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Abstract—DNA sequencing has recently undergone rapid improve-
ments due to the Oxford Nanopore Technologies sequencing devices.
These devices are fast and can read longer sequences than other
sequencers, but have a lower accuracy due to the process of translating
the measured electric signal into the corresponding DNA bases. This
process is done using machine learning models called basecallers, which
greatly impact the overall sequencing accuracy.

Current basecallers process the electric signal sequentially, relying on
recurrent layers and connectionist temporal classification for decoding.
We propose an open source transformer-based model, FishNChips, which
eliminates the need of recurrence by relying solely on attention. We
compare it to our own implementation of a recurrent model, Gravlax,
and show that FishNChips outperforms both Gravlax and the current
state of the art basecallers.

Index Terms—ONT nanopore sequencing, artificial neural network,
deep learning, transformer, attention

I. INTRODUCTION

DNA sequencing is the process by which genetic material is
transcribed into a sequence of nucleobases A,T,C,G, which encode
the information that builds all living cells. Oxford Nanopore Tech-
nologies (ONT) [1] have caused a paradigm shift in the field by
creating nanopore sequencing devices. Devices such as the MinION
sequencer [2], which fits in the palm of a hand, pass the DNA
through a biological membrane called a nanopore and measure
how the electrical current changes with different bases. The genetic
information is obtained by analysing the electrical signal afterwards.
This process greatly improves sequencing speeds and maximum
analysable sequence lengths at the cost of accuracy [3] compared to
alternative methods such as Illumina, which are slower, have much
shorter maximum read lengths, but are very accurate [4, 5].

Translating the electric signal into the series of corresponding
bases, a process known as basecalling, is not a trivial task. The high
error rate of nanopore sequencing (currently between 7-15% [6]) is
caused both by measuring the signal and its translation to bases. The
error rate of the former is due to high signal-to-noise ratio caused by
several factors:
• structural similarity of bases causes small variability of electric

current, especially since there are five bases inside the nanopore
at a time of measurement resulting in 45 = 1024 possible current
values [7]

• electric current does not change with homopolymers (sequence
of bases of the same kind) [8]

• non-uniform speed of the DNA passing through the nanopore
[9]

The error rate of the latter is caused by the inability of the basecalling
tools to map the electric signal into its correct base interpretation. In
this paper, we focus on reducing the error rate of basecallers.

The nanopore technology and machine learning techniques go hand
in hand. Programs that perform the task of translating the signal to a
string of bases are called basecallers, and employ machine learning
techniques to learn the mapping between the electric current and the
corresponding sequence of bases.

The first basecallers started by segmenting the raw signal into a
series of events, where each event corresponds to bases present at
the nanopore in a given time. These basecallers then used Hidden
Markov Models [10] to determine the final base sequence [11].

Modern models transitioned to translating the raw sequence di-
rectly to the sequence of DNA using approaches such as Connec-
tionist temporal classification (CTC) [12]. This has been shown to be
more effective than performing the extra step of event segmentation
[6]. CTC allows the model not only to learn which base to pick, but
also where in the signal it occurs. State of the art basecallers such
as Guppy, Chiron, and Bonito obtain high accuracies by using CTC
based sequence-to-sequence models [6, 13, 14]. Recent research has
shown the effectiveness of replacing recurrent models with attention-
based transformers that eliminate the need for recurrent layers al-
together [15]. SACall [16] offers promising results by replacing the
recurrent layers with self-attention, but keeping CTC as the decoder.

This paper will investigate the effectiveness of Transformers as
basecallers. Since the current state of the art depends on recurrent
models, we start by presenting Gravlax, our recurrent model based
on Chiron. We then propose FishNChips, our basecaller that uses a
Transformer to replace the recurrent layers of Gravlax, and show how
such architecture improves basecalling accuracy. Finally, the last part
of the paper discusses our results, the advantages and disadvantages
of this approach, and possible improvements.

II. PRELIMINARIES

A. Recurrent models

Popular state of the art basecallers employ recurrent neural net-
works (RNNs), which are capable of processing sequences of arbi-
trary lengths by applying transition functions on their internal hidden
states for each element of the input sequence.

Long Short Term Memory (LSTM) improves memorisation of
long term dependencies of recurrent models by propagating an
additional cell state. It also uses specialised gates, which allow it to
distinguish which information to remember and forget [17]. Appendix
A Subsection C further expands on RNNs and LSTMs.

B. Convolutional neural networks

Convolutional neural networks (CNNs) are commonly used in
models that handle images. By moving a learnable filter over the
input, areas closely resembling the filter will have a higher activation
than the less similar areas. Each filter forms a feature map, and
multiple filters can be used. Each filter is able to represent different
patterns.

Pooling layers are used for dimensionality reduction, only keeping
the most important activations in each area of the input [18].
Appendix A Subsection B explains CNNs in greater detail.

C. Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is a loss function
used to train sequence-to-sequence neural networks where the timing
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of the outputs varies. In the case of basecalling, there is a relationship
between events in the signal and the corresponding bases which
preserves order, but the distance between these events is not constant.

CTC allows the model to learn the probability of a base occurring
at each time step of the signal. Since the length of the input is much
longer than the output, adjacent predictions of the same base are
removed since they refer to the same base. This, however, does not
allow the model to predict genuine adjacent bases. CTC solves this
by introducing a blank symbol which the model predicts between
genuine consecutive bases. The model can therefore predict adjacent
identical bases since the removal of bases is performed before
removing the blank symbols. CTC is further defined in Appendix
A Subsection D.

D. Transformer and Attention

The transformer is a sequence-to-sequence model that improves
on recurrent models by replacing recurrence with attention. It has
an encoder-decoder structure. The encoder maps the source se-
quence X = (x1, x2, . . . , xn) to a sequence of representations
Z = (z1, z2, . . . , zn). The decoder then uses Z to generate the target
sequence Y = (y1, y2, . . . , ym), one element at the time [15].

The main effective difference between transformers and recurrent
networks is the fact that transformers do not need to iterate through
the data one time step at a time. Instead, a transformer uses Positional
encoding to distinguish time separation. Appendix A Subsection G
expands on positional encoding.

A Transformer utilises attention to reason about relations between:
• source-source - which source signal values influence a particular

source signal value
• target-target - which target base values influence a particular

target base value
• source-target - which source signal values influence a particular

target sequence base
For all the above mentioned cases, the transformer first computes

keys, values, and queries. The intuition is that multiplying keys and
queries results in an attention matrix, which marks the important
information to be extracted from the values. For source-source all
keys, queries, and values are constructed from X . Target-target
constructs them from Y . Finally, Source-target constructs keys and
values from Z and queries from Y :

K = ZWk

V = ZWv

Q = YWq

(1)

The learnable weight matrices Wk,Wv and Wq of dimensionality
(dmodel × dmodel) allow the model to learn how to obtain K,V
and Q from the source and target sequences. Given that these layers
contain dmodel neurons, the resulting shapes are lensource×dmodel,
lensource × dmodel and lentarget × dmodel respectively. Rather
than performing attention directly on these matrices, it significantly
improves accuracy to split them along their dmodel dimension into H
heads [15]. We then calculate Scaled dot product attention for each
head Kh, Vh, Qh:

Attention(Kh, Vh, Qh) = Softmax(
QhK

T
h√

dmodel/H
)Vh (2)

The dot product of Qh and KT
h results in a matrix of size

lentarget × lensource. This matrix is then scaled, which according

to [15], produces more stable gradients. Softmax ensures that this
matrix sums to one across its lensource axis. The result is an attention
weight matrix, which marks how much each signal measurement in
the source sequence influences a particular base in the target sequence
(in case of source to target attention). The matrix Vh captures the
value of a particular signal measurement itself. The scaled dot product
attention output is a matrix headh of size lentarget × dmodel/H .

