
Summary
This summary is, to the extent possible, a non-technical description of our work and results.

DNA sequencing is the process of determining the structure of bases for organic material. It
is an integral part of the process of understanding the building blocks of all life. Previously,
DNA sequencing has been expensive, but new methods have emerged in recent years that,
among other improvements, reduce the price significantly. One of these methods is nanopore
sequencing, in which DNA is pulled through a membrane while an electrical resistance is mea-
sured. This method produces an electrical signal, which, hereafter, is translated into the letters
A, C, G, and T, corresponding to the bases adenine, cytosine, guanine, and thymine, respec-
tively. This translation process is referred to as basecalling. Since the electrical signal is com-
plicated for humans to translate, neural networks—a type of machine learning—is used for this
task. In fall 2019, we analysed the landscape of basecallers and the methods used for creating
those. This work is, therefore, strongly connected to the finding therein. The basecaller Guppy
is created by Oxford Nanopore Technologies, who is the creator of the nanopore sequencing
device MinION, among others. In our investigation, we found that Guppy, at the time, was the
most accurate basecaller—although computational requiring. Since then, however, the same
company has achieved similar accuracy with another basecaller named Bonito. Bonito is inter-
esting because its architecture has the potential to increase the speed of basecalling compared
to that of Guppy. A faster basecaller can allow experiments for DNA research to be performed
faster, making the aspect of time an important subject. However, as is often the case in ma-
chine intelligence, it is difficult to get a faster architecture without it negatively impacting the
accuracy.

We investigate alterations of Bonito and how these affect the trade-off of speed and accuracy.
Our experiments show that most alterations are positively correlated both to the accuracy as
well as the processing time. Dilation is an alteration that allows computations of the network
to consider larger sparse areas of the electrical signal instead of considering a small dense area.
Although it is not a new method, it has not yet been tested for basecalling with Bonito. We find
that using dilation allows us to increase the processing speed, while, notably, also increasing
accuracy.

One way to improve the accuracy of fast networks is through knowledge distillation, which
is a method to train a network, called the student, using knowledge from another existing
network, called the teacher. We investigate how knowledge distillation affects networks—or
basecallers—with different processing times. In our results, knowledge distillation improves
the accuracy on every basecaller it is applied to. We also observe the effect of this result when
we apply knowledge distillation on Bonito using itself as a teacher.

Finally, we present five basecallers of which one has higher accuracy, one has faster speed,
and three has faster processing speed and higher accuracy all compared to Bonito.
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Abstract
Basecalling, similar to many other domains of machine learning, suffers from the problem of
having to accept a trade-off between prediction speed and accuracy. Bonito, based on the archi-
tecture of QuartzNet, shows similar results to Guppy, which is considered to be state of the art
for basecallers. The convolutional architecture of Bonito, however, has the potential to reduce
the prediction time markedly compared to the recurrent architecture of Guppy.

This work attempts to provide insight into the effect of tuning the hyperparameters available
in Bonito. This effort is made with the focus of improving the speed of predictions without neg-
ative impact on the accuracy. In order to alleviate the problem of reduced accuracy in smaller
networks, we apply knowledge distillation, which, in other domains, is shown to improve accu-
racy.

The results of our experiments suggest that dilation, combined with a reduced kernel size,
can improve prediction speed and accuracy of Bonito. Additionally, we show that knowledge
distillation can improve the accuracy of basecallers. Notably, the most significant improve-
ments are observed on large basecallers. Nevertheless, the results suggest that knowledge dis-
tillation should always be applied for any size of basecaller.

Keywords: Basecalling, DNA Sequencing, Hyperparameter Tuning, Knowledge Distillation,
QuartzNet, Separable Convolutions, Dilation, Grouping.
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1 Introduction
DNA is the genetic code that underpins all organic life. The process of determining the genetic
code of an organism is called DNA sequencing. DNA sequencing has played a vital role in under-
standing our genetic history [1], preventing diseases, and, more recently, helping to track and
understand the current global pandemic of COVID-19 [2].

In [3], we investigate the inner workings of State-Of-the-Art (SOA) DNA sequencing tech-
niques. This report builds on top of our findings, and narrows the scope, as will be explained.
The SOADNAsequencing techniques rely onmachine learning to function, andmodernDNA se-
quencing is thus at the intersection between biology andmachine learning. The details of each
field, necessary to understand this report, is thoroughly explained in Section 2 and Section 3.
However, a partial summary is included in this introduction to aid the reader in understanding
the aforementioned narrowing of scope.

Modern DNA sequencing consists of two primary parts: a sequencing machine, which scans
organicmaterial and produces a signal as output; and a basecaller, which is a program that trans-
lates the scanned signal into a DNA sequence. One such sequencing machine is the MinION
from Oxford Nanopore Technologies, which “is the only portable, real-time device for [DNA]
sequencing,” according to their website and our research [3, 4]. The MinION costs $1,000 and
has the size of a smartphone [4]. Other existing devices can cost up to $1,000,000 [5]. Being a
real-time, i.e. fast, device of its size and price makes it interesting for new types of applications
and research. The MinION device is especially interesting for low-budget research or research
in the field, perhaps even off-grid in rural areas. Due to the MinION s̓ potential for fast DNA se-
quencing, we will focus on it and the translation of its signals. However, the basecallers needed
to translate, or interpret, the signals from the machine tend to be too slow to keep up with the
MinION device, thereby increasing the overall time needed for DNA sequencing. The domain
expert and CEO of Albertsen Lab, Mads Albertsen stated in an informal conversation that the
basecalling speed is of high importance because it is the bottleneck of DNA sequencing using
the MinION device. As argued by [6], this is particularly a problem when using the basecallers
on slower, low-budget computers—which, presumably, would be used in low-budget research.
Two basecallers are delivered with the MinION, Guppy and Guppy-Fast, of which only the latter
is fast enough to keep up with the MinION [6]. However, the speed of Guppy-Fast comes at a
high trade-off of reduced accuracy [6, 7]. In essence, there is a need for basecallers for the Min-
ION device, which are both fast and accurate, to enable a truly portable and affordable DNA
sequencing setup.

The SOAbasecallers are built uponneural networks—a type ofmachine learning—in order to
interpret the complex signals generated by the sequencing devices. In [3], we show that Guppy
is the basecaller with the highest accuracy. Since then, a new basecaller, Bonito, has been
published by Oxford Nanopore Technologies, which surpasses Guppy on accuracy [8, 9]. It is,
however, not faster than Guppy.

Neural networks can be categorised by their architecture—the specific combination, order,
and type of their components—and Bonito uses a novel architecture as related to basecalling,
namely a convolutional architecture [9]. Guppy, along with several other competing basecallers,
uses a recurrent architecture [3, 7]. Convolutional architectures, which we will expound upon
in Section 3.2.1, have been shown to be faster than recurrent architectures [10, 11, 12]. Since
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1.1 Problem Statement

Bonito is slower than Guppy, it suggests that the novel architecture has not yet reached its full
potential. We decide to investigate the potential of Bonito in terms of both speed and accuracy.

Bonito uses a specific convolutional architecture called QuartzNet [9], originally created for
automatic speech recognition [13], i.e. the task of transcribing spoken words. Both basecalling
and automatic speech recognition involve mapping a sequence of inputs to a sequence of out-
puts, known as a sequence-to-sequence task, which explains why the same architecture can be
used for solving seemingly unrelated problems.

For any given neural network, a number of settings, collectively called HyperParameters
(HPs), can be changed or tuned, which can drastically affect its results both in terms of speed
and accuracy [14]. HPs can be divided into two groups—namely model HPs and algorithm HPs.
Model HPs are the configurable settings that define the architecture. Algorithm HPs are the
parameters specific to how the network learns, which will be further explained in Section 3.
Throughout the report, we will use model HPs and HPs interchangeably, whereas we will ex-
plicitly state when we are referring to algorithm HPs.

Upon inspection of the HPs used in Bonito, we find them to be nearly identical to those used
in QuartzNet. While the tasks of automatic speech recognition and basecalling are similar, it
seems unlikely that the sameHPs are optimal for both tasks. This observation leads us to believe
that the SOA for basecalling can be advanced even further by tuning the HPs in Bonito. Unable
to find results of HP-tuning on Bonito, we reach out to its creator, Christopher Seymour, who
is the primary basecaller-developer for Oxford Nanopore Technologies. Mr Seymour provides
a list of HPs he has experimented with along with the values used for each one. He concludes
his message stating that while he is able to increase the speed of Bonito, it always comes at the
cost of reduced accuracy.

HavingMr Seymour s̓ initial results inmind, we search for amethod, which could counteract
the reduction in accuracy he observed for configurations of HPs that yield increases in speed.
We find severalmethods, but Knowledge Distillation (KD) stands out because it explicitly targets
fast neural networks [15]. We will further explain KD in Section 3.3.2. Using KD for basecalling
is, to the best of our knowledge, unexplored, and, therefore, interesting on its own.

1.1 Problem Statement
On the premise that the speed and accuracy trade-off is of particular importance for basecalling,
we decide to investigate the following,

1. How and to what extent can HP-tuning improve the accuracy and/or speed of Bonito?

2. To what degree can KD, combined with the above HP-tuning, positively affect the speed
and accuracy trade-off of Bonito?

In the following sections, we will explain the biology and machine learning that forms the
foundation of our work.
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2 Biology
Parts of this section were originally presented in our previous work, [3], which led to this project. Modi-
fications for clarification have been made. We will, in this section, explain the required biological
subjects related to basecalling. In the following pages, we provide an overview of what DNA
and DNA sequencing are and a comparison of MinION and its alternatives.

2.1 DNA
DNAencodes the genetic information of an organismas a series ofmolecules called nucleotides.
Eachnucleotide contains anucleobase, ofwhich there are four: adenine (A), cytosine (C), guanine
(G), and thymine (T). Nucleobases are also simply called bases. The specific order of these bases
encodes the genetic information itself. DNA is stored in a double helix structure such that the
genetic information is contained twice. The two strands in the structure are combinedwith pairs
of bases, where A pairs with T, and G pairs with C. Observing a base in one strand, consequently,
enables the deduction of the corresponding base in the other strand [16]. Figure 1 shows the
characteristic double helix structure of the DNA. The process of understanding DNA has been
of great importance for the human species and has enabled us, amongst many other things, to
track the history of our evolution [1].

Figure 1: An illustration to show the double helix structure of DNA.
Image credit: Genome Research Limited

2.2 Sequencing
The process of determining the structure of a DNA sample is called DNA sequencing, which was
discovered in the 1970s [17]. At a high level of abstraction, modern DNA sequencing consists
of two primary steps. First, a sequencing device scans a DNA sample, producing a signal as
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2.3 Basecalling

output. The signal is, subsequently, processed by basecaller to extract the DNA structure, i.e.
the ordering of the bases A, C, G, T.

Devices used for DNA sequencing are evaluated on several parameters, which includes the
price of the machine, speed of processing, and its accuracy. Another factor is the length of the
continuous fragments of DNA that can be sequenced. A single DNA fragment is called a read
and its length is referred to as read length.

