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Danish Summary

I dette kandidatspeciale undersøges det hvordan man kan genskabe de originale kilder
til den hjerne aktivitet, der måles via elektroencefalografi (EEG). Med udgangspunkt
i lineær algebra kan EEG-målinger modelleres som et lineært system Y = AX. Her
udgør X de original kilder, A udgør transformationen af X til de observerede EEG-
målinger, som Y udgør. At løse systemet med hensyn til de original kilder X omtales
som det inverse EEG-problem. Dette omfatter en estimering af både A og X. I
dette speciale ønskes det at løse det inverse EEG-problem i det specifikke tilfælde
hvor der er færre sensorer end der er kilder. Der tages udgangspunkt i to ”state
of the art” metoder, covariance-domain dictionary learning (Cov-DL) og multiple
sparse Bayesian learning (M-SBL), til at løse dette problem. Her er det primære
formål er at eftervise de resultater som tidligere er opnået ved anvendelse af disse
metoder. Herigennem sættes der fokus på reproducerbarhed af de udvalgte viden-
skabelige artikler. De to metoder implementeres i én algoritme, som omtales the
main algorithm. Metoden Cov-DL anvendes til at finde transformationsmatricen
og M-SBL benytter sig af den fundne transformationsmatrix til at finde matricen
med kilder. Sekundært sættes algoritmen i et praktisk perspektiv, hvor det under-
søges hvorvidt det er muligt at estimere antallet af aktive kilder i hjernen. Under
implementeringen af algoritmen bliver de enkelte metoder testet og analyseret på
simuleret data. Testene evalueres ved at sammenligne de fundne estimater med de
sande værdier, hertil anvendes mean squared error (MSE). For Cov-DL lykkedes det
ikke at estimere transformationsmatricen på samme vis som angivet i den anvendte
kilde. Den anden metode, M-SBL, ses at være succesfuld når den sande transforma-
tionsmatrice benyttes. Herfra kan det konkluderes, at den tilsvarende videnskabelige
artikel tilvejebragte en tilstrækkelig grad af reproducerbarhed.

Med henblik på at anvende den samlede algoritmen på rigtige EEG-målinger
vælges det at erstatte Cov-DL med en fast transformationsmatrix, som bestemmes
ud fra empiriske tests. Med udgangspunkt i testresultater og det faktum at transfor-
mationsmatricen er valgt med en vis grad af tilfældighed, så forventes det ikke at der
opnås en tilstrækkelig genskabelse af de original kilder fra EEG-målinger. Med det
formål at evaluere algoritmens performance på rigtige EEG-målinger introduceres
independent component analysis (ICA) og dens estimater. Dette er en allerede ek-
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viii Preface

sisterende og succesfuld metode for det inverse EEG-problem – for systemer med et
lige antal sensorer og kilder. Estimaterne fra ICA sammenlignes med de tilsvarende
estimater fra den samlede algoritme, hvor et varierende antal at sensorer er fjernet,
for at tilnærme det ønskede system. Når ingen sensorer er fjernet, ses et snævert po-
tentiale for et tilstrækkeligt estimat, men for systemer med flere kilder end sensorer
fejler metoden, som det kunne forventes ved anvendelse af det alternative estimat
af transformationsmatricen. Som en alternativ test udføres en frekvensanalyse der
sammenligner de rå EEG-målinger med de fundne kilder. Resultatet af dette ændrer
ikke på de tidligere konklusioner. Endeligt undersøges muligheden for at estimere
antallet af aktive kilder i hjernen. Her ses et potentiale ved test på simuleret data,
dog forringes denne performance når antallet af sensorer reduceres.



Contents

Preface v

Introduction 3

1 Motivation 5
1.1 Introduction to EEG Measurements . . . . . . . . . . . . . . . . . . . . 5
1.2 Related Work and Our Objective . . . . . . . . . . . . . . . . . . . . . . 8

2 Problem Statement 11

3 System Model 13
3.1 System of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Multiple Measurement Vector Model of EEG . . . . . . . . . . . . . . . 14
3.3 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Covariance-Domain Dictionary Learning 17
4.1 Covariance-domain Representation . . . . . . . . . . . . . . . . . . . . . 18
4.2 Recovery of the Mixing Matrix . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Pseudo Code of the Cov-DL Algorithm . . . . . . . . . . . . . . . . . . 24
4.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Multiple Sparse Bayesian Learning 27
5.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 M-SBL for Estimation of X . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Pseudo Code for the M-SBL Algorithm . . . . . . . . . . . . . . . . . . 33
5.4 Sufficient Conditions for Exact Source Localization . . . . . . . . . . . 33

6 Implementation and Verification 35
6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Test of the Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



Contents 1

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Test on EEG Measurements 55
7.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Test by ICA Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Alpha Wave Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Estimation of the Number of Active Sources 71
8.1 Empirical Test on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Empirical Test on EEG Measurements . . . . . . . . . . . . . . . . . . . 75

9 Discussion 77

10 Conclusion 81

11 Further Studies 83

Bibliography 85

A Supplementary Theory for Chapter 4 89
A.1 Introduction to Compressive Sensing . . . . . . . . . . . . . . . . . . . . 89
A.2 K-SVD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 93

B Derivations for Multiple Sparse Bayesian Learning 95
B.1 Derivation of Posterior MeanM and Covariance Σ . . . . . . . . . . . 95

C Independent Component Analysis 97
C.1 Basic Theory of Independent Component Analysis . . . . . . . . . . . . 97
C.2 Fixed-Point Algorithm - FastICA . . . . . . . . . . . . . . . . . . . . . . 102
C.3 Verification of FastICA on Synthetic Data . . . . . . . . . . . . . . . . . 104

D Python Scripts 109





Introduction

The topic of this thesis arises from the increasing use of electroencephalographic
measurements for a wide range of scientific purposes, especially within the medical
field. By sensors placed on the scalp, an electroencephalography captures a mixture
of electric signals caused by activity within the brain. One essential issue concerning
an electroencephalography is to recover the original source signals which were released
inside the brain.

The need for source recovery is confirmed by studies showing how analysis
performed on electroencephalographic measurements differs significantly from similar
analysis performed directly on the original sources [17]. One area of application,
where the use of the recovered source signals has shown potential, is the hearing aid
industry. Here it is of special interest to recover the source signals from only few
sensors, which potentially can be placed within a hearing aid.

Consider the issue of source recovery from a mathematical perspective. Here
the electroencephalographic measurements can be modeled by a linear system of
equations. From such model it is possible to recover a limited number of source
signals under certain conditions. However, it is a general acknowledged issue that
the true number of source signals inside the human brain is unknown. The task
complexity of recovering the source signals from the linear system is increased in
cases where the number of sources exceeds the number of sensors providing the
measurements.

This thesis explores a state of the art mathematical method for source recovery,
embracing the case of more sources than sensors. Overall this method, published in
2015, consist of two steps. That is receptively to recover the mixing process that the
source signals have undergone and then recover the source signals. The two steps
originate from two different approaches considering the mathematical orientation.
The main goal of the thesis is to study the two methods with respect to proposing
a united algorithm, to be applied on electroencephalographic measurements. The
purpose is to support the current results of source recovery from electroencephalo-
graphic measurements of few sensors. Furthermore, the issue of the unknown number
of active source signals is considered from a perspective of practical application.

The thesis consists of a motivational part, introducing electroencephalography
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and the potential use within research. Existing literatures are examined, with respect
to identification of state of the art methods within source signal recovery. The
motivational part is concluded by the problem statement specifying the objective
of the thesis. Next is the theoretical part. The system model is specified and the
solution approach is presented based on existing methods. This is followed by an
extensive study of the required theory. The practical aspect of the thesis includes
an implementation of the proposed solution to be tested on both synthetic data and
new electroencephalographic measurements. Finally, discussion and conclusion upon
the achieved results are presented followed by a consideration upon further studies.



Chapter 1

Motivation

This chapter accounts for the motivation behind source signal recovery from elec-
troencephalography (EEG) measurements. The concept of EEG is introduced along
with current applications. The potential and importance of source recovery are con-
sidered and is related to the hearing aid industry. A commonly applied mathematical
model for EEG measurements is presented. Currently applied methods for source re-
covery are considered leading to a presentation of the current state of the art methods
which succeed to overcome the limitations of previous methods. Lastly, the objective
of this thesis is specified.

1.1 Introduction to EEG Measurements

EEG is an imaging technique used within the medical field. EEG measures elec-
tric signals on the scalp, caused by brain activity. The human central nerve system
consists of various nerve cells connecting the neurons within the brain. Nerve cells
respond to certain stimuli, for instance a physical stimulus, and transmit informa-
tions between neurons. Generally speaking these activities induce local currents that
are transferred throughout the nerve system. Several nearby simultaneous activa-
tions result in local potential fields, each referred to as one source signal [27]. EEG
measurements are provided by a number of metal electrodes, referred to as sensors,
carefully placed on the human scalp. Each sensor captures the present electrical
signals over time. For the source signal to reach a sensor it has to penetrate the
skull, skin and several other thin layers of biological tissue. This causes an unknown
distortion and reduction of a signal. It is most likely that the measurements of one
sensor are sums of multiple source signals from different areas of the brain. Further-
more, the range of a single sensor is not separated from the other sensors. Thus the
same source signal can easily be measured by two or more sensors. The process of
distortion and mixing of signals is called volume conduction [27][29]. The concept of
volume conduction is sought illustrated in figure 1.1. From this it is clarified that
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6 Chapter 1. Motivation

EEG measurements are a mixture of fluctuating electrical signals originating from
brain activities. Due to this mixing and the nature of the source signals, the true
number of sources are in general considered unknown [27]. Furthermore, EEG is a
subject for interfering noise. Noise signals can occur in the measurements resulting
from physical movement of e.g. eyes and jawbone [31].

The source signals are classified within four groups according to the dominant
frequency. The delta wave (0.5 − 4 Hz) is observed from deep sleep, the theta wave
(4 − 8 Hz) is observed from consciousness slips towards drowsiness, the alpha wave
(8 − 13 Hz) is the most extensive studied brain rhythm, which is induced by an
adult laying down with closed eyes. Lastly, the beta wave (13− 30 Hz) is considered
the normal brain wave for adults, associated with active thinking, active attention
or solving concrete problems [27, p. 10]. An example of signals within the four
categories is illustrated by figure 1.2.

Generally, the distribution of EEG measurements of multiple sensors is consid-
ered multivariant Gaussian [27, p. 50]. Though the mean and covariance properties
generally changes over time. Therefore, EEG measurements are considered quasi-
stationary i.e. stationary only within small intervals. This motivates the need for
segmentation of the EEG measurements to achieve signals with similar characteris-
tics.

Figure 1.1: Illustration of volume conduc-
tion.

Figure 1.2: Example of time dependent sig-
nals within the four defined categories [27].

1.1.1 Applications

EEG performed on humans and animals have a great number of applications within
both clinical and research purposes. Examples of clinical applications covers diag-
nosis and management of neurological disorders like epilepsy, and monitor alertness
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regarding coma or brain death. EEG capitalizes on the procedure being non-invasive
and fast. Neural activity can be measured within fractions of a second after a stimu-
lus has been provided. These advantages contribute to the wide range of applications
within research of the neural processes involved in or resulting from actions, emotions
or cognition. Today such neural research are used in many different fields [31, p. 4].
The hearing aid industry is one example where this research is highly prioritized. At
Eriksholm research center, which is a part of the hearing aid manufacturer Oticon,
cognitive hearing science is a research area within fast development [30]. One main
purpose at Eriksholm is to make it possible for a hearing aid to identify the user-
intended sound source from real-time EEG measurements and thereby exclude noise
from elsewhere [2][9]. It is essentially the well-known but unsolved cocktail problem
which is sought improved by use of EEG. This is where EEG and occasionally so
called in-ear EEG is interesting. In conjunction with the technology of beamforming,
it is possible for a hearing aid to receive only signals from a specific direction.

Over the past two decades functional integration has become an area of interest
regarding EEG research [16]. Within neurobiology functional integration refers to
the study of the correlation among activities in different regions of the brain. In other
words, how do different parts of the brain work together to process information and
conduct a response [17]. For this purpose recovery of the original source signals,
from EEG measurements, is of interest. An article from 2016 [29] points out the
importance of performing analysis regarding functional integration on the sources,
rather than directly on the EEG measurements. This relation is referred to source
level versus EEG level. It is argued through experiments that analysis at EEG
level does not allow interpretations about the interaction between sources. This
emphasizes a potential for improving results within a wide range of EEG research, if
the original source signals can be recovered from an EEG measurement.

1.1.2 Modeling

Consider the issue of recovering the source signals from EEG measurements. A
known approach is to model the observed measurements by a linear system

y = Ax.

Let the vector y ∈ RM be the EEG measurements of one time sample containing M
sensor measurements. Let x ∈ RN be the corresponding N sources within the brain.
Non-zero entries of x represent the active sources at the time of the measurement.
Then the matrix A ∈ RM×N represents the linear transformation from RN to RM .
The matrix A will be referred to as the mixing matrix as it resembles the volume
conduction. The j-th column of A represents the relative weights from the i-th
source to every sensor [6]. Representing one time sample the linear system is in
general referred to as a single measurement vector model. Only the measurement
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vector y is known, hence it is impossible to solve the linear system with respect to
x using basic linear algebra. The task, in this case, is to recover first A and then
x, given the measurement vector y. This problem is referred to as the inverse EEG
problem. Recovering x by some estimate x̂ is referred to as source identification and
localization. Identification is to estimate the signal of each active source. Localization
is to place each active source signal at the right position within the source vector of
dimension N , where N is the maximum number of sources.

1.1.3 Solution Method

Independent Component Analysis (ICA) is one commonly applied method to solve
the inverse EEG problem [22][21]. ICA is a technique to find the mixing matrix A
such that the rows of x is statistically independent. Thus statistical independence
between the sources is a necessary assumption. With respect to the nature of EEG
measurements, this assumption is considered valid [21, p. 3]. Application of ICA has
shown great results regarding source recovery from EEG measurements. However, a
significant flaw to this method is that the EEG measurements are only separated into
the number of sources equal to or less than the number of sensors [4]. Meaning that
the inverse EEG problem can not be solved in the case where the maximum number of
sources N exceeds the number of sensors M – the model forms an under-determined
system. Such limitation undermines the reliability and usability of ICA, as the
number of active sources easily exceeds the number of sensors [6]. This is especially
a drawback when low-density EEG is considered. Low-density EEG measurements
are collected from equipment with less than 32 sensors, increasing the changes for
the number of sources to exceed the number of sensors. However, the improved
capabilities of low-density EEG devices are desirable due to their relative low cost,
mobility and ease to use. Especially within the hearing aid industry, as mentioned
earlier, where low-density EEG equipment can be combined with a hearing aid.

This argues the importance of considering the inverse problem of EEG in the
under-determined case where M < N . In the following section existing work consid-
ering the under-determined inverse EEG problem is investigated further.

1.2 Related Work and Our Objective

As mentioned above ICA is a solid method for source identification in the case where
separation into a number of sources equal to the number of sensors is adequate. The
issue occurs in cases where the number of sources N exceeds the number of sensors
M . To overcome this issue, an extension of ICA was suggested, referred to as the
ICA mixture model [4]. Instead of identifying one mixing matrix A ∈ RM×N from
an under-determined system this approach learns Nmodel different mixing matrices
Ai ∈ RM×M , to make computations more tractable. This method was further adapted
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into the Adaptive Mixture ICA (AMICA) which has showed successful results regard-
ing identification of more sources than sensors [25]. However, these successful results
rely on the assumption that no more than M out of N possible sources is simulta-
neously active. That is explicit that the source vector of dimension N has at most
M non-zero entries. This assumption is still an essential limitation to the frame-
work, especially when considering low-density EEG. Other types of ICA algorithms
for under-determined systems were proposed, without overcoming the limitation of
jointly active sources exceeding the number of sensors.

In 2015 O. Balkan et. al. suggested a new approach targeting the identification
of more active sources than sensors regarding EEG measurements. One method was
proposed for learning the mixing matrix A from measurements y [4] and a different
method was proposed for finding the source signals x given y and A [5].

To learn A the suggested method, referred to as Cov-DL, is a covariance-domain
based dictionary learning algorithm. The method is based upon theory of dictionary
learning and compressive sensing. Which dictates a framework for solving an under-
determined system when x contains a sufficiently amount of zeros. This is similar
to the constraint of the presented ICA methods. However, to overcome this, the
point of Cov-DL is to transfer the EEG measurements into the covariance-domain.
In the covariance-domain a higher dimensionality can be achieved compared to the
original EEG sensor domain with dimension M . The transformation can be done
under already discussed assumptions of linear mixing and uncorrelated sources which
follows from the assumption of independence. As a result the theory of compressive
sensing is found to apply successfully to the covariance-domain, allowing to learn A
by dictionary learning. Even in the case where the active sources exceed the number
of sensors.

Thus, the Cov-DL method stands out from other straight forward dictionary
learning methods as it does not relay on the sparsity of active sources. Where
sparseness refers to the number of non-zero elements. This is an essential advantage
when low-density EEG is considered. Cov-DL was tested and found to outperform
AMICA [4]. As mentioned, the Cov-DL method only learns the mixing matrix A,
resembling the volume conduction.

For the purpose of recovering x, from y and A, a multiple measurement sparse
Bayesian learning (M-SBL) method is proposed [5]. M-SBL is based on the concept
of finding a set of non-zero indices of the source vector x which corresponds to finding
the localization of sources. Followed by an identification of each source signal. The
method builds upon the Bayesian statistic framework and it is targeting the case
of more active sources than sensors. The method was proven to outperform the
previously used algorithms, even when the defined recovery conditions regarding the
found mixing matrix A was not fulfilled [5].

One drawback, which is not fully covered in the referred literature, is the two
methods rely on the number of active sources being known. In practice this is not
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the case. Hence, an estimation of the number of active sources has to be considered
for the methods to be useful in practice.

The two state of the art methods resulting in source recovery will make the
foundation of this thesis. Our aim is to investigate and fully understand the two
methods in order to implement and test a joint algorithm. The recovering the original
source signals x from the measurements y, when the number of active sources exceeds
the number of measurements. More specifically the goal is to support the current
results, by applying the methods on different EEG measurements, through our own
implementation of the methods into one algorithm. Secondary it is of interest to
consider the practical application of the proposed algorithm, for instance within a
hearing aid as described in section 1.1. As mentioned, the number of active sources is
in general unknown in practice. Thus, an estimation of the number of active sources is
of interest for practical use of the algorithm. For this we want to investigate whether
it is possible to estimate the number of active sources based on the recovered source
signals.

By figure 1.3 the presented problem of source signal recovery from EEG mea-
surements is considered within the bigger context which has been discussed in this
chapter. Leading from the possibilities of EEG measurements to the specific appli-
cation within hearing aids, as mentions above.

Figure 1.3: Visualization of the specified issue of source signal recovery relative to a bigger context.



Chapter 2

Problem Statement

EEG scalp measurements, a mixture of electrical signals originating from brain ac-
tivities and noise, can be described as a linear system

y = Ax.

The vector y is the EEG measurements from sensors placed on the scalp, A represent
the mixing of the electrical signals, denoted as the mixing matrix. And x is the
original electrical signals, denoted as sources. Only the EEG measurements y is
known and it is of interest to recover first the mixing matrix A and hereby recover
the original sources x. The original sources have been shown significantly for practical
use compared to the raw EEG measurements. Especially the case where the number
of sources exceeds the number of sensors is of interest, resulting from the use low-
density EEG equipment which is beneficial due to low cost and easy application. In
the linear algebraic sense, this case creates an under-determined linear system which
is difficult to solve. Two state of the art methods, targeting this specific case, are
seen to successfully recover the sources. The covariance-domain dictionary learning
(Cov-DL) method and the multiple sparse Bayesian learning (M-SBL) method. The
Cov-DL method recovers the mixing matrix from the given measurements while the
M-SBL method recovers the source signals given the recovered mixing matrix and the
measurements. However, one drawback of the methods is the required knowledges
of the number of active sources as this is an unknown variable in practice.

This motivates the following problem statement.

11



12 Chapter 2. Problem Statement

Can state of the art results within source recovery of EEG measurements tar-
geting the under-determined case be reproduced by an implementation of the methods
tested on different data, and how can the potential of practical use be increased, with
respect to the unknown number of active sources?

From the problem statement the following sub-questions are established for clari-
fication.

• How is the Cov-DL method recreated to estimate a mixing matrix from the
inverse EEG problem, in the under-determined case?

• How is the M-SBL method recreated to estimate a source signal matrix from
the inverse EEG problem, in the under-determined case?