Computation of every head is independent and can be performed
in parallel. The resulting heads are concatenated and linearly trans-
formed:

Multihead(K,V,Q)

= Concat(head1, . . . , headH)Wo

where headh = Attention(KWh
k , V W

h
v , QW

h
q )

(3)

The resulting matrix has size lentarget × dmodel. This method is
similar for source-source and decoder-decoder attention, where all
keys, values, and queries are obtained from source sequence and
target sequence respectively.

E. Transformer structure

The transformer consists of an encoder and a decoder. Since the
dimensionality of the intermediate representation of the data between
blocks is preserved to dmodel, both encoder and decoder can be
composed of multiple layers by stacking them.

Each encoder layer begins by applying multi head attention where
all keys, values, and queries are constructed from the source
sequence. This is the ”source-source” part of Section II-D. A point-
wise feed-forward neural network is used on the time axis, enabling
information to flow between the heads. This network consists of two
dense layers. The first layer is tasked with reorganising features across
heads, while the second layer always has dmodel neurons, ensuring
the dimensionality is kept between encoder layers.

The encoder layer uses residual connections, dropout and normal-
isation layers for the two sub-blocks.

The decoder operates in a similar fashion to the encoder, but
adds an extra attention sub-block. In the first sub-block, Multi Head
Attention is applied using queries, keys, and values from the target
sequence. Its output is used as the query to the second Multi Head
Attention sub-block, while keys and values are provided by the
encoder. Finally, a point-wise feed-forward neural network is used
over the output of the second sub-block. Just like in the encoder,
all sub-blocks are wrapped in a residual connection and followed by
dropout and normalisation layers.

III. RELATED WORK

Nanopore basecallers are still new and rapidly improving. Models
such as Guppy and Chiron currently define the state of the art by using
recurrent layers to capture the dependencies between signal points [6,
13]. A recurrent network lies at the core of these models. Chiron uses
a stack of bidirectional LSTM layers while Guppy uses the RGRGR
architecture which consists of alternating GRU and reverse GRU
layers. GRU layers use a different recurrent cell designed to improve
backpropagation through time, similarly to LSTM layers [19].

While recurrent layers have been the best way to handle time-
based dependencies in the past, such tasks can be performed without
recurrence [15, 20].

Recent research shows that deep 1-dimensional CNNs have poten-
tial to be just as powerful as RNNs at capturing time dependencies,
while having the advantage of faster computation time due to the
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possibility of executing in parallel [20]. Modern state of the art base-
callers such as Bonito [14] use a purely convolutional architecture,
skipping recurrence completely.

Additionally, Transformers have brought a novel approach to the
task of machine translation by using attention to learn which parts
of the input to pay attention to [15].

SACall [16] is a transformer-based basecaller. Like Chiron, it
first uses convolution layers, followed by max-pool layers to reduce
dimensionality. Instead of using the entire transformer, it only uses
the encoder to compute the sequence of representations Z, which is
then passed through a fully connected layer with a softmax activation
to obtain a sequence of probability distributions. Finally, it uses CTC
loss to directly train the encoder, instead of decoding Z with the
decoder.

While the aforementioned basecallers use different architectures,
they all use the CTC loss. Our transformer based model, FishNChips,
deviates from this pattern by using the transformer decoder in order
to decode Z. This loosens the strict relationships between input and
output enforced by the CTC loss, enabling the model to have more
flexibility in mapping the signal to the output.

IV. DATA PREPROCESSING

Training a sequence-to-sequence model requires having a dataset of
signal windows with the corresponding DNA sequence as the ground
truth. This is not a trivial task since the locations of bases in the signal
are not obvious, because of the various lengths of the two sequences
and the changing speed of the DNA passing through the nanopore.
Raw data from sequencing is unlabelled and it is even unknown what
organism it belongs to.

We use Taiyaki [21], a tool that aligns a sequence of DNA
to the nanopore signal. First, the raw signal is basecalled using
another basecaller to obtain an approximation of the ground truth.
Since this approximation contains errors, it then needs to be aligned
to a reference genome. A reference genome is the correct DNA
corresponding to the samples being read. This reference is usually
obtained using high accuracy sequencing tools. The approximation
basecall is aligned to the reference using Minimap [22], which tells
us which part of the reference is represented by the signal. We then
use Samtools [23] to extract the corresponding reference, which can
be used as the ground truth. We are able to do this due to the fact
that we use copies of known bacteria genes with low variability, so
we know that the information represented in them is identical to
the reference. Finally, we use Taiyaki to match the reference to the
signal. Taiyaki returns a list of indices which match each base of the
reference to the signal [24].

We normalise each signal by subtracting its mean and dividing
by its standard deviation in order to account for possible differences
between the sensor sensitivities:

Signalnorm =
Signal − µ(Signal)

σ(Signal)

V. GRAVLAX - RECURRENT MODEL APPROACH

Gravlax is our recurrent basecaller based on the architecture of
Chiron. We call it recurrent because it uses recurrent LSTM layers
in its architecture. Recurrent models such as Guppy and Chiron have
significantly improved basecalling accuracies in the last decade [6].
Because Guppy and Chiron still achieve state of the art accuracy,
recurrent models remain an important category of basecallers. We
begin by studying a recurrent model since its ubiquity makes it a
good candidate for our baseline.

Recurrent models are flexible with regard to the lengths of the input
and output sequences, since the same weights are applied recurrently
over the time axis. However, because we want to create a generic
basecaller, we only want to give it a small portion of the signal
at once. Therefore, we split the signal into windows of 300 signal
measurements, while neighbouring windows overlap by 270 signal
measurements. After data preprocessing we know the positions of
each base in the signal. Using this we can construct the corresponding
labels.

A. Architecture

Inspired by Chiron, Gravlax has 5 residual blocks, each containing
3 convolutional layers [25] of kernel size 1,3,1 respectively and 256
filters, and a residual connection as described in subsection A. We
added batch normalisation layers between the residual blocks [26].
Additionally, a max-pooling layer between residual block number 3
and 4 reduces the length of the sequence to half. Since CTC requires
an input length leninput ≥ 2×lenoutput we cannot reduce the signal
more than this.

We follow the residual blocks with three bidirectional recurrent
layers using LSTM cells with 250 units each. Instead of using LSTM
cells with internal batch normalisation, we added batch normalisation
layers between the bidirectional LSTM layers. Finally, we employed
the CTC loss function to compute the loss. Figure 1 shows the
architecture of Gravlax.

Fig. 1. Architecture of Gravlax
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B. Training

We use adam with learning rate 0.001 as a training optimiser due
to its popularity [27].

An epoch typically refers to a pass over the entire dataset while
training. Because our dataset is too large, we define an epoch as
training over 10, 000 windows split into batches of 32. After each
epoch ends, we validate the model by using data outside the training
set. We measure the validation accuracy using editdistance, an
algorithm which computes the minimum number of character changes
required to transform one string into another. In our case, we average
the edit distances between each model prediction and its ground
truths. We save the best model based on the average edit distance
on a batch of 500 windows. Training stops when no improvement
has been measured over 300 epochs.

C. Inference

To obtain a prediction, a signal window is first passed through the
model, which yields a sequence of softmax outputs. We then perform
greedy decoding by taking the most likely character at each position.
We obtain the predicted output by removing adjacent characters
and the blank symbols. The final DNA sequence is assembled
using our custom assembler. Each window’s prediction is aligned
to the previous n predictions based on similarity. After all window
predictions are aligned, consensus is performed and the most likely
base is picked for each position. The number of previous predictions
to be matched against depends on the window overlap, as less overlap
means fewer overlapping windows. We use a stride of 30 (overlap of
270 signal measurements) and n = 5 windows of assembly overlap
used for alignment.