After the signal of each read is processed by a basecaller, a possible next step is genome as-
sembly where read length becomes relevant. It is the process of combining the individual reads
into one contiguous DNA string. Neighbouring reads have common sub-sequences, which are
used in a domino-like fashion to combine them. Consequently, longer reads with longer com-
mon sub-sequences improve the quality of the final assembled string [18]. Genome assembly,
however, is not in the scope of this project. Nonetheless, the use of genome assembly makes
the long read length of theMinION device, which we shall soon describe, an attractive property.

2.2.1 Modern Sequencing Tools

The price required to perform DNA sequencing has been falling steeply for the past decades, a
trend unlikely to stop [19]. The Illumina dye sequencing system [20] is a sequencing method that
uses specially dyed molecules in order to, optically, determine the DNA sequence. This process
is time-consuming, and the effectiveness of the chemical process degrades over time, so the
maximum read length is in the order of hundreds of bases [21]. As a comparison, E. Coli, a
bacteria, has a genome length of 4,600,000 bases [22].

An alternative to the Illumina devices is the Oxford Nanopore Technologies (ONT) [23] devices,
such as the MinION [24], which are small and cheap devices that enable very long continuous
reads of DNA sequences. The two strands of DNA is divided and pulled through an electrically-
resistant polymer membrane called a nanopore (Figure 2). Since different bases have different
molecular structures, they generate different electrical signals when passed through the mem-
brane. This electrical signal is captured by a very sensitive sensor and output as raw data, which
can be interpreted by a basecaller in order to recover the original genetic sequence [25].

Table 1 compares two Illumina systems to the MinION device and another nanopore se-
quencer called PromethION on sequencing speed, read length, price, and error-rate. The Min-
ION device is by far the cheapest and can process the longest reads. It is twice as fast as the
Illumina MiSeq, however a lot slower than the two others. The last parameter to consider is the
error-rate, where the Illumina systems perform up to 100 times better than the two Nanopore
devices [5, 26, 27, 28]. The error-rate is measured on the basecalled signal and consequently de-
pends on the quality of the basecaller. While the price of the MinION is attractive, its error-rate
is less so. Improvements to the accuracy of basecalling for MinION is therefore relevant, which
is one of the key elements of this project.

2.3 Basecalling
The process of translating the scanned signal from a sequencing device to bases is called base-
calling [7], and it is an essential part of DNA sequencing. Basecalling is a sequence-to-sequence
mapping problem, where the input is a representation of a signal from a sequencing device,
and the output is the corresponding sequence of bases. Figure 3 shows a snippet of a signal
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2.3 Basecalling

Figure 2: A strand of DNA passing through a nanopore, from [23]

Device Read per
day (Gbp)

Read length
(bp)

Price of
machine ($)

Error-
rate

Illumina NovaSeq6000 3,600 300 985,000 <0.1
IlluminaMiSeq 7 600 99,000 <0.1
Nanopore MinION 15 25,000 1,000 5-10
Nanopore PromethION 10,000 25,000 285,000 5-10

Table 1: Comparison of different sequencing devices [5, 26, 27, 28].

produced by a nanopore along with a sequence of bases, as inferred by a basecaller. The base-
callers for different sequencing devices differ in their details. As stated in Section 1, the focus
of this project is on basecallers for the MinION device. Hence, any subsequent uses of the word
basecaller will refer to a basecaller for the MinION device.

Figure 3: A snippet of raw signal from an ONT device which corresponds to the DNA sequence
CCGTCCCCCCTTCGCAGTAACACCAAGTACAGGAATATTAACCT
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2.3 Basecalling

Basecalling is a non-trivial task due to the complexity of the sequence produced by the Min-
ION device [29]. There are approximately ten times more electric signal measurements than
there are bases because the rate at which the sequencing device samples the electric signal is
much higher than the rate at which the DNA strand moves through the nanopore. Additionally,
the movement speed and the electrical resistance is not only affected by the DNA inside the
nanopore, but also by the sequence before and after [29].

2.3.1 Accuracy

There are a number of basecallers that attempt to improve the accuracy of their predictions—
i.e. the DNA sequence that they output—by utilising different types of artificial intelligence
algorithms [7]. The quality of a basecaller is determined by how well the produced base se-
quence matches the actual DNA sequence. The accuracy measures used are read identity and
consensus identity. Read identity measure how well one read can be aligned to the expected se-
quence. The alignment is described using a CIGAR string, which is a string over the four char-
acters =(match), D(deletion), I(insertion), and X(mismatch) [30]. Table 2 shows an example of
an alignment. Read identity is calculated by dividing the number of matches by the alignment
length (length of the CIGAR string).

Expected ACGTG AGGTAT
CIGAR ==D=XII======

Prediction AC TATTAGGTAT

Table 2: Alignment of the reference sequence ACGTGAGGTAT and a prediction ACTATTAGGTAT

Consensus is used when multiple strands of the same DNA has been basecalled, which is
common in specific research settings. The basecalled sequences are combined into a single
sequencewithmajority-rule, of which the consensus identity is then calculated in the sameway
as read identity. The combination of multiple basecalled sequences into one typically has the
benefit of averaging out errors of each basecall. However, this is not always the case. Consider
the two basecallers A and B. A has a read identity of 90%, and B reaches 98%. B seems to be
the best of the two options. However, if we let the errors in A be completely random, then A̓s
consensus identity will approach 100% as more strands are used. B, on the other hand, could
have systematic errors, meaning that it is the same 2% it predicts wrong on every read. A would
thereby outperform B since B would not be improved by using consensus. This example shows
that both read identity and consensus identity are valid accuracy measures for basecallers. For
comparison, the SOA basecallers have read identities between 90% and 95% and consensus
identities above 99% [7].

In Section 1, we describe our intention of, among other things, enable field testing by creat-
ing a fast basecaller for theMinION device. For field testing, read identity is oftenmore relevant
than consensus, because it is hard to gather sufficient amounts of the similar DNA needed for
consensus [7, 31]. Hence, we decide to use read identity for the remainder of our research.

In this section, we have covered the essential subjects related to basecalling. In the following
sections, we will explain the machine learning specific elements that are required for the scope
of this project.
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3 Machine Learning
In this section, we will introduce the fundamentals of themachine learning used in the remain-
der of the report.

3.1 General
The broad category of machine learning used in basecalling is called supervised learning. In
supervised learning we start out with some training data, which is a set consisting of pairs of
inputs, X, and targets/labels Y: {(x1, y1), . . . , (xN , yN)}, where N is the number of pairs, and
(xn, yn) is the nth pair of input and target in the training set. The goal is to find a function which
maps each input to its corresponding target value. Finding such a function is the learning part
of machine learning. A common approach to do so is to train a neural network, also referred to
as a model. To understand the process of building and training a neural network, we describe
its primary components and processes in isolation and lastly combine them into a whole.

3.1.1 Perceptron

A perceptron, as seen in Figure 4, is the basic unit of a artificial neural network. It takes an
input vector, of some size P, from X, x = {x1, ..., xP}, and uses an internal set of weights, w =
{w1, ..., wP}, to compute a single output, denoted z.

z = w1x1 + w2x2 + · · ·+ wPxP = wxT (1)

az
σ

w2x2

...
...

wPxP

w1x1

b1

weightsinputs

Figure 4: A perceptron with bias b and p inputs and weights, followed by an activation function σ.

It is common to introduce a bias-term, b, that is added, which enables biasing the result
in some direction: z = wx + b. Conveniently, the bias can also be represented by including b
in the set of weights and the constant 1 in the inputs, as seen in Equation (2), where ⌢ means
concatenation.

w := [b]⌢w,

x := [1]⌢x
(2)
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3.1 General

Activation function Since a perceptron is a linear function it cannot accurately approximate
non-linear functions. An activation function, denoted σ, is used to rectify this shortcoming. The
activation function is applied on the output, z, of the perceptron and the result is called the acti-
vation, a. Note the distinction between an activation, a value, and an activation function, which
is a function. A common example of an activation function is ReLU, as seen in Equation (3).

a = ReLU(z) =

{
z, if z > 0
0, otherwise

(3)

Cost function A cost function (also known as a loss function), denoted with a C, is used to
measure how poorly the predictions ŷ, i.e. the output from the network, match the target val-
ues from the training data, y. In Figure 4, ŷ is equal to a. One common cost function is Mean
Squared Error (MSE), as seen in Equation (4), which operates on all N pairs of training data.

CMSE =
1
N

N

∑
n=1

(ŷn − yn)2 (4)

The cost function essentially returns a metric of how far away we are from finding a function
that maps the training data correctly. We refer to this metric as the loss, which is used when
training the network, as we will explain in the following section.

Training The overarching idea of training a neural network is to change the weights until
the network maps a desired function. Interestingly, this is equivalent to minimising the loss
from the cost function. One universal approach is to use gradient descent, in which the gradients
of the weights to update the network. The gradients describe the directions in which to change
the weights to maximize the cost function. Consequently, the gradients are subtracted from
the weights. To calculate the gradients, we find the partial derivatives of C with respect to each
weight—that is, how a change in each weight affects the result of C. Since changes in a weight,
wi, are mediated through z and then a before affecting C, we use the chain rule to calculate the
partial derivative as seen in Equation (5). The effect of changes in wi on C is dependent on how
wi affects z, z affects a, and, finally, how a affects C.

∂C
∂wi

=
∂C
∂a

∂a
∂z

∂z
∂wi

(5)

The gradients∇C = { ∂C
∂w1

, . . . , ∂C
∂wP

}, calculated for all P weights, are then used to update the
weights. Knowing which direction to update the weights does, however, not provide any infor-
mation on how far the gradient continues. We use a learning rate, denoted as α ∈]0, 1], to scale
the gradients and thereby controlling, how much the weights should be changed. Equation (6)
shows how the set of weights, w, are updated.

w := w − α∇C (6)
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3.1 General

3.1.2 Combining Perceptrons into Networks

A single perceptron combined with an activation function, as seen in Figure 4, has a low ex-
pressive power, which limits its ability to represent complex functions. In order to increase
the expressiveness, multiple perceptrons can be combined into networks with layers, where
the output of a given layer becomes the input to the subsequent layer. Each layer is a group of
perceptrons and activation functions. In Figure 5, a simple network with three layers is seen.
Each layer has a single perceptron and activation function, which is merged into a single circle
to simplify the figure. The arrows each represent a weight. While conceptually identical, the
first and last layer of any network differ semantically and are therefore called the input layer and
output layer, respectively. Any intermediate layers are called hidden layers. In similar fashion,
the input to the first layer is often denoted as x, but it is conceptually identical to the inputs of
the subsequent layers, denoted a. To simplify the equations that follow, we use a for all layers.
It is also worth noting that the connection between each layer is a function, which makes the
whole network a composition of functions. In Section 3.1.1, we describe how to train a single
perceptron, now we extend this concept to a network.

Training a Network As described, Figure 5 shows an elementary network with three layers.
In this network, the activation al for a given layer l is computed based on the activation of the
previous layer: al = σ(zl), where zl = z(wlal−1) and al−1). The calculation for the gradient of
the weight wL in layer L is computed the same way as in Equation (5).

aL−2 aL−1 aL

L − 2 L − 1 L
Input Hidden Output

Figure 5: A simple neural network with three layers and only one activation per layer. The arrows
represent weights.

