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Abstract:

The purpose of this report is to model
the scattering due to plane waves hit-
ting metal particles of arbitrary shape,
i.e. no symmetry is required for the
scatterer. The metal is assumed to act
like a perfect electric conductor PEC.
The Green’s Surface Integral Equation
Method GFSIEM is used for modeling,
specifically the Magnetic Field Integral
Equation MFIE is used. Both a sim-
ple model based on a faceted repre-
sentation of the scatterer surface, re-
ferred to as the Facet Method (FM) and
a more advanced Curvilinear Model
(CM) that represents the surface ex-
actly is developed in this report. These
models are compared to the analyti-
cal case of a sphere, and this shows
good correspondence especially for
the CM, however the scatter must be
discretized very finely for small wave-
lengths. The CM is also compared to
a GFSIEM model that uses cylindrical
symmetry in the case of a rod, both
methods give similar results.
The report also delves into the modifi-
cations that must be made to Green’s
function if the scatter is near an inter-
face of dielectrica, rather than situated
in free space.
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Resumé

Denne rapport handler om at modellere spredningen forårsaget af at en plan bølge
rammer en metal partikel/spreder. Metallet antages at agerer som en perfekt elek-
trisk leder, og der er ikke nogle krav til udformningen af partiklen i forhold til
symmetri. Modelleringen er baseret på Green’s Function Surface Integral Equa-
tion Method GFSIEM, mere specifikt bliver Magnetic Field Integral Equation MFIE
brugt til at finde strømmen på sprederen. Både en simpel model baseret på en
facetteret repræsentation af partiklens overflade, kaldet Facet Method, og en mere
advanceret Curvilinear Method CM, som repræsenterer overfladen eksakt, bliver
udviklet i denne rapport. Disse modeller bliver sammenlignet med den analytiske
løsning for en sfære, der er god korrespondance mellem modellen og den ana-
lytiske løsning, især for CM, dog skal sprederen dikretiseres meget fint for små
bølgelængder. CM bliver også sammen lignet med en cylinder symmetrisk version
of GFSIEM for en stang spreder, også her giver begge modeller lignende resultater.
Denne rapport gennemgår også hvilke ændringer der skal laves til Green’s Func-
tion hvis sprederen er nær en grænseovergang mellem to dielektrika i stedet for at
være suspenderet i frit rum.
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Chapter 1

Introduction

There are many different methods for computationally modeling scattering, but
this report focuses on one in particular: the Green’s Function Surface Integral
Equation Method (GFSIEM). This method can be applied to nano-particles and
visible light [5] as well as for macroscopic antennas and radio waves, it is also
sometimes known as the method of moments [1].

The primary source for this rapport is [5], which applies the GFIEM to a wide
variety of cases, including an arbitrarily shaped particle in free space, however
there are some modifications that need to be made for the purposes of this report.
The benefit of the GFSIEM is that only the scatterer surface needs to be discretized,
rather than needing to discretize the local area around the scatterer as well. There
is an equivalent Green’s Function method where the volume of the scatterer is
discretized instead, but this makes it much harder to represent a scatterer with
a smooth surface. Having a non smooth metal scatterer gives problems with the
boundary conditions as we will see in chapter 2, which is why only smooth scat-
teres are considered in this report. Thus the geometry of the scatterer is not wholly
arbitrary even though the title of this report is Scattering from Arbitrary Metal Par-
ticles, rather arbitrary refers to not requiring any kind of symmetry, this obviously
makes the model more generally applicable. The metal is assumed to act like a
perfect electric conductor PEC, which is valid when the effect of resistivity is neg-
ligible compared to other effects, in this case the incident field does not penetrate
into the scatterer at all. This is not a trivial assumption, it does limit what can be
modeled accurately, but there is also a lot to be gained by this approximation in
terms of simplicity and speed of calculation.

Here the GFSIEM is based on the Magnetic Field Integral Equation MFIE in-
stead of the Electric Field Integral Equation EFIE, which is done in [5], the idea
behind this shift is to avoid numerically integrating over singularities. It is the PEC
assumption that allows the complete avoidance of numerically integrating over a
singularity.
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2 Chapter 1. Introduction

The scattering is of course not just a product of the properties of the scatterer
but also the environment, first off the scatterer is assumed to be situated in a
homogeneous lossless dielectric, and later the effects on the scattering by the intro-
duction of a single interface between two dielectrica is explored.

The theoretical background is outlined in Chapter 2, and the equations behind
the GFSIEM are shown including how to solve the scattering problem with the help
of the MFIE. A simple model based on a faceted representation of the scatterer,
called the Facet Method is developed in Chapter 3. A more advanced model with
an exact representation of the scatterer surface is developed in Chapter 4. Chapter
5 shows how the model must be modified when the scatterer is in the presence of
an interface. Finally Chapter 6 contains the conclusion.



Chapter 2

Theoretical Background

This report deals with modeling the scattering of electromagnetic waves when
it hits a metal scatterer. Section 2.1 starts off with a brief outline of the theory
behind scattering, this also serves as a way to introduce the terms and notation
used for the rest of the report. No model can handle every case, so Section 2.1
also defines the limits for this project, for example only scatterers that are perfect
electric conductors (PEC) are dealt with.

Green’s Function Surface Integral Equation Method is used for modeling, this
method is described in [5, chapter 9], although there are some key differences, in
that the method can be simplified here since we assume that the scatterer is a PEC.
Furthermore we will use a GFSIEM based on the magnetic field integral equation
as opposed to the source, which is based on the electric field instead. Everything
pertaining to the GFSIEM is handled in Section 2.2.

2.1 Scattering Theory

For a more in depth overview of scattering theory see [5, chapter 2], for a detailed
view of Maxwell’s equations and the derivation of the boundary conditions see [2,
chapter 7].

The general scattering problem is sketched in Figure 2.1. As mentioned there
are limits to the the material and geometry of the scatterer, but first we must look at
the assumptions for the environment and the incident electric field. The surround-
ing medium is assumed to be homogeneous, isotropic, linear, and non-magnetic,
i.e. the medium has the permeability of free space. Now the medium can be de-
scribed completely by the refractive index n1(ω), which is a scalar function and
where ω is angular frequency. The medium should also be lossless otherwise there
would be no far field, thus n1 is assumed to be real. Then the relative dielectric
constant is simply given by ε1(ω) = n2

1(ω).

3



4 Chapter 2. Theoretical Background

S

E = 0

ε1

n̂

E0

Esc

Figure 2.1: A plane wave E0 is incident on a scatterer situated in a medium with dielectric constant
ε1, which produces a scattered field Esc. The scatterer is a perfect electric conductor and therefore
the electric field is zero inside the closed surface S, the normal vector n̂ always points away from the
scatterer.

The incident light is assumed to be a plane wave, which can be written on the
form

E0(r) = p̂E0eik1·r, (2.1)

where r is a position, p̂ is the polarization vector, E0 is the complex amplitude, k1

is the propagation vector outside the scatterer. The plane wave is time harmonic
and (2.1) should be multiplied by e−iωt, but this factor is suppressed throughout
this report for convenience’s sake. Omitting the time harmonic factor works par-
ticularly well because the scattered field Esc has the same time dependence, and
it simplifies Maxwell’s equations greatly. The total electric field can be found as
a simple sum, E(r) = E0(r) + Esc(r), keep in mind that this a complex field, the
actual field is given by E(actual)(r, t) = Re

{
E(r)e−iωt}. In the case of plane waves

the magnetic field is given by H =
√

ε0
µ0

k̂× E.

With these assumptions in mind Maxwell’s equations can be written in terms
of the electric field E and the magnetic field H as

∇× E(r) = iωµ0H(r), (2.2a)

∇× H(r) = j(r)− iωε0εE(r), (2.2b)

∇ · E(r) = ρ

ε0ε
, (2.2c)

∇ · H(r) = 0, (2.2d)



2.1. Scattering Theory 5

where ρ is the free charge density and j is the free current density. Then the wave
equations can be found by using that ∇× (∇× A) = ∇(∇ · A)−∇2A:

−∇×∇× E(r) + k2
0ε1E(r) = −iωµ0j(r) (2.3)

−∇×∇× H(r) + k2
0ε1H(r) = −∇× j(r), (2.4)

where k0 is the free space propagation number.

The perfect electric conductor is an idealized material with infinite conductivity,
which makes it suited for modeling metals when the resistance is negligible com-
pared to other effects. Working with a PEC carries many benefits when it comes to
modeling scattering problems. Firstly there is no electric field inside the scatterer,
nor a magnetic field, at least not a time harmonic field, consequently there is also
no absorption. The properties of the PEC is unaffected by the frequency ω, if the
environment is also frequency independent in the case of vacuum n1 = 1, then the
absolute size of the incoming wavelength and the scatterer does not matter, only
the relative size.

If there are no sources ρ = 0 and j = 0 then the wave equations for the sur-
rounding environment reduces to(

∇2 + k2
0ε1
)

E(r) = 0, ∇ · E(r) = 0, (2.5)(
∇2 + k2

0ε1
)

H(r) = 0, ∇ · H(r) = 0. (2.6)

The boundary between the PEC and the medium must also be considered, in total
there are four boundary conditions, for the normal and tangential part of both the
magnetic and electric field:

n̂× E(r) = 0, n̂ · E(r) = σ(r)
ε0ε

,

n̂× H(r) = J(r), n̂ · H(r) = 0, (2.7)

where r is a position on the surface, σ is the density of surface charge and J is the
density of surface current. Physically what happens is that the incident field E0 hits
the scatterer which generates the surface current J and surface charge density σ,
such that the resulting field Esc exactly cancels E0 everywhere inside the scatterer.
Of course outside the scatter the fields generally do not cancel.

