
 

Page  of 1 108

Supervisor:  Jannick Sørensen

Members:  Michail Gratsias

Pages:  108

Finished:  30th of May 2020

Abstract:

The aim of this thesis is to address the 
p r o b l e m o f m a k i n g a u t o m a t e d 
recommendations of exercise plans for 
people involved in fitness and especially in 
training with weights, based on their 
personal preferences and existing training 
principles. Therefore, the following problem 
statement was formed:

How can a recommender-system application 
support fitness enthusiasts by producing 

automated and personalised weight-training 
exercise plans based on proven training 

principles?

Additionally to that, a few sub-questions 
were added, which lead to further 
investigation of the following topics: 
recommender techniques that can be used, 
fitness domain information that will be 
needed, ways to personalise the solution,   
applicable recommendation algorithms and 
how such an solution could be designed, 
implemented and tested.

The final solution prototype uses a hybrid 
re c o m m e n d a t i o n s y s t e m b a s e d o n 
constraint based techniques and similarity 
heuristics to achieve the expected results.

Aalborg University Copenhagen 
A.C. Meyers Vænge 15 
2450 København SV 

Secretary: Maiken Keller 

Title: Automated Sequential 
Recommendations of 
Personalised Weight-Training 
Plans for Fitness Enthusiasts

Semester Theme:  Master Thesis

Semester:  4th

Project Period:  Fall 2019 - Spring 2020 



TABLE OF CONTENTS 

1. Introduction 4 
1.1 Problem Formulation	 5

1.2 Motivation & Delimitations	 5

1.3 Methodology	 6


1.3.1 Documentary Research	 7

1.3.2 Qualitative Interviews	 7

1.3.3 Data Analysis	 7

1.3.4 Software Development Process	 7


2. Background 9 
2.1 Recommender Systems and Techniques	 9


2.1.1 Collaborative filtering (CF) technique	 9

2.1.2 Content-based technique	 10

2.1.3 Knowledge-based technique	 10

2.1.4 Hybrid Systems	 11

2.1.5 Properties of Recommender Systems	 11


2.2 Basic Terms & Principles of the Weight Training Domain	 12

2.2.1 Weight Training Basic Terms	 12

2.2.2 Basic Weight Training Principles	 15


2.3 Existing Software Solutions	 16

2.3.1 Fitplan - Gym and Home Workouts	 17

2.3.2 JEFIT - Workout Planner Gym Log	 18

2.3.3 GymGoal Pro	 19

2.3.4 FitBod - Weight Lifting Workout	 20

2.3.5 Conclusions	 21


3. Analysis 22 
3.1 User Scenarios	 22

3.2 Use Cases	 23

3.3 Choice of Recommendation Techniques	 24


3.3.1 Algorithm for Constraint-based systems	 26

3.3.2 Similarity algorithms	 26

3.3.3 Algorithms for Sequential Recommendations	 27


3.4 Constructing a Knowledge Base	 32

3.4.1 Exercises & their combinations	 32

3.4.2 Personalisation Options	 34


Page  of 2 108



3.5 Automated Exercise Sequence Generation	 35

3.6 Hi-Fi Wireframes & Low-Fi Prototyping	 39

3.7 Setting-up User Studies	 41

3.8 Results from initial User Study	 44

3.9 Requirements Specification	 49


4. Software Design 52 
4.1 System Architecture	 52

4.2 Database Design	 53

4.3 Class Diagram	 54

4.4 Algorithm Flow Charts & Pseudocode	 55


4.2.1 Personalisation through Constraint Satisfaction	 55

4.2.2 Automated creation of a Recommended Exercise Program	 57

4.2.3 Fine-grained Adjustments based on User Feedback (Request)	 59


5. Implementation 61 
5.1.1 Cloud Firestore Database & Firebase Authentication	 61

5.1.2 Android App Authentication UI and Android Studio	 62

5.1.3 Recommendations and User Interface	 64

5.1.4 Settings page and Pop-ups	 66


6. Testing and Evaluation 69 
6.1 Code Test: Filtering exercises	 69

6.2 Code Test: Exercise recommendation algorithm	 70

6.3 Code Test: Exercise sorting by cosine similarity	 71

6.4 Final User Tests and evaluation	 72


7. Discussion 75 
8. Conclusion 76 
9. Future Work 77 
10. References 79 
11. Appendices 83 

A. Exercise Properties Table	 83

B. Exercise Training Effect Table	 89

C. User Testing Analysis Summary	 93

D. Personalisation in the Fitbod App	 104

E. Java Code for Filtering and Recommendations	 105

F. Java Code for Sorting exercises by Cosine Similarity	 108

Page  of 3 108



1. Introduction 

	 Recommending a weight-training exercise program for a visitor of a gym club can be 
a complicated task that requires expert knowledge and guidance. There are so many 
factors that are involved and so many different kinds of exercises, that the intervention of 
a special trainer is often necessary so that many unwanted phenomena like injuries, drop 
of interest and stagnation can be avoided and the fitness enthusiast can happily continue 
with his training and goals.


	 This report has the purpose to examine a possible recommender system that can be 
used in the form of an application in order to make automated recommendations of  
appropriate exercise plans for gym enthusiasts, avoiding the pitfalls due to lack of enough 
experience or a lack of a personal trainer or just lack of time to figure this out on one’s 
own.


	 Choosing a correct exercise program, (or a ‘training routine’ or ‘workout’ or ‘plan’) 
for athletes, can depend on various things: a) how new or advanced the person is in 
physical training, b) what kinds of equipment are available, c) whether the person is a man 
or a woman, d) their physical capabilities and many other factors. 


	 Choosing the correct sequence of exercises depends also on various training 
principles and even on what exercises have been done previously, because we want to 
avoid overtraining certain muscles with too much training and we want to surprise our 
physiques with new exercises when we get stagnant and lose gains from a specific kind 
of exercise. 


	 These types of principles are based on earlier research work from endocrinologists 
like Hans Seyle [12] as he described in his theory about the “General Adaption Syndrome 
(GAS)”, where he explains: a) how the body responds to new physical stress, b) the 
body’s attempt to adapt and get used to and adjusted to the stress and c) the stage of 
exhaustion where the body cannot take any further stress. 


	 It is also based on the most recent “Linear and Non-linear Periodisation” approach 
method to physical training [13], where what is used is a periodic variation in exercises 
and weights in order to help muscles of weight-lifters to avoid plateaus and sticking 
points and continue to grow in strength. 


	 Also, as a famous bodybuilding trainer once wrote: “Part of constant growth is 
never allowing your body to fully adapt to one specific training routine.” - [1, pg. 97] 


	 So, the ability to have new exercise programs at your fingertips, with correct 
sequence of exercises that are also created with tested principles, when the old ones 
have stopped generating adequate results due to adaption, is a vital factor in the success 
of weight-training and the results that can be achieved with it.


Page  of 4 108



1.1 Problem Formulation 

	 Based on such a background of knowledge about physical training, our proposed 
solution should be able to constantly recommend training routines based on a user’s 
training profile, and choose exercises based on proven training principles that need to be 
followed so that a desirable result can be attained.


	 From this description then, we can create our problem formulation as follows:


How can a recommender-system application support fitness 
enthusiasts by producing automated and personalised weight-training 

exercise plans based on proven training principles? 

And to further enhance this main formulation we would also add the following sub-
questions:


• Which recommender techniques can be used?


• What type of domain knowledge about fitness training will be needed?


• How can the application be personalised to the users?


• Which recommendation algorithms are applicable?


• How can the solution be designed, implemented and tested?	  

1.2 Motivation & Delimitations 

	 The weight training domain is very broad and we will be describing later-on more 
extensively some of its most fundamental principles, but it is necessary to also describe 
our own choices of limitations from the beginning, because we will not be able to cover 
every aspect of this broad field in one single paper.


	  As we said in our introduction, we will concentrate in this work especially in the area 
of weight training (where there is also more personal familiarity and experience), but also 
other types of sport or fitness activities could be covered in similar works and 
recommendations could be drawn for them too. We are just not going to deal with any 
other fitness activities here in this current work.


	 Even the activity of weight training alone includes a lot more variables than we will 
try to encompass in this current work, which will only and simply concentrate in the 
training exercises to be recommended to the users, as part of one or many exercise 
programs. 


Page  of 5 108



	 Other variables not included in this work but which are also very relevant and 
important in doing weight training, include: 1) the amount of times each single exercise is 
being performed (also known as: exercise sets), 2) the amount of repetitions of motions in 
each set of exercises 3) the amount of weight (resistance to the motion) being applied to 
each set of the exercise performed, etc. And finally other factors to achieving good results 
from such training include aspects of: the person’s nutrition and rest habits that 
accompany the overall training regiment. [4, pg.76]


	 So without forgetting the importance of all these other areas of research, in the 
current work we will concentrate in one of the most complicated and significant of these 
areas which is the selection of the different exercises and the overall exercise training 
‘routines’ to be performed by the fitness enthusiast.


	 To explain the importance of this choice of concentration a little better, and what 
motivated us to deal with it, let’s quote the creators of the “Fitbod” training application 
(which we will describe more extensively later in the section on “Existing Solutions”) who 
proclaim the following: 


	 “Constructing progressive resistance training plans is hard. One reason why 
there’s no defacto gym app, is the difficulty in constructing progressive resistance 
training plans. Consumer fitness tech today is like Google Maps without directions. 
We have data-rich maps of people’s physical activity, but fail to help them navigate 
towards real results.” - [5]


	 We can see from that, that past gym apps have generally failed to properly navigate 
their users with progressive, automated weight training plans. Previous efforts to resolve 
these problems had been through the use of personalised coaching sessions with live 
coaches - which could become quite expensive for some. Or by requiring the athlete or 
enthusiast to educate himself in manually developing his own training plans without 
external guidance - also quite hard for most. 


	 Finally, there was also the option of letting the person select some hopefully good 
exercise routine from a huge and confusing library - which can include a good possibility 
of error in making the right choice.


	 These were the main reasons why it was decided that it is time we use our 
engineering knowledge to offer more creative solutions in this area. 


	 Next we will describe the Methodology which we will follow and with which we will 
try to answer our main research question and sub-questions.


1.3 Methodology 

	 Here we will take up our research approach and data collection and analysis 
techniques as well as the software development method used to arrive to a working 
prototype. This will give the reader a good idea of the methodology that we followed 
throughout the thesis.


Page  of 6 108



1.3.1 Documentary Research 

	 In order to answer a lot of our technical questions about Recommender systems, 
techniques and algorithms the collection of Secondary research data through Academic 
journals was quite necessary. [45]


	 Many research papers concerning Recommender systems were studied in order to 
have a good grounding on the various methods and the context in which they are being 
applied.


	 At the same time, there was a thorough study of the Weight-training domain through 
various books on the subject so that the important training principles can be extracted as 
well as detailed information about related exercises and training routines and how these 
affect the person’s physical condition and muscle strength and development.


1.3.2 Qualitative Interviews 

	 Another important part of the research was creating scenarios and semi-structured 
interviews in order to get a better understanding of user requirements and involve the 
users themselves in the research process. [46]


	 Five unmoderated interviews were conducted online and were recorded (see 
Appendix C and software attachments) where users had to test an original form of our 
prototype and answer questions which provided us with valuable information in the 
process of collection of Primary data and in the critique and analysis of our system.


	 Another three moderated final interviews were conducted after development on a 
high-fidelity prototype to validate our results and ensure our satisfaction of user 
requirements.


1.3.3 Data Analysis 

	 The Primary and Secondary data collection were followed by the needed analysis in 
order to come up with the appropriate techniques that will answer our research questions 
and which will support our choices and decisions and help us form and validate our 
Requirements Specification. 


	 After each cycle of analysis, design, critique, we would come up with a better 
prototype until we arrive at a final solution.


1.3.4 Software Development Process 

	 The overall development process we used was based on a Prototyping Model (see 
Figure 1) where users are involved in the whole process and various prototypes of the 
system are developed and tested until they meet the user requirements. [44]


	 The original requirements which we have previously collected through background 
research, lead to a basic design which will end up into a prototype which will be critiqued 
by the users themselves. The results of that are used to analyse again and adjust the 

Page  of 7 108



requirements which will be followed by a new design which can be implemented and then 
tested.


	 

Figure 1, The Prototyping Model [44]


	 After completing the description of our project Methodology, we will be looking in 
the next chapter at background information about different recommender systems, the 
basic weight-training concepts and principles and we will also describe and compare 
existing software solutions in the market today.


Page  of 8 108



2. Background 

2.1 Recommender Systems and Techniques 

	 Recommender systems in a few words can be described as systems that guide a 
user, usually in a personalised way, into choosing useful products from a big and often 
confusing pool of options. [14] Such products or items can be books or films or songs or 
things to buy etc. 


	 When the recommendations are not personalised, then they just cover the most 
popular items. But when they are personalised, they try to predict what the specific user 
would most be interested in, based on his own personal preferences.


	 The first types of recommender systems designed, made social recommendations 
using a community of users that agreed with the current user in taste. Items that the close 
social community had liked, would be recommended to the current user. More recently, to 
deal with a huge amount of seemingly similar products creating an information overload, 
recommender systems use collected data about users and items and about previous user 
transactions (ratings, purchases, etc) to make their recommendations and they can record 
the users’ feedback to these recommendations for improving their results. [25]


	 Apart from finding singe items that are useful or interesting to some user, 
recommender systems can also: recommend whole sequences of items (often called 
Sequential systems), like eg. recommending musical playlists to listen to. They can also 
allow the user to provide more specific information about himself and his likes or dislikes, 
they can allow users to rate or evaluate items they have experienced and they can even 
allow a user to choose and test different recommendation methods. 


	 The main recommendation approaches [25] that are used today are the following:


2.1.1 Collaborative filtering (CF) technique 
	 

	 This refers to the recommendations from the social network of the user which we 
described earlier as the first and most popular type of recommender technique. All the 
users rate the items according to their degree of liking and recommendations are made in 
two different ways:


• User-based CF technique 

	 In this technique, users who have rated items similarly to our current user (called 
“neighbours”) are found and used in recommending to the current user items that he 
never had but which he may like also.


• Item-based CF technique 

	 In this technique, we find items that are similar to items that the current user has 
liked (based on overall ratings) and we recommend those. 


Page  of 9 108



	 For the collaborative filtering technique to work best, we need a lot of ratings of the 
items by many users and this requires time to accumulate (known as the “cold start” 
problem). Also an important difference between the two CF methods is that item-based 
techniques tend to offer better accuracy in recommending items, while user-based 
techniques result in more originality in the recommendations given.


2.1.2 Content-based technique 

	 In this technique, the system tries to recommend items that are similar to items the 
user liked in the past and is often applied in recommending textual documents (books, 
articles, movies, etc.). The attributes of the profile of the user will be matched with the 
attributes of the items in order to arrive to a recommendation. 


	 The attributes of the items can be extracted as keywords from a longer description 
of these items (or the whole content), before a recommendation is made. [25]


	 This technique does not have the “cold-start” problem of the previous technique as 
it does not depend on user ratings, but on the other hand, it can only recommend items 
that are similar to the user profile.


2.1.3 Knowledge-based technique 

	 Here, user requirements are elicited through explicit user feedback (eg. answering 
questions), and then a domain knowledge about how certain item features are useful to 
the user and meet the user preferences is exploited in order to arrive to 
recommendations. There are two ways to do knowledge-based filtering:


• Case-based technique 

	 In this technique many past solved recommendation cases are collected and a 
similarity to past cases is calculated for any new recommendation case. Each case 
models a product or item to be recommended. If the user is not satisfied with the 
recommendation, he can modify his requirements and try again until an acceptable similar 
case is found. [26]


• Constraint-based technique 

	 Instead of using a similarity metric, the constraint-based technique extracts  
predefined rules and principles of a domain and with these it matches the item features to 
the specific user profile and requirements in order to provide the proper recommendation 
results. 


	 This technique is more suitable when we are dealing with complex products such as 
computers, financial services, etc., where traditional recommendation approaches based 
eg. on social collaboration may not be the best choice. In such complex cases, 
knowledge-based systems which elicit user requirements and exploit a knowledge-base 
of item properties would be a better choice and would also help overcome the common 
“cold-start” problems prevalent in collaborative systems [10], [14].


Page  of 10 108



2.1.4 Hybrid Systems 

	 In Hybrid systems more than one techniques can be used at the same time, usually 
in order to balance the disadvantages of one technique with the advantages of the other. 


	 Hybrid systems can be one of various types [27], [53]. The three main ones are: 


• Weighted Hybrid Systems, where each recommendation component is given a certain 
weight when combined with another one from a different technique in order to 
calculate the final rating of the items, 


• Mixed Hybrid Systems, when recommendation results from different techniques are 
presented mixed together in a combined list, 


• Meta-level Hybrid Systems, when one technique produces some model or output 
which then becomes the input for the next technique [27].


	 Having described the most common types of Recommender Systems and what they 
do, we will also mention some of the most important qualities or properties of these 
systems.


2.1.5 Properties of Recommender Systems 

	 Recommender Systems have certain qualities that influence user satisfaction in 
using these systems. Here are some that may be most related to our system [41], [54]:


1. Prediction Accuracy 

	 Recommender systems try to predict how much a user will like or dislike an item 
before they recommend it to them. Each system can use different methods and 
algorithms to accomplish that, as we have shortly described above. When their 
predictions are accurate, the user is generally satisfied with the recommendation.


2. Novelty 

	 When we are talking about Novelty in recommendations we are talking about the 
recommendation of items that the user did not know about before. If a system only 
recommended items that the user knows, it would not be considered very useful to the 
user. So Novelty is a quality that is often very much sought after in such systems.


3. Diversity 

	 In some cases, a user may not want to get similar items but may prefer a greater or 
lesser diversity in recommendations in order to discover more unusual items. If a system 
only recommends similar items, such a user would not be satisfied, so the element of 
diversity must often be taken into account.


4. Trust 

	 Trust is the credibility of the user for the system and is usually achieved by using 
transparency and explanations of how the system works and what is the reasoning 

Page  of 11 108



behind the recommendations. When the users can understand the logic in the 
recommendations, they are more willing and feel more safe to use the system.


	 After this introduction into recommender systems we will continue by describing the 
basic terms and training principles of the Weight-training domain which we will be using 
later for our analysis and design.


2.2 Basic Terms & Principles of the Weight Training Domain 

	 A clarification of some basic terms and principles of this domain, like: what is an 
exercise and a training routine, is necessary at this point as they may not be familiar 
terms to people not directly involved in this area of fitness activity. 


2.2.1 Weight Training Basic Terms 

	 Here we will discuss what are exercises, exercise programs, what equipment are 
being used, what are the different muscle-groups being trained etc.


	 First of all, weight training Exercises are specific movements performed repetitively 
with some resistance (weight) in order to train a specific muscle-group of the body. The 
movement repetitions are usually performed in sets of about 3 to 12 or more repetitions, 
with a short rest intervals between sets. (Eg. 3 sets of the exercise with 8 movement 
repetitions for each set is quite ‘common’.)


Fig 2, Some examples of free-weight equipment

(The exercise Bench on the left and a rack of Barbells on the right)


	 A training program or routine is defined as a whole list of exercises, with their sets 
and repetitions, performed within one training session (also called: a “workout”) lasting for 
about one hour, or covering several one-hour training sessions spread over several days, 
with rest periods between sessions usually within a framework of one week. The program 
can be repeated for several weeks until a specific training goal is achieved and then a 

Page  of 12 108



new program can be created and performed after that, for the next goal to be achieved. 
[2, pgs. 12-18]


	 Examples of training goals can be: to be stronger, to be able to lift 100kg (for weight 
lifters), or to lose 10 kg of fat, to gain 5 kg of body muscle, etc.


	 In resistance training or weight-training there are different types of equipment being 
used for performing exercises but they all fall under two main categories: 1) free weights, 
that you can carry with you and which give more opportunity of motion while requiring 
better ability to balance the weight and 2) exercise machines, which limit the potential 
motion you can make and do not require that you maintain any body balance while 
performing the exercises.


	 Examples of free weight equipment (see Figure 2) are: 1) barbells, which are long 
metal rods to which adjustable or fixed weights can be attached, 2) dumbbells, which are 
short barbells which you can hold in your hands, and 3) exercise benches where you can 
lie down or sit to perform exercises.


	 Exercise machines (see Figure 3) exist in many varieties and some of them are: 1) 
Cable machines which require the pull of a cable with a handle and 2) Special machines 
which allow a very limited range of possible motion, controlled by the machine.


Fig 3, Exercise machines (Cable machine on the left and Special machine on the right) 
Image Source: [3]


	 After discussing common equipment, we will now discuss muscles and muscle-
groups. The main body parts and muscle groups being exercised, with their Latin names, 
are the following (starting from the bigger muscle-groups to the smaller ones): 


Page  of 13 108



1) The Thighs - Upper Legs (this body part includes (in Latin terminology) the 
Quadriceps and Hamstrings muscles), 


2) The Back (includes the Latisimus and Trapezius muscles), 

3) The Chest (includes the Pectoralis muscles), 

4) The Shoulders (includes the Deltoid muscles), 

5) The Outer Arms (includes the Triceps muscles), 

6) The Inner Arms (includes the Biceps muscles), 

7) The Forearms (includes the Brachioradialis muscles) , 

8) The Calves - Lower Legs (includes the Soleus muscles) and 

9) The Midsection (includes the Abdominal muscles or “Abs” in short).