We can also update the weight, wL−1, of layer L − 1, by using the chain rule and the partial
derivative of the activation for the layer, aL−1, as computed in Equation (7). By calculating the
derivatives backwards, i.e. from the output to the input layer, and storing the intermediate
values, a whole network can be updated. The process of calculating the derivatives backwards
is called backpropagation [32].

∂C
∂aL−1 =

∂zL

∂aL−1
∂aL

∂zL
∂C
∂aL (7)

Equation (7) is a simplified example since most networks have multiple perceptrons per
layer. One example of such is shown in Figure 6 in which each vertical group of perceptrons
represents a layer. Wewill now show how the backpropagation algorithm is generalised to work
for any network.

We introduce subscripting to indicate which perceptron is being referred to in a given layer
l. The activation for perceptron j of layer l is thus denoted as al

j. Similarly, we define wl
kj as
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aL−2
1

aL−2
2

aL−2
3

aL−1
1

aL−1
2

aL
1

aL
2

aL
3

L − 2 L − 1 L
Input Hidden Output

Figure 6: A three-layered network with three inputs, two hidden states, and three outputs

being the weight applied to al−1
k when calculating al

j. We can thereby define:

z(l)j = ∑
k

w(l)
kj al−1

k

a(l)j = σ(zl
j)

(8)

Note that a single activation function, σ, is used for all perceptrons to simplify the examples. In
real artificial neural networks, it is common to use different activation functions for each layer
or perceptron.

Using Equation (8) we can calculate ∂C
∂al−1

k
by summing over the results of applying the chain

rule:
∂C

∂al−1
k

=
nl

∑
j=1

∂zl
j

∂al−1
k

∂al
j

∂zl
j

∂C
∂al

j
, (9)

where nl is the number of neurons in layer l.
With the partial derivative calculated for a given perceptron al−1

k , its weights can be updated
as in Equation (5).

In this section, we covered the essentials of supervisedmachine learning, including the com-
ponents and methods needed to build and train a neural network. Although neural networks
can be built solely using layers of perceptrons, it is not the only type of layer available.

3.2 Layer Types
In this section, we will delineate the three layer-types used in Bonito, namely convolutional,
residual, and batch normalisation.

3.2.1 Convolutions

Convolutional layers have initially been designed to perform well on images, but have recently
gained a lot of popularity even in temporal classification—that is, classification in which time
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3.2 Layer Types

is considered—and similar tasks for which recurrent layers are classically purposed [33, 34].
The convolutional operation, used in convolutional layers, slides a window of trainableweights,
called a kernel, over the input to get an output, known as a feature map. In a convolutional
context, an input is called a channel. Figure 7 illustrates how each of the concepts relate to each
other. Convolutions aremerely a specific combination of perceptrons,meaning that weights are
trained identically to those previously explained in Section 3.1. In the examples that follow, only
1D channels and kernels are used. However, convolutions can be of higher dimensions, e.g. in
image classification, where a 2D kernel is generally used. In general, the kernel is of smaller
size, i.e. has fewer values, than the channel it operates on. A stride determines how much
the kernel moves as it slides across the input. Figure 7 shows an example of a convolutional
operation, denoted ⋆, of stride 1 with a kernel consisting of the weights w1 and w2. Note how a
single value is produced each time the kernel is applied. Using a kernel size or stride larger than
one causes the feature map to be smaller than the input. If this effect is undesired, a common
technique is to pad the sides of the inputwith a value, for example, zero (known as zero-padding).

input channel kernel feature map

x1 x2 x3 ⋆ w1 w2 = x1w1 +
x2w2

x2w1 +
x3w2

Figure 7: A 1D-convolution, using stride of one, with a single input channel and kernel, producing a
single feature map as output.

The computation for each value, f , with index i of a featuremap is formally defined in Equa-
tion (10), where x is the input channel, w is the weights of the kernel, J the kernel size, and s is
the stride.

fi =
J

∑
j=1

xj+is−swj, (10)

A principal utility of convolutions is their ability to extract new features from the input. In
Figure 8, an input signal measured over time is shown, which has a repeating pattern of relative
changes inside box A and B. The actual values for the signal are [3, 2, 3, 1, 3] and [10, 9, 10, 8, 10]
inside boxes A and B, respectively. It is difficult to recognise the pattern based on the values
alone. However, if we apply a convolution with a [−1, 1] kernel and stride 1, which will calcu-
late the amount of positive change between two signal values one time-step apart, the pattern
suddenly emerges. The feature map, i.e. the output after applying the convolution operation,
is [−1, 1,−2, 2] for both A and B. The pattern mentioned earlier now emerges in both the actual
values and the visual representation seen in the bar-chart superimposed on Figure 8. Note that
the left and right y-axis are to be used, respectively, for the signal and feature map values.

As mentioned previously, a kernel produces a single value in the feature map each time it is
applied. This property still holds when there are multiple input channels. The number of input
channels is called the depth. A 1D kernel of size J applied on an input of size M × D, where
D is the depth, will therefore actually have size J × D—the same depth as the input. Thus, the
output of convolving a single kernel over any input will always produce an output of depth one.
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Figure 8: Convolutions as feature extraction. The signal uses the left y-axis and the feature map uses right
y-axis. Both of which are related to time via the x-axis. The signal contains a repeating pattern of relative
change inside box A and B. The pattern is clarified through the feature map, shown on the bar-chart.

Figure 9 illustrates a kernel with size and depth two applied on two input channels. Vertical
spacing is used on the input channels to indicate that it is two distinct channels. By the same
logic, no vertical spacing is used for the single kernel. We will use spacing in the same fashion
for the remaining convolution figures.

input channels kernel feature map

x2
1 x2

2 x2
3

x1
1 x1

2 x1
3

⋆

w1,1 w2,1

w1,2 w2,2

=

x1
1w1,1 +

x1
2w2,1 +

x2
1w1,2 +

x2
2w2,2

x1
2w1,1 +

x1
3w2,1 +

x2
2w1,2 +

x2
3w2,2

Figure 9: A 1D kernel applied with a stride of one on two channels, which produces a feature map of
depth one. xd

v is the vth input value in the dth channel.

We extend the formalisation from Equation (10) in Equation (11) by including an additional
summation over D, the depth of the kernel and the input channels, as well as appropriate in-
dexing for both inputs, x, and weights, w.

fi =
D

∑
d=1

J

∑
j=1

xd
j+is−swj,d (11)

A single kernel can extract a single type of feature from the data. Often, it is of interest to
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extract multiple features, which can be achieved by increasing the number of distinct kernels
used. Using K kernels will generate an output of K feature maps—i.e. K outputs of depth one,
one for each kernel. In neural networks withmultiple convolutional layers in sequence, the fea-
turemaps, or outputs, of one layer becomes the input channels for the subsequent layer. Higher
level features can thus be extracted from features generated by the previous layer. While higher-
level features can be difficult to understand through the example in Figure 8, it can readily be
understood for images, where features such as lines and curves can be combined into features
describing more complex shapes, such as circles and squares.

With an understanding of convolutions in general, we will proceed onto explaining certain
extensions to the convolutional operator. Recall that one of our primary intentions is to inves-
tigate the effect of tuning different HPs in the basecaller Bonito. The extensions we describe
are dilation, grouping, and separability, which are HPs to the convolutional operation. Of the
three, only separability has been utilised in Bonito. The subsequent explanations are ordered
to help the reader grasp the ideas—as opposed to an ordered by the novelty related to Bonito.

Dilation Thefirst extension is dilation. As previously explained, convolutions extract features,
where the kernel size determines the region in which a single feature can be extracted. This fact
means that if the underlying feature, or pattern, covers a large region, then the kernel has to
be large. A larger kernel will have more trainable weights, which will have a negative impact
on prediction speed because more computations are needed. [35] shows a different approach,
namely dilated kernels. Dilation increases the kernel size without adding more parameters. In-
stead, it spreads the existing parameters out. Dilation can be implemented in several ways, but
it is conceptually identical to adding zeroes between existing parameters. Figure 10 shows the
effect of dilating a kernel by two,D2, visualised using zeros.

D2

undilated kernel

w1 w2 ≈

dilated kernel

w1 0 w2

Figure 10: A kernel of size two dilated by two,D2, resulting in an effective region of size three. As shown,
dilation is conceptually equivalent to interspersing zeros between the weights.

A kernel of size J, where J is the amount of trainable parameters, with a dilation of δ, i.e.
Dδ, gets the effective region-size of J + (J − 1) ∗ (δ − 1). Dilating by one, therefore, leaves the
kernel unaltered.

Grouping The second extension to convolutions is grouping, which was first introduced in
[36]. When grouping convolutions, each distinct kernel uses only a subset of the input chan-
nels, which reduces the computation time needed. More precisely, with g groups, each kernel
uses 1

g parts of the input channels and the depth of the kernel is equally reduced. Grouping
by one is thus equivalent to a regular convolution. While grouping reduces the kernel depth,
and thus the number of weights, it has been shown to, sometimes, improve the accuracy of a
convolution [37].

The following examples used to explain grouping are simplified by using input channels and
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kernels of the same size, which eliminates the need to think about stride—the effect of which is
unchanged.

Figure 11 shows a regular convolutional operationwith two input channels, two kernels, and
no grouping.

input channels

kernels feature maps

x2
1 x2

2

x1
1 x1

2

⋆

w2
1,1 w2

1,2

w2
2,1 w2

2,2

w1
1,1 w1

1,2

w1
2,1 w1

2,2

=
x1

1w2
1,1 +

x1
2w2

1,2 +

x2
1w2

2,1 +

x2
2w2

2,2

x1
1w1

1,1 +

x1
2w1

1,2 +

x2
1w1

2,1 +

x2
2w1

2,2

Figure 11: A normal 1D convolution with two input channels, two kernels and two feature maps.

To accommodate the use of multiple kernels, we extend Equation (11) in Equation (12). It is
very similar to Equation (11), because the only difference is that we introduce a superscript, m,
to reference which kernel is used. m also refers to the feature map generated.

f m
i =

D

∑
d=1

J

∑
j=1

xd
j+is−swm

j,d (12)

Figure 12 shows a grouped convolution with two groups on the same input as used in Fig-
ure 11.

input channels kernels feature maps

x2
1 x2

2

x1
1 x1

2

⋆

w2
1,1 w2

2,1

w1
1,1 w1

2,1

=
x2

1w2
1,1 +

x2
2w2

2,1

x1
1w1

1,1 +

x1
2w1

2,1

Figure 12: A convolution with two groups, where each kernel is applied on half of the input channels.

It would not be possible to use, e.g., three groups in Figure 12 because each kernel would
have to use a non-integer subset of the input channels, which is undefined. In fact, the number
of groups g has to be a factor of both the number of channels and kernels.

Naturally, several grouped convolutions can be used together in a neural network. In this
scenario, one downside of using grouping is that each subsequent layer will see a smaller frac-
tion of the original input. To amend this shortcoming, ShuffleNet [38], suggests reordering the
output channels for every layer. While it technically is a deterministic reordering, it is called
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shuffling.