• How are the two methods combined into one algorithm, and does the results
support the current state of the art results when applied to both synthetic and
real EEG scalp measurements.

• How can the number of active sources be estimated, based only on the EEG
scalp measurements?



Chapter 3

System Model

Through this chapter the model representing the EEG measurements is specified in
details. Along with the model different terminologies are introduced and described
for further use in this thesis. At last the solution approach for estimating the model
parameters is described, setting the outline of the remaining chapters of the thesis.

3.1 System of Linear Equations

Let y ∈ RM be some vector. By basic linear algebra y can always be described as a
linear combination of a coefficient matrix A ∈ RM×N and some scalar vector x ∈ RN

such that

y = Ax. (3.1)

Let y and A be known. Then (3.1) makes a system of M linear equations with N
unknowns, referred to as a linear system.

To solve the linear system (3.1) with respect to x one must look at the three
different cases which can occur. The cases depend on the relation between the number
of linear equations M and the number of unknowns N . For M = N , the system has
one unique solution, provided that a solution exist. If the square coefficient matrix
A has full rank the solution can be found simply by inverting A:

x = A−1y.

For M > N the system is over-determined, having more equations than unknowns.
There is not always a solution to an over-determined system. For M < N the system
is under-determined, having fewer equations than unknowns. There exists infinitely
many solutions to an under-determined system, provided that one solution exist [14,
p. ix].

13



14 Chapter 3. System Model

Consider now y ∈ RM as the M observed EEG measurements provided by M
sensors at time t. The linear system (3.1) is then considered as a single measure-
ment vector (SMV) model. Modeling the EEG measurements by the SMV model
embody the following interpretations, based on chapter 1. Remember that EEG
measurements basically are a mixture of the original source signals, resulting from
brain activity, affected by volume conduction and noise. The vector x is seen as the
original source signals, with each entry representing the signal of one source. Thus,
x ∈ RN is referred to as the source vector. N is considered the maximum number of
sources, however zero entries may occur. The non-zero entries in x is referred to as
the active sources at time t, while a zero entry corresponds to a non-active source.
The coefficient matrix A, referred to as the mixing matrix, models the volume con-
duction and noise by mapping the source vector from RN to RM .

3.2 Multiple Measurement Vector Model of EEG

In practice EEG measurements are sampled over time by a certain sample frequency.
Thus multiple EEG measurement vectors are achieved. Let L represent the total
number of samples. The SMV model is now expanded to include L measurement
vectors and external noise:

Y = AX+E. (3.2)

The matrix Y ∈ RM×L is the observed measurement matrix, X ∈ RN×L is the source
matrix, and A ∈ RM×N is the mixing matrix. Furthermore, E ∈ RM×L is an additional
noise matrix, to be expected from physical measurement equipment. The model is
now referred to as a multiple measurement vector (MMV) model. As for (3.1) the
solution set of the linear system (3.2) depends on the relation between N andM [14,
p. 42].

As specified in chapter 1 it is the case where the number of sources exceeds the
number of sensors, M < N , which is of interest in this thesis.

3.2.1 Segmentation

In chapter 1 it is argued that EEG measurements are only stationary within small
segments. Hence, the following segmentation is considered.

Let f be the sample frequency of the observed EEG measurements Y. And let
t be the length of an interval in seconds determining the duration of one segment.
Choose t sufficiently small such that the assumption of stationarity can be justified.
Finally let s be the segment index. As such the observed EEG measurement matrix
Y can be divided into stationary segments Ys ∈ RM×Ls , possibly overlapping, where
Ls = tf is the number of samples within one segment. For each segment the MMV
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model (3.2) holds and is rewritten into

Ys =AsXs +Es, ∀s. (3.3)

Note that the mixing matrix A is not segmented in the same manner as Y and X,
as the size of A do not change relative to the number of segments. The matrix
As ∈ RM×N is merely the mixing matrix that corresponds to Xs and Ys.

Based on the assumption that each segment is stationary, it is assumed that
each source signal remains either active or non-active throughout the segment. This
implies specifically that each row in Xs is either non-zero or zero respectively.

In order to characterize the source matrix with respect to the number of non-
zero rows, the term row sparseness is considered. Let the support supp(X) denote
the index set of the non-zero rows of X. To count the non-zero rows of a matrix the
`0-norm is defined

∥X∥0 ∶= card(supp(X)),

where the function card(⋅) gives the cardinality of the input set. The segmented
source matrix Xs is said to be p-sparse if it contains at most p non-zero rows:

∥Xs∥0 ≤ p.

Now denote the number of active sources by k, then k is defined by the number of
non-zero rows of the source matrix

k ∶= ∥Xs∥0

where k ≤ N .

3.3 Solution Method

A MMV model for EEG measurements is now established. From the model the aim
is, for all segments s, to recover the source matrix Xs, by an estimate X̂s given only
Ys. As such the original source signals from the brain are recovered as intended
by the problem statement. In this section the solution method is presented and
discussed, based on the state of the art methods which were lightly presented in
chapter 1. This will outline the remaining chapters of the thesis.

Due to the problem statement, the case of interest is when M < N , typically
resulting from low-density EEG measurements. Thus, the source matrix Xs has to
be recovered from an under-determined linear system. Hence, the solution must be
found in the infinite solution space provided that one solution exists, thus simple lin-
ear algebra can not be used. Alternatively, numerical methods can be considered. By
mathematical optimization it is possible to restrict the solution by some constraint.
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And, then find a unique optimal solution with respect to some cost function and the
corresponding constraint. The theory of compressive sensing provides a framework
for solving an under-determined system when Xs is known to have zero rows, thus
being row sparse. More specifically a unique solution Xs can be found when Xs

is M -sparse, cf. theorem A.1.1 in appendix A.1. When the mixing matrix As is
unknown, as in this current case, the concept of dictionary learning can be used to
determine As. Still under the assumption that Xs is M -sparse.

The assumption of Xs being M -sparse corresponds to the number of the active
sources k ≤M . However, from chapter 1 it can not be justified to apply this assump-
tion on low-density EEG measurements. Hence, the theory of compressive sensing
can not be applied directly on the established model, when M < N .

A method to overcome this limitation of compressive sensing, is the covariance-
domain dictionary learning (Cov-DL) method [4], introduced in chapter 1. The
method leverages the increased dimensionality of the covariance-domain in order to
allow the theory of compressive sensing to apply to an under-determined system.
Note that this method only applies to the process of learning As, in the case where
Xs is not M -sparse. Hence, a different approach is necessary to recover Xs.

For recovering Xs, given both Ys and As where M < N and k ≤ N , the method
multiple sparse Bayesian learning (M-SBL) [5], introduced in chapter 1, is considered.
This method takes advantage of the Bayesian statistic framework. Here, an empirical
Bayesian estimation of Xs is performed, based on a prior distribution of Xs being
defined by a data-dependent hyperparameter.

Combining the two methods allows recovery of As and Xs given low-density
EEG measurements Ys [6]. In the following two chapters each method is studied
extensively, with the purpose of proposing the main algorithm in chapter 6.



Chapter 4

Covariance-Domain Dictionary Learn-
ing

Through this chapter the method covariance-domain dictionary learning (Cov-DL)
is presented in details. Along the presentation of the general method, necessary
computational details are derived. The purpose is to recover the mixing matrix As

from the segmented MMV model, derived in chapter 3. Especially for the under-
determined case. In the context of compressive sensing, the mixing matrix As is
referred to a the dictionary matrix. This corresponds to the mixing matrix being
estimated as a dictionary matrix, through the process of dictionary learning. This
will be elaborated further in the section concerning dictionary learning.

Cov-DL is a method proposed by O. Balkan [4], leveraging the increased di-
mensionality of the covariance-domain. The method has shown successful recov-
ery of the mixing matrix As. Even in the non-sparse, under-determined case with
more active sources k than observed measurements M , k ≥ M . In short the algo-
rithm consists of three steps. First the EEG measurements are transformed onto the
covariance-domain. Then, by the increased dimensionality of the covariance-domain,
it is possible to learn the transformed mixing matrix of the covariance-domain. The
transformed mixing matrix is denoted by D, based on the theory of compressive
sensing. Here two different cases will appear depending on the relation between the
number of sources N and the found dimension of the covariance-domain, the number
of measurements M . Lastly, an inverse transformation is performed on the learned
matrix Ds, in order to obtain the wanted estimate of the mixing matrix As. An
essential aspect of this method is the prior assumption that the sources within one
segment are uncorrelated, that is the rows of Xs being mutually uncorrelated.

The section is inspired by the article [4] and chapter 3 in [6]. Selected general
theory supporting essential parts of the method is elaborated in appendix A.

17



18 Chapter 4. Covariance-Domain Dictionary Learning

4.1 Covariance-domain Representation

Consider a single sample vector yj ∈ RM , containing EEG measurements. The
covariance of yj is defined as

Σyj = E[(yj −E[yj])(yj −E[yj])
T
],

where E[⋅] is the expected value operator. Let Ys = [y1, . . . , yLs] be the observed
measurement matrix containing all samples of segment s. Furthermore, assume that
all sample vectors yj within one segment have zero mean and the same distribution.
Then Ys ∈ RM×Ls is described in the covariance-domain by the sample covariance
Σ̂. The sample covariance is defined as the empirical covariance among the M mea-
surements across the Ls samples. That is a M ×M matrix Σ̂Ys = [σkj] with entries

σkj =
1
Ls

Ls

∑
j=1

yijyij .

Using matrix notation the sample covariance of Ys can be written as

Σ̂Ys =
1
Ls

YsYT
s .

Similar, the source matrix Xs can be described in the covariance-domain by the
sample covariance matrix:

Σ̂Xs =
1
Ls

XsXT
s = Λs + εs.

The second equality comes from the assumption of the sources within Xs being
uncorrelated. By uncorrelated sources Xs the sample covariance matrix is assumed
to be nearly diagonal. Thus it can be written as Λs +ε where Λs is a diagonal matrix
consisting of the diagonal entries of Σ̂Xs and εs is a non-diagonal matrix with entries
close to zero representing the estimation error [4].

Each segment is now modeled in the covariance-domain:

Σ̂Ys =
1
Ls

YsYT
s =

1
Ls

(AsXs +Es) (AsXs +Es)
T

=
1
Ls

(AsXs) (AsXs)
T
+

1
Ls

EsET
s +

1
Ls

Es (AsXs)
T
+

1
Ls

AsXsET
s

=
1
Ls

AsXsXT
s AT

s +
1
Ls

EsET
s +

1
Ls

EsXT
s AT

s +
1
Ls

AsXsET
s

= As (Λs + εs)AT
s +

1
Ls

EsET
s +

1
Ls

EsXT
s AT

s +
1
Ls

AsXsET
s

= AsΛsAT
s +AsεsAT

s +
1
Ls

EsET
s +

1
Ls

EsXT
s AT

s +
1
Ls

AsXsET
s (4.1)

= AsΛsAT
s + Ẽs (4.2)
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From (4.1) to (4.2) all terms where noise, εs and Es, is included, are aggregated in a
joint noise term Ẽs. Next, the expression (4.2) is rewritten through a vectorization.
Because the covariance matrix Σ̂Ys is symmetric it is sufficient to vectorize only the
lower triangular part, including the diagonal. For this purpose the function vec(⋅) is
defined. vec(⋅) map a symmetric M ×M matrix into a vector of size M̃ by row-wise
vectorization of the lower triangular part. The increased dimension M̃ becomes

M̃ ∶=
M(M + 1)

2
. (4.3)

Furthermore, let vec−1 ∶ RM̃ → RM×M be the inverse function for devectorization.
Let aj be the j-th column of As, then the matrix product in (4.2) can be written

in sum form where Λsjj is the jj-th entry of Λs.

Σ̂Ys =
N

∑
j=1

ajΛsjj aT
j + Ẽs, Λsjj (4.4)

Applying vec(⋅) to (4.4) results in the following expression, which concludes the
transformation of model (3.3) into the covariance-domain:

vec (Σ̂Ys) =
N

∑
j=1

vec (ajaT
j )Λsjj + vec (Ẽs)

=
N

∑
j=1

djΛsjj + vec (Ẽs)

= Dsδs + vec (Ẽs) , ∀s. (4.5)

Here δs ∈ RN contains the diagonal entries of the source sample covariance matrix
Λs and the matrix Ds ∈ RM̃×N consists of the columns dj = vec (ajaT

j ). Note that
Ds and δs are unknown while vec (Σ̂Ys) is known from the observed measurements.
By this transformation to the covariance-domain, one segment is now represented by
s single measurement model with M̃ ”measurements”.

It has been shown that this transformed model allows for identification of k ≤ M̃
active sources [24]. This is a much weaker sparsity constraint than the original
sparsity constraint k ≤M . The purpose of the Cov-DL algorithm is to leverage this
transformed model to find the dictionary As from Ds. Still allowing for k ≤ M̃ active
sources to be recovered. That is the number of active sources are allowed to exceed
the number of sensors as intended.

4.2 Recovery of the Mixing Matrix

The goal is now to learn first Ds and then the associated mixing matrix As. Two
methods are considered relying on the relation betweenM and N . For now the noise
vector is ignored.
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4.2.1 Under-determined System

When M̃ < N the transformed model (4.5) makes an under-determined system.
This is similar to the original MMV model (3.2) being under-determined when M <

N . Thus, from the theory of compressive sensing, it is again possible to solve the
under-determined system if a certain sparsity is withhold, namely δs being M̃ -sparse.
Assuming the sufficient sparsity on δs is withhold it is possible to learn the dictionary
matrix of the covariance-domain Ds. This can be done by traditional dictionary
learning methods applied to the measurements represented in the covariance-domain
vec (Σ̂Ys) for all segments s.

Dictionary Learning

As mentioned, within the theory of compressive sensing the matrix A is referred to as
a dictionary matrix. When the dictionary matrix is not known a priori it is essential
how to choose the dictionary matrix in order to achieve the best recovery, of a sparse
vector x from the observed measurements y. This is clarified from the proof of
theorem A.1.1 in appendix A.1. One choice is a pre-constructed dictionary. In many
cases the use of a pre-constructed dictionary results in simple and fast algorithms
for reconstruction of x [13]. However, a pre-constructed dictionary is typically fitted
to a specific kind of data. For instance the discrete Fourier transform or the discrete
wavelet transform are used especially for sparse representation of images [13]. Hence
the results of using such dictionaries depend on how well they fit the data of interest,
which is establishing a certain limitation.

The alternative option is to consider an adaptive dictionary based on a set of
training data that resembles the data of interest. For this purpose learning methods
are considered to empirically construct a dictionary. There exist several dictionary
learning algorithms. One is the K-SVD algorithm which was presented in 2006 by
Elad et al. and found to outperform pre-constructed dictionaries, when computa-
tional cost is of secondary interest [1]. The concept of the K-SVD algorithm is
introduced here, and the more detailed algorithm is to be found in appendix A.2.

Consider, from the general MMV model (3.2), the measurement matrix Y ∈

RM×L consisting of measurement vectors {yj}
L
j=1. Let the set of measurement vectors

make a set of L training examples each forming a linear system

yj = Axj .

From the linear system one can learn a suitable dictionary Â, and the sparse repre-
sentation of the source matrix X̂ ∈ RN with the source vectors {x̂j}

L
j=1. For a known

sparsity constraint k dictionary learning can be defined by the following optimization
problem.

min
A,X

L

∑
j=1

∥yj −Axj∥
2
2 subject to ∥xj∥0 ≤ k, 1 ≤ j ≤ L, (4.6)
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where both A and xj are quantities to be determined. Learning the dictionary
by the K-SVD algorithm consists of joint solving of the optimization problem with
respect to A and X. An initial A0 = [a1, . . . , aN ] is chosen and the corresponding
X0 = [x1, . . . , xL] is determined, where xj = [x1j , . . . ,xNj]

T . Then, for each iteration
an update rule is applied to every column of A0. That is updating first aj for
j = 1, . . . ,N and then the corresponding row xi⋅ where i = j. More details on the
K-SVD algorithm are found in appendix A.2. The uniqueness of the dictionary Â
depends on the recovery sparsity condition. As clarified earlier in section 3.3 the
recovery of a unique solution X∗ is only possible if k <M [6].

Application of Dictionary Learning

By the establishment of a dictionary learning algorithm, the transformed mixing
matrix Ds from (4.5) can be learned. Remember that (4.5) is a single vector model,
thus in order to make training samples for learning Ds a further segmentation is
needed. This is segmentation of Ys indexed by s′. For convenience segment index s
will be omitted through out this chapter, as the same theory applies to all segments
s. Hence, Ys′ referrers to one segment within the outer segment of measurements
Ys.

The transformed and vectorized measurements vec (Σ̂Ys′) ,∀s′ now makes the
training data set for learning D. As such each segment s′ provides one training
sample. Thus, the number of available training samples, denoted Ls′ , depends on
the chosen length of the segments. In practice this will vary with respect to the total
amount of available data.

K-SVD is applied to the transformed model (4.5) and D̂ is found. Then it
is possible to estimate the mixing matrix A that generated D through the known
relation

dj = vec(ajaT
j ).

For each column dj for j = 1, . . . ,N the following optimization problem is solved with
respect to the corresponding column aj of the mixing matrix.

min
aj

∥dj − vec (ajaT
j ) ∥

2
2,

equivalent to

min
aj

∥vec−1
(dj)− ajaT

j ∥
2
2. (4.7)

From [4] the global minimizer to (4.7) is given as a∗j =
√
λjbj , without further details
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or a source. Here λj is the largest eigenvalue of vec−1(dj), where

vec−1
(dj) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d11 d12 ⋯ d1N

d21 d22 ⋯ d2N

⋮ ⋮ ⋱ ⋮

dN1 dN2 ⋯ dNN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j = 1, . . . ,N

and bj is the corresponding eigenvector.
From this result each column of the mixing matrix A can be estimated. Hence,

it is possible to determine the mixing matrix in the case where the measurements
transformed into the covariance-domain makes an under-determined system. Pro-
vided however that the necessary sparsity constraint of δ being M̃ -sparse is withhold.
Remember M̃ ∶=

M(M+1)
2 thus M < k is allowed and the original sparsity constraint,

X being M -sparse, is relaxed.

4.2.2 Over-determined System

Consider again the measurements represented in the covariance-domain (4.5). In the
case of M̃ > N an over-determined system is achieved where D is high and thin. In
general such a system is inconsistent. Thus, it is not possible to find D by traditional
dictionary learning methods and different methods must be considered. Let the set
for transformed measurements be denoted by

Ycov ∶= {vec (Σ̂Ys′)}
Ls′
s′=1 .

When M̃ > N it is expected from model (4.5) that the transformed measurements
Ycov live on or near a subspace of dimension N . This subspace is spanned by the
columns of D ∈ RM̃×N , and is denoted as R(D). To learn R(D) without having to
impose any sparsity constraint on δ it is possible to use principal component analysis
(PCA). The basic theory of PCA in found in appendix A.3.

PCA is applied to the set of transformed measurements Ycov and the N first
principal components are determined. The principal components form a set of basis
vectors U = [u1, . . . , uN ]. That is a new basis which spans the subspace on which
Ycov lives. Thus the equality R(U) = R(D) can be justified [4]. However, this
equality does not imply that D = U. In the case of two bases spanning the same
vector space, namely R(U) = R(D), the projection operator of the given subsets
must be the same. Consider the projection operator P projecting onto the space
R(D) spanned by the columns of D, P ∶ RM̃ →R(D). Due to D having full rank it
is a well-known result that P = D(DT D)−1DT . Thus R(U) and R(D) having the
same projection operator is true if and only if

D(DT D)
−1DT

= U(UT U)
−1UT .
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Now, remember from the relation between A and D that dj = vec(ajaT
j ). From this

it is possible to obtain D and then A, such that D spans R(U) and dj = vec(ajaT
j ).

This is specified by the following optimization problem [4]

min
{aj}N

j=1

∥D(DT D)
−1DT

−U(UT U)
−1UT

∥
2
F

s.t. dj = vec(ajaT
j ), (4.8)

where U results from PCA performed on Ycov. From the source proposing the
method [4], it is only notified that the optimization problem (4.8) is minimized by
quasi-Newton optimization methods. Hence, the exact minimization approach can
not be recreated. In the following section the optimization problem is analyzed and
processed in order to determine a suitable solution method.

4.2.3 Solution to Optimization Problem

The optimization problem (4.8) consists of an objective function forming a least-
squares problem with respect to the Frobenius norm. It is given that the squared
norm, both the Euclidean and the Frobenius norm, are strictly convex [10, p. 173].
Thus the objective function of (4.8) is assumed to be convex. The constraint in
(4.8) is a set of quadratic equality constraints. This categorizes the optimization
problem as a quadratically constraint quadratic program. However, the constraints
are not necessarily convex. By the constraints not being considered convex the opti-
mization problem does not meet the requirements of a convex optimization problem.
Hence, the numerical solution methods for convex optimization problems, for which
convergence is ensured, does not apply directly. In fact a non-convex quadratically
constraint quadratic program ins know to be a NP-hard problem [7]. Thus, some
sort of relaxation is preferred.