CGTTTAGTATTGGGTAGAGAA

GTTTAGTATTG GTAGAGAAACC

TTGTATTGGGTAGAGAAACCAGG

AGTATTGGGTAGAGAAACGAGGTG

ATTGGGTAGAGAAACCAGGTGA

CGTTTAGTATTGGGTAGAGAAACCAGGTGA

D. Insight

We observed that a fundamental problem of our recurrent model
is that it is very hard for it to learn how to differentiate between
information observed 30 time steps ago and 50 time steps ago.
In order to remember the neighbourhood of bases present in the
nanopore and remain unbiased towards previous measurements, the
model needs to remember 20-30 time steps, but forget everything else.
When investigating the aligned predicted windows in the assembling
process, we observed that this is not the case. Gravlax commonly
changes its prediction of a base in the centre of a window compared
to its neighbours. Since our chosen input window size contains 300
signal measurements, the number of bases per prediction we expect
is ~25. Considering the physical properties of the nanopore device,
any single base is affected by its neighbouring 4 bases. Consequently,
bases located in the centre of a prediction should not be affected by
the end of the signal (12 bases away). The only differences between
adjacent windows are the ends of the signal; it must therefore mean
that the model takes them into account even when it should not.

CGTTTAGTATTGGGTAGAGAA

GTTTAGTATA GGTAGAGAAACC

We conclude that the recurrent layers are often unable to distin-
guish relevant signal measurements and disregard far away informa-
tion.

VI. FishNChips - TRANSFORMER APPROACH

Based on the intuition gained from exploring Gravlax, we create
a basecaller which uses a transformer to perform the sequence-
to-sequence translation. As opposed to the recurrent model which
struggles with discerning long-term dependencies, the positional
encoding utilised by the transformer enables it to more accurately
keep track of the neighbouring relevant data. Rather than recurring
over the source sequence of signals and choosing which information
to memorise and which to forget, the transformer is able to look at the
entire source and target sequences as a whole and identify relevant
parts.

As opposed to SACall [16], we use the entire transformer. While
it is not common to use an encoder-decoder structure for basecalling,
we believe that the extra context offered by the target language in
the process of decoding would improve the ability of the model to
learn details about the data being basecalled. In the case where the
previous 10 bases are related to the bases which follow, Gravlax
might be able to remember that it has seen the bases. However,
the Gravlax architecture has difficulty memorising their order and
distance from the current time step. SACall is able to mostly solve
this problem purely in the encoder, however we show that having
the decoder directly apply attention using the so-far decoded bases
further improves accuracy.

A. Encoder Architecture

Similarly to Gravlax, FishNChips utilises the same 5 residual
blocks, together with max-pooling to extract relevant features from
the source sequence. Because FishNChips does not use CTC, we can
increase the pooling kernel size and reduce the source sequence more
compared to what was possible in Gravlax. Our experiments show
that a max-pooling layer with kernel size 6 between residual blocks
3 and 4 achieve the best accuracy.

The CNN layers also embed the signal into our dmodel space.
Positional encoding is then added to the CNN output.

Our findings show large accuracy gains by increasing the number
of heads used during Multi Head Attention. We found that 25 heads
perform the best in conjunction with a dmodel of 250, picked such
that dmodel mod H = 0. Further improvements can be achieved by
increasing both dmodel and H , however, we use these numbers for a
similar model size to Gravlax. The multi head attention mechanism
of FishNChips is shown on Figure 2.

We stack N = 4 encoder layers to form the encoder. We found
that reducing the number of blocks to 2 yielded a small improvement
when testing models with 8 attention heads, however this did not
remain true when the number of heads was increased.

We always use dff = 2 × dmodel neurons in the first dense layer
of the point-wise feed-forward network.

Finally, since we always operate on signal windows of fixed length,
there is no need to use start and end tokens in the source sequence.

B. Decoder Architecture

Our target language is a sequence of bases. Because the target
sequences have variable lengths, we alter it before performing de-
coding by adding a start and end token and padding it to a fixed
length lentarget = 100. We picked this length to ensure that no
training example exceeds it.

We use an Embedding layer in order to encode the target sequences
into our desired dmodel. This layer takes the positive integers which
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Fig. 2. Structure of the multi head attention mechanism

are used to represent the tokens in the target language and converts
them into dense vectors of fixed size of dmodel [28].

Our decoder follows the same parameters as the encoder. We use
25 heads for both Multi Head Attention sub-layers in each decoder
layer. Similarly, we stack N = 4 decoder layers.

The output of the decoder passes through a final dense layer with
7 neurons corresponding to our target alphabet:

Σ = {A, T,C,G,< start >,< end >,< pad >}

The architecture of FishNChips is represented by Figure 3.

C. Training

Teacher forcing is used during training. A mask is used to hide any
future tokens, which includes both the future bases in the sequence
which the model needs to predict, and the padding. A separate mask
is created for each iteration of the prediction, such that the model
gets the opportunity to make a prediction for each character. Without
the mask, the model would be able to just look at the next token
and predict that directly. By using masking we ensure that the model
trains properly. Appendix A Subsection H describes teacher forcing.

Transformers are especially difficult to train, requiring a period of
learning rate warm-up. We use the Adam optimiser and gradually in-
crease the learning rate until it peaks after 4000 batches. Afterwards,
the learning rate slowly decays. We use the formula presented in [15]:

lrate = d−0.5
model ·min(step num−0.5,

step num · warmup steps−1.5)

Fig. 3. Architecture of FishNChips

D. Inference

Inference is performed iteratively by passing the source signal
sequence to the encoder and a list only containing the start token as
input to the decoder. The decoder outputs the most likely token that
follows, which is appended to the decoder input in the next iteration.
This process is repeated and the decoder predicts a new token each
iteration until it outputs an end token, in which case the inference
ends.

In order to optimise the process, we cache the encoder output
between iterations of every example. This reduces inference time by
half.

We predict the entire read similarly to Gravlax – the raw signal
is split into windows which are then individually decoded using
FishNChips. Finally, we assemble the outputs using our assembler.

VII. EXPERIMENTS

A. Data

We use signal data obtained using an Oxford Nanopore Tech-
nologies MinION device (version R9.4.1) from bacterial samples
containing the 16S-23S sequence from the following bacteria [29]:

• Bacillus subtilis
• Enterococcus faecalis
• Escherichia coli
• Lactobacillus fermentum
• Listeria monocytogenes
• Pseudomonas aeruginosa
• Salmonella enterica
• Staphylococcus aureus
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The 16S-23S sequence is of special importance since it forms the
ribosome, an important molecule which exists in any living cell. Due
to its ubiquity, it is commonly used for bacterial identification.

Each signal represents approximately 4200 bases and consists
of around 50000 signal measurements. The signals start and end
before the DNA begins to pass through the nanopore, therefore,
the beginning and the end of each signal does not contain any
information. Additionally, the DNA contains leading and trailing
barcodes used for identification added during amplification. The
barcodes are not represented in the reference genome and therefore
not matched to the signal, allowing us to cut the signal based on the
first and last indices provided by Taiyaki.

From these reads we generate signal windows and corresponding
labels as described in Section IV. It is not feasible for us to pre-
generate all the training data beforehand due to the amount of data
we have. We therefore use a generator pipeline which maintains a
pool of training examples from at least 5 random reads. We then
shuffle these examples before using them to train the model. This
ensures both that a batch will not contain too similar data, and that
a deformed read does not significantly affect the weights.

