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1 | Introduction

The human brain is a complex network, and it is still difficult to understand how the
information is being processed – as opposed to e.g. a digital computer, where each
component is known to only perform specific operations on the information.

The mathematician and computer scientist Alan Turing had an idea that infor-
mation processing can always be decomposed into processes of information storage,
transfer, and modification, which are also the processes performed through the hard
disk, the CPU, and system buses on a digital computer, respectively [21, pp. V-VI].
Quantifying the information transfer through directed information measures is of par-
ticular interest with respect to both neuroscience, complex systems theory in general
[21, p. VI], and this thesis.

Measuring the information transfer can describe directed interactions and inter-
dependencies in the brain and whether there is a causal relationship between these
interactions [21, p. VI]. Different measures of information transfer are the transfer
entropy and directed information [21, pp. 3,28], and a related measure is the causal
conditional directed information (CCDI) [1, p. 11], which – as the name suggests –
considers the causal relationship between the input variables.

As described in Chapter 2, the CCDI can be expressed in terms of the condi-
tional mutual information, which in turn can be expressed through joint entropies.
The problem of estimating this measure therefore simplifies to estimating the joint
entropies, which can be done through an estimator based on the k-nearest neigh-
bors (kNNs). These kNN-based estimators are popular, computionally efficient, can
be asymptotic unbiased, and can outperform e.g. kernel-based estimators in higher
dimensions [11, p. 1] [18, p. 304] [25, p. 33], which is required when considering
the CCDI. However, kNN-based estimators are not accurate if large correlations are
present in the data [11, p. 1].

In practice, the implemented estimators may need to be used in a system which
computes the CCDI sequentially (e.g. when new data are available), and it is there-
fore necessary for the estimators to have a low computation time. Furthermore, it
may also be possible to compute the CCDI without using all the available data again
every time the CCDI needs to be computed (which would be time-consuming).

The so-called occipital dominant rhytm (referred to as ‘alpha waves’) can be used
to detect “the subject’s level of stress, concentration, relaxation or mental load” [2],
and researh suggests that there is a higher alpha activity when the eyes are closed [7]
[19]. Furthermore, research also suggests that there is a big difference in the connec-
tivity between the occipital and frontal areas of the brain when the eyes are closed
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compared to when they are opened [20].
In this thesis, electroencephalographic (EEG) measurements, which are measure-

ments of the electrical activity in the brain, are used. The EEG measurements include
sessions with both opened and closed eyes, and the goal is to reliably estimate and
use the CCDI to assert the differences between the occipital and frontal areas when
the eyes are opened and closed.

1.1 Overview and scope of the thesis

The research question of the thesis is introduced in Section 1.2, and delimitations of
the thesis are introduced in Section 1.3. Chapter 2 introduces important elements of
information theory such as the mathematical definitions of entropy, mutual informa-
tion, directed information, and causal conditional directed information. In Chapter
3, both known and new kNN-based estimators are derived. In Chapter 4, the es-
timators are used on both synthetic data and EEG data to compute the entropy
(which is compared to the analytic values of the entropies) and the CCDI when the
eyes are opened and closed, respectively. The findings in the thesis are discussed and
concluded in Chapters 5 and 6, and further studies are considered in Chapter 7.

In general, the scope of this thesis is the reproducibility of the research on kNN-
based estimators. In this aspect, the theory behind estimators from different sources
has been understood and described, and these estimators have then been implemented
in this thesis. Furthermore, these considerations also made it possible to derive a new
estimator. The implemented estimators are firstly measured on their absolute errors
when compared to the analytical values of the entropies and are secondly used to
compute the CCDI when the eyes are both opened and closed, which are compared
to each other in order to either support or refute previous research on information
flow in the brain. Finally, it is also considered how the CCDI can be computed
sequentially such that the computation time is reduced.

1.2 Research question

As previously described, it is unclear how information flows through the brain but it
can be quantified through a directed information measure, which in this thesis is the
CCDI, and which in turn can be estimated with kNN-based estimators. The CCDI
is computed from actual EEG measurements of sessions with both opened and closed
eyes in order to deduce possible connections in the brain, which are hypothesized to
be stronger when the eyes are closed compared to when they are opened. However,
this requires that the used estimator is able to both reliably and quickly estimate the
entropy. The research question in this thesis is:
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How can kNN-based entropy estimators be used to estimate the causal conditional
directed information measure, which quantifies the information flow between

different parts of the brain?

The following study questions are considered in order to be able to answer this:

1. What is the underlying theory of the directed information measure?

2. How can the CCDI be computed sequentially without using all of the available
data?

3. How can well-known kNN-based entropy estimators be derived?

4. Is it possible to derive an improved estimator?

5. How can the implemented estimators be tested on both synthetic and actual
data?

1.3 Delimitations

This thesis is firstly delimited to only consider kNN-based estimators since they as
previously described can outperform e.g. kernel-based estimators in higher dimen-
sions. Secondly, EEG data are primarily considered (apart from synthetic data, which
the estimators are initially tested on) since the information flow is the main interest
in this thesis. Finally, the CCDI has been chosen as the directed information measure
in this thesis from various other measures because it considers the causal directed
information, which is important when considering the information flow in the brain.
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2 | Information theory

In this chapter different elements of information theory are considered. General defi-
nitions are firstly considered in Section 2.1, and the concepts of causality and directed
information are considered in Section 2.2. The chapter is primarily inspired by [4],
[21], and [1].

The random variables considered in this chapter are generally continuous (but the
definitions for discrete random variables are analoguous). Furthermore, the entropy
of a continuous random variable is usually referred to as the differential entropy in
order to distinguish it from the entropy of a discrete random variable but for conve-
nience it is just referred to as the entropy in this thesis.

The notation used in the following chapters is introduced here. In general, vari-
ables are written in bold font when they are vectors. Random variables are denoted by
e.g. X,Y,Z, and several random variables, which form a random process, are indexed
as e.g. Xi, i = 1, . . . , n, and they may each produce a realization xi. Furthermore,
the dimension of the random variables is always denoted by d ∈ N.

2.1 General definitions

In this section, general definitions from information theory are considered. The defi-
nition of a random process is firstly considered in Definition 2.1.1.

Definition 2.1.1 A random process is defined as Xn = {X1, . . . ,Xn}, where Xi ∈
Rd is a random variable.

The entropy in general is defined in Definition 2.1.2 [4, p. 243].

Definition 2.1.2 The entropy of a continuous random variable X ∈ Rd with pdf
f(x) is defined by

h(X) = −
∫
Rd

f(x) ln (f(x)) dx,

where it is assumed that both the pdf f(x) and the integral exist.

Remark 2.1 The entropy of X does not depend on X but on the pdf of X, f(x).
However, the entropy of X is denoted by h(X) in this thesis due to ease of notation
later and because it is the convention used in e.g. [4]. †

In general, the entropy is a measure of the uncertainty of a random variable [4, p. 13],
which is examplified through Examples 2.1 and 2.2.
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Example 2.1 (Entropy of a normally distributed random variable)
Let X = [X1 · · · Xn]T, Xi ∈ Rd, be a vector of n random variables with a mul-
tivariate normal distribution as defined in Definition A.2.4. The entropy of X is
then:

h(X) = −
∫
f(x) ln(f(x)) dx

= −
∫
f(x) ln

(
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

))
dx

= −
∫
f(x)

((
−1

2
(x− µ)TΣ−1(x− µ)

)
− ln

(
(2π)n/2|Σ|1/2

))
dx

=

1

2
E

 n∑
i,j=1

(xi − µi)Σ−1
ij (xj − µj)

+
1

2
ln ((2π)n|Σ|)

∫ f(x) dx

=
1

2

n∑
i,j=1

E [(xj − µj)(xi − µi)] Σ−1
ij +

1

2
ln ((2π)n|Σ|)

=
1

2

n∑
j=1

n∑
i=1

ΣjiΣ
−1
ij +

1

2
ln ((2π)n|Σ|)

=
1

2

n∑
j=1

(
ΣΣ−1

)
jj

+
1

2
ln ((2π)n|Σ|)

=
1

2

n∑
j=1

Ijj +
1

2
ln ((2π)n|Σ|)

=
n

2
+

1

2
ln ((2π)n|Σ|)

=
1

2
ln ((2π exp(1))n|Σ|) ,

where the following have been used: the definition of the expected value of X

(see (A.3)), that
∫
f(x) dx = 1 (see (A.1)), that E [(xj − µj)(xi − µi)] = Σji (see

Definition A.2.4), that Σ is invertible, which means that ΣΣ−1 = In (the n × n
identity matrix), and some logarithm rules:

ln

(
x

y

)
= ln(x)− ln(y), ln (xc) = c ln(x).

Therefore, if the determinant |Σ| of the covariance matrix is small, the uncertainty
of X is small, which means that the entropy is also small.
Note also that for a univariate normal distribution, X ∼ N (µ, σ2) as defined in
Definition A.2.3, the entropy is given by 1

2 ln
(
2π exp(1)σ2

)
, where σ2 is the vari-

ance.
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Example 2.2 (Entropy of a uniformly distributed random variable)
Let X ∈ Rd be a uniformly distributed random variable on a hyperrectangle Ra,b

whose vertices’ lowest and highest coordinates in each dimension are defined by
vectors a,b ∈ Rd (a1 and b1 are e.g. the vertices’ coordinates on the first axis).
The pdf of X is

f(x) =
1

V (Ra,b)
V (Ra,b) = |a1 − b1| · |a2 − b2| · · · |ad − bd|,

where V (Ra,b) is the volume of Ra,b. The entropy of X is then

h(X) = −
∫
Ra,b

f(x) ln(f(x)) dx

= − 1

V (Ra,b)
ln

(
1

V (Ra,b)

)
V (Ra,b) = ln(V (Ra,b)). �

The entropy of a set of random variables is known as the joint entropy and is defined
in Definition 2.1.3 [4, p. 249].

Definition 2.1.3 The joint entropy of a random process Xn of n random variables
with Xi ∈ Rd, i = 1, . . . , n, and joint density f(xn) is defined as

h(Xn) = −
∫
f (xn) ln (f (xn)) dxn.

The conditional entropy is defined in Definition 2.1.4 [4, p. 249].

Definition 2.1.4 The conditional entropy h(X|Y) of X given Y is defined as

h(X |Y) = −
∫ ∫

f(x,y) ln(f(x|y)) dx dy,

where f(x,y) is the joint density of X,Y and f(x|y) is the conditional density of X

given Y.

Since f(x|y) = f(x,y)
f(y) , the conditional entropy can also be written as:

h(X |Y) = −
∫ ∫

f(x,y) ln

(
f(x,y)

f(y)

)
dx dy

= −
∫ ∫

f(x,y) (ln(f(x,y))− ln(f(y))) dx dy

= −
∫ ∫

f(x,y) ln(f(x,y))− f(x,y) ln(f(y)) dx dy
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= −
∫ ∫

f(x,y) ln (f(x,y)) dx dy +

∫
f(y) ln (f(y)) dy

= h(X,Y)− h(Y), (2.1)

where
∫ ∫

f(x,y) dx dy =
∫
f(y) dy [14, p. 162].

The joint entropy of n random variables as in Definition 2.1.3 can also be written
as a sum of conditional entropies, which is called the chain rule for entropies [4, p. 22]

h(Xn) =
n∑
i=1

h(Xi |Xi−1), (2.2)

which follows from repeatedly using (2.1) as expressions of both the joint entropy and
conditional entropy [4, p. 22]

h(X1,X2) = h(X1) + h(X2 |X1)

h(X1,X2,X3) = h(X1) + h(X2,X3 |X1)

= h(X1) + h(X2 |X1) + h(X3 |X2,X1)

...

h(Xn) = h(X1) + h(X2 |X1) + · · ·+ h(Xn |Xn−1, . . . ,X1)

=
n∑
i=1

h
(
Xi |Xi−1

)
.

The mutual information is a measure of the amount of information that one random
variable contains about another random variable [4, p. 19] and is defined in Definition
2.1.5.

Definition 2.1.5 The mutual information I(X,Y) between two random variables
X,Y with joint density f(x,y) is defined as

I(X; Y) =

∫ ∫
f(x,y) ln

(
f(x,y)

f(x)f(y)

)
dx dy.

Note that due to Definition 2.1.5, the mutual information is symmetric, i.e. I(X; Y) =

I(Y; X).
The mutual information can be rewritten as:

I(X; Y) =

∫ ∫
f(x,y) ln

(
f(x,y)

f(x)f(y)

)
dx dy

=

∫ ∫
f(x,y) ln

(
f(x|y)

f(x)

)
dx dy

= −
∫ ∫

f(x,y) ln(f(x)) dx dy +

∫ ∫
f(x,y) ln(f(x|y)) dx dy

= h(X)− h(X |Y). (2.3)
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The conditional entropy h(X|Y) can not be larger than the entropy h(X) since know-
ing Y can not increase the uncertainty of X, and hence I(X; Y) ≥ 0 according to
(2.3).