Due to the nature of the constraints, it should be possible to reformulate the
objective function to include the constraints into the objective function. That is
constructing an unconstrained least-squares problem, which is a special subclass of
convex optimization [8].

Let D = f (a1, . . . , aN) where f (a1, . . . , aN) = {dj = vec (ajaT
j )}

N

j=1. Then an
optimization problem without constraints is achieved, and it can be solved by use
of basic gradient methods, for instance the Newton method. In order to avoid an
explicit expression of the inverse Hessian, used in the Newton method, quasi-Newton
methods can be considered [3]. The general idea of quasi-Newton methods is to let
the direction of search be based on a positive definite matrix generated from available
data as an alternative to the Hessian.

Rendering of general optimization theory and the theory of quasi-Newton meth-
ods is omitted in this thesis and the reader is referred to source [3]. For the im-
plementation of Cov-DL in chapter 6 a predefined optimization module, using a
quasi-Newton method, will be applied.
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4.3 Pseudo Code of the Cov-DL Algorithm

Algorithm 1 Cov-DL
1: procedure Cov-DL(Ys)
2: for s′ ← 1,⋯,Ls′ do
3: ycovs′ = vec (Σ̂Ys′)

4: end for
5: Ycov = {ycovs′}

Ls′
s′=1

6:
7: if N ≥ M̃ then
8: procedure K-SVD(Ycov)
9: returns D ∈ RM̃×N

10: end procedure
11: for j ← 1,⋯,N do
12: T = vec−1(dj)

13: λj ←max{eigenvalue(T)}

14: bj ← eigenvector(λj)

15: aj ←
√
λjbj

16: end for
17: A = {aj}

N
j=1

18: end if
19:
20: if N < M̃ then
21: procedure PCA(Ycov)
22: returns U ∈ RM̃×N

23: end procedure
24: procedure Min. A in (∥D(DTD)−1DT −U(UTU)−1UT ∥2

F )
25: returns A = {aj}

N
j=1

26: end procedure
27: end if
28: end procedure

4.4 Remarks

Through this chapter the theoretical aspects of the Cov-DL method proposed by [4]
have been investigated in order to create algorithm 1 from which the implementation
of Cov-DL will be based. Furthermore, the following remarks are considered with
respect to the implementation.

The length of each time segment s has to be defined with respect to the as-
sumption of the signals being stationary. However, it can not be assured that the
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assumption is withhold for every segment and this will introduce a source of error.
This must be taken into account in the preprocessing part for the implementation of
Cov-DL when the EEG measurements are divided into segments.

For each segment a further segmentation is conducted into segments s′, each
serving as one sample in the covariance-domain. Here the number of samples Ls′ ,
depending on the chosen length, is most likely to influence the estimated dictionary.
This is assuming that more training data will provide better results. Here a certain
trade off may be considered. Longer segments s′ lead to better sample covariance
representation but also a less number of training samples. Opposite, too short seg-
ments s′ might compromise the sample covariance-domain representation, thus the
number of training sample will increase but the training samples might not be as
representative. This trade off must be taken into account during the implementa-
tion of Cov-DL. Furthermore, overlapping segments might be an option for potential
improvement of the Cov-DL method.





Chapter 5

Multiple Sparse Bayesian Learn-
ing

In this chapter the multiple sparse Bayesian learning (M-SBL) method is described
in details, leading to an algorithm specifying the method. As the method leverage a
Bayesian framework the general concept of Bayesian statistics is briefly introduced
prior to the M-SBL method. The chapter is generally based upon [5] where the
method is applied to the MMV model, which is of interest in this thesis. More
detailed theory is found in [32] and [33].

Consider again the MMV model (3.3) of EEG measurements

Y = AX+E. (5.1)

For convenience the segment index s is omitted as the same theory applies to every
segment. Note that A is known throughout the chapter, as it is estimated by Cov-DL
in chapter 4. The aim is to recover the source matrix X by an estimate X̂, in the
case of fewer measurements than active sources, M < k, where k ≤ N .

In [5] it is proven that exact localization of the active sources can be achieved
with M-SBL for M < k, when two sufficient conditions are satisfied. The basic
approach of M-SBL is to apply Bayesian statistics to find a support set S specifying
the non-zero rows of the source matrix X which corresponds to localization of the
active sources. Finally, the values of the localized active sources can be estimated,
that is the identification which concludes the recovery of X .

5.1 Bayesian Inference

The formal framework of Bayesian statistics is Bayes’ theorem [20, p. 86]. The
objective of Bayes’ theorem is to leverage of both data and some specified prior.
This is where the distinguishes from the likelihood of classical frequentist statistics
lies.

27
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Consider now the current MMV model (5.1) within the Bayesian framework.
The model parameter – the source matrix X – is wished estimated given the mea-
surement matrix Y. By Bayes’ theorem the distribution of X given Y is established,
that is the posterior distribution

p(X∣Y) =
p(Y∣X)p(X)

p(Y)
.

Here p(Y∣X) is the probability density function of Y given X, also referred to as the
likelihood function. p(X) is a prior distribution of X and p(Y) is the distribution
of Y serving as a normalizing parameter. By maximizing the posterior distribution
p(X∣Y) with respect to X, the maximum a posteriori (MAP) estimate for the source
matrix is established

X̂MAP = arg max
X

p(Y∣X)p(X)

p(Y)
.

That is the estimate of X̂ with the highest posterior probability given the measure-
ments Y. In the desired case where M < N the MMV model (5.1) makes an under-
determined system. Hence, an infinite number of solutions of equal likelihoods does
potentially exist.

Let the source matrix X be seen as a variable drawn from some distribution
p(X), as such it is possible to narrow down the solution space. Assuming a prior
belief that Y is generated from a sparse source matrix, gives a so-called sparsity
inducing prior. That is the entries of X is drawn from some distribution which has a
sharp, possibly infinite, spike at zero surrounded by fat tails. Here the fat tails make
room for the non-zero values, which are here seen as outliers.

For simplicity a Gaussian prior is however preferred. The use of a Gaussian
distribution can almost be justified if a mixture of two Gaussian distributions are
considered such that the variable is drawn from one of the two with equal likelihood.
One where the variance of the distribution is close to zero, resembling the narrow
spike around the mean at zero. And one with high variance resembling the fat tails.

Different MAP estimation approaches exist separated by the choice of sparsity
inducing prior and optimization method. However, regardless of the approach some
problems have shown to occur when using a fixed algorithm-dependent prior. One
issue occurs if the chosen prior does not assign sufficient probability to the sparse
solution, leading to non-recovery. Another issue is that a combinatorial number of
suboptimal local solutions can occur. By use of automatic relevance determination
(ARD) the problems related to the fixed sparsity inducing prior can be avoided [32,
p. 20]. The main asset of this alternative approach is the use of an empirical prior.
That is a flexible prior distribution depending on an unknown set of hyperparameters,
which is to be learned from the data.



5.1. Bayesian Inference 29

5.1.1 Empirical Bayesian Estimation

First assume that the likelihood function p(Y∣X) is Gaussian, with noise variance
σ2I. In general it is assumed that σ2 is known. Furthermore, the noise-free case
where σ2 → 0 will be discussed. Due to y⋅j consisting of measurement of individual
EEG sensors, it is reasonable to assume independence. Furthermore, it is clear from
the MMV model that one sample of measurements y⋅j only depends of one source
sample x⋅j . Hence, every entry in Y are assumed independently and identically
distributed with likelihood

p(yij ∣xij) ∼ N (Ai⋅x⋅j ,σ2
)

=
1

σ2
√

2π
exp(−

1
2
(
yij −Ai⋅x⋅j

σ
)

2
) .

Now the empirical prior is defined due to the application of ARD. A L-dimensional
Gaussian prior is assigned to each row in X. Note that, similar to Y, the parameters
xij are assumed to be independent and identically distributed. The empirical prior
for each xij is then defined by a Gaussian distribution with zero mean and a variance
controlled by an unknown hyperparameter γi:

p(xij ;γi) ∼ N (0,γi).

Note that every entry of the i-th row is controlled by the same hyperparameter
γi. That is one source signal over time is controlled by one hyperparameter. By
combining the prior of each parameter, the prior of X is fully specified by

p(X;γ) =
N

∏
i=1
p(xi⋅;γi),

with the hyperparameter vector γ = [γ1, . . . ,γN ]T . Note that the prior can be fac-
torized over columns, resulting in

p (x⋅j ;γ) =
N

∏
i=1
p (xij ;γi) .

Combining the prior p (x⋅j ;γ) and the likelihood p(y⋅j ∣x⋅j) the posterior of the j-th
column of the source matrix X becomes

p(x⋅j ∣y⋅j ;γ) =
p(y⋅j ∣x⋅j ;γ)p(x⋅j ;γ)

p(y⋅j ∣γ)

=
p(y⋅j ∣x⋅j ;γ)p(x⋅j ;γ)
∫ p(y⋅j ∣x⋅j)p(x⋅j ;γ) dx⋅j

∝ p(y⋅j ∣x⋅j ;γ)p(x⋅j ;γ)
∼ N (µ⋅j , Σ), (5.2)
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where the denominator is the marginal likelihood of y⋅j also referred to as the evi-
dence. The marginalization is elaborated in the following section. Mean and covari-
ance of (5.2) for every j = 1, . . . ,L is given as

Σ = Cov(x⋅j ∣y⋅j ;γ) = Γ − ΓAT Σ−1
y AΓ (5.3)

M = [µ⋅1, . . . ,µ⋅L] = E[X∣Y;γ] = ΓAT Σ−1
y Y, (5.4)

where Γ = diag(γ) and Σy = σ
2I+AΓAT . The derivation of the posterior mean and

covariance if found in appendix B.1.
Now let the posterior mean M serve as the estimate for the source matrix X

[32, p. 147]. It is clear that whenever γi = 0 the corresponding xi⋅ is equal to zero
with probability 1:

P(xi⋅ = 0∣Y;γi = 0) = 1.

This ensures the posterior mean M of the i-th row, µi⋅, becomes zero, whenever
γi = 0 as desired.

From this it is evident that for estimating the support set of X it is sufficient
to estimate the hyperparameter γ, from which the support set S can be extracted.
This leads to the actual M-SBL algorithm for which the aim is to estimate γ and
the correspondingM.

5.2 M-SBL for Estimation of X

The M-SBL algorithm is now specified in order to estimate the hyperparameter γ and
then the corresponding unknown sources X. Due to the empirical Bayesian strategy
the unknown source matrix X is integrated out, also referred to as marginalization.
By integrating the posterior with respect to the unknown sources X the marginal
likelihood of the observed data Y is achieved [32, p. 146]

L(γ;Y) = ∫ p(Y∣X)p(X;γ) dX

= p(Y∣γ).

The resulting marginal likelihood of γ is to be maximized with respect to γ, that
is the maximum likelihood estimate (MLE). From the ARD approach the MLE is
considered the cost function. The −2 log(⋅) transformation is applied in order for the
cost function to be minimized, and factors not depending on Y is removed. This
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result in the following log likelihood:

`(γ;Y) = −2 log(p(Y;γ))

= −2 log
⎛

⎝
2π

M
2 ∣Σy ∣

1
2 exp

⎛

⎝
−

1
2

L

∑
j=1

yT
⋅j Σ−1

y y⋅j
⎞

⎠

⎞

⎠

= L log(∣Σy ∣)+
L

∑
j=1

yT
⋅j Σ−1

y y⋅j . (5.5)

It is not expected that an explicit solution to the minimization problem can be found
by differentiating and letting the expression equal to zero. Hence, the problem has
to be solved iteratively based on an initial parameter guess γ(0).

One iterative method is the expectation maximization (EM) algorithm. In
general each iteration consists of an expectation (E) step, where a function determines
the expectation of the likelihood function given the currently estimated parameters.
The E-step is followed by an maximization (M) step which computes the parameters
by maximizing the expected likelihood found in the E-step. In this case the E-step
is to compute the posterior moments using (5.3) and (5.4) while the M-step is the
following update rule of γi [32, p. 147]

γ
(k+1)
i =

1
L
∥µi⋅∥

2
2 +Σii, ∀i = 1, . . . ,N .

The M-step is, in general, very slow on large data. An alternative is to use a fixed-
point update rule to fasten convergence on large data. However, the resulting conver-
gence has been found to sometimes be inferior compared to the convergence obtained
by the above update rule [32, p.147]. The general point of a fixed-point update is to
define the new value from the previous value. The fixed-point updating step is here
achieved by taking the derivative of the marginal log likelihood `(γ) with respect
to γ and equating it with zero. This leads to the following update rule which can
replace the above M-step in the EM-algorithm [32, p. 147]

γ
(k+1)
i =

1
L∥µi⋅∥2

2

1− γ−1(k)
i Σii

, ∀i = 1, . . . ,N . (5.6)

Empirically this alternative update rule has shown to be useful in highly under-
determined large-scale cases. Based on many hyperparameters being driving toward
zero, allowing for the corresponding weight in the source matrix to be discarded.
For simultaneous sparse approximation problems, this is the process referred to as
multiple sparse Bayesian learning, M-SBL.

From the resulting γ∗ the support set S of the source matrix X is extracted,

S = {i∣γ∗i ≠ 0},
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concluding the localization of active sources within X. In practice some arbitrary
small threshold can be used such that any sufficiently small hyperparameter is dis-
carded [32, p. 149]. For identification of the active sources the estimate of the source
matrix X is given as X̂ = M, with M = E[X∣Y;γ∗]. This leads to the following
estimate

X̂ =

⎧⎪⎪
⎨
⎪⎪⎩

xi⋅ = µi⋅, i ∈ S

xi⋅ = 0, i /∈ S

As mentioned, the case of a the noise-free sparse representations should be considered.
That is the limit when σ2 → 0. Here the M-SBL steps can be adapted easily by using
a modified version the moments, given by [32, p. 148] as

Σ = [I− Γ1/2
(AΓ1/2

)
†
A]Γ

M = Γ1/2
(AΓ1/2

)
†
Y

where (⋅)† is the pseudo-inverse.

5.2.1 When k is Known

From M-SBL the number of active sources k is estimated as the number of non-zero
entries in the hyperparameter γ∗. However, in the current scenario A is estimated by
Cov-DL, prior to the application of M-SBL, where k is provided as input to Cov-DL,
cf. chapter 4. Thus, k is known in prior to M-SBL and can hereby be used as a
known parameter to the M-SBL method. With k being known the estimation of the
support set S from the non-zero rows of γ∗, cf. section 5.1.1, is overruled. Instead,
when generating the support set Sk one choose the k largest entries of γ∗ [5, p. 3].
The estimate of the source matrix is then found by

X̂ =

⎧⎪⎪
⎨
⎪⎪⎩

xi⋅ = µi⋅, i ∈ Sk

xi⋅ = 0, i /∈ Sk



5.3. Pseudo Code for the M-SBL Algorithm 33

5.3 Pseudo Code for the M-SBL Algorithm

Algorithm 2 M-SBL
1: procedure M-SBL(Y, A)
2: γ(0) = 1 ∈ RN

3: tol = 0.0001
4: while p < 3 or any(γ(p) −γ(p−1)) ≥ tol do
5: Γ = diag(γ(p))
6: Σ = Γ − ΓAT Σ−1

y AΓ

7: M = ΓAT Σ−1
y Y

8: for i = 1, . . . ,N do

9: γi(p+1) =
1
L∥µi⋅∥2

2
1− γ−1

i(p)Σii

10: end for
11: p + = 1
12: end while
13: ReturnM,γ∗
14: end procedure
15: procedure Support(M,γ∗, k)
16: Support = 0 ∈ Rk

17: for j = 1, . . . ,k do
18: if γ∗ [arg max(γ∗)] != 0 then
19: Support(j) = arg max(γ∗)
20: γ∗ [arg max(γ∗)] = 0
21: end if
22: end for
23: X̂ = 0 ∈ RN×L

24: for i in Support do
25: X̂i⋅ =Mi⋅
26: end for
27: Return X̂
28: end procedure

5.4 Sufficient Conditions for Exact Source Localization

In [5] it is proven that exact source localization is guaranteed in the under-determined
case, k > M when the conditions in the following theorem are fulfilled. The theo-
rem is based on a theoretical analysis of the minima where noise-free conditions are
considered, that is letting σ2 → 0. Thus, it is essential that the following theorem
applies to the noise-free case.
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First, define a function f ∶ RM×N → R
M(M+1)

2 ×N , such that for B = f(A) the
j-th column is given as b⋅j = vec(a⋅jaT

⋅j ). Here the function vec(⋅) corresponds to the
function defined in section 4.1, being a vectorization of the lower triangular part of
a matrix. Furthermore, XSk ∈ Rk×L denote only the non-zero rows of X – the active
sources.

Theorem 5.4.1
Given a dictionary matrix A and a set of observed measurement Y, M-SBL recovers
the support set of any size k exactly in the noise-free case, if the following conditions
are satisfied.

1. The active sources XSk are orthogonal. That is, XSkXT
Sk = Λ, where Λ is a

diagonal matrix.

2. Rank(f(A)) = N .

The proof can be found in [5, p. 16].



Chapter 6

Implementation and Verification

In this chapter the implementation process of the main algorithm is described. The
main algorithm is the two methods Cov-DL and M-SBL from respectively chapter 4
and 5 combined into one algorithm.

The implementation of each method is initially tested on a simple deterministic
simulated data to verify the implementation. Next, tests are performed on stochastic
simulated data which aim to resemble real EEG measurements. By simulating a data
set the true model parameters are known which allows for measuring the precision of
the implemented methods. In addition different model variables are investigated in
order to improve the model. Finally, the main algorithm is tested on the stochastic
data sets, and conclusions are drawn based on the results.

6.1 Implementation

In this section the implementation of the main algorithm is described. A flowchart
is constructed to illustrate the flow through the code. The main algorithm consists
of three main stage: an initialization, application of Cov-DL for recovery of A and
lastly application of M-SBL for recovery of X. In the flowchart, figure 6.1, each stage
of the algorithm is illustrated within one horizontal row. Furthermore, the input and
output are placed in their own row.

35
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Figure 6.1: Flowchart illustrating the implementation of the main algorithm.

The input of the main algorithm consists of the measurement matrix Y ∈ RM×L,
along with the corresponding sample frequency f . Within the initialization stage the
measurement matrix Y goes through a segmentation as described in section 3.2.1.
Resulting in non-overlapping segments. The length of the segments is predefined by
a time interval of t seconds such that Ls = tf . Each segment s is now specified by
the measurement matrix Ys ∈ RM×Ls . After the segmentation a loop is constructed
such that the remaining two stages of the main algorithm, are performed for every
segment s. First N and k are manually defined. This definition is either known in
advance from the data or in the case of real EEG measurements they are unknown
and a qualified guess must be made.

With the specifications of one segment, the second stage of the algorithm is
initialized, recovery of As. The implementation of the Cov-DL stage follows algo-
rithm 1 from section 4.3 closely, thus only the main steps are illustrated on the flow
diagram 6.1. First the measurement matrix Ys is transformed to the covariance-
domain and vectorized. This results in the extension of the dimensionality from M

to M̃ =
M(M+1)

2 . Next, the estimation of As is performed from either Cov-DL1 or
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Cov-DL2 depending on the relation between M̃ and N , as described respectively in
section 4.2.1 and 4.2.2. The estimate Âs and the measurement matrix Ys serve as
the input to the following stage, M-SBL for recovering of Xs.

The finishing stage of the main algorithm consists of the iterative EM algorithm
for maximizing the marginal likelihood (5.5) with respect to γ. The resulting γ∗ is
the hyperparameter from which Xs is determined as described in section 5.2. Lastly,
the output of the main algorithm X̂s and Âs is illustrated on the flowchart 6.1.

6.1.1 Coding Practice

The implementation of the main algorithm is performed in Python 3.6. The software
and guide to run the scripts are available through appendix D.

The practical implementation process is based on module development. The es-
tablished model and the three stages of the main algorithm make the system design.
For each stage the necessary tasks are identified and divided into smaller modules.
For each module the task is specified, and an algorithm is established and imple-
mented. This is followed by a test of the module and possible modifications until the
task is performed without error. Due to the time limitation of this thesis, the software
was developed along side the dynamic research process. Hence, the specifications to
some modules have been redefined and the modification process are repeated. Fi-
nally, the modules are united into one stage for which tests are performed, and lastly
all the stages are united to the resulting main algorithm.

