
Abstract 

This thesis explores the possibility of using the smartphone for advanced activity tracking in the 

mountain bike sport. The capabilities of the platform are compared to those of a device dedicated to 

the purpose, to uncover if it might be a suitable alternative to systems requiring the integration of 

external devices. 
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1 Introduction 

Advances in microelectronics has produced technology sufficiently small to have practical 

application in sports. Micro Electromechanical Systems (MEMS) sensors and feedback mechanisms 

may be worn by athletes or mounted on equipment, benefitting sports people interested in improving 

their safety or performance, as well as researchers concerned with the analysis of sports activities in 

the field. This has transformed the way professional athletes and organizations prepare for and 

practice their sport, while expanding the scientific field to also encompass electronic and computer 

sciences (James and Petrone 2016). In sports exercised despite involving an element of danger, often 

referred to as extreme sports or action sports, such technology is applicable for both safety and 

performance enhancing measures. These characteristics make safety and performance enhancing 

technologies for widely exercised extreme sports, as for example mountain biking (MTB), desirable 

for both amateurs and professional athletes. This is a fact that especially commercial enterprises are 

eager to take advantage of.  

The MTB sport has experienced a rapid increase in interest in the latest years (Hansen, The TrailMe 

System 2019)1, both on an amateur and a professional level, in various disciplines more or less 

extreme (cross-country, down-hill, slopestyle etc.). The market for products catering to the domain is 

growing with it, which might pose lucrative business prospects. The sport is generally characterized 

by fast and rough riding in steep and uneven terrain, as well as clearing different obstacles. 

There is no shortage in commercially available devices intended for the MTB sport. The products 

range from advanced bicycle computers offering a wide range of extra, external sensors, such as heart 

rate monitor, cadence sensor and odometer, e.g. (Garmin 2020), to crash detection systems. One thing 

many of the products have in common is that they can be categorized as activity trackers. Such 

systems are characterized by integrating functionality which uses sensors to capture the movements 

or vital signs of the user to enable them in visualizing their efforts, often with the goal of improving 

their performance or health.  

The smartphone also enjoys a strong presence in the MTB domain.  (Hansen, The TrailMe System 

2019) indicate that upwards of 80 % of riders in Denmark already bring their phone with them on the 

trail. The platform has experienced significant technological improvements over the last decade 

especially. Most newer smartphones integrate GPS and advanced sensors for measuring parameters 

 
1 Report available at https://www.dropbox.com/s/ijyl2t068uxroaj/P8_PPH.pdf?dl=0 
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such as acceleration, orientation, air pressure and some phones, even vital signs (GSMArena 2019). 

They are also capable of managing heavy computations and complex tasks, with large multicore 

processors. Thereby, the platform might represent a cheaper and simpler alternative to some dedicated 

devices offering like functionality.  

The potential of the smartphone as a platform for applications intended for use in sports has not been 

overlooked. A large variety of solutions for activity tracking, guidance and connecting like-minded 

sportspeople exist. This includes solutions specifically designed to cater to the MTB sport, for 

example (Strava 2020, Singletracker 2020). Many of the applications feature activity tracking 

functions, providing the user with basic parameters, such as speed, distance traveled, session duration 

and calories burnt (Hansen, The TrailMe System 2019). These features rely mostly on GPS and raw 

calculations to function, while only implementing a minimal use of the platforms integrated motion 

sensors. Considering this, the full potential of the smartphones ability to function as an activity tracker 

might still not have been uncovered, which warrant further examination. 

An example of technology designed to improve safety in the MTB sport is described in (Hansen, 

Smartphone-based, bike crash detection systems for use in extreme sports environments 2019)2. The 

report proposes a smartphone-based solution with the capability of detecting a crash in an MTB 

environment. The solution makes use of kinematic data collected from the smartphone platforms 

integrated Inertial Measurement Unit (IMU) to distinguish between events which could be considered 

harmful to the rider and common “activities of extreme bicycling”. The study emphasizes the 

difficulty in developing incident detection algorithms for use under such extreme conditions, though 

concludes that it is most likely possible to achieve on the smartphone platform with acceptable results. 

Yet, multiple similar solutions which require the integration of external, dedicated devices to function 

are commercially available today (Specialized 2020, Singletracker 2020). While there may be many 

reasons to develop a dedicated device, such as the possibility of achieving higher accuracy or 

extended functionality through specialized hardware, it will inevitably add to the cost of the product, 

and the complexity of the task of developing it.  

Several studies on adoption and sustained use of dedicated smart devices offering activity tracking 

functionalities (Lazar, et al. 2015, Shih, et al. 2015, Canhoto and Arp 2017) conclude that they may 

be suffering from abandonment issues. Technical shortcomings, such as limited functionality or 

inaccurate or irrelevant data being collected, have shown to be among the main contributing factors 

 
2 Report available at https://www.dropbox.com/s/g0qi10lutz8l2kh/P9_PPH.pdf?dl=0 
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to users neglecting such products, often within short time of purchase. Furthermore, accurate and 

relevant measurements are essential when designing solutions meant for performance enhancing in 

sports (Tholander and Nylander 2015). Sports people need reliable and useful data if they are to track 

and further progression successfully, which makes it an interesting field from a Human Computer 

Interaction (HCI) perspective. According to (Ericsson ConsumerLab 2016), another factor 

contributing to users abandoning such devices, arises when functionality requires integration with a 

smartphone. Moving advanced activity tracking functionalities to the smartphone platform itself may 

therefore be beneficial since it is already abundantly present in the MTB domain. Though to avoid 

abandonment issues and provide athletes with useful measurements, it must be able to accurately 

track activities and provide interesting functionality. 

Jumps and drops are probably the two most common obstacles encountered in the MTB domain. 

Doing jumps and drops are both activities which result in the rider and equipment becoming airborne 

for an extended time period. This characteristic distinguishes these activities from regular riding, 

although not from one another. Thereby, the challenge in classifying them lies in distinguishing them 

from each other. The characteristics of the activities also allow for the deduction of more advanced 

riding related parameters, such as airtime, jump height and impact forces, which riders might benefit 

from knowing. (Hansen, Smartphone-based, bike crash detection systems for use in extreme sports 

environments 2019) showed that it is possible to detect a crash in the MTB domain, though, if the 

smartphone platform is to have potential as an advanced activity tracker for use in the domain, it must 

be uncovered if it can also classify riding related activities and provide athletes with beneficial 

parameters.  