The relationship between the entropies, joint entropies, and mutual information of
two random variables X,Y is shown in Figure 2.1. The relationships in (2.1) and (2.3)
can e.g. be seen in the figure. The figure also shows that the mutual information
is the reduction in uncertainty of X due to the knowledge of Y; if X and Y are
independent, then Y says nothing about X, which means that h(X|Y) = h(X), and
then I(X; Y) = h(X)− h(X) = 0.

I (X; Y)

h(X)h(Y)

h (X|Y)h (Y|X)

h (X,Y)

Figure 2.1: This figure is inspired by [4, p. 22].

The conditional mutual information is defined in Definition 2.1.6 [4, p. 23].

Definition 2.1.6 The conditional mutual information of the random variables X,Y

given Z is defined as

I(X; Y|Z) = h(X|Z)− h(X|Y,Z).

There is also a chain rule for the mutual information between a random process Xn

of n random variables and a random variable Y. It says that [4, p. 24]

I(Xn; Y) =

n∑
i=1

I(Xi; Y |Xi−1),



10 Chapter 2. Information theory

which follows from applying the result in (2.3), the chain rule for entropies in (2.2),
and Definition 2.1.6 such that [4, p. 24]

I(Xn; Y) = h(Xn)− h(Xn |Y)

=

n∑
i=1

h
(
Xi |Xi−1

)
−

n∑
i=1

h
(
Xi |Xi−1,Y

)
=

n∑
i=1

I(Xi; Y |Xi−1).

By the same argument, one can obtain a chain rule for the mutual information be-
tween two random processes Xn and Yn

I(Xn; Yn) =

n∑
i=1

I(Xi; Y
n |Xi−1). (2.4)

Section 2.2 considers how these definitions can be applied in causality and directed
information.

2.2 Causality and directed information

The first concept considered in this section is Markov chains because it is relevant for
the other concepts described in this section.

Different kinds of dependence between random variables in a random process as
defined in Definition 2.1.1 are possible. In a Markov chain, each random variable only
depends on the previous random variable and is conditionally independent of all the
other preceding random variables [4, p. 72]. This is defined in Definition 2.2.1.

Definition 2.2.1 A random process Xn = {X1, . . . ,Xn} is a Markov chain if

P (Xi = xi |Xi−1 = xi−1, . . . ,X1 = x1) = P (Xi = xi |Xi−1 = xi−1), i = 1, . . . , n,

where xi is a realization of Xi.

How random variables form a Markov chain is defined in Definition 2.2.2.

Definition 2.2.2 Three random variables X,Y,Z are said to form a Markov chain
X→ Y → Z if the joint pdf can be written as

f(x,y, z) = f(x)f(y|x)f(z|y).

The two primary concepts described in this section are causality and directed infor-
mation, which each are described below and combined afterwards.

The concept of Granger causality is inspired by [1, p. 9]. Two random processes
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Xt and Yt are considered, where t ∈ N denotes a point in time. The random variable
Yt is said to be ‘Granger caused’ by Xt if the prediction of Yt is improved when the
past of both Yt and Xt are considered. This means that Xt does not cause Yt if
and only if P

(
Yt |Yt−1,Xt−1

)
= P

(
Yt |Yt−1

)
, which can be written as the Markov

chain Xt−1 → Yt−1 → Yt.
The directed information is defined in Definition 2.2.3 as the sum of conditional

mutual informations [21, p. 28].

Definition 2.2.3 The directed information is defined as

I (Xn → Yn) =
n∑
i=1

I
(
Xi; Yi

∣∣Yi−1
)
,

where Y0 , ∅.

The mutual information and directed information can also be written as follows by
using the chain rules for entropies and mutual information in (2.2) and (2.4), respec-
tively, and Definition 2.1.6 of the conditional mutual information

I(Xn; Yn) = I(Yn; Xn)

=
n∑
i=1

I
(
Yi; X

n |Yi−1
)

=
n∑
i=1

h
(
Yi |Yi−1

)
−

n∑
i=1

h
(
Yi |Xn,Yi−1

)
= h(Yn)−

n∑
i=1

h
(
Yi |Xn,Yi−1

)
,

I(Xn → Yn) =
n∑
i=1

I
(
Xi; Yi

∣∣Yi−1
)

=
n∑
i=1

I
(
Yi; X

i
∣∣Yi−1

)
=

n∑
i=1

h
(
Yi |Yi−1

)
−

n∑
i=1

h
(
Yi |Xi,Yi−1

)
= h(Yn)−

n∑
i=1

h
(
Yi |Xi,Yi−1

)
.

The only difference between these two expressions is the conditioning, which is the
entire random process Xn for the mutual information and only Xi for the directed
information. The latter has been suggested as causal conditioning [1, p. 11].
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The concepts of causality and directed information can be combined to the concept
of causal conditional directed information (CCDI), which is defined as [1, p. 11]

I
(
Xn → Yn

∣∣∣∣∣∣Zn) =
n∑
i=1

I
(
Yi; X

i |Yi−1,Zi
)

=
n∑
i=1

h
(
Yi |Yi−1,Zi

)
− h

(
Yi |Xi,Yi−1,Zi

)
=

n∑
i=1

h
(
Yi,Y

i−1,Zi
)
− h

(
Yi−1,Zi

)
−
(
h
(
Xi,Yi,Y

i−1,Zi
)
− h

(
Xi,Yi−1,Zi

))
=

n∑
i=1

h
(
Yi,Zi

)
− h

(
Yi−1,Zi

)
−
(
h
(
Xi,Yi,Zi

)
− h

(
Xi,Yi−1,Zi

))
, (2.5)

where the second equality follows from Definition 2.1.6 and the third equality follows
from the derivation in (2.1).

As the name and notation suggests, the CCDI measures the directed information
from Xn to Yn, where Zn has been causally observed. The latter is denoted by the
two vertical lines as opposed to only a single vertical line, which means that it is
given (or observed) [1, p. 11].

The expression of the CCDI in (2.5) shows that it can be computed from a sum
of joint entropies. This means that the key to reliably estimating the CCDI (which
is the goal in order to quantify the connections in the human brain as described in
Chapter 1) is to reliably estimate these joint entropies.

However, in each term in the sum in (2.5) the entire pasts of the random processes
Xi, Yi, Zi are used, which may be unnecessary if they e.g. form a Markov chain,
and it is also computationally inefficient if n is large and the CCDI needs to be
computed sequentially when new observations become available. Instead, each of the
random variables, e.g. Xi, is assumed to only be dependent on the previous l random
variables, which is denoted by Xi−l:i. This is expressed in (2.6):

I
(
Xn → Yn

∣∣∣∣∣∣Zn) =

n∑
i=l

h
(
Yi−l:i,Zi−l:i

)
− h

(
Yi−1−l:i−1,Zi−l:i

)
−
(
h
(
Xi−l:i,Yi−l:i,Zi−l:i

)
− h

(
Xi−l:i,Yi−1−l:i−1,Zi−l:i

))
.

(2.6)

Note that (2.6) is similar to (2.5) but only includes the last l random variables of
each random process in each term.
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3 | Entropy estimation through k-
nearest neighbors

The entropy h(X) as defined in Definition 2.1.2 can only be computed if the pdf
f(x) is known, and even if that is the case, one also needs to evaluate the integral,
which may be extremely difficult, especially in high dimensions. Instead, the idea is
to estimate the entropy through the k-nearest neighbors (kNNs).

Section 3.1 describes the general setup considered in this chapter and derives an
initial basic estimator based on this setup. This estimator turns out to be asymptoti-
cally biased, which is shown in Section 3.2, and an asymptotically unbiased estimator
is derived following this result. In Section 3.3 the foundation of the derivation of other
estimators, which assume a constant density, is made, but it turns out that numerical
integration is necessary to estimate a key result, which is performed in Section 3.3.1.
The estimators based on the results described in Section 3.3 are described in Section
3.4.

3.1 General setup and initial estimator

This section is inspired by [18] [3]. General concepts, which are used in the remainder
of this thesis, are firstly defined.

Definition 3.1.1 An open ball B(x, r) with center x ∈ Rd and radius r > 0 is defined
as

B(x, r) =
{

y ∈ Rd : ‖x− y‖2 < r
}
,

where ‖ · ‖2 is the Euclidean norm. Note that the term “open” means that boundary
points of the ball are not included.

The volume of the ball B(x, r) is denoted by Vr and can be shown to be [12, eq.
5.19.4]

V (B(x, r)) , Vr =
πd/2rd

Γ(d/2 + 1)
. (3.1)

In general, n iid random variables X1, . . . ,Xn, Xi ∈ Rd, with density f(·) and real-
izations (also referred to as samples) x1, . . . ,xn are considered. In the remainder of
this thesis, the ball B(xi, ri) is restricted to only contain the k-nearest neighbors of
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its center xi, where k ≤ n− 1 is a positive integer and the radius ri is the Euclidean
distance r(·, ·) between xi and its kNN, xi,kNN

ri = r(xi,x
n \ {xi}) = ‖xi − xi,kNN‖2, xn = {x1, . . . ,xn}.

Throughout the chapter, a specific sample is often given, and it is typically said to
be x1 since the random variables are iid. Therefore, the ball B(x1, r1) is typically
considered. Let this ball be surrounded by an annulus of a small width dr1 such that
the kNN of x1 lies on the boundary of B(x1, r1). This is depicted in Figure 3.1.

r1

x1

dr1

k-nearest neighbor

B(x1, r1)

Figure 3.1: The grey area is the ball B(x1, r1) with center x1 and radius r1. The ball is surrounded
by an annulus of width dr1. Note that there is k samples inside B(x1, r1) (including x1), one sample
in the annulus, and n− k − 1 samples outside. This figure is inspired by [11, p. 2].

Another general concept is the conditional probability F (r|x1) as defined in Definition
3.1.2.

Definition 3.1.2 The conditional probability that a random variable X2 lies inside
the ball B(x1, r), where x1 is given, is denoted by F (r|x1):

F (r|x1) = P (X2 ∈ B(x1, r) |X1 = x1) =

∫
‖x−x1‖<r

f(x) dx, r > 0.

For small k and large n, the density f(x2) of a sample x2 inside B(x1, r1) is approx-
imately equal to f(x1), which means that F (r1|x1) by Definition 3.1.2 and (3.1) can
be approximated as

F (r1|x1) =

∫
‖x2−x1‖<r1

f(x2) dx2 ≈ f(x1)

∫
‖x2−x1‖<r1

dx2 = f(x1) · Vr1 . (3.2)
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Note that r1 is actually a random variable since it depends on the kNN of x1, and
therefore F (r1|x1) is also a random variable. Note also that F (r1|x1) can be consid-
ered as a mass, and in (3.2) it is approximated as the density multiplied by the volume,
which means that the density f(x1) is assumed to be constant inside B(x1, r1). The
result in (3.2) leads to

f(x1) · Vr1 ≈ P (X2 ∈ B(x1, r1) |X1 = x1)

≈ 1

n− 1

n∑
i=2

I(xi ∈ B(x1, r1) |X1 = x1) =
k − 1

n− 1
⇒

f(x1) · Vr1 ≈
1

n

n∑
i=1

I(xi ∈ B(x1, r1) |X1 = x1) =
k

n
⇒

f(x1) ≈ k

n

1

Vr1
=
kΓ(d/2 + 1)

nπd/2rd1
⇒ f(xi) ≈

kΓ(d/2 + 1)

nπd/2rdi
, (3.3)

where the definition of the edf (see (A.2)) has been used for the approximation in
the second line and it has been assumed that n is large between the second and third
line. By using the definition of the expected value of a random variable in (A.3),
the entropy as defined in Definition 2.1.2 can be estimated with the following basic
estimator denoted by ĥB(X), where the approximation of f(xi) in (3.3) is inserted

h(X) = −
∫
Rd

f(x) ln(f(x)) dx = −E[ln(f)] ≈ − 1

n

n∑
i=1

ln (f(xi))⇒

ĥB(X) , − 1

n

n∑
i=1

ln

(
kΓ(d/2 + 1)

nπd/2rdi

)
=

1

n

n∑
i=1

Ti, Ti , ln

(
nπd/2rdi

kΓ(d/2 + 1)

)
. (3.4)

Note that Ti only depends on i through the radius ri. In Section 3.2, the asymptotic
mean of ĥB(X) is considered.

3.2 An asymptotically unbiased estimator

By finding the asymptotic mean of ĥB(X), it can be shown that the estimator is
asymptotically biased, and an asymptotically unbiased estimator can furthermore be
found.

