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Abstract:

The purpose of this project is to in-
vestigate the applicability of upper
bound plasticity theory in classifica-
tion of existing bridges. Firstly the de-
sign basis and load models for exist-
ing bridges are presented. After this
the bearing capacity model based on
upper bound plasticity with the pre-
sented load model is developed. The
model uncertainty and bias of this bear-
ing capacity model are then quantified.
Once the bearing capacity model is de-
scribed, and the corresponding bias
and model uncertainty are quantified,
the application of this bearing capac-
ity model for classification of existing
bridges can be investigated. Firstly the
application of this model will be in-
vestigated for deterministic classifica-
tion based on the partial safety factor
method, and the results will be com-
pared to a more traditional model. Af-
ter this different stochastic models are
presented, which are then used to in-
vestigate the applications of the bear-
ing capacity model for reliability-based
classification. Hereafter the bearing
capacity model is used to determine
a proof loading factor taking into ac-
count the resistance, such that survival
of the bridge during proof loading, en-
sures sufficient reliability. Lastly a de-
cision framework for up-classification
is developed.



Preface

This Master’s thesis in Structural and Civil Engineering at Aalborg University is written
as a long Master’s thesis, and therefore consists of 45 ECTS.

Reading guide

This report consist of an introduction, a main report and appendices.

Figures, tables and equations are assigned numbers, where the first number defines the
chapter and the second number defines the number of figure, table or equation in the
current chapter. Equations are referred to with parenthesis, e.g. (8.2), which is the second
equation in chapter 8. The chapters in the Appendix are assigned letters, e.g. Appendix
A, and figures, equations and tables in the given appendix chapter are assigned a letter
correspondingly, e.g. (B.1), which is the first equation in Appendix B.

Through the report references to sources are made using the Harvard method. A reference
in a sentence is written as the authors name followed by the year of publication.
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Resume

Dette kandidatspeciale er udarbejdet i perioden d. 1 september 2019 - d. 10. juni 2020. Det
er udarbejdet som det afsluttende projekt på kandidatuddannelsen Structural and Civil
Engineering på Aalborg Universitet.

Lastbilerne på de danske veje bliver stadigt tungere, og hvis kommunerne og vejdirek-
toratet ikke gør noget for at sikre en opklassificering langs vejene, kan det resultere i
at nogle køretøjer, der ellers kunne have passeret, må tage mere indirekte ruter, eller at
virksomheder må placeres andetsteds. Hvert år bruger kommunerne og vejdirektoratet
millioner af kroner på at forstærke eller udskifte broer, således at disse stadigt tungere last-
biler kan passere. Prøvebelastninger på eksisterende broer har dog vist at bæreevnen for
mange vejbroer er højere end tidligere antaget, hvilket betyder at der kan være en masse
penge at spare på at opklassificere broerne i stedet for at forstærke eller udskifte broen. En
opklassificering kan bl.a. ske analytisk ved både deterministisk og pålidelighedsbaseret
beregning eller eksperimentelt ved prøvebelastninger.

For pladebroer beregnes momentbæreevnen traditionelt som for en bjælke, hvilket bety-
der at den tværgående armering ikke indgår i beregningen. For broer med korte spænd
kan dette være en meget konservativ beregningsmodel, idet den tværgående armering,
grundet pladen med det korte spænds brudform, kan have stor betydning for moment-
bæreevnen. Tværarmeringens styrke kan dog medtages vha. plasticitesteori for plader.

Formålet med dette projekt er at undersøge, hvordan en plastisk brudlinjeteori kan
benyttes til klassificering af eksisterende broer. Den plastiske brudlinjeteori vil inddrages
både til deterministisk og pålidelighedsbaseret bæreevnevurdering, samt til at bestemme
den nødvendige størrelse af en prøvebelastning for en eventuel opklassificering.

