specifically, we consider
the following extensions:

• A customised, contextual GRU network capable of incorpo-
rating implicit feedback from users in the form of skips as
to better capture consumption motivations.
• Two distinct variations of modelling a user’s long-term pref-
erences by explicitly considering previous sessions either
directly or indirectly in the attention mechanism.

In order to validate the merit of these extensions, we conduct exper-
iments comparing them and STABR to a range of baselines relying
on different techniques of varying complexities on two distinct
datasets. Based on these experiments, we discuss the efficacy of the
extensions as well as which circumstances might warrant complex
model architectures, and which might not. Additionally, in the con-
text of session-based music recommendation, we are, to the best of
our knowledge, the first to:

(1) Experiment with implicit feedback and user actions such as
skips in an offline learning setting; and

(2) experiment with long-term preferences for item features
such as genre descriptors.

The rest of the paper is structured as follows: Section 2 presents
selected related work; section 3 outlines our working hypothesis,
a formal problem definition, introduces STABR, and presents our
proposed extensions; section 4 introduces our two datasets and
outlines our pre-processing steps; section 5 presents our baselines,
relevant parameters for training and testing, as well as presents

and discusses our results; and section 6 concludes our work and
outlines relevant future work.

2 RELATEDWORK
We summarise related work in two selected areas; sequential rec-
ommender systems and attention-based models. In both areas, we
discuss general advances as well as advances specifically within
the field of music recommendation.

2.1 Sequential Recommendation
According to Quadrana et al. [31], session-based recommendation
as described in the introduction denotes the problem in which
only the current sequence of actions by a given user within some
specified interval is known. Since listening to music is a naturally
reoccurring event for the vast majority of users, we are typically
dealing with session-aware recommendation in which both the
current and prior sessions are known. That is, session-aware rec-
ommender systems generally seek to predict what happens next
by modelling a user’s short-term preferences using past sessions
alongside implicit feedback given to the system by the user during
the current session; essentially exploiting any dynamic, sequential
patterns present in the user’s behaviour. However, because any
system supposed to be session-aware must also account for the
instance in which only a single session is available, we will focus
primarily on the problem of session-based recommendation.

Appreciating the importance of different spatial and temporal
contexts when working with music recommendation, Gupta et al.
[12] seek to explicitly model the short-term preferences of a user by
incorporating track-specific, community-created tags (hereinafter
tags) obtained from Last.fm1. They go on to show that while users
often have implicit preferences when listening to music, those
preferences are not necessarily static across different contexts. As
such, Gupta et al. assume that a context can change both during a
session and between individual sessions. In order to accommodate
this, they propose the notion of sub-sessions which represent slices
of sessions wherein the preference of the user does not change
significantly. Sub-sessions are extracted by analysing the associated
tags of each individual track and subsequently comparing them to
those of neighbouring tracks. Having extracted a single sub-session,
Gupta et al. proceed to mine their complete training data in order
to identify the most similar sub-sessions from which they compute
candidate tracks and eventually final predictions.

A fundamentally different approach also seeking to model the
dynamic preferences is proposed by Rendle et al. [32], who attempt
to predict next-purchases in an e-commerce setting. Using per-
sonalised Markov chains over sequential user data, their FPMC
model allows each transition (i.e. user action) to be influenced by
actions of similar users, similar items, and similar actions. In fact,
Markov models (including both Markov chain (MC) and Markov
decision process (MDP)) constitute a major category in the field of
session-aware recommenders according to both Quadrana et al. and
Ludewig and Jannach [27]. Rendle et al. thus propose merely one
of several Markov model-based approaches: In essence, a Markov
model considers sequential data as a stochastic process over discrete
random variables and limits the dependencies of the process to a
1https://www.last.fm/api/ - an online music database and social network.

2

finite history. The essential challenge when using Markov models,
therefore, is determining how many prior interactions should be
considered when predicting the next. In the case of Rendle et al.,
this is determined by their factorisation component and allows
them to have a higher quality transition graph. An earlier solution
also in the field of e-commerce using a MDP model was proposed
by Shani et al. [35], who devised a number of heuristics alongside
a custom predictive model to ensure a reasonable initialisation.
Other work such as Aghdam et al. [18] relies on hierarchical hidden
Markov models, and other work again by Wang et al. extends the
original FPMC model by including a hierarchical structure to learn
user representations [45]. In any case though, the fundamental
shortcoming of Markov models in session-based recommendation
is their inability to adequately deal with long-range dependencies
and limited ability to model the inherently complex dynamics often
present in user-action sequences [5, 27, 31].

This conclusion makes RNNs a compelling solution to session-
based recommendation purely based on their modelling power. In
short, RNNs are distributed real-valued hidden state models with
non-linear dynamics—something which effectively enables them to
model sequentially ordered data whilst accounting for both long-
and short-term dependencies [27, 31]. The inherent advantage of
RNNs, as argued by Hidasi et al. [14], is their ability to model
sessions in their entirety and thus provide better recommendations
compared to traditional methods. Indeed, RNNs are able to encode
both the additional contextual information proposed by Gupta et
al., the short-term dependencies captured by Markov models, as
well as accommodate long-term dependencies which neither Gupta
et al. nor Markov-based models account for.

However, as noted in the introduction, traditional RNNs are not
perfect and ultimately face issues in adequately dealing with long-
range dependencies due to the vanishing gradients problem [2].
Consequently, in the context of session-based recommendation and
other sequence modelling problems, extensions such as LSTMs or
GRUs become necessary given enough data. Indeed, as noted by
Vaswani et al. [42], LSTMs and GRUs have firmly been established
as state-of-the-art approaches in sequence modelling in fields such
as machine translation, speech recognition, and image processing.
Accordingly, Hidasi et al. [15] pioneered the idea of employing
RNNs for session-based recommendation to deal with data sparsity
problems with their GRU4REC architecture. Specifically, Hidasi et
al. sought to capture how a given session evolves over time. As the
name implies, Hidasi et al. rely onGRUs in their network; depending
on the input, one or more GRUs are strung together followed by
one or more feed-forward networks between the last GRU and the
final output. Due to the sound performance of this architecture, it
has subsequently been extended by others, including Tan et al. [38],
who proposed both data augmentation to improve performance
and introduced a method to account for shifts in the input data
distribution, and Jannach et al. [21], who incorporated k-nearest
neighbour (kNN). Similarly, Hidasi et al. recently extended their
original GRU4REC architecture by employing an improved loss
function [14]. While the continued work on GRU4REC means that
it remains a sound solution to several session-based and session-
aware recommendation problems, it is important to note that in
pursuit of capturing how a session evolves over time, GRU4REC,

and its subsequent extensions, employ session-parallel mini-batches
which means that the architecture is unable to handle unseen data.

In our case, the modelling power offered by RNNs in conjunction
with extensions such as GRUs makes a compelling solution in want-
ing to accommodate both long-term dependencies and user actions.
However, GRU4REC does not actively account for information such
as tags the way Gupta et al. do, for instance, nor is it necessarily
capable of handling very long-range dependencies.

2.2 Attention-based Recommendation
In recent years, attention-based models have become increasingly
popular solutions to various session- and sequential-based rec-
ommendation problems—both as standalone applications using
self-attention, and in conjunction with existing recurrent networks
[1, 33, 42]. The central problem solved by an attention mechanism
is modelling dependencies without regard to their distance in the
network’s input and output; that is, attention enables a network to
refer to its input sequence directly as opposed to encoding input
into a fixed-length vector. This not only addresses the shortcom-
ings of LSTMs and GRUs discussed in sections 1 and 2.1, it further
proves powerful in capturing sequential behaviour: Li et al. [25],
for instance, propose a neural attentive recommendation machine
(NARM) that combines a GRU network and an attention mecha-
nism in order to model a user’s sequential behaviour. Specifically,
NARM uses the most recent hidden state from its GRU network in
combination with hidden states from prior time steps in the same
session to learn which items are important for the next-item recom-
mendation. According to Li et al., the attention mechanism proves
vital as it helps better capture the intent of the user—something
which enables NARM to outperform general RNN models.

However, where NARM succeeds in modelling the short-term
preferences of users, it does not consider the long-term prefer-
ences that might exist across multiple sessions. To this end, Chen
et al. [5] propose a dynamic co-attention network for session-based
recommendation (DCN-SR) in an e-commerce setting. Similar to
NARM, DCN-SR employs a GRU network to capture the short-term
preferences of users based on their current session. Additionally, a
multilayer perceptron is utilised in parallel to the GRU network in
order to capture long-term preferences from the user’s historical
interactions. Using a co-attention network, correlations between
the long- and short-term preferences of the user are then explored.
By considering the interplay between current and historical interac-
tions, DCN-SR is able to provide better context for assigning relative
importance to each item in the current session. DCN-SR further
extends the traditional GRU network with contextual information
in order to explicitly consider the actions—clicks, add-to-cart, and
purchases—that the user performs for each item in a session.

Tang et al. [39] adopt a different approach in order to model both
the long- and short-term interests of users for sequential recommen-
dation. Specifically, they propose a neural multi-temporal-range
mixture model (M3), which employs three distinct encoders in
parallel to capture the preferences of users at different temporal
ranges. Item co-occurrences are used for the first encoder in order
to learn patterns of items occurring immediately after one another.
An RNN network is then used for the second encoder in order to
capture patterns occurring in a longer, but still relatively short,

3

temporal range. Finally, a self-attention model is used as the last
encoder—something which allows M3 to capture patterns in unlim-
ited temporal ranges. The last item in the user’s history is used as
the query in order for the model to calculate the relative importance
of previous historical items. Through a gating mechanism, M3 is
able to use different combinations of the three encoders in order to
address different recommendation scenarios.

In the realm of music, attention-based models have also been
exploited for the session-based recommendation task. Huang et al.
[19], for instance, propose an attention-based short-term and long-
term model (ASLM) for next-item recommendation. Similar to [5],
short- and long-term preferences are the key aspects considered in
the architecture. An encoder-decoder architecture is used to model
short-term preference to allow ASLM to produce recommendations
over multiple time steps. Specifically, a bidirectional LSTM network
is used as the encoder, and a GRU network is used for decoding.
Similar to [25], an attention layer sits between the two, allowing
the encoder-decoder to better capture the variation in short-term
intent. The attention mechanism uses the last hidden state from the
decoder alongside the hidden states from the encoder to determine
which items to pay more attention to when computing the next
recommendation. In contrast to the work of Li et al., however, ASLM
also considers the influence of a user’s long-term preference. A
series of vector representations of the user’s most recent sessions is
fed to a GRU network. The final hidden state of this network is then
used as the initial hidden state of the short-term preference encoder-
decoder, thus allowing ASLM to account for both preferences when
computing next-item recommendations.

Sachdeva et al. [33] take a different approach to session-based
music recommendation by only considering the short-term prefer-
ences which exist in a session. Specifically, their proposed song and
tag attention based recommender system (STABR) relies on using
features of tracks to extract information about the preferences of
a user. Following the idea from Gupta et al. [12] outlined in the
previous section, tags are used for this purpose. STABR employs
two nearly identical components consisting of a bidirectional GRU
(BiGRU) network and an attention mechanism. While one compo-
nent considers the actual tracks of a session, the other component
looks at the tags associated with each track. Sachdeva et al. show
that by explicitly considering features of tracks in the form of tags,
STABR is able to achieve better results than its feature-ignorant
counterpart, SABR, which in turn outperform all chosen baselines.
Indeed, to the best of our knowledge, STABR represents the current
state-of-the-art solution in session-based music recommendation.
STABR thus also presents an interesting take on the problem that is
session-aware recommendation considering its ability to produce
good recommendations relying merely on short-term preferences
and the contextual information available through tags. Notably,
however, neither STABR nor SABR considers previous sessions or
the user’s actions in the given sessions.