The asymptotic mean of ĥB(X) can be written as

lim
n→∞

E
[
ĥB(X)

]
= lim

n→∞
E

[
1

n

n∑
i=1

Ti

]

= lim
n→∞

1

n

n∑
i=1

E [Ti] = lim
n→∞

1

n

n∑
i=1

E[Ti |Xi = xi] (3.5)
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since

lim
n→∞

1

n

n∑
i=1

E[Ti |Xi = xi] = E[E[Ti |Xi = xi] ] = E[Ti] = lim
n→∞

1

n

n∑
i=1

E [Ti] ,

where in the first and last equalities the law of large numbers has been used and the
law of total expectation has been used in the second equality [14, pp. 190, 264].

Since the random variables X1, . . . ,Xn are assumed to be iid (as described in Section
3.1), the case that x1 is given in (3.5) is considered without loss of generality in the
following. Note that T1 being larger than a real number t is equivalent to the radius
r1 being larger than a real number ρt:

T1 = ln

(
nπd/2rd1

kΓ(d/2 + 1)

)
> t⇔ nπd/2rd1

kΓ(d/2 + 1)
> exp(t)⇔

rd1 >
kΓ(d/2 + 1) exp(t)

nπd/2
⇔ r1 >

(
kΓ(d/2 + 1) exp(t)

nπd/2

) 1
d

, ρt.

By Definition 3.1.2, F (ρt|x1) is the conditional probability that a random variable is
inside the ball B(x1, ρt), where x1 is given. Consider now the conditional probability
that r1 is larger than ρt, where x1 is given. There are k − 1 samples inside B(x1, r1)

beside x1, and these samples can either be inside (with probability F (ρt|x1)) or
outside (with probability 1−F (ρt|x1)) the ball B(x1, ρt). The conditional probability
that r1 is larger than ρt, where x1 is given, can then be written as a sum of k binomial
terms (see Definition A.2.2), where in each term, an increasing number of samples up
to k − 1 are chosen out of the remaining n− 1 samples:

P (T1 > t | X1 = x1) = P (r1 > ρt | X1 = x1)

=
k−1∑
i=0

(
n− 1

i

)
[F (ρt|x1)]i [1− F (ρt|x1)]n−1−i. (3.6)

By (3.1), the volume of a ball with radius ρt can be written as

Vρt =
πd/2ρdt

Γ(d/2 + 1)
=

πd/2
((

kΓ(d/2+1) exp(t)

nπd/2

) 1
d

)d
Γ(d/2 + 1)

=
k exp(t)

n
.

The mean of a binomial distribution with parameters n, p (see Definition A.2.2) is
np, which means that the asymptotic mean of each term in the sum in the expression
in (3.6) is

lim
n→∞

((n− 1)F (ρt|x1)) = lim
n→∞

(nF (ρt|x1))
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= k exp(t) lim
n→∞

(
F (ρt|x1)

Vρt

)
= k exp(t)f(x1), (3.7)

where limn→∞

(
F (ρt|x1)

Vρt

)
= f(x1) because the density can be written as the prob-

ability mass divided by the volume for which Vρt → 0 as n→∞.
By using the Poisson approximation to the binomial distribution (see Proposition

A.3.1), each of the terms in the sum in (3.6) can be written as the pmf of a Pois-
son distribution (see Definition A.2.1) with parameter equal to the asymtotic mean
k exp(t)f(x1) from (3.7):

lim
n→∞

P (T1 > t | X1 = x1) =

k−1∑
i=0

(k exp(t)f(x1))i

i!
exp (−k exp(t)f(x1))

= P (Tx1 > t),

where Tx1 is a random variable with the pdf g(y)

g(y) =
(k exp(y)f(x1))k

(k − 1)!
exp(−k exp(y)f(x1)), −∞ < y <∞. (3.8)

In order to verify that this is the correct pdf, it must be shown that

P (Tx1 > t) =

∫ ∞
t

(k exp(y)f(x1))k

(k − 1)!
exp(−k exp(y)f(x1)) dy

=

k−1∑
i=0

(k exp(t)f(x1))i

i!
exp (−k exp(t)f(x1)) . (3.9)

The first equality is simply the integral of the proposed pdf, and the second equality
can be shown by using integration by substitution and integration by parts (see
Lemmas A.4.1 and A.4.2). Integration by substitution is firstly used to obtain the
integral

P (Tx1 > t) =

∫ ∞
t

(k exp(y)f(x1))k

(k − 1)!
exp(−k exp(y)f(x1)) dy

=

∫ ∞
z(t)

(z(y))k−1

(k − 1)!
exp(−z(y)) dz(y), (3.10)

z(y) = k exp(y)f(x1)⇒ d

dy
z(y) = z(y)⇒ dy =

1

z(y)
dz(y),

where the integral boundaries in the new integral are obtained by evaluating z(y)

with y equal to each of the integral boundaries in the original integral.
As shown in Appendix A.4, repeated integration by parts k times can be written

as (see (A.5))∫ ∞
z(t)

u(0)(z(y)) v(k)(z(y)) dz(y) =

k−1∑
i=0

(−1)i
(
u(i)(∞) v(k−1−i)(∞)
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−u(i)(z(t)) v(k−1−i)(z(t))

)

+ (−1)k
∫ ∞
z(t)

u(k)(z(y)) v(0)(z(y)) dz(y), (3.11)

where u(i)(z(t)) denotes the i’th derivative of u(z(t)).

By comparing (3.10) to (3.11), we let u(z(y)) = (z(y))k−1

(k−1)! and v(k)(z(y)) = exp(−z(y)).
The k derivatives of u(z(y)) and k antiderivatives of v(k)(z(y)) are then needed in
order to perform integration by parts k times.

The first three derivatives of u(z(y)) are

u(z(y)) =
(z(y))k−1

(k − 1)!
⇒ u(1)(z(y)) =

(k − 1)(z(y))k−2

(k − 1)!
=

(z(y))k−2

(k − 2)!

u(2)(z(y)) =
(k − 1)(k − 2)(z(y))k−3

(k − 1)!
=

(z(y))k−3

(k − 3)!

u(3)(z(y)) =
(k − 1)(k − 2)(k − 3)(z(y))k−4

(k − 1)!
=

(z(y))k−4

(k − 4)!
,

which generally means that

u(i)(z(y)) =
(z(y))k−1−i

(k − 1− i)!
, i = 0, . . . , k − 1.

Note that u(k−1)(z(y)) = 1, which means that u(k)(z(y)) = 0.
The first three antiderivatives of v(k)(z(y)) are

v(k)(z(y)) = exp(−z(y))⇒ v(k−1)(z(y)) = − exp(−z(y))

v(k−2)(z(y)) = exp(−z(y))

v(k−3)(z(y)) = − exp(−z(y)),

which generally means that

v(k−2i)(z(y)) = exp(−z(y)), v(k−(2i+1))(z(y)) = − exp(−z(y)), i = 0, 1, . . . ,

⌊
k

2

⌋
.

With regards to (3.11), note that

1. (−1)i·v(k−1−i)(z(y)) = − exp(−z(y)) for all i = 0, . . . , k−1 due to the derivation
of the antiderivatives of v(k)(z(y)).

2. Since u(i)(∞) v(k−1−i)(∞) = 0[1], the first part of (3.11) vanishes.
[1]This can be verified from plots of the expression.
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3. Since u(k)(z(y)) = 0, the integral in the last part of (3.11) vanishes.

With these considerations and the results above, the desired probability P (Tx1 > t)

can finally be written as

P (Tx1 > t) =

∫ ∞
z(t)

(z(y))k−1

(k − 1)!
exp(−z(y)) dz(y)

=

∫ ∞
z(t)

u(0)(z(y)) v(k)(z(y)) dz(y)

=
k−1∑
i=0

(−1)i
(
−u(i)(z(t)) v(k−1−i)(z(t))

)
=

k−1∑
i=0

(z(t))i

i!
exp(−z(t))

=

k−1∑
i=0

(k exp(t)f(x1))i

i!
exp (−k exp(t)f(x1)) ,

which is the desired expression from (3.9). This means that the pdf g(y) in (3.8) is
in fact the right one.

By using integration by substitution and (A.4), the asymptotic mean of T1 given
x1 is

lim
n→∞

E [T1 |X1 = x1] =

∫ ∞
−∞

y
(k exp(y)f(x1))k

(k − 1)!
exp(−k exp(y)f(x1)) dy

=

∫ ∞
0

(ln(z)− ln(k)− ln(f(x1))
zk−1

(k − 1)!
exp(−z) dz

=
1

Γ(k)

∫ ∞
0

ln(z)zk−1 exp(−z) dz

− (ln(k) + ln(f(x1))
1

(k − 1)!

∫ ∞
0

zk−1 exp(−z) dz

= ψ(k)− ln(k)− ln(f(x1)), (3.12)

where the change of variable z = k exp(y)f(x1)[2] has been made, which means that
y = ln(z)− ln(k)− ln(f(x1)), which in turn means that dy = 1

z dz, and where

ψ(ν) =
Γ′(ν)

Γ(ν)
, Γ′(ν) =

∫ ∞
0

ln(t)tν−1 exp(−t) dt,

Γ(ν) =

∫ ∞
0

tν−1 exp(−t) dt = (ν − 1)!

[2]Note that 0 ≤ z <∞ since k ≥ 1, f(x1) ≥ 0, and exp(y) > 0.
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is the digamma function, which is defined as the derivative of the gamma function
divided by the gamma function [12, eqs. 5.2.1, 5.2.2, 5.4.1, 5.9.19].

The results in (3.5) and (3.12) lead to that the asymptotic mean of ĥB(X) is

lim
n→∞

E
[
ĥB(X)

]
= lim

n→∞

1

n

n∑
i=1

E[Ti |Xi = xi]

= lim
n→∞

ψ(k)− ln(k)− 1

n

n∑
i=1

ln(f(xi))

= ψ(k)− ln(k) + h(X).

In Section 3.4 it is shown that limk→∞ ψ(k) − ln(k) = 0, which means that the
estimator ĥB is in fact unbiased for large values of k since asymptotic mean is then
equal to the true value, h(X). However, k is assumed to be small for now.

The difference between the asymptotic mean and h(X) is ψ(k) − ln(k), and an
asymptotically unbiased estimator can then be obtained (as proposed in [18, p. 307])
by subtracting this from ĥB(X), which is denoted as the estimator ĥS(X)

ĥS(X) = ĥB(X)− (ψ(k)− ln(k))

=
1

n

n∑
i=1

Ti − ψ(k) + ln(k)

=
1

n

n∑
i=1

ln

(
nπd/2rdi

kΓ(d/2 + 1)

)
− ψ(k) + ln(k)

=
1

n

n∑
i=1

ln
(
rdi

)
+ ln

(
πd/2

Γ(d/2 + 1)

)
+ ln(n)− ln(k)− ψ(k) + ln(k)

=
d

n

n∑
i=1

ln(ri) + ln(V1) + ln(n)− ψ(k), (3.13)

where V1 is the volume of the d-dimensional unit ball.
It is furthermore proven in [18, p. 307] that ĥS(X) is also asymptotically consis-

tent, which means that

lim
n→∞

Var
[
ĥS(X)

]
= 0.

Being asymptotically unbiased and consistent is obviously good qualities for an esti-
mator.

3.3 General derivation of estimators

This section describes a different approach to deriving an entropy estimator than the
one described in Section 3.2. The approach described in this section is inspired by
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[11, p. 2] [9, pp. 3-4][3] and serves as a foundation for the derivations of the estima-
tors described in Section 3.4, where a constant density is assumed. The general setup
described in Section 3.1 is also used in the remainder of this chapter.

The setup shown on Figure 3.1 is firstly considered. The conditional probability
given x1 that only the kNN lies in the annulus [r1, r1 + dr1] around B(x1, r1), that
exactly k − 1 samples are at distances closer to x1 than the kNN, and that the re-
maining n−k−1 samples are farther away than the kNN, is denoted by f(r1|x1)dr1,
which consists of a conditional density f(r1|x1)[4] multiplied by the width dr1 of the
annulus shown on Figure 3.1. This conditional probability given x1 can then be
expressed as [11, p. 2]

f(r1|x1)dr1 =

(
n− 1

1

)
dF (r1|x1)

dr1
dr1

(
n− 2

k − 1

)
[F (r1|x1)]k−1 · [1− F (r1|x1)]n−k−1

(3.14)

where the first binomial coefficient in (3.14) expresses in how many ways the kNN
can be chosen from the n − 1 samples (where x1 is given) and the second binomial
coefficient expresses in how many ways the k − 1 samples (except x1) inside the ball
B(x1, r1) can be chosen from the remaining n−2 samples. Furthermore, the last part
in (3.14) is due to the samples being iid, where [F (r1|x1)]k−1 and [1−F (r1|x1)]n−k−1

are the probabilities that k−1 and n−k−1 samples lie inside and outside B(x1, r1),
respectively. The expression for f(r1|x1)dr1 in (3.14) is however not used in the
following but mainly serves as a way of understanding what f(r1|x1)dr1 is.