B. Implementation

We implemented both of our models in Tensorflow 2.1 [30]. We
used the ctc batch cost function implemented in Keras as the loss
function to Gravlax [31]. For the embedding layer used in the
FishNChips decoder we used the Keras Embedding layer [28]. We
have implemented our own greedy CTC decoding function. Our
Transformer code was adapted from the Tensorflow Transformer
tutorial [32].

We train on an nVidia V100 GPU. One epoch of training consisting
of 1000 batches of 32 windows each passes in 2 minutes.

C. Accuracy metric

We calculate the accuracy based on entire reads. We split a new
raw signal into windows which we pass through the model. The
assembled window predictions represent the models prediction of the
whole signal. We use minimap to align our prediction to the reference.
The alignment tells us the length of the matching sequence and the
number of correctly identified bases and mismatches. We define our
per-read accuracy as:

Accuracy =
number of matching bases in the alignment

the length of the alignment

We average the accuracy over 200 reads. We consider predictions
that have not been able to be matched by minimap to have accuracy
0.

D. Results

This section will cover the results we obtained by training and
testing on the pool of all our 8 bacteria. While representing the same
DNA, testing is done on new reads which have never been used
during training.

Table I shows the results we have obtained using Gravlax. Our
baseline, A, has very similar parameters to Chiron. The lower
accuracy we obtained could be due to multiple factors. We use batch
normalisation only between LSTM layers and not inside the cells.
Chiron also trains on variable windows sizes 200, 400 and 1000,
potentially increasing its robustness.

Adding a max-pooling layer with kernel size 2 between CNN
blocks 3 and 4, increases our accuracy by 5% in B. We use this

CNN architecture going forward. C further improves accuracy by
removing batch normalisation.

In C big, we attempt to improve our accuracy by increasing the
size of Gravlax. We approximately double the size of both filters used
in CNN layers and the number of units in the LSTM cells, which
dropped our accuracy.

We finally attempt to use the trained model to predict the entire
raw signal of length 50,000 in the C whole read experiment. This
means that we did not have to perform any preprocessing on the
signal besides normalising it, and the decoded output did not need to
be assembled. This was faster than the assembly method due to not
having to repeat computations on overlapping windows.

Table II shows the hyperparameter tuning and accuracy of Fish-
NChips. Experiments A,B,C and D show that 2 attention blocks are
ideal for a small number of heads. C big shows that increasing the
dmodel improves the accuracy. However, we keep the dmodel around
250 to achieve a comparable number of parameters to Gravlax.

Experiments E,F,G and H demonstrate how increasing and
decreasing the number of attention heads impacts the accuracy. We
observed that 25 heads achieves the highest accuracy of 93.41%.
I and J show it is possible to increase the number of heads further

when using a higher dmodel.
In K,L,M,N,O and P we added residual CNN blocks in front of

the encoder. K,L,M show how different number of residual blocks
impact accuracy. In experiment N we try using 2 attention blocks
since they yielded the best accuracy in previous experiments. In the
current configuration however, 2 blocks performed worse. Finally,
O and P show how increasing the max-pooling kernel increases
the accuracy as well. A max-pooling kernel of 6 achieved the best
accuracy of 96.98%. We assume this is because it reduced the target
sequence such that lentarget ≈ lensource.

In P big we set dmodel to 1015, increase the number of blocks to
5 and used 35 heads. This yielded the best accuracy of 98.68%.

E. Performance of other basecallers

Table III shows the accuracies obtained by Guppy, Chiron and
Bonito on our data using our accuracy metrics. Our aforementioned
results are obtained by basecalling reads which have had the leading
and trailing empty signal and barcodes removed. This would give
us an unfair advantage, since the basecallers operate on the complete
read. To be able to compare, we create a basecaller based on our best
model. We don’t do any data preprocessing or filtering. Raw signal
is read from the file, normalised and split into windows which are
predicted and assembled.

VIII. DISCUSSION

Our experiments show that FishNChips performs better than the
current state of the art basecallers. FishNChips outperformed Chiron,
Guppy and Bonito on their pre-trained models taking into account
the additional difficulties pertaining basecalling the entire raw signal.

Comparing the best accuracies of Gravlax and FishNChips also
shows that, given the same data preprocessing and CNN layers, the
transformer significantly outperforms bidirectional LSTM layers and
CTC.

We discovered that using CNN layers and the size of the max-
pooling kernel greatly affects the accuracy of our models. Gravlax
benefited from adding a max-pool layer to its architecture. Similarly,
FishNChips yielded better results both after adding the residual
convolution blocks and when increasing pooling. While [15] claims
that the transformer eliminates the need of convolutional layers, we
observe that the CNN blocks greatly help with the initial filtering and
dimensionality reduction of the raw signal.
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Name CNN Blocks Filters LSTM Units Batch Norm Maxpool Accuracy
A 5 256 250 T 85.10%
B 5 256 250 T T 90.79%
C 5 256 250 T 93.15%
C big 5 512 512 T 86.73%
C whole read 5 256 250 T 91.35%

TABLE I
Gravlax RESULTS WITH EVALUATION ON THE SAME BACTERIA AS TRAINING

Name D Model Blocks Heads CNN Blocks MaxPool Kernel Accuracy
A 256 1 8 68.54%
B 256 2 8 90.74%
C 256 4 8 81%
D 256 8 8 0%
C big 1024 4 8 90%
E 256 4 4 85%
F 256 4 16 88.7%
G 250 4 25 93.41%
H 256 4 32 92.62%
I 1000 2 25 93.86%
J 1000 2 50 94.37%
K 250 4 25 5 2 96.64%
L 250 4 25 4 2 95.53%
M 250 4 25 6 2 94.82%
N 250 2 25 5 2 91.66%
O 250 4 25 5 3 96.60%
P 250 4 25 5 6 96.98%
P big 1015 5 35 5 6 98.68%

TABLE II
FishNChips RESULTS WITH EVALUATION ON THE SAME BACTERIA AS TRAINING

Model Accuracy
Chiron DNA default 84.03%
Guppy dna r9.4.1 450bps hac 92.83%
Bonito dna r9.4.1 93.46%
Gravlax C 81.44%
Gravlax C whole read 86.38%
FishNChips 95.80%

TABLE III
PERFORMANCE OF OTHER BASECALLERS ON OUR DATA.

A. Basecalling unknown bacteria

In order to see how well the models generalise on DNA they have
not seen before, we re-train our best models on 7 of the 8 bacteria.
We randomly choose Escherichia Coli for testing and use the rest
for training. After each epoch ends, we use 300 windows of the
excluded bacteria for validation. We predict the individual windows
and obtain an accuracy metric by computing the edit distance to their
corresponding labels. We average the edit distance over the 300 reads
to obtain the average edit distance. We save the best model based on
this metric and stop training when no improvement has been seen in
over 300 epochs. Table IV shows the accuracies obtained inside and
outside the training dataset. Similarly, table V tests on Escherichia
Coli and Salmonella enterica while training on the rest.

We observed that the lower the accuracy, the worse our assembler
performs. The results in this subsection have been obtained both with

and without the assembler. In order to obtain a prediction without
an assembler, the model predicted non-overlapping windows, and the
complete DNA was formed by concatenating all the results. Appendix
C Subsection D shortly describes this.

Basecalling on unknown bacteria drops the accuracy significantly.
We believe that more varied training data would increase the ability
of the model to generalise. We perform k-mer analysis which shows
that a very small subset of possible k-mers are represented in the
reference DNA. Appendix C Subsection H presents this analysis.