3 APPROACH
Our working hypothesis is that whilst sequential information is
paramount in accommodating short-term preferences during a
singular session, accounting for implicit feedback alongside the
relative importance of a user’s prior interactions—i.e. long-term

preferences—yields a more accurate user representation. This hy-
pothesis is really twofold, ultimately appreciating the inherent
intricacies of short- and long-term user preferences.

We speculate that by explicitly considering implicit feedback
such as skips, the current intent of a user may be learned such that
the development of that user’s short-term preferences can be better
gauged. We choose to focus on skips because pausing is more likely
to happen due to exogenous variables than the music itself, and
replaying a track cannot be considered a shift in context nor intent.
Similarly, by explicitly considering prior sessions, the development
of the current consumption motivations—i.e. intent—and thus short-
term preferences might be better captured.

Consider the following scenarios: A user is listening to music
while they are cooking dinner with a friend. During this time, they
are enjoying some up-beat dance music. However, as the meal is
finished and they sit down to eat, the user changes—i.e. skips—to
something more ambient to allow room for conversation. Accord-
ingly, with the shift in context, the user’s short-term preferences
in genre follow. In another scenario, the same user is listening to
alternative rock, a genre that the user is familiar with and generally
enjoys. After a while, the user is feeling adventurous and decides
to explore some new alternative rock artists a friend mentioned
in passing. The user thus queues a selection of tracks they have
not previously listened to. As the user assesses the selected tracks,
they skip any track that they dislike, effectively resulting in more
skips than a typical listening session. In this scenario, the short-
term preferences have not necessarily changed in terms of genre,
but rather in terms of scope and artist familiarity within the given
genre. While the shift in preference in the first example can be
observed based on the abrupt change in genre, the same is not the
case for the second example as the genre remains unchanged, but
the increased number of skips suggests a changed intent.

In fact, the second scenario might have more lasting effects as
the new tracks played in full during an explorative session could
impact both current short-term preferences as well as the long-term
preferences of the user. What music best suits a given context is
naturally wholly subjective, and one user might prefer one type
of music during weekends and something else during the week.
Importantly, however, this preference, as shown by Gupta et al.
[12], is likely to evolve over time. Similarly, the preferences within
two different genres of a given user can evolve independently. It is
thus important to accentuate how we are not trying to predict why
a shift in context nor intent happens, but rather that it happens and
which direction the change is in. This is something we speculate
can be achieved by also accounting for genre identification in the
form of tags across both short- and long-term preferences.

In light of our related work section, we believe that extending
the STABR architecture proposed by Sachdeva et al. [33] is a natural
foundation given both STABR’s modelling power and its position
as a state-of-the-art attention-based music recommender. It is, to
the best of our knowledge, the only state-of-the-art architecture
which considers item features such as tags—something which really
encapsulates both genres, moods, and other relevant topics that
can help categorise tracks [24]. Additionally, despite STABR being
exclusively session-based, and thus only focused on short-term
preferences, the architecture consists of a BiGRU-component and
an attention mechanism which both can accommodate long-term

4

dependencies—something which proved beneficial in other imple-
mentations, e.g. ASLM by Huang et al. [19]. This architecture thus
allows us to directly evaluate the importance of both implicit feed-
back in the form of skips, as well as the relevance of long-term
dependencies for session-based music recommendation. Thus, our
work constitutes an exploratory analysis of possible extensions
towards pushing the state-of-the-art in the session-based music
recommendation further.

3.1 Problem Formulation
Let 𝑈 = {𝑢1, 𝑢2, ..., 𝑢 |𝑈 |} be the set of users, 𝑉 = {𝑣1, 𝑣2, ..., 𝑣 |𝑉 |}
the set of tracks, and 𝐺 = {𝑔1, 𝑔2, ..., 𝑔 |𝐺 |} the set of tags, where
|𝑈 |, |𝑉 |, and |𝐺 | denote the total number of unique users, tracks,
and tags, respectively. A given track is associated with a set of
tags such that 𝐺𝑖 = {𝑔𝑖,1, 𝑔𝑖,2, ..., 𝑔𝑖, 𝑗 } is the set of tags associated
with track 𝑣𝑖 , and 𝑔𝑖,𝑙 ∈ 𝐺 . The listening event history 𝐻 of a
user 𝑢 is a list of tracks with corresponding timestamps 𝑡 : 𝐻𝑢 =

{(𝑣𝑢1 , 𝑡
𝑢
1), (𝑣

𝑢
2 , 𝑡

𝑢
2), ..., (𝑣

𝑢
|𝐻𝑢 |, 𝑡

𝑢
|𝐻𝑢 |)}, where 𝑣𝑢

𝑖
∈ 𝑉 and 𝑡𝑢

𝑖
is the

timestamp for listening event 𝑖 of user 𝑢, such that 𝑡𝑢
𝑖−1 < 𝑡𝑢

𝑖
< 𝑡𝑢

𝑖+1.
The listening event history of a user can be aggregated into ses-
sions, 𝑆𝑢 = {𝑠𝑢1 , 𝑠

𝑢
2 , ..., 𝑠

𝑢
|𝑆𝑢 |}, based on the timestamps of listening

events such that the time between the last timestamp of session
𝑠𝑢
𝑖
and the first timestamp of session 𝑠𝑢

𝑖+1 is at least 𝑥 , where 𝑥

denotes a given threshold. The recommendation task then becomes:
Given the listening event history, 𝐻𝑢 , of user 𝑢, the tracks in their
current session, 𝑠𝑢|𝑆𝑢 |+1 = {𝑣𝑢|𝐻𝑢 |+1, 𝑣

𝑢
|𝐻𝑢 |+2, ..., 𝑣

𝑢
|𝐻𝑢 |+𝑖−1}, and the

tags associated with each track, predict the next track, 𝑣𝑢|𝐻𝑢 |+𝑖 .
Or, in more informal terms: Assuming a set of users, tracks, and

tags, we have a collection of sessions for each user consisting of a
subset of tracks and their associated tags within a specified interval.
Given the current session of an arbitrary user, predict the next track
in this session.

3.2 Preliminaries
Before presenting our extensions to STABR, we introduce the orig-
inal architecture. While a detailed description is provided in the
original paper [33], we include one as well for completeness and to
detail the assumptions we have had to make in pursuit of increased
reproducability2. Indeed, Dacrema et al. [10] explicitly list STABR
as a model they were unable to reproduce with reasonable effort.

An overview of the STABR architecture can be seen in figure 1.
The core architecture consists of two components: For each track
occurring before the track to be predicted in the active session of
some user 𝑢, the first component receives the one-hot encodings of
the tracks, and the second component receives the one-hot encod-
ings of the tags associated with each of the tracks. An embedding of
the one-hot encodings constitutes the first layer of the architecture
in which the encodings are mapped to a vector space, such that

𝑣 ′𝑖 = 𝐸𝑣 · 𝑣𝑖 (1)

where 𝑣 ′
𝑖
is the embedded representation of track 𝑣𝑖 , 𝐸𝑣 ∈ R𝑑 · |𝑉 | is

the embedding layer for tracks, and 𝑑 is the size of the embedded
track vector. Similarly, embeddings of tags are obtained as follows:

𝑔′𝑖, 𝑗 = 𝐸𝑔 · 𝑔𝑖, 𝑗 (2)

2All code is available at: https://github.com/x775/SW10

Figure 1: Overview of the STABR architecture.

where 𝑔′
𝑖, 𝑗

is the embedded representation of the 𝑗-th tag of track 𝑖 ,
𝐸𝑔 ∈ R𝑑′ · |𝐺 | is the embedding layer for tags, and 𝑑 ′ is the size of
the embedded tag vector. Since a track can have multiple tags, the
embedded tag vectors for track 𝑖 are averaged to obtain a final tag
vector:

𝑔′𝑖 =
1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝑔′𝑖, 𝑗 (3)

where 𝑔′
𝑖
is the final embedded vector for tags of track 𝑖 , and 𝑛𝑖 is

the total number of tags associated with track 𝑖 . The resulting track
and tag embedding vectors are fed to two BiGRU networks.

As such, for each track and tag vector in the active session, two
hidden states are obtained. These hidden states are then fed to
the attention layers in order to produce context vectors which are
weighted sums of the hidden states. Specifically, the context vector
for track embeddings 𝑐𝑣 in the active session is computed as:

𝑐𝑣 =

|𝐻𝑢 |+𝑖−1∑
𝑗= |𝐻𝑢 |+1

𝛼 𝑗ℎ
𝑣
𝑗 (4)

where ℎ𝑣
𝑗
is the hidden state representation for track 𝑗 obtained by

concatenation of the forward and backward hidden states,
−→
ℎ𝑣
𝑗
and

←−
ℎ𝑣
𝑗
. |𝐻𝑢 | is the listening event history of user 𝑢. In a similar fashion,

the context vector for tag embeddings 𝑐𝑔 is obtained as follows:

𝑐𝑔 =

|𝐻𝑢 |+𝑖−1∑
𝑗= |𝐻𝑢 |+1

𝛽 𝑗ℎ
𝑔

𝑗
(5)

Notably, no definitions of weight vectors 𝛼 and 𝛽 are supplied in
the original paper by Sachdeva et al. [33]. As such, we assume a
definition similar to that of the NARM architecture presented by Li
et al. [25], which in turn is based on additive style attention detailed

5

in the original attention paper by Bahdanau et al. [1]. Thus, we
define 𝛼 and 𝛽 as follows:

𝛼 = softmax(𝛼 ′) (6)

𝛼 ′ = 𝑤𝑣 tanh(𝑍 𝑣𝑃𝑣 + 𝑏𝑧𝑣 +𝑄𝑣
−→
ℎ𝑣 + 𝑏𝑞𝑣) + 𝑏𝑤𝑣 (7)

𝛽 = softmax(𝛽 ′) (8)

𝛽 ′ = 𝑤𝑔 tanh(𝑍𝑔𝑃𝑔 + 𝑏𝑧𝑔 +𝑄𝑔
−→
ℎ𝑔 + 𝑏𝑞𝑔) + 𝑏𝑤𝑔 (9)

where𝑤 is a weight parameter vector,𝑍 𝑣 ,𝑍𝑔 ,𝑄𝑣 , and𝑄𝑔 areweight
parameter matrices. 𝑏𝑧𝑣 , 𝑏𝑞𝑣 , 𝑏𝑧𝑔 , 𝑏𝑞𝑔 , 𝑏𝑤𝑣 , and 𝑏𝑤𝑔 are bias pa-
rameter vectors.

−→
ℎ𝑣 and

−→
ℎ𝑔 are the forward pass hidden states of

the track and tag embedding vectors at the last time step in the
current session, respectively. 𝑃𝑣 and 𝑃𝑔 are matrices of all hidden
state representations for tracks and tags, respectively, such that
𝑃𝑣 ∈ R𝑛 ·𝑑 , and 𝑃𝑔 ∈ R𝑛 ·𝑑′ , where 𝑛 is the number of hidden states,
and 𝑑 and 𝑑 ′ is the size of each hidden state for tracks and tags,
respectively. Softmax is applied so that weights in 𝛼 and 𝛽 sum to 1.
With this definition, 𝛼 and 𝛽 can be considered to model the align-
ment of the hidden state representations of each time step in the
active session and the hidden state of the track played immediately
before the track to be predicted. Thus, in effect, the attention layer
helps the model focus on specific tracks and tags in the current
session which are deemed more important for predicting the next
track. The two context vectors, 𝑐𝑣 and 𝑐𝑔 , are then concatenated to
obtain a final context vector, 𝑐 , which is fed to a dense layer:

𝑐 ′ = ReLU(𝑊1𝑐 + 𝑏1) (10)

where𝑊1 is a weight parameter matrix, and 𝑏1 is a bias parameter
vector. The final output is obtained from a second dense layer
followed by a softmax function to obtain probabilities of occurrence
for each track in the set of tracks, 𝑉 :

𝑂 = softmax(𝑊2𝑐
′ + 𝑏2) (11)

3.3 Proposed Extensions
Based on our hypothesis outlined in section 3, we propose two
extensions to the STABR architecture. We explain our intuition
behind the extensions and their designs in sections 3.3.1 and 3.3.2.