In the following, the definition of the conditional expected value (see (A.4)) is
used to express the expected value of ln(F (r1|x1)) where x1 is given

E[ln(F (r1|x1)) |X1 = x1] =

∫ ∞
0

f(r1|x1) ln(F (r1|x1)) dr1 = ψ(k)− ψ(n). (3.15)

It has however not been possible to verify the result in (3.15) analytically. In [9, p. 4]
and [11, p. 2], expressions similar to the one in (3.14) is used but it is not further
described how to obtain the result. In this thesis, an approach for computing the
integral in (3.15) has instead been devised. This is described in Section 3.3.1, and in
the remainder of this section the result in (3.15) is assumed to be true since it makes
it possible to derive another estimator.

As shown in (3.2), F (r1|x1) can be approximated as the density multiplied by the
volume of B(x1, r1) if the density is assumed to be constant. With no assumptions

[3]The notation in the cited articles is however not clear, and the notation in this chapter is made
by the author.

[4]This means that X1 = x1 is given but is written as f(r1|x1) for ease of notation (similarly to
Definition 3.1.2).
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on the density, F (r1|x1) can be approximated by a random variable η1 multiplied by
the density

F (r1|x1) ≈ η1f(x1). (3.16)

Assuming that the result in (3.15) is true, it follows that

E[ln(F (r1|x1)) |X1 = x1] = ψ(k)− ψ(n)

≈ E[ln(η1f(x1))]

= E[ln(η1) + ln(f(x1))]

= E[ln(η1)] + E[ln(f(x1))]⇒
−E[ln(f(x1))] ≈ E[ln(η1)] + ψ(n)− ψ(k)⇒

h(X) = lim
n→∞

− 1

n

n∑
i=1

ln(f(xi))

= lim
n→∞

1

n

n∑
i=1

ln(ηi) + ψ(n)− ψ(k), (3.17)

where it has been used that E[X + Y ] = E[X] + E[Y ] for any two random variables
X,Y [14, p. 176], and where ηi, i = 1, . . . , n, depends on which assumptions of the
density f(xi) inside B(xi, ri) are made.

3.3.1 Numerical computation of integral

The procedure for computing the integral in (3.15) numerically is described in this
section.

In general, the functions f(r1|x1) and F (r1|x1) are estimated as f̂(r1|x1) and
F̂ (r1|x1) from n samples x1, . . . ,xn of iid random variables X1, . . . ,Xn with Xi ∈ Rd
and with a given distribution. The idea is to estimate f̂(r1|x1) and F̂ (r1|x1) with
different values of r1 in some appropriate interval corresponding to the minimum and
maximum distances between x1, . . . ,xn. The density f(r1|x1) is then estimated as
the histogram of r1 (which is f̂(r1|x1) and which includes finding the frequency of
r1 in each bin), while F̂ (r1|x1) is estimated as the ratio of samples within distance
r1 > 0 from x1 (due to Definition 3.1.2).

Note that f(r1|x1) dr1 by (3.14) depends on n and k. As described in Section
3.1, k is the number of samples inside the ball B(x1, r1), and k is therefore changed
when r1 is changed, which means that the integral will not depend on k (contrary to
the statement in (3.15)). The expression in (3.14) also implicitly depends on d since
x1 is given. Therefore, it is proposed to compute the integral in (3.15) numerically
where either n or d is changed, while the other is fixed. By doing so for d, n in a
specified range of values, a grid M can be obtained, where M(d, n) is the integral for
the specified values of d, n.
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The procedure for computing the integral is described in Algorithm 1. Note that
objects such as a matrix A ∈ Rn×d are indexed with row r and column c as A(r, c)

and that A(:, c) and A(r, :) returns the entire column c and row r, respectively.
In general, the values

n ∈ {25, 50, 75, 100, 1100, . . . , 8,100, 9,100}, d ∈ {1, 5, . . . , 41, 45}

are used in Algorithm 1, and examples of f̂(r1|x1) and F̂ (r1|x1) are shown in the
following for a fixed value of n and different values of d.

Figure 3.2 shows f̂(r1|x1) as the histogram of r1 for n = 1,100 random variables
in different dimensions d and with a uniform distribution (left) and a multivariate
normal distribution (right).

Figure 3.2: Histograms of r1 for different values of d with n = 1,100 random variables with a
uniform distribution (left) and multivariate normal distribution. Curves for the normal density with
mean and variance corresponding to each histogram is also shown for the histograms with d > 1.

The results in Figure 3.2 are generally as expected since the distances between samples
of random variables with a multivariate normal distribution is also a normal distribu-
tion. Furthermore, the histogram for the distances with a uniform distribution with
d = 1 is constant but for d > 1, these distances also have a normal distribution.

Figure 3.3 shows F̂ (r1|x1) for n = 1,100 random variables in different dimen-
sions d and with a uniform distribution (left) and a multivariate normal distribution
(right).
The results in Figure 3.2 are also as expected since the cdf for a normal distribution,

Φ(x) =

∫ x

−∞

1√
2π

exp

(
−1

2
x2

)
dx,

is a logistic function for which limx→−∞Φ(x) = 0 and limx→∞Φ(x) = 1 (similarly to
the results in Figure 3.3) [15].

Note that the functions are only computed for r1 in an interval where the func-
tions are different from 0 and 1 (as described in Algorithm 1), which is the reason
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Algorithm 1 Algorithm for numerical computation of integral
Input: the ranges of d-values d and n-values n to be tested, the distribution of the
random variables, the number of test iterations N , the minimum and maximum
distances m1,m2, and the number of bins b.
Let l1, l2 be the lengths of d,n and let

M ∈ Rl1×l2 , r, fm,Fm ∈ Rl1×l2×l2 , f , fi,F,Fl ∈ Rl1×l2×N×l2 , fh ∈ Rl1×l2×b

be filled with zeros.
for each d in d, n in n do

Fill r(d, n, :) ∈ Rn with equidistant values in the interval [m1,m2].
for t = 1, . . . , N do

Find samples x1, . . . ,xn from the n random variables in dimension d.
Define x1 ∈ Rd as the center sample of the samples.
Create the matrix x = [x1, . . . , xn]T ∈ Rn×d.
D← sort(‖x− x1‖2) (i.e. the sorted distances).
f(d, n, t, :)← D.
for each r in r do

Let k be the number of samples within distance r from x1.
F(d, n, t, r)← k/n.

for each d in d, n in n, r in r do

Fm(d, n, r)← 1

N

N∑
t=1

F(d, n, t, r)

fm(d, n, r)← 1

N

N∑
t=1

f(d, n, t, r)

for each d in d, n in n do
Fl(d, n, :)← ln(Fm(d, n, :)) (with ln(0) = 0).
Set fh(d, n, :) to the frequencies of a histogram of fm(d, n, :) with b bins.
Let fi(d, n, :) be an interpolated version of fh(d, n, :).
Compute M(d, n) through numerical integration of fi(d, n, :) · Fl(d, n, :).

Output: the matrix M.
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Figure 3.3: Plots of F̂ (r1|x1) for different values of d with n = 1,100 random variables with a
uniform distribution (left) and multivariate normal distribution.

for the shortened lines in Figure 3.3. Since f̂(r1|x1) is 0 outside this interval, the
product f̂(r1|x1) ln(F̂ (r1|x1)) is also 0 outside this interval, which means that there
is no reason to compute the values of f̂(r1|x1) and F̂ (r1|x1) outside this interval.

After f̂(r1|x1) has been estimated, its values are interpolated such that the same
number of output values are available for f̂(r1|x1) and F̂ (r1|x1). Furthermore,
ln(F̂ (r1|x1)) is found, where ln(0) is set to 0. The outputs of the functions f̂(r1|x1)

and ln(F̂ (r1|x1)) are then multiplied to form another function, which is integrated
between 0 and the maximum value of its support.

Figure 3.4 shows the mean values and their confidence intervals of the integrals of
f̂(r1|x1) ln(F̂ (r1|x1)), where the mean is taken across the values of n (left plots) and
across the values of d (right plots), and where the random variables are uniformly
distributed (top plots) and multivariate normally distributed (bottom plots).
Figure 3.4 indicates that the confidence intervals are relatively close to the mean
values regardless of which axis the mean is taken across, which means that it may not
be necessary to use the matrix M(d, n) as the value of the integral for specified values
of d, n as suggested in Algorithm 1. Instead, it might only be necessary to take the
mean across both n and d and use this value as the integral of f(r1|x1) ln(F (r1|x1))

(no matter what the value of n and d is). Therefore, the constants Mu and Mn are
defined as the mean values of the grids with the random variables with a uniform and
multivariate normal distribution, respectively. These constants and the corresponding
95% confidence intervals are:

Mu = −0.82, [−0.78,−0.86],

Mn = −0.82, [−0.79,−0.85].
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Figure 3.4: Mean values and the corresponding confidence intervals of the integrals of f̂(r1|x1) ·
ln(F̂ (r1|x1)) across both n and d and with both uniform and multivariate normal distributions of
the random variables.

3.4 Estimator for constant density

If the probability density f(x1) is assumed to be constant inside B(x1, r1), the condi-
tional probability F (r1|x1) can be approximated as the volume of B(x1, r1) multiplied
by the density (as in (3.2))

F (r1|x1) ≈ Vr1f(x1) = V1r
d
1f(x1). (3.18)

With the approximation in (3.18), the constant η1 in (3.16) is η1 = V1r
d
1 , which is

combined with the result in (3.17) to obtain the entropy estimator ĥKL(X) [11, p. 2]

ĥKL(X) =
1

n

n∑
i=1

ln
(
V1r

d
i

)
+ ψ(n)− ψ(k)

=
d

n

n∑
i=1

ln(ri) + ln(V1) + ψ(n)− ψ(k). (3.19)

However, the estimator ĥKL relies on the derivation in (3.17), which assumes that the
result in (3.15) is true. By instead using the constant Mu, which is derived from the
numerical analysis in Section 3.3.1 and computed with uniformly distributed random
variables, another estimator denoted by ĥMu can be derived as

ĥMu(X) =
d

n

n∑
i=1

ln(ri) + ln(V1) +Mu. (3.20)

Note that the only difference between the two estimators ĥKL and ĥMu is the function
ψ(n)−ψ(k) and the constant Mu, respectively. The function ψ(n)−ψ(k) will always
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be positive since k ≤ n−1 is a positive integer and ψ(n) is positive and monotonically
increasing for all n ∈ N (see Figure 3.5), whereas Mu is a negative constant.

The name of the estimator ĥKL is due to its original inventors, Kozachenko and
Leonenko [11, p. 2]. Note that the only difference between the estimators ĥS and
ĥKL from (3.13) and (3.19), respectively, is the terms ln(n) and ψ(n), respectively.
However, the two functions

ln(n)− 1

2n
− ψ(n),

1

n
− ln(n) + ψ(n), n ∈ N

are both completely monotonic, which means that [23]

ln(n)− 1

n
≤ ψ(n) ≤ ln(n)− 1

2n
.

Therefore, ln(n) → ψ(n) when n is increased. Figure 3.5 shows the functions ln(n)

and ψ(n) (left) and the absolute difference between them (right).

Figure 3.5: Plots of ln(n) and ψ(n) (left) and the absolute difference between them (right).

As shown in Figure 3.5, the absolute difference between ln(n) and ψ(n) is rapidly
decreasing for small values of n and is asymptotically going to 0. Since n ∈ N, the
largest difference is | ln(1)− ψ(1)| = 0.58. Therefore, the estimators ĥS and ĥKL are
actually asymptotically the same (but they are derived with different methods, which
is why they are both included in this thesis), and only the estimator ĥKL is used in
the analyses in Chapter 4 because the values n in this chapter are rather large (up
to 5,100).
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4 | Performance analysis

In this chapter the performance of the estimators described in Chapter 3 are analyzed.
In Section 4.1, the errors and the computation times of the estimators are analyzed,
and computations of the causal conditional directed information (see Section 2.2) are
then computed for synthetic autoregressive data and actual EEG data in Sections 4.2
and 4.3, respectively.

4.1 Estimation of entropies

In this section, the entropies of random variables with multivariate normal and uni-
form distributions are estimated in order to assess the estimators’ ability to compute
reasonable estimates. Furthermore, the influence of the parameters d, k, and n on
the errors and the computation times are analyzed in Sections 4.1.1 and 4.1.2, re-
spectively.