The scatterer must be a closed surface as this is required for the GFSIEM based
on the magnetic equation [1, chapter 2]. The scatterer surface should also be
smooth, as a jagged surface gives problems with the boundary conditions. For
example if the surface has a 90◦ corner, then the normal vector will not be well
defined in the corner, and the boundary conditions are therefore also not well
defined. Choosing a smooth surface insures that the normal vector is uniquely de-
fined at every point on the surface. However the scatterer does not need to adhere
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to any symmetry rules and although scatterer is mentioned in the singular there
could be multiple closed surfaces beside each other, as long as they do not inter-
sect, for example the method could be used on a Yagi-Uda antenna.

the GFSIEM can find the scattered field anywhere given the surface current
density J as we will see, J is usually simply referred to as the current hereafter.
Thus knowing the current is the key to finding the scattered field and consequently
answer questions such as how much light is scattered? and in what direction does
it go?
The Poynting vector S describes the energy flux density of the fields, and it is given
by

S = E× H. (2.8)

This vector is time harmonic, however, we are interested in the time averaged
Poynting vector

〈S〉 = 1
T

� T

t=0
Sdt =

1
2

Re{E× H∗}, (2.9)

where T = 2pi/ω is the period. The intensity of the incident field is given by

I = 〈S0〉 =
1
2

√
ε0

µ0
n|E0(r)|2. (2.10)

The total irradiated power of the scattered field Pout can be found by draw-
ing a surface S2 that encompasses the scatterer with a normal vector n̂2 and then
integrating the perpendicular part of the time averaged Poynting vector over this
surface

Pout =

�
S2

〈S(r)〉 · n̂2(r)d2r. (2.11)

In practice S2 is a sphere that is much larger than the scatterer, a sphere is chosen
because it is simple and a large sphere is chosen because then only a far field
approximation of Esc is needed. The scattered power can be normalized by the
incident power per area to get the scattering cross section σsc = Pout/I which has
the units of area, despite the similar notation this has nothing to do with surface
charges. Generally the scattering cross section is different from the actual cross
sectional area, and is highly dependent on the incident wavelength, σsc can be
much larger than the geometric cross section at resonances. Now assuming that S2

is a sphere of radius r that envelops the scatterer then the scattering cross section
is given by

σsc =

� 2π

ϕ=0

� π

θ=0

1
2

√
ε0

µ0
n1|Esc(r)|2r2 sin θdθ dϕ. (2.12)

there are also other optical cross sections, however the absorption cross section is
zero because there is no absorption for a PEC, and the extinction cross section,
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which is the amount of power lost from the incident beam is usually the sum of
the scattering and absorption cross section, but here it is just equal to the scattering
cross section.

So far we have looked at the total or integral scattering cross section σsc, but
that is just a measure of the total energy loss it does not say anything about which
direction the radiation has. This is motivation for introducing the differential scat-
tering cross section ∂σsc(θ,ϕ)

∂Ω , which is the cross section per solid angle, and it is
equal to the integrand in (2.12) sans the sin θ factor. For an example of what the
total and differential scattering cross sections looks like see appendix A where the
scattering from a sphere is calculated analytically.

S

↔
G (r, r

′ )

n̂

E(r)

J(r′)

Figure 2.2: There is a contribution to the electric field E at point r from the current J at a point r′ on
the surface S. Green’s tensor function

↔
G (r, r′) can determine this contribution.

2.2 Green’s Function Integral Equation Method

As mentioned the GFSIEM can be based on the magnetic field and the electric
field, the latter is the case in [5]. the EFIE is just as valid as the MFIE, however
numerically there can be a big difference in how well it works. Since most of the
work has already been done with the EFIE, these results are used unless there is
a good reason to prefer the MFIE. It turns out that the MFIE is preferable when
calculating the current, as this allows us to avoid numerically integrating over
some singularities. So the GFSIEM used in this report is actually only partially
based on the MFIE. Assume for now that the current J is known, then according
to [5, Chapter 9] the electric field can be found anywhere outside the scatterer by

E(r) = E0(r) + iωµ0

�
S

↔
G (r, r′) · J(r′)d2r′, (2.13)

where r′ is a position on the surface S, this equation only hold because the scatterer
is a PEC. The current at each point on the scatterer has an effect on the total field at
any other location, and Green’s tensor1 function

↔
G (r, r′) describes the interaction

as illustrated in Figure 2.2. Green’s tensor does not change based on the shape of

1It is a tensor because the direction of the current and the resulting electric field matters.
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the scatterer, it does however depend on the environment. Green’s tensor is known
for homogeneous space, for a detailed derivation see [3, Chapter 2], and it is given
by

↔
G (r, r′) =

(
↔
I +

1
k2

1
∇∇

)
g(r, r′), where g(r, r′) =

eik1|r−r′|

4π|r− r′| (2.14)

↔
I = x̂x̂ + ŷŷ + ẑẑ is the unit dyadic, g(r, r′) is called Green’s scaler function. The
gradients in this expression can be evaluated analytically and (2.14) can be written
as

↔
G (r, r′) =

(
↔
I
[

1 +
i

k1R
− 1

(k1R)2

]
− RR

R2

[
1 +

3i
k1R
− 3

(kR)2

])
g(R), (2.15)

where R = r− r′ and R = ‖R‖.

To find the scattering cross section it is enough to know the far field expression
for the scattered field, therefore it is beneficial to find a far field approximation of
Green’s tensor. Far away from the scatterer we have r >> r′ and k1R >> 1, where
r = ‖r‖ and r′ = ‖r′‖, then Green’s tensor can be simplified to

↔
G (r, r′) ≈

(
↔
I −

RR
R2

)
eikR

4πR
. (2.16)

The distance R can be approximated as

R = r

√
1− 2

r · r′
r

+
r′2

r2 ≈ r− r̂ · r′. (2.17)

The distance R can be adequately approximated to be r in the denominators, but
not in the exponent, as small differences can have a large effect on the phase. So
R
R ≈ r̂ and

↔
I = r̂r̂ + θ̂θ̂ + ϕ̂ϕ̂, therefore the far-field Green’s tensor can be written

as
↔
G

(ff)
(r, r′) =

(
θ̂θ̂+ ϕ̂ϕ̂

) eikr

4πr
eikr̂·r′ . (2.18)

Finally the scattered far-field can be found

E(ff)
sc (r) = iωµ0

(
θ̂θ̂+ ϕ̂ϕ̂

) eikr

4πr

�
S

e−ikr̂·r′ J(r′)d2r′. (2.19)

Now we are ready to tackle the problem of finding the current J. First we can
find an magnetic field equivalent of (2.13) by using that ∇× E(r) = iωµ0H(r):

H(r) = H0(r) +
�

S
∇×

↔
G (r, r′) · J(r′)d2r′, (2.20)
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where H0(r) is the incident magnetic field. When r approaches the surface we can
find the current at this location by using the boundary condition J(r) = n̂(r) ×
H(r) to get

J(r) = J0(r) +
�

S
n̂× [∇×

↔
G (r, r′)] · J(r′)d2r′, (2.21)

where J0 = n̂×H0, note that n̂ is a function of r and not r′. To find an expression for
the integrand we can use that the curl of a gradient is zero and that

↔
I ·J(r′) = J(r′)

to get
n̂×

[
∇×

↔
G (r, r′)

]
· J(r′) = n̂×

[
∇×

[
g(r, r′)J(r′)

]]
(2.22)

Now the following identity can be used ∇× (ψA) = ψ∇× A + (∇g(r, r′)) × A,
and we know that ∇× J(r′) = 0, because it does not depend on r, to get

n̂×
[
∇×

↔
G (r, r′)

]
· J(r′) = n̂×

[(
∇g(r, r′)

)
× J(r′)

]
. (2.23)

The gradient of the scalar Green’s function can be found to be

∇g(r, r′) =
R
R

(
ik1 −

1
R

)
g(r, r′). (2.24)

Finally the integrand can be written as

n̂×
[
∇×

↔
G (r, r′)

]
· J(r′) =(

ik1 −
1
R

)
g(r, r′)

[
R
R
(
n̂(r) · J(r′)

)
− J(r′)

(
n̂(r) · R

R

)]
, (2.25)

where the identity: A× B× C = B (A · C)− C (A · B) has been used.

As the position r approaches the sampling point s on the surface, there is a sin-
gularity when r′ = s, which fortunately can be handled analytically. The integral
can be split up into two parts, one integral over an infinitesimal circle around s and
one principal integral over the rest of the surface. If we define the coordinate sys-
tem such that the normal vector at s is along the z-axis, and if the surface is smooth
and r′ is sufficiently close to s, then the surface is in the x, y-plane: r′ = s + ρ′ρ̂′.
The position r is set to be a small distance δ away from the surface r = s + δn̂. The
dot-product (n̂ · J(r′)) will vanish as n̂ and J are orthogonal close to s. The other
dot-product on the other hand is non-zero and is given by n̂ · R

R = δ√
δ2+ρ′2

. Then

the singular part of the integral in (2.21) is

� 2π

0

� a

0
J(r′)

eik1R

4π

[
n̂ · R

R3

]
ρ′dρ′ dϕ′ ≈ J(r)

2

� a

0

δρ′

(δ2 + a2)3/2 dρ′, (2.26)

where it has been used that there is no ϕ-dependence, and that J(r′) ≈ J(r) and
eik1R ≈ 1 for r′ → r.
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The integral is easy to solve using substitution and when δ → 0 the integral is
found to be

J(r)
2

� a

0

δρ′

(δ2 + a2)3/2 dρ′ → J(r)
2

for δ→ 0. (2.27)

Then (2.21) can be written in terms of a principal integral as

J(r)
2

= J0(r) + P
�

S
n̂× [∇×

↔
G (r, r′)] · J(r′)d2r′. (2.28)

Now we have all we need to develop a GFSIEM model for scattering.