While the drop in FishNChips accuracy between known and
unknown DNA might be interpreted as the inability of the model to
generalise, we do not believe this to be the case. Gravlax suffered an
even larger drop although its layers and method of operation closely
resemble state of the art basecallers. We therefore conclude that the
discrepancy must stem from the low variability of our data or from
our pipeline, which are common elements between FishNChips and
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Model Accuracy on 7 trained bacteria Accuracy on 1 untrained bacteria
Gravlax (C) (concat) 93.37% 85.60%
FishNChips (P) (concat) 96.61% 90.50%
FishNChips (P) (assembled) 98.45% 89.30%

TABLE IV
MODEL EVALUATION ON BACTERIAL DNA IT WAS TRAINED ON AND BACTERIAL DNA IT WAS NOT TRAINED ON IN RATIO 7:1.

Model Accuracy on 6 trained bacteria Accuracy on 2 untrained bacteria
FishNChips (P) (concat) 97.08% 61.06%

TABLE V
MODEL EVALUATION ON BACTERIAL DNA IT WAS TRAINED ON AND BACTERIAL DNA IT WAS NOT TRAINED ON IN RATIO 6:2.

Gravlax.
The fact that the accuracy on 2 untrained bacteria dropped even

more proves the fact that our model suffers from lack of data.
We observed that when validating on untrained bacteria, the

accuracy on trained bacteria has also risen. We believe this stems
from the following:
• We only use 3 reads for validation, meaning randomness plays a

larger role in when the model is saved. Validating on unknown
DNA minimises the effect of randomness since the power of the
model to generalise is much more important.

• Removing a bacteria from a training set implies less variability
in data. This forces the model to generalise less and allows it
to better memorise windows it has encountered previously and
hence potentially overfit.

Finally, the accuracy on trained bacteria seems to drop the more
bacteria are being used. We consider it necessary to train on more
bacteria in order to improve the ability of the model to generalise, but
it is uncertain where the accuracy on trained bacteria would converge,
and if it would continue to decrease.

B. Time complexity

The time complexity of transformers is O(n2 · d) per layer, where
n is the length of the sequence and d the representation dimension,
while the complexity of recurrent models is O(n·d2) [15]. This makes
it prohibitive for transformers to be scaled to long sequences at once,
while much easier for recurrent models. This also makes increasing
dmodel a more attractive proposition for FishNChips, while it would
slow Gravlax considerably.

Finally, our experiments with Gravlax show that a recurrent model
still performs well even when basecalling the entire signal at once.
While less accurate, we consider this to be a great advantage
in situations where real time performance is more important than
accuracy.

IX. CONCLUSION

In this paper we investigated the shortcomings of recurrent models
and the potential of transformers for the task of basecalling. By
examining the output of our recurrent model Gravlax, we discovered
its difficulty in distinguishing the importance of far and near de-
pendencies. To overcome this, we implemented a transformer based
basecaller, FishNChips, which is able to overcome this by having the
ability to pay attention to any element of the input sequence. We show
that FishNChips performs significantly better compared to Gravlax in
our testing conditions. Furthermore, we show that FishNChips obtains
accuracies better than the current state of the art.

Additionally, we tuned our models and experimentally showed how
changing the parameters affects the final result.

In conclusion, the paper achieved its goal of improving basecall-
ing accuracy by implementing a model combining a deep residual
convolutional neural network with a transformer.

X. FUTURE WORK

A. Parameter Tuning

Given extra time, there are a number of additional elements we
would have liked to explore related to our work. Since we strongly
consider the low variability of data to be a root cause of the reduced
ability of our models to generalise, we would like to train our models
on more varied DNA. Additionally, we would have liked to be able
to implement varying window sizes for training since we believe it
would improve robustness.

We would consider it important to analyse the correctness of
our data preprocessing by using alternatives to Taiyaki such as
Nanopolish eventalign and Tombo re-squiggle [33, 34] to label the
raw signal.

While we have attempted to tune a number of parameters important
to the models, there are even more which we have not touched.

We have discovered that pooling affects the obtained accuracy
greatly. However, we have always used maximum pooling, and we
have always placed the pooling layer between the 3rd and 4th convo-
lutional blocks. We would like to experiment with average pooling,
and different positions for the pooling layer. Since FishNChips can be
pooled further than Gravlax, we would also experiment with multiple
pooling layers of filter size 2, which might enable the model to extract
features even better.

Considering the residual blocks, we have used the 1-3-1 pattern
as described in paper [35]. Guppy, while not having a deep residual
CNN architecture, uses a convolutional layer with filter size 11 and
stride 5 to extract longer term dependencies and condense data simul-
taneously. We therefore believe that it is possible to further improve
performance by increasing filter sizes or improve performance by
increasing the stride.

Finally, we have only used the activation functions as recom-
mended by papers [35] and [15]. Since activation functions have
a large impact on model performance, we would like to see how
different activation functions would perform. Specifically, we would
like to investigate whether replacing our ReLU activation functions
with ELU would improve convergence and accuracy by enabling the
model to use the gradients for negative inputs [36].

B. Training data distribution

We noticed a correlation between the average per-bacteria accuracy
and the representation of said bacteria in the training dataset. We think
a better training method would be to ensure no bacteria is overly used
in training.
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C. Simplifying transformer architecture

Paper [37] argues that, while the multi head attention layers of the
transformer are often considered to be the dominant components of
its success, the followed point wise feed forward networks contains
most of the parameters. This suggests that the role of these networks
is important for the attention mechanism. Therefore, they propose an
attention layer, which combines a multi head attention layer and a
feed forward layer and hence simplifies the transformers architecture
without suffering from accuracy drops.

D. Restricted attention and adaptive attention span

The proposed transformers attention mechanism computes a square
attention matrix, which determines the importance of each element of
one sequence to each element of another sequence. Consequently the
time complexity of each multi head attention layer is O(n2 ·dmodel),
where n is the sequence length. To improve scalability with large
sequences, attention can be restricted, considering only the neighbour-
hood of size r. This reduces the time complexity to O(n · r ·dmodel)
[15].

The neighbourhood r can be viewed as an attention span of
the transformer. The transformer assumes that the attention span is
constant for every head h, however [38] shows that this is not the case
as some heads need to focus on the recent history, while others require
information from the entire sequence. Furthermore, [38] proposes
adaptive attention span mechanism, capable of learning the optimal
attention span of every head. Such mechanism allows the transformer
to use longer input sequences at no additional computational or
memory cost.

CODE

FishNChips and Gravlax are open source and the code can be
found at https://github.com/fishnchips-basecaller/fishnchips.
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APPENDIX

APPENDIX A
BACKGROUND

A. DNA and PCR

Deoxyribonucleic acid (DNA) is a molecule present in living cells,
which stores all the genetic information of the organism. Each of
the two chains which constitute it contain a series of bases which
encode the information itself. The bases are Adenine (A), Cytosine
(C), Thymine (T) and Guanine (G). Due to their structures, Adenine
can pair with Thymine while Cytosine with Guanine. The two chains
are therefore able to represent the same genetic information. During
biological cell processes, the DNA strand splits into the two chains,
enabling other molecules to transcribe the information, whether for
replication purposes or to be transformed into proteins [39].

Polymerase Chain Reaction (PCR) is a synthetic process by which
specific genes can be targeted and copied. While the mutations
present in our DNA are what enables evolution and the differences
between members of a species, DNA contains sequences of low
variability, which rarely mutate. DNA which perfectly targets these
areas can be synthesised in order to mark the start and end of a
gene of interest. Enzymes are then used to transcribe the marked
area a large number of times. This process is therefore called gene
amplification [40, 41].

PCR is useful in basecalling since consensus can be obtained
between reads of clones of the same gene, reducing random errors
caused by the basecaller and sequencer. Our project uses PCR
amplified DNA since it guarantees that the information in each read is
identical to the others of the same gene. The ground truth is obtained
either by more accurate sequencing techniques or by performing
consensus.

B. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks com-
monly used for image processing. The convolution operation refers
to multiplying a matrix of learnable parameters called a kernel or
filter over the input, generating a feature map. Multiple kernels are
commonly used, generating as many feature maps. The intuition is
that each kernel is able to extract features and relations, which are
then further combined by more convolutions or dense layers [18].
While the convolution operation is typically performed on 2 or 3
dimensions such as in the case of pictures, recent research shows that
1-dimensional convolutional neural networks are highly effective in
handling time series [20].

Pooling layers are used for dimensionality reduction. A kernel is
moved over the feature maps, similar to the convolution operation.
The pooling layer has no trainable parameters, instead it reduces
the data under the kernel by averaging or taking the largest value
(average- or max-pooling).

Deep convolutional neural networks have proven to be very
powerful, since they are able to extract both low and high level
features from data [42, 43]. Due to the problem of vanishing and
exploding gradients which will be explained in the RNN subsection,
convergence in the first layers becomes difficult. Residual connections
are connections that skip layers by adding a previous output to
the current layer output. Paper [35] shows that adding residual
connections greatly improves training, since low level layers are
easier to optimise through the residual connection as gradients have a
shorter path. Their architecture consists of residual blocks with three
convolution layers of kernel sizes 1,3,1, and a residual connection
that bypasses them.

C. Recurrent Neural Networks

Recurrent neural network (RNN) is a neural network used for
machine learning tasks involving sequence modelling [44], such as
basecalling. Such a network can accept multiple inputs, while it
remembers the previous inputs it has encountered by propagating and
altering its hidden state. The current hidden state ht can be computed
as a function of the previous hidden state ht−1 and the current input
xt:

ht = Φ(Wxt + Uht−1) (4)

where U and W are learnable weight matrices and Φ is a non-
linear activation function.

Because the output at a time-step t depends on the previous time
step t − 1 in the feed-forward phase, during back propagation, the
gradients at a time-step t depend on gradients at the time step t+ 1.
Back propagation in the context of an RNN is therefore called back
propagation through time. Because the computation of gradients is
multiplicative, gradients have a tendency to either explode or vanish.
Consequently, RNNs with many time-steps are unable to learn long
term dependencies. This behaviour is known as the exploding /
vanishing gradient problem [45].

Subsequent research has improved recurrent models with more
complex cells such as the LSTM and GRU cells [17, 19]. The LSTM
cell, for example, contains forget, input and output gates which decide
what information to keep and what to disregard. LSTM propagates
an additional vector - cell state c, which is not exposed to non-linear
transformations. Given an input xt, previous hidden state ht−1 and
a previous cell state ct−1, the current cell state ct and hidden state
ht can be defined as:

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(5)

Where W , U and b are learnable parameters and � is a Hadamard
product. Initial states h0 and c0 can be randomly initialised.

Such a cell structure improves the stability of gradients [46] and
allows the network to be longer. However, the gradients still have to
propagate back in time across the length of the entire sequence.

Furthermore, [47] shows Bidirectional Recurrent Neural Networks
(BRNNs). A BRNN consists of two RNNs, each traversing an input
sequence from different directions. The outputs of these networks are
usually concatenated or added together. This is useful for sequence
problems where a time step t depends on both previous and future
time steps. BRNNs may also consist of more complex cells, such as
LSTM or GRU cells.

D. Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is a method to train
sequence-to-sequence models, where the input and output sequence
lengths vary and these sequences are not synchronised [12].

A model first performs a forward pass, obtaining a sequence of
output probability distributions Y = y1 . . . yT over an alphabet Σ.
In terms of basecalling Σ = {A, T,C,G}.
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Given a true label s = s1, s2, . . . , sM , instead of unconstrained
decoding by simply selecting the base with the highest probability
at every time step t, CTC finds all possible alignments of Y and
s. It does so, by first constructing a T ×M table, such that each
row represents a label symbol sm and each column corresponds to
a time step t. A traversal of such a table from a top left cell to the
bottom right cell, allowing only single horizontal or single leading
diagonal transitions, results in a sequence s′ = s′1, s

′
2, . . . , s

′
T . All

possible resulting sequences S′ = {s′1, s′2, . . . , s′N}, are guaranteed
expansions of s (e.g. S′ = {ATTG,AATTGG,ATTTTG, . . . }
and s = ATG). To compute the loss, CTC uses a forward-backward
algorithm. The forward variable, α(t, sm), is the probability of all
paths from the first time step to the time step t and symbol sm. The
backward variable β(t, sm) is the probability of all paths from the
time step t and symbol sm to the last time step. Forward backward
algorithm is a dynamic programming algorithm, due to the recursive
nature of α and β. For both we have to consider the possible
horizontal or leading diagonal transitions.

α(t, sm) = (α(t− 1, sm) + α(t− 1, sm−1))ysmt

β(t, sm) = (β(t+ 1, sm) + β(t+ 1, sm+1))ysmt
(6)

Additionally, if a cell does not have an incoming or outgoing
connections, α or β return 0. The loss at a particular time step is
then calculated as:

Lt = − ln

M∑
m=1

α(t, sm)β(t, sm)

ysmt
(7)

It is then possible to compute gradients for a particular time step
by computing the partial derivatives of Lt with respect to the network
weights. These gradients can be aggregated over each batch and are
then propagated to update network parameters.

For many problems, including basecalling, such a method would
result in ambiguities when decoding the expanded label sequence s′,
as it does not account for consecutive bases of the same type in
the true label s. For example, given s′ = ATTTG, the true label
could be ATG,ATTG or ATTTG. To overcome this, the alphabet
is augmented by adding a blank character L′ = L ∪ {−}. The true
label is also augmented with blanks:

s := −s1 − s2 − . . . sM− (8)

Consequently, the resulting table has size (2M + 1)×T . Further-
more, the transition rules are changed, as it is possible to skip over
a blank character. If sm 6= − and sm 6= sm−2, α can be computed
as:

α(t, sm) = (α(t− 1, sm) + α(t− 1, sm−1)+

α(t− 1, sm−2))ysmt
(9)

Similarly for β, if sm 6= {−} and sm 6= sm+2:

β(s, t) = (β(t+ 1, sm) + β(t+ 1, sm+1)+

β(t− 1, sm+2)ysmt
(10)

If those conditions are not met, α and β are calculated according
to Equation 6. This no longer results in ambiguities, because the
blanks now indicate consecutive bases of the same kind. For example,
s′1 = ATTTG is an expansion of s1 = ATG and s′2 = ATT−TG
is an expansion of s2 = ATTG.

E. Sequence-to-sequence models

Two recurrent models (for example two LSTM networks) can
also be used to map sequences to sequences, as proposed by [48].
The first recurrent model called Encoder reads the source sequence
representations X = (x1, x2, . . . , xn) one time step at a time and
outputs their vector representations Z. The other recurrent model
is called the Decoder and learns to extract the target sequence
Y = (y1, y2, . . . , ym) from Z.

F. Attention

Attention is a mechanism initially designed to be used together
with sequence-to-sequence models, which helps selectively focus on
different parts of the source sequence when determining the target
sequence. This approach has shown improvements in combination
with encoder-decoder based recurrent neural network models [49],
where it is used to give a weight to each time step of an encoder
when determining the next target sequence output.

Recently, the Transformer [15] showed how a model can determine
dependencies between the source sequence and the target sequence
while relying solely on attention, without the need of recurrence.