Unless otherwise stated, each of the estimates are computed N = 200 times with
the parameters d = 4, k = 4, and n = 1,000, and in each analysis of these three
parameters, two of them are fixed while the third is changed.

4.1.1 Analyses of errors

The error being analyzed in this section is the mean absolute error (MAE)

eMAE

(
h(X), ĥ(X)

)
=

1

N

N∑
i=1

∣∣∣h(X)− ĥi(X)
∣∣∣ ,

where ĥi(X) is an estimate of the entropy by one of the estimators described in
Chapter 3 and the actual entropy h(X) is obtained from either of the expressions for
the entropies of random variables with multivariate normal and uniform distributions
in Examples 2.1 and 2.2, respectively, which are refreshed here.

1. Let Xn be a vector of n mutually independent random variables with a mul-
tivariate normal distribution, i.e. X1, . . . , Xn

iid∼ Nn(0, In) (where In is the
identity matrix). The analytical value of the entropy of Xn is (see Example
2.1)

h(Xn) =
1

2
ln ((2π exp(1))n|Σ|) =

1

2
ln ((2π exp(1))n) =

n

2
ln((2π exp(1))

=
n

2
(ln(2π) + ln(exp(1))) =

n

2
(ln(2π) + 1) = 1.419 · n.
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The last expression for h(Xn) is useful for large values of n since it is not
possible to compute (2π exp(1))n directly for n larger than around 250.

2. Let Ra,b be a hyperrectangle in Rd whose vertices’ lowest and highest coordi-
nates in each dimension are defined by vectors a,b ∈ Rd. Also, let Xu be a
vector of n mutually independent random variables X1, . . . ,Xn with a uniform
distribution on such a hyperrectangle and with Xi ∈ Rd. The analytical value
of the entropy of Xu is then (see Example 2.2)

h(Xu) = ln(V (Ra,b)), V (Ra,b) = |a1 − b1| · |a2 − b2| · · · |ad − bd|.

In this section, a = 0 and b = 5 are fixed.

The figures in this section generally show the MAE’s as well as the confidence in-
tervals for each of the computed MAE’s (see Appendix A.5). The critical values
of a t-distribution is used to compute 95% confidence intervals, where the sample
mean and variance is computed from the N absolute errors (which correspond to the
random variables that the confidence intervals are computed for), which means that
the degrees of freedom are N − 1. In Appendix A.5, it is assumed that the data
being analyzed are normally distributed, which is seen to be a reasonable assumption
from results of statistical tests of whether the errors can be assumed to be normally
distributed shown in Appendix B. It however turns out that the confidence intervals
are not visible because they are so close to MAE’s.

Figure 4.1 shows the MAE’s and corresponding confidence intervals of the estimates
ĥ(Xn) and ĥ(Xu) with values of d ∈ {1, 5, 9, . . . , 41, 45}.
As shown in Figure 4.1, the mean absolute errors of the estimates increase linearly
with d for both ĥ(Xn) and ĥ(Xu) (except for d = 1 for the estimator ĥMu). This
linear relationship means that the estimators only compute the same errors in each
dimension. The average increases of error per dimension for the estimates of ĥ(Xn)

and ĥ(Xu) are 1.51 and 1.91, respectively, and the average coefficients of determi-
nation for these linear relationships are 9.99e−02 and 9.93e−02, respectively. Apart
from when d = 1, the estimator ĥMu is seen to perform best.

Figure 4.2 shows the MAE’s and corresponding confidence intervals of the estimates
ĥ(Xn) and ĥ(Xu) with values of k ∈ {1, 2, . . . , 20}.
As shown in Figure 4.2, the errors for the estimators ĥB and ĥKL are similar and does
not change considerably when k is changed whereas the errors of the estimator ĥMu
are much lower and has a minimum at k = 3 for the uniform random variables (MAE
of 2.62e−02) and at k = 10 for the multivariate normal random variables (MAE
of 4.52e−02). Note also that the estimators are the same for large values of k due
to (3.13) and the relationship between the functions ψ(k) and ln(k) as described in
Section 3.4.
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Figure 4.1: The MAE’s and corresponding confidence intervals ofN = 200 entropy estimates of ran-
dom variables with multivariate normal and uniform distributions and with d ∈ {1, 5, 9, . . . , 41, 45}.
The confidence intervals are not directly visible but is e.g. [68.24, 68.29] for the estimator ĥB with
multivariate normal random variables and with d = 45.

Figure 4.2: The MAE’s and corresponding confidence intervals of N = 200 entropy estimates of
random variables with multivariate normal and uniform distributions and with k ∈ {1, 2, . . . , 20}.
The confidence intervals are not directly visible but is e.g. [5.60, 5.61] for the estimator ĥKL with
multivariate normal random variables and with k = 15.
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Figure 4.3 shows the MAE’s and corresponding confidence intervals of the estimates
ĥ(Xn) and ĥ(Xu) with values of n ∈ {25, 50, 75, 100, 1100, . . . , 4,100, 5,100}.

Figure 4.3: The MAE’s and corresponding confidence intervals of N = 200 entropy esti-
mates of random variables with multivariate normal and uniform distributions and with n ∈
{25, 50, 75, 100, 1100, . . . , 4,100, 5,100}. The confidence intervals are not directly visible but is e.g.
[7.66e−01, 7.71e−01] for the estimator ĥMu with uniform random variables and with n = 3,100.

As shown in Figure 4.3, the MAE is declining slowly for the estimators ĥB and
ĥKL. On the other hand, the estimator ĥMu attains minimums at n = 1,100 (MAE
of 9.65e−01) and at n = 2,100 (MAE of 3.44e−01) for the random variables with
multivariate normal and uniform distributions, respectively, but the reason for the
minimums being at these values is unknown.

The efficiency of the estimators is measured as the norm of the MAE’s. These norms
are shown in Figur 4.4.
Figure 4.4 generally show that the performances of the estimators ĥB and ĥKL are
similar, whereas the performance of the estimator ĥMu is always the best. When the
value of k is changed, the norm of the errors of the estimator ĥMu is to up to 6 times
lower than those of the other estimators.

Finally, it has also been examined whether the errors are below or above the an-
alytical values in general in order to possibly combine several estimators into a better
estimator. This also provides some insights into the errors, which are not shown in
the figures in this section.

For the values of d, the errors are generally above the analytical values. For the
values of n and k, the errors of the estimators ĥB and ĥKL are generally above the
analytical values, while the errors of the estimator ĥMu is either below or above the
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Figure 4.4: Norms of the errors for values of d (left), values of k (center), and values of n (right),
where the norms of the errors for the multivariate normal and uniform random variables are to the
left and right, respectively, in each plot.

analytical values at first, then becomes closer to 0, and is then either above or below
for the remaining values.

From this analysis of the errors it is deemed not possible to combine several of
the estimators into a better estimator.

4.1.2 Analyses of computation times

Another aspect of the estimators and how they work in an algorithm that computes
the CCDI from (2.6) is how fast the entropy estimates are computed, which primar-
ily depends on the values of d and n. It should be noted that the tests described in
this section have been performed on the same computer and with no other processes
running simultaneously. For reference, the computer used in the tests is a Lenovo
ThinkPad T440s with an Intel® CoreTM i5-4200 CPU with 1.60 GHz.

Figure 4.5 shows the mean computation times (in seconds) of the estimates ĥ(Xn)

and ĥ(Xu) for the estimators with values of d ∈ {1, 5, 9, . . . , 41, 45} (left) and n ∈
{100, 1,100, . . . , 4,100, 5,100} (right).
According to Figure 4.5, the computation times generally seem to increase nonlinearly
and are generally similar for different estimators and distributions of the random
variables. However, the computations times for different values of d are sometimes
different, which may be due to background processes.

The computation times of ĥB(Xn) for different values of d have been fitted to the
function

g(d) =
√
a · d+ b

where a, b ∈ R are parameters. The result is shown in Figure 4.6.
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Figure 4.5: The mean computation times in seconds of N = 200 entropy estimates of random
variables with multivariate normal and uniform distributions with d ∈ {1, 5, 9, . . . , 41, 45} (left) and
n ∈ {100, 1,100, . . . , 4,100, 5,100} (right).

Figure 4.6: The result of fitting the function g(d) to the computation times of ĥB(Xn).
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Figure 4.6 shows that the function g(d) is a good fit to the computation times when
d is changed.

The algorithmic complexities of the estimators are also analyzed in order to better
understand the influence of n on the computation times. The algorithmic complexity
is expressed with the big O notation in which the number of floating point operations
is expressed as a function O(n) [10, p. 124]. As an example, the function may be
expressed as O(n + n2 + 50 · n3) = O(n3) where the equality means that O only
depends on n3 for n→∞ because it has the largest growth rate of the three terms.

This type of analysis is useful for comparing the complexities’ of different algo-
rithms to each other (after which the fastest one can be chosen) and also for identifying
the time-consuming parts of the algorithms (and possibly optimizing these parts).

The first part of all of the estimators is to compute the Euclidean norms ri be-
tween each sample xi, i = 1, . . . , n and all the other samples, and these distances are
then sorted. The Euclidean norm ‖x−y‖2 =

√
(x1 − y1)2 + · · ·+ (xd − yd)2 between

x,y ∈ Rd consists of d subtractions, d squares, d− 1 additions, and one square root,
which means that each Euclidean norm is linear in d but the Euclidean norms are
computed n times. The distances are then sorted, and the complexity of this is be-
tween O(n log2(n)) and O(n2) in the best- and worst-case scenarios, respectively[1].
The complexity of this part is then O(dn+ n2) = O(n2).

The second part is different for each estimator but is mainly composed of prod-
ucts, divisions, sums, logarithms, and the digamma function, and the complexities of
these are all of order s2 or less, where s is the number of digits[2], which means that
they are irrelevant compared to the complexity of the first part of the estimators.
Collectively, the complexities of the estimators depend on the sorting algorithm and
is between O(n log2(n)) and O(n2) in the best-case and worst-case scenarios, respec-
tively.

Whether the computation times when n is changed behave as O(n log2(n)) or
O(n2) is examined by fitting the computation times to the functions

g1(n) = a1 · n2 + b1 · n+ c1, g2(n) = a2 · n · log2(b2 · n),

where a1, b1, c1, a2, b2 ∈ R are parameters. The result of fitting these functions to the
computation times of ĥKL(Xn) is shown in Figure 4.7 along with the values of the
parameters.
Figure 4.7 shows that the second degree polynomial g1(n) fits best with the actual
values.

[1]The used sorting algorithm is ‘quicksort’, which on average is the fastest sorting algorithm but
the complexity varies. An analysis of the best- and worst-case scenarios is provided in [24].

[2]These complexities are described in [22] but this source is however questionable.
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Figure 4.7: The result of fitting the functions g1(n) and g2(n) to the computation times of ĥKL(Xn).

4.2 Autoregressive data

In this section, the causal conditional directed information (CCDI) from (2.6) is
computed for four-dimensional synthetic data, which are dependent in both time and
space. Each dimension in these data is a random process Xt

i = {Xi(1), . . . , Xi(t)},
i = 1, 2, 3, 4, where the subscript denotes the number of the random process and the
random variables in Xt

i are indexed by the time t ∈ N \ {1, 2} (this is a litte different
from Definition 2.1.1, where the random variables in a random process are indexed by
the subscript). Each of the random processes may depend on its own past (correlation
in time) and/or the past of the other processes (correlation in space). Furthermore,
each process contains mutually independent Gaussian white noise,Wi(1), . . . ,Wi(t)

iid∼
N (0, 1) (see Appendix A.6). The random processes used in this section[3] are

X1(t) = a1X1(t− 1)− a2X1(t− 2) +W1(t),

X2(t) = b1X1(t− 1) + b2X3(t− 1) +W2(t),

X3(t) = c1X
2
1 (t− 1) + c2X2(t− 1) + c3X3(t− 1) +W3(t),

X4(t) = d1X1(t− 1) + d2X3(t− 1) + d3X4(t− 1) +W4(t), t ∈ N \ {1, 2}, (4.1)

where the degree of dependence in time and/or space is controlled by the vectors of
parameters a,b, c,d.

Note that X1(t) is only dependent in time but the other processes are all depen-
dent on it in space. Note also that it is important to choose the parameters a,b, c,d

properly in order to ensure that the random processes are stationary (see Appendix
A.6). Finally, the first fifth part of each process is considered a transcient period and

[3]These have been suggested by Payam Baboukani from AAU but have however been modified a
little bit by the author.
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is removed in order for the process to be steady state (which means that the behavior
of the process does not change).

Three cases of these autoregressive data are considered with different parameters,
where the parameters not described are just 0, which e.g. in the first case means that
X3(t) and X4(t) are just mutually independent Gaussian white noise processes.