Chapter 3

Facet Method

To find the electric field at any location we need to know the current for every
location on the scatterer, of course this is not generally possible so we must contend
ourselves with finding the current on N points on the surface and then interpolate
the current between the known points. There are many ways of achieving this, in
this chapter we will look at a simple implementation of the GFSIEM, which we can
call the Facet Method, and then see how well it fits with the known results of a
sphere.

3.1 The Method

si

ri,1

ri,2

ri,3

rk,1

rk,2

rk,3

sk

R

Figure 3.1: The whole surface of the scatterer is
divided into triangles and they should be roughly
equilateral. The GFSIEM requires finding the cou-
pling between each pair of triangles, where they
have a center-to-center distance of R. There is also
self-coupling in the case where i = k.

The Facet Method consists of dividing
the surface into N triangles, giving it
a faceted surface, hence the name, and
then assume that the current is constant
on each triangle and equal to the cur-
rent in the center of the triangle. This is
a rudimentary model that does not ac-
curately represent the reality, because
the scatterer should be smooth and the
current should also be a smooth func-
tion. However, as the number of trian-
gles go up, the surface and current are
more accurately represented.
The surface is divided into a total of N
triangles, the k’th triangle has three corners given by rk,j, where j = 1, 2, 3, as
illustrated in Figure 3.1. This task is accomplished by using the Partial Differen-
tial Equation Toolbox in MATLAB. All the relevant information can be stored in a
point and a connectivity matrix.

11



12 Chapter 3. Facet Method

The corner points for all the triangles are stored in a point matrix P, so that each
column contains a unique x, y and z coordinate for a corner point,

P =

x1 x2 . . . xM

y1 y2 . . . yM

z1 z2 . . . zM

 , (3.1)

note that each corner point is shared among several triangles.
The connectivity matrix T stores information about each triangle in a column, such
that all the pertinent information about the k’th triangle is in the k’th column of T .
First and foremost the connectivity matrix T describes the three points that make
up the vertices of each triangle. Thus the simplest form of T is a 3×N matrix, where
each element is an index for a column of the point matrix. The connectivity matrix
can have any number of rows for holding additional information, for example the
three components of the normal vector, in this case the connectivity matrix would
be a 6×N-matrix. Thus the connectivity matrix will be on the form

T =


i1,1 i2,1 . . . iN,1

i1,2 i2,2 . . . iN,2

i1,3 i2,3 . . . iN,3
...

...
...

...

 , (3.2)

where the j’th corner point of the k’th triangle, rk,j, is given by the ik,j’th column of

the point matrix P.
In this simple method we are only interested in sampling the current at the cen-
ter point of the triangles, and then we assume that the current is constant. The
sampling points can easily be found by averaging: sk = (rk,1 + rk,1 + rk,3)/3.

It is convenient to introduce an orthonormal basis for each triangle, where
one the basis vectors is the normal vector, then the surface current will be a linear
combination of the two other basis vectors. One of the benefits of the Facet Method
is that the basis vectors are the same over each triangle, as the normal vector is
constant. The basis vectors for each triangle can for example be defined as

t̂(1)k =
rk,2 − rk,1

‖rk,2 − rk,1‖
(3.3)

t̂(2)k = n̂k × t̂(1)k , (3.4)

where n̂k is the normal vector for the k’th triangle and a basis vector as mentioned.
Now the surface current at sk can be written as

Jk = J(1)k t̂(1)k + J(2)k t̂(2)k . (3.5)
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A similar definition can be applied to J0 and then (2.28) can be written as

J(1)0,i t̂(1)i + J(2)0,i t̂(2)i =

1
2

(
J(1)i t̂(1)i + J(2)i t̂(2)i

)
−

N

∑
k=1

P
�

k
n̂× [∇×

↔
G (si, r′)] ·

(
J(1)k t̂(1)k + J(2)k t̂(2)k

)
dr′2, (3.6)

where the integral is over the area of the k’th triangle and n̂ is the normal vector
for triangle i. This needs to repeated for i = 1 to N, which can be written as this
matrix equation:

[
J
(1)
0

J
(2)
0

]
= −


(

K
(1,1)
− 1

2 I
)

K
(1,2)

K
(2,1)

(
K

(2,2)
− 1

2 I
)

[

J
(1)

J
(2)

]
, (3.7)

where the currents are arranged in column vectors where the k’th element is the

corresponding current in the k’th triangle J
(m)

= [J(m)
1 J(m)

2 . . . J(m)
N ]T.

The K matrices are on the form

K
(m,n)

=


K(m,n)

11 K(m,n)
12 · · · K(m,n)

1N

K(m,n)
21 K(m,n)

22 · · · K(m,n)
2N

...
...

. . .
...

K(m,n)
N1 K(m,n)

N2 · · · K(m,n)
NN

 , (3.8)

where the elements are defined as

K(m,n)
ik = P

�
k

t̂(m)
i ·

[
n̂×

[
∇×

↔
G (si, r′)

]]
· t̂(n)k dr′2. (3.9)

The self-term principal integrals, i.e. when i = k, can be solved analytically, as
the normal vector n̂i is orthogonal to Ji and R/R on the whole triangle, except
just around the singularity. Thus it is easy to see that the integrand (2.25) is zero
everywhere in the principal integral, and the integral evaluates to zero. Therefore
the diagonal of the K’s are empty.

The integral in (3.9) can be approximated by only evaluating Green’s tensor in
the center point, r′ = sk, and then multiplying by the area of the triangle Ak:

K(m,n)
ik ≈ t̂(m)

i ·
[
n̂×

[
∇×

↔
G (si, sk)

]]
· t̂(n)k Ak, (3.10)

we can call this the centroidal approximation. This approximation makes the sim-
ulation much faster, and in the next section we will see how well this rather simple
method works compared to a known case.
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3.2 Comparison with a Sphere

The sphere is a case where the scattering can be found analytically, which makes it
possible to compare the Facet Method to a known result. The analytical expressions
for the surface current and the scattering cross section can be found in appendix
A.

First we will look at the surface conductivity, and the difference compared to
the analytical result at a single wavelength. A wavelength equal to the diameter
of the sphere is chosen, because we are interested in seeing how well the model
works when the wavelgnth is comparable to the size of the scatterer. Specifically
the radius is a = 10 nm and the wavelength is λ = 20 nm, the unit does not really
matter as only the relative size matters. As rule of thumb the average side length
of the triangles should be about a tenth or less of the wavelength, in our case
choosing N = 800 makes this length 1.92 nm, so the rule is satisfied. Figure 3.2a
shows the absolute value of the surface conductivity for the sphere calculated by
the facet method, this is visually indistinguishable from the analytical result, thus
it is helpful to look at the relative difference between the calculated and actual
result. Figure 3.2b shows this difference, and it is calculated in the following way

Jk,diff =
‖Jk,ana‖ − ‖Jk,num‖
max1≤i≤N ‖Ji,ana‖

· 100%. (3.11)

The difference between the numerical and analytical current is at most 5% often
less, which is not bad for such a simple method. So we have seen that this method
can model wavelengths comparable to the size of the scatterer without a huge N,
it will be interesting to see how small the wavelengths can get before the results
deviates too much from the actual result. Later we will see how accurate the
numerically calculated currents are for a wide range of wavelengths, but first we
will look at the scattering cross section.

The scattering cross section can also be found analytically and numerically on
the basis of the surface currents found above. The cross section is plotted against
the wavelength divided by the diameter (λ/2a) in Figure 3.3. It can be seen that
the numerical method is unstable for low wavelengths, even lower than shown is
too unstable to be useful. There is even some instability for the numerical result
with N = 800 when the wavelength is around 1.1 times the diameter, even though
the side length is comparatively small. Still the result is close to the actual, and
more triangular divisions are better as expected. We can also see that for large
wavelengths where the sidelength/wavelength ratio is small, the analytical cross
section is larger than the numerical, this pattern is continued for even larger wave-
lengths than shown. The reason for this is that the faceted sphere is strictly smaller
than the real sphere, which results in a smaller effective cross section compared
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(a) (b)
Figure 3.2: Calculations for the absolute value of the conduction for a sphere with radius 10 nm, and
N = 800. The sphere is illuminated from below by a x-polarized plane wave with wavelength 20 nm.
(a) Absolute surface conduction calculated with the numerical method. (b) Difference in percent
between the analytical and numerical solution.

to the geometrical cross section, πa2. The case with N = 208 is much worse than
the case with N = 800 even for large wavelengths because it is smaller. Thus there
are two important consideration to make when choosing N: are the sidelengths
sufficiently small for the wavelengths and is the shape accurately represented.

Figure 3.3: Scattering cross section for sphere illuminated from below with a range of wavelengths
compared to the diameter. Both the analytical result and numerical result is shown, where a different
number of triangles N is used.

Next an expression for the total error will be introduced and we will see graphs
for the error against wavelength for different conditions. The error can be defined
as

F =
∑N

k=1

∣∣∣‖Jk,ana‖ − ‖Jk,num‖
∣∣∣Ak

∑N
k=1 ‖Jk,ana‖Ak

. (3.12)
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This is a measurement of the difference between the analytical and numerical cur-
rent, instead the error could be defined based on the scattering cross section, but
the trends should be the same.