The software is based on functions, for example one module is specified by one
function, for which docstrings is used, following NumPy docstring format1 allowing
insight into the structure and thoughts behind the different software elements.

For each of the stages Cov-DL and M-SBL, the verification and performance
tests are described later in this chapter, followed by the testing phase of the main
algorithm.

6.2 Data Simulation

To evaluate the performance of the main algorithm as well as the individual stages,
synthetic data are simulated with respect to the model Y = AX. All data sets are
simulated based on the following approach, satisfying the sufficient conditions for
recovery, displayed in theorem 5.4.1.

A source matrix X ∈ RN×L is constructed, such that every non-zero row is
sampled individually by some function restricted by having zero mean. By this
approach the non-zero rows of X become close to orthogonal [5], which approximates
the first conditions of theorem 5.4.1. Then a mixing matrix A ∈ RM×N is constructed
with identically distributed and independent entries. As such the source signals are

1https://numpydoc.readthedocs.io/en/latest/

https://numpydoc.readthedocs.io/en/latest/
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randomly mixed and the mixing matrix fulfils the second condition of theorem 5.4.1.
With known A and X, the measurement matrix Y ∈ RM×L is simulated according to
the model, by the matrix product Y = AX. Note that the error matrix E is omitted
in this chapter, as noise is not included in the synthetic data.

Two different kinds of data sets are simulated. Deterministic data having simple
and predictable source signals to ensure a solution and easy visualization. And
stochastic data having randomized and fluctuating source signals to resemble realistic
EEG measurements.

Note that each simulated data set fulfils the sufficient conditions for recovery,
thus segmentation of the synthetic data is not necessary.

6.2.1 Deterministic Data

Two different deterministic data sets are simulated, with a different number of zero
rows. The first is specified by N = 5, k = 4, M = 3 and L = 1000. That is a source
matrix X with 4 rows individually generated and 1 zero row. By the specifications
the source matrix X is mixed into a measurement matrix Y with 3 measurements
per sample. The second deterministic data set is specified by N = 8, k = 4, M = 3
and L = 1000. That is 3 additional zero rows. From the specifications the first data
set comply to N ≤ M̃ which imply the use of Cov-DL2. The second data set comply
to N > M̃ and k ≤ M̃ implying the use of Cov-DL1. As such it is possible to test
both branches of the Cov-DL method.

The four non-zero source signals of X are defined by the following individual
functions, causing the rows to be approximately orthogonal

1. a sinus signal sin(2t)

2. a sawtooth signal with period 2πt

3. a sinus signal sin(4t)

4. a sign function of a sinus signal sin(3t)

with t being a time index defined in the interval [0, 4] with L samples. Each of
the four signals are randomly drawn and used to construct a source matrix X of
size k ×L, then zero rows are inserted randomly, such that X ∈ RN×L. The mixing
matrix A of size M ×N is randomly generated from a Gaussian distribution. By
multiplying the source matrix and the mixing matrix a measurement matrix Y is
simulated. The resulting deterministic data set then consist of {Y, X, A}.

In figure 6.2 the first deterministic data set, triggering Cov-DL2, is illustrated
by the source signals plotted in the top and the measurement signals plotted in the
bottom. This illustrates how the source signals are transformed by the mixing matrix
A.
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Figure 6.2: Visualization of the source signals X in comparison to the measurement signals Y
from the deterministic data set specified by N = 5, M = 3, k = 4 and L = 1000.

6.2.2 Stochastic Data

The purpose of this second kind of data is to resemble EEG measurements for which
the main algorithm is intended. Here different data sets are simulated depending on
the chosen specifications of N , k, M and L. Every data set is constructed based on
four different linear auto-regressive processes of various orders, each process repre-
senting one source signal
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where φ,ζ,η and ξ are different model parameters and wj
t for j = 1, . . . , 4 are mutually

independent Gaussian distributed white noise coefficients. The source matrix X
is constructed by drawing k auto-regressive processes, randomly drawn among the
four, each of length L. If k < N zero rows are inserted randomly such that X ∈

RN×L. The mixing matrix A ∈ RM×N is, like previously, generated randomly from
a Gaussian distribution. By multiplying the source matrix and the mixing matrix,
the measurement matrix Y is simulated. The stochastic data set then consist of
{Y, X, A}.

One simulation of a stochastic data set is illustrated in figure 6.3. The illustrated
data set is specified by N = 5, M = 3, k = 4 and L = 1000.
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Figure 6.3: Visualization of the source signals X in comparison to the measurement signals Y from
a stochastic data set specified by N = 5, M = 3, k = 4 and L = 1000. For simplicity only samples
from L = 0, . . . , 100 are visualized.

6.2.3 Error Measurement

To evaluate the estimates, and hereby the performance of each stage of the main
algorithm, it is evident to look at the differences between the true and estimated
matrices, mixing matrix A and source matrix X – which is possible due to the data
being simulated.

For this task the mean squared error (MSE) has been chosen. The MSE mea-
sures the average squared difference between some estimated value and the true value.
For ĝ being the estimate of the vector g the MSE can be written as

MSE(g, ĝ) = 1
T

T

∑
i=1

(gi − ĝi)
2,

with T being the number of elements in the vector g.
For this thesis the estimates form a matrix. Here the MSE is computed for each

row, which for X is the estimate of one source signal. Then the resulting MSE is the
average over all rows. For X, X̂ ∈ RN×L the MSE is written as

MSE(X, X̂) =
1
N

N

∑
i=1

⎛

⎝

1
L

L

∑
j=1

(Xij − X̂ij)
2⎞

⎠
.

Similarly, the MSE can be written for A, Â ∈ RM×N .
The MSE is viewed as a measure of the quality of an estimator, in this case

of how M-SBL and Cov-DL perform. The MSE considers both the variance among
the estimated samples and the bias which is how far the average estimated value is
from the true value [11, p. 305]. Thus the larger MSE the more widely dispersed
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is the estimate around the true parameter. In particular, X̂1 is considered a better
estimated than X̂2 if MSE(X, X̂1) <MSE(X, X̂2).

One drawback of applying the MSE as the performance measure has to be
considered. The general MMV model, when both A and X are unknown, is in fact
invariant toward mutual interchange of rows. Conditioned on similar interchange
of rows in both A and X. With respect to MSE this introduces a possibility of
comparing the wrong parameters leading to a misleading MSE. However, the extent
of this issue is assumed to be limited when the estimates of A and X are conducted
and evaluated separately. Though this will be kept in mind when analyzing the
results.

6.3 Verification

In this section the implementations of Cov-DL and M-SBL are verified separately,
based on the MSE between the true and the estimated model parameters. Remember
that the segmentation stage is ignored as the simulated data form one single segment.

6.3.1 Test of Cov-DL

As seen from the flowchart 6.1 Cov-DL takes a measurement matrix Y, N and k as
input and returns an estimate Â of the mixing matrix A. The Cov-DL algorithm is
tested on the two simulations of the deterministic data, specified in section 6.2.1.

Cov-DL1

For measurement matrix Y specified by N > M̃ and k ≤ M̃ , implying Cov-DL1, the
true and estimated values of the mixing matrix A are visualized in figure 6.4. Note
that each matrix is vectorized such that the corresponding entries are compared. The
resulting MSE(A, Â) is seen below. As a reference the MSE is measured between A
and a corresponding estimate being a zero matrix.

MSE(A, Â) = 1.74
MSE(A, 0) = 1.40.

From figure 6.4 it is seen that the difference between the estimate and the true
value varies significantly for each entry. Though, the estimated values are seen to
fall within the same range as the true values. Furthermore, the MSE(A, Â) is fairly
small suggesting that the estimate is acceptable. However, a smaller MSE is obtained
from the estimate being a zero matrix, which argues against Â being an acceptable
estimate.
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Figure 6.4: Estimated values of Â compared to the true values A.

Cov-DL2

For the measurement matrix Y specified by N ≤ M̃ , implying Cov-DL2, the true and
estimated values of A are visualized in figure 6.5. Additionally, Ainit is plotted in the
same figure. The matrix Ainit is the initial matrix provide to the optimization solver
– a realization of a Gaussian matrix with zero mean and unit variance. The resulting
MSE values is seen below, again the zero matrix estimate is used as a reference.

MSE(A, Â) = 3.00
MSE(A, 0) = 0.90.

From figure 6.5 the estimate Â shows visual tendencies from the true A. However,
when it is compared to the initial guess of A, Ainit, it is observed that the estimate
Â have moved further away from the true A compared to Ainit. This suggests some
flaw within the optimization process. By printing the convergence message from the
used optimization solver, it is confirmed that the optimization process was found
to be terminated successfully. With a current cost function value at 0.0 after 26
iterations. This suggests that a global minimum has been found, but the minimum,
Â, does not correspond to the true A. To confirm this the following evaluations of
the cost function was conducted:

cost(Â) = 0.0
cost(Ainit) = 1.64
cost(A) = 1.65

These evaluations ensure that the optimization solver did manage to find the solution
that minimizes the cost function. By evaluating the cost function with respect to
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the true A it is seen that the true mixing matrix is not a global minimizer to the op-
timization problem. This suggests that the optimization problem, derived in section
4.2.2, do not fulfil the purpose. However, it has to be mentioned that this is merely
an interesting observation rather than a concluding result, as cost(A) = cost(Â) is
not guaranteed.

Figure 6.5: The values of Ainit and Â compared to the true values A.

Finally, an additional observation can be gained from both figure 6.4 and 6.5. It
appears visually to that the issue of the model being invariant towards the order of
the rows in the estimate Â is not an issue in this example. For instance neither of
the three most negative values in A is found to be estimated at a different index. As
such this potential flaw within the error measurement is not found to contribute to
the insufficient results.

Summary with Respect to Verification of Cov-DL

From the above results it is found that the estimate Â, especially within the Cov-
DL2 branch, can not be considered as a valid estimate of the mixing matrix A. The
results suggest immediately that the flaw lies within the derivation of the cost func-
tion to the optimization problem. More specifically within the assumptions made
throughout the derivation concerning the relation between A, D and U. However,
in general three scenarios can be considered. The occurrence of a mistake with re-
spect to the implementation, a misinterpretation of the source [4] leading to wrong
implementation or lastly the method do not work as claimed by the source. In order
to investigate the source of the insufficient results, the main attribute would be a
thorough step by step evaluation of the implementation. Elements of special interest
could be the found D relative to A and the amount of noise resulting from the rows
of X being close to orthogonal. A different aspect could be the assumption of the
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optimization problem (4.8) being convex without further investigation regarding the
truthfulness of this assumption. The inconsistent results might suggest the opti-
mization problem might not be convex. However, the fact that the optimization is
terminated successfully with a cost equal to zero supports the existence of a global
minimum.

Due to the time limitation of the thesis, the described investigation towards
the source of the error is not conducted. It is concluded that the estimate of A
is not valid. Hence, it will not be used as an input to the next stage of the main
algorithm, M-SBL. This conclusion suggests that some alternative to the estimate
must be considered. This is discussed further in section 6.4.

6.3.2 Test of M-SBL

From the flowchart 6.1 it seen that the M-SBL algorithm takes the estimated mixing
matrix Â and measurement matrix Y as input. However, in order to not let the
performance of Cov-DL affect the result of M-SBL the true mixing matrix A is
used as an input throughout this section, along with the corresponding Y. The
implementation is first tested on a deterministic data set specified by M = N = k =

4 and L = 1000. This result will serve as a reference, showing the best possible
performance due to the system having an equal number of equations and unknowns,
where a unique solution exists. The resulting estimate is seen in figure 6.6. It is seen
that the source signals are estimated exact, with MSE(X, X̂) = 0.

Figure 6.6: Estimated values of X̂ compared to the true values X. From deterministic data set
specified by M = N = k = 4 and L = 1000 given the true mixing matrix A.

Now the desired case of M < N is considered. Two tests are performed on the same
two deterministic data sets, as used in the previous section, specified byM = 3, k = 4,
L = 1000 and respectively N = 5 and N = 8.
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The estimate X̂ is visualized in figure 6.7 and 6.8. The zero rows of the estimate
X̂ is not visualized and therefore the figures do not visualize the exact localization
of the source signals.

Figure 6.7: Estimated values of X̂ compared to
the true values X. From deterministic data set spec-
ified by N = 5, M = 3, k = 4 and L = 1000 and given
the true mixing matrix A.

Figure 6.8: Estimated values of X̂ compared to
the true values X. From deterministic data set spec-
ified by N = 8, M = 3, k = 4 and L = 1000 and given
the true mixing matrix A.

The resulting MSE between the true X and the estimate X̂ from figure 6.7 with
N = 5, becomes

MSE(X, X̂) = 0.13.

From figure 6.7 it is seen that all four source signals are recovered at the right
locations relative to the removal of the zero rows from X and X̂. As suggested by
the achieved MSE the estimate is not exact, but it is clear that the estimates to some
extent manage to follow the right pattern of the true signals.

The resulting MSE between the true X and the estimated X̂ from figure 6.8
with N = 8 thus more sparse, becomes

MSE(X, X̂) = 0.162.

From figure 6.8 it is again seen that the source signals are recovered at the right
locations. However visually the estimates appear slightly more imprecise. This
indicates that the implementation of M-SBL manages to locate and estimate the
source signals, however the increased zero rows improve the chance of dislocation
and it decrease the accuracy of the estimate.

Possibilities of N = k

Due to the problem statement in chapter 2 it is an issue that k has to be known a
priori, in order to estimate A and X. A short discussion in section 5.2.1, describes
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how k can be estimated within the M-SBL algorithm. However, one still needs to
provide k in order to estimate A, thus a qualified estimate of k can not be avoided.

Similar to k, the maximum number of active sources N is unknown in practice
as described in chapter 1. The difference between k and N defines the number of zero
rows in X. During the estimation of X the localization of the non-zero rows are, in
general, significant in order to minimize the MSE. However, the fact that the true N
can not be known for EEG measurements weakens the argument for focusing on the
localization rather than only focusing on the value estimation of the source signals.
When considering the linear system, Y = AX, which the model is built upon, Y does
not change by removing the zero rows of X and the corresponding columns in A.

From this it can be argued that N = k is a sufficient estimate of N . However,
remember from chapter 5 that the existence of a solution is limited to N = k ≤ M̃ .

Now consider the effect of letting N = k within the M-SBL algorithm. Here
it is only the estimation of the support set which is eliminated, as non-zero rows
will occur. Figure 6.9 shows the estimated source signals for a simulation of the
deterministic data set specified by N = k = 4, M = 3 and L = 1000.

Figure 6.9: Estimated values of X̂ compared to the true values X. From deterministic data Y
specified by N = k = 4, M = 3 and L = 1000 and given the true mixing matrix A.

The resulting MSE becomes

MSE(X, X̂) = 0.124

From the above discussion and the results in figure 6.9 it is confirmed that letting
N = k has no disadvantage when a correct localization of the source signal is not a
priority. It is chosen that N = k will be used throughout the thesis. This imply that
the recovery process only consists of identification and not localization.
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6.3.3 Test on Stochastic Data

The M-SBL algorithm is now tested on two stochastic data sets which resembles real
EEG measurements. The first stochastic data set is simulated with specifications
N = k = 8, M = 6 and L = 1000. The resulting estimate is visualized in figure 6.10
and the MSE becomes

MSE(X, X̂) = 1.1.

The second stochastic data set is simulated with specifications N = k = 16, M = 6
and L = 1000. This tests the capabilities of the implementation of M-SBL when the
distance between M and N is enlarged. The performance relative to the relation
between N and M is further investigated for the main algorithm in section 6.4. The
resulting estimate is visualized in figure 6.11 and the MSE becomes

MSE(X, X̂) = 3.652.

Figure 6.10: Estimated values of X̂ compared to
the true values X. From a stochastic data set spec-
ified by N = k = 8, M = 6 and L = 1000 and given
the true mixing matrix A.

Figure 6.11: Estimated values of X̂ compared to
the true values X. From a stochastic data set spec-
ified by N = k = 16, M = 6 and L = 1000 and given
the true mixing matrix A.

From figure 6.10 it is visually confirmed that the implementation of M-SBL manages
to sufficiently recover the stochastic source signals X. Some source signals are nearly
perfectly estimated while other are having minor differences. From figure 6.11 the
same tendency is seen, though more visual flaws appears compared to figure 6.10.
This result suggests that a bigger distance between M and N results in a worse
performance from the M-SBL algorithm.
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6.4 Test of the Main Algorithm

In this section the performance of the main algorithm is evaluated. That is the
algorithm visualized in the flowchart 6.1 where the Cov-DL algorithm and the M-
SBL algorithm are combined. However, as discussed due to the negative conclusion
on the verification of implementation of Cov-DL an alternative to estimate of the
mixing matrix has to be considered before the main algorithm can be evaluated.

6.4.1 Alternative to Estimate Â

As concluded the implementation of Cov-DL does not provide a sufficient estimate
of the mixing matrix A. Therefore a different approach is necessary.

Replacing the insufficient estimate by a fixed estimate Âfix is one immediately
solution. By the term fixed one referrers to the estimate being manual chosen rather
than being data dependent. This choice is supported by the observations from Cov-
DL2 where the matrix Ainit provides an estimate which happens to be at least as good
as the one provided by Cov-DL. Thus, the challenge is now to choose a fixed matrix
for which its characteristics resemble those of the true mixing matrix. However, from
chapter 1 it is clear that no specific characteristics of the mixing matrix are known,
which supports the choice of a random matrix of Gaussian distribution or similar, as
it was chosen for the initial guess Ainit. By randomly generating the fixed estimate,
an estimate is drawn from the specific distribution. Thus different realizations occur
for every data set. From this perspective three fixed estimates of the mixing matrix
are defined, by drawing each entry from a specified distribution:

Âuni ∼ U(−1, 1)

Ânorm1 ∼ N (0, 1)

Ânorm2 ∼ N (0, 2)

Note that the second matrix Ânorm1 is generated the same way as the true mixing
matrix of the stochastic data set, being a different realization. Thus, Ânorm1 is
expected to have the lowest MSE when compared to the true mixing matrix A.
However, it is of interest to investigate whether it is the best estimate of A which
provide the best estimate of X.

A different option regarding a choice for a fixed estimate Âfix is to utilize the
ICA algorithm, described in appendix C. By the ICA algorithm it is possible to solve
the EEG inverse problem for both A and X, in the case where k ≤ M . Consider a
simulation of a stochastic data set specified by N = k = M . Solving the system by
ICA yields an estimate of A. Now reduce the data set Y such thatM ≤ k. Similar the
estimate of A is reduced by removing the same rows as in Y. This yields an estimate
ÂICA which can be used as a fixed input to M-SBL along with the corresponding
reduced Y.
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The four different fixed estimates Âfix are tested on the stochastic data set
specified by M = 10, N = k = 16 and L = 1000. As a reference the true mixing matrix
A is included in the figure, to see the best possible MSE(X, X̂). To get an average
performance 50 different simulations are conducted with the same specifications. For
each system X is estimated from each of the four fixed estimates2 of A, and the cor-
responding MSE is computed. The resulting average MSE(A, Âfix) and MSE(X, X̂)

are visualized in figure 6.12, for each of the four Âfix.

Figure 6.12: Average MSE(A, Â) value for each of the four fixed estimates Âfix and the corre-
sponding MSE(X, X̂). From a stochastic data set specified by M = 10, N = k = 16 and L = 1000.

From figure 6.12 it is first of all seen that relation between the MSE of A and X do
not behave as expected. The lowest MSE(A, Âfix) results in the highest MSE(X, X̂)

and so forth. The lowest MSE(A, Âfix) is achieved by using ÂICA, which confirms
that the ICA algorithm manages to estimate A when k ≤ M . However, as this do
not result in the best estimate of X a different choice of Âfix is still considered.
The lowest MSE(X, X̂) is achieved by use of Ânorm2, which resulted in the largest
MSE(A, Âfix).

As the main interest in this thesis is to recover the active sources of EEG
measurements, a low MSE(X, X̂) is more desirable than a low MSE(A, Âfix). Fur-
thermore, a disadvantage of using ÂICA is the limitations in practice when k =M is
not possible. From these observations a fixed estimate of the mixing matrix drawn
from a normal distribution with mean 0 and variance 2, is chosen as the alternative
estimate of A. Thus is it concluded that Âfix ∶= Ânorm2 will replace the Cov-DL
stage in the main algorithm, cf. figure 6.1, throughout the remaining parts of this
thesis.

Due to the unexpected relation between MSE(A, Âfix) and MSE(X, X̂) an ad-
ditional investigation is conducted. Figure 6.13 shows the MSE(X, X̂) as a function

2Note for each of the 50 repetitions that four different realizations of Âfix are fixed.
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of the mixing matrix A with varying SNR. Specifically white noiseW(SNR), a Gaus-
sian matrix with increasing variance as a function of the desired SNR, is added to
the true mixing matrix, such that

Â =A+W(SNR).