3.3.1 Skip Extension. Skips exist as implicit feedback during a
session which we hypothesise can be exploited to better capture
the intent and the short-term preferences of a user during a session.
A naive approach to employing skips would be to only consider
tracks in an active session which have not been skipped. However,
this approach would also discard potentially valuable information
that can help explain what genres or tracks a user is not interested
in during a specific context. Furthermore, as outlined in the two
scenarios given in section 3, it may be that a user skips a track
because their short-term preference has shifted from one genre to
another. However, it could also be that their preferences remain the
same, but their intent has shifted from passive listening to active
exploration. In such a context, a skip can signify that the user is
satisfied with the current genre, but not the specific track.

With these considerations, we draw inspiration from Chen et
al. [5], and extend both the tracks and tags component of STABR
by employing contextual GRUs instead of traditional GRUs. This
enables the architecture to capture skips during a session and learn
to interpret their meaning and significance. The structure of the

Figure 2: Structure of the CGRU network. 𝑡 represents a specific time step,
and 𝑥𝑡 is either an embedded track or tag vector. The arrows at the end of
all lines show the flow of information through the cell.

contextual GRU network can be seen in figure 2. In addition to the
track or tag embedding and the previous hidden state, the contextual
GRU cell is modified to also take as input an embedding of a user
action 𝑎:

𝑎′𝑖 = 𝐸𝑎 · 𝑎𝑖 (12)
where 𝑎′

𝑖
is the embedding of the action performed for the 𝑖-th

track in the current session, 𝐸𝑎 ∈ R𝑑𝑎 · |𝐴 | is an embedding layer for
actions,𝑑𝑎 is the length of the embedded action vector, and |𝐴| is the
total number of possible actions. We consider two possible actions:
"skipped" and "not skipped". The new hidden state is obtained from
the previous hidden state and the candidate hidden state

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ′𝑡 (13)

where ℎ𝑡 is the new hidden state at time step 𝑡 , ℎ𝑡−1 is the previous
hidden state, ⊙ is the Hadamard product operation, and 𝑧𝑡 is the
update gate given by

𝑧𝑡 = 𝜎 (𝑊 𝑧𝑥 ′𝑡 + 𝑏𝑥𝑧 +𝑈 𝑧ℎ𝑡−1 + 𝑏ℎ𝑧 +𝑄𝑧𝑎′𝑡 + 𝑏𝑎𝑧) (14)

where 𝑥 ′𝑡 is the embedded track or tag input, and 𝑎′𝑡 is the embedded
skip action.𝑊 𝑧 , 𝑈 𝑧 , and 𝑄𝑧 are weight parameter matrices for
the track or tag embedding, the previous hidden state, and the
action embedding, respectively.𝑏𝑥𝑧 ,𝑏ℎ𝑧 , and𝑏𝑎𝑧 are bias parameter
vectors. The candidate hidden state is computed as follows

ℎ′𝑡 = tanh(𝑊𝑥 ′𝑡 + 𝑏𝑥 + 𝑟𝑡 ⊙ (𝑈ℎ𝑡−1 + 𝑏ℎ) +𝑄𝑎′𝑡 + 𝑏𝑎) (15)

with the reset gate 𝑟𝑡 computed as

𝑟𝑡 = 𝜎 (𝑊 𝑟𝑥 ′𝑡 + 𝑏𝑥𝑟 +𝑈 𝑟ℎ𝑡−1 + 𝑏ℎ𝑟 +𝑄𝑟𝑎′𝑡 + 𝑏𝑎𝑟) (16)

With this extension, we make no explicit assumptions regarding
the meaning and semantics of skips. Therefore, using the extended
GRU definition, the hidden states are able to capture information
about skips, which we hypothesise can help represent the intent of
the user during a session.

3.3.2 History Extension. Working with the assumption that the
preferences of a user evolve over time as shown both by Lamont
and Webb [23] and Gupta et al. [12], we propose an extension to
STABR which accounts for a user’s prior sessions when predicting
for their current session. Note that by actively accounting for prior
sessions, we are, according to Quadrana et al. [31], working with

6

Figure 3: Overview of the history extension for STABR on one of the com-
ponents when 𝑥 = 3. Note that this is mirrored on the second component.

session-aware recommendation as opposed to session-based recom-
mendation. However, we continue to focus just on predicting the
next track in the currently active session. Specifically, we extend
the attention layer of the existing STABR architecture such that it
weighs the importance of tracks and tags based on both the last
track played and the previous session(s) of the user. We extend
both components—that is, the tracks and tags component seen in
figure 1—such that user history is taken into account for tracks and
tags, thus enabling the architecture to capture change in long-term
preferences of both specific tracks and genres.

An overview of the history extension can be seen in figure 3.
The extension takes as input the 𝑘 previous session(s) of a user 𝑢,
where 𝑘 is a hyperparameter. An embedding of each track and tag
in previous sessions are then obtained using the same embedding
layers described in equations 1 and 2. In order to obtain a single
vector representation of a session, we average the track and tag
embedding vectors, such that

𝑠𝑢 ′𝑖−1,𝑣 =
1
|𝑠𝑢
𝑖−1 |

|𝑠𝑢
𝑖−1 |∑
𝑗=1

𝑣 ′𝑖−1, 𝑗 (17)

where 𝑠𝑢 ′
𝑖−1,𝑣 is the final vector representation of the tracks in

session 𝑠𝑢
𝑖−1, and 𝑣 ′

𝑖−1, 𝑗 is the embedding of the 𝑗-th track in ses-
sion 𝑠𝑢

𝑖−1. For tags, equation 3 is first used to obtain averaged tag
vectors for each track, then, similar to equation 17, a final vector
representation of the tags is obtained, such that

𝑠𝑢 ′𝑖−1,𝑔 =
1
|𝑠𝑢
𝑖−1 |

|𝑠𝑢
𝑖−1 |∑
𝑗=1

𝑔′𝑖−1, 𝑗 (18)

where 𝑠𝑢 ′
𝑖−1,𝑔 is the final vector representation of the tags in session

𝑠𝑢
𝑖−1, and 𝑔

′
𝑖−1, 𝑗 is the vector representation for the tags of the 𝑗-th

track in session 𝑠𝑢
𝑖−1. The track and tag representations of each

previous session are then fed to GRU networks.
Note that we employ unidirectional GRU networks since we

wish to maintain the order in which previous sessions occur such
that the evolving preferences of the user is captured. We update
the definition of 𝛼 ′ and 𝛽 ′ in equations 7 and 9 such that the final
hidden state of the previous sessions is taken into account:

𝛼 ′ = 𝑤𝑣 tanh(𝑈 𝑣𝑃𝑣𝑗 + 𝑏
𝑢𝑣 +𝑄𝑣 [

−→
ℎ𝑣 ;
−−→
ℎ𝑠

𝑢
𝑣] + 𝑏𝑞𝑣) + 𝑏𝑤𝑣 (19)

Figure 4: Overview of the ASLM-inspired history extension for STABR
on one of the components when 𝑥 = 3. Note that this is mirrored on the
second component.

𝛽 ′ = 𝑤𝑔 tanh(𝑈𝑔𝑃
𝑔

𝑗
+ 𝑏𝑢𝑔 +𝑄𝑔 [

−→
ℎ𝑔 ;
−−→
ℎ
𝑠𝑢𝑔] + 𝑏𝑞𝑔) + 𝑏𝑤𝑔 (20)

where [
−→
ℎ𝑣 ;
−−→
ℎ𝑠

𝑢
𝑣] is the concatenation of the final forward hidden

state of the BiGRU network for tracks and the final hidden state for
the tracks of the previous sessions. Using the extended attention
layer, we enable the weights, 𝛼 and 𝛽 to also model the alignment
of the hidden state representations of each time step in the active
session with the tracks heard by the user in previous sessions. This,
we hypothesise, helps STABR determine which tracks and tags in
the current session are more important based on the evolution of
the user’s long-term preferences in terms of both tracks and tags.

Additionally, we consider a second variation of the history ex-
tension similar to the ASLM architecture presented by Huang et al.
[19]. An overview of this variant can be seen in figure 4. In this vari-
ant, the track and tag representation presented in previous sections
in equations 17 and 18 are also fed to GRU networks. However, the
final hidden state is instead used as the initial state for the BiGRU
networks used for track and tag embeddings. Thus, the two variants
of the history extension consider the same information, but differ
in how the information is exploited.

4 DATASETS
We employ two distinct datasets in order to (a) reproduce the re-
sults attained by Sachdeva et al.’s STABR architecture and explore
our extensions described throughout section 3; and (b) investigate
the merits of using complex architectures in terms of generalis-
ability for music recommendation. Indeed, increasingly complex
models can be troublesome if such complexity and associated in-
crease in computational time is not accompanied by meaningful
gains in performance as observed by Ludewig et al. [28]. Addi-
tional concerns are further raised by Dacrema et al. [10] following
a systematic review of several recent, neural-based state-of-the-art
recommendation algorithms and their ostensible reproducability: If
a complex architecture cannot with reasonable effort be reproduced,
its proclaimed progress gets called into question. We argue that two
distinct datasets can help illuminate both the generalisability of a
complex architecture, as well as the potential of our proposed ex-
tensions. In the realm of session-based music recommendation, we
note that especially two datasets—and associated derivations—are
frequently employed (e.g. as seen in [27, 31, 43]):

7

• Lastfm-1K, originally compiled by Òscar Celma [4], contains
approximately 20 million listening events separated into
listening sessions submitted by 992 distinct Last.fm users
between 2005 and 2009.
• 30Music, compiled by Turrin et al. [41] as part of RecSys 2015,
contains approximately 5.6M tracks, approximately 31M lis-
tening events separated into listening sessions submitted by
45K distinct Last.fm users between 2014 and 2015.

We will be using modified versions of both sets. Specifically,
since we (a) require tags as part of STABR; and (b) wish to account
for skips, we necessarily need to augment both sets to include
tags and track durations. Due to the structure of both datasets,
we are, moreover, able to create histories by linking sessions of
the same user—something which is a requirement for our history
extensions. In the following two subsections, we detail the steps
taken to pre-process and otherwise prepare our data as well as
present general statistics of the sets. Note that while there is a small
overlap between the tracks present in both sets, there is, to the best
of our knowledge, no overlap between the users.

4.1 Lastfm-1K
In addition to being commonly employed, the Lastfm-1K dataset
was also used by Sachdeva et al. [33] in their original paper pre-
senting the STABR architecture. As such, we consider it a fitting
choice to include this dataset as well. However, whilst Sachdeva et
al. do rely on Last.fm to obtain their tags, they do not detail how
exactly they do so, nor is their augmented data, to the best of our
knowledge, publicly available. As such, in order to augment the
Lastfm-1K dataset with tags, we primarily rely on the Last.fm API,
but also conduct traditional crawling to account for instances in
which the API fails to return all available tags.