The error F is plotted in Figure 3.4. For a sense of what the error means we can
see that for the case shown in Figure 3.2 the corresponding error is slightly above
10−2. The pattern we saw from the scattering cross section can also be seen here,
but perhaps more clearly, especially the part where the error approaches some
constant value due to the inaccurate representation of the scatterer geometry. A
higher number N is evidently better as expected, and in the case where N = 800 the
current is accurately calculated down to a wavelength that is equal to the radius.

Figure 3.4: The Error F for the numerical model for various N on a logarithmic scale. The error is
unstable and large for small wavelengths, the error levels off to be a roughly constant value for large
wavelengths. The Error also becomes smaller as N increases.

As we can see the Facet Method does approach the analytical result to decent
degree without requiring a huge number of triangles. The benefit of this method
is that it can easily represent any closed shape. However, we can see that the
inaccurate reproduction of the exact surface produces a floor for how well the
method can work for large wavelengths.
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There is likely something to be gained by representing the surface accurately, which
is more challenging and effectively limits the complexity of the scatterer, this will
be the subject of the next chapter. The time to calculate and more alarmingly the
memory for calculating the surface currents goes up with N, the hope is with an
accurate surface, then the required N and goes down for a given wavelength within
a certain error. Still the Facet Method does well for how simple it is, it can even
represent complex scatterers with ease.





Chapter 4

Curvilinear Method

In this chapter we will see how the Facet Method can be improved by representing
the scatterer surface accurately. This is accomplished by dividing the scatterer into
triangles as before, however, this time the triangles themselves are curvilinear, for
an example of a spherical triangle see Figure 4.1. How the curvilinear triangles
work in detail is considered in section 4.1, although this report is only concerned
with curvilinear triangles that are either a part of a cylinder or a sphere. The
centroidal approximation from the previous chapter is also something that can
be developed upon, which is examined in section 4.2. Section 4.3 compares the
Curvilinear Method (CM) to the Facet Method (FM).

r1

r2
r3

Figure 4.1: For three corner points r1, r2 and r3 on the sphere, both a flat and spherical triangle can
be formed. The edges for the spherical triangle are along the shortest path on the sphere between the
corner pairs. For the underlying flat triangle, marked with a dashed line, it is the euclidean shortest
path that marks the edges.

19
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4.1 Curvilinear Triangles

rk,1

rk,2

rk,3

rk(u, v)

u

v

Figure 4.2: Illustration of triangular coordinates,
in this case u = 0.5 and v = 0.25.

As mentioned in the previous chapter
the complexity of representing any ar-
bitrary shape goes up when the surface
is to be exact instead of faceted, thus
in this report the scatterer is limited to
consist of sections that are either flat,
cylindrical or spherical. Even with this
restriction a large number of interest-
ing geometries can be explored. Now
the idea is to first produce the faceted
surface as before and then project a
point on the flat triangle, rk, out onto
the exact surface, r(exact)

k . First we need
a way to represent a point on the flat triangle in a way that does not depend on the
orientation of the triangle, this can be done by introducing a triangular coordinate
system via the parameters u and v:

rk(u, v) = rk,1 + u(rk,2 − rk,1) + v(rk,3 − rk,1), (4.1)

where 0 ≤ u + v ≤ 1 and u, v ≥ 0 and it is illustrated in Figure 4.2.

Now that the triangles are curvilinear the connectivity matrix T must be ex-
panded with extra information, first of all it is essential to know which kind of
structure a given triangle is a part of, i.e. flat, cylindrical or spherical. Secondly
there is specific information for each case that needs to be stored. The case with
flat triangles is trivially easy, as it is the same as the Facet Method, so it is only
the spherical and cylindrical cases that need to be analyzed further. Each case
is treated separately in a subsection each, we need to find the position function
r(exact)

k (u, v), the area Ak, and the surface unit vectors t̂(1)(u, v) and t̂(2)(u, v).

4.1.1 Triangle on a Sphere

Suppose that we have a curved triangle on a sphere of radius R1 with a center in
rc, which must be stored in the connectivity matrix. We know that the triangle is
relatively small compared to the sphere, so we do not need to worry about the flat
triangle intersecting rc for example. Then the position on the sphere with a given
rk(u, v) can be found by

r(exact)
k (u, v) = R

rk(u, v)− rc

‖rk(u, v)− rc‖
+ rc. (4.2)

1The radius is usually designated as a, but this is not the case for this subsection.
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Finding the area of the curved triangle is more involved, but it can still be found
analytically with the help of spherical trigonometry[7, 8]. The following formulas
are based on spherical triangles on a unit sphere, so the distances involved need to
be scaled up or down by a factor of R. It turns out that the area can be found by

Ak = R2E, where E = (A + B + C)/2, (4.3)

E is called the spherical excess, where the angles A, B and C are defined as in
Figure 4.3. The angles can be determined by using the arclengths a, b and c. Say
that the angle at r1 is A, then the arclength a can be found by

a = acos
( r2 · r3

R2

)
, (4.4)

b and c can be found in a similar way. Now the semi-perimeter can be introduced
s = (a + b + c)/2, and the half angle tangent formulas can be written as

tan(A/2) =
k

sin(s− a)

tan(B/2) =
k

sin(s− b)

tan(C/2) =
k

sin(s− c)
,

where

k2 =
sin(s− a) sin(s− b) sin(s− c)

sin(s)
.

This is all that is needed to find the area of a spherical triangle.

A

B C

c

a

b

a

a

Figure 4.3: Notation for a spherical triangle on a unit sphere. The vertices are named A, B and C, the
angles at these vertices are also named A, B and C. The arclengths a, b and c are also angles albeit
an angle as seen from the center of the unit sphere as shown on the right.
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The normal vector can easily be found by n̂k =
r(exact)

k −rc∥∥∥r(exact)
k −rc

∥∥∥ . In spherical coor-

dinates we have n̂k = r̂, where r̂ = sin θ cos ϕx̂ + sin θ sin ϕŷ + cos θẑ. The ba-
sis vector t̂(1)k can be in any direction that is perpendicular to n̂k, we can choose
ϕ̂ = − sin ϕx̂ + cos ϕŷ. If the normal vector is n̂k = nx x̂ + nyŷ + nzẑ then the polar

angle is θ = acos nz, and finally we have t̂(1)k = − ny
sin θ x̂ + nx

sin θ ŷ. Now the last basis

vector can be found based on the former two as usual, t̂(2)k = t̂(1)k × n̂k = θ̂.

4.1.2 Triangle on a Cylinder

0

nc

ρca

rc

rk

r k
−

r c

rV

rH r(exact)
k

Figure 4.4: The position rk is inside a
cylinder of radius a and is a short dis-
tance from the surface. The closest po-
sition on the surface is called r(exact)

k and
it is the desired quantity.

We have a curved triangle on a cylinder with
radius a, the cylinder is symmetrical around a
line that goes through rc and is parallel with n̂c,
these unit vectors are stored in the connectiv-
ity matrix. The vertices intersect with the sur-
face, but the other points on the flat triangle are
a short distance away from the exact surface.
Say we have a position rk on the flat triangle
then the corresponding position on the surface
of the cylinder r(exact)

k can be found. To accom-
plish this the vector rk − rc needs to be com-
posed into a part that is parallel with the sym-
metry axis and a part that is perpendicular to
it. These components are illustrated in Figure
4.4 and are defined by

rV = n̂c (n̂c · (rk − rc)) ,

rH = rk − rc − rV .

Then r(exact)
k can be found by

r(exact)
k = rc + rV + a

rH

‖rH‖
. (4.5)

The area of the cylindrical triangle can be found by unraveling the surface of
the cylinder into a 2D plane, as shown in Figure 4.5. The three vertices are given
by r′i = ri,k − rc, where i = 1, 2, 3, these points can be written in cylindrical surface
coordinates as r′i = (ϕi, zi). The vertical component is given by zi = n̂c · r′i . The
angle at r′1 is chosen to be zero, ϕ1 = 0, then the other angles ϕ2 and ϕ3 can be
determined in relation to it. In order to do this an in plane vector needs to be
defined such that vi = r′i − n̂czi = a [cos ϕi sin ϕi 0]T . It is important to consider
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aϕ

nc

r′1
r′2

r′3

b

h

θ

Figure 4.5: The triangle in a cylindrical surface coordinate system.

the angle with sign and it should be in the range (−π, π], to achieve this the
function atan2(y, x) is used. The angle for r′2 can be found to be

ϕ2 = atan2 ((v1 × v2) · n̂c, v1 · v2) , (4.6)

the angle for r′3 can be found analogously. Now the area can easily be found by
A = bh/2, where the base b and the height h are given by

b =
√
(aϕ2)2 + (z2 − z1)2 (4.7)

h =
√
(aϕ3)2 + (z3 − z1)2 sin θ, (4.8)

where the angle θ, which is also shown in Figure 4.5, can be found by

θ = acos

(
a2ϕ2ϕ3 + (z2 − z1)(z3 − z1)√

(aϕ2)2 + (z2 − z1)2
√
(aϕ3)2 + (z3 − z1)2

)
. (4.9)

The normal vector can be found by n̂k = rH
‖rH‖ , the first surface basis vector can

aptly be chosen to be t̂(1)k = n̂c, the second vector can be found in the usual way

t̂(2)k = t̂(1)k × n̂k.