To address this, the research questions guiding the making of this thesis were: is the smart phone 

platform capable of functioning as an advanced activity tracker for use in the MTB sport; and how 

accurately can it classify activities and derive related parameters compared to a dedicated device? 

The purpose of the study was to compare the capabilities of the smartphone with a device dedicated 

to classifying activities in the domain, using pattern recognition machine learning methods. Thereby, 

the hope was to expand future applications of the smartphone platform in the sport, and possibly lay 

the foundation for further work in using the platform for more advanced applications within sports, 

health and HCI research in general.  
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2 Related work 

This chapter presents and discusses the findings of the literature search on sources related to the 

research questions. Primo, the Aalborg university library search engine, and Google Scholar were the 

main resources used. Together, they cover a wide range of publishers and databases of academic 

research literature, ensuring a comprehensive search. Related works found through references was 

acquired, and chain searches were conducted with keywords discovered to be relevant upon literature 

review. Search words included: human computer interaction/HCI, sports, mountain biking, 

smartphone, dedicated device, activity tracking, trick classification, inertial measurement unit/IMU 

and pattern recognition, in different combinations.  

 

2.1 Existing systems 

To identify a candidate suitable for comparison with the smartphone, a search for existing devices 

capable of advanced activity tracking in the mountain biking sport was conducted. By advanced in 

this case meaning, that it is capable of detecting and classifying different activities and deriving riding 

related parameters beyond the basics, such as airtime and impact forces.  

Only a single product was found to promote advanced activity tracking capabilities in the MTB 

domain. The LIT (LIT 2020) is a multiple purpose action sports activity tracker featured on 

Indiegogo, a crowd funding site. It offers jump recognition and advanced riding related parameters, 

such as airtime and impact forces, as well as different visualizations of the activities captured, within 

a range of different sports. Evident from their webpage, it is a watch-like device which might be 

mounted on the leg while riding MTB for example. As the LIT is a commercial product in the stage 

of pitching for funding (at the time of writing), it was not possible to acquire a LIT device for these 

examinations or obtain further technical or academic sources related to the device. Thereby, 

comparing the smartphones capabilities against a commercially available solution was not an option, 

and a suitable candidate had to be uncovered in the academic research literature.  
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2.2 HCI for sports 

Literature discovered in the field of Human Computer Interaction for sports is naturally centered 

almost exclusively on wearable or otherwise highly portable technology. Many studies focus on 

adoption and sustained use of sports and health related wearables, such as smart watches, Fitbits etc. 

(Canhoto and Arp 2017, Lazar, et al. 2015, Shih, et al. 2015, Ledger and McCaffrey 2014, Gouveia, 

Barros and Karapanos 2014). Some studies attempt to devise new approaches to designing wearables 

for sports. A noteworthy example found in extreme sports is that of (Mencarini, Leonardi, et al. 2018), 

who describe a method for co-designing wearables for the climbing sport. Other studies concentrate 

on designing new devices and ways of interacting with them. From a literature review of 57 related 

papers, (Mencarini, Rapp, et al. 2019) identifies research opportunities within this field: “the 

investigation of different form factors and types of feedback; the consideration of different 

sportspeople and collaborative tasks; the need of pushing the boundaries of the sports domain; the 

exploration of the evolution of sports; the interconnection of different devices; and the increase of 

methodological rigor” (Mencarini, Rapp, et al. 2019, 314). In attempting to provide a tool for the 

broader audience to advance and push the boundaries of their abilities and the MTB sport, while 

simultaneously exploring the possibilities of different form factors as well as the need for the 

interconnection of devices, this thesis can be said to take advantage of several of these opportunities. 

A single study experimenting with mobile devices was discovered within the cycling and mountain 

biking domain. (Guerra-Rodríguez and Granollers 2016) conducted user experience tests on 

smartphones and smart watches in outdoor activities, including mountain biking. Comparing the 

results, they found that smart watches were not preferred over smartphones and reported on several 

technical issues on both devices experienced by participants in the study, such as loss of connectivity, 

insufficient battery power and light reflecting in the screen. Though, usability tests overall showed 

that participants found it easy to execute tasks and feedback was reasonably clear and understandable. 

These results indicate that the smartphone might represent a viable option for an activity tracker in 

the MTB domain, in some cases perhaps even preferred over dedicated or otherwise external devices. 

Additionally, advances in mobile technology in the latest years may have compensated for some of 

the technical issues reported in the study.  

Although the literature in Human Computer Interaction for sports does support and encourage the 

examination of sports activities through different types of wearable devices, the search for sources on 

the specific subject of activity tracking in the MTB domain proved unsuccessful. 
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2.3 Activity tracking 

HCI researchers are also occupied with the field of activity tracking in general. (Hansen, Smartphone-

based, bike crash detection systems for use in extreme sports environments 2019) identified several 

useful sources within the field, which overall reported good results. For example, (Nguyen, et al. 

2017) achieved a 96.35% accuracy, 95.65% specificity, and 100% sensitivity in detecting falls in the 

elderly, using a wearable accelerometer motion sensor. Kinematic data collected from the tri-axial 

accelerometer was analyzed by threshold method to distinguish between activities of daily life 

(ADLs) and an actual fall. A similar study by (Rungnapakan, Chintakovid and Wuttidittachotti 2018) 

attempts to detect falls on the smartphone platform, also using a threshold-based algorithm on 

accelerometer and gyroscope sensor readings, achieving a 97.33% accuracy. Studies in bike crash 

detection (Williams 2018, Hansen, Smartphone-based, bike crash detection systems for use in 

extreme sports environments 2019) also show reasonable results with threshold-based algorithms. 

Such algorithms are possible to implement real-time, taking up only a minimal amount of resources 

(Nguyen, et al. 2017), which makes them very suitable for mobile devices. Considering the 

performance and characteristics of threshold algorithms, they may seem to be an attractive solution, 

although, they are often hardcoded and more suited for detecting impact incidents for example, which 

might prove too inflexible to stand alone for use in the mountain bike domain. 