The SNR is considered in the interval [0.01, 2]. For each SNR 100 simulations are
performed and the average MSE(X, X̂) is computed. Additionally figure 6.14 shows
the corresponding average MSE(A, Â).

From figure 6.13 it is seen that MSE decreases as the SNR increases. This
indicates as first expected that the better estimate of the true mixing matrix A the
better estimate of source matrix X. However, this is still a contradiction to the result
seen in figure 6.12. This could possible correspond to true mixing matrix A being
a Gaussian matrix with zero mean and unit variance for which Gaussian noise is
added. The average MSE(A, Â) seen in figure 6.14 is seen to be far below 1 even for
a large amount of noise, which is remarkably lower than the MSE values previously
seen in figure 6.12.

Figure 6.13: MSE(X, X̂) estimated from stochas-
tic data set specified by M = 6, N = k = 8 and
L = 1000, as a function of SNR of given Â.

Figure 6.14: MSE(A, Â) where Â is a function of
the SNR. Â correspond to Â used in figure 6.13.

6.4.2 Performance Test of Main Algorithm

In order to evaluate the performance of the main algorithm, tests are conducted on
several simulated stochastic data sets with different specifications. The aim is to
see how the relationship between N and M affect the performance, in other words
how robust the algorithm is towards low-density measurements, M < N . The main
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algorithm is tested on simulated stochastic data sets specified by M = 8, L = 1000,
k = N with N in the range N = M + 1, . . . , 36, as such k < M̃ is withhold ensuring
a solution. For each value of N ten different data sets are simulated and solved,
and the average MSE(X, X̂) are used as the result of performance. The average
MSE(X, X̂) as a function of N are visualized in figure 6.15.

Figure 6.15: Visualization of average MSE(X, X̂) of the main algorithm with simulated stochastic
data sets specified by M = 8, L = 1000 and k = N for N = M + 1, . . . , 36. The average is computed
over ten repetitions for each N .

From figure 6.15 it is seen that the MSE(X, X̂) lies in the interval [5, 40] and no
clear trend appears in the figure. This suggests that it is not a representative average
behavior which has been visualized. Thus, the test is repeated with 500 repetitions
for each value of N . The new result of the MSE(X, X̂) is seen in figure 6.16.
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Figure 6.16: Average MSE(X, X̂) of the main algorithm with simulated stochastic data sets spec-
ified by M = 8, L = 1000 and k = N for N = M + 1, . . . , 36. The average is computed over 500
repetitions for each N .

Figure 6.16 confirms the result of the first test. However, the average MSE for
N = M + 1 = 9 has increased significantly. To investigate this behavior the corre-
sponding box-plot presenting the 500 repetitions for N = 9 is visualized in figure
6.17, respectively with and without outliers. Here it is clear that the significant
increase in average correspond to a few significant outliers.

Figure 6.17: Left plot visualize the box-plot, including outliers, of 500 repetitions for k = N = 9,
M = 8 and L = 1000. Right plot visualize the box-plot without outliers.

Over all, this suggests that the performance of the main algorithm is not affected by
the relation between M and N . However, this assumption is counter intuitive and it
is a contradiction to the results seen in figure 6.10 and 6.11, where the true A was
utilized. Thus, the choice of the alternative estimate Âfix might have influenced the
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results negatively. Furthermore, it is worth to notice the wide range of MSE(X, X̂)

suggesting a very high variance within the results, which add a certain unreliability
to the results.

6.5 Summary

Through this chapter the implementation process has been described, followed by
verification tests of the two main stages of the main algorithm, respectively the Cov-
DL algorithm and the M-SBL algorithm.

From the test of M-SBL on stochastic data sets it was verified that the imple-
mentation provide the expected output, and from MSE(X, X̂) and the corresponding
visual comparison, the estimate was found to be sufficient. The verification of M-SBL
was conditioned on the true mixing matrix A as input, to not let the precision of the
estimate Â from Cov-DL affect the results. Furthermore, the possibilities of letting
k = N was discussed. Neither N nor k is known in practice, but one has to provide
the best guess for both N and k to the algorithm in order to provide correspond-
ing number of source signals. By letting k = N one only has to guess the maximal
number of active sources and not the relation between active and non-active sources,
which is considered easier. With respect to M-SBL, k = N will reduce the chance
of dislocation among the rows, which is seen as an advantage. Furthermore, tests
on the deterministic data sets confirmed that the estimated active sources were not
degraded. Thus, it is confirmed that letting k = N is sufficient, and this will be used
when testing the main algorithm on real EEG measurements.

From the verification tests of Cov-DL, providing the estimate Â, it was found
that the implementation of Cov-DL did not manage to provide a sufficient estimate.
For the over-determined case it was confirmed that the optimization problem was ter-
minated successfully, but the output did not comply with the theoretically expected
result. Besides possible implementation errors this suggests that the theory provided
by [6] was misinterpreted. This questions whether the degree of reproducibility of
the paper has been sufficient. Due to the time scope of the thesis, this issue is not
investigated further. However, as the estimate of A resulting from Cov-DL is crucial
in order to estimate the source signals from real EEG measurements, it was chosen
that the best possible alternative to the original estimate must be used, in order to
pursue the remaining elements of the thesis. Then, the missing estimate must be
taking into account when evaluating the final results.

Different suggestions for an alternative estimate of A was proposed and evalu-
ated by the resulting MSE(X, X̂). Here it was found that the fixed estimate Ânorm2
generated from a normal distribution with mean 0 and variance 2 provided the best
result, when tested on stochastic data sets resembling real EEG measurements.

Lastly, the performance of the main algorithm was tested on stochastic data
sets. Here tests were performed on varying N in order to investigate performance
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relative to the relation between M and N . For each value of N , several repetitions
were conducted and the average MSE(X, X̂) was evaluated. The MSE(X, X̂) was
found to lie within an interval from 5 to 40, without any characteristic trend relative
to the increasing N . From this is it concluded that the performance does not rely on
the relation between N and M . Despite that this was indicated by the tests where
the true A was utilized. Thus, the lack of a precise estimate of A do influence the
final results.

Overall, the implementation of the resulting main algorithm is approved. Thus,
the main algorithm is ready to be tested on real EEG measurements in order to
evaluate the performance with respect to the problem statement of this thesis. These
tests are specified and conducted in the next chapter.

However, by using a fixed estimate of the mixing matrix A which might be
far from the true mixing matrix, the estimated source signals X̂ can in general
not be considered reliable. Under different circumstances it would be preferable to
investigate the issues of Cov-DL until a sufficient estimate was verified before testing
the main algorithm on EEG measurements. Hence, the results to be obtained by
applying the main algorithm to EEG measurements will serve as investigation of
the possible extent of the performance of the main algorithm, when Â is randomly
generated rather than estimated from the given measurements.



Chapter 7

Test on EEG Measurements

The main algorithm was implemented and tested on simulated data in chapter 6.
In this chapter the main algorithm is tested on EEG measurements, for which it is
intended. Two different approaches are considered with respect to evaluating the
resulting estimates of the source signals, test by ICA comparison and an alpha wave
analysis, respectively.

At first the provided data sets of EEG measurements are described. Followed by
a test description and an analysis of the results for both of the evaluation approaches.
Finally, a summary is provided to highlight the conclusions.

7.1 Data Description

For this thesis a data base of real EEG scalp measurements has been provided, from
the department of electronic systems at Aalborg University. The data base consists
of data sets of EEG measurements resulting from three test subjects. For each of
three test subjects, two data set is provided. One where the test subject sits still
with open eyes and one similar but with closed eyes, resulting in a data base with 6
data sets. For the measurements an EEG cap with 32 sensors measuring the scalp
EEG signal with sample frequency at 512 Hz over a varying time period. Before the
data base was provided each raw data set had undergone the following preprocessing.
The data were bandpass filtered between 1 and 40 Hz. Then decomposed by ICA
where the independent components related to eye activity or movement was removed.
Thus, for every data set 27 sensors remains. That is 27 channels with names and
position available in EEG.chanlocs structure. One data set then consist solely of the
measurement matrix Y ∈ R27×L. The data sets are specified in table 7.1.

55
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EEG measurements M_ L f nseg Ls

1. S1_Cclean 27 74161 512 144 516
2. S1_Oclean 27 63245 512 123 514
3. S2_Cclean 27 94918 512 185 513
4. S2_Oclean 27 117900 512 230 512
5. S3_Cclean 27 110060 512 214 514
6. S3_Oclean 27 114065 512 222 513

Table 7.1: Specifications of the available data sets of EEG measurements, including specification
of the segments resulting from segmentation into segments of length t = 1 seconds.

7.2 Test by ICA Comparison

The test procedure is now described through specification of the evaluation criteria
and the practical implementation of the test. Remember the aim of the implemented
main algorithm is to estimate the source matrix in the case where the number of
active sources exceeds the number of sensors, M < k ≤ N .

7.2.1 Performance Evaluation

From the description of ICA used on EEG measurements, cf. section 1.1.3, ICA
is considered unreliable when using low-density EEG equipment where M < 32.
For M ≥ 32 ICA is currently considered the most reliable method for source signal
recovery. However, note that the true number of sources is unknown thus there is
always some unreliability to the result.

From the view that the sources found by ICA is the best estimate, it is possible
to let that estimate serve as a reference for comparison of estimates recovered from
M < N . In practice that is to perform ICA on a data set Y ∈ RM×L resulting in
X̂ICA ∈ RN×L where M = N . Then a specific number of sensors are removed from
the data set Y such that M < N , the source signals are now estimated by the main
algorithm resulting in X̂main ∈ RN×L. The performance of the main algorithm is then
to be measured by comparison to the X̂ICA. The question is here whether the main
algorithm manage to find the same active sources as ICA, but for M < N .

In appendix C ICA is described theoretically and the applied algorithm is veri-
fied on simulated data without noise. It was found that ICA manages to estimate X
almost exact, when M = N = k. Furthermore, it is seen that for k < N ICA manages
to estimate the zero rows correctly. This supports that the estimate by ICA can
serve as a reference.

To compare the two estimates the MSE, cf. section 6.2.3, is used. However, an
issue arises due to the fact that ICA do not manage to localize each of the found
sources. That is the order of the rows of X̂ICA does not necessarily correspond to
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the true X. Furthermore, the ICA algorithm is invariant towards the phase and the
amplitude. This must necessarily worsen the resulting MSE.

This issue is covered in appendix C.3. Here a function is considered, which
manage to pair and fit the rows with the lowest mutual MSE and then arrange
the rows of X̂ICA such that MSE(X, X̂ICA) is minimized. The fitting consists of a
possible phase shift and scaling of the amplitude. The right optimal fit was found
through a brute-force search. However, this is impossible as the possible number of
combinations increases as k increases. This suggests the definition of an optimiza-
tion problem minimizing the resulting MSE with respect to the combination of row
indexes, possible phase and corresponding amplitude scaling. Unfortunately, a suc-
cessful optimization was not achieved within the time scope of this thesis. Thus, the
fitting process is not applied to the results achieved from the EEG measurements in
this chapter. This factor must be taken into account when evaluating the results.

Consider again the resulting MSE(X̂ICA, X̂main). To evaluate further on the
question whether the same sources have been found a tolerance for the MSE is intro-
duced. With MSE(X̂ICA, X̂main) being an average over the MSE of each row within
one segment a low value indicate that main part of the rows makes an estimate simi-
lar the estimate from ICA. From this perspective a tolerance for MSE(X̂ICA, X̂main)

decides whether the same sources are achieved with success. The tolerance is set to
5 due to previous observations with respect to the simulated data. Especially figure
6.11 indicate that an MSE below 5 is achievable for a system whereM << N with use
of true A. It could be argued that the tolerance should be increased as the estimate
of A is not expected to be nearly as good. However, this could give a distorted image
of the results.

7.2.2 Test Setup

The test setup is visualized in figure 7.1 by a flow diagram, showing the essential
steps of the test.
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Figure 7.1: Flow diagram for visualization of the test procedure for one data set. Example given
for M < N where request = 1/3 resulting in M = 18.

In the flow diagram the two estimation processes are seen to run parallel but taking
the same input. Prior to the application of ICA, the input is divided into segments.
That is the same segmentation as inside the main algorithm, cf. section 6.1. The
size of the segments is defined due to the expected stationarity of the sources. As
described in the motivation chapter 1 sources are stationary if you look at sufficiently
small intervals. Segments at t = 1 second is chosen from the assumption that the
brain activity can be assumed stationary within the short time interval. Further-
more, one must take in mind that shorter time interval lead to more segments and
therefore a higher computational complexity. After the segmentation the ICA is ap-
plied to every segment s, returning X̂ICAs ∈ RM×Ls . From appendix C.3 it is seen
that ICA manage to estimate the non-active sources by zero rows, when no noise is
present. When ICA is applied to the EEG measurements noise is expected. Thus
the non-active sources is defined by the average amplitude being within a tolerance
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interval around zero, defined by tol = [10E − 03,−10E − 03]. When the non-active
sources are identified, they are removed and the resulting estimate is reduced to
X̂ICAs ∈ Rk×Ls . The found number of active sources k is then given as input to
the main algorithm where k = N . In parallel to the ICA process the input data is
reduced as specified in the previous section. Then the main algorithm is applied to
the reduced data set. Within the main algorithm the data are like wise divided in
segments and an estimate X̂mains ∈ Rk×Ls is returned. Note that Âfix is given as a
manual input, replacing the Cov-DL algorithm as concluded in chapter 6. At the
end the resulting two estimates have the same dimensions which allow for X̂mains to
be evaluated with respect to X̂ICAs by the MSE.

The described test is performed on the following three cases,

• Case 0: M = N to see the best possible result achieved by the main algorithm.

• Case 1: M < N every third sensor is removed.

• Case 2: M << N every second sensor is removed.

7.3 Results

For each case the test is performed on all the data sets specified in table 7.1. The
results are visualized for one data set to get an visual understanding. Lastly, the
results of all three data sets are compared in a table.

The results are plotted for data set S1_Cclean. The data set consist of 144 time
segments with Ls = 516 samples and M_ = 27 sensors.

7.3.1 Case 0, M = N

ICA is applied on Ys specified by M_ = 27 and Ls = 516. The main algorithm
is applied on Ys without any reduction hence specified by M = 27 and Ls = 516,
given Âfix and N = k provided from ICA. Figure 7.2 show MSE (X̂main, X̂ICA) for all
segments s. Figure 7.3 show the same plot but the y-axis is specified to the interval
[−10, 50] for better visualization. Furthermore, the MSE tolerance = 5 is visualized,
indicting for each segment whether the estimate X̂main is sufficiency close to X̂ICA.
For a majority of the segments the MSE lies under the tolerance, but single outliers
appears for which the MSE of the segment is significantly increased. Taking the
average over all segments the average achieved MSE is 5.17.
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Figure 7.2: MSE (X̂main, X̂ICA) for all nseg = 144
segments.

Figure 7.3: MSE (X̂main, X̂ICA) for all nseg = 144
segments. Visualized only for the y-axis interval
[−10, 50] for better visualization.

To investigate the behavior of a single segment figure 7.4 show the MSE value com-
puted for each row of the two estimates of a specific segment. That is MSE(X̂maini ,
X̂ICAi

) for every row i = 1, . . . ,k in time segment s = 5. Additionally figure 7.5 show
and compare the corresponding estimates for four random chosen sources. This al-
lows for visual comparison of the estimates relative to the corresponding MSE value
seen in figure 7.4. Note that for better visual comparison each visualized row of X̂ICA
is scaled with respect to the max value of the corresponding row in X̂main. From
figure 7.4 it is seen that the estimate of each source result in a relative low MSE.
This indicates that the main algorithm has managed to estimate the same source
as the ICA algorithm. In contradiction to this, figure 7.5 do not confirm that the
estimates are close, as generally the two signals does not follow the same trend.
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Figure 7.4: MSE(X̂maini , X̂ICAi
) for every row

i = 1, . . . , k in time segment s = 5.
Figure 7.5: Figure comparing four random chosen
rows from X̂main and X̂ICA from time segment s = 5
with M = N and k = 23. Note X̂ICA is scaled for
better visualization.

The test is repeated for every data set, and the results are summarized in table 7.2.
In general a low MSE is achieved in average over all segments of one data set relative
to the tolerance. And the corresponding percentage is likewise relative high, with an
average at 83%. A single result is seen to deviate from the tendency, which is the data
set of test subject 3 with closed eyes. Here a significant high average MSE value is
found, indicating a majority of the segment has resulted in a significantly high MSE,
while a percentage of 63% was below the tolerance. In chapter 6 it is found that
the main algorithm was capable of providing an almost exact estimate for M = N

when the true A is provided. Thus, it is expected that the general performance is
decreased in this case where the true A is unknown and Âfix is given.

The achieved results will serve as reference when analyzing the results of the
following cases where the main algorithm is applied on data set with reduced number
of sensors compared to the original data set.

Case 0
M = N

Test subject 1 Test subject 2 Test subject 3
Open Close Open Close Open Close

Average MSE(X̂ICA, X̂main) 2.913 5.172 1.572 15.06 4.753 19.44
Segments below
tolerance in % 91 92 98 61 87 63

Table 7.2: Summarized results for case 0. Test is performed on the every data set.
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7.3.2 Case 1, M < N

The main algorithm is applied on Ys, where the number of sensors is reduced by
one-third. As such the main algorithm is applied on Ys specified by M = 18 and
Ls = 516, given Âfix and N = k provided from ICA. ICA is applied on the original
data set with segments Ys specified by M_ = 27 and Ls = 516. The viewed figures
correspond to those of case 0, but for the reduced number of sources M < N , hence
detailed figure description is omitted here.

From figure 7.6 and 7.7 it is seen that a majority of the segments have MSE
value close to the tolerance, but the number of outliers have increased compared to
case 0. This indicates that for an increased number of segments the main algorithm
do not manage to estimate enough sources sufficiently in order to stay below the
tolerance. Taking the average over all segments the average achieved MSE is 5.35.

Figure 7.6: MSE(X̂main, X̂ICA) for all nseg = 144
segments.

Figure 7.7: MSE(X̂main, X̂ICA) for all nseg = 144
segments. Visualized only for the y-axis interval
[−10, 50] for better visualization.

From figure 7.8 and 7.9 showing the results of segment 5, it is seen that the MSE for
each source has increased slightly compared to case 0. This supports the observation
from figure 7.7.
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Figure 7.8: MSE(X̂maini , X̂ICAi
) for every row

i = 1, . . . , k in time segment s = 5.
Figure 7.9: Figure comparing four random chosen
rows from X̂main and X̂ICA from time segment s = 5
with M = N and k = 23. Note X̂ICA is scaled for
better visualization.

The test is repeated for every data set, and the results are summarized in table
7.3. Comparing table 7.3 to table 7.2, it is seen that the percentage of segments
below the tolerance are decreasing, with the majority being close to 50%. This
is roughly indicating that half of the time the main algorithm do not manage to
provide a sufficient estimate when M = 2/3N . Furthermore, both the average MSE
and the corresponding percentages appear fluctuating relative to case 0 indicating
some unreliability in the results.

Case 1
M < N

Test subject 1 Test subject 2 Test subject 3
Open Close Open Close Open Close

Average MSE(X̂ICA, X̂main) 9.79 5.351 13.89 15.13 6.25 18.21
Segments below
tolerance in % 53 80 66 46 77 48

Table 7.3: Summarized results for case 1. Test is performed on the every data set.

7.3.3 Case 2, M << N

The main algorithm is applied on Ys, where the number of sensors is reduced to
half. As such the main algorithm is applied on Ys specified by M = 13 and Ls = 516,
given Âfix and N = k provided from ICA. ICA is applied on the original data set with
segments Ys specified by M_ = 27 and Ls = 516. The viewed figures correspond to
those of case 0 and case 1, but for further reduce number of sources M << N , hence
detailed figure description is omitted.

From figure 7.10 and 7.11 it is seen that the MSE value for each segment is more
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widely scatted around the tolerance, compared to case 0 and 1. Outliers, where the
MSE value has increased significantly, do also occur similar to case 1. This indicates
that the performance of the main algorithm has decreased further, compared to case
1. Taking the average over all segments the average achieved MSE is 11.36.

Figure 7.10: MSE(X̂main, X̂ICA) for all nseg =

144 segments.
Figure 7.11: MSE(X̂main, X̂ICA) for all nseg =

144 segments. Visualized only for the y-axis interval
[−10, 50] for better visualization.