	 There are exercises that train only specific muscle groups, and these are called: 
isolation exercises, while other exercises can train 2 or more different muscle groups at 
the same time and are called: compound exercises. [4, pg. 161] For example, with one 
compound exercise one can exercise both the leg and back muscles. 


	 The workout routines (or programs) themselves are categorised based on how many 
workout sessions they include. The more advanced the athlete, the more sessions he will 
need in order to complete his workout routines. The reason for that is that he spends 
more time on each muscle group, doing more exercise sets, etc., so he needs to have 
more sessions often in different days in order to complete the whole exercise routine. 


So we have the following types of routines or exercise plans: 


1) Full-body (1-day) routines: here the person trains all the muscle-groups for a little bit 
(one set per exercise), in one training session. This is intended for beginners. A rest 
day follows the training session and then the program is repeated with different 
exercises this time, again covering the whole body.


2) 2-day split routines: here the training of the 9 muscle groups is separated into two 
different days, so that the muscles can be trained individually more intensively each 
day. Then a rest day follows and the two-day routine is again repeated but with 
different exercises.


3) 3-day split routines: the training program is split into three separate days and this is 
intended for people who have advanced to intermediate level. Again a rest day follows 
and the routine is repeated with the same exercises for several weeks.


4) 4-day split routines: the program is split into four days or sessions, and is followed 
by a rest day before it gets repeated again.


5) 5-day split routines: the program is split into five training sessions, (this is for more 
advanced athletes) and after a day of rest, the program will be repeated again.


6) 6-day split routines: the program is split into six training sessions, followed by a rest 
day and then repeated as usual. [4, pgs. 86-91]


Page  of 14 108



2.2.2 Basic Weight Training Principles 

	 Now, we will discuss the most known and basic athletic training principles for weight 
training, as these were collected from our study of the domain: 


• PRINCIPLE #1. “In order for the muscles to grow, they must be repeatedly 
subjected to increasing forms of physical stress”,


• PRINCIPLE #2. “Sufficient rest time must be taken between workouts, for full 
recovery to take place” - [4, pg.76]


	 The reason for these two principles, is that without increased stress you cannot 
achieve increases in strength in the muscles and it is of vital importance for the muscles 
to have adequate time to rest from this stress and grow in strength. This is based in the 
theory of the General Adaption Syndrome, as described in the Introduction. [12]


	 Since in our own case we are more interested in principles related to creating 
Exercise programs, we will point out the most relevant principles for creating such 
programs:


• PRINCIPLE #3. The major (bigger) muscle groups should not be trained more 
than about 2 times a week, while smaller muscle groups (eg. Abs, Calves, 
Forearms) can be trained up to 6 six times a week. [2, pg. 24] [4, pg.77] [12]


	 The reason for this principle is that rest and nutrition are important in order for the 
muscles to recuperate from a heavy workout and increase in strength. Daily intense 
training of the same big and major muscle groups will inevitably result in weaker and 
traumatised muscles, as there is not adequate time for the muscles to properly 
recuperate from the intense training. Smaller muscles on the other hand are more dense 
and recuperate much faster.


• PRINCIPLE #4. Bigger muscle groups require about 4-5 different exercises to be 
fully trained while smaller ones require only 2-3 to be fully trained with an 
exercise routine. [4, pg.67] [2, pg.73] 


	 The reason for this principle is that bigger muscle groups (like Legs) are composed 
of more muscles that need to be stressed and trained in many different ways (using 
different exercises) in order to fully develop.


• PRINCIPLE #5. Exercises for the same muscle group should be performed 
together (one after the other) for maximum gains to be obtained. [1, pg.98] 

	 By doing exercises of the same muscle group together or in a sequence, more blood 
in flushed into the same muscles, which results in accelerated growth. While when mixing 
muscle groups the blood leaves the area and the gains are smaller.


• PRINCIPLE #6. Exercises for the bigger muscle groups should be done early in 
the training session, while small ones (eg. forearms) should be left last. [1, 
pg.72-3] 

Page  of 15 108



	 The reason is that in the beginning of the training session one’s energy levels are 
higher and it is easier to train the big muscles at that time. As the workout progresses one 
gets more and more tired and can only train small muscle groups in the end, which 
require smaller energy levels.


• PRINCIPLE #7. As a person advances in training, he should split his routines into 
more and more separate days. [4, pgs. 86-91] 

	 The reason for that is, as a person advances and trains heavier, using more sets and 
weights, the muscles will require more training time and resting period between training 
sessions. The solution to that is to separate the training of different muscle groups in 
different training sessions, so that there will be more time to spend on each muscle and 
longer time intervals between the training of the same muscle groups and in this way 
there will be no fatigue and overtraining of the muscles, despite the heavier volume of 
training.


• PRINCIPLE #8. Training routines should be changed occasionally (on the average 
every 4-6 weeks) in order to avoid plateaus and keep one interested and 
continuing to make gains. [2, pg.70] 


	 The reason for this, is that a routine followed for too long would make one adapted 
to it, and result in training plateaus and diminished gains. See: the General Adaption 
Syndrome and the Linear and Non-Linear Periodisation Approach. [12] [13] So the 
solution is to change the exercise programs after a few weeks and use different exercises.


	 From all these principles we can see that there are rules that can be extracted about 
HOW OFTEN different muscles should be trained, HOW MANY EXERCISES they require 
for their training, HOW MANY DAYS the program should take to complete, and what 
should be the CORRECT SEQUENCE of exercises in an exercise program. 


	 We will be using these principles when we design our automated software solution.


2.3 Existing Software Solutions 

	 In this last section we will review existing software solutions for recommending 
weight training programs and we will discuss their apparent advantages and 
disadvantages. 


	 One can find many software solutions on the market offering recommendations of 
training programs and we chose some of them based on the following criteria: 


	 1) We chose solutions with high-rating on the App Store or Google Play Store, as 
voted by the users, 2) we chose solutions based on their overall scope which was the 
“weight-training” type of fitness activity, 3) we chose solutions that we had personal 
familiarity and experience in their use for many months, and 4) we chose solutions based 
on the variety of approaches they take in solving the problem of exercise 
recommendations for users. 


Page  of 16 108



	 Here are the four chosen existing solutions:





Figure 4, The Fitplan app


2.3.1 Fitplan - Gym and Home Workouts 

	 Fitplan with a rating of 4.7 (see Fig.4) uses a variety of known personal coaches or 
trainers which you can choose from when you want to have a workout recommendation.  
These known coaches will recommend training programs which you can then do to 
achieve certain stated goals (eg. train at home, lose fat, etc.) 


	 The exercise instruction is all done through HD videos and you can keep logs of your 
progress as you go along- also through your own smartwatch. All this functionality is 
offered for 7 days for free and then an annual subscription of $84 per year will be required 
in order to continue using it. [6]


	 It is obvious here that there is no specific automation with the plans recommended 
and little direction on how to choose the next most appropriate program.  You are only 
expected to manually choose your favourite coach who will propose some routines to 
help you achieve some current fitness goal. You also do not create any personal profile of 
your own workout preferences.


Page  of 17 108



Figure 5, The JEFIT app on phone and watch


2.3.2 JEFIT - Workout Planner Gym Log 

	 With this software (Fig.5) you are recommended specific popular (among users) 
weight training workout plans or you are recommended programs based on a few goals 
(like loosing fat, gaining muscle) or based on your own level of advancement. You also 
have the possibility to create your own workout programs (if you can).  


	 JEFIT which has a rating of 4.5 on Apple store, holds a library of over a thousand 
possible exercises and you can log your workouts also through a smartwatch. 


	 Additionally you can keep some history of your progress with graphs of how much 
weight you lifted and what exercises you did in the past. When you download the app, 
there is a short free period and then you can get a premium version with a $40 per year 
subscription. [7]


	 In this app we can see there is a big variety of programs and some amount of 
personalisation and possibility to change exercises that you cannot do or you do not like, 
in the proposed recommendations. But again the choice of programs is manual and not 
automated and there is no explanation of what, if any, principles the recommended 
programs are based on. 


Page  of 18 108





Figure 6, The GymGoal Pro	 


2.3.3 GymGoal Pro 

	 This is an app we have used for quite some time. With this software (Fig.6) you have 
some ready programs recommended to you based on your level of advancement but you 
can also create your own programs and do manual changes in them as time goes on, 
which is the main emphasis of the app. It also keeps track of everything you need and 
offers graphs of all metrics so you can see how well you are achieving your fitness goals. 


	 On GymGoal Pro which has a rating of 4.5, you can also use your smartwatch to 
track your workouts and you can record your heart rate and GPS locations. A big plus is 
that there is NO yearly subscription needed, but you only pay a fixed price of $9 for 
downloading the app. [8]


	 Definitely we have some of the best tracking features here and perhaps the best 
payment plan. But again there is no personalisation of profile and no continuous 
recommendations for your next workout routine. It all has to be done manually, and the 
app relies a lot on your personal knowledge and experience. 


Page  of 19 108



2.3.4 FitBod - Weight Lifting Workout 

	 This final weight training software (Fig.7) which we also used for some months 
apparently adjusts to your current level of ability and training equipment and eliminates 
any guesswork in creating workout sessions by using its own AI capabilities. Small HD 
demo videos show you all the movements and a body-heat map is offered where you see 
the impact of your workout on your body. In this way you can see which muscles need 
more rest before they are trained again, by tracking muscle recovery percentages. [9]


	 The app which has a rating of 4.7 on the App Store seems to be the most advanced 
in terms of automation from all those that we tested.





Figure 7, Fitbod app with muscle heat-map and muscle recovery states


	 Within the app, you can also create your own personal profile including: available 
equipment, fitness goal, fitness experience, excluded exercises, etc. (see Appendix D for 
full list) and following that, you are recommended automated, sequential workout plans. 


	 When you go to their website, you can read that the recommendations are based on 
your body-heat map and training periodisation principles [13]. And you are also allowed to 
make fine-grained changes to the final recommendations. 


Page  of 20 108



	 One obvious missing elements in this software seems to be some visualisation 
graphs of your progress over time, while reaching your fitness goals, which do not yet 
exist because the app is still new on the market and under development. There is a 30 
day free testing period offered and then a $60 yearly subscription plan.


2.3.5 Conclusions 

	 From this analysis of the state-of-the-art applications, (see Table 1) we can see that 
most apps do not keep a personal profile based on which to give their recommendations 
and only 1 application on the market incorporates the principle of recommending 
automated and sequential workout routines based on personal preferences and a muscle 
recuperation scheme. 


	 Most of the apps recommend workouts based just on user popularity or popular 
coaches and maybe also based on a few training goals. The problem with popular 
workouts is that they tend to not be very personalised to the individual and often they 
require changes to fit the current user.


	 In terms of presentation, there is a wide variety of media being used for showing 
how exercises are performed, starting from simple text descriptions and expanding to 
photos, GIFs, and HD video clips. Some apps keep a history of past workouts and can 
provide graphs showing progress through time, and other apps don’t.


	 

Table 1


	 Finally, we can conclude that getting correct automated personalised 
recommendations in the absence of a personal coach is not an easy task, but it is an 
important area in helping fitness enthusiasts to progress and achieve their goals, and not 
become lost on the way.


App / 
Features

Pgm 
Automation

Recommendation Basis Fine- 
Tuning

Presentation

Fitplan No Favourite Coach, Training Goal No HD Videos, No Graphs

Jefit No Popularity, Some Personal 
Preferences

Yes Pictures, Graphs

GymGoal 
Pro

No Training Goal Yes GIFs, Graphs

Fitbod Yes Many Personal Preferences, 
Periodisation, Fresh Muscle Groups 

(Body Heat-Map)

Yes Small HD videos, No Graphs

Page  of 21 108



3. Analysis 

	 Here we will inspect what are the most applicable recommendation techniques for 
our system and what its functionality is supposed to be. We will conduct some low-fi 
tests with users and we will arrive at a requirement specification with argumentation on 
the rationale and prioritisation of the requirements with the MoSCoW technique. 


3.1 User Scenarios 
	 Scenarios describe a set of tasks that users may want to perform and give an idea 
of how technology can support those tasks. They are an important starting point from 
where later design decisions can be made, [28] and for this reason, we will describe here 
two User Scenarios that gives an idea of how we could implement our exercise 
recommendation system.


	 Scenario 1 - Beginner


	 Peter is a fitness enthusiast who just subscribed to his local gym and plans to do 
regular weight training. As he is not so familiar with the gym and what exercises he is 
supposed to do, he found an app which is supposed to recommend him how to get 
going. 


	 The app has a Settings section, where he is asked to give some information about 
himself and his gym in order for the recommendations to be adjusted for himself and his 
current environment. Peter gives the needed information about his fitness status (eg. 
male, beginner), including what equipment are available to him in his gym and what 
exercises he can do, and as a result of that he receives a recommendation of his first 
exercise program! 


	 He is happy to see that the program is tailor-made for him and that he can actually 
perform at his gym all the exercises that are described in it. He continues with his training 
satisfied in knowing that he did not need to hire a personal trainer for receiving such a 
fitting program recommendation.


	 Scenario 2 - Advanced


	 Hans has finished with his earlier exercise program which he has been doing for 
several weeks now and he is starting to realise that he has nothing more to gain from that 
and that he needs something new. 


	 But there is nothing to worry about, since with the touch of a button he can update 
his level of advancement and be recommended a new program to do, that is following the 
one he just did. He is happy to see that the new program is full of interesting and new 
exercises. Also he realises that the exercises are created with such a sequence that he 
can do them without a problem and without getting tired or giving up in the middle.


	 But as he inspects the exercises listed in his new program, he finds one exercise 
that he is not sure he would be very willing to perform due to a temporary injury.


Page  of 22 108



	 That’s not a big problem, because he can tap on the exercise and be given the 
possibility to replace it with a different one that is just as good as the last and that he is 
willing to do! After choosing the one that he likes from the list, his overall program is 
adjusted and he can just go on. 


	 He is surprised that his training becomes smooth and easy just like having some 
expert to guide him all the time on what to do next! That’s a good relief for him and he 
continues his training happily.


3.2 Use Cases 

	 From the above scenarios, we can already see the main Use Cases that we will be 
involved in (see Figure 8).


Figure 8, Use Case Diagram (made with UMLModelerPro)


	 After Log-In, our solution will provide the option of creating a User training profile 
where the user can personalise the application to his own fitness preferences. This is 
different from most of the solutions on the market today (see Section 2.3) which are 
generally not very personalised to their users. 


	 The personalisation options include: choice of recommendations for men, women 
or unisex, choice of equipment, choice of program type, choice of exercises to be 

Page  of 23 108



excluded and choice of number of exercises per muscle group (see later in section 3.4.2 
for full explanation).


	 The user will also be able to receive automated recommendations based on his 
own preferences (or the app default settings if no preferences mentioned) and the 
recommendations will be given as a sequence of exercises, collected day by day based 
on proven principles as discussed before, until the program is complete. 


	 The press of a button will create a new sequence, so that the user will not have to 
choose anything more by himself. This is different from existing solutions which require 
the user to make a lot of manual choices, may not incorporate specific straining principles 
in the choice of exercise sequences or use popularity as the way to recommend the next 
exercise program.


	 Finally the user will have the ability to fine-tune the received recommendations by 
making small, safe adjustments to them and will also be able to Log Out while his 
personal changes are recorded.


	 In the next sections, we will analyse further the main use-cases by describing the 
most relevant recommendation techniques and algorithms and also how exactly the 
personalisation can be done.


3.3 Choice of Recommendation Techniques 

	 In this section we will discuss the most relevant recommendation techniques for our 
own case and their details. We have discussed the most common techniques for 
recommendation in our previous chapter and their main pros and cons. Now it is time to 
concentrate in what will be more relevant for us and we will show the results of our 
analysis in a table (see Table 2).


	 1. The use of Collaborative filtering techniques (as described in section 2.1.1) would 
require that users give a rating to various exercise programs and we would recommend 
those programs that similar users have liked to perform in the past (highest rating). 
Although this could work to a certain extent and is being used in some systems, it is 
definitely not the best way for us to go about it. 


	 The reason for that is, that the user would receive exercise programs that worked 
well for other users, but this does not guarantee that the programs would work for our 
current user too. On the contrary, these programs could cause him quite some personal 
difficulties if the only criteria were whether some friend liked the program or not. As a 
simple example, let’s say that our user’s gym does not even have the equipment that are 
used in the friend’s program, so then the program cannot be done by the current user.


	 2. Content-based techniques on the other hand (as described in section 2.1.2) 
would recommend exercise programs that are similar to those the user had in the past, 
based on his previous behavior. The recommendations given in this way would be limited 
and would not result in enough variation and real successful training. 


Page  of 24 108



	 3. Knowledge-based techniques and specifically Constraint-based techniques are 
more suitable for recommending complex products and our exercise programs are 
definitely complex and cannot be easily recommended by the previous techniques. By 
matching all the rules and principles of the weight-training domain to the user 
preferences, we can arrive at a great variation of suitable recommendations. 


	 4. The Case-based techniques on the other hand would not be applicable, because 
we are not necessarily interested in recommending only the limited programs we have in 
our library based on similarity with user requirements. [14] We want to be able to 
construct and choose from a big variety of exercise programs.


	 5. Additionally to the above techniques, our recommender system would have to 
recommend programs with long sequences of exercises instead of just single exercises, 
because an exercise program is broken into many exercises for each muscle group and 
each muscle group in turn follows the next muscle group in an exact sequence.


	 Therefore we will need to use a technique that can provide us with a list or lists of 
exercises that are to be performed in a proper sequence, resulting in “Sequential” 
Recommendations of items, instead of recommendations of single items. 


	 6. Finally, Hybrid Systems are recommender systems where different 
recommendation techniques are combined in some way for better results. As we need to 
combine Constraint-based techniques with techniques for Sequential recommendations 
we could say that Hybrid systems are applicable to our case. 


	 Most specifically the Meta-level type hybrid systems would apply most, because we 
will have to input the personalised results of our constraint-based technique into our 
sequential technique for generating our final exercise sequences. [27] 


	 These choices we have made can be seen in Table 2.


	

Table 2, Choice of Recommendation techniques


	 As a next step to choosing the most applicable techniques, we will examine in more 
detail what types of algorithms are included in these techniques, so that we can find the 
most applicable ones for our case, just as we did with the recommendation techniques 
already.


Techni- 
que

Collabo- 
rative

Content-
based

Knowledge-based Sequen- 
tial

Hybrid Systems

Case-
based

Constrai
nt based

Weight- 
ed

Mixed Meta-
level

Appli- 
cability

Page  of 25 108



3.3.1 Algorithm for Constraint-based systems 

	 We already discussed how constrained-based systems, which are a type of 
knowledge-based system, require that an engineer encodes a deep knowledge of a 
complex domain into an executable representation and then relate customer 
requirements with item properties. What follows is the generic algorithm of how this 
happens.


	 Firstly, [15] one would collect all possible properties of the Product to be 
recommended into a variable, which we can call Vprod, and in our case it would include a 
list of all possible exercises that can be performed and be part of any exercise program 
together with their specific properties eg. what equipment they require etc. 


	 Then one would collect all the possible Customer properties which need to be 
instantiated and personalised into the specific customer requirements. This variable we 
can call: Vc and in our case it would include for example all the possible equipment that 
different customers may be using or missing in performing the various exercises. 


	 When the Customer sets his own requirements, eg. what equipments he can use, 
these instantiate the: Vc variable into specific constraints: Cc, for example: cable-
machine equipment. Another constraint: Cr  can represent possible restrictions on certain 
combinations of customer properties, eg. female customers should not use barbells as 
equipment. 


	 And another constraint: Cf can represent possible filter conditions between Products 
and Customer properties eg. certain exercises cannot be performed without cable 
equipment being available. Finally the: Cprod constant would represent an instantiation of 
Vprod and in our case would represent a specific set of exercises which CAN be 
recommended as part of an exercise program. [15]


	 So the algorithm used in Constraint-based recommender systems requires that 
these types of constants or constraints (Cc, Cr, Cf, Cprod) and variables (Vc, Vprod) are 
used in solving a constraint satisfaction problem (CSP), through instantiating the variables 
and fulfilling all of the constraints. [14], [16]


	 So, an acceptable recommendation (Cprod) in a constraint-based recommender 
system would then be: an instantiation of the variables Vc and Vprod (Cc, Cprod) which 
does not violate any of the set constraints (Cr, Cf). [15]


3.3.2 Similarity algorithms 

	 In recommender systems similarity algorithms are very widely used, as discussed 
already in section 2.1. One very common metric of similarity used in such systems (but 
not the only one) is the Cosine Similarity. [43]


	 One can create vectors from various attributes of items and compute the similarity of 
these vectors. This can be given as the cosine of the angle between the vectors, from 
which came the name: Cosine Similarity. 


	 

Page  of 26 108



Figure 9, Cosine Similarity of vectors A and B [42]


	 The formula can be seen in Figure 9, where A and B are the vectors, θ is the angle 
between the vectors, n is the dimension of the vectors and Ai and Bi are the various 
components of the vectors. Also ||A|| and ||B|| are called the “lengths” of the vectors, or 
“norms”. 


	 When the vectors are “similar”, they would then “point” in the same direction and 
the angle between them would be zero, while the cosine similarity cos(θ) would be 1. 


3.3.3 Algorithms for Sequential Recommendations 

	 As we already pointed out, sometimes the items to be recommended are consumed 
in a sequence, for example: songs in music playlists, or exercises in training exercise 
routines.