G. Positional encoding

The main effective difference between transformers and recurrent
networks is the fact that transformers do not need to iterate through
the data one time step at a time. Instead, a transformer needs a
different method to distinguish time separation. Positional encoding
is a way to embed this information into the data. Sine and cosine
functions of different frequencies are commonly used:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(11)

where dmodel is a parameter of the network corresponding to the
depth at which the input is embedded and passed between layers.

The dimensions of the positional encoding therefore correspond
to sinusoids with wavelengths that form a geometric progression
from 2π to 1000 · 2π. This encoding matrix is added to the input
matrix, enabling the model to learn by using relative positions. In
other words, close encodings are more similar to one another than
far encodings, which the model can use as an indication of temporal
closeness [15].

The Transformer first embeds every element of the source and
target sequence xi and yj to a fixed-sized vector representation and
adds the corresponding positional encoding vector.

H. Teacher forcing

Teacher forcing is used to speed up the training. In a standard
training loop we would perform inference from the start token to the
end token and then apply the loss function. This approach is slow to
train, since errors at the beginning of the prediction affect the rest of
the inference. Teacher forcing allows the model to predict each step
with all the bases predicted beforehand being correct. In practice, this
is enforced using a mask. The mask is a matrix of very large negative
numbers which, when applied during dot product attention, prohibits
the model from paying attention to the masked steps. Training can be
therefore done directly on the entire prediction batch at once, where
each prediction step has its future masked. This is called masked
multi-head attention.
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I. Batch Normalisation

Paper [50] describes how a distribution of each neural network
layer inputs change, with changing parameters of the previous layers.
This is known as the internal covariate shift. This can be mitigated
by normalising the input to each layer of the network according to the
mean and standard deviation of the current batch. Batch normalisation
of a training example xi of a batch B = {x1, x2, . . . ,m} is defined
as:

yi = BNγ,β(xi) = β + γ(
xi − µB√
σ2
B + ε

) (12)

Where γ and β are learnable parameters and ε is a regularisation
parameter [50].

Batch normalisation can be also applied between LSTM cells,
where it is leveraged in both input to hidden and hidden to hidden
transformations [51].We can alter the definition of an LSTM cell and
define a batch normalised LSTM cell as [50]:

ft = σ(BNγf ,βf (Wfxt) +BNγf′ ,βf′ (Ufht−1))

it = σ(BNγi,βi(Wixt) +BNγi′ ,βi′ (Uiht−1))

ot = σ(BNγo,βo(Woxt) +BNγo′ ,βo′ (Uoht−1))

c̃t = tanh(BNγc̃,βc̃(Wcxt) +BNγc̃′ ,βc̃′ (Ucht−1))

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(BNγc,βc(ct))

(13)

The input terms Wxt and the recurrent terms Uht−1 are nor-
malised separately, so that the model is able to distinguish parameters
γ and γ′. Parameters β and β′ can be set to 0 to avoid redundancy
with b [50].

APPENDIX B
ALTERNATIVE ARCHITECTURES

A. Historic approaches

Various approaches have been used to perform basecalling. The
first basecallers identified events in the raw electric signal. The
concept of an event stems from the nature of sequencing. It represents
the k-mer (k consecutive bases) present in the sequencing device at
the time of measurement. The k varies depending on the device.

Basecallers such as Nanocall [11] and older versions of Metrichor
[52] attempt to determine these models using Hidden Markov Models
(HMMs) [10], where each hidden state represent the most probable
k-mer. DeepNano [7] shifts from HMMs and instead uses Recurrent
Neural Networks to determine those events.

Later, Scrappy showed the potential of transitioning from event-
based basecallers to basecalling the raw signal directly [6], where it
reached higher accuracies. Basecalling the raw signal has become the
standard for following basecallers.

B. Chiron

Since Gravlax is inspired by Chiron they are architecturally very
similar. Chiron also uses 5 residual blocks, each containing 3 CNN
layers with filter sizes 1,3,1 respectively and each layer having 256
filters.

The residual blocks are followed by 3 bidirectional LSTMs. The
outputs of a bidirectional LSTM layer are added. The outputs of
the final bidirectional LSTM are concatenated and fed to a Fully
connected layer with a Softmax activation, producing a sequence of
output probability distributions y = y1, . . . , yT over the alphabet

σ = {A, T,C,G,−}, where − represents the blank symbol. Chiron
also adds batch normalisation between residual blocks and between
LSTM cells according to Appendix A. It is trained with CTC loss
between the output sequence y and label sequence s = s1, . . . , sM .

Chiron infers the final sequence using either greedy decoding or a
beam search decoder. The greedy decoder first selects the bases with
the highest probabilities and then removes repetitions and blanks.
Beam search decoder is described in Appendix C Subsection B.

C. Guppy

Guppy is an ONT basecaller, which currently represents 3 models
- RGRGR, RGRGR big net and RGRGR flip flop. The first model
applies a single convolution layer on the raw signal with filter size
11 and stride 5, such that there are 5 raw signal values per prediction,
96 filters and an ELU activation shown in Eq. 14. It then uses 5 RNN
layers with GRU cells and tanh activations. Contrary to Chiron, it
does not use a bidirectional layer, but rather every second layer is a
reversed GRU, hence the name RGRGR. The final layer contains a
Softmax activation with 1025 possible predictions - 1024 k-mers and
additional ’stay’ state. The RGRGR big net has a similar structure,
but the convolution layer filter size is increased to 19 and the layer
contains 192 filters.

ELU(x) =

{
x if x > 0
α(ex − 1) if x ≤ 0

(14)

where α is picked, commonly between 0.1 and 0.3.
The Flip-flop model uses CTC to predict a base at each time

step. However, instead of predicting over the typically used alphabet
with a blank symbol Σ = {A, T,C,G,−}, it flips between an
upper-case and a lower-case base. The modified alphabet Σ′ =
{A, T,C,G, a, t, c, g} can then be used to decode consecutive bases
[53]:

A,A,A, a, a, a, a,A,A −→ A,A,A (15)

This improves accuracy, possibly because flip flop causes predic-
tions to be evenly distributed over Σ′, while in the typical CTC
decoder with alphabet Σ, the blank symbol is used much more
frequently than the actual bases. The Flip-flop model has convolution
stride 2, which reduces the output length by half, and uses 256 filters.

D. Bonito

Bonito [14] is another ONT basecaller, which relies solely on
convolutional layers. It is designed according to the Quartznet ar-
chitecture [54].

Bonito first applies a convolution with kernel size kc1 = 33, stride
sc1 = 3 and number of filters fc1 = 256 on the input signal. This is
followed by 5 convolution blocks. A convolution block consists of 5
convolution layers of the same structure, with a residual connection.
The first 2 blocks contain 256 filters, while for the last 3 blocks the
number of filters is increased to 512. The kernel size of blocks is
first increased by 6 followed by increases of 12 after every block -
kb1 = 33, kb2 = 51, . . . , kb5 = 75 with stride 1 for every block.
The convolution blocks are followed by two convolution layers. The
first layer has the following parameters: fc2 = 512, kc2 = 87,
sc2 = 1. The second layer increases the number of filters further
- fc3 = 1024, and reduces the kernel size kc3 = 1. The stride
remains 1 for both layers. Finally, there is a layer with a softmax
activation function, producing an output probability distribution for
every signal measurement over the alphabet Σ = {A, T,C,G,−}.
Similar to previously mentioned basecallers, Bonito uses the CTC
loss for training.
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E. SACall

SACall [16] is architecturally the closest to our proposed model,
FishNChips, because it utilises certain parts of the transformer [15].

SACall splits the signal into several windows of length 2048, which
are significantly longer than windows basecalled by FishNChips or
Gravlax. Furthermore, SACall shifts windows without overlap.