Several relevant sources were identified upon reviewing literature in sports technology and other 

related sciences. A large body of works (Baca 2012, Attal, et al. 2015, Migueles, et al. 2017, O’Reilly, 

et al. 2017) exists in tracking and classifying a wide range of human activities, such as walking, 

running, lifting heavy objects, and sleeping. Many of these studies experiment with applying more 

advanced machine learning methods, as for example neural networks, Support Vector Machine 

(SVM), personal and universal classifiers, k-Nearest Neighbor (k-NN) etc., to accelerometer and 

sensor fusion data. They also explore the possibilities of achieving it on the smart phone platform and 

show that such methods are effective and very suited for the purpose of activity tracking on mobile 

technology in general. Introducing the possibility of adapting to different riders and environments 

through applying machine learning algorithms would be greatly beneficial in the MTB domain, 

considering the broad appeal and varied nature of the sport.  
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2.3.1 Activity tracking for sports 

Using similar methods, some studies focused specifically on recognizing certain activities or 

classifying tricks within a wide range of sports. (Helten, et al. 2011) introduces an approach for 

achieving automatic segmentation and classification of trampoline jumps, while other researchers 

have investigated the possibilities of classifying and visualizing skateboard tricks (Groh, Flaschka, et 

al. 2016, Groh, Fleckenstein, et al. 2017). Another study by (Lee 2015) proposes an algorithm for the 

real-time detection and classification of different activities, such as jumping and dropping, in the 

skiing and snowboarding sports. It combines threshold methods and Support Vector Machine for 

analyzing sensor fusion data, and achieved an 80.5% accuracy, 93% specificity and 92% sensitivity. 

The study shows that it is possible to automatically differentiate between activities which share 

similar characteristics, such as jumping and dropping, when combining threshold methods with 

classification algorithms.  

A semester project in sports technology, done on Aalborg university, was the only study identified to 

have examined similar methods in cycling sports. (Diemar and Hansen 2018) tested three different 

machine learning methods: decision tree, Support Vector Machine, and k-Nearest Neighbor, in their 

ability to classify different airborne tricks in the BMX sport, using IMU sensor data. They collected 

data from prototype dedicated devices integrating standard, low range IMU (+/-16G), as well as a 

high range IMU (+/-200G), mounted in different places on the bike. With k-Nearest Neighbor having 

performed best, they achieved a 95-100% accuracy in classifying tricks. The study also showed that 

it was possible to extract and calculate airtime and impact forces successfully using Principle 

Component Analysis (PCA). Although, the choice to add a high range IMU had proven necessary to 

measure the impact forces sometimes experienced in the BMX sport.  

Several important aspects were uncovered from reviewing related work. Evident from the large body 

of research discovered in the field of activity tracking for sports, there is a need for the ability to 

monitor and classify sports activities accurately, among academics as well as athletes. From the 

review, the foundation for designing an approach to this thesis was also established. It showed that 

detecting and classifying different airborne activities using IMU sensor data is achievable with great 

precision in the BMX sport. Using threshold algorithms to automatically detect flight phases and 

machine learning methods, such as SVM and k-NN, to classify the transpired activity, it should be 

possible to achieve similar results in the MTB domain. The literature also provided methods for 

extracting and calculating riding related parameters, such as airtime and impact forces. Finally, a 
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prototype device dedicated to the purpose of detecting airborne activities and classifying different 

tricks in the cycling sports, was identified. Although it was originally intended for the BMX sport, 

the MTB and BMX sports overall share enough characteristics that the capabilities of the device 

should be transferable by integrating similar hardware components.  
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3 Methodology 

This study was essentially an experiment to determine if the smartphone could perform equally well 

as a dedicated device at the purpose of advanced activity tracking in the MTB domain. When 

approached from a Human Computer Interaction perspective (Lazar, Feng and Hochheiser 2017), this 

can be expressed as a null hypothesis and an alternative hypothesis, the null hypothesis being the one 

you hope to reject. In the case of this study, the null hypothesis was that the smartphone could not be 

made to track MTB related activities as well as a dedicated device. A controlled experiment was 

conducted to determine this, taking a rigorously methodological approach to the examinations. From 

the literature review, a method for detecting and classifying activities in the cycling sports was 

identified, which was attempted on both devices implicated in the study. Each of the main constituents 

of the proposed technique were examined separately to accommodate for multiple devices being 

tested, and to achieve optimal insight into the results. The condition examined was the relationship 

between the two different devices’ capabilities of detecting and classifying MTB activities and 

measuring related parameters. Thereby, the experiment relied on quantitative data captured with 

IMUs in a realistic environment, ensuring that the study reflected the real-world experience.   

A micro electromechanical systems inertial measurement unit 

(MEMS IMU) measures linear acceleration in meters/second2, 

along the x, y, and z dimensions (figure 3.1), by means of 

suspended silicon nano structures (Sparkfun 2020). Thereby, 

the slightest motion of an object, such as a moving bike, is 

captured and transduced into an electrical current, which can 

be stored, analyzed, and visualized on a computer. One way 

the data might be described, is in g-forces. G-force is a 

measurement of gravity; 1G is equal to the pull of the earth’s gravity at sea-level, or 9.80665 m/s2. 

This is reflected in a tri-axial accelerometer, in that the dimension vertically aligned towards the sky, 

will read a value approximately equal to 1G at sea-level. The easiest way of testing the accuracy of a 

sensor is to do a calibration test using this constant. If the z axis is oriented towards the sky, it should 

read approximately 1G (when at sea-level). When doing airborne activities on a bicycle, be it BMX 

or MTB, you eventually must enter free-fall, shortly experiencing weightlessness. The free-fall state 

has a distinct pattern of readings consistent with 0G in this axis, in the time that the rider and 

equipment is airborne (Diemar and Hansen 2018). This pattern is easily recognizable, even using 

Figure 3.1, source: (Sparkfun 2020). 
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basic threshold methods, making it possible to detect and classify airborne activities. These are the 

principles this thesis takes advantage of. 

 

3.1 Materials 

The two main materials used for the purpose of the experiment were a prototype dedicated device 

and a modern, flagship model smartphone. Each device was fitted with customized software for 

logging data from the IMUs integrated in the platforms. This section describes each device in detail. 