Figure 10, Search tree to solve a Constraint Satisfaction Problem (CSP) [29]


Page  of 27 108



	 In order to automatically generate such sequences of items as recommendations 
there are different methods and algorithms that can be potentially used. Here we will 
examine the three main ones which are used among others in solving song-playlist 
generation problems: 1) the Constraint satisfaction techniques, 2) the Similarity heuristics 
and 3) the Machine Learning approaches. [11]


	 1. Constraint satisfaction techniques are used in sequential recommendations 
when the sequence needs to conform to certain “rules” and constraints due to regulations 
and accepted practices. 


	 The sequence is a list of variables Vi where each variable represents the i-th item to 
be recommended on the sequence. The possible values of the variables can be taken 
from a long catalog and need to satisfy different types of constraints in order to become 
part of the list. 


	 

	 The various types of constraints used here, can be: Unary constraints that apply to 
single recommended items, Binary constraints that apply to two adjacent recommended 
items and Global constraints that apply to all of the items in the list. [17]


	 As an example, let's consider 3 variables: A, B and C which take values from the 
domain {1, 2, 3, 4}. If we set as Binary constraints that A<B and B<C then we can arrive 
at 4 possible solutions for the sequence A-B-C, as can be seen in the Search Tree of 
Figure 10. By going through all the combinations we can see that the only solutions to the 
problem are: [1,2,3], [1,2,4], [1,3,4] and [2,3,4].


	 Fig. 11, Shortest path between nodes or seeds of songs [20]


Page  of 28 108



	 These constraint satisfaction techniques are always combinatorial and constitute a 
feasibility problem. [11]


	 2. Similarity heuristics are practical algorithms which in their simplest form are 
used to compute sequences based on similarity to a “seed” item, eg. find songs of the 
same/similar music genre, rhythm etc. as the one of the seed song. [18] (A seed here is an 
item that is input into an algorithm which will then generate further items).


	 In their most advanced and sophisticated approaches, a graph is constructed over 
various seed items and the sequences are computed by calculating shortest paths 
between seeds. The whole idea here is to use a path-finding algorithm like the “travelling 
salesman” algorithm in order to navigate between seeds [19], [21], [22] (see Figure 11 for 
an example of a path finding algorithm applied to constructing a music playlist).


Figure 12, Song cluster generation [24]


	 Also, with the technique of clustering items based on seeds, one can attain both the 
objective of coherence by maximising within-cluster similarity, and the objective of 
variation by using very different seeds. [24] (see Figure 12 for another playlist example 
with item clustering). In this way clustering can help us visualise the concept of 
sequences of items within sequences of items (the seeds of the clusters).


	 3. Machine Learning approaches include algorithms like Markov Chains and the K-
nearest neighbours. 


	 Markov chains describe the sequence of possible states (or events) where the 
probability of the next state depends only on the previous one. [30] What we want to find 
is what will be the next state in a sequence of possible states, based on known 
probabilities. 


Page  of 29 108



Figure 13, Markov chain with States and Probabilities [30]


	 An example is seen in Fig.13 where after knowing the current state and the 
probabilities of transitions to other states we can predict for example the dietary habits of 
some bird animal that eats only three kinds of food. 


	 In order to optimize the model parameters (in this case the probabilities) a training 
set of observed state transitions needs to be used. From the training set one can create 
frequency counts (transition probabilities to the next state) and use them to give a correct 
weight to these transitions (or state sequences), in this way optimising the algorithm.


	 Figure 14, KNN example diagram [31]


Page  of 30 108



	 In our case the states would represent exercises and the transitions would represent 
the sequences of exercises from one to the next inside an exercise program.


	 Another algorithm that could be used is the “K-nearest-neighbours” algorithm where 
we can start with a training set of sequences of items and find co-occurances of items in 
these sequences and then calculate the similarity (or nearness) between a these training 
sets. [23] Then, based on certain given “seed” items, one can find the best sequences 
that are most similar (or nearest) to the seeds. (See Figure 14 for an example of KNN 
finding the nearest neighbour of a given item for purposes of classification).


	 Such machine learning approaches, though, would tend to generate only previously 
observed (similar) sequences of high popularity (highest observed frequency or 
probability) and this would result in our case in recommending very popular programs 
where the diversity element would be missing. [10] We would also have to have a training 
set to train our algorithm too, which at this point we don’t.


	 In our case, we want to be able to set certain rules according to our training 
principles about how to choose and create sequences of exercises, so the constraint 
satisfaction techniques for sequential recommendations will be the most useful. We also 
want to be able to give different “seeds” of muscles for clustering exercises in different 
muscle groups, so the similarity heuristics with item clustering will also work well. And we 
finally want to be able to compute similarity between exercises, so the cosine similarity 
algorithms are useful also. 


	 On the other hand, the machine learning approaches as we already explained, will 
not be appropriate at this stage to give us the results that we want. 


	 So, based on the above analysis we have arrived at a choice of the most applicable 
algorithms that we will use for doing our recommendations. (see Table 3)


Table 3, Choice of recommendation algorithms


	 In the next section we will analyse how we can start building a prototype for 
recommending exercise routines, with the first step being the creation of a knowledge 
base and methods to elicit customer requirements.


Page  of 31 108

Algorithm Constraint- 
based 
systems

Cosine 
Similarity

Constraint 
satisfaction 
techniques

Similarity 
Heuristics

Machine 
Learning 
approaches

Applicability



3.4 Constructing a Knowledge Base 

3.4.1 Exercises & their combinations 

	 As a starting point for our recommender system, it would be necessary to 
accumulate a knowledge base starting with all the potential training exercises that can be 
recommended in a weight-training exercise program and what the specific attributes of 
each exercise are (what equipment are needed, what muscle groups are affected by the 
exercise, etc.) This is a necessary part of the Constraint-based technique algorithm as 
has been discussed in chapter 3.2.1 and refers to the variable Vprod, where the product 
to be recommended is sequences of weight-training exercises or ”workout plans”.


Table 4, Weight-training Exercises & Properties Excerpt (see Appendix A)


	 After an in-depth study of available material about the domain [1] [2] [3], which 
included an encyclopaedia of weight training and other relevant books by recognised 
trainers, such a knowledge base was collected and the results can be seen partly in Table 
4. (The full 6-page Table is available in Appendix A).


	 This table in its complete form contains 70 basic weight training exercises that cover 
all the main muscle-groups of the human body, together with 95 more exercise variations, 
which makes a total of 165 exercises which can be used as an input to our 
recommendation system for recommending weight-training programs. 


	 These can be further broken down to: 23 chest exercises, 16 for outer arms, 22 for 
the back, 14 for inner-arms, 8 for forearms, 22 for the shoulders, 27 for mid-section, 26 
for legs an 7 for calves. Their variations are dependant on the different types of training 
equipment can be used, on the bio-mechanical position of the body (angle of motion) 
during exercise and whether the exercise is intended more for male or female users or 
both.


Page  of 32 108

Hip Extensions Legs (Glutes) Females - - Cable Machine/
Special Machine

2

Hip Raise Legs (Glutes) Females - - Barbell 1

Leg Curls Legs (Hamstrings) Men/Females - - Cable Machine/
Special Machine

2

Stiff Leg Deadlifts Legs (Hamstrings) Men/Females Back - Barbell/Dumbbell/
Smith Machine

3

Hip Abductions Legs (Outer Quads) Females - - Cable Machine/
Special Machine

2

Hip Adductions Legs (Inner Quads) Females - - Cable Machine/
Special Machine

2

Calf Raises Calves Men/Females - - Barbell/Dumbbell/
Special Machine

3

Calf Presses Calves Men/Females - - Special Machine 1

Seated Calf 
Raises

Calves Men/Females - - Barbell/Smith 
Machine/Special 
Machine

3

165

Muscle Group Men/Females Extra muscle groups Variations of Angle Equipment variation Total VariationsExercise

�3



	 The output of our system needs to be a training program with a recommended 
sequence of exercises that will be constructed in a way that follows the customer given 
requirements. When the workout goal has been accomplished (after some weeks), a new 
program can be recommended to follow up the last one. 


	 Consulting our Principle #4 (see section 2.2.2) each training program will finally 
contain by default 32 exercises, which will cover all of the 9 muscle groups, in a 
proportion of: 4 Chest exercises, 5 Back exercises, 5 Thighs-Legs exercises, 4 Shoulders 
exercises, 3 Outer-Arm exercises, 3 Inner-Arm exercises, 3 Calves exercises, 3 Forearm 
exercises and 2 Abdominal exercises, which equal: 32 exercises in total.


	 To make sure that we have a knowledge base that can give us an adequate amount 
of recommendations with high degree of novelty (not the same exercises again and 
again), we will need to calculate for each exercise group: how many combinations C of 
distinct exercises n (which can only be used once in each program) can exist when taken 
in the default amount of r at a time, as described above per muscle group. This can be 
given by the combinatorial equation nCr = n! / r! (n-r)! as seen in Figure 15 [32]: 


Figure 15, Combinatorial Equation [33]


	 So eg. for the chest muscles for which we have n=23 and r=4, we can have: 23!/ 4! 
(23-4)! = 8855 combinations of 4 chest exercises. Calculating that for each muscle group 
we get the combination amounts shown on Table 5.


Table 5, Combinations of exercises per muscle group


	 When considering the exercises for each muscle group independent from each 
other, the total number of unique exercise programs that can be constructed then from 
our knowledge-base are: 65780 * 26334 * 8855 * 7315 * 560 * 364 * 351 * 56 * 35 = 
15,734,979,985,584,545,279,193,600,000 programs of 32 exercises in each one. 


Muscle 
Groups Legs Back Chest Shoulders Triceps Biceps Abs Forearms Calves

Combi-
nations 65780 26334 8855 7315 560 364 351 56 35

Page  of 33 108



	 This gives enough room to generate an almost infinite amount of programs and 
making sure that the users will not become adapted and stagnant by only doing very 
similar exercise routines.


	 These default values (amounts) of exercises per muscle though, will be possible to 
be changed (configured) to a certain degree by the customers who want to put special 
emphasis on certain muscle groups that are lagging behind and have not been trained in 
correct proportion with the rest, or muscle groups which need extra development due to 
necessities of a specific sport.


3.4.2 Personalisation Options 

	 In order to personalise our solution and collect some initial customer requirements, 
we will need to provide a list of questions which when explicitly answered will give us the 
specific customer attributes or properties that will be used to filter our possible 
recommendations into a smaller set, that satisfies the customer requirements (see section 
3.3).


	 The questions that will be asked will constitute the customer variable Vc (see section 
3.3.1) in our knowledge-base and the answers will constitute the customer constraint Cc. 


	 According our Scenarios (see section 3.1), the questions that will be asked are the 
following:


1) Do you want to receive recommendation plans intended only for men, only for 
women or unisex plans? 

	 The rationale here is that there are certain exercises that are applicable especially to 
females (eg. Exercises that target the hips and legs areas which are usually weak areas 
for females) and there are other exercises that are more applicable to men (eg. Exercises 
that strengthen the neck and upper-body areas). Depending on the outcome of this 
question, certain exercises that are not applicable for the user can be removed from the 
constraint satisfaction solution of our recommender system, by adding a filter constraint 
Cf (see section 3.3.1).


2) Which types of equipment are unavailable to you for your training? 

	 Obviously it would be impossible to do training without the necessary equipment, so 
exercises that require equipment that are not available to the customers, will be removed 
from the constraint satisfaction solution also.


	 As we are dealing with a weight training solution, we will assume that the users have 
the basic equipment of barbells and dumbbells, otherwise we would not be able to 
recommend any workouts at all. But there are certain gyms that do not provide all the 
types of machines for training, (eg. cable machines) and the user will be able to choose to 
exclude exercises that require these types of equipment that may be unavailable.


Page  of 34 108



3) Which of the listed exercises you would not be able to perform (i.e. due to injury, 
inability, dislike, etc.)? 

	 The exercises that cannot be performed for any other possible reasons, will be also 
removed from the solution set, by use of the same filtering method.


4)   What type of exercise program do you need based on your level of advancement 
in training (beginner, intermediate, advanced, etc.)? 

	 Here we are trying to find out what is the level of experience or advancement of the 
user into weight training, so that we will start our recommendations with types of 
programs that fit that level, and so guide him gradually into higher levels of development.


	 This question will adjust the output of the recommended program to fit a different  
schedule format, as described in sections 2.2.1 (types of routines) and 2.2.2 (Principle 
#7). It will split the result into consecutive blocks (workout sessions) to be performed in 
the recommended sequence while fitting the level of advancement of the user.


5)   Is there some muscle group that you would like to target more or less than the 
usual (the default) and how much? 

	 Here we will present our default values of the number of exercises per muscle group 
as described in the previous section (see 3.4.1) and we will give a possibility to the Users 
to adjust these values in case they have special needs to stress a muscle group in 
different proportion than the others.


	 As a final note, it is important to mention that the personalisation options described 
above are an Optional step and a user will not have to answer any of these questions or 
create any profile in order to get recommendations for exercises.


3.5 Automated Exercise Sequence Generation 

	 In order to set up an automated exercise sequence generation, we need to clarify 
the rules and principles based on which this sequence will be created. For example, on 
music playlists one can generate a sequence based on songs of the same genre, rhythm, 
artist, etc. In our case, because we are dealing with biological factors, we will need to rely 
on the main training principles of the weight-training field, as we have described them in 
section 2.2.2 and which have been proven through years of practice and related research.


	 Some of the principles are related with sequences of exercises and the main ones 
that we will use are Principles #3, #5, #6. Per these, we need to group exercises for each 
muscle group together, starting with the bigger muscle groups and we must make sure 
that especially the bigger muscle groups do not get trained many times in the same week, 
so they can have time to rest from training and grow [2] [4]. 


	 So when we are going to train the next muscle group in an exercise sequence, we 
will need to choose the muscle group that is the most fresh and which has been trained 
the least so far! If we would choose muscle groups which already had a lot of training 
recently, we would end up with tired, painful muscles and no actual progress, as we 

Page  of 35 108



already described. So a good solution would recommend a sequence of muscle groups 
to be trained, which had the least amount of training so far. 


	 To accomplish this, one has to know and keep track of how much each muscle 
group gets Trained and this could sound easy but it is complicated by the fact that there 
are many “compound” exercises (as we explained in section 2.2.1) which train many 
different muscle groups at the same time! So the choice of exercises for one muscle 
group has a compound effect on how much another muscle-group gets trained!


Table 6, Exercise training effect on muscle groups excerpt (see Appendix B)


	 To know how much each exercise affects each muscle group, we will need to extract 
this information from a thorough study of the domain [1], [2], [4] and we will then represent 
it in a new Table made by ourselves, which can be seen partly in Table 6 (and fully in 4-
pages in Appendix B). This table lists all the main exercises by muscle group (without 
their variations - which have the same values) and it contains a rating or value of how 
much each exercise affects or trains the same and other muscle groups. 


	 Those muscle groups that do not get trained by the exercise will get rated with a 
value of 0, those that get trained the most by the exercise (the Primary Muscle Groups) 
will get rated with a value of 2 and those that get trained a little, will get rated with a value 
of 1. These values, although they are an approximation, are still based on proven bio-
mechanical factors [4].


	 As an example: an exercise that is called “Deadlift” primarily trains the lower Back 
muscles, but because it is a “compound” exercise, it trains also the upper Leg muscles. 
One would perform such an exercise normally together with other similar exercises that 
train the Back muscles (Primary Muscle Group), as per Principle #5 (see section 2.2.2).


Page  of 36 108



	 When the time comes to train the Leg muscles, perhaps in the same session, the 
Legs have already been trained a little by the “Deadlift” exercise, so in order to avoid 
overtraining the Legs per principle #3, the Leg exercises have to be moved later in the 
sequence of training sessions, so that there will be an adequate rest interval between Leg 
training sessions and another more fresh muscle-group will be chosen instead.


	 The techniques and algorithms that we will use to accomplish that (as per section 
3.3.3) are the following:


	 First, we will be using Constraint satisfaction methods to determine our sequences 
by implementing the following constraints:


	 1) Unary Constraint: 


• Each unit exercise used in recommendations must come from the list of personalised 
exercises that has been filtered per the user requirements (if the user did any 
personalisation). This means that the results gotten from personalisation (see sections 
3.3.1 and 3.4.2) will be input into the exercise-sequence recommendation algorithms 
in our Meta-level Hybrid recommendation system (see Table 1).


	 2) Binary Constraint: 


• Adjacent exercises in the same cluster must be of the same muscle group, per our 
Principle #5 (see Section 2.2.2) until the maximum limit is reached for the muscle 
group per the user requirements and per Principle #4 by default.


	 3) Global Constraints: 


• Each new exercise program recommended must contain a lot of new exercises, per 
Principle #8, so the exercise list must be shuffled each time to ensure adequate 
degree of Novelty. 


• The total training of the muscles for the whole program (and for each exercise day), 
must not exceed the limits set per user requirements or by default per Principle #4.


• The amount of training days it takes to complete the exercise program must depend 
on the advancement of the user, as per the user requirements and Principle #7.


	 Then, we will be using Similarity Heuristic methods to determine: 


1) the “seeds” in our sequences (which in our case will be: the next muscle group to 
be trained), 


2) the “cluster” of exercises that will go together with the “seed”, and also:

3) the “replacement” exercises that will replace a recommended exercise, when a 

user wants to do fine-adjustments to his program.


• The “seed” muscle will be the most FRESH muscle group (the one with the least 
training) as much as possible, in order to avoid overtraining (especially the big) muscle 
groups, as per Principle #3.


Page  of 37 108



	 By keeping track of how much each muscle group gets trained by each exercise 
(based on the training values we have given as per Table 5) we can use our intelligent 
algorithm to find the muscle group that had the least training and make that our next 
“seed” muscle. This will be the most “distant” (in terms of amount of training) muscle 
group, from the previous one in our sequence.


• The cluster of exercises that will follow the “seed”, will be determined based on the 
simple similarity attribute of “belonging” to the same muscle group (cluster), as per 
Principle #5.


• The exercise which will replace an already recommended exercise in the sequence of 
a program, will be determined based on similarity of how much it affects (trains) all the 
other muscles, as given on Table 6. The reason is so that it does not cause 
unnecessary overtraining to another muscle-group in the sequence. 





Fig. 16, Wireframes of the Log-In and Settings Page (made with JustInMind)


Page  of 38 108



	 Using the exercise training vectors provided in Table 6 (9-dimensional vectors), we 
can calculate the similarity between exercises with the help of a similarity metric like the: 
Cosine-Similarity (see section 3.3.2). The exercises with the highest cosine-similarity to 
the one the user wants to replace, will be recommended in a sorted (ranked) list.


	 So even if the user gives the feedback that he wants to have changes in the 
recommended program, the algorithms can take this into account and provide improved 
recommendations for each individual user.


3.6 Hi-Fi Wireframes & Low-Fi Prototyping 



Fig. 17, Wireframes of the Recommendation Page for Days 1 and 5 

(made with JustInMind)


Page  of 39 108



	 As a next step, we wanted to create a first prototype and conduct some user studies 
to find out what the users think about our user interface, personalisation choices and the 
overall functionality of our solution and if they have something they want to contribute on 
these themselves. Then we can include the results of these tests into our Requirements 
Specification for our final solution.


	 We started off by creating some original wireframes which we can use in the tests. 
Wireframes can show the user interface, the functionality that is available and the 
behaviour of the proposed software, without including any actual code. Hi-fidelity 
wireframes (like the ones we used) can be computer generated, they show greater details 
and can also be interactive. [36] So we decided to go with high-fidelity wireframes while 
the resulting prototype had no code behind it and was therefore: “low-fidelity”.


	 The wireframes were made with a wireframe prototyping tool called 
“JustInMind” [35].  They concern the User Interface of a mobile solution because our 
solution is more likely to be used when the user is mobile at a gym. 


	 Our first Hi-fi wireframes made with “JustInMind” show the Log-In and the Settings 
Page (Figure 16) where all our personalisation happens.


	 Specifically, the user here will have the opportunity to personalise the solution by 
adjusting: the types of equipment that are being used, the type of the program he will 
receive, any exercises that cannot be performed, the number of exercises per muscle 
group and whether the program is for men, women or unisex, exactly as described on our 
section 3.4.2 about Personalisation.


Figure 18, Interactive Simulation of our Low-Fi prototype published on the Web


Page  of 40 108



	 Finally, there will be a Recommendation Page where the User will receive his 
recommended exercise program Day by Day (Figure 17) and he will be able to make some 
adjustments in case he does not like certain exercises recommended. The solution should 
then be able to recommend other equally good exercises.


	 When that original program is completed, the “Next Program” button can be used to 
provide a new program that is recommended as a sequence to the last one. Again 
adjustments can be possible for individual exercises, if this is wanted (Fig.17).


	 These wireframes were combined into an interactive simulated Low-Fi prototype 
with the help of our tool, which can be used for testing. The interactive prototype 
simulation can be published publicly on the web, and we are given a web-link which we 
can use to interact with our simulation online through a browser (see Fig.18).


	 Based on such a prototype, we can construct a Walk-Through or Think Aloud test 
[51] where we can record the opinions of users, as it will be described in the next section.