Separability The third extension to convolutions is separability, first introduced in [39]. A
convolution can be separated if all of its weights have common factors. This naturally reduces
the expressiveness of the convolution, given that not all combinations of weights share common
factors. In practice, the separated kernels are used directly to reduce the number of weights in
a network, but we will show how they can still represent a normal convolution. In Figure 13
three kernels of size two with common factors are shown. a and b are factors for all the kernels,
and r, s, and t are factors for one kernel each.

original kernels

w1
1 w1

2

w2
1 w2

2

w3
1 w3

2 =

=

=

factorised kernels

ar br

as bs

at bt

Figure 13: Separable convolution. Kernels that share common factors can be separated.

In Figure 14 a regular convolution—i.e. one with no extensions—is shown using the factorised
kernels from Figure 13. Each of the three kernels are applied on the single input channel,
thereby producing three feature maps.

input channel

x1 x2 ⋆

kernels

ar br

as bs

at bt

=

feature maps

arx1 + brx2

asx1 + bsx2

atx1 + btx2

Figure 14: Applying a non-separated convolution with three kernels on an input channel of size two.

The same feature maps can, however, be computed, by separating the kernels by their fac-
tors and applying them in sequence. In Figure 15, a kernel with values a, b is applied on the
input channel. This operation is called a depthwise convolution because the number of kernels
used matches the depth of the input. A fact that is not immediately clear from our simplified
example, because the depth is one. Interestingly, a depthwise convolution is equivalent to a
grouped convolution with an equal amount of groups and input channels. The three kernels
with values r, s, and t, respectively, are then applied to the intermediate result in what is known
as a pointwise convolution. It is called pointwise because it is applied to a single point, or in-
dex, across all input channels. Notice that the results in Figure 14 and Figure 15 are identical
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due to the distributive law. However, in the latter, there are fewer computations, because the
intermediate result (ax0 + bx1) is only calculated once. The reduction in computations in this
simplified example is minuscule due to the small size and amount of kernels, but in practical
use-cases, a significant reduction is achieved.

input channel

x1 x2 ⋆

kernel

a b

depthwise

⋆

kernels

r

s

t

pointwise

=

feature maps

(ax1 + bx2)r

(ax1 + bx2)s

(ax1 + bx2)t

Figure 15: Applying a separated convolution on the same input as in Figure 14, which results in the same
output, but fewer computations.

All of the extensions delineated provide different ways to reduce the computational cost
and number of weights of convolutions. Furthermore, the extensions can be combined, which
allows for an even more considerable amount of experimentation when using convolutions.
Moving beyond convolutions, we will now explain the residual layer type.

3.2.2 Residual

In Section 3.1, we present how multiple perceptrons can be combined into layers, and show
that adding more layers increases the expressiveness of a neural network, which enables it to
approximatemore complicated functions. By addingmore layers, we should, therefore, be able
to improve the accuracy of a network. However, adding layers to a network does not guarantee
a higher accuracy, as proven in [40]. In some cases, adding layers to a network makes it un-
necessarily complex. The issue can be amended if additional layers can represent the identity
function (i(x) = x). Although a set of sequential layers might be able to represent the identity
function, it is not always easy for it to learn this particular function, because it highly depends
on the set of possible inputs. Consider the input x and a set of layers with their function repre-
sented by f (x) and arbitrary target function t(x). If the target function is the identity function
i(x), then every parameter in f (x) must be adjusted to map this correctly, which is difficult.
The simple solution to this problem is to introduce a residual connection [40]. A residual con-
nection is made by adding x to f (x), as shown in Figure 16. If the target function is i(x), f (x)
is only required to output zero, which is a lot easier. This means that for a target function t(x),
f (x)must map the deviation from i(x) instead of t(x) itself.

3.2.3 Batch Normalisation

During training the distribution of values in each layer s̓ inputs, or activations, change, because
the network is continuously updated. This property makes it difficult for a given layer to learn
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Figure 16: A regular block (left) and a block with a residual connection (right).

because it must account for the changes to the previous layers. A lower learning rate can help
alleviate the problem, but it increases the time needed for training. The authors of [41] refer to
this problem as internal covariate shifting and suggest to continually normalise the activations
throughout the network to reduce this effect. By normalisation, they mean to ensure a mean of
zero and a variation of one. They call theirmethod for batch normalisation, and the novelty is not
normalisation on its own—which is a common preprocessing step used in artificial intelligence
tasks [42]—but rather the continual application of it throughout the network.

Batch normalisation is applied differently for training and prediction. It uses the same for-
mula for both, as seen in Equation (13), but the values used for mean and variance differ. Dur-
ing training, the mean and variance are calculated based on the activations, x, in the current
batch—which is a subset of the data used for training. A running average for each of these two
values is stored and used during prediction. Besides mean and variance, a trainable weight, γ,
and bias, β, is used. Similar to the argument made in Section 3.2.2, it is preferable if a layer
can represent the identity function. By setting γ =

√
variance(x) and β = mean(x) we cancel

the effect of the layer thus guarantying that we can represent the identity function. To avoid
division by zero, batch normalisation uses a small constant ϵ.

y =
x − mean(x)√
variance(x) + ϵ

× γ + β (13)

The result of using batch normalisation is shown to reduce training time significantly [41].

3.3 Cost Functions
In Section 3.1 we explain the general purpose of cost functions, where we use mean-squared-
error as an example. What follows is a delineation of two alternative cost functions: CTC and
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KD, which both can be applied to problems.

3.3.1 CTC

This subsection was first presented in our previous work, [3]. Modifications were made for clarification.
In Section 3.1.1, we introduce the concept of cost functions. The choice of cost function re-

lates to what type of problem is being solved. Recall that basecalling is a sequence-to-sequence
problem. Some sequence-to-sequence-problems, including basecalling, have an underlying
challenge that must be handled. Namely that input and target lengths do not have an exact rela-
tion, whichmeans that the size of the output cannot be decided only by looking at the size of the
input. CTC (Connectionist Temporal Classification) is a method designed to handle sequence-
to-sequence problemswith this underlying problem [43]. CTC is technically a cost function, but
requires the model to output a specific format. With the specific output format, a cost can be
calculated and used during training as described in Section 3.1.1. The output from the model
required for CTC is not the actual DNA sequence, but it can be decoded into the sequence. We
will now delineate the following: (1) how to construct a network for basecalling, which can
be used with CTC, (2) how to calculate the CTC cost, and (3) how to decode the output of the
network to produce a DNA sequence.

Constructing theNetwork In basecalling the input to themodel is a signal from a sequencing
device corresponding to the input x = {x1, x2, . . . , xI}, where each xi is a single signal value.
The target output sequence is denoted y = {y1, y2, . . . , yU}, where yu ∈ L = {A, C, G, T}. Re-
call that Y is the set of all target outputs in the training data. In regular classification tasks, y
is often a probability distribution over a one-hot encoded vector. This, however, does not work
for basecalling due to the problem of not knowing the exact length of output needed. In order
to ensure that the prediction can represent the target sequence, the output length must be as
long as the longest possible target (arg maxy∈Y |y|). Inevitably, this introduces an issue when
the target y is shorter since the network will output a probability distribution over |ŷ| letters in-
stead of |y|. We can overcome this by, after converting the probability distribution, collapsing
consecutive identical characters into a single character, such that a prediction, e.g., ACCCA
can be collapsed into its target ACA. This, however, introduces another problem which is de-
tecting when consecutive identical letters should not be collapsed. Assuming the same output
ACCCA, it is unknown whether CCC represents C, CC, or CCC. To overcome this issue, we
can add a blank character (−) that acts as a divider, thereby extending the output alphabet to
Le = L∪{−}. With the addition of the blank character to the alphabet, we get an unambiguous
sequence by removing repetitions and then blanks from the prediction, as shown in Table 3.

Computing the Cost A naive approach to computing the cost is to use arg max to decode
the probability distribution into a sequence of bases and compare the read identity between
that and the target. This method is undesirable since it is not able to distinguish two different
probability distributions with the same decoded output.

Instead, CTC requires the network to output a matrix, Y, with probability distribution over
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Before After

ACCCA ACA
A–CA ACA
AC-CA ACCA
AC-C-CAA ACCCA

Table 3: Example of using blanks to detect repetitions of bases.

|Le| classes, with g columns where g ≥ arg maxy∈Y |y|. The columns in the probability distri-
bution are chronological such that the prediction in column t is followed by the prediction in
column t + 1.

A path π is a sequence of letters in Le with length g. All possible paths are defined by the set
L

g
e . The probability of any given path in Y can be expressed by:

p(π|x) =
g

∏
t=1

pt
πt(Y) (14)

where pt
πt(Y) is the probability of the label πt at time t. Y represents the set of paths that

collapse into y (as shown in Table 3). The aim is to increase p(π|x) ∀ π ∈ Y . Finally we can
define the conditional probability for a specific sequence of labels l, by summing the probability
for all paths that collapse into it:

p(l|x) = ∑
π∈B−1(l)

p(π|x) (15)

where

B : L
g
e → L≤g = Function that removes duplicates and blanks.

B−1(l) =
The inverse function of B and represents the set of all paths
that collapses into l.

We use L≤g to denote the set of sequences over the alphabet L with length less than or
equal to g. Since p(l|x) ∈ [0, 1] we can define the CTC cost function, that we want to minimise,
as CCTC = 1 − p(l|x).

Decoding While being able to calculate the cost is sufficient to train a network, we have yet
to convert the probability distribution into a sequence of bases. Formally put, we must decode
Y into ŷ for a given x. We can get the best path—but not guarantee the best sequence—using a
naive approach:

ŷ = B(arg max
π∈L

g
e

p(π|x)) (16)

This will produce a sequence with themost likely character for each time step and then collapse
that sequence. This, however, will not guarantee the most probable label sequence. Instead,
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we can compute the most probable label sequence using Equation (17). The difference is that
we consider every possible path resulting in each label sequence. However, the complexity of
examining every path in L

g
e grows exponentially with the length of the input sequence.

ŷ = arg max
l∈L≤g

p(l|x) (17)

Beam search [44] is a compromise between the two methods. It is a breadth-first search algo-
rithm that uses the parameters beamwidth and threshold to prune away unpromising paths. The
beamwidth controls how many paths to investigate, and the threshold is used to discard paths
with low probability. These two parameters balance the trade-off between speed and accuracy.
Fortunately, they can be adjusted as needed.

3.3.2 Knowledge Distillation

KnowledgeDistillation (KD) is a cost functionused to train a network using predictions fromone
or multiple pre-trained neural networks. We refer to the network being trained as the student
and the pre-trained model(s) to at its teacher. KD was originally introduced by Hinton in [15] as
a method to distil knowledge from an ensemble of larger teachers. Later, KD has been shown to
improve the accuracy of studentswith identical architecture as its teacher [45] and even improve
that accuracy of students larger than their teachers [46]. Furthermore, [46] also shows that
students even can benefit from KD using poorly-trained teachers.

Although the student can be trained on the output from the teacher alone, it is common to
combine KD with another cost function [47]. Equation (18) shows the cost function used for
KD, where α ∈ [0, 1] is a constant weighing in the cost from a given cost function Clabel. KL
is the Kullback-Leibler divergence of the softmax σ and log-softmax λ. The predictions ŷS and
ŷT—from the student and teacher respectively—are smoothed by a temperature T. We use the
generic placeholder for a cost function Clabel instead of cross-entropy, which is used in [47].
We use Clabel because cross-entropy is not applicable to sequence-to-sequence problems. For
basecalling CTC can instead be used as Clabel.