4.2 Subdivision

The centroidal approximation is as simple as before, it can still be found by using
(3.10), except the center points, the basis vectors and the area need to be replaced
by their exact equivalents. For example the exact observation point can be found
by si = r(exact)

i (u = 1/3, v = 1/3). The centroidal approximation is of course an
approximation, in reality an integral should be carried out over the area of triangle
k to find an element in the K matrices. The integral can be carried out with the
help of the triangular coordinates in the following way

K(m,n)
ik = P

� 1

u=0

� 1−u

v=0
t̂(m)

i ·
[
n̂×

[
∇×

↔
G
(

si, r(exact)
k (u, v)

)] ]
· t̂(n)k (u, v)2Ãkdv du,

(4.10)
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where Ãk is the differential area,

Ãk =
1
2

∥∥∥∥∂rk(u, v)
∂u

× ∂rk(u, v)
∂v

∥∥∥∥ , (4.11)

note that performing this integral over the whole domain still assumes that the
current is constant in the domain. Performing this integral takes a large amount
of time and it is hard to implement, this leads to the motivation for finding a
compromise between these two approaches. Instead of just choosing one point in
triangle k, sk, a number of points could be chosen s(q)k . The points should ideally

be evenly spread and each should have an associated surrounding area A(q)
k , such

that ∑q A(q)
k = Ak. For each point there is also a set of surface basis vectors t̂(1,q)

k

and t̂(2,q)
k .

One way to achieve this is to subdivide the u and v domain into N2
sub equal

smaller subdomains as shown in Figure 4.6, then the subdivision scheme can be
applied to all triangles, no matter if they are a part of a sphere or something else.
Each dot in the figure is a u, v coordinate: (u(q), v(q)) and the points in the k’th
triangle can be found by s(q)k = r(exact)

k (u(q), v(q)) for q = 1 to N2
sub. The sub-triangles

in the u, v domain are also triangles in the real domain, which is important as we
saw in the previous section how to calculate the area of a triangle on a sphere
and cylinder, note that the area of the sub-triangles are not generally equal. Now
we are ready to replace the centroidal approximation with what we can call the
subdivision approximation:

K(m,n)
ik ≈

N2
sub

∑
q=1

t̂(m)
i ·

[
n̂×

[
∇×

↔
G
(

si, s(q)k

)] ]
· t̂(n,q)

k A(q)
k , for s(q)k 6= si, (4.12)

the self-terms lead to the inequality condition on the right. The problem arises
when s(q)k = si, because then Green’s tensor becomes singular. The K elements
are principal integrals, and we saw in the case of flat triangle that the self-term
principal integral becomes zero, but this does not generally hold for a curvilinear
triangle. In the case when Nsub is divisible by 3, then the observation point at
(u = 1/3, v = 1/3) does not coincide with (u(q), v(q)) for any q, which can be
seen in Figure 4.6, thus the subdivision approximation can be carried out without
modification. In the case where Nsub is not divisible by 3, then the observation point
does coincide with a subdivision point, the procedure is to say that the subdomain
around the observation point is roughly flat and therefore the principal integral
gives zero. Thus we have found an expression for the subdivision approximation,
note that if Nsub = 1, then it is simply the centroidal approximation.
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0 1/3 2/3 1
0

1/3

2/3

1

u

v

Figure 4.6: Illustration of the subdivision of the triangle domain into N2
sub smaller subdomains, here

Nsub = 3. Each filled circle corresponds to a coordinate (u(q), v(q)), such that s(q)k = rk(u(q), v(q)),

where q = 1 to N2
sub. Each coordinate is in the center of a subtriangle with an area of A(q)

k , of course
the area is for the real triangle and not in the u, v domain.

4.3 Facet and Curvilinear Method Comparison

In this section we will see how well the Curvilinear Method compares to the Facet
Method by looking at the absolute error for a sphere compared to the results of the
previous chapter. First the methods will be compared without subdivision, and
then the effects of subdivision will be explored afterwards. The error is calculated
on the basis of (3.12) as before.

Figure 4.7: Comparison of the error for a sphere between the Facet Method (faceted) and the Curvi-
linear Method (exact). The comparison is based on calculation without subdivision, i.e. Nsub = 1.

By comparing the Facet Method to the Curvilinear Method as shown in Figure
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4.7, we can see that the Curvilinear method is better across practically all wave-
lengths. In fact the Curvilinear Method produces better results at N = 480 than
the Facet Method does at N = 800, this means that the Curvilinear Method is much
faster and less memory intensive for a result with a given error. It also turns out
that the CM is barely slower for a given N, for the case in Figure 4.7 it took on
average 32.08s for the FM and 32.97s per wavelength for N = 800.In conclusion we
can see that there are large gains for implementing a method that represents the
scatterer surface accurately.

Next we will see how subdivision changes the error, the subdivision can apply

Figure 4.8: The absolute error F for the Facet Method with N = 480 and a varied degree of subdivi-
sion, Nsub = 1 corresponds to no subdivision.

to the FM just as well as the CM. However, there are some limits to the FM in
this regard, because the normal vector does not change depending on the location
within a given triangle, so the direction of the surface vector does not change as it
does in the CM. The Error for the FM with and without subdivision is shown in
Figure 4.8, and we can see that the error becomes worse as the triangles are subdi-
vided more finely, i.e. Nsub increases. This is a surprising result as the subdivision
approximation is supposed to be more accurate than the centriodal approxima-
tion, it seems that the problems with the faceted surface are enhanced with the
subdivision approximation.

Fortunately we can see in Figure 4.9 that the subdivision is much better for the
CM, although it is not uniformly better. The result for N = 480 and N = 800
are functionally identical, so the following discussion fits equally well for either
plot. The error quickly converges for Nsub > 0, and we can see that the error for
Nsub = 4 and Nsub = 11 is almost equal, so there is seemingly no reason to pick
a Nsub higher than 4. The fact that it converges for small degree of subdivision
suggests that there is not a large benefit to be gained from performing the full
integrals. The case with Nsub = 3, is slightly worse than the others, but it is also
calculated slightly differently as we saw in section 4.2, so it is best to avoid a Nsub
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that is divisible by 3.
Interestingly the error is larger for small wavelength when there is subdivision,

and that holds true for N = 480 and N = 800. Furthermore there is an additional
peak at λ ≈ 0.8D after subdivision, and the peak at λ ≈ 1.2D is unaffected by
subdivision. On the other hand the error is much lower for large wavelengths, the
error with Nsub = 4 compared Nsub = 1 at λ = 10D is just a quarter for N = 480
and a fifth for N = 800. Clearly is an effective method for reducing the error, at
least when the wavelength is large, in this case the subdivision approximation is
as good as or better than the centroidal approximation when λ > D. The reason
the subdivision approximation is worse for small wavelengths is like due to the
fact that the current is assumed constant over each triangle, it is also possible to
model the current as linearly or quadratically varying across each triangle, but that
is outside the scope of this project.

(a) N = 480 (b) N = 800
Figure 4.9: The error for the Curvilinear Method with (a) N = 480 and (b) N = 800, with a number
of Nsub.

4.4 Calculations for a Rod

Now we have seen that the CM works for a sphere, in this section we will see if
the model also works for a scatterer that is a composite of spherical and cylindrical
segments. A simple rod is chosen for this task, which is a cylinder with two end
caps in the form of half-spheres, the radius is a = 10nm and the total length is
L = 100nm. There is no analytical solution for this case but we can make an
educated guess, and the CM can also be compared to another GFSIEM model that
uses cylindrical symmetry. The incident light is assumed to be polarized along the
length of the rod, then in the thin wire approximation (a << L) the peaks of the
scattering cross section should lie around L = 2λ, 3

2 λ, 5
2 λ and so on, in this case

λ = 200nm, 66.67nm, 40nm.
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The scattering cross sections for the rod as calculated with the CM and the GF-
SIEM that uses cylindrical symmetry are plotted in Figure 4.10. We can see that
the models are roughly in agreement, and the peaks around 70nm and 240nm are
slightly above the first guess of 67nm and 200nm. The model based on cylindrical
symmetry is still a numerical model, and it is based on an approximation that can
underestimate the scattering cross section, especially at the low wavelengths. Thus
there is good reason to be optimistic about the CM when it comes to low wave-
lengths, as it also seems to have converged. However the CM has not converged
near the 240nm peak, this is a surprising result compared to the previous section
as there the error went drastically down as the wavelength increased. The scatter-
ing cross section must be highly sensitive to the current, which could be modeled
as linearly or quadratically varying across each triangle instead of being constant,
however that is outside the scope of this project. Modeling the current as linearly
varying would not be a trivial addition to the CM, because the sampling points
should be at the corner points rather than the center points.

Figure 4.10: Scattering cross section for a rod with length L = 100nm and radius a = 10nm, the
incident light is polarized along the length of the rod. The scattering is modeled by the Curvilinear
Method with N = 848, 1960, 4208 with Nsub = 4, and by a GFSIEM method that uses cylindrical
symmetry, it expands the electric field into cylindrical harmonics, the model only considers the 0’th
order harmonic. Note that the case with N = 4208 is only plotted for a short interval 235nm to
245nm.



Chapter 5

Scatterer Near a Planar Interface

So far we have looked at a scatterer in free space in this chapter we will see how to
update the model to accommodate an interface.

kρ

kz,1
k1

ε1 = 1

ε2 = 2

θ θ

θt

k2kz,2

kρ

ẑ

ρ̂

Figure 5.1: Reflection and transmission
at a planar interface. The propagation
vector k1 can be split into a vertical
component kz,1 and an in-plane com-

ponent kρ =
√

k2
x + k2

y. The propaga-
tion vector changes magnitude and di-
rection across the interface, but the in-
plane component is constant.