3.7 Setting-up User Studies 
	 


	 In order to find out if our proposed solution makes sense for the users, if the user 
interface is acceptable and whether any adjustments need to be made in regards to 
design and functionality, we want to perform a Think-Aloud Usability test. [55]


	 In Think-Aloud tests the users are using the software through the prototype while 
verbalising their thoughts. In order to do that, they have to be given specific tasks to 
perform and then let to do the talking. [34] 


Figure 19, Screening questions (taken from screenshots)


Page  of 41 108



	 Due to social distancing regulations imposed by the state in order to deal with a 
virus epidemic, these tests had to be performed remotely (online). We chose a platform to 
help us with that, called “Validately”, which offers possibilities for Remote user testing and 
automated reporting. 	 


	 With “Validately” software, one can build and perform moderated or unmoderated 
user tests. In moderated tests a moderator observes the test participant and asks 
questions in real-time while in unmoderated tests the participants are left alone to 
complete the tests on their own time. [37]


	 We took the option of performing unmoderated studies in the beginning, due to the 
advantages in recruiting participants who can perform the test at their convenience, 
without putting a big stress on their schedules by arranging real-time meetings.


	 The unmoderated study is based on specific tasks to be performed while using a 
website or prototype through a web browser. At the same time there can be video and 
sound recording through screen and microphone sharing.


	 Through “Validately”, we gave specific instructions for each task, which need to be 
followed while “thinking aloud” on the microphone. After each task, additional questions 
were posed to collect more information verbally or in writing. These questions may require 
a rating or may be multiple-choice or just answered in simple words. When all the tasks 
are completed, we added some follow-up questions at the end. 


	 Before a study is started, we made sure there are some “screener” questions to be 
asked to the participants to ensure that we are dealing with the correct target audience 
and that the participants are qualified for the test. (Fig.19)

	 


Figure 20, Some of the greeting and instruction screens (screenshots)	 


Then they see a greeting from us, to introduce the purpose of the study (Fig.20), and then 
there are some demographic questions to find out which parts of the population we cover 

Page  of 42 108



and some general behavioural information, before we start with the tasks to be 
performed.


Participant Screening 

	 The target group for this test are people who have done training with weights in 
order to be able to understand most of the tasks, and of course those who are willing to 
have their computer screen and voice recorded, in order to collect the necessary 
information.


	 So the 1st screening question (see Figure 19) asks whether the participant has done 
training with weights in the past and also if he has done any other types of exercises like 
yoga etc, or if he never exercises. In case he never exercises or never done weight 
training, he will be automatically screened and cannot proceed with the rest of the test.


	 Same happens on the 2nd screening question, where the participant is asked for his 
consent to be recorded through microphone and screen capture and also for his 
willingness to install needed Chrome extensions. He will be screened from the study if he 
is not willing to give consent to any of these points.


Greeting and Instructions 
	 

	 After the screening, the participants are presented with some important information 
about the type and purpose of the test and they are also given a tutorial on how the test 
will be conducted and on how to set up their computer and browser for it. (see Fig. 20)


Pre-study Demographic Survey 
	 

	 The next part includes some demographic survey where we want to find exercise 
habits by asking how often they exercise and what training tools (if any) they use to help 
them along. (Fig.21)


Figure 21, Surveying participant habits


	 


Page  of 43 108



Figure 22, Demographic questions


	 Later on, we ask about their age bracket and place of residence. With these 
questions we get a better idea about who the participants are and making sure there are 
no obvious bias in our sample choice of participants. (Fig.22)


Tasks and Follow-up Questions 

	 From that point on, we present the interactive prototype and give the participants 
specific tasks to perform while “Thinking Aloud” (see Figure 23). These Tasks include the 
use of all the “pages” of our prototype and its user interface and after each task we ask 
more detailed questions regarding the usability but also functionality of the prototype: 
Was the task easy to perform? Were there any difficulties? Are there any suggestions of 
how it could be improved? etc.


	 The participants are expected to use the prototype, configure their Profile Settings 
and receive exercise recommendations and in the end they are asked some final follow-
up questions where they give their overall thoughts and ideas.


	 Then their test is uploaded on “Validately” servers where the recorded video can be 
evaluated by us in terms of whether the tasks were Passed or Failed, and notes can be 
kept about what the participants said or answered while “Thinking Aloud”. Finally, overall 
reports are generated with the full results from the test, for documentation purposes.


	 In the next section we will evaluate the results and then use them in our construction 
of a final Requirements Specification for our solution.


3.8 Results from initial User Study 

	 We finally got 5 respondents to do our Unmoderated “Think Aloud” Usability Tests, 
which gave us quite some insight early in the design of our solution. [38]


Page  of 44 108



Figure 23, Description of a Task during the Recording of the “Think Aloud” Test 
(screenshot)


	 The general summary of the results can be seen in Appendix C and the full 
recordings can be found in the software attachments with this report. Here we will do our 
own analysis of the results and from this analysis we will collect user requirements for our 
requirements specification that follows in the next section.


Analysing Results 

	 In our screener questions, we asked about what fitness activities our participants 
were involved in and we made sure that everyone had done some weight training. We 
also found out that some had done also Yoga, Pilates and other forms on exercises 
without weights.


	 Having qualified and screened our target group, we asked some more “pre-study” 
questions where we found that our participants exercise from once a month to several 
times per week and often use a mobile app (or less often a personal coach) to help them 
with their training. 


	 Demographically we found out that we were speaking to an audience of 15 to 60 
years olds living mainly in Scandinavia, but also we had one from Central and one from 
South part of Europe. Due to the fact that we were conducting these tests remotely, we 
had the opportunity to get results online from different countries with potentially different 
habits and behaviours. Also three of our participants were males and two were females, 
which means that we covered both sexes without a bias.


Page  of 45 108



	 Then we started giving them tasks in writing which they would have to perform 
online while being recorded on video (see Fig.23 and Appendix C for full results). From 
these tasks we were able to collect both Quantitative and Qualitative data. The 
Quantitative data were the total time that the task took to complete and also whether the 
task was performed correctly and “passed” or not. 


	 The Qualitative data were the answers that we received from the follow-up 
questions after each task. The 12 tasks given were the following:


• 1) Your first task will be to type-in an email and password (use a fake one) and 
press the button to "Log-In". 

	 The first task as seen above was related to Log-In and was passed by all 
participants. They also found it very easy to perform according to their answers on the 
follow-up question. The task took though more time to complete on average than the rest 
of the tasks (1 minute and 43 seconds) and this was because the users were still fiddling 
with the “Validately” interface and were not sure how to mark the task as “Complete” (per 
what appears from their Video recordings).


• 2) Your task is to set that the exercises that will be recommended are intended 
for BOTH men and women (Unisex). 

	 The second task which was related to personalising a profile variable, was 
completed quite fast by everyone, but 2 participants failed it because the original wording 
of the task was unclear and they understood something else than what was requested. 
The wording was subsequently corrected for the other users.


• 3) Your next Task is to set what equipment are available for weight training. You 
are supposed to mark ONLY these equipment as available: "Barbells", 
"Dumbbells", "Benches" and "Cable Machines". 

	 The third task was also completed very fast (14 seconds) and the participants 
reported no difficulties. Again two of them originally failed the task in some details 
because they misunderstood the wording of the task itself. 


• 4) The next Task is to choose the type of Training Program. For the purpose of 
this Test, you are supposed to choose a "4-days split routine" program, which 
takes 4 days to complete. 

	 The fourth task again was performed fast (16 seconds on average) without any 
difficulties reported, except one participant mentioning that he did not understand what 
the term “split-routine” meant. 


• 5) The next Task is to Set if there are any exercises that you cannot do for some 
reason. For this Test you need to choose only the exercise called: "Squats". 

	 The fifth task again was performed fast (17 seconds) and only two of the 
participants reported difficulty because they were required to choose from a list of items 
that was not alphabetised, and that caused some delay in finding the item. 


Page  of 46 108



• 6) The last Task on the Settings screen is to choose how many exercises should 
be performed per muscle group. There are 9 muscle groups listed. You are 
supposed to change only 2 default numbers: The exercises for the "Back" 
muscles need to change from 4 to 5 and the exercises for the "Biceps" muscles 
need to change from 2 to 3. 

	 The sixth task was performed also very fast (14 seconds) and without reported 
difficulties. One user failed because he did not understand the term “Biceps” mentioned 
in the task. 


• 7) Now you need to Press the Recommendations Menu-button in order to go to 
the "Recommendations" screen. Here you will see the first day of your 
Recommended Exercise Workout Program. It will include a simple list of 8 names 
of exercises, grouped together based on their muscle groups. 

	 The seventh task was the easiest. Everybody understood it and passed it and they 
completed the task quite fast (21 seconds) without any apparent confusions.


• 8) Now we suppose that you performed the exercises of the first day and the 
second day of your program. Your Task is to see the Recommendations of 
exercises for the third day (3rd) of your program. 

	 The eighth task also was passed by everyone and was completed very fast on 
average (11 seconds). No difficulties reported.


• 9) Now we suppose that you have finished all the 5 days of your exercise 
program and you are going to repeat the same program again from Day 1. Your 
Task is to continue getting recommendations for the next days of the program 
until you arrive again at the same Recommendation for Day 1. 

	 The ninth task was also found “easy” by everyone and was completed fast but one 
failed it due to the wording of the task being a bit unclear.


• 10) Now we suppose that you have performed this exercise program for several 
weeks and you need to get the next one. Your Task is to request and get a 
recommendation for the next Program to do. 

	 The tenth task was also found easy by most of them, but again one participant 
failed it. The task itself was not well understood.


• 11) Ok. Now let's say that you have arrived to the second day of your new 
program and you want to see the recommendation. When you do that you realise 
that you are not satisfied with some exercise of the 2nd day and you want to 
change it. Your double Task is: a) to see the 2nd Day of Recommendations and 
then b) request editing of the recommendation of one of the 8 exercises, and 
receive a similar recommendation (not the same) for that 2nd day of exercises. 

	 Task eleven was the most difficult task of all, taking longer time to complete (1 
minute 58 seconds), but still the majority of the participants passed it. There were some 
difficulties reported about being unsure on how to change recommendations for a given 
day. 


Page  of 47 108



	 The editing button with the “pencil” on it did not give any additional information 
about its function. There were also some suggestions that, when the editing button is 
pressed, one should see a pop-up screen with options of alternatives, instead of getting 
an immediate recommendation. And also a suggestion that there should be a cancel 
button if one wanted to delete an exercise. 


• 12) Finally your last Task is to Log-Out for the day and be directed back to the 
Log-In screen. 

	 The last task number twelve was passed by everyone, in a very short time (12 
seconds). 


	 On the follow-up questions about the whole test, on a scale from 1-10 the majority 
said that they found it very easy (rated with 9) to use the prototype in general (see Figure 
24).




	 Figure 24, Prototype overall Ease-of-Use rating (see Appendix C)


	 On comments about the the personalisation options: these were found adequate. 
Only mention was that the drop-down menus could contain a “blank” option when the 
user needed to choose “nothing”.


	 On comments about the presentation of recommendations: again the point about 
the pop-up menu for editing was mentioned and that the “graphics” design could 
become more attractive in later high-fidelity versions of the prototype.


	 Finally, on the last question about any other suggestions, it was mentioned that it 
would help to have also some visuals about how to do exercises.


Conclusions 

	 After this collection and analysis of the test results, we made some conclusions 
and tried to extract some requirements for our later work, as follows:


	 Some difficulties during the tests were observed due to some participants not 
understanding certain terms used that might require more explanation. This can be 

Page  of 48 108



handled by providing additional helpful information about the various options in the form 
of optional “notifications” for those who need them.


	 When long lists of items are presented, these need to be alphabetised for easy 
search and a blank option needs to be included when needed.


	 The recommended exercises need to include an edit and cancel button. When 
editing is requested, a pop-up is to be presented where users can choose from a list of 
possible alternatives, instead of being presented immediately with a recommendation.


	 Finally, we realised that some visuals of the exercises would need to be added to 
help the users better understand their choices of exercises.


3.9 Requirements Specification 

	 In this section, we specify our requirements based on all the analysis we have done 
so far. 


Page  of 49 108

Functional Requirements
ID Description Reason Link Priority

1 The user should be able to 
Register, LogIn and LogOut

It helps in creating 
personal user profiles

Section 3.1, 
Section 3.2

SHOULD

2 The user must be able to 
choose whether the 
recommendations will be for 
men, women or unisex. 

It creates a more 
personal profile for 
the user

Section 3.1, 
Section 3.2

MUST

3 The user must be able to 
adjust the available 
equipment

It helps personalise 
the recommendation 
to the user’s 
environment

Section 3.1, 
Section 3.2

MUST

4 The user must be able to 
choose the type of the 
exercise program

It influences the final 
recommendation and 
how it is presented

Section 3.1, 
Section 3.2

MUST

5 The user must be able to 
exclude exercises that he 
cannot do

It helps personalise 
the recommendation 
to the user’s abilities

Section 3.1, 
Section 3.2

MUST

6 The user must be able to 
adjust the amount of 
exercises per muscle group

It helps personalise 
the recommendation 
to the user’s special 
needs

Section 3.1, 
Section 3.2

MUST

7 The recommendations must 
be personalised to the user 
based on his profile (phase 1)

It makes it easier for 
the user to attain his 
own, current goals

Section 3.1, 
Section 3.2

MUST



	 We will start with the Functional Requirements which will describe WHAT our 
solution must be able to do. Then Non-Functional Requirements will describe HOW this 
must done and any limitations and constraints on how it is done. [39]


	 Subsequently the requirements will be prioritised in what MUST be done to meet 
the customer/business needs, what SHOULD be done but which is not 100% necessary, 
what COULD be done if it does not cause many problems, and what WOULD be done if 
there was enough time, but it will rather be left for a future iteration. This is called the 
MoSCoW prioritisation model. [40] (see Table 7 and 8 for the requirements)


Table 7, Functional Requirements Specification


Page  of 50 108

Functional Requirements
ID Description Reason Link Priority

8 The recommendations must 
be given in a continuous 
sequence from day to day 
and from one muscle and 
exercise to the next (phase 
2)

It takes the guess-work 
away from the user

Section 3.1, 
Section 3.2

MUST

9 The user must be able to 
request small changes on 
the recommendations, once 
they are presented. (phase 
3)

It makes the 
recommendations more 
acceptable to the users

Section 3.1, 
Section 3.2

MUST

10 The user must be 
presented with a list of best 
choices when changes are 
requested

It makes the 
recommendations more 
acceptable to the users

Section 3.7 MUST

11 The user must be able to 
delete exercises from his 
recommended program

It makes the 
recommendations more 
acceptable to the users

Section 3.7 MUST

12 The user must be able to 
request a completely new 
and novel program when 
the last one is finished

It helps in ensuring 
stable progress and 
removes any guess-
work

Section 
2.1.5, 
Section 3.5

MUST

13 The user could have the 
possibility to save his 
exercise programs for later 
use

It helps the user to not 
lose track of his 
progress

Section 3.1, 
Section 3.2

COULD

14 The user could have the 
possibility to load past 
programs that he has saved

It helps the user to not 
lose track of his 
progress

Section 3.1, 
Section 3.2

COULD



Table 8, Non-Functional Requirements Specification


	 In this specification, we try to show the reason why the requirements were chosen 
and also refer to the section of the report where this requirement was mentioned or 
previously analysed. Finally, we marked also the priority of the requirements based on the 
MoSCoW model as previously mentioned.

	 

	 After describing our requirements, with the data we collected and analysed from 
our documentary research and the preliminary user studies, we are ready to start 
designing our final solution.


Page  of 51 108

Non-Functional Requirements
ID Description Reason Link Priority

15 The system should provide 
additional information as a 
Help for users who need it

It helps in the Usability 
and Learnability of the 
solution

Section 3.7 SHOULD

16 The system should present 
long lists of items sorted for 
easy search

It helps in the Usability 
and Efficiency of the 
solution

Section 3.7 SHOULD

17 The system should include 
visuals of exercises

It improves Usability 
and Satisfaction

Section 3.7 SHOULD

18 The system must be 
designed and presented as 
a mobile solution

It fits better to the 
environment of the 
fitness user, which is 
usually mobile

Section 3.6 MUST

19 The system design could 
include a Database where 
the exercise data and user 
data can persist

It offers protection from 
loss of personalised 
information

Section 3.4, 
Section 3.5

COULD

20 The Recommendation 
techniques must be 
Constrained-based and 
Sequential

It offers personalisation 
and better automated 
recommendations

Section 3.3 MUST

21 The Recommendation 
algorithms must include 
Constraint-satisfaction and 
Similarity Heuristics

It avoids errors based 
on popularity and the 
lack of training data

Section 3.3 MUST

22 The Recommendation 
system should be 
Transparent on how it 
works

It helps to create trust 
with the users and 
encourage its use

Section 
2.1.5

SHOULD



4. Software Design 

	 In this Chapter we will present our design for the solution following the 
Requirement specification that we just outlined. We will present the System Architecture, 
the Database Model, Class diagrams and Algorithm flow charts and pseudocode.


4.1 System Architecture 

	 In the first diagram we will be describing the architectural design for the whole 
system and how the components communicate with each other. [56]


Figure 25, Architectural Design (made with VisualDesigner)


	 As can be seen on Figure 25, the solution will include the development of a mobile 
application that can be installed on a mobile device (per REQ#18) and which will handle 
all the interaction with the users.


	 The app will send user data through the internet to a remote Cloud Database (per 
REQ#19) where they will persist and also data from the weight training domain about 
exercises will be input into the database and used by the app upon request.


	 In this way we can keep many User Profiles and be able to make periodic updates 
to our solution by adding more exercise data, etc.


Page  of 52 108



4.2 Database Design 

	 Next action will be to design the data that will be held in the Database. What 
follows is a diagram of the database model as seen in Figure 26.


	 Figure 26, Database Model (made with Hackolade)


	 Here you see two collections (tables) of data: one for the Exercises and one for the 
User Profile. The first collection is supposed to contain documents (records) of all the 165 
exercises that will make up our knowledge base for this app. Each exercise document will 
contain data strings about the name of the exercise, the equipment used, if it is intended 
for men or women or both, the bio-mechanical angle of motion, the primary muscle being 
trained and the amount of training delivered to each of the 9 muscle-groups. This is data 
that will be taken directly from our Tables 4 and 6 (see Appendices A and B).


	  The next collection will contain documents of all the User Profiles. Each profile will 
contain the name of the user, the email, a photoUrl if it exists, and user requirements 
about the exercises and the program to be recommended. These include: whether the 
program is for males etc. what equipment are missing if any, what is the program type 
based on the advancement of the user, any ids of exercises that will be excluded, and 
what is the maximum amount of exercises wanted per muscle group. This information will 
be enough to personalise the recommended programs to the individual user.


Page  of 53 108



4.3 Class Diagram 

	 Next we will describe the main Classes that will be needed for our app to hold the 
necessary information that will give us the final Recommended Program - and later we 
will describe the algorithm that can be used to handle that information and give the 
recommendations. The emphasis here is on the Classes’ attributes and operations.


Figure 27, Class Diagram (made with VisualDesigner)


	 On Figure 27 we can see that we will have an “Exercise” Class which will hold all the 
necessary Exercise attributes that will specify the qualities of each exercise. These 
include the name and id of the exercise, the equipment with which it is performed, the 
variation based on biomechanics (angle of motion), if it is intended only for men or 
women, the primary muscle group that it trains and the amount of training that it performs 

Page  of 54 108



on all muscle groups per Table 5, and the cosine similarity with other exercises. These 
(165 exercises) will be aggregated into an “Exercise List” Class which can then be filtered 
according to our needs. 


	 At the same time, we will need to have a “Muscle_Group” Class that will hold the 
attributes of the different (9) muscle groups including the name, what is the maximum 
allowed amount of training to be accomplished by the exercises for this muscle group 
(MaxTraining), as well as what is the total amount of training currently accomplished by 
exercises for this muscle group (TotalTraining) and to which training day it belongs 
(TrainingDay). These will also be aggregated into a “Muscle Groups” Class which will hold 
all the muscles groups, their maximum total training and will also separate them into Big 
and Small Muscle Groups. 


	 Then we will have also a “User Profile Settings” class which will hold all the profile 
settings given by the users, including User id, Name, Email and Photo Url (if they exist), 
Then also the choices about equipments, program type, male/female/unisex, any 
excluded exercises, the total exercises per muscle etc.


	 Together with the “Exercise List” Class and the “Muscle Groups” class, the data will 
be input into the “Pgm Recommendation” class which will hold the exercises of the 
Program Recommendation, as well as: 1) the exercises that are Filtered after the User 
personalised Settings, 2) the exercises that belong to a specific training Day, and 3) the 
exercises that will be recommended as a Replacement to those that the user may want to 
change at some point.


	 After describing the data structure of our solution, we can go into the intelligence 
that will be used by describing the algorithms for filtering and recommendations.


4.4 Algorithm Flow Charts & Pseudocode 

	 The algorithm for the Recommender System according to our Requirements 
should include 3 main phases: 1) Personalisation through Constraint Satisfaction per User 
Settings, 2) Automated creation of a Recommended Exercise Program whenever 
requested, and 3) Fine-grained Adjustments to the Recommended Programs based on 
User Feedback/Request. 