 

3.1.1 Dedicated device  

The most promising candidate for a dedicated device discovered upon reviewing related work, was 

described by (Diemar and Hansen 2018). It was a prototype based on the Shimmer3 IMU 

development kit (ShimmerSensing 2020), integrated with a high range IMU. They achieved near 

perfect results in classifying BMX tricks and measuring related parameters. Unfortunately, it was not 

possible to acquire the same equipment, why it was necessary to design and build a prototype of 

comparable specifications for the purpose of this thesis. 

The prototype devised was based on the development board STM32, model F411RE (STM32 2020), 

by ST Microelectronics. As evident from the hardware specifications comparison table (table 3.1), it 

surpasses the specifications of the shimmer3 in all known parameters, and as such was found to be a 

suitable alternative. (Diemar and Hansen 2018) used an Adafruit ADXL377 accelerometer sensor 

(Analog devices 2020) for their experiment. It has a maximum 200G range of measurement, which 

was applied in the study, along with a sample rate of 250Hz (equal to 250 samples/second). The 

prototype was integrated with a high range Sparkfun H3LIS331DL accelerometer (Sparkfun 2020), 

capable of measuring forces up to 1000G. While optimizing the prototype, a series of baseline tests 

showed that the sensor was most accurate when set to 1000G, which was therefore applied for the 

purpose of the experiment. The H3LIS331DL features a max sample rate of 1KHz, though to best 

replicate the capabilities of the shimmer3 setup, it was set to 250Hz in this experiment as well. In 

addition, the prototype was integrated with a standard microSD card reader for data logging, equipped 

with a 16 GB Scandisk SD card. 
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Hardware specifications comparison table  

Device: Shimmer3 F411RE Samsung Galaxy S8+ 

CPU 24MHz MSP430 100 MHz ARM Cortex-

M4 

Octa-core (4x2.3 GHz 

Mongoose M2 & 4x1.7 

GHz Cortex-A53) 

Memory Unknown 512KB Flash, 128KB 

RAM 

4 GB RAM 

Storage SD card, size unknown SD card, 16 GB Internal, 64 GB 

IMU: Adafruit ADXL 377 Sparkfun H3LIS331DL STM LSM6DSL 

Sensor type Analog Digital Digital 

Max range 200G 1000G 16G 

Applied range 200G 400G 8G 

Max sample rate 1KHz 1KHz 500Hz (achieved) 

Applied sample rate 250Hz 250Hz 250Hz 

Filtering Low pass filter, applied 

post recording. 

high pass filter, 

coefficient set to 64 

Series of high and low 

pass filters 
 Table 3.1, sources: (Analog devices 2020, Sparkfun 2020, GSMArena 2019, ShimmerSensing 2020, STM32 2020, Technology 

Informa 2020) 

The software for both devices was designed to only log IMU readings for later processing. As such, 

the firmware for the prototype dedicated device did not actually run the detection and classification 

algorithm. The device was simply programmed to acquire readings from the x, y and z dimensions of 

the integrated IMU in intervals of 4 milliseconds (equal to 250 samples/second), convert the values 

to G forces and log them to the SD card, pre-fixed with a timestamp (milliseconds since last boot), 

automatically upon boot up. Although, testing of the prototype showed that introducing further 

elements or increasing the sampling rate was within the capabilities of the device.  

The firmware was composed of 277 lines of code and was written in the arduino IDE (available on 

Microsoft Store). Although this required for the STM32 Cube Programmer (ST Electronics 2020) to 

be installed, the arduino platform was chosen over the STM32 native IDE to ease the job of coding 

the firmware. The prototype implements multithreading for the sensor reading and SD card logging 

tasks, and model specific support libraries to accommodate for the lack of support in the arduino IDE.  

 

3.1.1.1 Configuration of components 

The development process of the prototype device was divided into the three steps: designing, 

building, and testing. Completing it took approximately 14 days, the time divided 50/50 between 

constructing the hardware and coding and optimizing the firmware. The hardware components were 

installed in a black plastic case, large enough to also contain a battery compartment. The compartment 
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was lined with shock absorbing foam, completely incasing the 9-volt battery to avoid unwanted 

shaking, resulting in false data being captured. Furthermore, the prototype was equipped with a green 

and a red LED, indicating power on and recording active, respectively. The integrated user button 

was programmed to safely end the recording and properly save the data. The components were 

configured as seen in image 3.1: 

 

Image 3.1, prototype components configuration. 

 

3.1.1.2 Calibration test 

The H3LIS331DL IMU module is factory calibrated to +/-1G, read in from a static memory bank 

upon every start up, eliminating the need for further calibration  (Sparkfun 2020). To accommodate 

for offset occurring due to post fabrication handling, the module also features an in-built high pass 

filter. A coefficient of 64, the highest possible, proved the most suitable during testing of the device, 

and was applied to the high pass filter for the purpose of the examinations. Data loss due to cut off 

frequency proved non existing at the applied sample rate of 250Hz, which was confirmed visually in 
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validating the timestamps in a series of sample sets. When doing a calibration test on the prototype, 

as described in section 3, page 12, the sensor proved to perform somewhat as expected. Diagram 3.1 

below shows a plot of 2500 samples of raw IMU data captured from the z axis, while the sensor was 

lying flat on a table with the z axis oriented vertically. The samples had a mean value of 1.36 Gs of 

vertical acceleration over 10 seconds, and the main part clusters nicely around this value, relative to 

the +/-1G factory calibration. Though, the signal was found to contain a significant amount of noise, 

which may be due to several things, such as faulty sensor readings or small vibrations from the 

surroundings. For this reason, it was necessary to clean up the signal further, applying a filter in the 

preprocessing phase (see section …).  

 

Diagram 3.1, final calibration test, dedicated device. Graph shows gravity of earth captured on the z axis. 

 

3.1.2 Smartphone platform 

The smartphone platform used during the experiment was a Samsung Galaxy S8+ (Samsung 2020). 

As seen in the hardware specifications comparison table (table 3.1), the general specifications of the 

S8+ far exceed those of the shimmer3 and STM32 setups. In terms of processing power, memory, 

and internal storage, it has enough resources that it will be able to run the detection and classification 
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algorithms, so that the results may be available immediately or even in real-time. An older flagship 

model was chosen in an attempt to test a phone with specifications considered common today. 