In obtaining track durations, we similarly rely on the Last.fm
API, but also reference Spotify’s API3 where applicable as to in-
crease our coverage of tracks with duration. In the rare event where
two different durations are available for the same track—usually a
difference of no more than a couple of milliseconds—we compute
the average. In order to compute skip values for tracks in a given
session, we compare the duration of a track with the amount of
seconds between the starting points of the current and the next
track. Doing so, we obtain a value denoting how much of a track
was played in a listening event before the next listening event was
registered. Specifically, we consider a track to be skipped if less
than 90% of a tracks duration has passed before the next listening
event occurs. We choose a value of 90% rather than 100% to account
for inaccuracies with timestamps of listening events and music
playback features such as faded transitions (Spotify’s default is five
seconds, e.g.). Furthermore, we opt for 90% rather than a lower
value as we are exclusively interested in knowing whether a user
actively skipped a track, and not how much a track was played.

Similar to [33], we narrow our focus to consider a six month
subset for each user in order to reduce the size of the dataset for our
experiments. Specifically, for each user, we include listening events
occurring from their first registered listening event and six months
after that point in time. We discard any track with only a single play
across the entire dataset. Sessions are constructed with a threshold
3https://developer.spotify.com/documentation/web-api/

Description Lastfm-1K 30Music
Number of users 836 10196
Number of sessions 68009 36471.67
Number of unique tracks 253621 209086.3
Number of unique tags 49301 52370.67
Avg. number of sessions per user 81.35 3.78
Avg. number of tracks per session 29.59 16.89
Avg. number of skips per session 4.88 0.1
Avg. number of plays per track 7.93 2.95
Avg. number of tags per track 4.47 3.48

Table 1: Descriptive statistics of the pre-processed Lastfm-1K dataset and
the 30Music dataset averaged over the pre-processed slices.

of 120 minutes which is the same threshold used by Sachdeva et
al. [33]. Thus, two consecutive listening events are considered to
be in the same session if they occur within 120 minutes of each
other. Similar to Sachdeva et al., we further discard any session
with less than five listening events in total. Conclusively, due to a
Tensorflow-specific issue, we also discard any session in which the
first played track does not have any associated tags—something
which affects approximately 0.1% of available sessions.

Descriptive statistics of the final pre-processed dataset4 can be
seen in table 1. From the statistics, we see that in the average ses-
sion of about 30 tracks, approximately every sixth track is skipped.
Figure 5b shows the distribution of the percentage of tracks in ses-
sions that have been skipped. The distribution shows that among
sessions containing skipped tracks, (10%, 20%] of tracks are skipped
most often followed by (0%, 10%]. In relatively few sessions are
more than half the tracks skipped. Specifically, sessions with 50%
of tracks or more being skipped account for 0.024% of all sessions.
This may indicate a low level of "exploration" sessions where users
attempt to discover new tracks, artists, or genres. However, it may
also be a sign of an era in which music was less disposable given
that the dataset was collected between 2005 and 2009, a time period
before music streaming services like Spotify became widely popular.
Further research is necessary to confirm this, however. At 22.2%,
sessions with no skips account for a large percentage of the data.

Figure 5a shows the distribution of the number of sessions for
users. The most common number of sessions is in the range 10-30,
which, on average, translates to an active session from about every
18th day to every sixth day throughout the six months. However,
there is also a sizeable portion, 35.3%, of users with 92 sessions
or more—something which translates to active sessions ranging
from every other day to multiple sessions per day. It is thus safe to
conclude that most users in the Lastfm-1K dataset compile relatively
large listening histories throughout six months.

Figure 5c shows the distribution of the percentage of tracks
in sessions that are unique, i.e. have not been played more than
once in a given session. This distribution shows that most sessions
contain few to no repetitions as sessionswith a percentage of unique
tracks at 90-100% constitute 65.9% of the data. Sessions where half
the tracks or more have been played more than once constitute
a mere 0.092% of the data. This indicates that the data contains
relatively few trivial cases in which a user exclusively listens to a
small selection of tracks on repeat.

4Processed data is available at https://github.com/x775/SW10/

8

(a) Sessions/user (b) %skipped tracks/session (c) %unique tracks/session

Figure 5: Selected graphs for the Lastfm-1K dataset. Figure 5a shows the distribution histogram of the number of sessions by frequency of users; figure 5b
shows the distribution bar chart of the percentage of skipped tracks by frequency of sessions; and figure 5c shows the distribution histogram of percentage of
unique tracks per frequency of sessions.

(a) Sessions/user (b) %skipped tracks/session (c) %unique tracks/session

Figure 6: Selected graphs for the 30Music dataset from a single slice; the remaining set of graphs are included in the appendix section A. Figure 6a shows
the distribution histogram of the number of sessions by frequency of users; figure 6b shows the distribution bar chart of the percentage of skipped tracks by
frequency of sessions; and figure 6b shows the distribution histogram of percentage of unique tracks per frequency of sessions.

4.2 30Music
In the case of 30Music, other work by Turrin et al. [40] happen to
also include descriptive information such as tags and durations,
and we are able to augment tracks using this. Since this data was
collected prior to an update to the Last.fm API, it does not suffer
from the issues requiring us to conduct additional crawling of the
Lastfm-1K set. Since a subset of the 30Music set is used across
multiple works by Ludewig et al. [27, 28], we opt for mirroring
their pre-processing steps such that we can modify their session-
rec framework for additional experiments. Specifically, this means
that rather than using the full 30Music set, we will use three 90-
day slices for training and three 5-day slices for testing similar to
Ludewig et al. [27]. The reason for creating three slices as opposed
to merely one is to get a more representative sample of the entire
dataset. Additionally, as a result of replicating Ludewig et al.’s pre-
processing steps, no unseen data will be present in the testing slices.
This is in contrast to the Lastfm-1K set which has a high likelihood
of containing unseen data in any split. We repeat the steps described
in section 4.1 to compute skips for all 30Music slices. Descriptive
statistics averaged across the final three pre-processed slices can
also be seen in table 1. Most notably, the average number of skips
per session is at 0.1, which is low considering that the data features
16.89 tracks per session on average. Figure 6b further highlights

the low number of skips for the first slice of the 30Music data as
sessions with no skips account for 89.77% of all sessions. Sessions
with (0%, 20%] of tracks being skipped account for most sessions
that contain skips. Specifically, in only 91 sessions have more than
20% of the tracks been skipped. Another significant difference from
the Lastfm-1K dataset is the average number of sessions per user
at 3.57. Given that the slices covers a period of 95 consecutive
days when combining training and test data, the average user has
an active session roughly every 27th day. Figure 6a also shows
that most users in the first data slice have less than ten sessions,
and that few users come close to a total of 20 sessions or more.
Specifically, only 119 of the 9361 users have 20 sessions or more.
Thus, most users in the 30Music dataset compile small listening
histories compared to users in the Lastfm-1K dataset, even when
accounting for the fact that each slice is only three months.

One aspect in which the 30Music dataset is similar to the Lastfm-
1K dataset, is in terms of how many tracks in each session are
unique. Figure 6c shows the distribution of the percentage of tracks
in sessions that are unique for the first data slice. This figure reveals
a distribution similar to the one obtained for the Lastfm-1K data
shown in figure 5c. Thus, the 30Music dataset also seems to contain
few trivial cases in which sessions contain a small selection of
repeating tracks.

9

5 EVALUATION
We conduct experiments on both datasets described in sections
4.1 and 4.2. In order to comprehensively evaluate the potential of
skips as a predictor for session-based music recommendation, we
additionally consider a variation of the pre-processed Lastfm-1K
data in which we discard all sessions not containing any skipped
tracks such that the presence of skips is increased. We include
this variation to test whether different distributions influence the
predictive power of skips. We employ the following baselines:
• POP : The most popular tracks in the training set are recom-
mended.
• S-POP : The most popular tracks in the current session are
recommended with tiebreaks being resolved by using the
most popular track in the training set.
• SKNN : A modified version of the Session-Based Collabo-
rative Filtering (SSCF) model proposed by Park et al. [30].
Specifically, we compute

𝑟𝑠,𝑖 = 𝑟𝑠 +
∑

𝑣∈𝑆 (𝑠)𝑘 𝑠𝑖𝑚(𝑠, 𝑣) (𝑟𝑣,𝑖 − 𝑟𝑣)∑
𝑣∈𝑆 (𝑠)𝑘 𝑠𝑖𝑚(𝑠, 𝑣)

(21)

where 𝑆 (𝑠)𝑘 represents the 𝑘-th session neighbours for the
current session 𝑠 . 𝑟𝑠 and 𝑟𝑣 represent the average rating for
sessions 𝑠 and 𝑣 under comparison. 𝑟𝑣,𝑖 represents the fre-
quency a track 𝑖 is played in session 𝑣 . 𝑠𝑖𝑚(𝑠, 𝑣) represent the
similarity between sessions 𝑠 and 𝑣 . In this specific implemen-
tation, we apply cosine similarity, though other similarity
measures could also be used.
• SKNN-SKIP : We extend the above SKNN model to also ac-
count for skips. Specifically, in the event that a track has been
skipped in a session, we do not increment its frequency. This
approach means we exclusively consider skips as a negative
signal.
• SABR: The feature-ignorant version of STABR as proposed
by Sachdeva et al. [33]. We include this model to confirm the
relevance of tags. Its implementation is identical to that of
STABR as detailed in section 3.2, but only the component
receiving tracks as input is used.
• STABR: The original, feature-aware STABR architecture as
proposed by Sachdeva et al. [33] and as detailed throughout
section 3.2.

As noted in section 4.2, no unseen data is present in the testing
slices of the 30Music set. This property enables us to include a
number of additional baselines for this set which assumes this
property to be true. Specifically, we are including the following
baselines in addition to those also employed with the Lastfm-1K
dataset:
• VSKNN : Vector Multiplication Session-Based kNN as pro-
posed by Ludewig et al. [28] is an extension to the traditional
SKNN which places increased emphasis on the more recent
events of a session when computing similarities. Specifi-
cally, the weights of elements are determined by a linear
decay function which depends on the position of the element
within the specific session—effectively ensuring elements
appearing earlier in the session get a lower weight.
• FPMC: Amatrix factorisation andMarkovChain-basedmodel
proposed by Rendle et al. [32] and introduced in section 2.1.

• FOSSIL: An alternativematrix factorisation andMarkovChain
based model proposed by He and McAuley [13]. The over-
arching goal of FOSSIL is to address data sparsity issues
sometimes hampering the original FPMC model.
• GRU4REC: The original implementation as proposed by Hi-
dasi et al. [15] and otherwise introduced in section 2.1.
• GRU4REC2: The same as GRU4REC, but with an updated loss
function as proposed by Hidasi et al. [14] and mentioned in
section 2.1.

In addition to the abovementioned baselines, we evaluate our
extensions on both datasets:
• STABR-SKIPS: The extension proposed in section 3.3.1.
• STABR-HIST : The extension proposed in section 3.3.2.
• STABR-HIST-II : The alternative approach to including history
inspired by the ASLM architecture by Huang et al. [19] as
proposed in section 3.3.2.