Første del af rapporten beskriver beregningsgrundlaget samt broen, der vil være udgangs-
punkt for dette projekt. Hernæst udvikles en metode til bæreevneberegning af pladebroer
baseret på brudlinje teori, og beregningsmodellens bias og modelusikkerhed bestemmes.
Denne beregningsmodel benyttes da i følgende afsnit til deterministisk bæreevnevur-
dering af broen, der er udgangspunkt for projektet, og resultatet er holdt op imod resul-
tatet af en traditionel bæreevneberegning. Hernæst beskrives de stokastiske modeller,
der benyttes til den pålidelighedsbaserede bæreevnevurdering. Anvendelsen af bereg-
ningsmodellen undersøges da til pålidelighedsbaseret bæreevnevurdering, hvor den
deterministiske beregning opholdes mod den pålidelighedsbaserede, og hvor et param-
eterstudie udføres til at bestemme vigtigheden af relevante parametre. Teorien fra den
pålidelighedsbaserede bæreevnevurdering benyttes hernæst til sidst til at bestemme den
nødvendige størrelse af prøvebelastningen, der sikrer at den ønskede pålidelighed er
opnået, og beslutningsgrundlaget for prøvebelastningen undersøges.
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1. Introduction

For many existing reinforced concrete slab bridges, the bearing capacity found from
theoretical models does not correspond with the actual bearing capacity. This is seen
through failure tests performed on existing bridges. Through these tests the actual bearing
capacity was found to be much larger than the theoretical bearing capacity, in some cases
with a factor 2 or higher. In practice many existing short span bridges could therefore be
under classified due to the uncertainty and conservatism of the applied model. [Andersen,
2017]

There is a wish for up-classification of many existing bridges, such that it allows for
passage of heavier vehicles. An up-classification of these bridges may allow for some
vehicles to take more direct routes cutting down the transport cost of the companies using
these heavier vehicles. Moreover an up-classification of an existing bridge in favor of the
erection of a new bridge is more sustainable and more socioeconomically sound.

Using the traditionally used bearing capacity model, which does not take into account the
transverse reinforcement, the bearing capacity of short span bridges might be calculated
conservatively. Since these bridges are short but wide and as they are reinforced both in
the longitudinal and transverse directions, their actual bearing capacities might differ from
the calculated due to negligence of effect from transverse reinforcement. A more precise
model taking into account the transverse reinforcement might be based on upper bound
plasticity theory, for which the bearing capacity is based on specific failure mechanisms.

When performing up-classification of an existing bridge, it should be proven that the
reliability of the bridge with the new classification meets the demands of existing codes
and norms. If this can’t be done analytically it can be done experimentally by proof
loading, where the bridge is loaded such that the proof load case corresponds to the
real load case securing the desired reliability. However proof loading tests can lead to
failure of the bridge, if the load to be proven exceeds the actual bearing capacity of the
bridge. Therefore the decision on whether to proof load or not should take into account
the probability of failure during the proof load.

An existing short span bridge, which might have the possibility of up-classification, is the
bridge above Østerå on the Mariendals Mølle motorway in Aalborg, which was erected in
1973. The location of this bridge can be seen from Figure 1.1. The bridge will be designated
"Østerå bridge" in this report.
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Kenneth Damsgaard Chapter 1. Introduction

Figure 1.1: Location of Østerå bridge. [Google, 2020, edit]

1.1 Problem statement

Throughout this chapter it has been described how there is a wish for up-classification of
some existing bridges. This might be possible through proof load testing, where a proof
load factor is determined based on an upper bound bearing capacity model, such that the
required reliability level is proven, if the bridge survives the proof load test. This reduces
to the problem statement:

How can plastic upper bound bearing capacity models be applied for deterministic and reliability-
based bearing capacity assessment, and how can this be used with proof load testing for classification
of existing short-span bridges?