 As far as it was possible to uncover (Technology Informa 2020), it features an STM LSM6DS 

combined accelerometer and gyroscope sensor, which has a max measurement range of 16G. 

Although, during the testing of the smartphone application, it was discovered that the sensor cuts out 

at 8G, and efforts to identify a way of setting the range to maximum proved unsuccessful. It is not 

supported by the Android documentation, nor were any fixes uncovered elsewhere, though, the 

problem seems to be well known. 8G is probably high even, compared to some older model 

smartphones. Considering the findings of (Diemar and Hansen 2018), this indicates that the 

smartphone in general might be unsuitable for measuring some of the riding related parameters. Data 

recorded during this experiment only included accelerometer readings. 

Like the dedicated device, the software was designed to only log data from the IMU. The data was 

saved on the internal storage of the device, in a folder named “rdl_log”. A timestamp and the x, y, 

and z values in G forces were the only parameters logged. The app consisted of 151 lines of code and 

was composed in Android using the official Android IDE. It took about two days to complete, while 

testing and optimization of the app was done simultaneously with the dedicated device. Although 

tests showed that the smartphone was capable of logging data with a sampling rate of up to 500Hz, 

the software was limited to 250Hz to better be able to compare the results, and to achieve a stable 

logging process. No data loss was registered from any filter cut of frequency, which was confirmed 

by manually inspecting several datasets.      

 

3.1.2.2 Calibration test 

Assuming they are utilized, the LSM6DS accelerometer features a series of high and low pass filters 

to clean the signal. The accuracy of the sensor was confirmed by doing a calibration test, as with the 

dedicated device. Diagram 3.2 below shows 2500 samples captured from the z axis on the smart 

phones integrated IMU. Relative to the dedicated device, this signal is significantly clearer, having 

all samples clustered in a straight line with a mean value of 1.00 Gs, over a period of 10 seconds. It 

is unknown if Samsung applies further advanced filtering to the signal, though judging from the 

baseline, it seems highly probable. In any case, the accuracy of the integrated sensor indicated that it 

should be adequate for activity detection and trick classification purposes. 
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Diagram 3.2, final calibration test, smartphone. Graph shows gravity of earth captured on the z axis. 

 

3.1.3 Bike and placement of devices 

A high end, full suspension cross country mountain bike was used for the experiment. It was chosen 

because it is a common piece of equipment encountered in the sport, and because it was sturdy enough 

to endure the examinations. The dimensions of the bike also allowed for the devices to be placed in 

a variety of ways. 

A wide variety of phone holders and bags designed to be mounted in various places on the bike are 

commercially available. Although, often when people use smartphones for activity tracking 

applications while riding MTB, they have the phone mounted on the handlebar, for example to view 

live feedback from the system (Hansen, The TrailMe System 2019). A Zéfal Z Console phone holder 

was therefore chosen to mount the smartphone to the bike handlebar for the purpose of the 

experiment. It is designed so that it firmly secures the phone to any bar shaped object using rubber 

elastics. Thereby, it was possible to attach the device in accordance with the norm during the 

experiment, and thoroughly testing the holder by dropping the bike from different angles showed that 

it provided adequate stability to avoid significant noise from unintentional movements (image 3.3). 

The dedicated device was mounted in front of the saddle, using a piece of foam padding and cable 

strips as seen in image 3.3. In this study, it was necessary to isolate and examine the vertical 
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acceleration in detail, why both devices were mounted so the z axis was oriented vertically (as seen 

in image 3.3).  

 

Image 3.3, placement and orientation of devices. Smartphone to the left, dedicated device to the right.  

 

3.2 Setting and participants 

The cross country discipline of mountain biking is the most practiced in Denmark (Hansen, The 

TrailMe System 2019), and perhaps also the basis of a large part of the global commercial market in 

activity tracking smartphone applications for the MTB sport. Although it varies from rider to rider, it 

is probably the most relaxed MTB discipline, characterized by small to medium sized obstacles. 

Considering this, and the limitations of the IMUs in the smart phone platform, the XC discipline was 

chosen as the focus of this thesis. 

 The MTB technique and training facilities in Vodskov near Aalborg was chosen as the site of the 

examinations. It is a facility for training your mountain biking skills, used mostly by the local MTB 

club. The facility hosts a wide variety of obstacles and terrain types, in a small enclosed area. The 

features are comparable to obstacles commonly encountered in the cross-country discipline and vary 

in size from small to large in relation to the XC discipline. It is essentially a small outdoor laboratory 

featuring all the necessary obstacles, and the conditions for properly executing the activities while 

securing adequate documentation. This ensured that the examinations could be conducted in a 

controlled, though realistic setting. To accommodate the nature of the experiment, the largest jump 

and drop at the facilities were identified as the most suited for the study, and thereby chosen as the 

obstacles for gathering data. The drop measures 72 cm in height, though the landing is at an angle, so 
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the total drop height is higher. The jump is a so-called tabletop jump measuring 3.5 meters in length 

and 90 cm in height. The features can be seen in images 3.4 and 3.5 below. 

The entire experiment, including data collection, was conducted by the author of the study, mainly 

due to the reason that the project was done in early 2020, during the Covid-19 epidemic. However, 

the participant (age 34, weight 88kg, height 182cm) has appr. 6 years of experience in riding amateur 

XC MTB, ensuring the gathering of relevant, reliable data. 

 

Image 3.4, drop. 
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Image 3.5, tabletop jump. 

 

3.3 Data collection 

Kinematic data from tri-axial accelerometers was collected through what might be considered an 

automatic data collection method, intended for measuring the human (Lazar, Feng and Hochheiser 

2017). In this case, it was measuring human activity exercised on a mountain bike, more specifically, 

the G forces that the rider and equipment was subjected to.  

The data collection process extended over a couple of days. One session was recorded at the drop 

location, and two sessions at the jump location. This resulted in the recording of 30 jumps and 30 

drops on both devices, amounting to a total of 120 activities captured in 6 separate data sets. All 

activities were video recorded for later reference and validation of the data. A GoPro Hero 7 Black 

was used for the purpose of documenting the process. It features high resolution, high speed 

recording, while offering a wide variety of mounting options. It was set to record at a resolution of 

1080*1920, 60 frames/second. 