5.1 Experimental Setup
We employ categorical cross entropy as the loss function for training
the STABR architecture and our proposed extensions such that the
loss of a training session is obtained as:

−
|𝑉 |∑
𝑖=0

𝑦𝑖 log(𝑦𝑖) (22)

where 𝑦𝑖 is a one-hot vector representing the target track, and 𝑦𝑖 is
the probability distribution obtained from the softmax activation
in the last layer of the STABR architecture (see figure 1). Similar
to Sachdeva et al. [33], we employ Adagrad by Duchi et al. [11]
as our optimiser algorithm. In short, Adagrad automatically scales
parameter-specific learning rates according to the frequency of
which a given parameter is updated during training. This avoids
the issues of setting the learning rate too high, too low, or merely
fitting to a single dimension. In separating our data for training
and testing, we once again refer to Sachdeva et al. and use the
first 70% of each users’ sessions in order of occurrence as training
data for the Lastfm-1K dataset. The next 10% is used as validation
data, and the remaining 20% is used as testing data. In preparing
the 30Music dataset, we follow the procedure outlined in section
4.2 such that three 90-day splits are used as training data, and
three 5-day (corresponding to the subsequent five days following
the 90th day) splits are used as test data. Similar to Ludewig et al.
[28], we also create a validation set for the 30Music dataset. We do
this by randomly sampling 10% of the training data. We follow the
approach of Li et al. [25] and implement sequence splitting such that
for the input session {𝑣1, 𝑣2, ..., 𝑣𝑖−1, 𝑣𝑖 }, we generate sub-sessions:
{𝑣1, 𝑣2}, {𝑣1, 𝑣2, 𝑣3}, ..., {𝑣1, 𝑣2, ..., 𝑣𝑖−1}. We complete this step for
both datasets. The last track of each sub-session is the target track.

In tuning our hyperparameters for STABR-based models, we
employ the Hyperband algorithm as proposed by Li et al. [26] due
to (a) the practicality of it being available through the Keras-tuner
library5; and (b) the fact that it provides faster optimisation than
conventional tuning algorithms by exploiting random sampling and
early stopping. We complete between 40 and 70 trials depending

5https://github.com/keras-team/keras-tuner

10

Lastfm-1K Hyperparameters

SA
B
R

STA
B
R

STA
B
R
-SK

IPS

STA
B
R
-H

IST

STA
B
R
-H

IST-II

Batch Size 32 32 32 32 32
Hidden Size 32 96 96 96 96
Learning Rate* 0.15 0.2 0.2 0.2 0.2
Tag Emb. Size N/A 100 100 100 100
Track Emb. Size 50 50 50 50 50
Dense Layer Size 75 50 75 50 50
Dropout 0.1 0.1 0.1 0.1 0.1
Skip Emb. Size N/A N/A 15 N/A N/A
History Size N/A N/A N/A 10 10
Tag Hist. HS** N/A N/A N/A 64 96
Track Hist. HS** N/A N/A N/A 64 96
*initial learning rate, **HS = Hidden Size

Table 2: Hyperparameters for STABR-based Lastfm-1K models.

30Music Hyperparameters

SA
B
R

STA
B
R

STA
B
R
-SK

IPS

STA
B
R
-H

IST

STA
B
R
-H

IST-II

Batch Size 32 32 32 32 32
Hidden Size 64 64 96 64 64
Learning Rate* 0.15 0.15 0.2 0.15 0.15
Tag Emb. Size N/A 100 100 100 100
Track Emb. Size 75 75 50 75 75
Dense Layer Size 25 25 75 25 25
Dropout 0.1 0.1 0.1 0.1 0.1
Skip Emb. Size N/A N/A 15 N/A N/A
History Size N/A N/A N/A 10 10
Tag Hist. HS** N/A N/A N/A 64 64
Track Hist. HS** N/A N/A N/A 64 64
*initial learning rate, **HS = Hidden Size

Table 3: Hyperparameters for STABR-based 30Music models.

on the model before selecting our parameters. The final hyperpa-
rameters for STABR-based models can be seen in table 2 for the
Lastfm-1K dataset, and table 3 for the 30Music dataset. Additional
hyperparameters for the 30Music dataset baselines are included in
appendix B. Note that while the learning rate may appear high, it
is the initial learning rate and will automatically be tweaked as our
models progress in training due to us employing Adagrad.

Similar to Sachdeva et al. [33], we also employ dropout [36] for
the first dense layer in the STABR architecture and all the extended
variants. This helps reduce the risk of overfitting by randomly
ignoring neurons in the dense layer during training such that the
effect of co-adaptations between individual neurons is reduced.

We train all neural-based models using a single NVIDIA Tesla
V100 with TensorFlow version 2.1.0 for STABR-based models and
Theano 1.0.3 for GRU4REC and GRU4REC2. We train all kNN-
and factorisation-based models on clusters with 3.1GHz Intel Xeon
SkyLake CPUs. In the case of SKNN and SKNN-SKIPS for the Lastfm-
1K dataset specifically, we use 100 and 125 neighbours, respectively.
Indeed, we find that the performance gain obtained by increasing
the amount of neighbours stagnates around these numbers. This is
illustrated in figure 10 in appendix C. We employ two metrics for
evaluating our baselines and proposed extensions:

• Hit Rate (HR): A measure of how frequently the target item is
found in the top 𝑘 recommendations of a model. The metric
is calculated as 𝐻𝑅 = ℎ𝑖𝑡𝑠

𝑡𝑜𝑡𝑎𝑙
, where ℎ𝑖𝑡𝑠 is the number of

test examples wherein the target item is found in the top 𝑘
recommended items, and 𝑡𝑜𝑡𝑎𝑙 is the total number of test
examples. This is equivalent to the recall metric known from
information retrieval [49].
• Mean Reciprocal Rank (MRR): A measure for evaluating a
model’s ability to rank the target item highly among top 𝑘
recommendations in terms of assigned probability [9]. Specif-
ically, the MRR is calculated as follows:

𝑀𝑅𝑅 =
1

𝑡𝑜𝑡𝑎𝑙

𝑡𝑜𝑡𝑎𝑙∑
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(23)

where 𝑡𝑜𝑡𝑎𝑙 is the total number of test examples, and 𝑟𝑎𝑛𝑘𝑖 is
the rank of the target item for test example 𝑖 . As an example,
if a target item is assigned the second highest probability
among the top 𝑘 recommendations, the rank of the target
item is 2 and the reciprocal rank becomes 1

2 . On the other
hand, if the target item is not among the top 𝑘 recommenda-
tions, the reciprocal rank is 0.

Note that some papers, e.g. [10] and [27], employ the Normalized
Discounted Cumulative Gain (NDCG) metric which is similar to
MRR in nature. Since we are not dealing with a ranking akin to
search results and similar, but rather whether a track was played
or not, and thus have no relevancy score for any track, we consider
MRR better suited for our use-case.

5.2 Research Questions
Based on our hypotheses and extensions to the STABR architec-
ture expounded throughout section 3, we consider the following
research questions for evaluation:

RQ1 Does the STABR architecture and session-based k-nearest
neighbours benefit from being aware of skips during a ses-
sion in terms of HR and MRR?

RQ2 Does the STABR architecture benefit from being aware of
a user’s previous sessions when recommending for their
currently active session in terms of HR and MRR?

RQ3 Does the STABR architecture and our extensions consistently
outperform simpler approaches to session-based recommen-
dation such as k-nearest neighbours?

11

Lastfm-1K
HR@ MRR@

10 20 30 40 50 10 20 30 40 50
POP 0.0007 0.0018 0.0033 0.0047 0.0057 0.0003 0.0003 0.0004 0.0004 0.0005
S-POP 0.1269 0.1749 0.1966 0.2098 0.2169 0.0586 0.0620 0.0629 0.0632 0.0634
SKNN 0.1907 0.2694 0.3066 0.3332 0.3534 0.0639 0.0695 0.0710 0.0717 0.0722
SKNN-SKIPS 0.1777 0.2473 0.2832 0.3088 0.3280 0.0602 0.0652 0.0666 0.0673 0.0678
SABR 0.2847 0.3042 0.3159 0.3247 0.3316 0.2336 0.2350 0.2354 0.2357 0.2358
STABR 0.2976 0.3197 0.3328 0.3427 0.3500 0.2402 0.2417 0.2422 0.2425 0.2427
STABR-SKIPS 0.2891 0.3091 0.3205 0.3291 0.3355 0.2363 0.2377 0.2381 0.2384 0.2385
STABR-HIST 0.2944 0.3182 0.3318 0.3416 0.3493 0.2355 0.2372 0.2377 0.2380 0.2382
STABR-HIST-II 0.2970 0.3201 0.3337 0.3439 0.3517 0.2378 0.2385 0.2399 0.2402 0.2404

Table 4: All results from experiments conducted on the Lastfm-1K dataset. The best result for each metric is boldfaced.
30Music

HR@ MRR@
10 20 30 40 50 10 20 30 40 50

POP 0.0027 0.0047 0.0067 0.0084 0.0115 0.0006 0.0008 0.0008 0.0009 0.0010
S-POP 0.0987 0.1185 0.1283 0.1320 0.1358 0.0512 0.0526 0.0530 0.0531 0.0532
SKNN 0.2517 0.3466 0.3942 0.4244 0.4444 0.0855 0.0922 0.0934 0.0943 0.0947
VSKNN 0.3057 0.3815 0.4118 0.4301 0.4440 0.1120 0.1174 0.1186 0.1192 0.1195
FMPC 0.0729 0.0819 0.0877 0.0912 0.0945 0.0555 0.0561 0.0564 0.0565 0.0565
FOSSIL 0.0295 0.0408 0.0497 0.0556 0.0604 0.0123 0.0132 0.0135 0.0137 0.0138
GRU4REC 0.3007 0.3246 0.3364 0.3449 0.3511 0.2310 0.2326 0.2331 0.2333 0.2335
GRU4REC2 0.3322 0.3533 0.3626 0.3685 0.3734 0.2457 0.2472 0.2475 0.2477 0.2478
SABR 0.2097 0.2233 0.2313 0.2381 0.2420 0.1775 0.1785 0.1788 0.1790 0.1791
STABR 0.2024 0.2163 0.2255 0.2308 0.2364 0.1702 0.1712 0.1715 0.1717 0.1719
STABR-SKIPS 0.1943 0.2082 0.2171 0.2239 0.2292 0.1570 0.1580 0.1583 0.1586 0.1587
STABR-HIST 0.1818 0.1935 0.2041 0.2100 0.2155 0.1483 0.1493 0.1497 0.1498 0.1499
STABR-HIST-II 0.1823 0.2016 0.2119 0.2173 0.2234 0.1439 0.1450 0.1458 0.1459 0.1463

Table 5: All results averaged from experiments conducted on the 30Music dataset. The best result for each metric is boldfaced.
Lastfm-1K-Skips

HR@ MRR@
10 20 30 40 50 10 20 30 40 50

SKNN 0.1778 0.2536 0.2898 0.3164 0.3371 0.0594 0.0647 0.0662 0.0670 0.0674
SKNN-SKIPS 0.1630 0.2275 0.2621 0.2870 0.3061 0.0552 0.0598 0.0611 0.0619 0.0624
STABR 0.2846 0.3066 0.3194 0.3287 0.3361 0.2303 0.2318 0.2324 0.2326 0.2328
STABR-SKIPS 0.2720 0.2964 0.3107 0.3211 0.3292 0.2117 0.2134 0.2139 0.2142 0.2144

Table 6: All results from experiments conducted on the Lastfm-1K dataset where all sessions have skips. The best result for each metric is boldfaced.

5.3 Results and Discussion
In the following sections, we present our results and discuss them
in the context of each of the three research questions presented
in section 5.2. All results discussed throughout this section are
available in tables 4, 5, and 6.