The above problem statement will be answered by:

• Establishing the design basis for classification of existing bridges.
• Describing the bridge, which will be the base case for this project.
• Establishing the load models, which are to be used for bridges.
• Developing a model, based on upper bound plasticity theory, for determining the

bearing capacity of bridges.
• Quantifying the model uncertainty and bias of the developed bearing capacity

model.
• Performing deterministic bearing capacity assessment, using partial safety factor

method.
• Describing the stochastic models, which are to be used for reliability-based assess-

ment in the following chapter.
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1.2 Problem limitations Aalborg University

• Describing and performing reliability-based bearing capacity assessment
• Determining how large a proof load should be to secure sufficient reliability if the

bridge survives the proof load test, and moreover determining the probability of the
bridge not surviving the proof load test.

• Developing a decision framework for proof load testing taking into account the
probability of the bridge not surviving the proof load test, found in the previous
chapter.

Østerå bridge will be the base case for this report, but more generic investigations will also
be performed. This will be done through parameter studies in relevant chapters, where
the effect of changing different parameters is investigated.

The bearing capacity model developed in this project will be compared to a more tradi-
tional model in relevant chapters.

1.2 Problem limitations

The bearing capacity model investigated is based on yield line theory. Therefore the
up-classification is only based on the ultimate moment bearing capacity of the slab. This
means that the serviceability limit state or other ultimate bearing capacities, such as shear
capacity, are not investigated. This also means that other components, such as walls
and piles, will not be proven for the up-classification. In recent years the rules for shear
capacity calculations have been sharpened, which means that this is often the critical limit
state for the slab when performing calculation-based bearing capacity assessment of older
existing bridges. This might mean that this limitation is significant in design. However it
might not be the case in practice, and since this project investigates up-classification based
on proof load testing, it might still be relevant to investigate the ultimate moment bearing
capacity.
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2. Design basis

Before the start of any project it is important to note the codes and standards, which
should be applied as basis of design. In this project the design basis is based on the
manual "Vejledning til Belastnings- og beregningsgrundlag for broer" [Vejdirektoratet,
2017]. This manual is a summary of the bridge applicable points in existing Eurocodes
with related national annexes and the report "Reliability-Based Classification of Load
Carrying Capacity" along with instructions, which are not found in any of these. In this
chapter, the applied key points from this manual will be mentioned.

2.1 Procedure for classification and bearing capacity assessment

The procedure for classification and bearing capacity assessment for existing bridges is
described in DS/EN 1991-2 DK NA, Annex A. The eurocodes released at the time of this
project are generally for the design of new structures, with one exception being this annex,
which is specifically for existing bridges. However in this Annex, there is no mention
of classification based on proof loading, which will also be investigated in this project.
Instead the basis for the proof loading will be drafts for the eurocodes, which are, at the
time of this project, being revised for new eurocodes for bearing capacity assessment of
existing structures.

In DS/EN 1991-2 DK NA, Annex A the general procedure, types of bearing capacity
assesment, classification of vehicles and passage types are outlined. DS/EN 1991-2 DK
NA, Annex A lists three types of bearing capacity assessment:

1. Classification of bridges using standard vehicles
2. Signage of weak bridges using boundary vehicles
3. Direct bearing capacity assessment using actual vehicles

This project is based on point 1, classification of bridges using standard vehicles. Figure
2.1 shows the general principle for bearing capacity assessment with the procedure for
bridge classification, which is investigated in this project, highlighted in red.

The terms, such as normal passage, in Figure 2.1 will be described in following chapters.
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Figure 2.1: Bearing capacity assessment of bridges.[DS/EN 1991-2 DK NA:2017, 2017, edit]
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2.2 Basis for calculation Aalborg University

2.2 Basis for calculation

The general safety requirements for road bridges are stated in DS/EN 1990 incl. DK NA
along with DS/EN 1990/A1 incl. DK NA. According to [Vejdirektoratet, 2017] all bridges
spanning more than 6 m fall under Consequence Class 3, CC3, while bridges with shorter
span fall under CC2.

Partial safety factors for loads and load combinations, which are to be applied, are found
in DS/EN 1990/A1 Annex A2 DK NA. The load combinations to be investigated in the
ultimate limit state are EN1990: STR (6.10a) and (6.10b), which correspond to (2.1) and
(2.2), respectively.