When a session was started, the logging software on both the dedicated device and the smartphone 

were activated simultaneously, and the entire session was recorded in one stretch. Thereby, the same 

sessions were captured by both devices, limiting the time spent gathering data. It also resulted in the 

data being highly uniform in between the devices and different activities, increasing the 

comparability. When a session was ended, the data was downloaded from the SD card or smartphone 

to a computer, for safe storage and processing. 
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3.4 Data analysis 

This section presents the overall procedure of the analysis and describes each element in detail.  

 

3.4.1 Procedure 

Below chart describes the flow and content of the analysis (figure 4.1). It had three parts in all. First, 

it was necessary to preprocess the data. This entailed filtering the signal from the devices and 

segmenting the flight phases to identify the jumps and drops in the data sets. Part 2 of the analysis 

was the task of classifying the different activities by training a machine learning algorithm to 

recognize the difference between the two. The last part of the analysis was the parameters calculation. 

This was done manually on the two parameters: airtime and impact forces. 

 

 

 

 

 

 

 

 

Figure 3.1, analysis flowchart 

 

3.4.2 Data preprocessing 

Data preprocessing was necessary to conduct to prepare the raw accelerometer data for analysis with 

the machine learning algorithms. This part of the analysis involved the two tasks signal filtering and 

flight segmentation. The different parts are described in detail below. 
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3.4.2.1 Signal filtering 

While the smartphone signal showed signs of already having been filtered in some degree upon 

recording, the dedicated device was logging the raw, unfiltered XYZ readings. In this study, 

experimenting with different filter settings showed that applying a lowpass filter to both the devices 

was beneficial during the flight segmentation phase and the machine learning process.  

The filter was designed and applied using the filter designer in MATLAB, which was the main 

software used for the programmatical task in the project. Both devices had the same filter applied: a 

lowpass filter made with the equiripple method. To accommodate for the difference in the raw reading 

of the two devices, the dedicated device had an 8 Hz cut of frequency, while the smartphone signal 

had 12Hz. Below diagrams (diagrams 3.3-3.6) show the vertical acceleration from a jump and a drop 

from both devices, in the filtered and unfiltered condition. 

 

 

Diagram 3.3, a jump on the smartphone 
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Diagram 3.4, a drop on the smart phone. 

 

 

Diagram 3.5, a jump on the dedicated device. 

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

G
 f

o
rc

es

Number of samples

Drop, smartphone

Unfiltered Filtered

-2

-1

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

G
 f

o
rc

es

Number of samples

Jump, dedicated device

Unfiltered Filtered



Palle Preben Hansen Master thesis June 10, 2020 

25 

 

 

Diagram 3.6, drop on the dedicated device. 

As known from the calibration tests (section 3.1.1, diagram 3.1), the dedicated device had a plus 

margin on the z-axis of 0.37 mean value over 10 seconds, why this must be considered when 

attempting to segment the flight phases. 

 

3.4.2.2 Flight segmentation 

As the airborne activities themselves were the focus of the study, it was necessary to manually 

segment the flight phases, where the rider and equipment are in a free-fall state, to isolate the activities 

from the raw data sets for further analysis. The free-fall state can be detected from analyzing the 

vertical acceleration, as described in section 3.0, why the first step was to isolate and focus on the z-

axis of each recorded data set. Since only one activity was performed per session, the class of the 

activity was known from the session analyzed. 

By visual analysis of the video documentation, the start time of each individual jump and drop were 

noted. Furthermore, the actual airtime was derived from counting frames from the moment the rider 

and equipment were fully airborne to the precise moment of impact. The video documentation was 
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recorded with 60 frames/second, which is equal to 16.66 milliseconds/frame. For later reference, 

comments were also made on the execution of the individual jumps and drops. 

Using the start time obtained from the video analysis as a reference point, it was possible to identify 

and isolate all 120 activities successfully. Though, to avoid misleading results from any outside or 

data related reason, it was necessary to subject the individual activities to a secondary screening 

process. The criteria for eliminating activities were: 

1. Obstacle was not cleared. 

2. Corrupt data or false sensor readings from accidental incidents during session. 

From reviewing comments and analyzing the data in detail, 6 jumps out of 30 were eliminated from 

further analysis because the obstacle was not cleared properly. Although the drops were not prone to 

failed attempts in the same way as jumps, 1 out of 30 drops was eliminated due to false readings, as 

a result of the dedicated device coming loose during the attempt. Thereby, 24 jumps were identified 

to be suitable for analysis, while 24 drops were selected randomly from the remaining 29.  

The data preprocessing stage ultimately produced four data sets, one set per device per activity. 

 

3.4.3 Activity classification 

Machine learning was chosen for the activity classification analysis. (Diemar and Hansen 2018) tested 

a number of machine learning algorithms in their BMX study, among them is worth mentioning 

Support Vector Machine and k Nearest Neighbor (kNN). They reported the best results using kNN 

for the purpose of classifying different tricks in the BMX domain. Therefore, this method was chosen 

for the method used in this project. kNN attempts to devise a prediction model based on calculations 

of the distance to the nearest neighbors of samples in a data set (Diemar and Hansen 2018). Thereby, 

it is possible to predict the right activity from accelerometer data, often with high precision. These 

characteristics made the method very suitable for use in this study. 

The classification learner app in MATLAB was used as a tool for conducting the classification 

analysis. This ensured that the analysis was easy to perform and that adequate documentation of the 

process could be secured. The app features several preset classification algorithms, which can be 

trained and subsequently applied to other data sets. This includes 6 different settings for kNN: fine, 

medium, coarse, cosine, cubic and weighted. Thereby, these 6 settings were applied to the collected 
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data in a 10-fold validation process. All 6 algorithms were run 10 times on the full XYZ spectrum of 

the segmented activities from both the dedicated device and the smartphone, to determine which 

setting could achieve the highest accuracy in classifying jumps and drops. The data sets were divided 

66% for training and 33% for validation on each run, and a mean was derived from the results to 

show which was the best on average. The full analysis can be seen in appendix 1. 