5.3.1 RQ1. As noted in section 3.3.1, skips constitute implicit
feedback provided by the user during a session. Our hypothesis is
that by actively accounting for skips, we are able to better capture
the consumption motivations—i.e. intent—and thus the short-term
preferences of a user during a given session. In order for this hy-
pothesis to hold, we should thus expect our STABR-SKIPS and
SKNN-SKIPS extensions to attain increased performance compared
to the skip-ignorant STABR and SKNN architectures, respectively.

A fundamental requirement for STABR-SKIPS and SKNN-SKIPS
to have any chance of confirming our hypothesis is necessarily that

skips are present in the data. As such, considering the substantially
larger number of average skips per session in the Lastfm-1K dataset
(4.88) compared to that of the 30Music dataset (0.1), we should
expect the greatest difference to occur with the Lastfm-1K set.

What quickly becomes apparent in table 4 is how the STABR-
SKIPS extension is inferior to both the original STABR as well as
our history-based extensions across all 𝐻𝑅@𝑘 values. Addition-
ally, while we note a small uptick in the 𝑀𝑅𝑅@10 performance
compared to STABR-HIST—0.2363 versus 0.2355—the performance
of STABR-SKIPS remains inferior to that of the original STABR
and STABR-HIST-II across all𝑀𝑅𝑅@𝑘 values. It performs approx-
imately on par with STABR-HIST on 𝑀𝑅𝑅@𝑘 with 𝑘 ≥ 20. On
the other hand, STABR-SKIPS does hold a narrow lead against the
feature-ignorant SABR across all 𝐻𝑅@𝑘 and𝑀𝑅𝑅@𝑘 values. This,
however, is more likely due to it also accounting for tags than it

12

accounting for skips. In fact, that STABR-SKIPS scores very sim-
ilar to SABR in the first place suggests that any gain attained by
including tags is nullified by accounting for skips.

We further observe a similar pattern with our SKNN-SKIPS ex-
tension: Compared to the standard SKNN, the extension performs
poorly across all 𝐻𝑅@𝑘 and𝑀𝑅𝑅@𝑘 values. It is in this regard im-
portant to note how the SKNN-SKIPS extension exclusively consid-
ers skips as negative signals, whereas the STABR-SKIPS extension
can consider skips as either positive or negative signals. Interest-
ingly, neither approach seems effective in improving performance
compared to their skip-ignorant counterparts. In other words, nei-
ther the STABR nor the SKNN architecture seems to immediately
benefit from being aware of skips during a session in the Lastfm-1K
dataset. What is more, given the reduced performance, there is a
general argument to be made that accounting for skips introduces
more noise than valuable signals indicative of the user’s short-term
preferences in the Lastfm-1K dataset. In pursuit of affirming this,
and in an attempt to reduce the risk of inadvertently introducing
unnecessary noise, we devise an alternative version of the STABR-
SKIPS extension in which we exclusively account for skips in the
tracks-component as opposed to both components. However, this
extension only further diminishes performance.

On the 30Music dataset presented in table 5, our STABR-SKIPS
extension, similarly, does not outperform STABR nor any of our
other extensions. Compared to the Lastfm-1K dataset, however, the
presence of skips in this dataset is significantly lower. As such, the
results attained on the 30Music dataset are largely expected as we
by any account are introducing more noise than signal. What is
worth noting, however, is how STABR-SKIPS outperforms our two
history extensions by a significant margin—something which it did
not on the Lastfm-1K set. We will discuss this in section 5.3.2.

While the results presented in tables 4 and 5 are not exactly
promising, we are hesitant to definitively dismiss the value of skips
in general: It might be that neither dataset contains sufficient skips
to derive any value. Indeed, and as speculated in section 4.1, newer
data could reflect changed consumption behaviours favouring more
skips as a result of increased disposability per the nature of stream-
ing. As such, and as briefly noted in section 5, we devise an alterna-
tive version of the Lastfm-1K dataset consisting only of sessions
containing skips. Compared to the complete dataset with an aver-
age number of skips per session of 4.88, the Lastfm-1K-Skips set has
approximately 29% more skips with an average of 6.29 per session.

Note that since we are exclusively interested in determining the
efficacy of including implicit feedback in the form of skips, we only
run the SKNN and STABR baselines alongside their skips extensions
on this set. Additionally, we do not repeat this experiment with
the 30Music dataset given its already low number of skips. The
results from this dataset are presented in table 6. Once again, neither
extension manages to outperform its skip-ignorant counterpart.
In fact, the relative difference in performance across all 𝐻𝑅@𝑘

and 𝑀𝑅𝑅@𝑘 values between STABR-SKIPS and STABR as well
as SKNN-SKIPS and SKNN is slightly greater in this set than in
the normal Lastfm-1K set. Correspondingly, these results further
support the notion that skips not merely constitute poor signals,
but in fact introduce noise when accounted for in data similar
to the Lastfm-1K and 30Music sets. As such, in answering RQ1,

no additional performance for either architecture is obtained by
actively accounting for skips in currently available data.

5.3.2 RQ2. Our hypothesis is that accounting for long-term
preferences yields a more accurate user representation from which
more accurate predictions can be computed. Indeed, where the
original STABR architecture considers each session independently—
and thus exclusively accounts for short-term preferences—the work
presented throughout section 2.2 (e.g. Chen et al. [5] or Tang et
al. [39]) suggests that preferences not only evolve over time, but
that value can be derived from long-term preferences in general.
It is in this regard worth accentuating how the 30Music dataset
contains substantially less sessions per user (3.78) compared to
Lastfm-1K (81.35) to the point where a significant portion of users
have next-to-no history. As such, and similar to RQ1, we should
expect the greatest difference to occur with the Lastfm-1K set.

As seen in table 4, the STABR-HIST-II extension consistently out-
performs the STABR-HIST extension across all𝐻𝑅@𝑘 and𝑀𝑅𝑅@𝑘

values on the Lastfm-1K set. Recall, where STABR-HIST feeds a
representation of the user’s prior sessions directly to the attention
layer, STABR-HIST-II uses the same representation as the initial
hidden state for the BiGRU networks. The results attained here
suggests that this latter approach is more beneficial. The repre-
sentation of the user’s past 𝑘 sessions thus proves a better initial
hidden state, ultimately producing a more accurate output hidden
state representation at the end of the BiGRU networks.

What is more, STABR-HIST-II narrowly outperforms all other
baselines on 𝐻𝑅@20, 𝐻𝑅@30, and 𝐻𝑅@40, as well as outperforms
all but SKNN on 𝐻𝑅@50. STABR-HIST-II does, however, fall short
of STABR across all 𝑀𝑅𝑅@𝑘 values as well as 𝐻𝑅@10. At face
value, this suggests that in terms of hit rate, accounting for prior
sessions in predicting the next-track in the current session remains
a promising endeavour. We conduct a one-tailed sign test [34] in
order to compare STABR-HIST-II with STABR. We ignore samples
where the two approaches ties; that is, when both are either correct
or incorrect. The test produces the following 𝑝-values:

HR@20 𝑝 = 0.1928
HR@30 𝑝 = 0.0183
HR@40 𝑝 = 0.0032
HR@50 𝑝 = 0.0002

Weobserve that while there is a narrow difference for the𝐻𝑅@20
score in favour of STABR-HIST-II, it cannot be considered signif-
icant at significance level 𝛼 = 0.05. However, for 𝐻𝑅@𝑘 with
𝑘 ≥ 30, STABR-HIST-II can be considered to significantly out-
perform STABR. In the case of 𝐻𝑅@50, while SKNN scores the
best overall, STABR-HIST-II significantly outperforms STABR. The
fact that the higher 𝑘 , the better performance of STABR-HIST-II
suggests that the tracks STABR misses can be identified through
the prior sessions of the given user. On the other hand, in regards to
𝑀𝑅𝑅 for both STABR-HIST and STABR-HIST-II, we observe a drop
across all𝑀𝑅𝑅@𝑘 values compared to STABR. This is interesting
as it suggests that while long-term dependencies appear to help
increase the hit rate, it does not necessarily help output the correct
answer sooner. In fact, doing so appears to gently skew the order
of tracks in the wrong direction in terms of performance.

On the 30Music set, however, neither STABR-HIST nor STABR-
HIST-II performs very well. In fact, they both perform below STABR

13

as well as the feature-ignorant SABR across all𝐻𝑅@𝑘 and𝑀𝑅𝑅@𝑘

values. We speculate that this is the result of the substantially lower
average amount of sessions per user: If no, or only a few, sessions
constitute a user profile, we risk either introducing nothing at all
or just noise. Additionally, with only 3.78 sessions per user during
a 90-day period, it might also be that the few sessions present are
too far apart to have any interconnected relationships in regards
to preference. We note that the relative difference in performance
of the two extensions is a lot smaller (e.g. 0.0005 between STABR-
HIST and STABR-HIST-II for 𝐻𝑅@10) on this dataset compared
to the Lastfm-1K set. We speculate that since HIST-II generally
outperforms HIST on the Lastfm-1K set, a lack of user histories
especially hampers this extension.

In other words: If sufficiently rich user history representations
cannot be established, attempting to include such representations
when predicting the next-track for the current session is akin to
introducing noise. This is further supported by the fact that STABR-
SKIPS outperforms both history extensions on the 30Music dataset
despite scoring below both on the Lastfm-1K set across all 𝐻𝑅@𝑘

values. This, however, is not a problem we can immediately solve
as it relates to the infamous cold-start problem.

On the other hand, seeing how STABR-HIST-II generally keeps
up with STABR on the Lastfm-1K set, and on some occasions out-
performs it, we argue that there is reason to conduct further ex-
perimentation given adequate data. However, the fact that actively
accounting for long-term preferences through prior sessions does
not produce significantly better results at lower𝑘 hit rates, and at no
𝑀𝑅𝑅@𝑘 values, suggests a couple of things: Specifically, we might
not be accounting for long-term preferences optimally, and/or short-
term preferences could be the most important factor in session-
based music recommendation for the data used in our experiments.

As such, in answering RQ2, the STABR architecture does not
immediately seem to significantly benefit from being aware of
a user’s previous session at 𝐻𝑅@𝑘 with 𝑘 ≤ 20 on the Lastfm-
1K set. However, at higher 𝑘-values, STABR-HIST-II significantly
outperforms STABR at significance level 𝛼 = 0.05. While we do
not see the same results reproduced on the 30Music set, we argue
that this is due to the low amount of average sessions per user. As
such, we are hesitant to dismiss the value offered by long-range
dependencies in general due to the promising performances at
higher 𝑘 hit rates on the Lastfm-1K dataset with STABR-HIST-II.
These results ultimately suggests that value can be derived from
histories, but that knowing howmuch to include and, perhaps more
importantly, how to include it is the crucial question warranting
further research.

5.3.3 RQ3. Given that the efficacy and perceived progress of
recent state-of-the-art, complex neural approaches in session-based
recommendation has been brought into question by both Ludewig
et al. [28] and Dacrema et al. [10], we consider an evaluation of
the performance of STABR, our proposed extensions, and simpler
approaches vital for future research. Additionally, since STABR
is originally only evaluated on a single dataset, evaluating the
architecture on a second, distinctly different dataset, can further
help illuminate the overall generalisability of the architecture as
well as delineate circumstances under which complex architectures
are justifiably. Indeed, as illustrated both in table 1, as well as figures

5 and 6, there are distinct differences between the Lastfm-1K and
30Music datasets also reflected in the performance of our baselines.