The reference dielectic constant is given by

εref(r) =

{
ε1 for z > 0

ε2 for z < 0,
(5.1)

unless otherwise specified ε i is assumed to be
real, i.e. lossless, and positive.
If a plane wave with propagation vector k1 is in-
cident on an interface, then part of it will be re-
flected and part of it is transmitted as illustrated
on Figure 5.1. The incident, reflected and trans-
mitted waves all travel in the same plane called
the plane of incidence, which is spanned by ρ̂

and ẑ in the Figure, where the usual cylindrical
coordinates are used:

ρ̂ = x̂ cos ϕ + ŷ sin ϕ, (5.2)

ϕ̂ = −x̂ sin ϕ + ŷ cos ϕ. (5.3)

The vector k1 can be split into a component
along ẑ and a component along ρ̂ in the x, y-
plane called kz,1 and kρ =

√
k2

x + k2
y respectively

(these are only magnitudes and do not account
for direction). The magnitude of the propaga-
tion vectors is ki = k0

√
ε i, but the in-plane component kρ is constant, this accounts

for the change of direction across the interface. How much light is reflected and

29
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transmitted can be determined by using Fresnel’s coefficients, but they are depen-
dent on the polarization of the light. The electric field is perpendicular to the prop-
agation vector and is p-polarized if it is in the plane of incidence, and s-polarized
if the field is perpendicular to the plane.
Finally the electric field can be written as

E(r) =


[

E0e−ikz,1z +
[

E(s)
0 r(s)(kρ) + E(p)

0,r r(p)(kρ)
]

eikz,1z
]

eikρρ̂·r for z > 0,[
E(s)

0 t(s)(kρ) + E(p)
0,t t(p)(kρ)

]
e−ikz,2zeikρρ̂·r for z < 0,

(5.4)
where E(s)

0 = (E0 · ϕ̂) ϕ̂ = E(s)
0 ϕ̂ is the s-polarized part of the incident field. The

p-polarized part changes direction depending on whether it is reflected or trans-
mitted, hence the subscript r and t. The magnitude of the p-polarized part E(p)

0

is defined such that E(p)
0 k̂1 × ϕ̂ = E0 − E(s)

0 . The p-polarized part of incident

field for the reflected and transmitted light is given by E(p)
0,r = E(p)

0 k̂1,r × ϕ̂ and

E(p)
0,t = E(p)

0 k̂2 × ϕ̂, where k̂1,r is the propagation vector for the reflected field, and
it can easily be obtained from k̂1 by changing the sign of the z-component. The
Fresnel coefficients are given by

r(s)(kρ) =
kz,1 − kz,2

kz,1 + kz,2
t(s)(kρ) = 1 + r(s)(kρ) (5.5)

r(p)(kρ) =
ε2kz,1 − ε1kz,2

ε2kz,1 + ε1kz,2
t(p)(kρ) = 1 + r(p)(kρ), (5.6)

the coefficients describe the amplitude of the wave after reflection and transmission
and also the phase change because it is a complex value. The coefficients are
functions of kρ because kz,i is a given by

kz,i(kρ) =
√

k2
0ε i − k2

ρ, (5.7)

note that kρ can be larger than k0
√

ε i, even though it does not make much sense
on the drawing, this makes kz,i an imaginary number and in turn makes eikz,iz

exponentially decreasing. Far from the interface these fields will be non-existent,
but in close they are important to consider.

5.1 Green’s Functions for a Planar Interface

So far we have only looked at the case where there is only a direct contribution from
a surface point r′ to the observation point r, but if there is a reflective interface then
the point r′ can also make an indirect contribution to the field at the observation
point, as illustrated in Figure 5.2.
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The total Green’s tensor can be expressed as

↔
G=


↔
G
(d)

+
↔
G
(i)

for z > 0
↔
G
(t)

for z < 0,
(5.8)

where
↔
G
(d)

is the direct Green’s tensor, and is equal to the usual tensor (2.15), the
superscript (i) stands for indirect and (t) for the transmitted part. The tensors
are found for a layered structure in [5, chapter 6], and they are given as an integral
over the in-plane part of the propagation vector kρ. In order to do this, a cylindrical
coordinate system must be introduced, which is also illustrated in Figure 5.2. We
can see that each point r′ becomes the origin of a new coordinate system, except the
z-coordinate which is the same as in the Cartesian system. The vectors ρ̂r and ϕ̂r

is defined as the normal cylindrical coordinates like (5.2) and (5.3), but they have
the subscript r for relative as they change each time r′ does. The relative horizontal
distance ρr and the angle ϕr is defined by

x− x′ = ρr cos ϕr, y− y′ = ρr sin ϕr. (5.9)

The benefit of introducing this coordinate system is to avoid the need to do a
double integral over kx and ky.

S

r′

Dire
ct

r

In
di

re
ct

ẑ

ρ̂r
ρr

ŷ

x̂
r′

ρ r r
ϕr

ρ̂rϕ̂r

r′ = (x′, y′, z′) = (0, z′)
r = (x, y, z) = (ρr, ϕr, z)

Figure 5.2: Illustration of the direct and indirect contribution from point r′

to r. A relative cylindrical coordinate system is introduced such that the
plane of incidence is spanned by ρ̂r and z and ρr is the horizontal distance
between r′ and r.

As we have seen the Fresnel coefficients are different for s and p-polarized light,
so the tensor needs to be split up into terms concerning either polarization, and
then multiplied by the appropriate coefficient.
With that prelude we are ready to introduce the indirect Green’s tensor, which is
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defined as

↔
G
(i)
(r, r′) =

i
4π

� ∞

0

{
r(p)(kρ)

[
ẑẑ

k2
ρ

k2
1

J0(kρρr) + ϕ̂rϕ̂r
k2

z,1

k2
1

J′0(kρρr)

kρρr
+

ρ̂rρ̂r
k2

z,1

k2
1

J′′0 (kρρr)− (ẑρ̂r − ρ̂r ẑ)
ikρkz,1

k2
1

J′0(kρρr)

]
− r(s)(kρ)

[
ϕ̂rϕ̂rJ′′0 (kρρr) + ρ̂rρ̂r

J′0(kρρr)

kρρr

]}
kρ

kz,1
eikz,1(z+z′)dkρ,

(5.10)

where J0 is the Bessel function of the first kind and zeroth order. If r′ and/or r
is not on the interface then eikz,1(z+z′) will be an exponentially decreasing function

when kρ > k1, which makes it possible to integrate
↔
G
(i)

numerically, and if either
point is far enough away, then it is sufficient to integrate to k1. However, if r′

and r is on the interface then
↔
G
(i)

is a singularity that we need to integrate over
analytically, this will be the subject of the next section. The transmitted Green’s
tensor is given by

↔
G
(t)
(r, r′) =

i
4π

� ∞

0

{
t(p)(kρ)

ε1

ε2

[
ẑẑ

k2
ρ

k2
1

J0(kρρr)− ϕ̂rϕ̂r
kz,1kz,2

k2
1

J′0(kρρr)

kρρr
−

ρ̂rρ̂r
kz,1kz,2

k2
1

J′′0 (kρρr)−
(

ẑρ̂r + ρ̂r ẑ
kz,2

kz,1

)
ikρkz,1

k2
1

J′0(kρρr)

]
− t(s)(kρ)

[
ϕ̂rϕ̂rJ′′0 (kρρr) + ρ̂rρ̂r

J′0(kρρr)

kρρr

]}
kρ

kz,1
eikz,1z′e−ikz,2zdkρ.

(5.11)

The magnetic GFSIEM is used to find the current on the surface as before,
this means that we need to find the curl of the indirect Green’s tensor. Curl in
cylindrical coordinates is

∇×
↔
G
(i)
= ẑ× ∂

↔
G
(i)

∂z
+ ϕ̂r ×

1
ρr

∂
↔
G
(i)

∂ϕr
+ ρ̂r ×

∂
↔
G
(i)

∂ρr
. (5.12)

The only terms in
↔
G
(i)

that are dependent on ϕr are the unit vectors

∂ρ̂r

∂ϕr
= ϕ̂r,

∂ϕ̂r

∂ϕr
= −ρ̂r, (5.13)

no unit-vector is dependent on either ρr or z. The derivation of ∇×
↔
G
(i)

is straight-
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forward but lengthy, here is an example of taking the curl of one term:

∇×
[
ϕ̂rϕ̂r

J′0(kρρr)

kρρr
eikz,1(z+z′)

]
=

[
− ρ̂rϕ̂r

J′0(kρρr)

kρρr
ikz,1 + ẑϕ̂r

�
���

��1
ρr

J′0(kρρr)

kρρr

+ ẑϕ̂r

(
���

����

− 1
ρr

J′0(kρρr)

kρρr
+

J′′0 (kρρr)

ρr

)]
eikz,1(z+z′).

(5.14)

In total the curl is given by the following equation

∇×
↔
G
(i)
(r, r′) =

i
4π

� ∞

0

{
r(p)(kρ)

[
−ϕ̂r ẑ kρJ′0(kρρr) + ϕ̂rρ̂r ikz,1J′′0 (kρρr)− ρ̂rϕ̂r ikz,1

J′0(kρρr)

kρρr

]

−r(s)(kρ)

[
−ẑϕ̂r kρJ′0(kρρr) + ϕ̂rρ̂r ikz,1

J′0(kρρr)

kρρr
− ρ̂rϕ̂r ikz,1J′′0 (kρρr)

]}
kρ

kz,1
eikz,1(z+z′) dkρ,

(5.15)

now we just need to find out what happens in the singularity.