1. In the first case, only X1(t) and X2(t) from (4.1) are dependent with a1 = 0.8.

2. The second case is similar to the first case but now X3(t) is dependent on X2(t)

through b2 = 0.7, c1 = 0.6, and c3 = 0.8.

3. The third case is similar to the second case but now X4(t) is also dependent on
X3(t) through d2 = 0.9.

The data are used to calculate the CCDI (see (2.6)), where Xn is X1(t), Yn is X2(t),
and Zn is a vector of X3(t) and X4(t) in all three cases. Furthermore, the spatial
correlation betweenX1(t) and the remaining processes with parameters different from
0 is in all three cases controlled by b1, and the CCDI is therefore computed for every
value b1 ∈ b1 = {−1.0,−0.9, . . . , 0.9, 1.0}.

The main idea with this test is to check whether the system is able to compute
the CCDI reasonably. More complex cases (with more parameters different from 0)
could of course be considered but it is necessary to be able to compare the computed
CCDI with how the processes are dependent and how the CCDI is expected to behave
when the value of b1 is changed. The expected result is generally in all three cases
that the CCDI will be low for b1 close to 0 since there will be no flow of information
between X1(t) and the remaining processes and that the CCDI will grow for b1 going
towards ±1.

In each of the three cases with the described parameter values and with b1 equal
to each of the values in b1, the CCDI has been computed N = 100 times after which
the mean of the computed CCDI’s is found. In order to ensure that the processes
used in the test are stationary, each of the processes are tested for stationarity with
the ADF test (see Appendix A.6) before being used, and if either of the processes are
not stationary, new processes are generated and tested for stationarity before being
used[4]. The results are shown with the confidence intervals (see Appendix A.5) for
the estimator ĥMu in Figure 4.8.

[4]In total, 1 process was nonstationary in case 2, and 6 processes were nonstationary in case 3.
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Figure 4.8: The CCDI in the three cases with b1 ∈ b1 and with the confidence intervals for the
estimator ĥMu.

The results in Figure 4.8 is generally as expected since the CCDI is highest for b1 = ±1

and then gradually decreases to its minimum close to 0 at b1 = 0. The CCDI is lower
in case 2 and 3, which is expected since the CCDI will be lower if the correlation with
the process that is causally given is higher. In case 1, Zn is Gaussian white noise,
whereas the random variables are spatially correlated with X1(t) and X2(t) through
b2 and c1 in case 2 and 3. The estimates computed by the estimators are generally
similar but however with minor deviations.

It is asserted that the CCDI is computed correctly and that the estimator being
used only has a minor influence on these computations.

4.3 Analyses of EEG data

In this section, the CCDI (see (2.6)) is computed for actual EEG data, which are
obtained online [2].

The data contains measurements of 20 subjects, and the measurements of each
subject consists of 5 sessions with closed eyes and 5 sessions with open eyes (i.e. 200

sessions in total) with each session lasting for 10 seconds. The data are measured
with a cap equipped with 16 electrodes with locations FP1, FP2, FC5, FC6, FZ, T7,
CZ, T8, P7, P3, PZ, P4, P8, O1, Oz, and O2 according to the 10-10 international
system [16, p. 419], where each of these electrodes corresponds to a dimension.

The sampling frequency is 512 samples per second, which means that each session
should contain 5,120 samples. But the mean number of samples in each session is
8,180.19, and 11 sessions contain more than 15,000 samples. It can not be assumed
that these sessions with an excess of samples only contain EEG measurements where
the eyes e.g. have been closed all the time so these measurements should be man-
aged in some way. In the description of the experiment in [2, p. 5], it says that the
subject was asked to either open or close their eyes before each session, and the row
with the timestamp corresponding to the beginning of the session is marked in the
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dataset. Therefore, each session can simply be truncated to only contain the 5,120

samples from the beginning of the session since these samples must correspond to the
10 seconds of the actual session (the remaining samples can possibly be considered as
breaks between the sessions). A histogram with the number of samples in all of the
sessions (before being truncated to only contain 5,120 samples) is shown in Figure
B.1 in Appendix B. Note that three sessions are shorter than 5,120 samples (with
4,822, 5,013, and 5,116 samples) but these sessions are not altered in any way.

As described in Chapter 1, research suggests that there is a big difference in the
connectivity between the occipital and frontal areas of the brain when the eyes are
closed and opened. The objective in this section is to compute the CCDI between
the occipital and frontal areas when the eyes are closed and opened and assert the
difference between these computations.

Figure 4.9 shows colormaps of the CCDI between the occipital and frontal areas
when the eyes are closed (left) and opened (right). However, only the first 50 out
of the total 100 sessions with either closed or opened eyes have been used in these
analyses because it is quite time-consuming to compute the CCDI.

Note that in Figure 4.9, Xn and Yn from (2.6) is only one electrode each (on the
first and second axis, respectively), and Zn is the remaining six electrodes. Further-
more, the CCDI between the same electrodes are not computed and just manually
set to 0. Finally, the results in Figure 4.9 has only been computed with the estimator
ĥKL since only minor deviations between the computations of the CCDI in Section
4.2 were seen.

Figure 4.9: The CCDI between each of the eight electrodes belonging to the frontal and occipital
areas. The included data are 50 of the sessions closed eyes (left) and opened eyes (right).

No immediate differences between the CCDI’s with opened and closed eyes can be
seen in Figure 4.9. The absolute differences between the CCDI’s are shown in Figure
4.10.
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Figure 4.10: The absolute differences between the CCDI with opened and closed eyes.

Figure 4.10 shows that there only are minor differences in the CCDI when the eyes
are closed compared to when they are opened.
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5 | Discussion

In this chapter, the research question from Section 1.2 is discussed based on both
the theoretical and experimental results. The research question and associated study
questions from Section 1.2 are:

How can kNN-based entropy estimators be used to estimate the causal conditional
directed information measure, which quantifies the information flow between

different parts of the brain?

1. What is the underlying theory of the directed information measure?

2. How can the CCDI be computed sequentially without using all of the available
data?

3. How can well-known kNN-based entropy estimators be derived?

4. Is it possible to derive an improved estimator?

5. How can the implemented estimators be tested on both synthetic and actual
data?

The methods used to answer these questions are firstly discussed in Section 5.1, the
results are then discussed in Section 5.2, and the chapter is concluded by a general
assessment based on the research question.

5.1 Methods

The directed information measure that has been used in this thesis is the causal
conditional directed information (CCDI), and the underlying theory is described in
Chapter 2. However, different directed information measures such as the transfer
entropy, the directed information (which is also defined in Definition 2.2.3), and the
momentary information transfer are described in [21, pp. 7,28,30] and could have
been used instead of the CCDI. The difference between these directed information
measures and the CCDI is the causal conditioning in the CCDI, which means that the
past of both random processes are considered. Therefore, the CCDI is a favourable
measure of directed information when considering the information flow in the brain,
which simultaneously is affected by different parts and where it is necessary to deter-
mine if there is a causal relationship.

Since all of the random variables are not necessarily dependent on each other, it
is not necessary to use them all in the definition of the CCDI in (2.5). Instead, the
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random variable Xi has been assumed to only be dependent on the previous l random
variables, which means that the number of terms in the sum can be greatly reduced
(depending on the number of random variables), which means that the computation
time of the CCDI can also be reduced (see (2.6)).

Several well-known kNN-based entropy estimators have been derived in this thesis
by among others using rather simple probability theory and results on integration.
These estimators are shortly described in the following.

1. The estimator ĥB is a simple estimator and is derived from the assumption that
the density inside the ball B(x1, r1) is constant.

2. The estimator ĥS is derived by showing that the estimator ĥB is asymptoti-
cally biased and by then subtracting its asymptotic mean from it, which makes
ĥS asymptotically unbiased. However, it turns out that the term making ĥB
asymptotically biased is below 1 for k = 1 and 0 for larger values of k.

3. The estimator ĥKL is derived by using a key result (see (3.15)), which it has
not been possible to prove is true, and by also assuming that the density inside
the ball B(x1, r1) is constant. This estimator is furthermore seen to be asymp-
totically equal to the estimator ĥS, which means that it is also asymptotically
unbiased, and which means that it is also equal to ĥB for larger values of k.

4. The estimator ĥMu is derived by performing numerical integration on the inte-
gral in the aforementioned key result in (3.15) since it did not seem possible to
derive the result analytically. The numerical integration is performed on a grid
of different values of n, d but the resulting values of the integral is observed not
to vary considerably for these values of n, d, and a constant is used instead.

5.2 Results

The implemented estimators are tested on both synthetic and actual data in Chapter
4.

The estimators are firstly used to compute entropy estimates of random variables
with multivariate normal and uniform distributions for which the analytical values
of the entropies have been derived in Chapter 2. The mean absolute errors of the
estimates are analyzed for different values of d, k, and n in Section 4.1.1.

1. The analysis of different values of d shows that the relationship between d

and the error is almost perfectly linear, which means that the estimators only
compute the same errors in each dimension.
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2. The analysis of different values of k shows that the errors are almost constant for
the estimators ĥB and ĥKL, whereas the estimator ĥMu performs much better.
The estimator ĥMu attains minimums at k = 10 for the multivariate normal
random variables (MAE of 4.52e−02) and at k = 3 for the uniform random
variables (MAE of 2.62e−02).

3. For the analysis of different values of n, the errors are also almost constant for
the estimators ĥB and ĥKL, whereas the estimator ĥMu performs much better.
The estimator ĥMu attains minimums at n = 1,100 for the multivariate normal
random variables (MAE of 9.65e−01) and at n = 2,100 for the uniform random
variables (MAE of 3.44e−01).

Further analyses of the errors also shows that the errors of the estimator ĥMu is ei-
ther above or below the analytical values at first, then attains its minimum close to
an MAE of 0 after which the error is below or above the analytical values. On the
other hand, the errors of the estimators ĥB and ĥKL are generally always above the
analytical values (except for low values of d).
The efficiency of the estimators is also analyzed as the norms of the errors. The
norms of the errors for the estimator ĥMu are always below those of the estimators
ĥB and ĥKL, and they are up to 6 times lower than these norms in the analyses of
different values of k. This means that ĥMu is the best estimator, and its derivation
is claimed to be a key result in this thesis.

Other options for the distributions of the random variables used in these tests
could also have been considered, but the multivariate normal and uniform distribu-
tions have been used because the expressions for the analytical values are fairly simple
and because all of the estimators assume that the density is constant. Unfortunately,
it has not been possible to implement an estimator that assumes a normal density
(see Chapter 7) in this thesis due to time limitations.

If one has the option to choose the values of n and d, one should also consider
the computation times.

An analysis of the algorithmic complexities of the implemented estimators shows
that the complexity is between order O(n log2(n)) and O(n2) in the best- and worst-
case scenarios. The computation times for different values of n are also seen to follow
a second-degree polynomial (see Figure 4.7). Furthermore, the computation times for
different values of d are seen to be of order O(

√
d) (see Figure 4.6).

In Section 4.2, the estimators were used to compute the CCDI between autoregres-
sive data with four specified random processes with both autocorrelation (correlation
within the process) and spatial correlation (correlation between the processes). In
these tests, the parameters of the random processes are chosen such that a single
parameter controls the correlation between the first process and the other processes,
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which means that expectations for how the CCDI to behave can be made. The CCDI
is seen to follow these expectations in all three cases. Furthermore, the computations
of the CCDI were almost identical for the estimators, which means that the errors of
the estimators actually only have a little significance when computing the CCDI.

In Section 4.3, the estimator ĥKL was used to compute the CCDI of actual EEG
data. Note that only the estimator ĥKL was used to compute the CCDI due to the
aforementioned minor differences between the computations of the CCDI of the au-
toregressive data in Section 4.2. Furthermore, the estimator ĥMu was not used even
though its errors were seen to be smallest in Section 4.1.1 because it was only devel-
oped shortly before the end of the project period.

The used EEG data consists of sessions with both opened and closed eyes, and
the CCDI between the occipitial and frontal areas of the brain has been computed
when the eyes are opened and closed in order to assess the difference between these
because research suggests that the connectivity is higher when the eyes are closed.
However, only 50 of the 100 sessions with either closed or opened eyes were used in
these analyses because it is very time-consuming to compute the CCDI.

The absolute differences between the CCDI’s with the eyes opened and closed
are shown in Section 4.10, and there are only minor differences between the CCDI’s.
Therefore, further analyses are required to determine if there is a difference between
the occipital and frontal areas of the brain when the eyes are closed compared to
when they are opened. Such analyses could e.g. include only analyzing a subset of
the electrodes that have been used in the analyses described in this thesis.