Gk γGa (2.1)

Gk γGb + Qk γQ (2.2)

Gk Characteristic permanent load
γG partial safety factor for permanent load
Qk Characteristic traffic load
γQ partial safety factor for traffic load

partial safety factors for material strengths are found in DS/EN 1992-1-1 DK NA. The
partial safety factors for both material strengths and loads can be seen in Table 2.1, where
γMs and γMc are the partial safety factors for reinforcement steel and concrete, respectively.
The value for γQ listed in the table is for classification of existing bridges. For design of
new bridges γQ = 1.4

Table 2.1: partial safety factors.

partial safety factor Value
γGa 1.2KFI

γGb 1.0KFI

γQ 1.25KFI

γMs 1.2γ3
(1)

γMc 1.45γ3
(1)

(1) γ3 is dependent on control class for the
material.

KFI depends on the consequence class. For CC2, KFI = 1.0 and for CC3, KFI = 1.1

For existing bridges up-classification can be performed using other reliability methods
than the partial safety factor method. The reliability requirements for existing bridges are
given in Table 2.2. In this report only global failure in ULS will be investigated. The values
in Table 2.2 are usually used for new buildings in CC2, but for existing bridges, these can
be used for CC3.

This project investigates the bearing capacity for concrete bridges. Bearing capacity

11
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Table 2.2: Reliability requirements.Vejdirektoratet [2017]

Limit state Reliability index β (1 year) Probability of failure
ULS, global failure with warning 4.8 (Without warning: 5.2) 10−6

ULS, local failure 4.3 10−5

Fatigue 4.8 10−6

Fatigue, where joints can be
inspected and repaired

4.3 10−5

Comfort requirements 2.3 10−2

SLS 2.3 10−2

calculations for concrete structures should be performed in accordance with DS/EN
1992-1-1 incl. DK NA og DS/EN 1992-2 incl. DK NA.

12



3. Base case - Østerå Bridge

As mentioned in the introduction, Østerå Bridge will be the base case for this report. The
road way on Østerå bridge is made up of 3 vehicle lanes and a shoulder in the direction
of Aalborg, and 2 vehicle lanes and a shoulder in the other direction. Figure 3.1 shows
how the roadway on Østerå bridge is structured, which, as will be shown in Chapter 4, is
important for the load model.

Figure 3.1: Illustration of the roadway on Østerå bridge.

The main part of the slab for Østerå Bridge is flat with uniform thickness, but the thickness
increases near the free edges of the bridge and the reinforcement changes as well. This
change in thickness is illustrated in Figure 3.2.

13



Kenneth Damsgaard Chapter 3. Base case - Østerå Bridge

Figure 3.2: Illustration of free edges at Østerå bridge.

The increased bearing capacity from the increased thickness is assumed negligible, and the
slab is simplified into a slab with uniform thickness and with the reinforcement pattern as
the main part, but for the whole slab. The slab is assumed fixed in both ends since this was
assumed for the original calculations. The static system of the slab with reinforcements is
illustrated in Figure 3.3.

Figure 3.3: Illustration of simplified cross section for Østerå bridge.

Østerå bridge was erected in 1973 meaning that the strength of the materials given in
the static calculations documents in the design are based on [DS 411:49]. The strength
parameters given for the slab in the design calculations can be seen from Table 3.1

14
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Table 3.1: Strength parameters for Østerå Bridge, given in the original design calculations.

Strength parameter Value
Reinforcement strength, Tentor steel rj 2300 kg/cm2

Concrete cylinder strength σc 240 kg/cm2

For materials specified in [DS 411:49] the strength values for up-classification should be
based on Table 3.2 and 3.3, for reinforcement and concrete, respectively. The characteristic
value for the concrete strength is found as the 5 % fractile.