5.2 Singularity

The singularity of n̂ ×∇×
↔
G
(i)
(r′, r) · J for an observation point on the interface

need to be dealt with analytically. First we evaluate the singular part of the kρ

integral and then integrate over an infinitesimal area ∂S around the observation
point.

We have r′ → r, where r is on the bottom of the scatterer which approaches the
interface, this means that (z + z′)→ 0 and ρr → 0. We assume that the scatterer is
smooth, therefore ∂S will be flat and the current is in the x, y-plane: J = x̂Jx + ŷJy,
also the normal vector is given by n̂ = −ẑ. Since we are interesting in finding

n̂ ×∇×
↔
G
(i)

(r, r′) · J we can ignore the terms that contain ẑ. We need to find
the asymptotic behavior of the integrand for large kρ, because it is this part that
makes the integral singular. The Fresnel coefficients can be found for large kρ by
first making this approximation:

kz,i = ikρ

√
1−

k2
0ε i

k2
ρ

≈ ikρ

(
1− 1

2
k2

0ε i

k2
ρ

)
, (5.16)

then the Fresnel coefficients approximate to

r(p)(kρ) ≈
ε2 − ε1

ε2 + ε1
r(s)(kρ) ≈

1
k2

ρ

k2
0

4
(ε2 − ε1), (5.17)
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thus only the p-polarized terms lead to a singularity. We can approximate kz,1

further For very large kρ: kz,1 ≈ ikρ, thus the singular part of the indirect tensor is

n̂×∇×
↔
G
(i)
(r, r′) · J ≈

↔
T= −

1
4π

ε2 − ε1

ε2 + ε1

� ∞

0

{
ρ̂rρ̂rkρJ′′0 (kρρr)− ϕ̂rϕ̂r

J′0(kρρr)

ρr

}
e−kρ(z+z′)dkρ · J, (5.18)

where it has been called
↔
T for later convenience. The derivatives of the Bessel

function can be expressed in terms of other Bessel functions:

J′0(x) = −J1(x), J′′0 (x) = −J0(x) +
1
x

J1(x). (5.19)

Now we need a couple of formulas that can for example be found in [6]:
� ∞

0
J0(kρρr)e−kρ(z+z′)dkρ =

1
R̃

, (5.20)
� ∞

0
J1(kρρr)e−kρ(z+z′)dkρ =

R̃− (z + z′)
ρrR̃

, (5.21)

where R̃ =
√

ρ2
r + (z + z′)2. Now we have what we need to evaluate the integral

↔
T = − 1

4π

ε2 − ε1

ε2 + ε1

� ∞

0

{
−ρ̂rρ̂rkρJ0(kρρr) + (ρ̂rρ̂r − ϕ̂rϕ̂r)

J1(kρρr)

ρr

}
e−kρ(z+z′)dkρ · J

= − 1
4π

ε2 − ε1

ε2 + ε1

{
−ρ̂rρ̂r

z + z′

R̃3
+ (ρ̂rρ̂r − ϕ̂rϕ̂r)

R̃− (z + z′)
ρ2

r R̃

}
· J

=
1

4π

ε2 − ε1

ε2 + ε1

{
(ρ̂rρ̂r + ϕ̂rϕ̂r)

1
2

z + z′

R̃3

+ (ρ̂rρ̂r − ϕ̂rϕ̂r)

(
1
2

z + z′

R̃3
− R̃− (z + z′)

ρ2
r R̃

)}
· J,

where it has been used that

−kρJ0(kρρr)e−kρ(z+z′) =
∂

∂z

(
J0(kρρr)e−kρ(z+z′)

)
and

∂

∂z

(
1
R̃

)
= − z + z′

R̃3
.

We need to integrate around the observation point from ϕr = 0 to 2π, only the unit
vectors are affected. The first term evaluates to something that is not dependent
on ϕr as (ρ̂rρ̂r + ϕ̂rϕ̂r) = (x̂x̂ + ŷŷ), however the other term needs to be integrated

� 2π

0
(ρ̂rρ̂r − ϕ̂rϕ̂r)dϕr =

� 2π

0
(cos2ϕr x̂x̂ + sin2ϕrŷŷ− sin2ϕr x̂x̂− cos2ϕrŷŷ)dϕr = 0,
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thus only one term needs to be evaluated. The singularity is therefore given by
�

∂S

↔
T dx′ dy′ =

1
4π

ε2 − ε1

ε2 + ε1

J
2

�
∂S

z + z′

R̃3
dx′ dy′, (5.22)

the integral is equivalent to an integral over the solid angle as seen from a point
z + z′ below the observation point, so dΩ = z+z′

R̃3 dx′ dy′. As z and z′ approaches 0,
the integral will correspond to the the area of half the unit sphere, i.e. 2π.

Finally the singularity can be evaluated to

�
∂S

n̂×∇×
↔
G
(i)
(r, r′) · J dr′2 =

1
4

ε2 − ε1

ε2 + ε1
J. (5.23)

5.2.1 Two Distinct Points on the Interface

We also need to take special care when r′ and r are on the interface even though
they are not coinciding. In this case (z + z′) → 0 and ρr/(z + z′) → ∞. Similarly
to the previous section we have n̂ = −ẑ and J = x̂Jx + ŷJy, therefore we can start
this section with the following result

↔
T= −

1
4π

ε2 − ε1

ε2 + ε1

{
− ρ̂rρ̂r

z + z′

R̃3
+ (ρ̂rρ̂r − ϕ̂rϕ̂r)

R̃− (z + z′)
ρ2

r R̃

}
.

Now we can take the limit of the expression:

lim
(z+z′)→0

↔
T= −

1
4π

ε2 − ε1

ε2 + ε1
(ρ̂rρ̂r − ϕ̂rϕ̂r)

1
ρ2

r
, (5.24)

we can see that if we integrate from ϕr = 0 to 2π there is no contribution, but if
(ρr, ϕr, 0) is not a point on the surface for a given ϕr, then this ϕr should not be
integrated over, and there can be a net effect.
In the previous section we only considered a infinitesimal area ∂S, so it was enough

to only consider the singular part of ∇×
↔
G
(i)

. However, in this section we need
to evaluate the integral over a finite area, and therefore we need to find the non
singular part numerically. In effect what we need to do is replace r(p)(kρ) with(

r(p)(kρ)− ε2−ε1
ε2+ε1

)
, which goes to zero for large kρ, and add (5.24) to the evaluation.

The integrand will be a slowly decreasing oscillating function, which will converge
eventually, but it is not trivial to evaluate, we will see how to deal with that problem
later.
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5.2.2 Coinciding Points Above the Interface

In this case ρr → 0 but (z + z′)/ρr → ∞, note that this case can also happen if r′

and r is directly above or below one another, even if one of them is on the interface.
The problems with this case is primarily that ϕr is undefined and secondarily that
we need to find what happens to the Bessel functions when the argument is zero.
The exponential will be decreasing for kρ > k1, and the integral can be stopped for
a relatively low kρ, so we must have limρr→0+ kρ = 0.

Recall the definition for the derivatives of the Bessel functions (5.19), and note
that J0(0) = 1 and J1(0) = 0. Now we need to take the ρr → 0 limit of all the terms
in the curl of the indirect tensor, fortunately there are only three unique terms to
evaluate

lim
ρr→0+

J′0(kρρr) = 0,

lim
ρr→0+

J′0(kρρr)

kρρr
= lim

x→0+
− J1(x)

x
L’Hôpital

= lim
x→0+

−1
2
(J0(x)− J2(x)) = −1

2
,

lim
ρr→0+

J′′0 (x) = lim
x→0+

−J0(x) +
1
x

J1(x) = −1
2

,

in the second expression L’Hôpital’s rule has been used and that J′m(x) =
1
2 (Jm−1(x)− Jm+1(x)) and J2(0) = 0. These expressions can be put back into the
tensor:

∇×
↔
G
(i)

(r, r′) = (ϕ̂rρ̂r − ρ̂rϕ̂r)
1

8π

� ∞

0

{
r(p)(kρ)− r(s)(kρ)

}
kρeikz,1(z+z′) dkρ (5.25)

The unit vectors are dependent on ϕr which is undefined, but they can be
written in terms of Cartesian unit vectors instead:

ϕ̂rρ̂r − ρ̂rϕ̂r = − sin ϕr cos ϕr x̂x̂− sin2 ϕr x̂ŷ + cos2 ϕrŷx̂ + cos ϕr sin ϕrŷŷ

+ sin ϕr cos ϕr x̂x̂− cos2 ϕr x̂ŷ + sin2 ϕrŷx̂− cos ϕr sin ϕrŷŷ

= ŷx̂− x̂ŷ,

and the ϕr dependence is eliminated.

5.3 Integration of a Descending Oscillating Function

Way we have a function f (x) that behaves as a slowly descending oscillating func-
tion for large arguments. Then the function’s antiderivative F(x) will converge to
F(∞), but it will oscillate around this value and x may be very large before the os-
cillation amplitude is smaller than the acceptable error margin. Thus the challenge
is to find F(∞) without integrating until a large upper bound.
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If F behaves sinusoidally for large arguments and as the sine function crosses
zero exactly at the point of largest rate of descent or ascent, then F(∞) can be
found by evaluating F at one of these points. These points are simply the extrema
of f (x), thus we have F(∞) ≈ F(xn), where f (xn) is the n′th extrema, for large n.