CKD = (1 − α)Clabel(ŷS, y) + αT2KL(σ(
ŷT

T
), λ(

ŷS

T
)) (18)

[47] shows that regular KD, as Equation (18), performs better than many proposed exten-
sions, and is a lot simpler to implement.

This concludes the explanation of the machine learning needed to understand the remain-
der of this report. In the next section, we will describe the Bonito architecture before moving
onto our experiments.
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4 Model Architecture
The basecaller Bonito uses the QuartzNet block architecture [9], which can be seen in Figure 17.
A B × R QuartzNet model consists of B blocks, each with R sub-blocks. A sub-block has the fol-
lowing layers: 1D depthwise convolution (Section 3.2.1), pointwise convolution (Section 3.2.1),
batch normalisation (Section 3.2.3), and ReLU (Section 3.1.1). All sub-blocks in a given block
outputs the samenumber of featuremaps. For each block, the input is connected to the last sub-
block through a residual connection (Section 3.2.2). The residual connection is passed through
a pointwise convolution, to account for differences between the number of input channels and
feature maps, and then through a batch normalisation layer. QuartzNet calls the combination
of a 1D depthwise convolution and a pointwise convolution for a Time-Channel Separable Con-
volution (TCSConv in the figure), as the values along the depth are related to time. Except for
its name, it is identical to the separable convolutions in Section 3.2.1. QuartzNet includes four
extra blocks—one before and three after the central part of the architecture, i.e. the blocks with
repetitions. All of the additional blocks consist of a 1D convolution, batch normalisation and
ReLU, except for the last, which is a pointwise convolution.

We name the blocks in the architecture to enable easy referencing. Bi is the ith B-block with
repetitions. We denote the extra blocks with a C. The layout of a QuartzNet architecture is thus
[C1, B1, . . . , BB, C2, C3, C4], where BB refers to the last B layer.

In Section 1, we note the peculiarity of Bonito and QuartzNet using the same values for their
HPs. We will, in the next section, describe the available HPs in the architecture.

4.1 Model Hyperparameters
Having introduced the general architecture, we will now cover how the HPs explained in Sec-
tion 3.2.1 are used in Bonito. These HPs have been experimented with by Mr Seymour, the
creator of Bonito, and the authors of QuartzNet. However, they limit their experiments to vari-
ations in amounts and sizes of the B-blocks, thereby excluding the use of different types of layers
and variations to the C-blocks [9, 13].

Wemention a list of specific HPs that Mr Seymour has experimented with in Section 1. Each
HP on the list will be explained and, subsequently, we will investigate whether any additional
elements should be included.

Repeats A natural number that corresponds to the value of R in QuartzNet, i.e. the number of
sub-blocks.

Number of Kernels Anatural number that determines the number of kernels used in aB-block.

Kernel Sizes The sizes of each kernel in a B-block, also a natural number.

In Table 4, we show the exact values used for each HP of Bonito.
The HPs chosen for tuning by Mr Seymour are logical, given the nature and possibilities of

the architecture. One notable absentee from the list, however, is grouping, which we explain in
Section 3.2.1. In the QuartzNet paper, grouping is applied to the B-blocks. Grouping is shown to
markedly reduce the number of weights in themodel and thereby increase the thereof [13]. The
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Figure 17: The QuartzNet architecture with B blocks each containing R sub-blocks. Figure is from [13].

Block R K C

C1 1 33 256

B1 5 33 256
B2 5 39 256
B3 5 51 512
B4 5 63 512
B5 5 75 512

C2 1 87 512
C3 1 1 1024
C4 1 1 |labels|

Table 4: Values for Repetitions (R), Kernel size (K), and Channels (C) used in QuartzNet and Bonito.
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4.1 Model Hyperparameters

paper also shows that the speed comes at a relatively low decrease in accuracy for their problem
domain, automatic speech recognition. That is, at least with shuffling, which they use for their
experiments. With our focus on both speed and accuracy, it seems sensible to investigate the
effects of grouping and shuffling as relating to basecalling.

We search for further extensions to convolutions that can positively impact speed and ac-
curacy. Despite our efforts, we only find one sensible extra extension, which is dilation. We
introduce dilation in Section 3.2.1, and as we explain, it can increase the effective region in
which a kernel operates, without adding additional weights. This effect might be of particular
importance to basecalling for a MinION device because the surrounding region of DNA affects
the signal produced, as explained in Section 2.3. A wider effective region thus has the potential
ability to increase the accuracy without an increase in speed.

Lastly, wemustmention that Bonito uses a stride of three for thefirst C-block instead of two—
as it is in QuartzNet. In the following sections, we document our experiments with alternative
configurations of the B blocks of Bonito. In these, we will not be experimenting with alternative
configurations of the C-blocks. The HPs of the C-blocks will, therefore, be fixed to those of
Bonito.

Having defined the architecture of Bonito and its HPs, we will in the next section explain
how we, through experiments, aim to gain an insight into the impact of the HPs.
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5 Experiments
In Section 1 we state our intent of investigating the effects of HP-tuning and KD on Bonito with
both accuracy and speed as metrics. We do so empirically through experiments. Our initial
experiment, referred to as Experiment 0 (Exp0), turned out to have several flaws, of which we
learned a great deal from concerning how subsequent experiments should be executed. While
the lessons are valuable, the results are less so, and it has therefore been included in the ap-
pendix, see Appendix B. Exp0 is, in essence, a result of being overly eager and optimistic about
the size of our experiments. When relevant, the lessons learned from Exp0 will be included.
In the three following subsections, we explain the experiments that we conducted along with
their motivation and contribution. The data used for training the models as well as evaluating
the results are described in Section 5.1. Experiments one, two, and three are publicly available
on GitHub1 and Weights and Biases2.

5.1 Data
The data set consists of eight different bacteria with a total of 480,605 signals produced by the
MinION device, where each signal consists of approximately 3,000 to 5,000 reads. We use a
subset of 1,000 randomly selected signals where the bacteria Bacillus has been excluded. This
subset is further divided into a training and validation set (80% and 20% respectively). While
the training set is the data used for training the network, the validation set is used to avoid
overfitting. Overfitting is where the model becomes very good at predicting the training set but
unable to generalise. This is done by evaluating the loss of the validation set after each epoch of
training. At some point during training, the loss for validation will begin to worsen, while the
loss of the training set still improves, which means that the network no longer generalises well.

We choose a relatively small subset of signals to make the training of models faster, thereby
enabling us to include more variants of models in each experiment. To further reduce the time
needed per experiment, we have chosen to use CTC loss as a proxy for the accuracy measure
for the models in the first two experiments. Our results from Exp0 show a strong correlation
between CTC loss and accuracy. In the experiments, we normalise prediction time (time) and
CTC loss across all of our experiments, on eachmeasure. The normalisation allows results from
each experiment to be compared. In Exp3wecalculate the read identity, defined in Section 2.3.1,
using NanoPlot [48] of a subset of 200 signals for Bacillus as well as a random selection of 200
unseen signals and compare it to those of Bonito. We refer to these two data sets as test sets. A
test set is used to measure the final accuracy of a neural network. The validation set cannot be
used for this purpose, because it is used to stop training when the network performs the best
on that data set, thereby intruducing possible bias for this set of data.

5.2 Experiment 1: Random Search
As we mention in Section 1, the values used for HPs in Bonito are identical to those used in
QuartzNet [9, 13]. QuartzNet shows the effect on accuracy for a subset of the HPs. The effects on

1https://github.com/Jgfrausing/basecaller-p10
2https://wandb.ai/jkbc/jk-basecalling-v2
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5.2 Experiment 1: Random Search

speed are, however, not shown. In 4.1we show theHPsused for tuningbyBonito andQuartzNet.
We also add dilation as a novel HP to investigate.

As we shall see, every HP has an extensive range of possible values. Creating and training
models for each of all the possible combinations of HPs would yield the most precise insights
into their impact on speed and accuracy. Unfortunately, eachmodel takes several hours to train,
whichmakes an exhaustive exploration of the search space infeasible. Instead, this experiment
aims at training a representative set of model configurations—i.e. a particular set of values for
the HPs— to investigate the interactions between different HPs.

5.2.1 Setup

In Exp0 changesweremade to both themodelHPs and the algorithmHPs. The results from Exp0
showed which values for our algorithmHPs that worked well for a large range of configurations
of model HPs. While we gained insights on algorithm HPs, we learned less from the different
model HPs. The reason being that we allowed eachmodel HP to change independently for each
B-block, thereby creating an enormous search space.

For this experiment, we, therefore, choose to reduce the number of possible configurations
by changing each of the different type HPs (i.e. repeats, dilation, grouping, etc.) for every B-
block by the same factor. The factors are based on the values used in Bonito, and any deviation
is, therefore, a mutation of Bonito. Scaling by a factor reduces the set of possible mutations
significantly since only one value for each type is to be changed instead of five—i.e. one for
each of the five B-blocks. It is worth mentioning that, similarly to [9, 13], we fix the HPs of all
C-blocks to reduce the number of combinations further.

Dilation Since dilation is not explored in Bonito, the default value for every B-block is one. In
Section 3.2.1, we explain why dilating by one has no effect. We allowmutations where the
dilation can be increased to two and three.

Grouping The second introduction we make to Bonito, is grouping. Similar to dilation, the
default value for grouping is one. We allowmutations that use two, four, and eight groups.
Additionally, these mutations are combined with and without shuffling.

Kernel Sizes Default values in Bonito is 256 for B1 and B2 and 512 for the three other B-blocks.
We mutate by scaling using a factor s ∈ {1.3, 1.2, 1.1, 0.9, 0.8, 0.7} on all blocks. Mutations
on dilation alone do not change the number of weights, as explained in Section 3.2.1.
Therefore, we account for dilation when modifying the kernel size. For a given mutation
of kernel size, the size is further adjusted such that its effective size after dilation is the
same as the size of the kernel with dilation 1. Table 5 shows how a kernel of size seven is
adjusted according to dilation.

Number of Kernels Similar to their size, the amount of kernels in each block are also adjusted
using the scaling factor s. As explained in Section 3.2.1, the number of kernels has to be
divisible by the number of groups. Since one, two, and four are factors of eight, the largest
number of groups, we adjust the number of kernels after scaling to be divisible by eight.
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Dilation Kernel
D1 w1 w2 w3 w4 w5 w6 w7
D2 w1 0 w3 0 w5 0 w7
D3 w1 0 0 w4 0 0 w7

Table 5: Adjusting a kernel of size seven with dilation values one, two, and three. The number of weights
decrease with a higher dilation, but the effective size of the kernel remains the same.

Repetitions While Bonito uses five repeats for eachB-block, QuartzNet have experimentedwith
more and fewer repetitions. We define the set of possible values for mutating repetitions
to be [1, 2, ..., 10].

The values for HPs used in Bonito are well-proven to give good results, both given the results
of Bonito itself and also the results presented for QuartzNet in [13, 49]. Given this, we consider
the above mutations to be a good compromise in order to reduce the number of possible con-
figurations to investigate.