On the Lastfm-1K dataset, SABR, STABR, and our extensions
all outperform simpler approaches like POP and S-POP across all
𝐻𝑅@𝑘 and𝑀𝑅𝑅@𝑘 values. They similarly outperform SKNN on
𝐻𝑅@10, 𝐻𝑅@20, and 𝐻𝑅@30. However, for higher 𝐻𝑅@𝑘 values,
the SKNN architecture proves competitive, and even manages to
outperform all other approaches for 𝐻𝑅@50. Worth noting is that
while SKNN-SKIPS also increases its performance on higher𝐻𝑅@𝑘

values proportionally, it never matches that of the standard SKNN.
Indeed, a similar pattern is observed on the Lastfm-1K-Skips set in
which the standard SKNN model also produces the best results for
𝐻𝑅@50. These results reinforce the concerns raised by Ludewig et
al. and Dacrema et al. as they suggest that under certain circum-
stances, simpler approaches are not merely competitive, they are
sometimes superior to even complex neural approaches.

Our results attained on the 30Music dataset further support this
seeing how the highest scores for all values of 𝐻𝑅@𝑘 , excluding
@10, is attained by either the SKNN or the VSKNN model. Worth
noting is how neither factorisation-basedmodel (FMPC and FOSSIL)
performs very well. These results match those attained by Ludewig
et al. [27, 28], and suggests that KNN and neural-based models are
likely best suited for session-based music recommendation.

While SKNN and its variants manages to produce good results
in terms of hit rate, they are not competitive approaches in terms
of MRR. Indeed, as seen across tables 4, 5, and 6, SKNN, VSKNN,
and SKNN-SKIPS all perform well below the neural approaches on
𝑀𝑅𝑅@𝑘 for all values. Thus, we observe that while SKNN performs
well in terms of hitting the target track, when it comes to ranking
the target track highly, it is consistently outperformed by neural
approaches. This suggests that in a practical setting, the optimal
choice between a simpler approach such as SKNN, and more com-
plex neural approaches such as STABR or GRU4REC, is largely
dependent on the context in which the recommender system will
be used. If, for instance, the goal is to present a user with a list of
tracks that they may enjoy based on tracks in their current session,
SKNN is very capable. However, if the goal instead is automatic
continuation of the current session—in which only the top recom-
mended track matters—neural approaches may be better suited per
their ability to more accurately rank the correct target track.

Among neural approaches, table 5 reveals that SABR, STABR, and
all extended STABR variants are outperformed by both GRU4REC
variants across all metrics on the 30Music dataset. In terms of MRR,
GRU4REC2 proves the best performing approach. While GRU4REC
and STABR are similar approaches in the sense that they both em-
ploy GRU networks, there are two major differences between the ar-
chitectures: GRU4REC does not consider item features such as tags,
nor does it employ an attention mechanism similar to STABR. The
fact that the GRU4REC architecture performs better than STABR
and our extensions on the 30Music dataset could suggest that

• tags are not good predictors for the 30Music dataset, and
may in fact add more noise than signal to the model; and
• employing an attention mechanism is not immediately ben-
eficial for the 30Music dataset.

The first claim is supported by the fact that SABR, the feature-
ignorant version of STABR, performs better than STABR and all its

14

Figure 7: Heatmaps of the tracks and tags attention weights for three randomly sampled sessions from the 30Music dataset. Darker shades of blue represents
a higher weight assigned by the attention mechanism.

Figure 8: Heatmaps of the tracks (left) and tags (right) attention weights for one randomly sampled session from the Lastfm-1K dataset. Darker shades of
blue represents a higher weight assigned by the attention mechanism.

extended variants across all metrics. This is most likely explained
by a lower number of tags per track in the 30Music dataset com-
pared to the Lastfm-1K dataset as established in table 1. Indeed,
comparing the amount of tags between the two datasets reveals
a significant difference: 1.25% of all tracks in the Lastfm-1K have
no associated tags, while for the 30Music data, tracks with no tags
constitute 22.29% of all tracks averaged over the three slices. Thus,
with relatively many tracks without any tags for STABR to exploit,
the architecture’s ability to establish meaningful patterns of genre
descriptors in 30Music sessions is hampered.

In order to investigate the second claim of whether an attention
mechanism is beneficial for the 30Music dataset, we visualise the
item weights for three randomly sampled sessions in the 30Music
test data. Heatmaps of the weights applied by the attention mech-
anism for both tracks (left) and tags (right) can be seen in figure
7. Overall, these heatmaps show that the attention weights for all
three sampled sessions are heavily focused towards the end—i.e.
the most recent—of each session for both tracks of tags. This is
especially apparent for the first session in which the last track is
assigned close to 100% of the attention. Similarly, for the second ses-
sion, the last two tracks are assigned close to 100% of the attention.
In session three, on the other hand, the attention is somewhat more
distributed with the fourth and second last track being assigned
the highest weights. Similarly, for tags in all three sessions, the
attention is also spread, but still primarily focused around the tail
of each session. In sessions such as these, we argue that the atten-
tion mechanism might not have been an advantageous component.
Indeed, traditional GRUs might have been able to produce similar
results. Of course, this argument assumes that there really are no
long-range dependencies present in the sampled sessions, and that
our attention mechanism has not failed to identify them.

However, while the sampled sessions from the 30Music set do
not immediately suggest the presence of long-range dependencies,
the story is different on the Lastfm-1K set: The visualised attention
weights of tracks and tags from a single, randomly sampled session
from the Lastfm-1K dataset is seen in figure 8. Note that the scale
in this figure is changed compared to figure 7, and that they thus
cannot be directly compared. However, it is conspicuous that the
attention weight values are more evenly distributed across the
session relative to any of the 30Music sessions. This is evident from

the fact that the highest value observed for both tracks and tags is
only slightly higher than 0.03. The biggest weights, furthermore,
do not seem to be centered around the tail of the session as they are
for the 30Music sessions. Obviously, any conclusion regarding the
effectiveness of attention cannot be drawn due to the small sample
size. However, these results, nonetheless, suggest that an attention
mechanism could be less useful for the 30Music set, and similar
data, if the patterns in figure 7 are prevalent throughout. On the
other hand, and with the same reservations regarding sample size as
above, the attention mechanism quite clearly captures long-range
dependencies on the Lastfm-1K set.

As such, in answering RQ3 asking whether the STABR archi-
tecture and our extensions consistently outperform simpler ap-
proaches, the answer is twofold. Specifically, while STABR and our
extensions consistently outperform simpler approaches such as
SKNN and VSKNN in terms of𝑀𝑅𝑅@𝑘 for all values, no STABR-
based model consistently outperforms SKNN or VSKNN in terms
of hit rate. This applies to both datasets. Notably, on the 30Music
dataset, the STABR architecture is also beaten by the GRU4REC
architecture across all 𝐻𝑅@𝑘 and 𝑀𝑅𝑅@𝑘 values. However, since
the GRU4REC architecture assumes no unseen data to be present in
the testing set, this limitation naturally reduces GRU4REC’s overall
generalisability. This, arguably, gives the STABR architecture an
edge in some datasets. However, sound performance from STABR
appears to also require the presence of tags—something which sim-
ilarly limits the type of data in which STABR can be effective. On
the other hand, even without many tags and ignoring GRU4REC,
the STABR architecture still outperforms all other baselines on
𝑀𝑅𝑅@𝑘 on both datasets.

6 CONCLUSION AND FUTUREWORK
In this paper, we implement the state-of-the-art session-basedmusic
recommender, STABR, and explore extensions to the architecture
seeking to better accommodate (a) short-term preferences by in-
corporating implicit feedback during sessions; and (b) long-term
preferences by accounting for prior sessions.

Specifically, we implement custom, contextual GRU networks in
order to enable the STABR architecture to capture implicit feedback
in the form of skips during the current session. Additionally, we

15

extend the STABR architecture with a third, GRU-based compo-
nent which considers the tracks and tags present in a user’s prior
sessions to accommodate long-term preferences. We consider two
distinct approaches for exploiting this representation of long-term
preferences: As information used directly in the attention mecha-
nism, and as the initial hidden state for the two BiGRU networks
in the main STABR architecture.

The results of our experiments conducted on two real-world
datasets—Lastfm-1K and 30Music—indicate that skips cannot be
considered worthwhile predictors for the next track of a session.
Indeed, they seem to consistently introduce more noise than signal.
In accommodating long-term preferences, we find that feeding a
representation of prior sessions directly to the attention mechanism
adds noise. However, using the same long-term preferences repre-
sentation as the initial hidden states in STABR’s BiGRU networks
allows the extended architecture to beat the original STABR and
all baselines in terms of hit rate—specifically 𝐻𝑅@20, 𝐻𝑅@30, and
𝐻𝑅@40—on the Lastfm-1K dataset. STABR-HIST-II, moreover, out-
performs STABR on 𝐻𝑅@50. Since the results for 𝐻𝑅@30, 𝐻𝑅@40,
and𝐻𝑅@50 are significant based on a one-tailed sign test, we argue
that they warrant further research in order to fully gauge the effi-
cacy of fusing long-term preferences with short-term preferences
in session-based music recommendation.

Another point of focus throughout our paper has been the overall
efficacy of complex neural-based models. In comparing STABR and
our extensions to simpler non-neural approaches such as session-
based k-nearest neighbours, we find that STABR and other neural
approaches are not consistently the best option. Indeed, our results
show that while STABR and other neural approaches remain supe-
rior in terms of mean reciprocal rank, SKNN and VKSNN proves
competitive—and sometimes even superior—in terms of hit rate.
This, we argue, only further accentuates the importance of not
merely understanding your data, but also recognising which prob-
lem your session-based recommender system ought to solve.

In future work, we would like to conduct further investigation
in the use of long-term preferences. While we have considered
two extensions for employing the historical sessions of a user, they
are similar in the sense that they use a static number of previous
sessions which are always the sessions which occurred immediately
before the active one. One direction we consider interesting is
using a dynamic number of previous sessions determined by the
individual user. This may lead to better representations of long-term
preferences as they can then be customised based on the preferences
of each user. Another direction would be to not only consider how
many previous sessions are used but also the selection of those
sessions. Merely using the immediate previous sessions may be
too naive. A better approach may be to select sessions based on a
similarity measure for the currently active sessions. Such a measure
could account for both tags and other item-specific features such
as audio features like tempo and valence.

While our results do not support skips as being useful signals,
we remain hesitant to dismiss their potential entirely. In this paper,
we have considered skips as binary features—"skipped" and "not
skipped". Thus, one direction for further research is considering
how much of a track was played before being skipped. Intuitively, it
is sensible that skipping a track five seconds after it started playing
is different from skipping a track after more than half of it has been

played. Such information may hold value in the recommendation
task.

7 ACKNOWLEDGEMENTS
Wewould like to thank Peter Dolog for his supervision and thought-
ful feedback throughout this project.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

[2] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2 (1994),
157–166. https://doi.org/10.1109/72.279181

[3] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. 2013. Recommender
systems survey. Knowledge-Based Systems 46 (2013), 109 – 132. https://doi.org/
10.1016/j.knosys.2013.03.012

[4] O. Celma. 2010. Music Recommendation and Discovery in the Long Tail. Springer.
[5] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. 2019. A Dynamic Co-

Attention Network for Session-Based Recommendation. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 1461–1470.
https://doi.org/10.1145/3357384.3357964

[6] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
2014. On the Properties of Neural Machine Translation: Encoder-Decoder Ap-
proaches. CoRR abs/1409.1259 (2014). arXiv:1409.1259 http://arxiv.org/abs/1409.
1259

[7] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
CoRR abs/1412.3555 (2014). arXiv:1412.3555 http://arxiv.org/abs/1412.3555

[8] The Nielsen Company. 2017. Entertainment: U.S Music 360 - 2017 High-
lights. https://www.nielsen.com/us/en/insights/report/2017/music-360-2017-
highlights/. (2017). Accessed 2020-04-30.