 

3.4.4 Activity parameters calculation 

(Diemar and Hansen 2018) identifies two riding related parameters which are possible to derive and 

validate adequately from the vertical acceleration (z-axis) measured by a MEMS accelerometer alone; 

airtime and impact forces. Airtime is the time that the rider and equipment are airborne, or in a free 

fall state, to be precise, while the impact forces are the G forces experienced when landing. These 

parameters might be beneficial to professional athletes, in because an athlete’s ability at completing 

the activity might be improved from knowing how which technique effects these parameters. Also, 

the one with the longest airtime earns the bragging rights. 

Airtime and impact forces are, as mentioned, possible to derive by extracting the features that 

activities, such as jumping or dropping, produces in the data. From the physics lecture in section 1.0, 

we know that when the rider and equipment are airborne the vertical acceleration will approach zero 

G’s. Thereby, it is possible to calculate the airtime by extracting the part of the pattern that has this 

feature and counting the samples that make up the section. Impact forces can be determined by simply 

reading out the maximum G-force values in the features produced when landing a jump or drop. 

Feature extraction and parameter calculation can be done automatically by using Principal 

Component Analysis (PCA) (Diemar and Hansen 2018) along with the machine learning process, and 

would ultimately be done as such in a finished algorithm. However, to avoid false readings due to 

interference from filters and ensure reliable results, the features were extracted manually from the 

raw z-axis data in this study. The features were extracted as seen in diagrams 3.7 and 3.8 below. 



Palle Preben Hansen Master thesis June 10, 2020 

28 

 

 

Diagram 3.7, feature extraction from jump, red is the feature related to airtime, green is the impact force. 

 

 

Diagram 3.8, feature extraction from drop, red is the feature related to airtime, green is the impact force. 
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As with the machine learning activity, a 10-fold validation was conducted, taking 10 random jumps 

and 10 random drops from both devices, and comparing the results. For further validation, the airtime 

parameter was also compared to the airtime derived from observations in the video documentation. 
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4 Results 

This chapter presents the results of the activity classification and activity parameters calculation 

analyses. 

 

4.2 Activity classification 

The results of the activity classification analysis can be seen in table 4.1 (dedicated device) and 4.2 

(smartphone) below.  

 

  Method           

Run Fine Medium Coarse Cosine Cubic Weighted 

1 72.7 76 74.5 68.2 75.9 76.1 

2 73.4 77.2 74.1 69.3 77.2 76.7 

3 72.7 75.8 73.3 68.2 75.5 75.7 

4 73.2 75.8 73.1 67.1 75.6 75.8 

5 72.8 74.9 72.6 67.3 75.1 75.4 

6 73.6 76.6 73.2 68.9 76.7 76.6 

7 73.7 75.3 72.4 67.7 75.2 75.9 

8 73.4 75.9 73.7 68.1 75.5 75.7 

9 73.7 75.5 72.3 67.8 75.5 76.3 

10 72 75.6 73.5 67.8 75.9 75.6 

Mean 73.12 75.86 73.27 68.04 75.81 75.98 

Table 4.1, Dedicated device classification analysis results table. 

 

The dedicated device was found to have the highest accuracy in classifying jumps and drops of the 

two devices, achieving a mean of 75.98% accuracy over 10 runs with the weighted algorithm. In run 

2, the dedicated device achieved the maximum accuracy in the experiment, achieving a 77.2% 

accuracy, with the medium algorithm, which also comes in second in the 10-fold validation, with a 

mean of 75.86% accuracy. The cosine algorithm had the lowest accuracy, both in terms of the 10-

fold validation and in having the lowest accuracy of 64.2%. 
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  Method           

Run Fine Medium Coarse Cosine Cubic Weighted 

1 72 74.6 72.1 66 74.8 75.2 

2 70.6 74.6 72.1 66 74.1 74 

3 72.1 75.6 72.8 64.4 75.4 75.1 

4 70.9 73.8 72 64.2 74.3 74.5 

5 71.66 75.1 72.8 65.3 75.1 75.4 

6 71.2 74.3 72 66.2 74.2 74.2 

7 71 75.2 72.6 65.9 75.5 74.7 

8 71.2 76 74 65.5 76.1 75.8 

9 71.1 75.1 73 65.9 75.1 74.9 

10 71.7 75 73.7 65.4 75.2 75 

Mean 71.35 74.93 72.71 65.48 74.98 74.88 

Table 4.2, Smartphone classification analysis results table. 

 

The smart phone achieved the highest accuracy of 75.8% with the weighted algorithm, though, over 

the 10-fold validation, the cubic algorithm proved to have the highest accuracy for the smart phone 

with a 74.89% accuracy. The lowest scoring was again the Cosine algorithm, achieving only 64.2% 

accuracy. 

Generally, both devices achieved an accuracy of between 65-75% in classifying the two activities, 

with the worst performance from the cosine algorithm, and the best from medium, cubic, and 

weighted algorithms. 

 

4.3 Activity parameters 

Below are the results of the activity parameters calculations. First, the airtime parameter is detailed, 

before presenting the impact force parameters.  

 

4.3.1 Airtime  

Tables 4.3 and 4.4 below shows the calculated airtime in seconds for the dedicated device, the 

smartphone, and the observed airtime for 10 randomly chosen jumps and drops. 
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Jump nr. Dedicated device Smartphone Observed 

1 0.53 0.53 0.52 

2 0.58 0.56 0.53 

3 0.67 0.67 0.60 

4 0.60 0.62 0.53 

5 0.70 0.55 0.62 

6 0.74 0.64 0.67 

7 0.58 0.58 0.60 

8 0.69 0.59 0.63 

9 0.67 0.63 0.67 

10 0.68 0.70 0.70 

Table 4.3, jump airtime parameter comparison table, value in seconds. 

 

Drop nr. Dedicated device Smartphone Observed 

1 0.39 
 

0.37 
 

0.38 
 

2 0.38 0.39 0.40 

3 0.41 0.37 
 

0.40 

4 0.36 0.39 0.37 

5 0.37 0.37 
 

0.35 

6 0.38 
 

0.34 
 

0.37 

7 0.40 0.37 
 

0.40 

8 0.38 0.36 
 

0.37 

9 0.35 
 

0.35 0.37 

10 0.38 0.36 
 

0.37 

Table 4.4, drop airtime parameter comparison table, value in seconds. 