It is generally assessed that kNN-based entropy estimators have been used to esti-
mate the causal conditional directed information measure in this thesis. This involves
describing the theory of this measure and how to compute it sequentially as well as
deriving different kNN-based entropy estimators, which have been tested on synthetic
and actual data. One of the derived estimators is constructed by the author, and the
norm of its errors is seen to be up to 6 times lower than those of the other estimators.
However, which estimator is being used when computing the CCDI only has a minor
influence on the resulting values of the CCDI. Finally, only minor differences between
the CCDI’s with opened and closed eyes are seen, contrary to what is seen in the
literature.
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6 | Conclusion

This thesis considers how to reliably estimate the causal conditional directed infor-
mation with kNN-based entropy estimators.

It is firstly shown that the causal conditional directed information can be writ-
ten as a sum of joint entropies, which means that it can be estimated with entropy
estimators. It is then assumed that each random variable only depend on a number
of the previous random variables, which makes it possible to reduce the number of
terms and therefore also reduce the computation time.

The first estimator derived in this thesis is a basic estimator denoted by ĥB, which
is also described in the literature. Another estimator, which is denoted by ĥKL, is
shown to be an asymptotically unbiased version of ĥB but they are however equal
for large values of k and n. It was found that a key result was missing from the
derivation of the estimator ĥKL in the literature. This result was instead estimated
with numerical integration, which resulted in a new estimator denoted by ĥMu.

The estimators have been tested on synthetic data in order to assess their per-
formances. In these tests, the dimensions d, the numbers of neighbors k, and the
numbers of samples n are changed one at a time. It is generally seen that the perfor-
mances of the estimators ĥB and ĥKL are similar, whereas the new estimator ĥMu is
up to 6 times better when the norms of the estimators’ errors are compared, which
makes this estimator a key result in this thesis.

The estimators have then been used to compute the causal conditional directed infor-
mation of autoregressive data, where the expectations to the behaviour of the causal
conditional directed information can be made. The computations of the causal condi-
tional directed information are generally seen to follow these expectations, and there
is furthermore only minor differences between the computations from the three esti-
mators – in spite of the large differences between the errors of the estimators.

One of the estimators is finally used to compute the causal conditional directed
information between different electrodes from actual EEG data. The hypothesis has
been that the occipitial and frontal areas of the brain have a stronger connectivity
when the eyes are closed compared to when they are opened, which is examined by
computing the causal conditional directed information between these areas when the
eyes are closed and opened and then examining the differences.

The results show that there only is a minor difference in the CCDI’s when the
eyes are closed and opened. Further studies with only a subset of the electrodes used
in this thesis are deemed necessary in order to assess whether there is a difference.
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7 | Future studies

This chapter considers another estimator, which it has not been possible to imple-
ment in this thesis due to time limitations.

According to [11, p. 2], the errors for the estimator ĥKL are large when the dimen-
sionality is high and when the data are highly correlated, which primarily is due to
the assumption of a constant probability density in B(x1, r1). The solution suggested
by [11] is to represent the density in B(x1, r1) as proportional to a Gaussian function.

The proposed estimator described in [11, pp. 2-3] assumes that the pdf of the p
nearest neighbors of x1 for p ≥ k, which are denoted by x̃ ∈ Rp×d, is proportional to
a Gaussian function

fG(x) ≈ ρ exp

(
−1

2
(x− µx̃)T S−1

x̃ (x− µx̃)

)
, (7.1)

where µx̃ ∈ Rp and Sx̃ ∈ Rp×p are the mean vector and covariance matrix of x̃,
respectively, and where ρ is the proportionality constant. The expression for the pdf
in (7.1) can also be written as

fG(x) ≈ fG(x1)
g(x)

g(x1)
, g(x) = exp

(
−1

2
(x− µx̃)T S−1

x̃ (x− µx̃)

)
.

By Definition 3.1.2, F (r1|x1) can then be written as:

F (r1|x1) =

∫
‖x−x1‖<r1

fG(x) dx = fG(x1)
1

g(x1)
G(r1|x1),

G(r1|x1) =

∫
‖x−x1‖<r1

g(x) dx. (7.2)

By comparing this result to the expression in (3.16), it is seen that η1 = 1
g(x1)G(r1|x1),

which is combined with the result in (3.17) to obtain the entropy estimator ĥkpn(X)

(where the result in (3.15) is assumed to be true) [11, p. 3]

ĥkpn(X) =
1

n

n∑
i=1

ln

(
1

g(xi)
G(ri|xi)

)
+ ψ(n)− ψ(k)

=
1

n

n∑
i=1

(ln(G(ri|xi))− ln(g(xi))) + ψ(n)− ψ(k), (7.3)

where ‘kpn’ refers to the parameters k, p, and n. It is however difficult to evaluate
G(ri|xi), especially in high dimensions. In [11, p. 3] the numerical method expectation
propagation for multivariate Gaussian probabilities (EPMGP) is suggested, but it has
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however not been possible to implement this method due to time limitations.
The estimator ĥkpn is similar to ĥKL since it also relies on the key result in

(3.15). Therefore, another estimator, where the constant Mn from the numerical
integration in Section 3.3.1 is used instead of the result in (3.15) (similarly to the
difference between the estimators ĥKL and ĥMu as described in Section 3.4), can then
be written as

ĥMn =
1

n

n∑
i=1

(ln(G(ri|xi))− ln(g(xi))) +Mn.
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A | Additional definitions and re-
sults

In this appendix some additional definitions and results are shown.

A.1 Definitions from probability theory

For a continuous random variable X ∈ Rd, the function F (x) = P (X ≤ x)[1] is called
the cumulative distribution function (cdf) of X, and the function f(x) = F ′(x) is
called the probability density function (pdf)[2] of X. The function f(x) is only a
possible pdf of X if [14, p. 86]

f(x) ≥ 0 and
∫
Rd

f(x) dx = 1 for x ∈ Rd. (A.1)

The cdf can also be computed from the pdf as [14, p. 85]

F (x) =

∫ x

−∞
f(t) dt, t ∈ Rd.

For n samples x1, . . . ,xn of random variables X1, . . . ,Xn, the cdf can be estimated
as F̂ through the empirical distribution function (edf) [14, p. 325]

F̂ (x) =
1

n

n∑
i=1

1(xi ≤ x), (A.2)

where I(·) is the indicator function

I(x ≤ y) =

{
1 if x ≤ y

0 otherwise.

For a continuous random variable X ∈ Rd with pdf f(x), the expected value is [14,
p. 98]

E[X] =

∫
Rd

xf(x) dx. (A.3)

[1]In general, P (·) denotes the probability of an event.
[2]The function p(xk) = P (X = xk), k = 1, 2, . . . for a discrete random variable X is similarly

called the probability mass function (pmf).
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For another continuous random variable Y ∈ Rd, the expected value of Y given that
X = x can be written as [14, p. 186]

E[Y|X = x] =

∫
Rd

yf(y|x) dy. (A.4)

A.2 Probability distributions

The Poisson distribution is defined in Definition A.2.1 [14, p. 117].

Definition A.2.1 Let X ∈ Rd be a discrete random variable with probability mass
function

p(k) = exp(−λ)
λk

k!
, k = 0, 1, . . .

Then X is said to have a Poisson distribution with the parameter λ, which is written
as X ∼ Poi(λ).

The binomial distribution is defined in Definition A.2.2 [14, p. 112].

Definition A.2.2 Let X ∈ Rd be a discrete random variable with probability mass
function

p(k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n.

Then X is said to have a binomial distribution with the parameters n, p, which is

written as X ∼ Bin(n, p). The coefficient
(
n

k

)
= n!

k!(n−k)! is known as the binomial

coefficient.

Note that for the binomial distribution, there are only two possible outcomes, which
have probabilities p and 1− p, respectively, and the number of these outcomes are k
and n− k, respectively. Furthermore, these outcomes are i.i.d. Finally, the expected
value of the binomial distribution is E[X] = np [14, pp. 112-113].

The normal distribution is defined in Definition A.2.3 [14, p. 127].

Definition A.2.3 Let X ∈ Rd be a random variable with pdf

f(x) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µ)2

)
,

where µ and σ2 is the expected value and variance of X, respectively. Then X is
said to have a normal distribution with parameters µ and σ, which is written as
X ∼ N (µ, σ).
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A random variable is further said to have a standard normal distribution if X ∼
N (0, 1) [14, p. 128].

The multivariate normal distribution is defined in Definition A.2.4 [14, pp. 226-227].

Definition A.2.4 Let X = [X1 · · · Xn]T be a vector of random variables with Xi ∈
Rd for i = 1, . . . , n and let x = [x1 · · · xn]T be a vector of realizations of X. Further-
more, let µ = [µ1 · · · µn]T be the mean vector with µi = E[Xi] and let Σ ∈ Rn×n be
the covariance matrix, which is assumed to be invertible and for which

Σij = E[(Xi − µi)(Xj − µj)], 1 ≤ i, j ≤ n.

If X has an n-dimensional joint pdf

f(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
then X is said to have a multivariate normal distribution with parameters µ,Σ, which
is written as X ∼ Nn(µ,Σ).

Note that the (i, j)th entrance of the covariance matrix in Definition A.2.4, Σij , can
be written as:

Σij = E[(Xi − µi)(Xj − µj)] = E[XiXj −Xjµi − µjXi + µjµi]

= E[XiXj ]− µiE[Xj ]− µjE[Xi] + µjµi = E[XiXj ]− µiµj , CX(i, j),

which is known as the covariance between Xi and Xj [14, p. 197].

A.3 The Poisson approximation to the binomial distribu-
tion

The Poisson approximation to the binomial distribution is written in Proposition
A.3.1 and proven afterwards.

Proposition A.3.1 For n→∞, p→ 0, and np→ λ, the binomial distribution with
parameters n, p converges to the Poisson distribution with parameter λ, i.e.

lim
n→∞
p→0
np→λ

(
n

k

)
pk(1− p)n−k = exp(−λ)

λk

k!
.

Proof Since it is required that np → λ, the parameter p is written as λ
n in the

probability mass function for the binomial distribution such that

p(k) =

(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
· pk(1− p)n−k
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=
n · (n− 1) · (n− 2) · · · 1

(n− k) · (n− k − 1) · (n− k − 2) · · · (n− k − (n− k) + 1) · k!

·
(
λ

n

)k
·
(

1− λ

n

)n−k
=
n · (n− 1) · (n− 2) · · · (n− k + 1)

k!
·
(
λ

n

)k
·
(

1− λ

n

)n−k
=
n · (n− 1) · (n− 2) · · · (n− k + 1)

k!
· λ

k

nk
·
(

1− λ

n

)n
·
(

1− λ

n

)−k
=
n

n
· n− 1

n
· · · n− k + 1

n
· λ

k

k!
·
(

1− λ

n

)n
·
(

1− λ

n

)−k
,

where the terms in the denominator in the second line cancel out with the corre-
sponding terms in the numerator. Taking the limit n → ∞ means that the first k
fractions that depend on n and the term

(
1− λ

n

)−k all converges to 1.
Consider the part

(
1− λ

n

)n of the expression. The function ln(1 + z) can be
written as

ln(1 + z) =

∫ z

0

1

1 + t
dt,

where 1
1+t = 1− t+ t2 − t3 + · · · with t < |1| since

tn − 1 = (tn−1 + tn−2 + · · ·+ t+ 1)(t− 1)⇒
lim
n→∞

tn − 1 = −1 = (1 + t+ t2 + t3 + t4 · · · )(t− 1) if |t| < 1⇒

1

1− t
= 1 + t+ t2 + t3 + t4 + · · · ⇒

1

1 + t
= 1− t+ t2 − t3 + t4 − · · · .

Therefore, 1
1+t = 1− t+ t2 − t3 + · · · is integrated term by term to obtain that

ln(1 + z) = z − z2

2
+
z3

3
− z4

4
+ · · · =

∞∑
k=1

(−1)k+1 z
k

k
⇒

ln(1− z) =
∞∑
k=1

(−1)k+1 (−z)k

k
.

It then follows that

ln

((
1− λ

n

)n)
= n ln

(
1− λ

n

)
= n

(
−λ
n

+
1

2

λ2

n2
− 1

3

λ3

n3
+ · · ·

)
⇒

lim
n→∞

ln

((
1− λ

n

)n)
= lim

n→∞

(
−λ+

1

2

λ2

n
− 1

3

λ3

n2
+ · · ·

)
= −λ⇒
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lim
n→∞

(
1− λ

n

)n
= exp(−λ).

Collectively, the above leads to

lim
n→∞

(
n

n
· n− 1

n
· · · n− k + 1

n
· λ

k

k!
·
(

1− λ

n

)n
·
(

1− λ

n

)−k)
= exp(−λ)

λk

k!
. �

A.4 Results on integration

Integration by substitution is a method for solving an integral, where some function
f(u) (which is intractable) is replaced by f(g(x)) [6, p. 377].