The signal window is then passed through a convolution module
consisting of two convolution layers, tasked with down-sampling the
signal and extracting features. Both layers have the same kernel size
of 3 and stride of 2. The first layer has dmodel/2 filters, while the
second increases the number of filters to dmodel. This serves as
a replacement for embedding, equivalent to the one used in Fish-
NChips. Each convolution layer is followed by batch normalisation
as described in Appendix C subsection I.

The convolution layers are followed by positional encoding and
the transformer. However, SACall only utilises the encoder of the
transformer, omitting the decoder entirely. The implementation of
the encoder is equivalent to FishNChips, employing both Multi Head
Attention and the Point-wise Feed Forward Network. The decoder is
replaced by a fully connected layer with a softmax activation, produc-
ing a probability distribution over the alphabet Σ = {A,C, T,G,−}.
Similarly to Guppy, Bonito and Chiron, SACall uses a CTC loss to
train the network and a CTC decoder to obtain the final sequence of
bases during inference.

F. Training state of the art basecallers

As a way to obtain a better comparison, we attempted to train
both Chiron and Bonito on our data, as they are state of the art
open source basecallers. We had little success with this and, due to
time constraints, didn’t investigate further. Chiron never trained and
Bonito, while showing 75% accuracy during validation, only achieved
45.09% using our testing method. We blame this on technical issues,
not on our dataset or the models.

G. Unsuccessful attempts

We attempted to implement the SACall architecture as another
point of comparison. Modifying FishNChips, we only kept the
encoder to which we added a feed-forward neural network with 5
neurons at the end, corresponding to the four bases ATCG and the
blank symbol. Finally, the training loop used the CTC algorithm as
a loss function. The input and labels were therefore the same.

Using dmodel = 512, 4 blocks and 8 heads we obtained an
accuracy of 78%. We abandoned work on improving this architecture
since it was so low compared to our other models.

We also attempted a hybrid model that adds the CTC loss to the
encoder of FishNChips, based on [55]. The purpose of this is to
increase the robustness of the model by improving the intermediate
representation Z. We therefore want to minimise the following:

L = αLCTC + (1− α)LAttention

where LCTC is the CTC loss, LAttention is the categorical cross-
entropy loss used for training the transformer, and α is a tunable
parameter which weights the importance of LCTC in comparison
with LAttention.

We add CTC to FishNChips with dmodel = 512, 4 blocks and 8
heads. Using α = 0.1 yielded 82% accuracy, while α = 0.4 did not
train at all. We abandoned this model since it lowered the accuracy
of FishNChips.

H. Synthesising data

We investigated whether or not our data is biased towards certain
k-mers. The analysis was performed on the references of the bacterial
DNA we use. Since the DNA that passes through the pore can be
read in both directions and can also be the reverse strand, we reverse
a copy of the original strand, compute the opposite strand and reverse
a copy of it as well. Every instance of a k-mer is counted. The list
is sorted and plotted such that it shows the popularity of certain k-
mers in the data. Figure 4 shows this distribution. Additionally, the x
axis shows what percentage of the total number of possible k-mers,
4kmer count, is represented. While 5- and 7-mers are well represented
in our data, we only get under 0.01% representation with 15-mers.
We expect 25-mers in our window size, which constitutes 10−8%
representation for our data.

Fig. 4. Distribution of k-mers

We tried using DeepSimulator [56], a model that generates sim-
ulated nanopore data for given DNA. We generate mock DNA
consisting of random bases. DeepSimulator splits the random DNA
string into subsequences of 4200 mean length and generates the
corresponding reads. Just like for normal data, we use Taiyaki to
match each base to a location in the signal. We attempt to train the
basecaller using this mock data in hopes that it will improve the
accuracy on DNA it has not seen. This, however, is not the case. We
attempt both to train purely on the mock DNA and also to dope our
training set by using 80% real DNA and 20% mock DNA. Table VI
shows the results.

The model which was only trained on mock DNA predicted reads
of low accuracy, 28% of which were not able to be mapped to the
reference and therefore count as accuracy 0. If we disregard the reads
that did not get mapped, the mean accuracy would be 71.55%.
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Parameters Accuracy on trained bacteria Accuracy on untrained bacteria
Only trained on random DNA 51.51%
80% real DNA, 20% mock DNA 90.34% 88.09%

TABLE VI
MODEL EVALUATION ON DIFFERENT APPROACHES OF USING RANDOMLY GENERATED DNA

APPENDIX C
IMPLEMENTATION DETAILS

A. Transformer optimisation

We were able to considerably speed up inference time by caching
the output of the encoder. Furthermore, we can batch multiple
windows together. Additional logic is needed to check whether all
items have the end token, in which case the inference stops. This
requires more computation than performing inference one by one,
but ends up being much faster due to the ability of modern GPUs to
parallelise.

B. Beam search

Beam search decoding is an algorithm which uses breadth-first
search to find the most probable decoding using the probability
distributions generated by a CTC model. Since it is often too
computationally expensive to consider all paths, commonly only a
number of best paths is considered. The maximum number of best
paths being considered at any time is called beam width. In our paper
we use greedy decoding, which picks the most probable element
at each time step. Since it only considers one path at a time, it is
equivalent to a beam search with beam width 1.

We have attempted to use beam search decoding using the
ctc decode function provided by Keras [31]. However, for any
beam width > 1, the results were substantially worse than us-
ing greedy decoding. We therefore ran all our experiments using
beam width = 1.

C. Learning rate

We found transformers to be particularly sensitive to learning rate,
even after the inclusion of warm-up steps. While the warm-up formula
presented in Appendix A was effective for dmodel = 250, the model
never converged for dmodel > 500. In order for it to converge, we
scaled the learning rate down by multiplying dmodel in the formula
with a scalar η, as shown in Eq 16. We found that a value of η > 10
helps models with dmodel > 1000 converge by lowering the learning
rate.

lrate = (η · dmodel)−0.5·min(step num−0.5,

step num · warmup steps−1.5)
(16)

We noticed our models either never converged or converged very
quickly. Figure 5 shows that the model reaches close to maximum
accuracy in 25 epochs, after which it does not continue to improve.
The learning rate seems to have a very small effect on the final
accuracy or on training speed.

Even though the model with the lower learning rate trained longer,
its results were worse by around 1%, both on bacteria it was trained
on and bacteria it was not trained on.

D. Overlapping and concatenated windows

Assembling the overlapping predicted windows has provided key
insights and reasons to pivot towards transformers. We observed that
assembling windows allowed models to ignore non-systematic wrong
predictions, which improved their overall robustness. Compared to

Fig. 5. Convergence of FishNChips models with different learning rates

simply concatenating a sequence of non-overlapping windows, as-
sembling increased the accuracy of already well performing models.
However, we also observed that when a model struggled to predict the
correct sequence of bases and hence appropriately align the windows,
assembling impacted the accuracy negatively. We found that the
threshold is approximately the accuracy of 90% on concatenated
windows.

E. End-to-end basecaller

As described in section VII-E, we built our own basecaller which
handles the entire read in order to be able to fairly compete with
the other basecallers. Its structure, however, is as simple as possible.
We take the raw signal, normalise it and split it into corresponding
windows. Improvements can be obtained by performing further
preprocessing before basecalling.

A reason for the accuracy drop is possibly attributed to the leading
and trailing empty signals. Since we never train on empty signal, the
model only gets to learn to not predict anything in the rare cases
where DNA was stuck in the nanopore, leading to no changes in a
long time within a read. We are prohibited from training on the entire
read due to the barcodes present in our data, which we do not know
and therefore cannot label. In our experience, the model learned to
predict nothing during the blank signal even when it has not been
deliberately trained on it. However, incorrect predictions still seldom
happen.
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