	 These Phases are independent from each other and can be repeated at will, but 
they influence each other and the final results obtained. We will now describe the 
algorithm by using Pseudocode or Flow Charts for illustration, for each of these phases:


4.2.1 Personalisation through Constraint Satisfaction 

	 After our full Exercise List and the User Profile Settings have been initialised by 
reading the data from the Database, the full list of exercises will be filtered based on the 
user requirements to remove exercises that: are not intended for the user, that require 
equipment that are not available, or that the user cannot perform for some other reason, 
as described in section 3.3.3 and with the basic algorithm described in section 3.3.1.


Page  of 55 108



Figure 28, Algorithm Flow Charts for Exercise Program Personalisation 

(made with VisualDesigner)


	 As seen in Figure 28, if the User has chosen exercises “only for males” then as 
long as there are exercises in the Exercise List, the exercise’s attribute will be checked 
and if it says: “only for females” then it will be removed from the list and we will continue 
with the next exercise until there are no more exercises to check. The opposite would 
happen if the user chose “only for females”. Then the exercises with the attribute saying: 
“only for men” would be removed etc.


	 Then, in case the user has indicated that certain equipment are unavailable to him, 
then for each exercise in the exercise list we check if the exercise’s equipment is included 
in the user’s list of unavailable equipment, and if so, we again remove it from the list.


	 Finally, in the case that the user has chosen certain exercises specifically to be 
excluded, we check for each exercise on the list: if their ID matches the IDs of the 
exercises chosen by the user and if so we remove them. 


	 This process completes our filtering phase, and next we will describe the algorithm 
for the Recommendation phase.


Page  of 56 108



4.2.2 Automated creation of a Recommended Exercise Program 

	 As a first step in the recommendation phase (Figure 29), we need to initialize the 
data about the Muscle Groups and also divide them in Big Muscle Groups and Small 
Muscle Groups because as we have seen in section 2.2.2 there are some differences in 
the training principles that are applied to each. 


	 We will also initialize some variables like: the number of Training Days of the 
recommended program which depends on the type of program chosen by the User, and 
the Maximum Daily Training variable which in its turn depends on the Maximum Training 
for the whole Program as set in the Settings (default is 64), divided by the number of Days 
in the current Program (see Global Constraints in section 3.5). 


	 Then we will shuffle the sequence of the exercises in the Filtered Exercise List that 
we obtained in phase 1, as per our Unary Constraint and first Global Constraint (see 
section 3.5).  The randomization is done in order to ensure Novelty in exercise selection 
and also according to our principle #8.


Figure 29, Algorithm Pseudocode for Recommendations


Page  of 57 108



	 Next, for each Training Day we perform a series of actions in order to collect the 
right exercises that will be included in the program for THAT training day. When this 
happens for all the training days of the program, we will have a full Exercise Program 
Recommendation to present to the User. 


	 So for each day we take the following actions:


	 We initialize a counter for the Total Day Exercises for that day and for the total Day 
Muscle Training for that day. (The total Day Muscle Training refers to the total training of 
the Primary Muscles for that day and equals 2 times the number of exercises of that day.)


	 As long as the Day Muscle Training is less than the Max Daily Training for that day, 
we need to continue finding exercises to recommend for that day. We do that as follows:


	 We start with our Big Muscle Groups per Principle #6, and we sort them by least 
Total Training. (This means that we take the Fresher muscle groups first). We assign as our 
Seed Muscle Group, the first Muscle Group in the sorted list (the Muscle Group with the 
least amount of training, as per our first Similarity Heuristic in section 3.5).


	 If our Max Daily Training global constraint is surpassed by the Day Muscle Training 
plus the Max Training for the Seed Muscle Group then we should not accept this Big 
Muscle as Seed Muscle Group but we should look for a Small Muscle Group. To do this:


	 We Sort also the Small Muscle Groups by least Total Training and we take the first 
one, we assign it as Seed Muscle Group and check again our Global Constraint. If it is 
again surpassed then we do not recommend any more Muscle Groups for that day and 
break the loop for the next day.


	 Having chosen an acceptable Seed Muscle Group, we initialize the Total Seed 
Muscle Exercises variable and we start finding a sequence of recommendable exercises 
for that Seed Muscle Group. We do this in this way:


	 We look in the list of Filtered exercises for an exercise which has the Seed Muscle 
Group as its PRIMARY muscle group, as per our second similarity heuristic in section 3.5. 
This is a recommendable exercise.


	 We add the exercise to the Day Pgm Recommendation for that day and increment 
the variables of Total Day Exercises, Total Seed Muscle Exercises and Day Muscle 
Training.


	 Then we increment also the Total Training of each Muscle Group by adding the 
Training that the Recommended Exercise does to each Muscle Group. 


	 Finally we calculate the Seed Muscle Training as 2 times the Total Seed Muscle 
Exercises and if that exceeds the Max training set for that Muscle Group then we need to 
stop recommending exercises for that Seed Muscle as per the second Global Constraint 
and break that loop. Otherwise we will continue looking for exercises to train that same 
Seed Muscle Group.


	 When the loop is broken, we will check again (per the previous loop) if we have 
exceeded our Max Day Training, and if not, we will find a new Seed Muscle Group. When 

Page  of 58 108



that loop is complete, we will go to the next Day of Recommendations until we arrive to a 
complete Recommended Program.


4.2.3 Fine-grained Adjustments based on User Feedback (Request) 

	 In this final phase (Figure 30), we have the possibility to make fine-grained 
adjustments based on user request, because the user may still not like some of the 
exercises recommended, in which case we need to recommend a ranked list of the best 
replacement exercises for the one the user is not satisfied with. To accomplish this 
adjustment, we do the following:


Figure 30, Algorithm Pseudocode for Recommendation Adjustments


	 

	 First of all we initialize the Exercise To Be Replaced and the Replace 
Recommendation List where we will put our recommendations of replacement exercises.


	 To find our replacement exercises, for each exercise in the Filtered Exercise List we 
find if its Primary Muscle Group equals the Exercise’s To Be Replaced Primary Muscle 
Group, and if so we add it to the Replace Recommendation List. If not, we do not 
recommend it, because we would never recommend an exercise that belongs to a 
different Muscle Group (there is too much dissimilarity!).


	 Then, for each exercise in the Replace Recommendation List we calculate the Dot 
Product of the Exercise’s Training By Muscle Vector and the same Vector of the Exercise’s 
To Be Replaced. 


Page  of 59 108



	 Then we also calculate the Norms of these 9-component Vectors, and finally we 
calculate the Cosine Similarity (as was described in the third Similarity Heuristic in section 
3.5 and in section 3.3.2).


	 Finally we Sort the Replace Recommendation list based on the Cosine Similarity of 
the Exercises included.


	 This completes the description of our algorithms for making sequential 
recommendations based on training principles of the weight training domain. The next 
chapter is going to describe the implementation of the solution.


Page  of 60 108



5. Implementation 

	 In this chapter we will describe how we developed the software application and the 
whole solution and we will start with the Database.


5.1.1 Cloud Firestore Database & Firebase Authentication 

	 The database that we chose is a cloud NoSQL database called Firestore which is 
part of the Google Cloud Platform. [47] NoSQL databases are very scalable and open-
source which makes them easy to use and free of charge for a certain number of data. 


	 With Cloud Firestore you can share your app data among many different users and 
there are libraries for mobile development as well as for the Web. Another good point is 
that it can work in off-line mode also, which means that it does not keep users waiting for 
connection when the connection is temporarily not possible. 


	 Additionally it includes Firebase Authentication [48] which offers software libraries 
with which to authenticate your users into your app and into the database itself. One can 
authenticate users through use of password, phone number or he can use identity 
providers like Google, Facebook and others. 


	 A user who gets authenticated with Firebase Authentication will get a unique 
UserID which can be used to give him secure access to his data (see Fig. 31). Also the 
connection with the database happens over a secure https protocol. 


Figure 31, Firebase Authentication with Google IdP and User UID (screenshot)


	 The first actions that we took was to create a NoSQL data model (as seen already 
on Figure 26 of the previous chapter) and enter all our exercise data and the default user 
data into the database. 


Page  of 61 108



Figure 32, Database Collections (screenshot)


	 The result of these actions can be seen partly in Fig. 32 with our “Exercises” 
collection for exercise data and “User Profile” collection for user data. (Collections in 
NoSQL databases are equivalent to Tables in Relational databases and the records in 
NoSQL are called “documents” and they store objects of key-value pairs). Cloud Firebase 
supports documents of many different data types, including: maps, arrays, strings etc. 
Also each document is given a unique ID for easy reference.


	 After our data for the 165 exercises were entered into our database we had to use 
the provided software libraries in order to connect the database to our app and handle 
the authentication.


5.1.2 Android App Authentication UI and Android Studio 

	 The app was developed with the Java Android SDK using the Android Studio IDE 
(Integrated Development Environment), which incorporates an intelligent code editor 
providing code analysis and suggestions among many other useful features. [49]


	 Our first actions involved: creating a Logo screen, setting up the Authentication UI, 
and connecting and reading data from our Database.


	 The UI of the Logo and Authentication screens can be seen in Figure 33. We have 
chosen two authentication methods: one is with the traditional email and password, while 
the other is with the Google Identity Provider. When Google is used, we need to choose 
our account and give our permission to share some of our personal information. 


Page  of 62 108



	

Figure 33, App Logo and Authentication screens (screenshots)




	 Next, in Figure 34 we show a snippet from the code used for reading the database 
data. Reading the Firestore database is a relatively simple action: We initialize our 
exercise list and we access an instance of the Firestore database.  Then we specify our 
“Exercises” collection and use the get() method to retrieve all of the results. When this 
task is complete, we will iterate all the documents in the results in order to collect the 
data that we want and assign them to our Exercise objects and Exercise List.


mExerciseList = new ArrayList<>();
FirebaseFirestore db = FirebaseFirestore.getInstance();
db.collection("Exercises")
        .get()
        .addOnCompleteListener( (task) -> {
                if (task.isSuccessful()) {
                    for (QueryDocumentSnapshot document : task.getResult()) {             

Exercise exercise = new Exercise();   
exercise.setExerciseId(document.getId());
exercise.setName((String) document.getData().get("Name"));
.  .  . .  .  . .  .  .     
mExerciseList.add(exercise);

                    }
                } else {
                    Log.d(TAG, "Error getting documents: ", task.getException());
                }
            }
        });

Figure 34, Code snippet for reading our data from the Firestore database


Page  of 63 108



	 

Figure 35, Reading from Database as seen on Android Studio (screenshot)


	 To get an idea of how this looks on Android Studio, we provide also a screenshot 
of the code in Figure 35.


5.1.3 Recommendations and User Interface 

	 When the data have been read from the database, the app will make the first 
recommendation of an exercise program based on the default values set from beforehand 
in the user’s profile. The algorithm for these recommendations has been described in 
section 4.2.2 and the full Java code can be found in Appendix E.


	 The app assumes by default that the user is a beginner in weight training and has 
no special preferences or limitations about equipment, exercises, etc. These default 
settings can be adjusted by the user at any time, as will be described later.


	 The first recommended program is a full-body program that is done within one day 
and repeated after a day of rest but with different exercises, as described in section 2.2.1. 
This program in itself, which takes 4 days in total (including the rest days) can be 
repeated for over a month before a completely new exercise program is requested.


	 As one can see in Fig.36, for each separate day the exercises are presented as a 
list of items which are scrollable and they contain a pictorial illustration of the exercise 
and the description of the exercise starting with the main muscle group that is affected by 
it. (The exercise images were taken from the JEFIT website https://www.jefit.com/
exercises/ just for the demonstration purposes of this thesis).

	 


Page  of 64 108

https://www.jefit.com/exercises/
https://www.jefit.com/exercises/


Figure 36, Program Recommendations (screenshots)


	 On top of the screen, one can see the “ToolBar” with Menu buttons that help in the 
navigation through the app. Right under that, there are Tabs for each day of the 
recommended program and these can be used to navigate through the program as well 
as to indicate which specific day we see on the screen.


	 The exercises themselves include two buttons each. One is used for Replacing a 
recommended exercise and the other is used for Deleting it from the program, according 
to our Requirements #9, #10 and #11. Additionally the user has the possibility to request 
a completely new program per Requirement #12 and this can be done by pressing the 
Menu button with the 3 dots and choosing “New Workout” from the drop-down list that 
appears. (see Fig.36 on the right) 


	 To help the user understand better how to use the UI, we added a function per 
Requirement #15 with which when a user gives a “long-press” on a button (meaning that 
he holds it pressed for a second) then a little message appears which explains the 
function of the particular button, without actually activating (clicking) the button itself. This 
is a convention that is used often in Android apps.


	 Now we will explore some of the pop-ups of the Workout page. The first pop-up 
appears when we press the edit button to Replace an exercise (Fig. 37). What you see is 
a scrollable list of exercises with the original exercise on top and the recommended 
exercises following that, sorted based on the cosine similarity to the original exercise, as 
we described in section 4.2.3. The full Java code for this algorithm can be found in 
Appendix F.


Page  of 65 108



Figure 37, Pop-ups for Replace, Delete and Info (screenshots)


	 The next pop-up appears when we press the cancel button to Delete an exercise. 
The pop-up message will ask us to confirm the action before it actually takes place and 
then it will take the exercise out of the recommendation list.


	 The final popup will appear when we press the small “Info” button on the right side 
of the ToolBar. What that does is that it offers an explanation to the user about the way 
that the app is doing its recommendations, in order to build user trust and answer 
possible questions that the user may have. This follows also our Requirement #22.


5.1.4 Settings page and Pop-ups 

	 When the user presses the “SETTINGS” Menu button on the ToolBar he will be 
directed to the page for his personal settings (see Fig. 38).


	 This is divided in 5 sections (as we described in section 3.4.2 on Personalisation). 
The first section concerns for whom are the exercises and the user is given 3 choices as 
can be seen in the pop-up (Fig.38 middle). Depending on the choice of the user, the 
exercises will be filtered to fit the user’s constraints.


	 The next section concerns non-available equipment and the user is given a choice 
of four different categories of equipment that may not be available at his gym, etc. (Fig. 38 
to the right). Any exercises that include the use of equipment marked by the user, will be 
removed from the recommended programs.


	 Next, there is the choice about the type of program. As can be seen in Fig.39 the 
user is given 6 different types of programs to choose from. They are listed in terms of 

Page  of 66 108



level of advancement into the fitness activity and this choice affects how many days the 
program will last and how the exercises are distributed in each workout day.


Figure 38, Settings page and Pop-ups (screenshots)


	 After that, the user is also given the choice to mark any exercises that he cannot, 
or does not want to perform for any reason (see Fig. 39 middle) and these exercises will 
be removed from the recommended programs also. 


	 This exercise list includes all 165 exercises, so to make it easier for the user to find 
a specific exercise and per our Requirement #16, we sorted the list by muscle and 
exercise name.


	 Finally there is the final section where the user can choose how many exercises will 
be included in the recommended program, from each one of the muscle groups. For each 
muscle group there is a pop-up that will help the user to set the required number of 
exercises (see Fig.39 on the right).


	 We have already given default values to these exercise numbers as per our 
analysis in section 3.4.1.


	 And this completes the chapter on how our solution was implemented. The full 
code is included together with the delivery of this thesis and excerpts can be seen in 
Appendices E and F.


	 The next chapter will describe our final testing and evaluation of the hi-fidelity 
prototype solution with the help of more users.


Page  of 67 108



Figure 39, More Pop-ups for personalised settings (screenshots)


Page  of 68 108



6. Testing and Evaluation 

	 In order to control the quality of our code and ensure that our algorithms give the 
correct results, we conducted some initial code tests. Android provides two tools for such 
testing which are: Logcat and JUnit. [48] 


	 Logcat is a messaging tool that you use to print out messages or stack traces and 
find out where a bug occurs. While JUnit is an automated unit-testing framework for Java. 
For reasons of efficiency and simplicity we used Logcat in our tests, but as part of future 
work JUnit should be used for more thorough unit testing.


6.1 Code Test: Filtering exercises 

In the first phase of our recommendation algorithms, the full list of exercises is 
being filtered according to user requirements. To test that, we did a series of tests which 
among others they gave us information about how many exercises have been filtered. 

The code for these tests can be found in Appendix E and the Logcat results can be 
seen in Figure 40.

Figure 40, Logcat results for exercise filtering (screenshot)

Here we can see that the exercises were filtered from a total number of 165 to 110 
after the user indicated certain unavailable equipment, then again from 110 to 106 

Page  of 69 108



because the user indicated 4 exercises that he could not perform and finally from 106 to 
104 because the user did not want to perform 2 exercises that were labeled as: ”only for 
men”.

	 

6.2 Code Test: Exercise recommendation algorithm 

	 

	 In the second phase of our recommendation system, an exercise program is 
recommended based on our training principles. One of the main principles is that the 
“seed” muscle groups that will be chosen first will be “fresh”, meaning that they will have 
the least amount of training.


	 To test that, we used the Logcat to log the amount of training that the muscles get 
from the exercises and then print it on the screen. (see Fig 41)


StringBuilder bigGroups = new StringBuilder();
for (int bigMuscle=0; bigMuscle < MuscleGroups.getBigMuscleGroups().size(); 
bigMuscle++) {

bigGroups.append(MuscleGroups.getBigMuscleGroup(bigMuscle).getName()+" "+ 
MuscleGroups.getBigMuscleGroup(bigMuscle).getTotalTraining()+" - ");

}
Log.d("Tag", "Sorting Big Muscles: " + bigGroups.toString());

Figure 41, Logging big muscles sorted by least training


 
Figure 42, Logcat results for muscle training (screenshot)

Page  of 70 108



The results can be seen in an example in Fig.42, where we get a list of the big 
muscles sorted by least training (Triceps 2 - Biceps 6 - Chest 8 - Back 10 - Legs 10 - 
Shoulders 11) and then we choose the “seed” muscle as the muscle with the least training 
(Seed Muscle: Triceps). For the full code, please check Appendix E.

6.3 Code Test: Exercise sorting by cosine similarity 

	 In the third phase of our recommendations (see Req #9), it was important to test if 
the exercises we present to the user for replacing an existing exercise, were actually very 
similar to the original and if they are sorted by degree of similarity.


	 To conduct this test, we used Logcat to log to the screen the Vector components of 
the exercises recommended and their cosine similarity to the original exercise to be 
replaced (see Fig.43).


Log.d("Tag", "Vector : " + Arrays.toString(recommended.getTrainingByMuscleVector()));

Log.d("Tag", "Cosine Sim: " + cosineSimilarity(exercise.getTrainingByMuscleVector(),
        recommended.getTrainingByMuscleVector()));

Figure 43, Logging Cosine Similarity


Figure 44, Logcat results for Cosine Similarity (screenshot)

	 


Page  of 71 108



	 As a result of that, we received a printout in Android Studio with the values (see 
Fig.44) where we can see that the first exercises recommended have a Cosine Similarity 
value of 1.0 with the original exercise, while later exercises have a value around 0.89 
which is exactly what we wanted. For the full code please check Appendix F.


These kind of tests were done during the whole development phase to ensure the 
quality of the code and the algorithmic results were as we wanted. 

The next thing that was done in order to evaluate our results, was to conduct some 
final user tests with our hi-fidelity prototype and see what the users have to say about it. 

6.4 Final User Tests and evaluation 

With the purpose of evaluating our high-fidelity prototype in terms of user interface 
layout and usability we conducted another series of user tests.

In these final user tests, we decided to change our approach a bit and conduct 
moderated tests instead of unmoderated tests. This meant that we would have online 
qualitative interviews where we can directly talk to our users and ask them questions, give 
them tasks and find out what they are thinking about our hi-fidelity prototype.

“Validately” was used again as a platform where we still had the possibility to 
conduct a few more free interviews.

Figure 45, Moderated interviews with “Validately” (screenshot)

Page  of 72 108



	 As can be seen in Fig.45, we had the possibility to record online the user’s camera 
as well as the user’s phone screen while the user was performing our test. In some cases 
the user preferred to only have his voice recorded together with his phone screen, but in 
every case we could have a conversation with the user in real time during the tests.


	 The way we conducted these tests is that we would tell the users to download our 
app and then give the users certain tasks to perform with the hi-fidelity prototype and find 
out their thoughts and comments in a “Think Aloud” test. 


	 There were in total 3 moderated tests conducted (two on males and one on a 
female) where the users were to perform the following tasks:


1. Log on into the application with either an email and password or with the 
Google IdP.


2. Check through the whole exercise plan recommendation that they were given 
based on the default values.


3. Apply personal preferences to it, by setting some equipment as “unavailable”.


4. See and verify the results after the changes that they made.


5. Replacing an exercise that they may not like with a different one.


6. Deleting an exercise and checking the results.


7. Receiving a completely new program recommendation.


8. Log out from the app, while their preferences are being stored in their account.


	 At the end of these tasks they were also asked to give their comments and 
opinions about the app, the amount of flexibility they had to make changes and the 
recommendations they got.


Results from the tests 

	 All the participants could download our app on their Android phone and then 
download also the app from “Validately” which would help share their screen, microphone 
and camera with us. We were then communicating with them online through “Validately” 
website and we could hear and often also see each other through a small window. 
(Fig.45)


	 All the participants passed the tasks that we gave them and they gave us also 
valuable qualitative comments to think about, also for future work.


	 The first thing we found out from these tests was that the User Interface looks 
different from phone to phone, when different versions of the Android operating system is 
being used. We tested the app in 5 different OS versions and phones (3 phones from the 
users and 2 phones belonging to us) and discovered that in some cases our code had to 
change to accommodate for these API differences.