The above indication is supported by figure 7.12 and 7.13 showing an general increase
in MSE. However, segment 5 makes a fairly good example as the majority of the
sources have achieves a MSE below the tolerance of 5. From figure 7.13 the increased
MSE do not appear visually compared to either case 1 or case 0.

Figure 7.12: MSE(X̂maini , X̂ICAi
) for every row i =

1, . . . , k in time segment s = 5.
Figure 7.13: Figure comparing four random chosen
rows from X̂main and X̂ICA from time segment s = 5
with M << N and k = 23. Note X̂ICA is scaled for
better visualization.
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The test is repeated for every data set, and the results are summarized in table 7.4.
Comparing table 7.2 to table 7.3 it is generally seen that the percentage of segments
below the tolerance are not decreased but improved. Though, without getting close
to the tendency from case 0. Furthermore, the average MSE have not increased
remarkably compared to case 1. As such the performance of the main algorithm
in case 2 is in general not found to be worse than for case 1. However, a clear
improvement is not seen either.

Case 2
M << N

Test subject 1 Test subject 2 Test subject 3
Open Close Open Close Open Close

Average MSE(X̂ICA, X̂main) 8.378 11.36 19.58 13.11 13.99 11.96
Segments below
tolerance in % 75 74 42 72 69 69

Table 7.4: Summarized results for case 2. Test is performed on the every data set.

7.3.4 Summary of Results

The main algorithm has been tested on six data sets of EEG measurement, for a
varying relation between the number of sensors and sources, case 0, 1 and 2 respec-
tively. When the number of sensors is reduced with respect to the number of sources
to be found, a significant decrease in performance was found. When comparing case
0 and 1. However, a corresponding decrease of performance was not found when
further sensors were removed when comparing case 1 and 2.

From the conclusions made in chapter 6 it was not expected that the main
algorithm would provide successful results, without estimating A form the data.
The results of case 0 do however indicate a solid estimate provided by the main
algorithm, with an average percentage of successfully estimated segments at 83%.

Furthermore, it is worth to note that the resulting MSE values have potential
for improvement when considering optimization of the source localization of the ICA
estimate, cf. appendix C.3.

7.4 Alpha Wave Analysis

As mentioned in chapter 1 brain signals can be classified into four groups according
to the dominant frequency [27]. It is known that when a person closes the eyes, when
relaxing, the amount of alpha frequency raises and become the dominant frequency.
The provided EEG measurements consist of measurements from a test subject with
both open and closed eyes. Hence, it would be interesting to investigate this relation
between the alpha frequency for open and closed eyes. The interesting part is then to
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compare the relation achieve from the provided EEG measurements and the source
signals estimated by the main algorithm.

With a test of this kind, it is possible to evaluate the recovered source signals
from a different perspective. Here the objective is first of all to see the behavior with
respect to the frequency, expected by the theory. Next it is interesting to investigate
the aspect of analysis performed on EEG level versus analysis performed on source
level, as discussed in chapter 1.

7.4.1 Test Setup

For this comparison the data sets of test subject 1, S1_OClean and S1_CClean, EEG
measurements of open and closed eyes respectively, will be used. It is expected that
the power within the alpha frequency band is highest for the closed eyes data set,
S1_CClean. To compare the amount of alpha frequency in the two data sets, a
bandpass filter is used to isolate the alpha frequencies. To perform the filtering a
bandpass Butterworth filter of order 5 with cut-off frequencies 8 Hz and 13 Hz will
be applied. The filtering is performed in the time domain to both the EEG signals
and the source signals recovered from the main algorithm. The filtering process is
illustrated in figure 7.14. In the illustrated example only one source signal is inves-
tigated in both time and frequency domain, where the fast Fourier transformation
(FFT) is applied [23, Chapter 9]. The source signal of interest was recovered within
the closed eyes data set S1_CClean from time segment 15. The system specification
used to recover the source signal was M = 27 and k = 14, with k obtained by ICA.

Figure 7.14: Time domain and frequency plot of a recovered source signal, filtered and non-filtered,
from the time segment 15.

The first plot in figure 7.14 is the recovered source signal in the time domain. The
next plot is the same source signal but transformed to the frequency domain by
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the FFT. The plot has been scaled to only show the frequencies from 0-70 Hz and
the power from 0 to 150. The third plot illustrates the frequency response of the
bandpass Butterworth filter with order 5. The vertical blue lines illustrate the cut-
off frequencies at 8 Hz and 13 Hz. Plot number four is the recovered source signal
filtered by the bandpass Butterworth filter, plotted in the time domain. The last
plot is the filtered source signal plotted in the frequency domain. This verifies that
the signal of interest has been filtered according to the alpha band. From the filtered
source signal in the time domain, the signal resemble the alpha wave as seen in figure
1.2.

The filtering process is applied to 100 time segments of both the closed eyes and
open eyes for respectively the EEG measurements and the recovered source signals.
Note that for each time segment all present source signals or sensor measurements
have been summed such that only one signal resembles each time segment. Then
for each time segment the relation between closed and open eyes is computed, with
respect to power within the alpha band. The relation is defined as

Relation = C
O

,

where C is the average power from closed eyes, and O is the average power from the
open eyes segment. This is done for both the EEG measurements and the recovered
source signals. By this it is possible to compare the relation found on source level
and the relation seen on EEG level.

7.4.2 Results

Figure 7.15 shows an example of one time segment. To the left is the power spectrum
of the filtered EEG measurements visualized for open and closed eyes respectively.
The resulting relation between the two is 1.15. To the right is the power spectrum
of the filtered source signals. Likewise for open and closed eyes respectively. The
resulting relation between open and closed eyes is here 1.41.
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Figure 7.15: Power spectrum of the filtered EEG measurements and recovered source signals of
time segment 35 for open and closed eyes data set of test subject 1.

By observing figure 7.15 it is seen, for the specific segment, that the power within
the alpha band is significantly larger within the EEG measurements compared to
the sources. Furthermore, is it seen for both the EEG measurements and the source
signals that the power has increased from open to closed eyes. Considering the
calculated relations is it seen that the biggest increase in power is found on source
level. This behavior does support the theory, however the result of a single segment
is not sufficient to draw any conclusion.

Figure 7.16 and 7.17 illustrate the C/O relation computed for the 100 time
segments, of the EEG measurements and source signals respectively. The horizontal
line in the plots marks the 1/1 relation. As such the segments where the highest
power was found for closed eyes lies above the line - supporting the theory. Opposite
the segments with least power found for closed eyes lies below the line.
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Figure 7.16: The C/O relation for EEG measurements
for 100 time segments. The average C/O over all seg-
ments is 1.16.

Figure 7.17: The C/O relation of source signals for
100 time segments. The average C/O over all segments
is 2.01.

From the figures it is clear the behavior seen from the example of segment 35, is not
a continuous behavior. It is seen both on EEG level and source level that relation
scatters around the horizontal line, indicating that the relation is not stationary over
time. On figure 7.17 is it seen that the C/O relation range from near zero to beyond
20 for a few segments, indicating a significant change in power compared to figure
7.16. With 57 out of 100 segments lying below the horizontal line the behavior is
considered more or less random. From these observations the expected behavior was
not found. This does support the earlier findings with respect to the main algorithm,
indicting a significant unreliability to the result.

With respect to the method for computing the C/O relation it could be con-
sidered whether computing the relation for every segment is the right choice. One
could argue that summing the power over all segments for respectively open and
closed eyes and then compute the C/O relation would yield a different result.





Chapter 8

Estimation of the Number of Ac-
tive Sources

In this chapter the issue of unknown number of active sources k is considered. The
aim is to investigate the possibility of identifying an estimation of a non-active source
signal from X̂main when the true k is not provided to the main algorithm. Instead
of providing the true k one let k = N . As such one ask the main algorithm for N
active source signals, but there are only k < N active source signals. At first the
possibilities are investigated on synthetic data set, cf. section 6.2 and afterwards on
a real EEG data set.

8.1 Empirical Test on Synthetic Data

Figure 8.1 visualizes the estimate X̂main given k = N and the true A, resulting from
a stochastic data set specified by M = N = 8, k = 4 and L = 1000. As seen in section
6.3.3 the case of M = N should be solved almost exact by the M-SBL algorithm
with true A given. From the figure it is seen that the estimates of the zero rows
have amplitudes close to zero. This distinguishes them from the remaining source
estimates which are seen to be almost exact. Due to the estimates of the zero rows
being this close to zero they do not affect the MSE. Thus, the MSE do not indicate
flaws within the estimate. Furthermore, it is seen that the estimates of the zero
rows form a scaled copy of one of the exact estimates. These observations indicate a
potential for distinguishing the estimates of zero rows and hence determine k.
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Figure 8.1: Each plot shows one row of the estimate X̂main where k = N and true A is given,
compared to the corresponding true row in X. The MSE is 1.196E −29. Only samples in the interval
[0, 100] are visualized.

Consider now the desired case where M < N . Figure 8.2 visualizes the estimate
X̂main given k = N and the true A, resulting from a stochastic data set specified by
M = 6, N = 8, k = 4 and L = 1000. From figure 8.2 it is seen that the estimates of the
zero rows is not as close to zero as in figure 8.1. Thus, this can not be used as the
indicator. However, the estimates of the zero rows still appears as a scaled replica of
an estimate of a non-zero row.

Figure 8.2: Each plot shows one row of the estimate X̂main using true A, compared to the
corresponding true row in X. The MSE is 0.344. Only samples in the interval [0, 100] are visualized.

A replica in this case is not considered an exact copy but a signal with similar trends
over time. One attempt to locate the zero rows is to compare each row of X̂main
to every other row by the MSE, in order to check if it appears more than one time.
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Two rows are considered replicas if their mutual MSE is below a tolerance equal to
1. This operation is performed on the estimated source matrix X̂main visualized in
figure 8.2. The operation gives the results displayed in table 8.1. From table 8.1 it is
seen that source signals of row 2, 4, 6 and 8 are found to appear more than one time.
These row indexes correspond to the zero rows of X as intended. This indicates the
possibility of locating the zero rows from the estimate X̂main without providing the
true k as an input.

Row index 1 2 3 4 5 6 7 8
# replicas 1 3 1 2 1 4 1 3

Table 8.1: Number of replicas for each row in X̂main of figure 8.2 based on the tolerance MSE < 1.

It is expected that the precision must depend on the chosen tolerance for the mutual
MSE. For comparison table 8.2, 8.3 and 8.4 show the result from a tolerance of
0.5, 1.5 and 2 respectively. It is observed that a tolerance of 0.5 and 2 results in a
different conclusion with respect to the number of zero rows – being respectively 2
and 6. From this it is clear that the tolerance is difficult to define and will affect the
conclusion of the results.

Row index 1 2 3 4 5 6 7 8
# replicas 1 1 1 1 1 2 1 2

Table 8.2: Number of replicas for each row in X̂main of figure 8.2 based on the tolerance MSE
< 0.5.

Row index 1 2 3 4 5 6 7 8
# replicas 1 4 1 3 1 4 1 3

Table 8.3: Number of replicas for each row in X̂main of figure 8.2 based on the tolerance MSE
< 1.5.

Row index 1 2 3 4 5 6 7 8
# replicas 2 6 1 4 2 4 1 4

Table 8.4: Number of replicas for each row in X̂main of figure 8.2 based on the tolerance MSE < 2.

The results so far have relied on the true mixing matrix A given as an input to
the main algorithm, due to the conclusion of chapter 6 where the estimate of A is
abandoned. Thus, the results is conditioned on an exact estimate of A which this
thesis does not manage to provide.

Now the investigations are repeated but with use of the main algorithm utilizing
Âfix, cf. section 6.4. Figure 8.3 shows the estimate X̂main given k = N and Âfix,
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resulting from a stochastic data set specified by M = 6, N = 8, k = 4 and L = 1000.
As expected, according to the results from section 6.4.2, it is generally seen from
figure 8.3 that every row of the estimate is less accurate as the result is based on
Âfix instead of the true A.

Figure 8.3: Each plot shows one row of the estimate X̂main using Anorm2, compared to the
corresponding true row in X. The MSE is 128.7. Only samples in the interval [0, 100] are visualized.

Table 8.5 shows the corresponding replica count with an MSE tolerance at 1. From
the table it is seen that 7 out of the 8 rows are zero rows, while the true number
is 4 rows. This could indicate that the tolerance is set to high. Table 8.6 show the
replica count for an MSE tolerance at 0.5. From table 8.6 it is seen that the number
of replicas is reduced. However, it still does not results in the right number of zero
rows.

Row index 1 2 3 4 5 6 7 8
# replicas 3 5 2 2 4 1 4 5

Table 8.5: Number of replicas for each row in X̂main of figure 8.3 based on the tolerance MSE < 1.

Row index 1 2 3 4 5 6 7 8
# replicas 2 2 2 2 1 1 1 3

Table 8.6: Number of replicas for each row in X̂main of figure 8.3 based on the tolerance MSE
< 0.5.

From the observations made through this investigation, based on synthetic data, the
following conclusions are made. From figure 8.2 and table 8.1 a potential is found
with respect to identifying the zero rows within the estimate, implying the desired
estimate of k – conditioned by an exact estimate of A. Here the zero rows are
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identified as the rows of the estimate for which similar signals appear in other rows
indicating that no new estimate has been computed. From figure 8.3 and tables 8.5
and 8.6 Âfix is utilized in the main algorithm, as it will be when applied to real EEG
data. Here it has not been possible to identify the zero rows correctly, based on the
replica count. Thus, it must be concluded that the method is not reliable when the
estimate is computed by the main algorithm. However, it is essential that a potential
was found under ideal conditions.

To finish the investigation, the replica count method has been applied to the
estimation of real EEG measurements. This is done due to the possibility of seeing a
different behavior from the real EEG measurements compared to the synthetic data.

8.2 Empirical Test on EEG Measurements

Consider now the same estimation of the number of active sources, k, but from the
real EEG measurements. For this estimation one can not compare the estimation
to the real sources as in the previous section. Hence, the replica count method is
just applied an estimation X̂main of real EEG measurements and observed results are
analysed.

The source signal estimation is performed on segment 10 from the S1_Cclean
EEG data set, where every second sensor is removed to achieve the case whereM < N .
Specifically X̂main is computed given k = N and Âfix resulting from segment of EEG
measurements specified by M = 1/2N = 13.

Figure 8.4 visualize the recovered source matrix X̂main from time segment s = 10
for M = 13 and k = N = 27. For visual simplicity only 8 out of 27 sources are
visualized.

Figure 8.4: The recovered source matrix X̂main from time segment s = 10 from S1_Cclean for
M = 13 and k = N = 27. Note only the first 8 rows of X̂main is visualized for simplicity.
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From figure 8.4 it is seen that all 8 source signals appears to be active – the non
visualized source signals do also appears to be active. Furthermore, there seem not
to be any visible indication of an active source being non-active, with respect to
being a direct replica or having significantly small amplitude.

By applying the replica count method to X̂main from figure 8.4 only one source
signal is not considered replicas. This potentially active source signal is found in row
13, the last row plot on figure 8.4. This leads to the conclusion that for time segment
s = 10 with system specification M = 13 for the S1_Cclean EEG data set only have
k = 1 active source. This result is not considered as reliable, due to one active source
being highly unlikely.



Chapter 9

Discussion

The purpose of this thesis was to investigate the possibility of reproducing state of
the art methods and results for recovery of source signals, from low-density scalp
EEG measurements inducing an under-determined system. The considered state of
the art methods are multiple sparse Bayesian learning (M-SBL)[5] and covariance-
domain dictionary learning (Cov-DL)[4], both published by O. Balkan, et al. in the
year of 2014 and 2015 respectively. It was found that this task was not easy. Among
others did the scientific articles not provide any software to allow recreation of their
results. The resulting combination of Cov-DL and M-SBL, the main algorithm,
did not manage to fully solve the inverse EEG problem of recovering the mixing
matrix A and the source matrix X successfully, from the EEG measurements. From
the verification of the Cov-DL method, it was concluded that it failed to provide a
sufficient estimate Â, when applied on synthetic data. Due to not having a successful
estimate of A the recovery of X was compromised when using the M-SBL method.
However, when using the true A, M-SBL provides an estimate X̂ sufficiently close to
the real source matrix, in the under-determined case M < N . In the main algorithm
the estimate Â from Cov-DL was replaced by a fixed estimate of the mixing matrix
Âfix. The final performance of the main algorithm was found to vary significantly,
when applied to synthetic data, hence a sufficient performance was not confirmed. As
expected a similar conclusion was to be drawn from tests on real EEG measurement.

In chapter 6 an unsuccessful implementation of the Cov-DL method concluded.
By the observed results the issue appears to be located within the definition of the
optimization problem determining the columns of Â. The possibility of en imple-
mentation error can not be denied as an additional thorough run-through of the
implementation was not possible within the time scope of the thesis. However, the
findings may suggest a misinterpretation of the theory and reasoning presented by
the article. Lastly the possibility that the method do not manage to provide the same
results when applied on different data has to be considered. Overall this questions
the reproducibility of the scientific article [4] which proposes the method. The arti-
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cle did not provide any code or implementation specifications. Likewise, it was not
possible to recreate or access the exact data, which was used to provide the results
presented in the article. Thus, the intention was never to recreate the exact results
from the article but rather to demonstrate the conclusions resulting from a certain
success rate. One could argue that testing the implementation on the same data
would lead to a different conclusion. However, this was sought approached by the
stochastic simulated data, cf. section 6.2, which was created with inspiration from
the article.

In chapter 6 it was concluded that the M-SBL method manage to successfully
estimate X when applied to the stochastic data sets and given the true A. Though,
the performance was found to decrease slightly as the number of sources increases
relative to the number of sensors. Regarding the reproducibility of the article [5]
the results indicate that the provided information about M-SBL has been sufficient.
However, this article did, as [4], not provide any code or data disabling the possibility
of recreating the exact results. In [5] tests were conducted on random simulations
of A and X with various noise level added. Thus, due to no counter arguments,
the tests of M-SBL in this thesis were conducted on the synthetic data sets already
created for the tests of Cov-DL, with inspiration from [4].

With respect to the main algorithm, uniting Cov-DL and M-SBL, an alternative
to the estimate of A was necessary. Through empirical tests, which is discussed
later, a fixed estimate Âfix was chosen to replace the estimate from Cov-DL. With
Âfix the main algorithm manage to estimate X but with a significantly higher error
compared to the performance conditioned on the true A. Hence this performance is
not considered to be successful.

The performance test of the main algorithm was first conducted on simulated
stochastic data resembling real EEG measurements. Inspired by [4] the sources were
simulated by independent auto-regressive processes. The true A however, was simply
generated by a Gaussian distribution. This choice was based on a lack of information
to point in different directions. Instead of the true A being chosen as a stochastic
matrix a deterministic matrix could have been chosen instead. The choice of the
stochastic true A for the synthetic data sets could affect the results when testing
the fixed alternatives for the mixing matrix estimated by Cov-DL. From the test,
cf. section 6.4, it was found that a fixed Gaussian estimate, generated with same
specifications as the true A, did not lead to the best recovery of the X, which went
against the natural expectation – the better estimate of A the better estimate of X.
Here a fixed estimate with Gaussian distribution of higher variance provided the best
estimate of X. It is here one could argue that the stochastic true A had an influence
to the results. Furthermore, the choice of error measurement might also be reflected
in the results. Not being sufficient towards the purpose.

The common choice of error measurement throughout the thesis was the mean
squared error (MSE). The MSE measures the performance of an estimate with respect
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to the true value, by comparing each element and summing the squared error. Hence,
the MSE is providing a measure of how far the estimate is from the true value. This
was considered a sufficient error measurement for evaluation of Cov-DL and M-
SBL. However, one challenge when using MSE is to set a tolerance defining when an
estimate is considered successful. It could be argued that the chosen tolerance should
vary with respect to the data of interest. A different choice of error measurement
could have been the use of correlation between the estimated values and the true
values. With respect to the comparison of the main algorithm to ICA, where ICA
is considered the ground truth, using the correlations as the evaluation might have
overcome the scaling issue with respect to ICA.

Consider now the performance test of the main algorithm on real EEG measure-
ments. The choice of evaluating the performance by considering the ICA solution
as the ground truth has been crucial. First of all the foundation for the evaluation
was not ideal. It is an issue that the performance of the main algorithm on the
simulated data was not as good as expected, presumably due to the estimate of A
being replaced by a fixed estimate. Thus, it is not reasonable to trust the results
when the algorithm is applied to real EEG measurements for which the true results
are unknown. However, it can be argued that when comparing the obtained result to
the best-known solution, in this case provided by ICA, a small error will indicate an
acceptable performance from the main algorithm. The arguments accounting for the
use of ICA were discussed in section 7.2. However, an unreliability will be present as
the ICA algorithm is limited to M = N . The true N is in general unknown, thus by
ICA it is never guaranteed to find all the active sources. Furthermore, the compar-
ison of the main algorithm to ICA was found to be compromised. The localization
and phase of the active sources are not necessarily the same for the two estimates,
which distorts the MSE between the two matrices to an unknown degree. In despite
of this issue, the comparison was still performed by MSE, which suggests a potential
to improve the found performance. Against the prior expectation, an acceptable
performance was found for the case M = N , though for the cases of interest where
M < N the performance was decreased significantly.