In Figure 5.3 this process has been applied to the J0(x) function, it can be shown
analytically that

� ∞
0 J0(x)dx = 1. We can see that the integral can be approximated

well by stopping at extrema, but it is not perfect. Evaluating the antiderivative
at minima tends to overestimate the convergence value and evaluating at maxima
underestimates it, at least for J0, this explains why the mean of the two is much
better. As we can see the error for the mean solution quickly dives below 10−3, thus
we have found a way of estimating the improper integral of f (x) as an average,
which can be written as

� ∞

0
f (x)dx ≈

� xn

0
f (x)dx +

1
2

� xn+1

xn

f (x)dx, (5.26)

for sufficiently large n. Fortunately it seems that n can be small.

Figure 5.3: (Top picture) The Bessel function J0(x) and its antiderivative, which oscillates around
and converges to 1. The local maxima and minima of J0(x) corresponds to the highest rate of ascent
and descent on the antiderivate, the value of the antiderivative at these points approaches 1. (Bottom
picture) The absolute distance from 1 for the antiderivate evaluated at the maxima and minima
points. The open circles represent the mean of the antiderivate for the two adjacent maxima and
minima points, the mean solution approaches 1 much faster.





Chapter 6

Conclusion

Both the Facet Method and the Curvilinear Method as developed in this report gave
accurate results compared to the analytical solution for the scattering caused by a
PEC sphere. We saw that there are significant benefits of representing the scatterer
surface exactly (CM) rather than as a faceted surface (FM). However the shape of
the scatterer is somewhat limited in that it has to be made of spherical, cylindrical
and flat segments. In the case of a sphere we saw that the sidelengths of the
triangles must be much smaller than the incident wavelength, and decreasing the
sidelengths is costly in terms of memory and time, so this is not a good model far
wavelengths that are much smaller than the scatterer. For long wavelengths there
is excellent agreement between the analytical and numerical result at least if the
surface is exact and the integrals are approximated by subdivison rather than the
centroidal approximation, interestingly the FM performs worse with subdivision.

The results for a rod are more mixed. The CM gives roughly the same results
as another GFSIEM model that take advantage of cylindrical symmetry. The CM
converges for some wavelengths, and the results here are probably close to what
would actually happen, however for large wavelengths close to the global peak of
the scattering cross section, the convergence is very slow. The fact that it happens
for relatively large wavelengths is conflicting with the experience from the spheri-
cal case. The assumption that the current is constant over each triangle is probably
the largest source for error, so the next step would be to have a linearly or quadrat-
ically varying current. Still the CM can be applied to wide variety of problems,
with trustworthy results as long as it can converge without a prohibitively large
number of triangles N.

39
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The current is found on the basis of the MFIE, which has allowed us to ana-
lytically find the contribution from the singularity, and we have avoided any need
for evaluating the integrals numerically. The model is expanded to also work for
a scatterer in the presence of an interface in Chapter 5. If the scatterer is placed
on the interface then this leads to a singular integrand, but this was also solved
analytically.
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Appendix A

Analytic Solution for a Sphere

The scattering of plane waves hitting a homogeneous sphere, can be found ana-
lytically without making any assumptions with regard to the size of the sphere
compared to the incident wavelength, this is the Mie solution. It is crucial to find a
problem that can be solved analytically to compare with the numerical model and
quantify how well the model works. In this chapter the results from [4, chapter
26] are used, although we will make some adaptions because we are interested in
finding the surface current of a spherical perfect conductor. For a spherical particle
it is convenient to use spherical coordinates where r is the radial distance, ϕ is the
azimuthal angle and θ is the polar angle.

If the incident plane wave is x-polarized and traveling along the positive z-
direction, E = x̂eikz, then according to [4] the electric field can be written in terms
of spherical waves as

E0(r) = x̂E0eikz = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

{
M(1)

o1n − iN(1)
e1n

}
, (A.1)

where

M(1)
o1n =

cos ϕ

sinθ
P1

n(cos θ)jn(kr)θ̂− sin ϕ
∂P1

n(cos θ)

∂θ
jn(kr)ϕ̂,

N(1)
e1n = cos ϕP1

n(cos ϕ)n(n + 1)
jn(kr)

kr
r̂ +

[krjn(kr)]′

kr

[
cos ϕ

∂P1
n(cos θ)

∂θ
θ̂− sin ϕ

P1
n(cos θ)

sin θ
ϕ̂

]
,

where P1
n(cos θ) is an associated Legendre polynomial, using the positive sign con-

vention: P1
n(x) =

√
1− x2 dPn(x)

dx , jn(kr) is the spherical Bessel function given by

jn(kr) =
√

π

2kr
Jn+1/2(kr),

and

[krjn(kr)]′ =
∂[kr′ jn(kr′)]

∂kr′

∣∣∣∣
r′=r

=
1
2

√
π

2

[
Jn+1/2(kr)√

kr
+
√

kr (Jn−1/2(kr)− Jn+3/2(kr))
]

.
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The scattered electric field is given by

Escat(r) =
∞

∑
n=1

in 2n + 1
n(n + 1)

{
an M(2)

o1n − ibnN(2)
e1n,
}

(A.2)

where the superscript (2) of M and N denotes that the spherical Bessel function
is exchanged with a spherical Hankel function hn(kr) = Jn+1/2(kr) + iYn+1/2(kr),
where Yn(x) is the Bessel function of second kind. The coefficients an and bn can be
found by enforcing our boundary condition: n̂× E = 0 at r = a. thus the tangential
part of the field must be zero (E0(r = a, θ, ϕ) + Escat(r = a, θ, ϕ)) · ϕ̂ = 0, now the
coefficients can be found

an = − jn(ka)
hn(ka))

, bn = − [kajn(ka)]′

[kahn(ka)]′
. (A.3)

The corresponding incoming and scattered magnetic field can be found by using
H(r) = −i

ωµ0
∇× E(r) and that ∇×M = kN and ∇× N = kM:

H0 = −i
√

ε0

µ0
n1E0

∞

∑
n=1

in 2n + 1
n(n + 1)

{
N(1)

o1n − iM(1)
e1n

}
(A.4)

Hscat = −i
√

ε0

µ0
n1E0

∞

∑
n=1

in 2n + 1
n(n + 1)

{
anN(2)

o1n − ibn M(2)
e1n

}
(A.5)

where

M(1)
e1n =

− sin ϕ

sinθ
P1

n(cos θ)jn(kr)θ̂− cos ϕ
∂P1

n(cos θ)

∂θ
jn(kr)ϕ̂,

N(1)
o1n = sin ϕP1

n(cos ϕ)n(n + 1)
jn(kr)

kr
r̂ +

[krjn(kr)]′

kr

[
sin ϕ

∂P1
n(cos θ)

∂θ
θ̂+ cos ϕ

P1
n(cos θ)

sin θ
ϕ̂

]
.

We are interested in the current, J = n̂× H, with spherical symmetry the normal
vector is given by n̂ = r̂, which means that n̂× ϕ̂ = −θ̂, and n̂× θ̂ = ϕ̂, thus the θ̂

and ϕ̂-component of the surface current is

Jϕ(θ, ϕ) = −i
√

ε0

µ0
n1E0

∞

∑
n=1

in 2n + 1
n(n + 1)

{
sinϕ

ka
∂P1

n(cos θ)

∂θ

[
[kajn(ka)]′ + an [kahn(ka)]′

]
+ i

sin ϕ

sin θ
P1

n(cos θ) [jn(ka) + bnhn(ka)]

}
(A.6)

Jθ(θ, ϕ) = +i
√

ε0

µ0
n1E0

∞

∑
n=1

in 2n + 1
n(n + 1)

{
cos ϕ

ka
P1

n(cos θ)

sin θ

[
[kajn(ka)]′ + an [kahn(ka)]′

]
+ i cos θ

∂P1
n(cos θ)

∂θ
[jn(ka) + bnhn(ka)]

}
(A.7)
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A.1 Scattering Cross Section

Both the differential and integral scattering cross section can be found analytically
as well.

The differential cross section is given by

∂σsc(θ, ϕ)

∂Ω
= γp(θ) cos2 ϕ + γs(θ) sin2 ϕ, (A.8)

where γp is the differential scattering cross section in the xz-plane and γs is in the
yz-plane, and they are given by

γp(θ) =
1
k2

∣∣∣∣∣ ∞

∑
n=1

2n + 1
n(n + 1)

(
an

P1
n(cos θ)

sin θ
+ bn

∂P1
n(cos θ)

∂θ

)∣∣∣∣∣
2

, (A.9)

γs(θ) =
1
k2

∣∣∣∣∣ ∞

∑
n=1

2n + 1
n(n + 1)

(
an

∂P1
n(cos θ)

∂θ
+ bn

P1
n(cos θ)

sin θ

)∣∣∣∣∣
2

. (A.10)

The scattering cross section can be found by integrating the differential cross sec-
tion over the full solid angle σ =

�
4π

∂σ(θ,ϕ)
∂Ω dΩ, which turns out to be

σsc =
2π

k2

∞

∑
n=1

(2n + 1)
{
|an|2 + |bn|2

}
. (A.11)

The differential and integral scattering cross section is illustrated in Figure A.1
below.
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(a) (b)

(c)
Figure A.1: Differential and total scattering cross section for a PEC ball illuminated by a x-polarized
plane wave traveling along the positive z-axis. The cross sections are normalized with regard to the
geometrical cross section of the ball, πa2. (a) Shows the differential cross section in the xz-plane,
where the incident field has a wavelength equal to the diameter of the ball, (b) is the same for the
yz-plane. (c) is the total scattering cross section, which goes to 2 for small wavelengths and to 0 for
large wavelengths.
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