Page  of 73 108



	 Another error that was found was that when exercises were deleted from a 
recommendation and the user returned back to the same page after a while, the exercises 
were still there, because a line was missing from our code that caused the deletion to not 
become permanent.


	 One user asked for the default values in the user settings to be always visible to 
the users so they can get back to them and set them when they want to. 


	 Also, it was mentioned that it was not always obvious when a change had been 
made in the UI (eg. when an exercise was replaced, or a new program was created) and 
additional sound effects as well as notifications were added in order to accommodate for 
that point.


	 Overall, the tests added valuable contribution to the final prototype and we also 
got some nice final comments from users (see video recordings in the attachments to this 
report). 


	 For example, user Sebastian (a DTU Masters student in Data Analysis) mentioned 
during the test: 


	 “The app is well thought. It has an interesting and clean layout which I 
appreciate.” (23:40) and “I especially like the layout. Blue color encourages you to do 
exercises.” (13:15)  Also, “I appreciate that you tried to put real images of how it 
would look. So much better than having the text!” (20:50)


	 And about the recommendations, he said: “Oh, this is very cool! Is there some 
machine learning behind it, or something? Very, very nice. I like it!” (10:30)


	 Another user: Ilias from Greece mentioned: “It is very simple. I can organize my 
workout easily. Very helpful, good application!” (6:50)


Conclusion 

	 The final qualitative user tests helped us to validate our results and correct a few 
final things that were missed in the first tests. Of course this is not the end for this project, 
because there are a lot of improvements that can be done in the future as it will be 
discussed in the following closing chapters. But we got the certainty that our current 
solution is doing what we expected it to do, in the way that it was supposed to do it.


	 Next, we will make a discussion of things learned from doing this and we will end 
with an overall conclusion and description of possible future work.


	 


Page  of 74 108



7. Discussion 

	 Now that we implemented and tested our solution, we can take an overall look and 
see some more things that we have learned from doing this.


	 Personally it was a great surprise to see from the beginning how other apps were 
doing (or not doing) recommendations for weight training and realising that almost none 
had automated this function. The user had to do a lot of manual work, often could not 
create a profile of his own, and the recommendations were limited or based only on 
things as popularity. 


	 What was realised was that social recommendations was not the way to go when 
someone was serious with fitness. A professional athlete would never take 
recommendations from his friends, but only from expert coaches or authoritative books 
and sources. So, the area of domain knowledge had to be explored and techniques like 
constraint-satisfaction were found to be the most applicable to the situation.


	 Another thing learned is that the app was never meant to replace completely the 
personal trainers, because there are elements in personal training by human trainers that 
we did not even try to simulate. These elements include the continuous monitoring of the 
actions of the person who trains and the immediate response to these actions without 
requiring any direct input on the part of the person. 


	 Advanced smart trackers could go more into this area and try to understand what 
the person is doing while training and perhaps use natural language to give guidance 
when for example a person executes an exercise wrongly or could give verbal 
encouragement when a person is achieving his set goals. 


	 The app was intended more for those who do not require continuous monitoring 
and could train more or less on their own, but they do not know exactly how to go on and 
what should be their next step. This is where the app recommender can ‘shine’ the most, 
by giving useful directions when fitness enthusiasts start to get confused and start to rely 
on popularity.


	 The app could also be relevant to the trainers themselves who could use it to get 
fast ideas on workout plans they can propose to their clients during their coaching 
sessions, plans that would be personalised to each individual.


	 So I would say that there are a lot of training activities that recommender systems 
such as this can supplement, even though the human element may never be completely 
excluded in every case.


	 For sure there is a lot of room for improvement in such systems, so that they can 
become highly useful to their users to the point that they would not think of exercising 
without using something of the sort to log their progress and get guided along. We are all 
curious to see what the future will bring.


Page  of 75 108



8. Conclusion  

	 We started this project with the question: “How can a recommender-system 
application support fitness enthusiasts by producing automated and personalised weight-
training exercise plans based on proven training principles?”


	 Additionally, we set some sub-questions like: Which recommender techniques can 
be used?, What type of domain information about fitness training will be needed?, How 
can the application be personalised?, Which recommendation algorithms are applicable?, 
How can the application be designed, implemented and tested?


	 In terms of recommender systems, we did an analysis of the various popular 
recommendation techniques and found that the Constraint-based systems are very 
applicable to this case as well as systems for doing Sequential Recommendations of 
items. 


	 In terms of domain knowledge about weight training, we found out that we need to 
know about exercise principles: how many exercises need to be performed on which 
muscle groups and how often, what is a correct sequence that these exercises should 
have, also what equipment can be employed and what is the effect of these exercises on 
the muscle groups. We answered these questions by distilling the relevant information 
from various professional domain sources.

	 

	 In regards to how the application can be personalised, we proposed 5 ways this 
can be done (of course there can be more) but we found out that these 5 ways already 
gave us a lot of flexibility and they were happily accepted by the users that tested it.


	 On the applicable recommendation algorithms, we found that Constraint 
satisfaction algorithms, Similarity heuristics and Cosine-similarity algorithms were the 
most fitting for our case. With these algorithms we can do the recommendations that we 
need in an automated way and save a lot of work and pondering by the users.


	 On how to design, implement and test the application, we conducted moderated 
and unmoderated user interviews, we collected our requirements, we used UML diagrams 
and we built various prototypes until we had something that was highly workable as an 
Android fitness application.


	 By the end, we had achieved all of our set requirements (with the only exception 
the extra function to load and save workouts) and we had an app that offered a basic 
level of automation and flexibility that many existing apps on the market were not able to 
offer us. 


	 


Page  of 76 108



9. Future Work 

	 In the prospect that this project would be further developed in the future, there are 
some things that would need to be done in order to improve the overall service. We will 
sort them by the titles of Additional functionality for the users and System capabilities for 
what improvements the overall system may need.


Additional Functionality: 

	 Creating personal detailed workouts: Users could also have a possibility to create 
their own workouts from scratch, if that is what they wish, and they could keep track of 
other metrics like the amount of repetitions and sets they perform for each exercise, the 
weight that they use, and others. 


	 Storing workout data: In terms of functionality, another thing that would be useful 
for future work is permitting users to store their exercise plans into the database and 
retrieve them in the future when they need them again. The user settings are already 
stored and this can be extended to the user workouts themselves.  


	 Progress graphs: Users could be able to create graphs of various metrics related to 
their exercises and in this way be able to see their progress over time in achieving their 
training goals.


	 History tracking: Historical data of completed workouts and metrics could also be 
recorded and user achievements could be shared on social media for others to see, if the 
users so requested.


	 More detailed exercise information: Additional types of exercises and high 
definition videos could be added, for example for people working out from home who 
have no equipment at all, or for people who want to work out with kettle bells, medicine 
balls and other related activities. Videos could give better explanations on how exactly the 
exercises should be performed.


System capabilities: 

	 Many User Profiles: Right now one user profile is kept for testing purposes, but this 
should be extended to hundreds or thousands of user profiles being serviced at the same 
time as the app scales up. Firestore can store up to 1GB of data for free but after that you 
need to have a “pay as you go” payment plan which will be adjusted to the exact amount 
of your customers and their data. Cloud solutions are very flexible in these matters so 
they would be preferable for scaling.


	 User Personal Data: Although the Cloud Database provides secure connections, 
the personal information of users stored in it will need to be further protected per GDPR 
regulations. That could include the pseudonymisation of user data as well as other 
actions that would ensure user privacy rights are maintained according to the European 
regulation, such as the right to be forgotten and others.


Page  of 77 108



	 Broader User Testing: The app will need to get a lot more testing as more and more 
functionality is added to it and as more and more users become interested in it and would 
like to use it on a regular basis. These tests can be conducted on a larger scale with many 
users using the system in real time, by recording the user behaviour and evaluating user 
acceptance of the recommendations given.


	 Motion tracking: There could be a possibility to use sensors in order to track user 
movements and location as previously mentioned, in order to understand what the user is 
doing and perhaps correct possible errors or give needed acknowledgements and 
encouragement while the user is performing exercises.


	 More recommendation methods: The app could use the history data of its users, 
additional training principles, more personalisation methods and motion tracking in order 
to give better recommendations to its users. The more information one can collect about 
the subject, the more able one will be to use it for the benefit of users who miss this type 
of expert guidance in their daily fitness activities.


	 And this concludes the summary of our possible future work and concludes also 
this Thesis.


Page  of 78 108



10. References 

[1]	 Joe Weider, Book: Joe Weider’s Bodybuilding system, CA, USA: Weider Health & 
Fitness, 1988, ISBN 0-945-797-00-1.


[2] 	 Raquel Mc Lish, Bill Reynolds, Book: Flex Appeal by Raquel, NY, USA: Warner 
Books, 1984, ISBN 0-446-381-05-5.


[3] 	 Ami Eisinger, reviewed by Daniel Dubnis, “The Only 7 Gym Machines Worth Using”, 
2019, available at: https://greatist.com/move/best-gym-machines#lat-pulldown 
(Accessed May 21, 2020).


[4] 	 Robert Kennedy, The Encyclopaedia of Bodybuilding, CANADA: Robert Kennedy 
Publishing, 2008, ISBN 1-552-100-51-0, pg. 77.


[5] 	 Jesse Venticinque, “Why Strength-Training will lead the future of fitness”, available 
at:  https://www.fitbod.me/blog/2017/12/14/strength-training-will-lead-in-the-future-of-
fitness (Accessed May 21, 2020).


[6] 	 “Fitplan: Gym & Home Workouts”, App Store Preview, https://apps.apple.com/us/
app/fitplan-gym-home-workouts/id1064119547 (Accessed May 21, 2020).


[7] 	 “JEFIT Workout Planner Gym Log”, App Store Preview, https://apps.apple.com/us/
app/jefit-workout-planner-gym-log/id449810000#?platform=appleWatch (Accessed May 
21, 2020).


[8] 	 “GymGoal Pro”, App Store Preview, https://apps.apple.com/us/app/gymgoal-pro/
id571824492 (Accessed May 21, 2020).


[9] 	 ”Fitbod Weight Lifting Workout”, App Store Preview, https://apps.apple.com/us/app/
fitbod-weight-lifting-workout/id1041517543 (Accessed May 21, 2020).


[10] 	Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker, 
“Constraint-Based Recommender Systems”, in Recommender Systems Handbook, NY, 
USA: Springer, 2015, ISBN 978-1-4899-7636-9, Chapter 5.1.


[11] 	Markus Schedl, Peter Knees, Brian McFee, Dmitry Bogdanov, and Marius 
Kaminskas, “Playlist Generation Algorithms”, in Recommender Systems Handbook, NY, 
USA: Springer, 2015, ISBN 978-1-4899-7636-9, Chapter 13.5.3.


[12] 	Selye, H. “Stress and the General Adaptation Syndrome.” BMJ, vol. 1, no. 4667, 
17 June 1950, pp. 1383–1392, www.ncbi.nlm.nih.gov/pmc/articles/PMC2038162/pdf/
brmedj03603-0003.pdf, 10.1136/bmj.1.4667.1383. (Accessed May 21, 2020).

  
[13] 	Fleck, Steven. “Non-Linear Periodization for General Fitness & Athletes.” Journal 
of Human Kinetics, vol. 29A, no. Special-Issue, 1 Sept. 2011, pp. 41–45, 
www.ncbi.nlm.nih.gov/pmc/articles/PMC3588896/, 10.2478/v10078-011-0057-2. 
(Accessed May 21, 2020).


Page  of 79 108

https://greatist.com/move/best-gym-machines#lat-pulldown
https://www.fitbod.me/blog/2017/12/14/strength-training-will-lead-in-the-future-of-fitness
https://www.fitbod.me/blog/2017/12/14/strength-training-will-lead-in-the-future-of-fitness
https://www.fitbod.me/blog/2017/12/14/strength-training-will-lead-in-the-future-of-fitness
https://apps.apple.com/us/app/fitplan-gym-home-workouts/id1064119547
https://apps.apple.com/us/app/fitplan-gym-home-workouts/id1064119547
https://apps.apple.com/us/app/jefit-workout-planner-gym-log/id449810000#?platform=appleWatch
https://apps.apple.com/us/app/jefit-workout-planner-gym-log/id449810000#?platform=appleWatch
https://apps.apple.com/us/app/jefit-workout-planner-gym-log/id449810000#?platform=appleWatch
https://apps.apple.com/us/app/gymgoal-pro/id571824492
https://apps.apple.com/us/app/gymgoal-pro/id571824492
https://apps.apple.com/us/app/fitbod-weight-lifting-workout/id1041517543
https://apps.apple.com/us/app/fitbod-weight-lifting-workout/id1041517543


[14] 	Felfernig, A., Burke, R.: “Constraint-based recommender systems: technologies 
and research issues”. In: 10th International Conference on Electronic Commerce, 
ICEC’08, pp. 1–10. ACM, New York, NY, USA (2008).


[15]	 Felfernig, A., Isak, K., Kruggel, T.: “Testing Knowledge-based Recommender 
Applications”. OEGAI Journal 4, 12–18 (2007).


[16]	 Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London 
(1993).


[17]	 Aucouturier, J.J., Pachet, F.: “Scaling Up Music Playlist Generation”. In: 
Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2002), 
pp. 105–108. Lausanne, Switzerland (2002).


[18] 	Logan, B.: “Content-based Playlist Generation: Exploratory Experiments”. In: 
Proceedings of the 3rd International Symposium on Music Information Retrieval (ISMIR 
2002), pp. 295–296. Paris, France (2002).


[19]	 Flexer, A., Schnitzer, D., Gasser, M., Widmer, G.: “Playlist generation using start 
and end songs”. In: ISMIR, pp. 173–178 (2008).


[20]	 Fields, B.: “Contextualize your listening: the playlist as recommendation 
engine”. Ph.D. thesis, Department of Computing Goldsmiths, University of London 
(2011).


[21]	 Knees, P., Pohle, T., Schedl, M., Widmer, G.: “Combining Audio-based Similarity 
with Webbased Data to Accelerate Automatic Music Playlist Generation”. In: 
Proceedings of the 8th ACMSIGMM International Workshop on Multimedia Information 
Retrieval (MIR’06). Santa Barbara, CA, USA (2006).


[22]	 Pohle, T., Pampalk, E., Widmer, G.: “Generating Similarity-based Playlists Using 
Traveling Salesman Algorithms”. In: Proceedings of the 8th International Conference on 
Digital Audio Effects (DAFx-05), pp. 220–225. Madrid, Spain (2005).


[23]	 Bonnin, G., Jannach, D.: “Evaluating the quality of playlists based on hand-
crafted samples”. In: 14th International Society for Music Information Retrieval 
Conference, ISMIR (2013).


[24]	 Pauws, S., Eggen, B.: “PATS: Realization and user evaluation of an automatic 
playlist generator”. In: Proceedings of the 2nd International Symposium on Music 
Information Retrieval, ISMIR (2002).


[25] 	Francesco Ricci, Lior Rokach, Bracha Shapira, “Recommender systems: 
Introduction and challenges.”, in Recommender Systems Handbook, NY, USA: Springer, 
2015, ISBN 978-1-4899-7636-9, Chapter 1, pp 1-34.

[26]	 Fabiana Lorenzi and Francesco Ricci. “Case-Based Recommender Systems: A 
Unifying View”, pages 89–113. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. 
ISBN 978-3-540-31655-8. doi: 10.1007/11577935_5. URL


Page  of 80 108



[27]	 Burke, R.: “Hybrid web recommender systems”. In: The Adaptive Web, pp. 377–
408. Springer Berlin / Heidelberg (2007)


[28]	 Bonnie A Nardi. “The use of scenarios in design”. Hewlett-Packard Laboratories, 
Technical Publications Department, 1992.


[29]	 David L. Poole, Alan K. Mackworth: “Artificial Intelligence: Foundations of 
Computational Agents”, 2nd Edition. Cambridge University Press (2017). ISBN-13: 
978-1107195394


[30]	 Wikipedia, “Markov Chain”, https://en.wikipedia.org/wiki/Markov_chain (Accessed 
May 21, 2020).


[31]	 Lee Schlenker, “K-NN - Getting to know your nearest neighbors”, Medium, available 
at: https://towardsdatascience.com/k-nn-getting-to-know-your-nearest-neighbors-
b60399dc0f32 (Accessed May 21, 2020).


[32]	 Berkeley Education, “Permutations and combinations”, available at: https://
math.berkeley.edu/~arash/55/6_3.pdf (Accessed May 21, 2020).


[33]	 SlideShare, “Precalculus warm up”, available at: https://www.slideshare.net/roneick/
pre-calculus-warm-up-42114 (Accessed May 21, 2020).


[34]	 Nielsen Norman Group, “Thinking Aloud: The #1 Usability Tool”, available at: https://
www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/ (Accessed May 21, 2020).


[35]	 JustInMind, “All-in-one prototyping tool for web and mobile apps”, available at: 
https://www.justinmind.com (Accessed May 21, 2020).


[36]	 usability.gov, “Wire-framing”, available at: https://www.usability.gov/how-to-and-
tools/methods/wireframing.html (Accessed May 21, 2020).


[37]	 UserZoom, “Usability Testing: Moderated or Unmoderated?”, available at:  https://
info.userzoom.com/rs/293-RDJ-600/images/
UserZoom_ebook_Moderated_vs_Unmoderated_02.pdf (Accessed May 21, 2020).


[38]	 Nielsen Norman Group, “Why you only need to test with 5 users”, available at: 

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/ (Accessed 
May 21, 2020).


[39] Stellman, Andrew; Greene, Jennifer: Applied Software Project Management. 
O'Reilly Media, (2005), p. 113. ISBN 978-0-596-00948-9.

[40] Haughey, D.: “MOSCOW METHOD”, (2014). Retrieved from https://
www.projectsmart.co.uk/moscow-method.php (Accessed May 21, 2020).

[41] 	Asela Gunawardana and Guy Shani, “Recommender System Properties.”, in 
Recommender Systems Handbook, NY, USA: Springer, 2015, ISBN 978-1-4899-7636-9, 
Ch. 8.3, pp. 281–304.


Page  of 81 108

https://en.wikipedia.org/wiki/Markov_chain
https://towardsdatascience.com/k-nn-getting-to-know-your-nearest-neighbors-b60399dc0f32
https://towardsdatascience.com/k-nn-getting-to-know-your-nearest-neighbors-b60399dc0f32
https://towardsdatascience.com/k-nn-getting-to-know-your-nearest-neighbors-b60399dc0f32
https://math.berkeley.edu/~arash/55/6_3.pdf
https://math.berkeley.edu/~arash/55/6_3.pdf
https://www.slideshare.net/roneick/pre-calculus-warm-up-42114
https://www.slideshare.net/roneick/pre-calculus-warm-up-42114
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.justinmind.com
http://usability.gov
https://www.usability.gov/how-to-and-tools/methods/wireframing.html
https://www.usability.gov/how-to-and-tools/methods/wireframing.html
https://info.userzoom.com/rs/293-RDJ-600/images/UserZoom_ebook_Moderated_vs_Unmoderated_02.pdf
https://info.userzoom.com/rs/293-RDJ-600/images/UserZoom_ebook_Moderated_vs_Unmoderated_02.pdf
https://info.userzoom.com/rs/293-RDJ-600/images/UserZoom_ebook_Moderated_vs_Unmoderated_02.pdf
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://web.archive.org/web/20150209011617/http://www.stellman-greene.com/aspm/
https://en.wikipedia.org/wiki/O%27Reilly_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-00948-9
http://www.projectsmart.co.uk/moscow-method.php


[42] Wikipedia, “Cosine Similarity”, https://en.wikipedia.org/wiki/Cosine_similarity 
(Accessed May 21, 2020).

[43]	 Xavier Amatriain and Josep M. Pujol, “Similarity measures.”, in Recommender 
Systems Handbook, NY, USA: Springer, 2015, ISBN 978-1-4899-7636-9, Ch.7.2.1, page 
230.


[44] The Development House, “Prototyping Model”, available at: http://
developmenthouse.blogspot.com (Accessed May 21, 2020).

[45] Saunders, M., Lewis, P., & Thornhill, A.: “Using Secondary Data”, Research 
methods for business students. Harlow: Financial Times Prentice Hall. (2009), Chapter 8.

[46] Saunders, M., Lewis, P., & Thornhill, A.: “Collecting Primary Data Using semi-
structured, in-depth and group interviews.”, Research methods for business students. 
Harlow: Financial Times Prentice Hall, (2009), Chapter 10.

[47] Google, “Firebase Authentication”, available at: https://firebase.google.com/docs/
auth (Accessed May 21, 2020).

[48] Google, “Cloud Firestore”, available at: https://firebase.google.com/docs/firestore 
(Accessed May 21, 2020).

[49] Android, “Android Studio”, available at: https://developer.android.com/studio/
features (Accessed May 21, 2020).

[50] Braze, “Logcat And JUnit: An Unstoppable Combination For Android Tests”, 
available at: https://www.braze.com/perspectives/article/logcat-junit-android-tests 
(Accessed May 21, 2020).

[51] Usabilitybok, “Cognitive Walkthrough”, available at: https://www.usabilitybok.org/
cognitive-walkthrough (Accessed May 21, 2020).

[52] Google, “Firebase pricing plans”, available at: https://firebase.google.com/pricing 
(Accessed May 21, 2020).

[53] Bluepiit, “Demystifying Hybrid Recommender Systems And Their Use Cases”, 
available at: https://www.bluepiit.com/blog/demystifying-hybrid-recommender-systems-
and-their-use-cases/ (Accessed May 21, 2020).