The search space of all combinations of the mutations totals to a little more than nine thou-
sand models. Due to time constraints, we choose to limit the experiment to a random selection
of 150 of these configurations. For reliable results, each model is trained until its loss (or cost)
stabilises, which takes several hours. The models created from these configurations, naturally
differ in complexity. Therefore, they are trained for a maximum of 30 epochs, which in Exp0 has
shown to be sufficient for most configurations. One epoch is complete when all of the training
data has been seen once. We use early stopping, which stops training when the loss has not im-
proved by at least 0.01 over three epochs. Early stopping is used to reduce the workload, given
that the configurations on average converge after 20 epochs.

5.2.2 Results

With the setup established, we move to describe and analyse the results.

Pareto set A Pareto set (or Pareto optimal set) can be created from a set of data points in
a multidimensional space. A data point is said to be in the Pareto set if another point does not
dominate it—that is no other point is better in all dimensions. For our setup, the dimensions are
time and accuracy, and the data points are the models. Models not part of the Pareto set will,
consequently, have one or more alternatives that are both faster and more accurate. A Pareto
set is constructed from the randomly mutated models, as shown in Figure 18. Given that 94
configurations have a shorter running time than Bonito, it is notable that Bonito remains a part
of the Pareto set. However, by allowing a slightly worse loss, the running time can be reduced
significantly. Similarly, the loss can be reducedmarkedly with a slight increase in running time.

Feature importance Feature importance is a method to describe the impact a given input
feature has when using a machine learning model to predict an output [50]. This method is
especially valuable when features can be dependent on others. [51] suggests that feature im-
portance also can be used to get an insight into which HPs have the highest importance.
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5.2 Experiment 1: Random Search

Figure 18: Pareto set defined by the dotted line. The blue dots are mutations. The cross represents
Bonito. CTC Loss and Prediction time is normalised according to the highest value for each measure

across all of our experiments.

The method uses a random forest regressor, which is an combination of decision trees [52].
A decision tree is, similar to a neural network, a machine learning method used to predict a
value given an input. It uses a tree structure, where each node makes a branching decision on
its input. Nodes starting from the top layer, each node in the tree is constructed by taking the
best split of a training set using the most decisive feature. The best split is the one that reduces
a specified error the most (e.g. mean squared error).

As defined in [50, 51], we train a random forest regressor using the HPs as features and the
loss, representing the accuracy, of the networks as targets. We disregard speed because we
cannot combine speed and accuracy into one measure without selecting a single trade-off. By
the definition of decision trees, important HPs (a.k.a decisive features) will on average be po-
sitioned higher in each of the trees in the regressor. Hereafter, we randomise the values for a
specific HP h for all networks. If h is important, it will, therefore, be difficult for the regres-
sor to make correct predictions. However, if h is of less importance, then the regressor will
retain more of its correctness. By doing this for all HPs, we can order them according to their
importance.

Figure 19 shows the importance that each HP has according to the loss along with its corre-
lation. It suggests that increasing kernel size, amount of kernels, and repetitions yields a decrease
in loss. The decrease of loss is no surprise given that increases in each of these HPs result in
models with more weights. Grouping and shuffling is shown to have an impact on the loss. It is,
however, difficult to know if this is the case for all group sizes. Lastly, the figure suggests that
dilation is of low importance and has no correlation to the loss.

Importance is, as mentioned, measured according to accuracy. Figure 19 implies that dila-
tion and groups are of low importance to accuracy. However, we are still interested to see if
there are any configurations where dilation and grouping can provide a valuable contribution
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Figure 19: Importance and correlation of each HP to loss. Positive correlation means a higher value for
that HP results in a higher loss—and is therefore marked by red.

when speed is also considered. For this purpose, the 14 configurations in the Pareto set are in-
teresting to investigate, since they are good trade-offs between time and accuracy. Of those 13
configurations (excluding Bonito) only four does not use dilation, which suggests that dilation
could provide some value when not only accuracy is considered. Grouping, on the other hand,
is only represented two times in the Pareto set, and both of those use two groups.

Summary This experiment contributes with the following:

1. The random set of HP configurations has yielded a Pareto set that includes Bonito.

2. The importance and correlation measure suggests that dilation and grouping will not re-
duce the loss.

3. The configurations of the Pareto set hints that dilation and using two groups can be of
value when considering both loss and prediction time.

The importance measure falls short when both time and loss is considered. In order to gain
a better understanding of how eachHP affects the trade-off independently, wewill in Exp2 apply
a more systematic approach to investigate the individually impact of the HPs further.

5.3 Experiment 2: Grid Search
Results from Exp1 show that increasing the number of weights in Bonito can yield a decrease
in loss. This increase is not useful when aiming to reduce prediction time. We show the impor-
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tance of eachHP according to the loss, a proxy for accuracy, but the impact on the time/accuracy
trade-off is difficult to interpret. Here we perform a grid search over each HP and view the re-
sults in terms of speed and loss. A grid search is simply a complete search over a given range of
values.

5.3.1 Setup

In order to enable comparison of these results and those of Exp1, the setup is almost identical.
The only difference being that the HPs are changed independently, and we investigate all values
in the specified ranges, as is the nature of a grid search. All combinations of dilation and kernel
sizes are, furthermore, tested, for the reasons explained in Exp1.

5.3.2 Results

The results of the grid search allow us to create plots that show the trade-off between loss and
speed for each HP. We choose to relegate the results for Number of kernels and Repetitions, to
Appendix C, since they exhibit the same patterns as in Exp1.

Dilation and Kernel Sizes One of the most interesting results is the dilation and kernel size
experiment. Recall that the kernel sizes are scaled to effective kernel sizes using dilation, which
means that experiments with dilation larger than 1 have smaller kernels. The formula for com-
puting the effective kernel size is shown in Section 3.2.1. Figure 20 shows the impact of different
combinations of dilation and kernel sizes have on time and accuracy. As expected, the predic-
tion time is, in general, lowered when applying dilation because we also reduce the kernel size.
However, the two lowest values for loss are achieved by using dilation. So, as we theorised in
Section 4.1, dilation can, in combination with a reduced kernel size, replace larger non-dilated
kernels while yielding similar or lower loss at a faster speed. The can is emphasised since vari-
ation in the loss for the results indicate that proper tuning is essential. Also noteworthy is the
position of Bonito, which is dominated by nearly other configurations, suggesting that the val-
ues in Bonito were not ideal.

Grouping The results of grouping and shuffling are shown in Figure 21, where two patterns
emerge. The first is that the loss increases with the number of groups, which is consistent with
the findings from Exp1. Intriguingly, two groups with shuffling seem to be a direct improve-
ment over Bonito. The second pattern is that shuffling reduces the prediction time, which is
odd because it is an additional operation. One possible explanation is that the shuffling imple-
mentation moves the data in memory according to the new shuffled ordering. The rearranged
data can, therefore, potentially be a better match for further processing. However, the intricate
low-level GPU implementations make it hard to know for certain with further investigations.

Summary The additional runs result in an updated Pareto set, as seen in Figure 22. Most

Page 33



5.3 Experiment 2: Grid Search

Figure 20: Various kernel sizes with dilation D ∈ {1, 2, 3}. Bonito, which has dilation of 1 is also shown.

Figure 21: The results of using grouping and shuffling on Bonito. The number of groups are written
above each marker. The legend explains the colours and markers used.
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HPs can be adjusted to improve either speed or accuracy at the cost of the other. Dilation com-
bined with adjusted kernel size, however, is shown to reduce both measures. The experiments
with dilation is highlighted with Ds in Figure 22.

The named models in Figure 22 are selected to represent the Pareto set for additional exper-
imentation concerning KD in the following section.

Figure 22: Updated Pareto set. The dotted line refers to the Pareto set for the joint experiments. D are
dilated models. The named models are a selected subset which are to be used in Exp3.

5.4 Experiment 3: Knowledge Distillation
In the final part of Exp2, we select five configurations that represent the Pareto set well. The
configurations and Bonito will be trained with KD in this experiment. KD has a number of
algorithmic HPs which need to be set. We conduct experiments to find the best values for the
HPs and subsequently uncover the effect of KD with respect to basecalling.

5.4.1 Setup

We explain the algorithmic HPs for KD, α and T, in Section 3.3.2. In [47], a grid search of three
values for both of these is conducted on one model. The difference in accuracy for these 32 = 9
different configurations is less than one per cent. Given that we are interested in applying KD to
six models, a grid search for all values is deemed to be too time-consuming. Instead, we divide
the selection of these values into two steps. First, we select a value for T, which is then used
when searching for a value for alpha.

Selecting T In Exp1, we use early stoppingmeaning that training terminates when the decrease
in validation loss is below a fixed threshold. We continue to use early stopping with the
same criteria, to ensure that models trained with KD are not training longer than the ones
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without KD. This choice means that, although the cost function used for training is an-
other, we still use CTC loss to determine when to stop training. The idea of using early
stopping based on CTC works as long as reducing KD loss also reduces CTC loss—if not, it
will likely result in faulty early stopping. Consequently, a suitable temperature value, T,
is not only one that produces goodmodels, but also one where CTC loss is reduced propor-
tionally to the KD loss. We acknowledge that this combined criterion can mean that the
optimal temperature for producing good models is not selected. We make a grid search
with the values T ∈ {1, 4, 7, 10, 13, 16, 19} on Bonito and fix alpha to one. From these trials,
we see that for T ≥ 4, the difference between KD loss and CTC loss is nearly constant after
just two epochs (Figure 32). Similar to the results in [47], we see that T does not affect the
overall accuracy to a large degree. With our previously stated purpose inmind, we choose
T = 4, as it seems to be the best value for our criteria.

Selecting α Having selected a value for T, we can experiment with multiple values for α across
the six models on which we apply KD. All of the selected configurations are trained with
a grid of α ∈ {0.25, 0.5, 0.75, 1.0}. The teacher predictions are generated using Bonito.

Figure 23 shows the results of training the six model configurations using the four α values.
We highlight each original model trained without KD as well as their best configuration of the
four α values. In Table 6 the HPs used for each model is presented.

As we can see, KD, along with appropriate values for T and α, provide a decrease in the
overall loss. Surprisingly, even Bonito can benefit from being trained on predictions from itself.

Figure 23: Improvements of applying KD. The nodes with alternative colour are the best outcome of
applying KD. Crosses represents additional runs where KD has been applied. Figure 31 is a box plot for
the accuracy of different alpha values. It suggests that α ∈ [0.25, 0.5] yields the best results for our setup.
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5.4.2 Results

For the final evaluation of accuracy of our bestmodels, we use two different data sets. Neither of
which has ever been used for training or validation. Test Set 1 (TS1) consists of signals from the
same seven species of bacteria as used in both the training and validation sets. Test Set 2 (TS2)
only contains signal from the bacteria Bacillus—the species excluded from both the training
and test sets. Beam search (Section 3.3.1) converts the probability distribution of each model
into a sequence of bases, which is then aligned to the reference (Section 2.3.1). Table 6 shows
the accuracy of each model on each test set. There is a gap of around four per cent accuracy
between the two data set for all models. However, the accuracy on TS1 remains valuable, given
that some basecallers are trained on taxon-specific data [7].

In Exp1 and Exp2, we use CTC loss as an indicator for the overall accuracy of a given model.
By this measure, Bonito, trained with KD, ranks third overall among the highlighted models.
We see that this ordering of the models is the same when measuring accuracy on both TS1 and
TS2. This reconfirms our findings from Exp0 that showed a strong correlation between CTC loss
and accuracy.