 

As evident from the jump airtime parameter comparison table, both devices show good and bad 

results. In 5/10 instances the devices are each off by a lot, as for example in jump 3, where they are 

both wrong by 0.07 seconds relative to the observed airtime. Although, when considering that this 

amounts to less than a 1/10 of a second, it is still rather close. The devices also show good results. In 
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3/10 instances, the extracted features were remarkably close to the observed airtime. In jump nr. 1 for 

example, both devices came within 0.01 seconds of the observed airtime, and 0.02 seconds in jump 

7. The dedicated device was correct in one instance, jump nr, 9, while the smartphone was right in 

jump 10. Across the devices, the airtime calculated from the feature extraction was generally within 

0.1 seconds of the observed airtime, except for a single instance for both devices (marked in red) 

As seen in the drop airtime parameter comparison table (table 4.4), the devices perform great in 

determining airtime in drops. Both the dedicated device and the smartphone are generally within 0.01-

0.02 seconds of the observed airtime. 

 

4.3.2 G- forces 

Table 3.5 below shows the derived impact forces from 10 Random jumps and 10 random drops. 

 

Dedicated device Smartphone  

Jumps  Drops Jumps Drops 

4.4  12.4  8.0  8.0  

5.3  8.7  8.0  8.0  

4.4  10.4  8.0  8.0  

6.1  9.4  8.0  8.0  

5.1  13.0 8.0  8.0  

7.3  9.5  8.0  8.0  

5.4  9.4  8.0  8.0  

4.4  12.4  8.0  8.0  

4.4  11.1  7.9  8.0 

5.2  9.4 8.0  8.0 

Table 3.5, Impact force comparison table, values in G forces. 

 

When looking at the impact force comparison table, it is obvious that the smart phone was not very 

well suited for measuring impact forces. It measured 8.0 Gs in all instances, both in jumps and drops. 

The dedicated device on the other hand had a more realistic spread. It shows impact forces below 8 



Palle Preben Hansen Master thesis June 10, 2020 

34 

 

Gs in all instances of jumps, and impact forces between 8.7-13 Gs in drops. The fact that the smart 

phone cuts out at 8 Gs was established already in the beginning of the study, although now it is clear 

that it is not especially suited at measuring impact forces in the MTB domain. Although the dedicated 

device shows G forces below 8 Gs in jumps, the smart phone maxes out here as well. this might be 

due to the placement of the device though. The smart phone is mounted on the handlebar which might 

experience higher G forces then the dedicated device which is mounted in the middle of the bike. 

  



Palle Preben Hansen Master thesis June 10, 2020 

35 

 

5 Discussion 

This chapter will discuss the findings of the study. First, the activity classification analysis is 

discussed before moving on to the activity parameters calculation. Along the way the two devices 

capabilities of functioning as an advanced activity tracker in the MTB domain are compared.  

 

5.1 Activity classification  

When considering the results of the activity classification analysis, neither of the devices perform at 

the same level as some of the systems presented in related work. Many of these studies (Diemar and 

Hansen 2018, Lee 2015) achieve accuracy levels of over 90%, while the mean of the two devices 

tested in this study was around 75%. This might be due to the fact that only accelerometer data was 

included in this experiment. The accuracy might be improved by including more sensors such as 

magnetometer and gyroscope in further research. 

When comparing the two devices the smart phone and the dedicated device was found to perform 

more or less equally well in classifying drops and jumps in the MTB domain. Both devices achieved 

accuracy levels, in the 70% range, and the dedicated device achieved a 77.2% max accuracy, which 

is a relatively good result considering the low number of predictors (sensor readings) loaded into the 

model.   

Through the study, traits like jumps and drops was encountered in regular riding, so some kind of 

detection algorithm should be in place to filter for false positives. Threshold or otherwise, it could be 

two part, including spectrum analysis, as in (Diemar and Hansen 2018). 

 

5.2 Activity parameters  

The activity parameters calculation analysis showed that both the dedicated device and smart phone 

were able to produce signals of high enough quality and sample rate to extract features for calculating 

riding related parameters acceptably. For example, in calculating airtime, it was found that both 

devices were accurate within a tenth of a second across a 10-fold validation, especially when 

extracting features from drops. The derived airtime for both devices were comparable to that of 

(Diemar and Hansen 2018), Which indicates that the dedicated device, as well as the smartphone, 
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would perform reasonably acceptable in extracting features for airtime calculation using principle 

component analysis also.  

When considering the results of the impact forces parameter analysis, the smart phone might not be 

suited for impact detection in the MTB domain. The fact that the smartphone cuts out at 8 Gs in all 

activities, even when the dedicated device shows impact forces below 8 Gs, cements this fact.   

The activities eliminated from the study may also hold valuable information. It may be possible to 

detect when you cap a jump with the back wheel or make other mistakes, such as low/high nose, these 

show up in the data with a clear pattern, which might be useful to athletes. 

 

5.1 Limitations of the study 

It should be necessary to record and teach the algorithm other kinds of jumps and drops. In a sense, 

the algorithm has only been thought to recognize activities performed on the two target obstacles. It 

may recognize activities performed on other obstacles of similar characteristics, though the diverse 

nature of MTB obstacles taken into consideration, it should be introduced to other patterns recorded 

on various obstacle. The study does not take into account that some rider might do tricks over 

obstacles such as jumps and drops either, which should be addressed in a finished product. 

The study does not concern the direct interaction between the user and UI components, it is only an 

exploratory study (basic research) into the possibilities of achieving advanced activity tracking in the 

MTB domain. 
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6 Conclusion 

Although the study did not achieve the same accuracy as other studies in the area, it's fairly safe to 

say that it shows that this smart phone can perform equally well as a dedicated device for the purpose 

of advanced activity tracking in the MTB domain. 

across the 10 fold validation the devices showed accuracy levels of around 75% which could be better. 

the parameters calculation analysis showed that the smart phone can perform equally well in deriving 

airtime from feature extraction than a dedicated device. 
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8 Appendices 

8.1 Classification analysis, dedicated device 
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8.1 Classification analysis, smartphone 
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