[54] Pablo Castells, Neil J. Hurley, and Saul Vargas, “Novelty and Diversity in 
Recommender Systems”, in Recommender Systems Handbook, NY, USA: Springer, 
2015, ISBN 978-1-4899-7636-9, Ch.26.

[55] Asela Gunawardana and Guy Shani, “Evaluating Recommender Systems.”, in 
Recommender Systems Handbook, NY, USA: Springer, 2015, ISBN 978-1-4899-7636-9, 
Ch. 8, pp. 265–274.

[56] Ian Sommerville, “Design and Implementation”, in Software Engineering, 10th 
edition, England: Pearson Education Limited, 2016. 

Page  of 82 108

https://en.wikipedia.org/wiki/Cosine_similarity
http://developmenthouse.blogspot.com
http://developmenthouse.blogspot.com
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://developer.android.com/studio/features
https://developer.android.com/studio/features
https://www.braze.com/perspectives/article/logcat-junit-android-tests
https://www.usabilitybok.org/cognitive-walkthrough
https://www.usabilitybok.org/cognitive-walkthrough
https://firebase.google.com/pricing
https://www.bluepiit.com/blog/demystifying-hybrid-recommender-systems-and-their-use-cases/
https://www.bluepiit.com/blog/demystifying-hybrid-recommender-systems-and-their-use-cases/
https://www.bluepiit.com/blog/demystifying-hybrid-recommender-systems-and-their-use-cases/


11. Appendices 

A. Exercise Properties Table 

	 This table includes 165 variations of exercises for 9 muscle groups and several 
other exercise properties used as part of our Knowledge-Base for the Weight Training 
Domain. The data were collected from Fitness publications: [1], [2], [4].


Exercise Muscle 
Group

Men/
Females

Extra 
muscle 
groups

Variations of 
Angle

Equipment 
variation

Total 
Variations

Bench Press Chest (Pecs) Men/
Females

Triceps/
Shoulders

Flat/Incline/
Decline

Barbell/
Dumbbell/
Smith 
Machine

9

Chest 
Bentover 
Dips

Chest (Pecs) Men/
Females

Triceps - Parallel Bars 1

Pullovers Chest (Pecs) Men/
Females

Back - Barbell/
Dumbbell/
Cable 
Machine

3

Cable Flyes Chest (Pecs) Men/
Females

- Upright/Bent 
Over

Cable 
Machine

2

Dumbbell 
Flyes

Chest (Pecs) Men/
Females

- Flat/Incline/
Decline

Dumbbell 3

Chest Press Chest (Pecs) Men/
Females

Triceps/
Shoulders

- Special 
Machine

1

Pec Deck 
Flyes

Chest (Pecs) Men/
Females

- - Special 
Machine

1

Punch Press Chest (Pecs) Men/
Females

Shoulders - Dumbbell/
Cable 
Machine

2

Pushups Chest (Pecs) Men/
Females

Triceps/
Shoulders

- - 1

Upright Dips Outside 
Arms 
(Triceps)

Men/
Females

Chest - Parallel Bars/
Bench

2

Kickbacks Outside 
Arms 
(Triceps)

Men/
Females

- - Dumbbell/
Cable 
Machine (A)

2

Page  of 83 108



Pushdowns Outside 
Arms 
(Triceps)

Men/
Females

- - Cable 
Machine

1

Close-Grip 
Bench Press

Outside 
Arms 
(Triceps)

Men/
Females

Chest - Barbell/
Smith 
Machine

2

Triceps 
Extensions

Outside 
Arms 
(Triceps)

Men/
Females

- Upright/Lying Barbell/
Dumbbell/
Cable 
Machine/
Special 
Machine

8

Bentover 
Triceps 
Extensions

Outside 
Arms 
(Triceps)

Men/
Females

- - Cable 
Machine

1

Bent-over 
Row

Back (Lats) Men/
Females

Biceps - Barbell/
Dumbbell/
Cable 
Machine/
Smith 
Machine/T-
Bar Machine

5

Chinups/
Pulldowns

Back (Lats) Men/
Females

Biceps Front/Rear Machine/
Cable 
Machine

4

Horizontal 
Pullup

Back (Lats) Men/
Females

Biceps - Special 
Machine

1

Lying Row Back (Lats) Men/
Females

Biceps - Dumbbell 1

Seated Row Back (Lats) Men/
Females

Biceps - Machine/
Cable 
Machine

2

Straight Arm 
Pulldowns

Back (Lats) Men/
Females

Chest - Cable 
Machine

1

Deadlifts Back (Lats) Men/
Females

Legs - Barbell/
Smith 
Machine

2

Goodmornin
gs

Back (Lats) Men/
Females

Legs - Barbell/
Smith 
Machine

2

Hyperextensi
ons

Back (Lats) Men/
Females

- - Special 
Machine

1

Shrugs Back (Traps) Men - - Barbell/
Dumbbell/
Cable 
Machine

3

Exercise Muscle 
Group

Men/
Females

Extra 
muscle 
groups

Variations of 
Angle

Equipment 
variation

Total 
Variations

Page  of 84 108



Arm Curls Inside Arms 
(Biceps)

Men/
Females

- Upright/
Incline

Barbell/
Dumbbell/
Cable 
Machine/
Crossover 
Machine

8

Concentratio
n Curls

Inside Arms 
(Biceps)

Men/
Females

- - Dumbbell/
Cable 
Machine

2

Close-Grip 
Chinups/
Pulldowns

Inside Arms 
(Biceps)

Men/
Females

Back - Machine/
Cable 
Machine

2

Hammer 
Curls

Inside Arms 
(Biceps)

Men/
Females

Forearms - Dumbbell/
Cable 
Machine

2

Reverse Arm 
Curls

Forearms Men/
Females

Biceps - Barbell/
Dumbbell/
Cable 
Machine

3

Wrist Curls Forearms Men/
Females

- - Barbell/
Dumbbell

2

Reverse 
Wrist Curls

Forearms Men/
Females

- - Barbell/
Dumbbell

2

Behind-Back 
Wrist Curls

Forearms Men/
Females

- - Barbell 1

Behind-Back 
Press

Shoulders 
(Delts)

Men Triceps - Barbell/
Smith 
Machine

2

Front Raises Shoulders 
(Delts)

Men/
Females

- - Barbell/
Dumbbell/
Cable 
Machine

3

Military Press Shoulders 
(Delts)

Men/
Females

Triceps - Barbell/
Dumbbell/
Cable 
Machine/
Smith 
Machine

4

Lateral 
Raises

Shoulders 
(Delts)

Men/
Females

- - Dumbbell/
Cable 
Machine/
Special 
Machine

3

Upright 
Rows

Shoulders 
(Delts)

Men/
Females

Back - Barbell/
Dumbbell/
Cable 
Machine

3

Exercise Muscle 
Group

Men/
Females

Extra 
muscle 
groups

Variations of 
Angle

Equipment 
variation

Total 
Variations

Page  of 85 108



Bentover 
Raises

Shoulders 
(Delts)

Men/
Females

- - Dumbbell/
Cable 
Machine

2

Rear Delt 
Row

Shoulders 
(Delts)

Men/
Females

Biceps - Barbell/
Dumbbell/
Cable 
Machine/
Smith 
Machine/
Special 
Machine

5

Ball 
crunches

Waist (Abs) Men/
Females

- - Ball 1

Bicycle 
crunches

Waist (Abs) Men/
Females

- - - 1

Cable 
crunches

Waist (Abs) Men/
Females

- - Cable 
Machine

1

Crunches Waist (Abs) Men/
Females

- - - 1

Crunches 
with Legs (V-
sits)

Waist (Abs) Men/
Females

- - - 1

Vertical Leg 
Crunches

Waist (Abs) Men/
Females

- - - 1

Leg Raises Waist (Abs) Men/
Females

- Flat/Incline/
Vertical

Bench/
Special 
Machine

6

Knee Raises Waist (Abs) Men/
Females

- Flat/Incline/
Vertical

Bench/
Special 
Machine

6

Leg-Hip 
Raises

Waist (Abs) Men/
Females

- - - 1

Knee-Hip 
Raises

Waist (Abs) Men/
Females

- - - 1

Plank Waist (Abs) Men/
Females

- - - 1

Rotating 
Plank

Waist (Abs) Men/
Females

- - - 1

Seated 
Twisting/ 
Side Twist

Waist (Abs) Men/
Females

- - Bar 1

Twisted 
Crunches

Waist (Abs) Men/
Females

- - - 1

Exercise Muscle 
Group

Men/
Females

Extra 
muscle 
groups

Variations of 
Angle

Equipment 
variation

Total 
Variations

Page  of 86 108



Side Bend Waist (Abs) Men - - Ball/
Dumbbell/
Special 
Machine

3

Squats Legs (Quads) Men/
Females

Back - Barbell/
Dumbbell/
Smith 
Machine

3

Front Squats Legs (Quads) Men/
Females

Back - Barbell/
Smith 
Machine

2

Hack Squats Legs (Quads) Men/
Females

- - Barbell/
Smith 
Machine/
Special 
Machine

3

Leg 
Extensions

Legs (Quads) Men/
Females

- - Special 
Machine

1

Leg Press Legs (Quads) Men/
Females

- Seated/
Incline/
Vertical

Special 
Machine

1

Lunges Legs (Quads) Men/
Females

- - Barbell/
Dumbbell/
Smith 
Machine

3

Step Up Legs (Quads) Men/
Females

- - Dumbbell 1

Hip 
Extensions

Legs (Glutes) Females - - Cable 
Machine/
Special 
Machine

2

Hip Raise Legs (Glutes) Females - - Barbell 1

Leg Curls Legs 
(Hamstrings)

Men/
Females

- - Cable 
Machine/
Special 
Machine

2

Stiff Leg 
Deadlifts

Legs 
(Hamstrings)

Men/
Females

Back - Barbell/
Dumbbell/
Smith 
Machine

3

Hip 
Abductions

Legs (Outer 
Quads)

Females - - Cable 
Machine/
Special 
Machine

2

Exercise Muscle 
Group

Men/
Females

Extra 
muscle 
groups

Variations of 
Angle

Equipment 
variation

Total 
Variations

Page  of 87 108



Hip 
Adductions

Legs (Inner 
Quads)

Females - - Cable 
Machine/
Special 
Machine

2

Calf Raises Calves Men/
Females

- - Barbell/
Dumbbell/
Special 
Machine

3

Calf Presses Calves Men/
Females

- - Special 
Machine

1

Seated Calf 
Raises

Calves Men/
Females

- - Barbell/
Smith 
Machine/
Special 
Machine

3

165

Exercise Muscle 
Group

Men/
Females

Extra 
muscle 
groups

Variations of 
Angle

Equipment 
variation

Total 
Variations

Page  of 88 108



B. Exercise Training Effect Table 

	 This table includes the 70 basic exercises and their training effect on different 
muscle groups set on a scale from 0 to 2. The data were collected from information in 
these publications: [1], [2], [4].


MUSCLE 
GROUPS/
Exercises

CHEST 
MUSCLE 
GROUP

TRICEPS 
MUSCLE 
GROUP

BACK 
MUSCLE 
GROUP

BICEPS 
MUSCLE 
GROUP

FOREARM 
MUSCLE 
GROUP

SHOULDER 
MUSCLE 
GROUP

ABS    
MUSCLE 
GROUP

LEGS 
MUSCLE 
GROUP

CALF 
MUSCLE 
GROUP

Bench 
Press

2 1 0 0 0 1 0 0 0

Chest 
Bentover 
Dips

2 1 0 0 0 0 0 0 0

Pullovers 2 0 1 0 0 0 0 0 0

Cable Flyes 2 0 0 0 0 0 0 0 0

Dumbbell 
Flyes

2 0 0 0 0 0 0 0 0

Chest Press 2 1 0 0 0 1 0 0 0

Pec Deck 
Flyes

2 0 0 0 0 0 0 0 0

Punch 
Press

2 0 0 0 0 1 0 0 0

Upright 
Dips

1 2 0 0 0 0 0 0 0

Kickbacks 0 2 0 0 0 0 0 0 0

Pushdowns 0 2 0 0 0 0 0 0 0

Close-Grip 
Bench 
Press

1 2 0 0 0 0 0 0 0

Triceps 
Extensions

0 2 0 0 0 0 0 0 0

Bentover 
Triceps 
Extensions

0 2 0 0 0 0 0 0 0

Bent-over 
Row

0 0 2 1 0 0 0 0 0

Chinups/
Pulldowns

0 0 2 1 0 0 0 0 0

Horizontal 
Pullup

0 0 2 1 0 0 0 0 0

Page  of 89 108



Lying Row 0 0 2 1 0 0 0 0 0

Seated Row 0 0 2 1 0 0 0 0 0

Straight 
Arm 
Pulldowns

1 0 2 0 0 0 0 0 0

Deadlifts 0 0 2 0 0 0 0 1 0

Goodmorni
ngs

0 0 2 0 0 0 0 1 0

Hyperexten
sions

0 0 2 0 0 0 0 0 0

Shrugs 0 0 2 0 0 0 0 0 0

Arm Curls 0 0 0 2 0 0 0 0 0

Concentrati
on Curls

0 0 0 2 0 0 0 0 0

Close-Grip 
Chinups/
Pulldowns

0 0 1 2 0 0 0 0 0

Hammer 
Curls

0 0 0 2 1 0 0 0 0

Reverse 
Arm Curls

0 0 0 1 2 0 0 0 0

Wrist Curls 0 0 0 0 2 0 0 0 0

Reverse 
Wrist Curls

0 0 0 0 2 0 0 0 0

Behind-
Back Wrist 
Curls

0 0 0 0 2 0 0 0 0

Behind-
Back Press

0 1 0 0 0 2 0 0 0

Front 
Raises

0 0 0 0 0 2 0 0 0

Military 
Press

0 1 0 0 0 2 0 0 0

Lateral 
Raises

0 0 0 0 0 2 0 0 0

Upright 
Rows

0 0 1 0 0 2 0 0 0

Bentover 
Raises

0 0 0 0 0 2 0 0 0

Rear Delt 
Row

0 0 0 1 0 2 0 0 0

Ball 
crunches

0 0 0 0 0 0 2 0 0

Page  of 90 108



Bicycle 
crunches

0 0 0 0 0 0 2 0 0

Cable 
crunches

0 0 0 0 0 0 2 0 0

Crunches 0 0 0 0 0 0 2 0 0

Crunches 
with Legs 
(V-sits)

0 0 0 0 0 0 2 0 0

Vertical Leg 
Crunches

0 0 0 0 0 0 2 0 0

Leg Raises 0 0 0 0 0 0 2 0 0

Knee 
Raises

0 0 0 0 0 0 2 0 0

Leg-Hip 
Raises

0 0 0 0 0 0 2 0 0

Knee-Hip 
Raises

0 0 0 0 0 0 2 0 0

Plank 0 0 0 0 0 0 2 0 0

Rotating 
Plank

0 0 0 0 0 0 2 0 0

Seated 
Twisting/ 
Side Twist

0 0 0 0 0 0 2 0 0

Twisted 
Crunches

0 0 0 0 0 0 2 0 0

Side Bend 0 0 0 0 0 0 2 0 0

Squats 0 0 1 0 0 0 0 2 0

Front 
Squats

0 0 1 0 0 0 0 2 0

Hack 
Squats

0 0 0 0 0 0 0 2 0

Leg 
Extensions

0 0 0 0 0 0 0 2 0

Leg Press 0 0 0 0 0 0 0 2 0

Lunges 0 0 0 0 0 0 0 2 0

Step Up 0 0 0 0 0 0 0 2 0

Hip 
Extensions

0 0 0 0 0 0 0 2 0

Hip Raise 0 0 0 0 0 0 0 2 0

Leg Curls 0 0 0 0 0 0 0 2 0

Page  of 91 108



Stiff Leg 
Deadlifts

0 0 1 0 0 0 0 2 0

Hip 
Abductions

0 0 0 0 0 0 0 2 0

Hip 
Adductions

0 0 0 0 0 0 0 2 0

Calf Raises 0 0 0 0 0 0 0 0 2

Calf 
Presses

0 0 0 0 0 0 0 0 2

Seated Calf 
Raises

0 0 0 0 0 0 0 0 2

Page  of 92 108



C. User Testing Analysis Summary 

	 What follows is the results we got from “Validately” after conducting our 5 
unmoderated interviews for User Testing. It includes the results from the Screener 
Questions, the Pre-study Questions, the Tasks and Task Questions, and also the Follow-
up Questions. The full PDF file together with the 5 recorded videos of the unmoderated 
interviews can be found in the attached software folder.


Screener questions 

Question 1: Which of these activities have you done in the past? 

 

Question 2: Are you willing to do the following NECESSARY short steps (if requested) for 
conducting this test? 

 

Page  of 93 108



Pre-study questions 

Question 1: How often do you do sports or exercise? 

 

 
If answer is: Once a month or less 

Question 1: When doing sports or exercise, which of these do you use to help you? 

If answer is: Once a week 

Question 2: When doing sports or exercise, which of these do you use to help you? 

If answer is: Several times a week 

Question 3: When doing sports or exercise, which of these do you use to help you? 

Page  of 94 108



 

Question 2: What is your age bracket? 

 
 

Question 3: Where do you live? 

If answer is: Europe 

Question 1: Which part of Europe? 

 

Page  of 95 108



Task 1 Analysis 

Task 1: Note: You are supposed to speak or "think aloud" during this test, so that any confusions 
about the design can be recorded. On the background you see a crude prototype of the "Log-In" 
screen of our application. (By using the -/+ buttons on the top, you be able to adjust the size of 
that prototype to fit your screen properly, if needed.) 1) Your first task will be to type-in an email 
and password (use a fake one) and press the button to "Log-In". When you have done it, you will 
just see the "Settings" screen and your first Task will be complete! To mark your Task as 
complete, you need to press the green "Show Task / Hide Task" button on the to right corner and 
you will see another button with which you can mark your first task as "Complete". 

00:01:43 AVG TIME  5 PASSED  0 FAILED  0 UNGRADED  

Task 1 Questions 

Question 1: In a rate from 1 to 5, how easy did you find performing this task?  

 

Task 2 Analysis 

Task 2: You should be looking now at the "Settings" screen of our prototype. 2) Your task is to set 
that the exercises that will be recommended are intended for BOTH men and women (Unisex). 
Remember to speak your thoughts while performing the task and then press again the "Show 
Task" and "Complete" buttons, when you are done.  

00:00:47 AVG TIME  3 PASSED  2 FAILED  0 UNGRADED 

Task 2 Questions 
Question 1: Were there any confusions while performing this task? 

Respondent 2585357 

None 

Respondent 2593619 

Nope, it's the top choice 

Respondent 2594568 

I found it confusing, i'm not sure that I were at the correct location. I couldn't find the button "Complete" and 
"show task" as described in the given task. 

Page  of 96 108



Respondent 2596050 

no 

Respondent 2597585 

no 

Task 3 Analysis 

Task 3: 3) Your next Task is to set what equipment are available for weight training. You are 
supposed to mark ONLY these equipment as available: "Barbells", "Dumbbells", "Benches" and 
"Cable Machines". When you are done, mark the task as “Complete”.

00:00:14 AVG TIME  3 PASSED  2 FAILED  0 UNGRADED  

Task 3 Questions 

Question 1: Were there any difficulties in performing this Task, or do you have any suggestions? 

Respondent 2585357 

None 

Respondent 2593619 

No 

Respondent 2594568 

No difficulties.

Respondent 2596050 

no 

Respondent 2597585 

no 

Task 4 Analysis 

Task 4: 4) The next Task is to choose the type of Training Program. For the purpose of this Test, 
you are supposed to choose a "4-days split routine" program, which takes 4 days to complete. 
Keep thinking aloud (speaking your thoughts) and again when you a done mark the Task as 
"Complete". 

00:00:16 AVG TIME  4 PASSED  1 FAILED  0 UNGRADED  

Task 4 Questions 

Page  of 97 108



Question 1: Did you encounter any difficulties or do you have any suggestions to this? 

Respondent 2585357 

None 

Respondent 2593619 

no 

Respondent 2594568 

Not really, but I had not sure what a split routine means, maybe add a small info box about it. 

Respondent 2596050 

no 

Respondent 2597585  

no 

Task 5 Analysis 

Task 5: 5) The next Task is to Set if there are any exercises that you cannot do for some reason. 
For this Test you need to choose only the exercise called: "Squats". When done, mark the Task 
"Complete". 

00:00:17 AVG TIME  3 PASSED  2 FAILED  0 UNGRADED  

Task 5 Questions 

Question 1: Any difficulties or suggestions to mention about this Task? 

Respondent 2585357 

None 

Respondent 2593619 

Why are the options not alphabetized? 

Respondent 2594568 

You have a long list and it is hard to find the specific exercise, when it looks like it is in a random. Maybe list it 
after first alphabet. 

Respondent 2596050 

no 

Respondent 2597585 

no 

Page  of 98 108



Task 6 Analysis 

Task 6: 6) The last Task on the Settings screen is to choose how many exercises should be 
performed per muscle group. There are muscle groups listed. You are supposed to change only 2 
default numbers: The exercises for the "Back" muscles need to change from 4 to 5 and the 
exercises for the "Biceps" muscles need to change from 2 to 3. When done, mark as "Complete". 