[9] Nick Craswell. 2009. Mean Reciprocal Rank. Springer US, Boston, MA, 1703–1703.
https://doi.org/10.1007/978-0-387-39940-9_488

[10] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are We
ReallyMakingMuch Progress? AWorryingAnalysis of Recent Neural Recommen-
dation Approaches. In Proceedings of the 13th ACM Conference on Recommender
Systems (RecSys ’19). Association for Computing Machinery, New York, NY, USA,
101–109. https://doi.org/10.1145/3298689.3347058

[11] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Machine Learning
Research 12, 61 (2011), 2121–2159. http://jmlr.org/papers/v12/duchi11a.html

[12] Kartik Gupta, Noveen Sachdeva, and Vikram Pudi. 2018. Explicit Modelling of the
Implicit Short Term User Preferences for Music Recommendation. In Advances
in Information Retrieval, Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi,
and Allan Hanbury (Eds.). Springer International Publishing, Cham, 333–344.

[13] Ruining He and Julian McAuley. 2016. Fusing Similarity Models with Markov
Chains for Sparse Sequential Recommendation. (09 2016).

[14] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent Neural Networks
with Top-k Gains for Session-Based Recommendations. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management
(CIKM ’18). Association for Computing Machinery, New York, NY, USA, 843–852.
https://doi.org/10.1145/3269206.3271761

[15] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun
(Eds.). http://arxiv.org/abs/1511.06939

[16] Sepp Hochreiter. 1998. The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 06, 02 (1998), 107–116. https:
//doi.org/10.1142/S0218488598000094

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[18] Mehdi Hosseinzadeh Aghdam, Negar Hariri, Bamshad Mobasher, and Robin
Burke. 2015. Adapting Recommendations to Contextual Changes Using Hierar-
chical Hidden Markov Models. 241–244. https://doi.org/10.1145/2792838.2799684

[19] Ruo Huang, Shelby McIntyre, Meina Song, Heihong E, and Zhonghong Ou. 2018.
An Attention-Based Recommender System to Predict Contextual Intent Based
on Choice Histories across and within Sessions. Applied Sciences 8, 12 (2018).

16

http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/72.279181
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1016/j.knosys.2013.03.012
https://doi.org/10.1145/3357384.3357964
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1145/3298689.3347058
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1145/3269206.3271761
http://arxiv.org/abs/1511.06939
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2792838.2799684

https://doi.org/10.3390/app8122426
[20] Dietmar Jannach. 2018. Keynote: Session-Based Recommendation – Challenges

and Recent Advances. In KI 2018: Advances in Artificial Intelligence, Frank Troll-
mann and Anni-Yasmin Turhan (Eds.). Springer International Publishing, 3–7.

[21] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks
meet the Neighborhood for Session-Based Recommendation. Proceedings of the
Eleventh ACM Conference on Recommender Systems (2017).

[22] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted
collaborative filtering model. Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD’08)., 426–434. https:
//doi.org/10.1145/1401890.1401944

[23] Alexandra Lamont and Rebecca Webb. 2010. Short- and long-term musical
preferences: what makes a favourite piece of music? Psychology of Music 38, 2
(2010), 222–241. https://doi.org/10.1177/0305735609339471

[24] Cyril Laurier, Mohamed Sordo, Joan Serra, and Perfecto Herrera. 2009. Music
Mood Representations from Social Tags.. In ISMIR. 381–386.

[25] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural Attentive Session-Based Recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management (CIKM ’17). Association
for Computing Machinery, New York, NY, USA, 1419–1428. https://doi.org/10.
1145/3132847.3132926

[26] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. Journal of Machine Learning Research 18, 185 (2018), 1–52. http:
//jmlr.org/papers/v18/16-558.html

[27] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Rec-
ommendation Algorithms. CoRR abs/1803.09587 (2018). arXiv:1803.09587
http://arxiv.org/abs/1803.09587

[28] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Empir-
ical Analysis of Session-Based Recommendation Algorithms. arXiv preprint
arXiv:1910.12781 (2019).

[29] Douglas W. Oard and Jinmook Kim. 1998. Implicit Feedback for Recommender
System. https://www.aaai.org/Library/Workshops/1998/ws98-08-021.php

[30] Sung Park, Sangkeun Lee, and Sang-goo Lee. 2011. Session-Based Collaborative
Filtering for Predicting the Next Song. (05 2011). https://doi.org/10.1109/CNSI.
2011.72

[31] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. ACM Comput. Surv. 51, 4, Article Article 66 (July
2018), 36 pages. https://doi.org/10.1145/3190616

[32] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Fac-
torizing Personalized Markov Chains for Next-Basket Recommendation. In
Proceedings of the 19th International Conference on World Wide Web (WWW
’10). Association for Computing Machinery, New York, NY, USA, 811–820.
https://doi.org/10.1145/1772690.1772773

[33] Noveen Sachdeva, Kartik Gupta, and Vikram Pudi. 2018. Attentive Neural Ar-
chitecture Incorporating Song Features for Music Recommendation. In Pro-
ceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18).
Association for Computing Machinery, New York, NY, USA, 417–421. https:
//doi.org/10.1145/3240323.3240397

[34] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems.
In Recommender systems handbook. Springer, 257–297.

[35] Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based
Recommender System. J. Mach. Learn. Res. 6 (Dec. 2005), 1265–1295.

[36] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. CoRR abs/1409.3215 (2014). arXiv:1409.3215
http://arxiv.org/abs/1409.3215

[38] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved Recurrent Neural Net-
works for Session-Based Recommendations. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems (DLRS 2016). Association for Computing
Machinery, New York, NY, USA, 17–22. https://doi.org/10.1145/2988450.2988452

[39] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu,
and Ed H. Chi. 2019. Towards Neural Mixture Recommender for Long Range
Dependent User Sequences. In The World Wide Web Conference (WWW ’19).
Association for Computing Machinery, New York, NY, USA, 1782–1793. https:
//doi.org/10.1145/3308558.3313650

[40] Roberto Turrin, Andrea Condorelli, Paolo Cremonesi, Roberto Pagano, and Mas-
simo Quadrana. 2015. Large scale music recommendation. InWorkshop on Large-
Scale Recommender Systems (LSRS 2015) at ACM RecSys.

[41] Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and
Paolo Cremonesi. 2015. 30Music Listening and Playlists Dataset. In RecSys Posters.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[43] João Vinagre, Alípio Mário Jorge, and João Gama. 2015. An overview on the
exploitation of time in collaborative filtering. WIREs Data Mining and Knowledge
Discovery 5, 5 (2015), 195–215. https://doi.org/10.1002/widm.1160

[44] Sergey Volokhin and Eugene Agichtein. 2018. Understanding Music Listening
Intents During Daily Activities with Implications for Contextual Music Recom-
mendation. In Proceedings of the 2018 Conference on Human Information Interaction
Retrieval (CHIIR ’18). Association for Computing Machinery, New York, NY, USA,
313–316. https://doi.org/10.1145/3176349.3176885

[45] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning Hierarchical Representation Model for Next Basket Rec-
ommendation. https://doi.org/10.1145/2766462.2767694

[46] Shoujin Wang, Longbing Cao, and Yan Wang. 2019. A Survey on Session-based
Recommender Systems. CoRR abs/1902.04864 (2019). arXiv:1902.04864 http:
//arxiv.org/abs/1902.04864

[47] Bo Wu, Wen-Huang Cheng, Yongdong Zhang, Qiushi Huang, Jintao Li, and
Tao Mei. 2017. Sequential Prediction of Social Media Popularity with Deep
Temporal Context Networks. CoRR abs/1712.04443 (2017). arXiv:1712.04443
http://arxiv.org/abs/1712.04443

[48] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A Dynamic
Recurrent Model for Next Basket Recommendation. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’16). Association for Computing Machinery, New York, NY, USA,
729–732. https://doi.org/10.1145/2911451.2914683

[49] Ethan Zhang and Yi Zhang. 2009. Recall. Springer US, Boston, MA, 2348–2348.
https://doi.org/10.1007/978-0-387-39940-9_479

[50] Shuai Zhang, Lina Yao, and Aixin Sun. 2017. Deep Learning based Recom-
mender System: A Survey and New Perspectives. CoRR abs/1707.07435 (2017).
arXiv:1707.07435 http://arxiv.org/abs/1707.07435

17

https://doi.org/10.3390/app8122426
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1177/0305735609339471
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
http://arxiv.org/abs/1803.09587
http://arxiv.org/abs/1803.09587
https://www.aaai.org/Library/Workshops/1998/ws98-08-021.php
https://doi.org/10.1109/CNSI.2011.72
https://doi.org/10.1109/CNSI.2011.72
https://doi.org/10.1145/3190616
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1145/3240323.3240397
https://doi.org/10.1145/3240323.3240397
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/3308558.3313650
https://doi.org/10.1145/3308558.3313650
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1002/widm.1160
https://doi.org/10.1145/3176349.3176885
https://doi.org/10.1145/2766462.2767694
http://arxiv.org/abs/1902.04864
http://arxiv.org/abs/1902.04864
http://arxiv.org/abs/1902.04864
http://arxiv.org/abs/1712.04443
http://arxiv.org/abs/1712.04443
https://doi.org/10.1145/2911451.2914683
https://doi.org/10.1007/978-0-387-39940-9_479
http://arxiv.org/abs/1707.07435
http://arxiv.org/abs/1707.07435

A 30MUSIC DATA VISUALISATION

(a) Sessions/user (b) %skipped tracks/session (c) %unique tracks/session

(d) Sessions/user (e) %skipped tracks/session (f) %unique tracks/session

Figure 9: Graphs for the second and third 30Music dataset slice. Figures 9a and 9e show the distribution histograms of the number of sessions by frequency
of users; figures 9b and 9e show the distribution bar charts of the percentage of skipped tracks by frequency of sessions; and figures 9b and 9f show the
distribution histograms of percentage of unique tracks per frequency of sessions.

18

B 30MUSIC BASELINE HYPERPARAMETERS
In addition to the hyperparameters presented in table 3, we employ the hyperparameters in table 7 for the remaining baselines on the 30Music
dataset. We use the session-rec framework presented by Ludewig et al. [28] (available at https://github.com/rn5l/session-rec), and thus also
adapt their default parameters. Note that we have modified the framework to support our Python 3.5+ work environments as well as corrected
configuration, loading, and evaluation issues present in the original code. Our code is available at https://github.com/x775/SW10-Ludewig.

GRU4REC

hidden dropout = 0.1
learning rate = 0.08
momentum = 0.1
loss function = top1-max
final activation function = linear

GRU4REC2

hidden dropout = 0.6
learning rate = 0.08
momentum = 0.0
constrained embedding = True
loss function = bpr-max
final activation function = elu-0.5

SKNN neighbours = 100
similarity measure = cosine

VSKNN neighbours = 100
similarity measure = cosine

FMPC

learning rate = 0.05
regularisation = 0.0025
annealing = 1.0
initial sigma = 1
k_cf = 100
k_mc = 100
adaptive_sampling = True

FOSSIL

learning rate = 0.05
regularisation = 0.0025
annealing = 1.0
initial sigma = 1
markov chain order = 1
alpha = 0.2
neighbours = 100

Table 7: Hyperparameters used for baselines on the 30Music dataset

19

C SKNN AND SKNN-SKIPS HYPERPARAMETER TUNING

Figure 10: Hit rate performances for SKNN (top) and SKNN-SKIPS (bottom) for 10-150 neighbours on the Lastfm-1K dataset.

20