Figure 24 is a box plot of the five JKBCmodels and Bonito trained with and without KD. Here
we see that the slowermodels, JKBC-4 and JKBC-5, outperforms the others on accuracy. JKBC-3,
which is 63% faster than Bonito, has similar accuracy, which is also shown in Table 6.

Bonito Bonito-KD JKBC-1 JKBC-2 JKBC-3 JKBC-4 JKBC-5
Time (Normalised) 0.549 0.549 0.150 0.249 0.349 0.488 0.748
Median Identity % (TS1) 96.5 97.9 94.6 96.8 97.7 98.3 98.4
Median Identity % (TS2) 92.0 93.4 91.2 92.4 93.3 93.6 93.6
Kernel size (scale) 1 1 1.2 0.7 1.3 1.2 1
# of kernels (scale) 1 1 0.8 0.7 1 1.1 1.3
Groups 1 1 2 1 1 1 1
Shuffle - - False - - - -
Dilation 1 1 2 3 3 3 1
# of repetitions 5 5 1 3 3 5 5

Table 6: A comparison of selected models from the Pareto set along with Bonito. Time is normalised
similar to previous results. The median identity in percentage is shown for Test Set 1 (TS1), all bacteria

except Bacillus, and Test Set 2 (TS2), just Bacillus.

Impact of KD It is clear from Figure 23 that KD improves the accuracy. While any increase
in accuracy is valuable, it is also interesting to reach insights into how KD affects the models
trained. Figure 25 shows one of the best clues we found while trying to extract insights. It
shows the relationship between the length of the predicted read length and the length of the
aligned read—the part of the predicted DNA sequence which could be aligned to the reference
sequence. While the figure only shows the difference between Bonito and Bonito-KD, the same
pattern emerged for all of our models. Models without KD output long sequences for most of
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(a) TS1 (b) TS2

Figure 24: A boxplot of the accuracy (Percent Identity) for selected models on Test Set 1 (left) and Test Set
2 (right). The outliers are hard to distinguish, due to the large number of signals used to produce the box

plots.

which only two thirds can be aligned to the reference. On the other hand, models with KD tend
to output shorter sequences, of which nearly all of the sequence can be aligned. In short, KD
improves both the accuracy of the output length and the accuracy of the individual bases.

(a) Bonito (b) Bonito-KD

Figure 25: Output length, y-axis, vs aligned length for Bonito and Bonito-KD for TS1.

Summary KD has been applied on Bonito as well as five selected models in the Pareto set.
These models were selected such that they represent different time and accuracy trade-off. We
find that every model can be improved by applying KD given appropriate values for the algo-
rithm HPs alpha and temperature.
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6 Discussion
Our primary contribution in this project has been the investigation of the impact on speed and
accuracy of tuning different HPs on the state-of-the-art-basecaller Bonito. Additionally, we have
explored how KD, combined with well-selected HPs, can further improve the accuracy.

Our results suggest that we can divide the HPs into two categories based on their effect.
The HPs either: (1) Improve either accuracy or speed at the cost of the other; or (2) improve
both accuracy and speed. HPs in (1) are the number of repetitions, kernels, and groups. We
achieve prominent results with the combination of reducing kernel size and adding dilation,
which suggests that this combination is in the second category, (2). Furthermore, our results
show that using KD, with adequately selected values for temperature and alpha, can improve
the overall accuracy of existing well-performing models. With this, we accommodate the need
for faster and more accurate basecalling as stated to be important in Section 1.

Our contributionbuilds on empirical results from training an extensive set of Bonito-variants
both with and without KD. The quality of the results is, therefore dependent on the data and
the method, which we will discuss first. Subsequently, the experiments and results will be ex-
amined.

Data In our experiments, a relatively small training set is used to allow for more experi-
ments to be run. The size of a training set is positively correlated with the training time for
a model. A small training set, however, increases the risk of overfitting—i.e. getting results that
do not generalise well to different data sets. Despite the risk, Table 6 and Figure 24 show that
the selected models perform well on test set 1, which contains the same species as used in the
training data. The accuracy is nearly five per cent lower for test set 2, which consists of the
Bacillus bacteria; a species hitherto unseen by the models. This discrepancy suggests that the
difference between signals for different species is vast and challenging to capture, which is also
the case presented in [7] and [29]. Whether the discrepancy would be even larger on animal
or plant DNA—i.e. DNA from different biological kingdoms—is something we leave for future
experiments. Should these future experiments show that our results do not generalise well, we
suggest to redo Exp1 and Exp2 with the relevant data. Additionally, it would be of great value to
see whether our observed patterns on the HPs would change for a very heterogeneous data set,
for example, one including species from several biological kingdoms.

CTC Loss as a Proxy for Accuracy We choose to use CTC Loss on the validation set as a proxy
for accuracy (read identity) for all results, except for the ones, including the test sets. The choice
is made on the basis that read identity, from Section 2.3.1, is too time-consuming to compute.
Using read identity would, therefore, markedly increase the evaluation time of the trials in our
experiments. We acknowledge that this choice introduces the risk of us selecting sub-optimal
models for further considerations due to the iterative nature of our experiments. We accept that
our results for all experiments potentially could have been improved if we had used read iden-
tity instead. Despite this caveat, we still believe that dilation, combined with a reduced kernel
size, can improve accuracy and reduce prediction time. Furthermore, the models, which are
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shown in Table 6, are still a valid contribution even if models exhibiting better trade-offs exist.
For similar experiments, especially ones focused on improving basecaller or of non-iterative
nature, we recommend the usage of CTC loss as a proxy for accuracy.

Time Needed for Experiments Our contribution builds on empirical results from training
an extensive set of Bonito-variants both with and without KD. To ensure the validity of our re-
sults, we train each model until its loss stabilises, which takes between three and six hours.
Each model is trained on its own GPU, of which we had several available. The combined com-
putation time for our experiments is slightly over 80 days. We could, possibly, have reduced the
total computation time needed by training eachmodel for a shorter timer, i.e. for fewer epochs.
However, the number of epochs needed is unclear. An experiment showing the relationship
between accuracy measured after each epoch and the final accuracy would be beneficial in de-
ciding this matter. Naturally, one other reason for the large computation time needed for our
experiments is that we provide insights into the combination of HP-tuning and KD. Especially
the HP-tuning experiments are time-consuming. Based on the contribution in this report, we
recommend future experiments to focus on either HP-tuning or KD.

Hyperparameters An inherent problemwithHP-tuning is the problemof choosing the ranges
of values to use. The problem is exacerbated when multiple HPs are tuned at the same time
because the search space quickly increases in size. To combat this issue, we deploy a scaling
technique with discrete values in a limited range. The scaling technique uses the values from
Bonito, and therefore also QuartzNet, as the basis. Neither Bonito nor QuartzNet provide any
reasoning for, or show any experiments that explain, the values they use for the HPs. It is,
therefore, likely that even better values for the HPs exist, which requires further experiments.

Similar to our scaling technique, we choose to apply the same dilation and grouping to each
B-block, where it is could be worth investigating the impact of doing thesemutations differently
on individual blocks. One interesting idea, conducted by [53], is to increase the number of
groups by a power of twowith the depth of the network, which is shown to work well on smaller
networks.

We consider that experiments with higher dilation than three can be of interest since our
results suggest that dilation, in many cases, is positively correlated with accuracy. The fact
that dilation improves accuracy suggests that long-range dependencies of the DNA signal are of
higher importance than local differences. These dependencies become apparent when compar-
ing JKBC-3 to Bonito-KD. Their accuracy on both test sets are very similar; however, JKBC-3 uses
only 60% of the time for its predictions. The reduction in speed is caused by fewer repetitions
and a smaller number of trainable weights in the kernels.

Although grouping works as a trade-off between speed and accuracy, our results suggest
that tuning of other HPs, such as repetitions and kernels, yields a better trade-off. These ob-
servations align with the results from QuartzNet [13]. This observation is further supported by
grouping only being represented once in the Pareto set of each experiment. Albeit, this might
be because of the exact implementation of grouping in the machine learning framework that
we used.
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Bonito uses a stride of three on the first C-block, which reduces the length of probability
distributions to a third of the input. KD requires the outputs of teacher and student to have the
same dimensions, which means that a teacher would have to be trained for every variation of
stride used by students. To limit the scope of Exp3, we decide to use only one teacher, having
one specific stride. We have, therefore, no experiments regarding the effects of stride, which
could be interesting to conduct, especially for non-KD related experiments. Both an increased
and decreased stride would be worth investigating in our opinion.

Recall that the QuartzNet architecture can be described by B × R. Here, R refers to how
many times each sub-block in each of the B B-blocks are repeated. During our experiments, we
show the results of different values of R, the repetitionsHP; however, we do not experiment with
B-blocks. In QuartzNet experiments are made with 5, 10, and 15 B-blocks, where each B-block
is repeated one, two, and three times respectively. The difference between a 10 × 5 network
and a 5 × 10 network is that a residual layer is added after each B-block. This difference means
that the prior has twice as many residual layers. We propose that further experiments could
investigate the impact of different amount of B-blocks.

We deemed that Exp0 had toomany configurations of HPs for us to make any general claims
on their impact regarding model HPs. Nonetheless, we selected the algorithmic HPs based on
this experiment. Given that the selected values for these generally performed well, we consider
them to be viable choices. However, we do admit that there is a chance that other selection of
these could lead to different results, though we consider significant changes to be unlikely.

Knowledge Distillation KD has proven to be a powerful tool to improve the accuracy of mod-
els, given appropriate temperature and alpha values. While we only scrape the surface of KD,
we consider these results as valuable pointers to the potential of KD in relation to basecalling.
Future work could focus on exploring the vast amount of extensions to KD [47, 54], and espe-
cially extensions with additional focus on KD for sequence-to-sequence problems [55, 56].

In order to reduce the scope of the experiments, we have only used a single model as a
teacher—namely Bonito. We choose to do this since the teacher predictions can come from an
identical network or networks of smaller sizes, as shown in [46]. However, better results could
likely be achieved with another teacher. In the original, seminal KD paper, the author presents
the teacher to be an ensemble of models [15]. To improve accuracy, we suggest combining
multiple models into an ensemble that is used as the teacher instead. Our results suggest that
larger networks profit more from KD than smaller ones. It could be of interest to investigate
if this is specific to the KD method and teacher that we have used, or if it generalises to other
combinations. Lastly, we are curious about born-again networks, which are networks trained
with themselves as teachers [46]. Our results show that Bonito-KD, which is trained with the
output of Bonito, gains similar improvement as other networks of similar size. JKBC-5, as a
born again network, could have further improvements to its accuracy—we leave this to future
experiments as well. Intriguingly, the outputs of born-again networks can be used to train new
born-againnetworks recursively. Thedegree towhich recursive born-again training is beneficial
to accuracy could also be investigated.
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7 Conclusion
In this research, we aimed to investigate how and to what extent HP-tuning combined with the
use of KD on Bonito impacts the trade-off between speed and accuracy—a trade-off, which is
essential in basecalling.