00:00:14 AVG TIME  4 PASSED  1 FAILED  0 UNGRADED  

Task 6 Questions 

Question 1: Any difficulties or suggestions to this Task? 

Respondent 2585357 

None 

Respondent 2593619 

no 

Respondent 2594568 

No it was easy, could be fun to add a random button? 

Respondent 2596050 

no 

Respondent 2597585 

no. 

Task 7 Analysis 

Task 7: 7) Now you need to Press the Recommendations Menu-button in order to go to the 
"Recommendations" screen. Here you will see the first day of your Recommended Exercise 
Workout Program. It will include a simple list of 8 names of exercises, group together based on 
their muscle groups. When you are done with this Task, mark "Complete". 

00:00:21 AVG TIME  5 PASSED  0 FAILED  0 UNGRADED 

Task 8 Analysis 

Task 8: 8) Now we suppose that you performed the exercises of the first day and the second day 
of your program. Your Task is to see the Recommendations of exercises for the third day (3rd) of 
your program. When you are done, mark the Task as "Complete".  

00:00:11 AVG TIME  5 PASSED  0 FAILED  0 UNGRADED 

Page  of 99 108



Task 8 Questions 
Question 1: Did you encounter any difficulties in performing this task? Any suggestions you may 

have? 

Respondent 2585357 

None 

Respondent 2593619 

no 

Respondent 2594568 

I think what I did was correct, not totally sure. 

Respondent 2596050 

no 

Respondent 2597585 

no.perfect 

Task 9 Analysis 

Task 9: 9) Now we suppose that you have finished all the 5 days of your exercise program and 
you are going to repeat the same program again from Day 1. Your Task is to continue getting 
recommendations for the next days of the program until you arrive again at the same 
Recommendation for Day 1. When you are done with the Task, mark as "Complete". 

00:00:12 AVG TIME  4 PASSED  1 FAILED  0 UNGRADED  

Task 9 Questions 

Question 1: How difficult was it to perform this Task?  

 

Task 10 Analysis 

Task 10: 10) Now we suppose that you have performed this exercise program for several weeks 
and you need to get the next one Your Task is to request and get a recommendation for the next 
Program to do. When done, mark the Task as "Complete". 

Page  of 100 108



00:00:34 AVG TIME  4 PASSED & 1 FAILED ' 0 UNGRADED  

Task 10 Questions 

Question 1: In a scale from 1 to 5, how easy was it to perform this Task? 

 

Task 11 Analysis 

Task 11: 11) Ok. Now let's say that you have arrived to the second day of your new program and 
you want to see the recommendation. When you do that you realise that you are not satisfied 
with some exercise of the 2nd day and you want to change it. Your double Task is: a) to see the 
2nd Day of Recommendations and then b) request editing of the recommendation fo one of the 
8 exercises, and receive a similar recommendation (not the same) for that 2nd day of exercises. 
When you are done, a you have received new recommendations for that Day, press "Complete". 

00:01:58 AVG TIME  3 PASSED  2 FAILED  0 UNGRADED  

Task 11 Questions 

Question 1: Were there any difficulties in performing that Task? Do you have any suggestions for 
it? 

Respondent 2585357 

Yes. It does not say how one changes the work out drill. 

Respondent 2593619 

I should have a list of alternatives instead of it just changing the exercise on its own. Even if there only exists 
one alternative, I should still get a list with one item in it, so that I understand that something is changing and 
that I have agency over that change 

Respondent 2594568 

If what I did was correct, I find the icon at the exercise a little confusing, since I suppose the "pencil" icon stands 
for editing, I was expecting a pop-up with editing options. If I just wanted to delete it, I would think trash icon or 
cross. Maybe if it was a toggle (toggling between exercises) button, it should look different 

Respondent 2596050 

There should be a button name change the exercise and then may be a comparison side by side what exercises 
are changed. 

Page  of 101 108



Respondent 2597585 

Yes, I don't know how to change my recommendations. 

Task 12 Analysis 

Task 12: 12) Finally your last Task is to Log-Out for the day and be directed back to the Log-In 
screen. When done, press “Complete”. 

00:00:12 AVG TIME  5 PASSED  0 FAILED  0 UNGRADED  

Follow up questions 

Question 1: In a rate from 1 to 10, how easy was it to use the prototype? 

 

Question 2: The prototype gave the opportunity for you to make some personalised Settings. 
Were they what you preferred, or would you prefer different settings - and if so which? 

Respondent 2585357 

They were what I preferred 

Respondent 2593619 

I'm not sure 

Respondent 2594568 

Mentioned during the test, it would be fun to instead of being really specific on doing exercises for the biceps, 
forearm etc. Maybe just do a low, medium, high, since i'm not picky with my workouts. During the drop-down 
menus, it is hard to notice that the empty space ones are the one, we you don't select any, maybe write 
"nothing or none selected" 

Respondent 2596050 

that is fine for me 

Respondent 2597585 

Page  of 102 108



Yes, I could select them in the way preferred. 

Question 3: How did you find the presentation of the Recommendations? Are there any things 
you would like changed on that? 

Respondent 2585357 

No 

Respondent 2593619 

Pretty barebones, but I understand that this is an early prototype, so I shouldn't speak about fidelity or the 
graphical elements. It is a bit weird that when I want to change a setting I'm not given a list, but instead the app 
changes the exercise on its own. 

Respondent 2594568 

Maybe the icons/bullet point, I found them weird, since when I clicked on them, I expected some editing menu, 
maybe change it to something which more represents the function better. 

Respondent 2596050 

the visual design can be more attractive 

Respondent 2597585 

No, they were quite good. 

Question 4: Thanks a lot for your contribution! Last question: do you have any other comments 
or suggestions about the main features or design? 

Respondent 2585357 

No 

Respondent 2593619 

I don't 

Respondent 2594568 

Depending on who you are targeting, maybe including some visual on how to do the exercises, or perhaps 
some tips on how to make them harder. 

Respondent 2596050 

No, this is quite nice. 

Respondent 2597585 

No. 

Page  of 103 108



D. Personalisation in the Fitbod App 

	 These screenshots show the variety of personalisation options offered in the State-
of-the-Art Fitbod app for fitness training. They include choices for available equipment, 
fitness goals and fitness experience, choices for stretching and cardio, workout duration, 
exclusion of exercises, state of muscle recovery and others…




Page  of 104 108



E. Java Code for Filtering and Recommendations 

This is an excerpt from our Java code which includes the algorithms for filtering 
exercises and also for creating automated exercise programs. The full code is included in 
a software folder that accompanies the report.

295          //  F I L T E R I N G   P E R   U S E R   C O N S T R A I N T S
296  
297          if (UserProfileSettings.getEquipment() != null) {  // filtering unavailable equipment
298              Log.d("Tag", "Filtering Exercises with unavailable equipment from: " +

PgmRecommendation.getFilteredExerciseList().size());
299              ArrayList<Exercise> temp = new ArrayList<>();
300              for (Exercise ex : PgmRecommendation.getFilteredExerciseList()) {
301                  if (UserProfileSettings.getEquipment().contains(ex.getEquipment())) 

temp.add(ex);
302              }
303              PgmRecommendation.removeFilteredExercises(temp);
304              Log.d("Tag", "Filtered size: " + 

PgmRecommendation.getFilteredExerciseList().size());
305          }
306  
307          if (UserProfileSettings.getExcludedExerciseIDs() != null) {  // filtering excluded
308              Log.d("Tag", "Filtering Exercises that can't be done from: " + 

PgmRecommendation.getFilteredExerciseList().size());
309              ArrayList<Exercise> temp = new ArrayList<>();
310              for (Exercise ex : PgmRecommendation.getFilteredExerciseList()) {
311                  if (UserProfileSettings.getExcludedExerciseIDs().contains(ex.getExerciseId()))

temp.add(ex);
312              }
313              PgmRecommendation.removeFilteredExercises(temp);
314              Log.d("Tag", "Filtered size: " + 

PgmRecommendation.getFilteredExerciseList().size());
315          }
316  
317          if (UserProfileSettings.getMaleFemale().equals("Only for Males")) { // filtering F
318              Log.d("Tag", "Filtering Exercises for Women from: " +

PgmRecommendation.getFilteredExerciseList().size());
319              ArrayList<Exercise> temp = new ArrayList<>();
320              for (Exercise ex : PgmRecommendation.getFilteredExerciseList()) {
321                  if (ex.getMaleFemale().equals("Only for Females")) temp.add(ex);
322              }
323              PgmRecommendation.removeFilteredExercises(temp);
324              Log.d("Tag", "Filtered size: " +

PgmRecommendation.getFilteredExerciseList().size());
325          }
326          if (UserProfileSettings.getMaleFemale().equals("Only for Females")) { //filtering M
327              Log.d("Tag", "Filtering Exercises for Men from: " +

PgmRecommendation.getFilteredExerciseList().size());
328              ArrayList<Exercise> temp = new ArrayList<>();
329              for (Exercise ex : PgmRecommendation.getFilteredExerciseList()) {
330                  if (ex.getMaleFemale().equals("Only for Males")) temp.add(ex);
331              }
332              PgmRecommendation.removeFilteredExercises(temp);
333              Log.d("Tag", "Filtered size: " +

PgmRecommendation.getFilteredExerciseList().size());
334          }
335  
336          // MAX DAILY TRAINING
337          int maxDailyTraining = (int) ceil((double) MuscleGroups.getMaxTotalTraining()/

UserProfileSettings.getTrainingDays());
338          Log.d("Tag", "Max Day-Training: " + maxDailyTraining);
339  
340          // S H U F F L I N G    E X E R C I S E S
341  
342          Collections.shuffle(PgmRecommendation.getFilteredExerciseList());  // Randomizing list
343  
344          // R E C O M M E N D A T I O N   A L G O R I T H M
345  

Page  of 105 108



346          Log.d("Tag", "Training Days: " + UserProfileSettings.getTrainingDays());
347          // Calculate recommendations for each Day of the Workout Program
348          for (int day=1; day <= UserProfileSettings.getTrainingDays(); day++) {
349  
350              Log.d("Tag", "Day: " + day);
351              long totDayExercises = 0;    // initialise amount of recommended exercises for the 
day
352  
353              while (2*totDayExercises < maxDailyTraining) {
354  
355                  // Sorting the BIG muscles, by "least Total Training" and by "most MaxTraining"
356                  Collections.sort(MuscleGroups.getBigMuscleGroups(), 

new Comparator<MuscleGroup>() {
357                      @Override
358                      public int compare(MuscleGroup m1, MuscleGroup m2) {
359                          return ComparisonChain.start().

compare(m1.getTotalTraining(),m2.getTotalTraining()).
compare(m2.getMaxTraining(),m1.getMaxTraining()).result();

360                      }
361                  });
362                  StringBuilder bigGroups = new StringBuilder();
363                  for (int bigMuscle=0; bigMuscle < MuscleGroups.getBigMuscleGroups().size();

bigMuscle++)
364                      bigGroups.append(MuscleGroups.getBigMuscleGroup(bigMuscle).getName()+" “+

MuscleGroups.getBigMuscleGroup(bigMuscle).getTotalTraining()+" - ");
365                  Log.d("Tag", "Sorting Big Muscles: " + bigGroups.toString());
366                  Log.d("Tag", "Expected Training: " + (2*totDayExercises + 

MuscleGroups.getBigMuscleGroup(0).getMaxTraining()));
367                  Log.d("Tag", "Max Day-Training: " + maxDailyTraining);
368                  if (MuscleGroups.getBigMuscleGroup(0).getTrainingDay() == 0) 

seedMuscle = MuscleGroups.getBigMuscleGroup(0).getName();
369  
370                  if ((2*totDayExercises + MuscleGroups.getBigMuscleGroup(0).getMaxTraining()) > 

maxDailyTraining |
371                          MuscleGroups.getBigMuscleGroup(0).getTrainingDay() > 0) {
372  
373                      // Sorting Small muscles, by "least Total Training" & by"least MaxTraining"
374                      Collections.sort(MuscleGroups.getSmallMuscleGroups(), 

new Comparator<MuscleGroup>() {
375                          @Override
376                          public int compare(MuscleGroup m1, MuscleGroup m2) {
377                              return ComparisonChain.start().

compare(m1.getTotalTraining(), m2.getTotalTraining()).
compare(m1.getMaxTraining(), m2.getMaxTraining()).result();

378                          }
379                      });
380                      StringBuilder smallGroups = new StringBuilder();
381                      for (int smallMuscle=0; smallMuscle <

MuscleGroups.getSmallMuscleGroups().size(); smallMuscle++)
smallGroups.append(MuscleGroups.getSmallMuscleGroup(smallMuscle)
.getName()+ “ “+MuscleGroups.getSmallMuscleGroup(smallMuscle)
.getTotalTraining()+" - ");

382                      Log.d("Tag", "Sorting Small Muscles: " + smallGroups.toString());
383                      Log.d("Tag", "Expected Training: " + (2*totDayExercises +

MuscleGroups.getSmallMuscleGroup(0).getMaxTraining()));
384                      Log.d("Tag", "Max Day-Training: " + maxDailyTraining);
385                      seedMuscle = MuscleGroups.getSmallMuscleGroup(0).getName();
386                      if ((2*totDayExercises + MuscleGroups.getSmallMuscleGroup(0)

.getMaxTraining()) > maxDailyTraining) break;
387                  }
388  
389                  Log.d("Tag", "Seed Muscle: " + seedMuscle + " day: " +

MuscleGroups.getBigMuscleGroup(0).getTrainingDay());
390                  long totSeedMuscleExercises = 0;  // initialise recommended exercises for seed
391  
392                  // Find recommendable exercises for Seed Muscle
393                  for (Exercise ex : PgmRecommendation.getFilteredExerciseList()) {

// Use the filtered list to find exercise
394                      if (ex.getPrimaryMuscleGroup().equals(seedMuscle)) {         

// if exercise is primarily for the seed muscle, recommend!
395                          totDayExercises ++;  // increment total exercises
396                          totSeedMuscleExercises ++;

Page  of 106 108



397                          PgmRecommendation.addPgmExercise(ex); // Add exercise to Program
398                          toBeRemoved.add(ex);                                     

// Keep track of exeries to be removed from filtered list
399                          if (UserProfileSettings.getTrainingDays()<3) {           

// Add exercise to the correct Day based on Program Type
400                              if (PgmRecommendation.getPgmRecommendation().size() % 2 != 0)
 PgmRecommendation.addDayExercise(ex, day);
401                              else PgmRecommendation.addDayExercise(ex, day+2);
402                          }
403                          else PgmRecommendation.addDayExercise(ex, day);
404                          Log.d("Tag", "Seed muscle exercises: " + totSeedMuscleExercises 

+ " - Day exercises: " + totDayExercises);
405  
406                          if (!Arrays.asList(MuscleGroups.getSmallMuscleNames())

.contains(seedMuscle)) {  
// if big muscle, add up the total training from the exercise

407                              for (MuscleGroup bigMuscle: MuscleGroups.getBigMuscleGroups()) {
408                                  bigMuscle.setTotalTraining(bigMuscle.getTotalTraining() + 

(long) ex.getTrainingByMuscle().get(bigMuscle.getName()));
409                              }
410                              // if the seed muscle training reaches or exceeds the set maximum

 for the big muscle - stop recommending for that muscle
411                              if (2*totSeedMuscleExercises >= (long)

UserProfileSettings.getTrainingByMuscle().get(seedMuscle)) {
412                                  MuscleGroups.getBigMuscleGroups().get(0).setTrainingDay(day);
413                                  Log.d("Tag", "Breaking big muscle: " + seedMuscle + " day: “

+ MuscleGroups.getBigMuscleGroups().get(0).getTrainingDay());
414                                  break;
415                              }
416                          } else {    // if small muscle, add up the training from the exercise
417                              MuscleGroups.getSmallMuscleGroups().get(0).

setTotalTraining(MuscleGroups.getSmallMuscleGroups().
get(0).getTotalTraining()

418                                   + (long) ex.getTrainingByMuscle().get(seedMuscle));
419                              Log.d("Tag", "Breaking small muscle");
420                              break;
421                          }
422                      }
423                  }
424                  // Remove recommended exercises from filtered exercises
425                  for (Exercise ex: toBeRemoved) PgmRecommendation.removeFilteredExercise(ex);
426                  toBeRemoved.clear();
427              }
428          }
429      }
430 

Page  of 107 108



F. Java Code for Sorting exercises by Cosine Similarity 

This is an excerpt from our Java code which describes the functions used for finding 
similar exercises to replace recommended exercises, by using the cosine similarity metric. 
Full code can be found in the software folder accompanying the report.

208      private void findReplacements(Exercise exercise) {
209          PgmRecommendation.getReplaceRecommendation().clear();
210          PgmRecommendation.getReplaceRecommendation().add(exercise);
211          Log.d("Tag", "Potential exercises: " +
 PgmRecommendation.getFilteredExerciseList().size());
212          for (Exercise filtered : PgmRecommendation.getFilteredExerciseList()) {
213              if (filtered.getPrimaryMuscleGroup().equals(exercise.getPrimaryMuscleGroup())) { 

//if exercise trains mainly the original muscle, add it to the list
214                  PgmRecommendation.getReplaceRecommendation().add(filtered);
215              }
216          }
217          for (Exercise recommended : PgmRecommendation.getReplaceRecommendation()) { 

// calculating cosine similarity for recommendations
218              recommended.setCosineSimilarity

(cosineSimilarity(exercise.getTrainingByMuscleVector(),
 recommended.getTrainingByMuscleVector()));

219          } // sorting by descending cosine similarity metric
220          Collections.sort(PgmRecommendation.getReplaceRecommendation(), 

new Comparator<Exercise>() {
221              @Override
222              public int compare(Exercise e1, Exercise e2) {
223                  return ComparisonChain.start().compare

(e2.getCosineSimilarity(),
 e1.getCosineSimilarity()).result();

224              }
225          });
226          for (Exercise recommended : PgmRecommendation.getReplaceRecommendation()) {
227              Log.d("Tag", "Vector : " + Arrays.toString(recommended.

getTrainingByMuscleVector()));
228              Log.d("Tag", "Cosine Sim: " +cosineSimilarity(exercise.getTrainingByMuscleVector(), 

recommended.getTrainingByMuscleVector()));
229          }
230      }
231  
232      private static double cosineSimilarity(long[] vectorA, long[] vectorB) {
233          double dotProduct = 0.0;
234          double normA = 0.0;
235          double normB = 0.0;
236          for (int i = 0; i < vectorA.length; i++) {
237              dotProduct += vectorA[i] * vectorB[i];
238              normA += Math.pow(vectorA[i], 2);
239              normB += Math.pow(vectorB[i], 2);
240          }
241          return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
242      }

Page  of 108 108


	1. Introduction
	1.1 Problem Formulation
	1.2 Motivation & Delimitations
	1.3 Methodology
	1.3.1 Documentary Research
	1.3.2 Qualitative Interviews
	1.3.3 Data Analysis
	1.3.4 Software Development Process

	2. Background
	2.1 Recommender Systems and Techniques
	2.1.1 Collaborative filtering (CF) technique
	2.1.2 Content-based technique
	2.1.3 Knowledge-based technique
	2.1.4 Hybrid Systems
	2.1.5 Properties of Recommender Systems
	2.2 Basic Terms & Principles of the Weight Training Domain
	2.2.1 Weight Training Basic Terms
	2.2.2 Basic Weight Training Principles
	2.3 Existing Software Solutions
	2.3.1 Fitplan - Gym and Home Workouts
	2.3.2 JEFIT - Workout Planner Gym Log
	2.3.3 GymGoal Pro
	2.3.4 FitBod - Weight Lifting Workout
	2.3.5 Conclusions

	3. Analysis
	3.1 User Scenarios
	3.2 Use Cases
	3.3 Choice of Recommendation Techniques
	3.3.1 Algorithm for Constraint-based systems
	3.3.2 Similarity algorithms
	3.3.3 Algorithms for Sequential Recommendations
	3.4 Constructing a Knowledge Base
	3.4.1 Exercises & their combinations
	3.4.2 Personalisation Options
	3.5 Automated Exercise Sequence Generation
	3.6 Hi-Fi Wireframes & Low-Fi Prototyping
	3.7 Setting-up User Studies
	3.8 Results from initial User Study
	3.9 Requirements Specification

	4. Software Design
	4.1 System Architecture
	4.2 Database Design
	4.3 Class Diagram
	4.4 Algorithm Flow Charts & Pseudocode
	4.2.1 Personalisation through Constraint Satisfaction
	4.2.2 Automated creation of a Recommended Exercise Program
	4.2.3 Fine-grained Adjustments based on User Feedback (Request)

	5. Implementation
	5.1.1 Cloud Firestore Database & Firebase Authentication
	5.1.2 Android App Authentication UI and Android Studio
	5.1.3 Recommendations and User Interface
	5.1.4 Settings page and Pop-ups

	6. Testing and Evaluation
	6.1 Code Test: Filtering exercises
	6.2 Code Test: Exercise recommendation algorithm
	6.3 Code Test: Exercise sorting by cosine similarity
	6.4 Final User Tests and evaluation

	7. Discussion
	8. Conclusion
	9. Future Work
	10. References
	11. Appendices
	A. Exercise Properties Table
	B. Exercise Training Effect Table
	C. User Testing Analysis Summary
	D. Personalisation in the Fitbod App
	E. Java Code for Filtering and Recommendations
	F. Java Code for Sorting exercises by Cosine Similarity