Due to the possible unreliability of the performance evaluation with respect
to ICA, an alternative test was considered – the alpha wave analysis, comparing
results on EEG level to results on source level. However, from the analysis no new
conclusions were made. The expected behavior was in general not observed, with
respect to an increased amount of alpha frequency for the test subject having closed
eyes. The behavior was more or less fluctuating over time. However it is worth to
notice that exceptions from the expected behavior were also found on EEG level. This
indicates that different approaches, with respect to measuring the power within the
alpha band, should be considered. The advantage of this test approach, in general,
is that one sees past the challenge of recovering the exact source signal, and rather
considers the practical usage of the source separation. For instance, when considering
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the usage of the source signals within a hearing aid, cf. section 1.1.1, the amount of
active source signals might be more significant than an exact recovery.

The last issue addressed in this thesis was the estimation of the number of
active sources k relative to the maximum number of sources N . Throughout the
implementation of the main algorithm in chapter 6 it was argued that setting k = N ,
would not compromise the results. In fact it would perhaps lead to better estimates
as fewer sources must be recovered and therefore the amount of possible errors are
reduced. This is supported by [5] where the same assumption is used. Likewise for
M-SBL, providing k would reduce possible errors within localization of the sources.
However, by setting k = N one must assume than k sources are active, thus no less
that k sources are estimated. Hence, to justify this definition of k one must have a
qualified guess with respect to the true k. This is the exact issue addressed in the
problem statement, as this is not possible in practice.

To address this issue an investigation with respect to estimation of k was con-
ducted in chapter 8. Due to interesting empirical observations, it was chosen to
analyze the source signals resulting from the main algorithm when k = N = M̃ . That
is estimating the maximum number of active sources under the hypothesis that the
false estimates where to be identified among the true estimates. By false estimate
there is referred to a non-zero estimate of a zero row. From visual observation of the
results achieved from the simulated stochastic data sets, a potential was seen as the
false estimates appear as replicas of the true estimates. These false estimates was
identified by searching for the replicates of the true estimates. However, this was not
found successful in the desired cases where M < k. Here the false estimates manage
to diverge more from the true estimates. Furthermore, the identification method was
found to have trouble separating the true estimate from the corresponding replicates.
Hence alternative methods could have been considered with respect to estimation of
k. One obvious approach is to consider the estimate of k which could be provided
from M-SBL, if a k was not given as an input to the algorithm. However, the success
rate of such estimation of k was not provided in the article [5]. The performance
presented in the article was obtained by providing k to the algorithm, cf. 5.2.1.

Throughout this chapter the choices which were found essential toward the ob-
tained conclusions have been discussed and alternative choices have been considered.
None of these alternatives are sought investigated in the thesis but they will serve as
essential aspects to be considered if further work on the main algorithm were to be
conducted.
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Conclusion

The main purpose of this thesis is to recreate state of the art results for solving
the EEG inverse problem, with respect to the original brain source signals, in the
under-determined case. Secondary the method is sought improved from a practical
perspective.

A main algorithm was proposed, based on the state of the art methods covariance-
domain dictionary learning (Cov-DL) [4] and multiple sparse Bayesian learning (M-
SBL) [5], for recovery of respectively the mixing matrix and the source signals, from
the EEG inverse problem. From the initial verification tests it was found that the
implementation of the Cov-DL method did not succeed in providing a sufficient re-
covery of the mixing matrix. Based on brief analysis of the error, it may be concluded
that the scientific article proposing the method did not provide a sufficient degree
of reproducibility. However, a more extensive error analysis has to be conducted in
order to locate the issue. The implementation of the M-SBL method is found suc-
cessful when conditioned on the true mixing matrix. From this it is concluded that
the corresponding scientific article did provide a sufficient degree of reproducibility.

To replace the estimate of the mixing matrix from Cov-DL within the main
algorithm, a fixed estimate was chosen, based on empirical tests. By this modification
and the corresponding tests, it is not expected that the main algorithm manages to
successfully recoverer the source signals. As expected the performance of the resulting
main algorithm, applied to synthetic data, was found to be both insufficient and
fluctuating for the under-determined case of interest. This indicates an unreliability
which complicates any useful conclusions. Though, with respect to investigating the
extent of the resulting main algorithm, its performance was tested on real EEG data.
Here the performance was evaluated relative to the corresponding solutions provided
by independent component analysis (ICA) on the complete system.

From the analysis of the results, a potentially reliable recovery of the source
signals was seen for the complete system, while for the case of interest, the under-
determined case, the performance was not evaluated as sufficient. Thus it is con-
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cluded that only when the proposed main algorithm is conditioned on an exact
estimate of the mixing matrix does it provide sufficiently recovered source signals.
An alternative test was conducted as an attempt to analyze the recovered source
signals from a different perspective. A frequency analysis relating the results from
EEG level to similar result on source level. From this analysis no significant found-
ing was discovered in favor of the recovered sources, thus the previous conclusion is
preserved.

With respect to the practical perspective addressed in the problem statement,
the issue of the unknown number of active source was investigate through empirical
tests. A method was proposed with respect to identification of non-active sources
recovered without the true k being known. The method showed potential when
applied to recovered source signals conditioned on the true mixing matrix. However,
when applied to the under-determined case difficulties did arise. Thus, it is concluded
that the method does not provide a sufficient estimate of the number of active sources.
But the found potential suggests that further work on the method may allow the
possibility of finding a reliable estimate.

Overall, it is concluded that a recreation of the specified state of the art methods
for source recovery was not successfully provided by the proposed main algorithm -
utilizing the proposed alternative to the estimation of the mixing matrix. However
when conditioned on an exact estimate of the mixing matrix, the main algorithm
showed grate potential for source signal recovery, even for the under-determined case
which has been of interest within this thesis. It is furthermore concluded that a
potential is found with respect to using the main algorithm in practice, considering
an estimation of the unknown number of active sources.



Chapter 11

Further Studies

Based on the accomplished conclusions, further studies regarding the proposed main
algorithm and the general issue of source signal recovery will be discussed.

One essential finding in this thesis was the negative result with respect to the
proposed implementation of the Cov-DL method. It is concluded that the repro-
ducibility of the corresponding article was not sufficient. However, it is not excluded
that further studies would enable a successful implementation. This could be further
investigations in form of rewriting the optimization problem or choosing a different
optimization process.

A different aspect could be to dismiss the Cov-DL method and do some re-
search with respect to alternative methods for finding the mixing matrix. Such
method could be the low resolution electrical tomograph (LORETA), which localizes
electrical activity inside the brain. Or, the minimum norm estimates (MNE), which
reconstructs the activity on the cortical surface [26].

From the overall perspective of the topic, it could be of interest to alter the
view on the EEG measurements. In this thesis the purpose was to recover active
source signals from the EEG measurements, by the main algorithm. A news article
from April 2020 [18] presents the newest research from Eriksholm Research Center.
Research with respect to0 application of EEG measurements within a hearing aid, as
mentioned in the chapter 1. They suggest that, by focusing only on recovery of EEG
signals resulting from eye movements, the direction of the sight can be measured. As
this thesis focus on finding all sources from the provided EEG measurements, this
could be a change of focus. The advantage of targeting the specific signals, which
was before considered as noise on the EEG measurement, is that fewer sensors is
needed and fewer signals are sought recovered. This result in fewer computations,
and a potential of avoiding the difficult under-determined case could be present. For
this case a different EEG measurements data base must be provided or created since
the data used in this thesis do not contain the signals created by the eye movement
and surrounding muscle movements.
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Appendix A

Supplementary Theory for Chap-
ter 4

Throughout this chapter supplemental theory for understanding the covariance-
domain dictionary learning (Cov-DL) is described. First an introduction to com-
pressive sensing which is the framework behind Cov-DL. Then an dictionary learning
algorithm used for finding the dictionary matrix D in section 4.2.1 will be described.
And at last principal component analysis (PCA) is introduced as the method behind
finding D in section 4.2.2.

A.1 Introduction to Compressive Sensing

Compressive sensing is the theory of efficient recovery of a signal from a minimal
number of observed measurements. It is build upon empirical observations assuring
that many signals can be approximated by remarkably sparser signals. Assume linear
acquisition of the observed measurements. Then the relation between the measure-
ments and the signal to be recovered can be modeled by the multiple measurement
vector (MMV) model (3.2) [15].

Through this section the introduction of the theory behind compressive sensing
will be presented for one measurement vector of (3.2), y, such that the theory is
based on the linear system (3.1). This will be done for simplicity, but the theory will
still apply for the extended linear system (3.2).

In compressive sensing terminology, x ∈ RN is the signal of interest sought
recovered from the EEG measurement y ∈ RM by solving the linear system (3.1). In
the typical compressive sensing case, the system is under-determined, M < N , and
there will therefore exist infinitely many solutions, provided that one solution exist.
However, by enforcing certain sparsity constraints it is possible to recover the wanted
signal, hence the term sparse signal recovery [15]. The sparsity constraints are the
ones presented in 3.1 where the `0 is introduced to count the non-zeros of the signal
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of interest, the source vector x. The number of non-zeros, active sources, k describe
how sparse the source vector is.

To find a k-sparse solution to the linear system (3.1) it can be viewed as the
following optimization problem.

x∗ = arg min
x∈C

∥x∥0 subject to Ax = y.

Unfortunately, this optimization problem is non-convex due to the definition of the
`0-norm and is therefore difficult to solve – it is a NP-hard problem. Instead, by
replacing the `0-norm with the `1-norm, the optimization problem can be approxi-
mated and hence becomes computationally feasible [14, p. 27]

x∗ = arg min
x∈C

∥x∥1 subject to Ax = y. (A.1)

With this optimization problem the best k-sparse solution x∗ can be found. The
optimization problem is referred to as `1 optimization problem or Basis Pursuit. The
following theorem justifies that the `1 optimization problem finds a sparse solution
[15, p. 62-63].

Theorem A.1.1
A mixing matrix A ∈ RM×N is defined with columns A = [a1, . . . , aN ]. By assuming
uniqueness of a solution x∗ to

min
x∈RN

∥x∥1 subject to Ax = y,

the system {aj , j ∈ supp(x∗)} is linearly independent, and in particular

∥x∗∥0 = card(supp(x∗)) ≤M .

Proof
Assume that the set {al, l ∈ S} of l columns from matrix A ∈ RM×N is linearly
dependent with the support S = supp(x∗). Thus a non-zero vector v ∈ RN supported
on S exists such that Av = 0 – the system is linear dependent. The unique solution
x∗ can then be written as, for any t ≠ 0,

∥x∗∥1 < ∥x∗ + tv∥1 =∑
l∈S

∣x∗l + tvl∣ =∑
l∈S

sgn(x∗l + tvl)(x
∗
l + tvl). (A.2)

For a small ∣t∣

∣t∣ < min
l∈S

∣x∗l ∣
∥v∥∞

,
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then the sign function becomes

sgn(x∗l + tvl) = sgn(x∗l ), ∀l ∈ S.

By including this result in (A.2) and remembering t ≠ 0:

∥x∗∥1 <∑
l∈S

sgn(x∗l )(x∗l + tvl) =∑
l∈S

sgn(x∗l )x∗l + t∑
l∈S

sgn(x∗l )vl = ∥x∗∥1 + t∑
l∈S

sgn(x∗l )vl.

From this it can be seen that it is always possible to choose t ≠ 0 small enough such
that

t∑
l∈S

sgn(x∗l )vl ≤ 0,

which contradicts that v make the columns of A linear dependent. Therefore, the
set {al, l ∈ S} must be linearly independent. ∎

From the theorem it must be concluded that the choice of the mixing matrix A has
a significant impact on whenever a unique solution x∗ exist for the `1 optimization
problem (A.1). Therefore, when recovering A, some considerations regarding the
recovering process of A must be taken into account. A method for the recovering of
A could be to use a dictionary. This will be explained in the following section 4.2.1.

An alternative solution method to the `1 optimization includes greedy algo-
rithms like the Orthogonal Matching Pursuit (OMP) [15, P. 65]. The OMP algo-
rithm is an iteration process where an index set S is updated – at each iteration
– by adding indices corresponding to the columns of A which describe the residual
best possible, hence greedy. The vector x is then updated by a vector supported
on S which minimize the residual. That is the orthogonal projection of y onto the
span{al ∣ l ∈ S}.

A.2 K-SVD Algorithm

The dictionary learning algorithm K-SVD provides an updating rule which is applied
to each column of A0 = [a1, . . . , aN ] where A0 being a random initial dictionary
matrix. Updating first the column a⋅j for j = 1, . . . ,N and then the corresponding
row of X, xi⋅ for j = i. Let a⋅j0 be the column to be updated and let the remaining
columns be fixed. By rewriting the objective function in (4.6) using matrix notation
it is possible to isolate the contribution from a⋅j0 :

∥Y−AX∥
2
F =

XXXXXXXXXXXXXXXX

Y−
N

∑
j=1
j=i

a⋅jxi⋅

XXXXXXXXXXXXXXXX

2

F

=

XXXXXXXXXXXXXXXX

⎛
⎜
⎜
⎝

Y−
N

∑
j≠j0
j=i

a⋅jxi⋅
⎞
⎟
⎟
⎠

− a⋅j0xi0⋅

XXXXXXXXXXXXXXXX

2

F

, (A.3)
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where i = j, i0 = j0 and F is the Frobenius norm for matrices

∥A∥F =

¿
Á
Á
ÁÀ

M

∑
i=1

N

∑
j=1

∣aij ∣
2.

In (A.3) the term in the parenthesis is denoted by Ej0 , an error matrix. Hence by
minimizing (A.3) with respect to a⋅j0 and xi0⋅ an optimal contribution from j0 can
be obtained:

min
a⋅j0 ,xi0 ⋅

∥Ej0 − a⋅j0xi0⋅∥
2
F . (A.4)

The optimal solution to (A.4) is known to be the rank-1 approximation of Ej0 [13,
p. 232]. That is a partial single value decomposition (SVD) makes the best low-rank
approximation of Ej0 . The SVD of Ej0 is given as

Ej0 = UΣVT
∈ RM×N ,

with U ∈ RM×M and V ∈ RN×N being unitary matrices1 and Σ = diag (σ1, . . . ,σM) ∈

RM×N a diagonal matrix. The σj are the non-negative singular values of Ej0 . The
best k-rank approximation to Ej0 , with k < rank(Ej0) is then given by [13, p. 232]:

E(k)j0
=

k

∑
j=1

σju⋅jvT
⋅j .

Since the outer product always has rank-1 then letting a⋅j0 = u⋅1 and xi0⋅ = σjvT
⋅1

solves the optimization problem (A.4). However, in order to preserve the sparsity in
X while optimizing, only the non-zero entries in xi0⋅ are allowed to vary. For this
purpose only a subset of columns in Ej0 is considered. That is the columns which
correspond to the non-zero entries of xi0⋅. A matrix Pi0 is defined to restrict xi0⋅ to
only contain the non-zero-rows corresponding to Nj0 non-zero rows

x(R)i0⋅ = xi0⋅Pi0 ,

with R denoting the restriction. By applying the SVD to the error matrix Ej0 which
has been restricted

E(R)j0
= Ej0Pi0 ,

and updating aj0 and x(R)i0⋅ the rank-1 approximation is found and the original rep-
resentation vector is updated as

xi0⋅ = x(R)i0⋅ PT
i0 .

1Unitary matrix: UT U = UUT
= I



A.3. Principal Component Analysis 93

The main steps of K-SVD is described in algorithm 3.

Algorithm 3 K-SVD
1: k = 0
2: Initialize random A(0)
3: Initialize X(0) = 0
4:
5: procedure K-SVD(A(0))
6: Normalize columns of A(0)
7: while error ≥ limit do
8: j = j + 1
9: for j ← 1, 2, . . . ,L do ▷ updating each col. in X(k)

10: x̂j = minx ∥yj −A(k−1)xj∥ subject to ∥xj∥ ≤ k ▷ use Basis Pursuit
11: end for
12: X(k) = {x̂j}

L
j=1

13: for j0 ← 1, 2,⋯,N do
14: Ωj0 = {j ∣ 1 ≤ j ≤ L,X(k)[j0, j] ≠ 0}
15: From Ωj0 define Pi0

16: Ej0 =Y−∑
N
j≠j0 ajxi⋅

17: E(R)j0
= Ej0Pi0

18: E(R)j0
=UΣVT ▷ perform SVD

19: aj0 ← u1 ▷ update the j0 col. in A(k)
20: (xi0⋅)

(R)
← σ1v1

21: xi0⋅ ← (xi0⋅)
(R)PT

i0 ▷ update the i0 row in X(k)
22: end for
23: error = ∥Y−A(k)X(k)∥2

F

24: end while
25: end procedure

A.3 Principal Component Analysis

In this section the method behind principal component analysis (PCA) used for the
Cov-DL described in section 4.2.2.

PCA is dimensionality reduction method used for reduction of dimensions of
large data sets. In short, PCA used the statistical information of mean, variance
and correlation between the data to transform the large data set into smaller data
sets while maintaining most of the original information. These smaller data sets are
known as the principal components and contain most of the information of the data
set but with fewer dimensions. For some data sets, before PCA is applied, the data
must undergo a standardization/scaling to remove any difference in the data. This is
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essential as large differences between the data would dominate. The standardization
of a data set Z is performed by

z̃i =
zi − z̄i

szi

, ∀i = 1, . . . ,m

where zi is a row of a matrix Z, z̄i is the sample mean of zi and szi is the standard
deviation of zi. The standardized data set is now giving by Z̃. The standardization
step is unnecessary in the case of real EEG scalp measurements as no large difference
between the data is present.

With Z or the scaled data Z̃ a correlation matrix is computed as

ΣZ = Corr(Z) =
1
m

ZT Z.

From the correlation matrix a orthonormal basis of eigenvectors p1, . . . , pm with
corresponding eigenvalues λ1, . . . ,λm exists, cf. theorem 6.15 in [28, p. 375]. Fur-
thermore, one assumes that λ1 ≥ ⋅ ⋅ ⋅ ≥ λm. The eigenvectors and eigenvalues can
be computed from the correlation matrix by e.g. using a singular value decomposi-
tion (SVD). With SVD an orthogonal matrix P with the eigenvectors p1, . . . , pm as
columns is obtained with the associated eigenvalues as a diagonal matrix denoted as
Pdiag. The principal components are then defined by

ui = Zpi,

where pi is the i-th eigenvector of the correlation matrix ΣZ. Thus, each principal
component is a linear combination of the data set Z [28, p. 460]. With the principal
components the first N components forms a set of basis vectors U = [u1, . . . , uN ].



Appendix B

Derivations for Multiple Sparse
Bayesian Learning

B.1 Derivation of Posterior Mean M and Covariance Σ

The purpose of this section is to derive the meanM and covariance Σ of the posterior
distribution

p (x⋅j ∣y⋅j ;γ) ∼ N (µ⋅j , Σ),

from (5.2) in section 5.1.1.
Let x⋅j = x and y⋅j = y to ease the notation throughout the derivation. The

prior and likelihood is then defined as

p(x;γ) ∼ N (0,γI),
p(y∣x) ∼ N (Ax,σ2I).

From the known SMV model of y the above implies

y = Ax+ e, e ∼ N (0,σ2I)

From [12] the conditional covariance is given by

Σ = cov(x, x∣y) = Σxx −ΣxyΣ−1
yyΣyx

µ = µx +ΣxyΣ−1
yy(y−µy)

Each of the covariances within the expressing will now be found.

Covariance Σxx The covariance of x comes directly from the distribution

Σxx = γI
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Covariance Σxy The covariance between x and y is found by using the linearity
of covariance and y = Ax+ e:

Σyx = cov (x, Ax+ e)
= cov (x, Ax)+ cov (x, e)
= ΣxxAT

= γIAT

where cov (x, e) = 0 because x and e are uncorrelated.

Covariance Σyx The covariance between y and x is defined by the transpose of
Σyx

Σxy = (γIAT )
T

=AγI

Covariance Σyy Lastly the covariance of y and y is similarly found using again
the linearity of covariance:

Σyy = cov (Ax+ e, Ax+ e)
= cov (Ax, Ax)+ cov (Ax, e)+ cov (e, Ax)+ cov (e, e)
=AΣxxAT

+Σee

=AγIAT
+ σ2I

By combining all the found covariances the resulting covariance becomes

Σ = γI−γIAT
(AγIAT

+ σ2I)−1AγI.