Our thorough experiments examine an array of HPs, of which the effect of dilation on base-
calling is hitherto undocumented. Similarly, the impact on speed is unexplored for most of the
HPs. The results suggest thatmost HPs in Bonito improve either its accuracy or speed. However,
we find that combining dilation with a reduced kernel size yields a positive effect on both ac-
curacy and speed. Dilation, therefore, is a prominent HP to consider when time is an essential
factor.

Utilising the results, we presentmultiplemodels that outperformBonito on speed, accuracy,
or even both. Those models illustrate the potential of investigating alternative HPs and their
combinations. A subset ofmodels representing sound trade-offs, as defined by the Pareto set, is,
subsequently, trained with KD to investigate its impact. The results show a substantial increase
in accuracy—with no difference in prediction time—for all models in our experiment. Even
Bonito trained with itself as a teacher—also known as a born-again network—yields an increase
in accuracy. KD improves not only a basecaller s̓ ability to predict each base correctly but also
their ability to, correctly, predict the length of the output.

As stated in Section 6, our models outperform Bonito. This result is significant, given that
Bonito is SOA in basecalling. The improvements over Bonito on both time and accuracy are
relevant, as they comply with the importance of both in relation to basecalling, as described in
Section 1 and confirmed by the domain expert Mr Albertsen.

It is important to emphasise that these results might be specific to the data used for our ex-
periments. Additionally, we cannot make any claims about whether the effects observed trans-
lates to tasks outside the domain of basecalling. Notably, the experiments conducted are not
specifically tailored to the data set nor the domain. Thus, we suggest that one or more of the
experiments can be applied when faced with a similar task where both time and accuracy are
of importance.
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Appendices

A Optimisers
Optimisers are used for updating the weights in a neural network during back propagation. In
Section 3.1.1, we introduce gradient descent, which is one of the simplest optimisers. Optimis-
ers affect the training time needed for a network [57]. Additionally, certain optimisers can help
”getting out of” local minima, local maxima, and saddle points, which are areas in the landscape of
the cost function with gradients of zero, as shown in Figure 26. When using gradient descent,
updating the weights with gradients of zero will cause no change to their value. The learning
thereby halts. A non-convex cost function, or any non-convex function for thatmatter, can have

1 2 3

1

2

fA

B

C

D

E

Figure 26: Illustration of an arbitrary cost function f . A and E are local minima and maxima
respectively. B and D are global maxima and minima. Lastly, C represents a saddle point.

multiple local minima and maxima. The lowest minimum is called the global minima, which is
what we, ideally, want to find, hence the need to ”get out of” the other local minima or maxima.

In order to clarify the relationship between the optimisers, we show gradient descent in
Equation (19) and changes to it are highlighted in different colours when introduced.

In gradient descent, seen in Equation (19), a weight at time t, wt, is updated based on the
weight from the previous time step, wt−1, a learning rate, α, and a step size, st. The step size is
the partial derivative for the weight wt−1 relative to the cost function Ct.

wt = wt−1 − αst

st =
∂Ct

∂wt−1

(19)

A.1 Gradient Descent with Momentum
Gradient descent can be altered by adding a momentum. The momentum is an exponentially
weightedmoving average. Oneway to understandmomentum is to view the weight as a particle
on top of the cost functions̓ landscape. With gradient descent, we directly change the position
of the particle, but with momentum, we change its velocity [58].
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A.2 RMSProp (Root Mean Square Propagation)

Changes from Equation (19) are highlighted in red. The step size using momentum at time
t, sm

t , is different from st, as used in Equation (19), in that it is dependent on the previous step
sizes as well as the current gradient. βm controls how quickly the averages decay, i.e. how far
back you look in order to determine the moving average.

wt = wt−1 − αsm
t

sm
t = βmsm

t−1 + (1 − βm)
∂Ct

∂wt−1

(20)

A.2 RMSProp (Root Mean Square Propagation)
The landscape of the cost function can vary to a great degree, with some areas having smooth,
gradual changes, while others will look more like mountain ranges. Recall that the gradients
describe the changes in the cost functions̓ landscape. During training, the magnitudes of the
gradients can change abruptly, dependent on the topography of the landscape. The abrupt
changes make it challenging to find a good local minimum [59]. While the learning rate, α, can
help to temper the sudden changes of gradients, a constant valuewill not work for all situations.
Geoffrey Hinton created RMSProp in an attempt to solve this problem of having to choose a sin-
gle learning rate [59]. RMSPropworks by dividing the learning rate by an exponentiallyweighted
moving average of the squared gradients. This method results in changes to the weights that, to
some degree, can ignore large, sudden changes in gradients. Changes from Equation (19) are
highlighted in blue. Similarly to Equation (20), we use a factor, here βr, to determine the decay
of the moving average.

wt = wt−1 −
α√
rt

st

rt = βrrt−1 + (1 − βr)s2
t

(21)

A.3 Adam
Adam is a combination of momentum and RMSProp [57]. It changes the effective learning rate
as in RMSProp (Equation (21)), highlighted in blue, but it also uses a momentum to calculate
the step size. The step size comes from Equation (20) and is highlighted in red.

wt = wt−1 −
α√
rt

sm
t (22)

A.4 AdamW
Most, if not all, of the popular machine learning libraries, had an error in their implementation
of Adam, which affected the results when Adamwas used in combination withweight decay [60].
Weight decay is a type of regularisation—i.e. a method that helps to reduce overfitting. The
problem was that the weight decay was applied prior to the calculation of the momentum- and
RMSProp-parts, which reduced its regularising effects. AdamW is simply an implementation of
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Adam in which the application of weight decay is postponed until the very end, and, as such,
Equation (22) is not altered [60].

B Experiment 0: Bayesian Hyperoptimisation
This experiment, our first, proved to have flaws, which cause its results to be of lesser value.
Nonetheless, we include it here, in the appendix, because the experiment provides insights
used for subsequent experiments. The two primary flaws of this experiment are (1) the size
of the search space we attempt to explore, and (2) the approach with which we explore it. We
will examine the flaws in order and lastly show how the algorithm HPs, i.e. the HPs related to
training, are selected for our remaining experiments.

B.1 Size of the Search Space
Bonito has with our additions, as explained in Section 4.1, six HPs that can be tuned for each
B-block. In this experiment, we allow the HPs for each block to change independently of the
models HPs in the other blocks. Since we are testing every combination of a B-layer with all
other possible combinations of all other B-layers, the total number of combinations is extremely
large. Equation (23) shows the calculation for the total amount of combinations for this setup.

Tcombinations = ∏
L

∏
HP

VHP (23)

where L is the five blocks, HP refers to the six different HPs, and VHP is the size of the range
for each HP as described in Section 5.2.1. The total amount of combinations for this setup is
1.4e20. We run 6,000 combinations in this experiment, which is not nearly enough to uncover
any tendencies in how the HPs affect each other. Additionally, it is complicated to see the effect
of changing a given HP, because one block may scale it up when another scales it down.

To amend the shortcomings of this experiment, we decide to apply the same value for each
HP across all blocks in Exp1, thereby drastically decreasing the size of the search space.

B.2 Bayesian Hyperoptimisation
To explore the search space we use Bayesian HyperOptimisation (BHO). BHO, as explained in
[61], is a method to make informed selections of HPs based on previous experiments. Gener-
ally, it works by trying to predict what combinations of HPs will maximise or minimise a given
metric—e.g. accuracy or loss. BHO excels because it uses a small amount of time to select the
configuration compared to how long it takes to train the network. The paper states that BHO
outperforms both expert and random selection of HPs. In order to find suitable configurations
of HPs, we use BHO for the 6,000 runs. However, we learn that using BHO is counter-productive
given that the scope of the project is to investigate the impact—both positive and negative—of
each HP. Additionally, BHO uses a single measure for its informed selections, and it is unclear
how speed and accuracy can be combined into a single measure that could be used for our
research.
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B.3 Algorithm HPs

To amend this flaw, we, therefore, use a random selection of configurations instead of BHO
in Exp1.

B.3 AlgorithmHPs
Alongside the model HPs, we also test algorithm HPs in this experiment. While we deem the
6,000 configurations to be too few to see tendencies for model HPs, we believe they can be used
to see good values for the algorithm HPs. Since the exploration of tendencies in algorithm HPs
are out of the scope of this project, we need values that likely will work well for our of our
remaining experiments. The following are the relevant algorithmHPs along with the values we
choose:

Learning Rate The purpose of a learning rate is described in Section 3.1.1. We find 0.001 to
work well in our experiment.

Scheduler A scheduler is used to make changes to the learning rate during training. While it
can contribute to a better model, our experiments suggest that when using a scheduler, a
lot more epochs are required. To reduce the amount of time need to train each model, we
choose not to use a scheduler.

Optimiser As explained in Appendix A, optimisers affects how weights are updated. Our ex-
periments show good results with AdamW, which is also proven to work well for several
other domains [57, 60].

Weight decay Weight decay is a regularisation method—i.e. a method that helps to reduce
overfitting—which works by multiplying the weights by a positive number less than one
on every update. The experiments suggest that a weight decay of around 0.1 yields good
results.

Drop out Drop out is, similar to weight decay, a regularisation method. Our experiments sug-
gest that drop out has little to no impact on the overall accuracy, and it, furthermore,
slows down training time. This tendency is likely because we use batch normalisation,
which allegedly reduces the need for further regularisation [41]. We, therefore, choose
not to use drop out.
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C Additional figures

Figure 27: Dilation and Kernel

Figure 28: Grouping and Shuffle
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Figure 29: Number of kernels

Figure 30: Number of repetitions
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Figure 31: Box plot of the distributing of CTC loss for different values of α

Page 55



Fi
gu

re
32
:D

iff
er
en

ce
be

tw
ee
n
K
D
lo
ss

an
d
CT

C
lo
ss

on
ea

ch
ep

oc
h
fo
rd

iff
er
en

tv
al
ue

s
fo
rt
em

pe
ra
tu
re

Page 56


	1 Introduction
	1.1 Problem Statement

	2 Biology
	2.1 DNA
	2.2 Sequencing
	2.2.1 Modern Sequencing Tools

	2.3 Basecalling
	2.3.1 Accuracy


	3 Machine Learning
	3.1 General
	3.1.1 Perceptron
	3.1.2 Combining Perceptrons into Networks

	3.2 Layer Types
	3.2.1 Convolutions
	3.2.2 Residual
	3.2.3 Batch Normalisation

	3.3 Cost Functions
	3.3.1 CTC
	3.3.2 Knowledge Distillation


	4 Model Architecture
	4.1 Model Hyperparameters

	5 Experiments
	5.1 Data
	5.2 Experiment 1: Random Search
	5.2.1 Setup
	5.2.2 Results

	5.3 Experiment 2: Grid Search
	5.3.1 Setup
	5.3.2 Results

	5.4 Experiment 3: Knowledge Distillation
	5.4.1 Setup
	5.4.2 Results


	6 Discussion
	7 Conclusion
	Index
	Appendices
	A Optimisers
	A.1 Gradient Descent with Momentum
	A.2 RMSProp (Root Mean Square Propagation)
	A.3 Adam
	A.4 AdamW

	B Experiment 0: Bayesian Hyperoptimisation
	B.1 Size of the Search Space
	B.2 Bayesian Hyperoptimisation
	B.3 Algorithm HPs

	C Additional figures