Lemma A.4.1 Suppose that g is continuously differentiable[3] on an interval [a, b]

and that f is continuous on the interval g([a, b]). Then∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du,

where u = g(x) and du
dx = g′(x), which in turn means that g′(x) dx = du.

Integration by parts is used to transform the integral of a product of functions such
that it is easier to find the integral [6, p. 522].

Lemma A.4.2 (Integration by parts) Let u(x), v(x) : [a, b]→ R be two continu-
ously differentiable functions with derivatives u′(x), v′(x). Then∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx

= u(b)v(b)− u(a)v(a)−
∫ b

a
u′(x)v(x) dx.

One can repeatedly use integration by parts, which requires repeatedly finding the
derivatives and antiderivatives of u(x) and v(x), respectively. Let u(i)(x) denote the
i’th derivative of u(x). Using integration by parts of an indefinite integral three times
leads to ∫

u(0)(x)v(3)(x) dx = u(0)(x)v(2)(x)− u(1)(x)v(1)(x)

+ u(2)(x)v(0)(x)−
∫
u(3)(x)v(0)(x) dx.

[3]A function is continuously differentiable if its derivative exists and is also a continuous function.
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More generally, repeated integration by parts of an indefinite integral k times can be
written as∫

u(0)(x)v(k)(x) dx = u(0)(x)v(k−1)(x)− u(1)(x)v(k−2)(x) + u(2)(x)v(k−3)(x)

− u(3)(x)v(k−4)(x) + · · ·+ (−1)k−1u(k−1)(x)v(0)(x)

+ (−1)k
∫
u(k)(x)v(0)(x) dx

=
k−1∑
i=0

(−1)iu(i)(x)v(k−1−i)(x) + (−1)k
∫
u(k)(x)v(0)(x) dx.

Repeated integration by parts of a definite integral is similar to that of an indefinite
integral except that each of the terms in the sum is replaced by [u(i)(x)v(k−1−i)(x)]ba,
i.e.∫ b

a
u(0)(x)v(k)(x) dx1 =

k−1∑
i=0

(−1)i
[
u(i)(x)v(k−1−i)(x)

]b
a

+ (−1)k
∫ b

a
u(k)(x)v(0)(x) dx

=

k−1∑
i=0

(−1)i
(
u(i)(b)v(k−1−i)(b)− u(i)(a)v(k−1−i)(a)

)
(A.5)

+ (−1)k
∫ b

a
u(k)(x)v(0)(x) dx.

A.5 Confidence intervals

Confidence intervals of a mean are used in Sections 3.3.1 and 4.1.1, and the underlying
theory is described in this section. A confidence interval is firstly defined in Definition
A.5.1 [5, p. 343].

Definition A.5.1 Let n realizations x1, . . . , xn of random variables X1, . . . , Xn, a
parameter of interest θ, and a probability γ between 0 and 1 be given. If for every
value of θ there exist sample statistics[4] Ln = g(X1, . . . , Xn) and Un = h(X1, . . . , Xn)

such that

P (Ln < θ < Un) = γ

then the interval (ln, un) with ln = g(x1, . . . , xn) and un = h(x1, . . . , xn) is called a
100 · γ% confidence interval for θ with confidence level γ.

Therefore, with a confidence interval one can be confident (at a given confidence level)
that the true value of a parameter is inside this interval.

[4]A sample statistic can e.g. be the sample mean or variance [5, p. 254].
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In this thesis, the data being analyzed with confident intervals are normally dis-
tributed, where the parameter of interest is the mean µ (e.g. the mean absolute errors
in Section 4.1.1). Finding the confidence interval requires finding the critical value
zp, which is defined as

P (Z ≥ zp) = p, Z ∼ N (0, 1).

If one e.g. desires p to be 0.025, one can look up 1 − 0.025 = 0.975 in a table
of z-scores, which are available online and in statistics textbooks, and see that this
corresponds to zp = 1.96. Furthermore, z1−p = −zp [5, p. 345].

If X1, . . . , Xn are random variables with each Xi ∼ N (µ, σ2) then the mean is
X̄n ∼ N (µ, σ2/n), which in turn means that [14, p. 128]

X̄ − µ
σ/
√
n
∼ N (0, 1), X̄n =

1

n

n∑
i=1

Xi.

If the upper and lower critical values cu, cl are chosen such that P (cl < Z < cu) = γ

for Z ∼ N (0, 1), it follows that [5, p. 346]

γ = P

(
cl <

X̄ − µ
σ/
√
n
< cu

)
= P

(
cl
σ√
n
< X̄n − µ < cu

σ√
n

)
= P

(
X̄n − cu

σ√
n
< µ < X̄n − cl

σ√
n

)
.

Therefore

Ln = X̄n − cu
σ√
n
, Un = X̄n − cl

σ√
n
,

which means that the 100 · γ% confidence interval for µ is(
x̄n − cu

σ√
n
, x̄n − cl

σ√
n

)
, x̄n =

1

n

n∑
i=1

xi.

The value of α = 1− γ is usually evenly divided between the tails such that

P (Z ≥ cu) = α/2 = P (Z ≤ cl)⇒
cu = zα/2, cl = z1−α/2 = −zα/2.

The 100 · γ% confidence interval for µ with a z-score as critical value is then(
x̄n − zα/2

σ√
n
, x̄n + zα/2

σ√
n

)
. (A.6)

However, this requires that the standard deviation σ is known. If that is not the case,
the random variable

X̄n − µ
Sn/
√
n
, S2

n =
1

n

n∑
i=1

(Xi − µ)2
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can be used, and its distribution only depends on n and not on µ or σ [5, p. 348].
This distribution is known as the t-distribution and is defined in Definition A.5.2 [5,
p. 348].

Definition A.5.2 If the pdf of a continuous random variable X is given by

f(x) = km

(
1 +

x2

m

)−m+1
2

, x ∈ R, km =

Γ

(
m+ 1

2

)
(

Γ
(m

2

)√
mπ
) , m ∈ N,

then X is said to have a t-distribution with m degrees of freedom, which is denoted
by X ∼ t(m).

Similarly to a critical value zp, the critical value tm,p for a t-distribution satisfy that
P (T ≥ tm,p) = p with T ∼ t(m). The critical values of a t-distribution also satisfies
that tm,1−p = −tm,p [5, p. 349].

For n random variables X1, . . . , Xn with Xi ∼ N (µ, σ2), the studentized mean

X̄n − µ
Sn/
√
n

has a t(n− 1)-distribution [5, p. 349]. The 100 ·γ% confidence interval for µ with the
critical values of a t-distribution is then (similarly to (A.6))(

x̄n − tn−1,α/2
sn√
n
, x̄n + tn−1,α/2

sn√
n

)
, (A.7)

where the critical value tn−1,α/2 can e.g. be computed from α/2 and n − 1 with
functions that are usually available in statistical software (e.g. the t.ppf function
from the scipy.stats package in Python).

A.6 Stationarity of random processes

In this section, a random process Xt = {X1, . . . ,Xt} with t ∈ N (see also Definition
2.1.1) and the stationarity of such a process is considered, which is used in Section
4.2.

The autocorrelation function is an important concept when talking about station-
arity and is defined in Definition A.6.1. Note that the term autocorrelation means
correlation in time and is the correlation between two points in time of the process.

Definition A.6.1 (Autocorrelation function) For a random process Xt, the au-
tocorrelation function (ACF) is defined as

RX(t1, t2) = E [Xt1Xt2 ] .
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Note that

RX(t1, t2) = CX(t1, t2) + µ1µ2, CX(t1, t2) = cov(Xt1 ,Xt2),

where µ1 = E[Xt1 ] and µ2 = E[Xt2 ], respectively. This means that the autocorre-
lation of Xt1 and Xt2 depends on the autocovariance CX of these. Therefore, the
autocorrelation function can e.g. be used to describe repeating patterns in a process,
where the autocovariance is high.

The term weak-sense stationarity (also called wide-sense stationary) is defined in
Definition A.6.2. Note that a process can also be strict-sense stationary but these
conditions are too strict, which means that they are rarely fulfilled in practice, and
it will therefore not be considered here.

Definition A.6.2 (Weak-sense stationarity) A random process Xt is said to be
weak-sense stationary (WSS) if

1. The expected value of Xt is constant, i.e. E[Xt] = µX.

2. The ACF RX(t1, t2) only depends on the time lag τ = |t1−t2|, i.e. RX(t1, t2) =

RX(0, τ) , RX(τ).

The first condition in Definition A.6.2 implies that X1, . . . ,Xt behaves similarly,
which intuitively makes sense when talking about stationarity. The second condition
implies that the autocorrelation only depends on the difference between t1 and t2 and
not on their actual position in time.

An example of a WSS process is white noise, which is defined in Definition A.6.3
[8, p. 556].

Definition A.6.3 (White noise) A white noise process is defined as a WSS process
with zero mean, constant variance σ2

W , and uncorrelated random variables W1, . . . ,Wt,
which is denoted by W1, . . . ,Wt ∼ wn(0, σ2

W ).

Note that no particular pdf is specified in Definition A.6.3. The random variables
may further be independent and identically distributed (iid), which is known as iid
white noise and is denoted by W1, . . . ,Wt

iid∼ wn(0, σ2
W). Furthermore, a Gaussian

pdf may also be specified, which is known as Gaussian white noise and is denoted by
W1, . . . ,Wt

iid∼ N (0, σ2
W) [8, p. 556].

In practice, a process is often tested for stationarity with unit root testing, which
is shortly introduced in the following.

An AR(1) process (i.e. a process containing one autoregressive term) can be
written as

Xt = φXt−1 + Wt, (A.8)
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where W1, . . . ,Wt
iid∼ N (0, 1) and φ is the autoregressive parameter. If φ = 1, Xt

will be equal to its own past at time t− 1 plus some noise, which is called a random
walk and which is not a stationary process. Therefore, it is generally required for
an AR(1) process that |φ| < 1 in order for it to be stationary. Examples of AR(1)
processes with φ = 0.7 and φ = 1.0, respectively, are shown in Figure A.1.

Figure A.1: Examples of AR(1) processes with φ = 0.7 and φ = 1.0.

Figure A.1 clearly shows that the process is nonstationary when φ = 1 compared to
when φ = 0.7.

Random processes can be tested statistically for stationarity with a so-called unit
root test. One unit root test is the Dickey-Fuller (DF) statistic, which tests whether
φ = 1 or |φ| < 1 in (A.8), i.e. [17, p. 250]

H0 : φ = 1 versus H1 : |φ| < 1.

If the p-value e.g. is less than 0.05, this means that one can be 95% confident that
the random process is stationary.

An AR(p) process with parameters φ1, . . . , φp can more generally be written as [17,
p. 76]

Xt =

p∑
i=1

φiXt−i + Wt ⇒

Xt −
p∑
i=1

φiXt−i = Wt ⇒
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φ(B)Xt = Wt, φ(B) = 1− φ1B− φ2B2 − · · · − φpBp, (A.9)

where B is the back-shift operator for which BkXt = Xt−k. The polynomial φ(B)

of order p in (A.9) has p roots (some of which may be complex), and the condition
for stationarity of (A.9) is that neither of these roots are on the unit circle, i.e.
{z ∈ C : |z| 6= 1}, which can be tested with the augmented Dickey-Fuller (ADF)
test [17, p. 252][5]. In this thesis, the random processes are tested for stationarity in
Python with the function adfuller from the package statsmodels.tsa.stattools.

[5]Further descriptions of the described unit root tests and how to obtain the test statistics are
out of scope for this thesis, and the reader is referred to the referenced literature.
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B | Additional graphs

Figure B.1 shows a histogram of the number of samples in each session in the EEG
data before being truncated as described in Section 4.3.

Figure B.1: Histogram of the length of the sessions in the EEG data described in Section 4.3.

The errors of the tests with different values of k, d, and n from Section 4.1.1 are
tested for normality with the Shapiro-Wilk test, where a p-value above 0.05 means
that the errors can be assumed to be normally distributed [13]. Further descriptions
of this test is out of scope for this thesis.

Figures B.2-B.3 show scatterplots of the p-values from the Shapiro-Wilk test of
the errors from the tests of different values of d, k, and n from Section 4.1.1. The red
line in each figure indicates the p-value of 0.05.
The analyses in Figures B.2-B.3 show that 88.33% or more of the errors can be
assumed to be normally distributed.
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Figure B.2: P-values for Shapiro-Wilk tests of the errors of the estimates with different values of
d (left) and k (right). The number of p-values below 0.05 is 7 (9.72%) and 14 (11.67%) for the tests
of d and k, respectively.

Figure B.3: P-values for Shapiro-Wilk tests of the errors of the estimates with different values of
n. The number of p-values below 0.05 is 6 (11.11%).
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