The resulting mean under the assumption that µy = 0 becomes

µ⋅j = 0+γIAT
(Σyy)

−1
(y− 0)

= γIAT
(Σyy)

−1 y.



Appendix C

Independent Component Analy-
sis

This appendix provides the basic theory of independent component analysis (ICA).
The theory is necessary if one wants a deeper understanding towards the justification
of using the result from ICA as a reference for evaluation of the main algorithm
proposed in this thesis. The appendix concludes with an algorithm specifying ICA
method applied in the thesis. Additionally, a verification test is conducted to evaluate
the applied ICA method on the synthetic data, cf. section 6.2.

C.1 Basic Theory of Independent Component Analysis

Independent component analysis (ICA) is a method that applies to the general prob-
lem of decomposition of a measurement vector into a source vector and a mixing
matrix. The intention of ICA is to separate a multivariate signal into statistical in-
dependent and non-Gaussian signals. And identify the mixing matrix A, given only
the observed measurements Y. A well-known application example of source separa-
tion is the cocktail party problem, where it is sought to listen to one specific person
speaking in a room full of people having interfering conversations. Let y ∈ RM be a
single measurement fromM microphones containing a linear mixture of all the speak
signals that are present in the room. When additional noise is not considered, the
problem can be described as the familiar linear system

y = Ax, (C.1)

where x ∈ RN contain theN underlying speak signals. A is a mixing matrix where the
coefficients may depend on the distances from a source to the microphone. As such
each yi is a weighted sum of all the sources of speak present to the i-th microphone.
By ICA both the mixing matrix A and the source signals x are sought estimated
from the observed measurements y. The main attribute of ICA is the assumption
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that the sources in x are statistically independent and non-Gaussian distributed,
hence the name independent components.
By independence, one means in general that changes in one source signal do not
affect the other source signals. In theory N variables x1, . . . ,xN are independent if
the joint probability density function (pdf) of x satisfies

p(x1,x2, . . . ,xN) = p1(x1)p2(x2)⋯pn(xN).

The possibility of separating a signal into independent and non-Gaussian components
originates from the central limit theorem [19, p. 34]. The theorem states that the
distribution of any linear mixture of two or more independent random variables
tends toward a Gaussian distribution, under certain conditions. For instance the
distribution of a mixture of two independent random variables is always closer to a
Gaussian distribution than the original variables. In other word the original variables
is most non-Gaussian. The application of the central limit theorem within ICA will
be elaborated later in this appendix.

C.1.1 Assumptions and Preprocessing

For simplicity assumes that A is square i.e. M = N and invertible. As such when
A has been estimated the inverse is computed and the components can simply be
estimated as x = A−1y [19, p. 152-153]. As both A and x are unknown the variances
of the independent components can not be determined. However, it is reasonable to
assume that x has unit variance – A is assumed to have unit variance as well. Any
scalar multiplier within a source can be canceled out by dividing the corresponding
column in A with the same scalar [19, p. 154]. For further simplification it is
assumed without loss of generality that E[y] = 0 and E[x] = 0 [19, p. 154]. In case
this assumption is not true, the measurements can be centered by subtracting the
mean as preprocessing before performing ICA.

A preprocessing step central to ICA is to whiten the measurements y. By the
whitening process any correlation in the measurements are removed and unit variance
is ensured – the independent components x becomes uncorrelated and have unit
variance. Furthermore, this reduces the complexity of ICA and therefore simplifies
the recovering process. Whitening is a linear transformation of the observed data.
That is multiplying the measurement vector y with a whitening matrix V

ywhite = Vy,

to obtain a new measurement vector ywhite which is considered white. To obtain a
whitening matrix, the eigenvalue decomposition (EVD) of the covariance matrix can
be used:

E[yyT
] = EDET ,
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where D is a diagonal matrix of eigenvalues and E is a matrix consisting of the
associated eigenvectors. From E and D a whitening matrix V is constructed as

V = ED−1/2ET ,

where D−1/2 = diag(d−1/2
1 , . . . ,d−1/2

n ) is a component-wise operation [19, p. 159].
By multiplying the measurement vector y with a whitening matrix V the data be-
comes white

ywhite = Vy = VAx = Awhitex.

Furthermore, the corresponding mixing matrix Awhite becomes orthogonal

E[ywhiteyT
white] = AwhiteE[xxT

]AT
white = AwhiteAT

white = I,

where E[xxT ] = I due to x having zero mean and uncorrelated entries.
As a consequence ICA can restrict its search for the mixing matrix to the or-

thogonal matrix space. That is instead of estimating N2 parameters ICA has only
to estimate an orthogonal matrix which has N(N − 1)/2 parameters [19, p. 159].

C.1.2 Recovery of the Independent Components

The estimation of the mixing coefficients aij and the independent components xi by
ICA is now elaborated, based on [19, p. 166].

The simple and intuitive method is to take advantage of the assumption of
non-Gaussian independent components. Consider again the model of a single mea-
surement vector y = Ax, where the data vector complies to the assumption of being
mixture of independent components. Here the independent components can be esti-
mated by the inverted model

x = A−1y.

Consider first the estimation of a single independent component xi. Here a linear
combination of yi is considered. Denote for now a single independent component by
z such that

z = bT y =∑
k

bkyk, (C.2)

where one want to determine the vector b. This can be rewritten to

z = bT Ax

From this it is seen that y is a linear combination of the xi with coefficients given
by the vector bT A. Let now bT A be denoted by the q. As such

z = bT y = bT Ax = qT x =∑
k

qkxk. (C.3)
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By this expression, consider the thought of b being one of the rows in A−1, then the
linear combination bT y is equal to one of the independent components.

The objective is now to apply the central limit theorem to determine b such
that it equals one of the rows of A−1. As A is unknown it is not possible to determine
b exactly, but an estimate can be found to make a good approximation.

Due to z denoting some xi it is clear that the equality in (C.3) only holds
true when q consist of only one non-zero element equal to 1. Thus, from the cen-
tral limit theorem the distribution of qT x is most non-Gaussian when it equals one
of the independent components which was assumed non-Gaussian. As such, since
qT x = bT y, it is possible to vary the coefficients in b and look at the distribution
of bT y. Finding the vector bT that maximizes the non-Gaussianity would then cor-
respond to q = AT bT having only a single non-zero element. Thus maximizing the
non-Gaussianity of bT y results in one of the independent components [19, p. 166].
Considering the N -dimensional space of vectors bT there exist 2N local maxima,
corresponding to xi and −xi for all N independent components [19, p. 166].

C.1.3 Kurtosis

To maximize the non-Gaussianity, a measure for Gaussianity is needed. Kurtosis is
a quantitative measure used for non-Gaussianity of random variables [19, p. 171].
Kurtosis of a random variable y is the fourth-order cumulant denoted by kurt(y).
For y with zero mean and unit variance, kurtosis reduces to

kurt(y) = E[y4
]− 3.

It is seen that the kurtosis is a normalized version of the fourth-order moment defined
as E[y4]. For a Gaussian random variable the fourth-order moment equals 3(E[y2])2

hence the corresponding kurtosis will be zero [19, p. 171]. Consequently, the kurtosis
of non-Gaussian random variables will almost always be different from zero.
The kurtosis is a common measure for non-Gaussianity due to its simplicity both
theoretical and computational. The kurtosis can be estimated computationally by
the fourth-order moment of sample data when the variance is constant. Furthermore,
for two independent random variables x1,x2 the following linear properties applies
to the kurtosis of the sum

kurt(x1 + x2) = kurt(x1)+ kurt(x2) and kurt(αx1) = α
4kurt(x1)

However, one complication concerning kurtosis as a measure is that kurtosis is sen-
sitive to outliers [19, p. 182].

Consider from (C.3) the vector q = AT b such that bT y = ∑k=1 qkxk. By the ad-
ditive property of kurtosis

kurt (bT y) = ∑
k=1

q4
kkurt(xk).
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Then the assumption of the independent components having unit variance results in
E[x2

i ] = ∑k=1 q
2
k = 1. That is geometrically that q is constrained to the unit sphere,

∥q∥2 = 1.
By this an optimization problem maximizing the kurtosis of bT y is similar to

maximizing ∣kurt(xi)∣ = ∣∑k=1 q
4
kkurt(xk)∣ on the unit sphere. Due to the described

preprocessing bT is assumed to be white and it can be shown that ∥q∥ = ∥bT ∥ [19,
p. 174]. This shows that constraining ∥q∥ to one is similar to constraining ∥bT ∥ to
one.

C.1.4 Basic ICA algorithm

Now a basic ICA algorithm is specified, this algorithm is based on the gradient
optimization method with kurtosis.

The general idea behind a gradient algorithm is to determine the direction
for which kurt(bT y) is growing the most, based on the gradient. The gradient of
∣kurt(bT y)∣ is computed as

∂∣kurt(bTy)∣
∂b

= 4sign(kurt(bTy))(E[y(bTy)3
]− 3yE[(bTy)2

]) (C.4)

As E[(bT y)2] = ∥y∥2 for whitened data the corresponding term does only affect the
norm of b within the gradient algorithm. Thus, as it is only the direction that is of
interest, this term can be omitted. Because the optimization is restricted to the unit
sphere a projection of b onto the unit sphere must be performed in every step of the
gradient method. This is done by dividing b by its norm. This gives the update step
[19, p. 178]

∆b∝ sign (kurt(bTy))E[y(bTy)3
]

b← b/∥b∥

The expectation operator can be omitted in order to achieve an adaptive version of
the algorithm, now using every measurement y. However, the expectation operator
from the definition of kurtosis can not be omitted and must therefore be estimated.
This can be done by γ by serving it as the learning rate of the gradient method.

∆γ ∝ ((bTy)4
− 3)− γ

Algorithm 4 combines the above theory, to give an overview of the basic ICA proce-
dure.
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Algorithm 4 Basis ICA
1: procedure Pre-processing(y)
2: Center measurements y← y− ȳ
3: Whitening y← ywhite
4: end procedure
5:
6: procedure ICA(y)
7: k = 0
8: Initialize random vector b(k) ▷ unit norm
9: Initialize random value γ(k)

10: for j ← 1, 2,⋯,N do
11: while convergence critia not meet do
12: k = k + 1
13: b(k) ← signγ(k−1)y(b(k−1)y)3

14: b(k) ← b(k)/∥b(k)∥
15: γ(k) ← ((b(k)y)4 − 3)− γ(k−1)
16: end while
17: xj = bTy
18: end for
19: end procedure

C.1.5 ICA for Sparse Signal Recovery

ICA is widely used within sparse signal recovery. When ICA is applied to a mea-
surement vector y ∈ RM it is possible to separate the mixed signal into M or less
independent components. However, by assuming that the independent components
make a k-sparse signal it is possible to apply ICA within sparse signal recovery of
cases where M < N and k ≤M .
To apply ICA to such cases, the independent components are obtained by the pseudo-
inverse solution

x̂ = A†
Sy

where AS is derived from the dictionary matrix A by containing only the columns
associated with the non-zero entries of x, specified by the support set S, cf. appendix
A.1.

C.2 Fixed-Point Algorithm - FastICA

An advantage of gradient algorithms is the possibility of fast adoption in non-
stationary environments due the use of all input, y, at once. A disadvantage of
the gradient algorithm is the resulting slow convergence, depending on the choice of



C.2. Fixed-Point Algorithm - FastICA 103

γ for which a bad choice in practice can disable convergence. A fixed-point iteration
algorithm to maximize the non-Gaussianity is an alternative that could be used.

Consider the gradient step derived in section C.1.4. In the fixed-point iteration
the sequence of γ is omitted and replaced by a constant. This builds upon the fact
that for a stable point of the gradient algorithm the gradient must point in the
direction of b, hence be equal to b. In this case adding the gradient to b does not
change the direction and convergence is achieved. Letting the gradient given in (C.4)
be equal to b and considering the same simplifications again suggest the new update
step as [19, p. 179]

b← E[y(bTy)3
]− 3b.

After the fixed-point iteration b is again divided by its norm to withhold the con-
straint ∥b∥ = 1. Instead of γ the fixed-point algorithm compute b directly from
previous b.

The fixed-point algorithm is referred to as FastICA. The algorithm has shown
to converge fast and reliably, when the current and previous b point in the same
direction [19, p. 179].

C.2.1 Negentropy

An alternative measure of non-Gaussianity is the negentropy, based on the differential
entropy. The differential entropy H of a random vector y with density py(η) is
defined as

H(y) = −∫ py(η) log(py(η)) dη.

The entropy describes the information that a random variable gives. The more unpre-
dictable and unstructured a random variable is higher is the entropy, e.g. Gaussian
random variables have a high entropy. In fact they have the highest entropy among
the random variables of the same variance [19, p. 182].

Negentropy is a normalized version of the differential entropy such that the
measure of non-Gaussianity is zero when the random variable is Gaussian and non-
negative otherwise. The negentropy J of a random vector y is defined as

J(y) =H(ygauss)−H(y),

with ygauss being a Gaussian random variable of the same covariance and correlation
as y [19, p. 182]. As the kurtosis is sensitive for outliers, the negentropy is instead
difficult to compute computationally as the negentropy requires an estimate of the
pdf. As such an approximation of the negentropy is needed. To approximate the
negentropy, it is common to use the higher order cumulants including the kurtosis.
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The following approximation of the scalar case is stated without further elaboration,
and the derivation can be found in [19, p. 183]:

J(y) ≈
1
12

E[y3
]
2 1
48

kurt(y)2.

C.2.2 FastICA with Negentropy

Maximization of negentropy by use of the fixed-point algorithm is now presented, for
derivation of the fixed-point iteration see [19, p. 188]. Algorithm 5 show FastICA
using negentropy. This is the algorithm applied for comparison with the source
recovery methods tested in this thesis.

Algorithm 5 FastICA – with negentropy
1: procedure Pre-processing(y)
2: Center measurements y← y− ȳ
3: Whitening y← ywhite
4: end procedure
5:
6: procedure FastICA(y)
7: k = 0
8: Initialize random vector b(k) ▷ unit norm
9: for j ← 1, 2,⋯,N do

10: while convergence critia not meet do
11: k = k + 1
12: b(k) ← E[y(bT

(k−1)y)]−E[g′(bT
(k−1)y)]b(k−1) ▷ g cf. [19, p. 190]

13: b(k) ← b(k−1)/∥b(k−1)∥
14: end while
15: xj = bTy
16: end for
17: end procedure

C.3 Verification of FastICA on Synthetic Data

The purpose of this section is to verify the FastICA algorithm used in this thesis. By
this verification the purpose is to justify the FastICA algorithm as a reference point
with respect to performance of the main algorithm.

The FastICA algorithm is tested on synthetic data simulated as described in
section 6.2. Consider the following linear system, which makes a model of EEG
measurements

Y = AX,
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where Y ∈ RM×L, A ∈ RM×N and X ∈ RN×L. It is expected that the FastICA algo-
rithm manages to solve the linear system for X and A given only the measurements
Y, in the case where M = N .

The FastICA algorithm is applied to Y and returns the estimates X̂ICA and
ÂICA. When using the FastICA algorithm the output X̂ICA do not correspond one to
one with the true source signals. This becomes an issue when the estimation error is
measured by the mean squared error (MSE) cf. section 6.2.3. The FastICA algorithm
is invariant towards the amplitude and phase of the source signal. Furthermore, the
rows are not necessarily placed at the exact locations. In order to get a valid MSE
measure of the estimate, a function is defined to fit the estimate to the true source
signal X. The function manages to pair the rows and change the phase, such that
the total MSE is minimized. Furthermore, each row of the estimate is scaled by
the relationship between the maximum value of the true row and the estimated row.
From empirical observations only the phase shift performed by multiplying with (−1)
has shown to be necessarily, hence it is easily applied to the fitting function. When
the fitting function is applied to the estimate, the full potential of the FastICA
algorithm is considered reached.

Figure C.1 illustrates the estimate of the source matrix X̂ICA, without use of the
fitting function. That is the FastICA algorithm applied to a simulated deterministic
data set Y specified by M = N = k = 4 and L = 1000. In figure C.1 the matrices Y,
X and X̂ICA are visualized separately and it is clear to see the invariance towards
amplitude and phase. The MSE between the true source matrix X and the estimate
X̂ICA becomes

MSE(X, X̂ICA) = 0.608.

In figure C.2 the fitting function has been applied to X̂ICA. Each row of the fitted
estimate is now visualized with the corresponding row of the true source signals. The
resulting MSE becomes

MSE(X, X̂ICA) = 0.046.

This is an essential change from the first measured MSE, and it is considered to
provide a more valid measure of the estimate. From the visualization and the cor-
responding MSE, it is found that the FastICA algorithm manages to estimate the
source signals of the deterministic data set with a sufficiently small error.



106 Appendix C. Independent Component Analysis

Figure C.1: Figure of simulated deterministic
data set Y, specified by M = N = k = 4 and
L = 1000. Corresponding plot of the true X and
the estimated X̂ by ICA.

Figure C.2: Direct comparison of the true X and
X̂ICA after applying the fitting function.

A similar test is now performed on a simulated stochastic data set Y, cf. section
6.2.2, specified by M = N = k = 4 and L = 1000. Figure C.3 show the comparison of
the fitted X̂ICA and the true source signals X. Note that only the first 100 samples
are visualized for better visualization comparison. The resulting MSE becomes

MSE(X, X̂ICA) = 0.037.

Again the MSE is considered sufficiently small and by that the FastICA is considered
verified with respect to solving a linear system with M = N .

Figure C.3: ICA applied to simulated stochastic data set Y, specified by M = N = k = 4 and
L = 1000 with direct comparison of the true X and X̂ICA after applying the fitting function.

Consider now the case where k ≤ N = M , that is the source signal matrix has k
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non-zeros rows. The FastICA algorithm is now applied to a simulated stochastic
data set Y specified by N =M = 6, k = 4 and L = 1000. Figure C.4 and C.5 show the
comparison of the resulting X̂ICA and the true X before and after the application of
the fitting function, respectively. The resulting MSE becomes

MSE(X, X̂ICA) = 1.784.

It is seen from figure C.5 that the FastICA algorithm manages to detect the zero
rows of X. Without further test, this indicates the possibility of estimating k from
the FastICA algorithm.

Figure C.4: Figure of simulated stochastic data
set Y, specified by M = N = 6, k = 4 and L = 1000.
Corresponding plot of the true X and the estimated
X̂ by ICA.

Figure C.5: Direct comparison of the true X and
X̂ICA after applying the fitting function.

With these tests the quality of the FastICA algorithm has been verified. As such the
FastICA algorithm can be used as a reference, when applied to real EEG measure-
ments. It is further established that k ≤M can be estimated by FastICA. Remember
though that the ICA estimate is conditioned under k ≤ N =M . However, this condi-
tion is not necessarily withhold for real EEG measurements as the true N is always
unknown.





Appendix D

Python Scripts

The following list and outline contain descriptions of the essential Python scripts
which have been used through the implementation, verification and test phases of
this thesis.

1. Data_Simulation.py: Contain the functions for simulation of deterministic
and stochastic synthetic data, based on manual specification of each system.

2. Data_EEG.py: Contain the functions for import of EEG measurements, possible
reduction and segmentation.

3. ICA_Fast.py: Contain the function to perform ICA.

4. Main_Algorithm.py: In this script the main algorithm composed by a com-
pilation of the necessary modules. Remark, by letting fix = True Cov-DL is
overwritten by Âfix.

• Cov_DL.py: Contain the function to perform Cov-DL.
• M_SBL.py: Contain the function to perform M-SBL.

5. Test_Synthetic_data.py: Compilation of necessary modules to apply the
main algorithm to on synthetic data and generate output, cf. chapter 6.

6. Test_EEG.py: Compilation of necessary modules to apply ICA and the main
algorithm on EEG measurements, for the three different cases, cf. section 7.2.

7. Test_AlphaFrequency.py: Contain the functions and corresponding compila-
tion to perform alpha wave analysis, cf. section 7.4.

8. Test_k_Estimation.py: Contain the functions and corresponding compilation
generate estimation of k, cf. chapter 8

109
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The Python scripts are all available directly at https://github.com/TrineNyholm/
Enclosure_Mattek10b_thesis_2020.git. Besides the scripts, the folder contains
the EEG measurements data base and a folder for which generated figures are allo-
cated.

https://github.com/TrineNyholm/Enclosure_Mattek10b_thesis_2020.git
https://github.com/TrineNyholm/Enclosure_Mattek10b_thesis_2020.git
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