Table 3.2: Tensile yield stress of non-prestressed reinforcement. [Vejdirektoratet, 2004]

Steel type Symbol Diameter [mm] Mean [MPa] STD [MPa] Characteristic [MPa]
Smooth bars Fe 360 ≤ 16 304 25 235

Fe 360 > 16 293 25 225
Fe 430 ≤ 16 345 25 275
Fe 430 > 16 334 25 265
Fe 510 ≤ 16 426 25 355
Fe 510 > 16 416 25 345

Smooth bars Ks 410 - 482 25 410
Ks 550 - 623 25 550

Tentor steel T - 623 25 550

Table 3.3: Mean value and coefficient of variation for compressive concrete strength corresponding
to cylinder strengths specified in [DS 411:49]. [Vejdirektoratet, 2004]

σc [kg/cm2] µ fc [MPa] Vfc

100 8.0 0.18
150 12.0 0.18
200 16.0 0.18
250 21.0 0.18
300 25.2 0.18
350 29.4 0.18
400 33.6 0.18

The values for Tentor steel in Table 3.2 is used for the reinforcements. For the concrete
strength the µ fc is found from interpolation of Table 3.3 to 20 MPa.

In the original static documents for Østerå Bridge the control class for materials as given
as sharpened. This means that γ3 = 0.95 can be used for γM in Table 2.1.

The total permanent load from both the slab itself and from the layers above it like gravel
and cement are given as 3.62 t/m2 in the static calculations for Østerå bridge. This
corresponds to 35.6 kN/m2 and is assumed as the mean permanent load, which is also the
characteristic value.

15





4. Load models

The load model used for up-classification of bridges should be based on existing codes
and annexes. The load model used in this report is based on [DS/EN 1991-2 DK NA:2017,
2017], which states that snow load and wind load can be disregarded for classification of
bridges. Thereby the only loads to be taken into account are traffic load and permanent
load. Firstly the positioning of the traffic load is described, and then the traffic load is
quantified.

4.1 Position of traffic load

The traffic load model in [DS/EN 1991-2 DK NA:2017, 2017] consists of standard vehicles
which are applied as point loads for each wheel and ordinary traffic which is applied as a
uniformly distributed load. [DS/EN 1991-2 DK NA:2017, 2017] defines the load model
based on two traffic situations:

• Passage situations. The load effect is based on only one vehicle in each lane. This
situation is typical for short span bridges.

• Mixed traffic situations. The load effect is based on mixed traffic in the same lane as
the standard vehicle as well as in other lanes. This situation is typical for long-span
bridges.

As this report investigates the bearing capacity and up-classification of short span bridges,
only passage situations are investigated. Furthermore ordinary traffic is assumed negligi-
ble in comparison to the much larger standard vehicle. Therefore situations with traffic
loads only consisting of standard vehicles are investigated in this report. The load model
should consist of a standard vehicle A in the most dangerous lane and a standard vehicle
B in the second most dangerous lane. Standard vehicle A should correspond to the vehicle
class for which the bridge is to be proven. In the case of standard vehicle A being in class
50 or lower, standard vehicle B is the same. In the case of standard vehicle A being in class
60 or higher, standard vehicle B is a class 50 standard vehicle.The vehicle classes along
with the corresponding axle configurations and vehicle widths can be seen in Appendix
A.

The position of the traffic load is defined on the basis of loading lanes and vehicle lanes.
Loading lanes are 3 m wide lanes within the roadway, which includes both shoulders and
vehicle lanes. Figure 4.1 illustrates this.

17



Kenneth Damsgaard Chapter 4. Load models

Figure 4.1: Descriptive illustration for lane types. [DS/EN 1991-2 DK NA:2017, 2017, edit]

The traffic load, Q, is determined based on the annual extreme vehicle weight, P. When
the standard vehicle crosses the bridge a dynamic factor, Ks, is introduced. The annual
extreme traffic load is found as the multiplication of the annual extreme vehicle weight
and the dynamic factor. The characteristic value of the annual extreme traffic load is found
by (4.1).

Qk = Pk Ks,k (4.1)

The characteristic dynamic factor is dependent on the influence length, Lin f . It is found by
(4.2).

Ks,k = 1.25 Lin f ≤ 5m (4.2)

Ks,k = 1.25− (Lin f − 5m)/225.5m 5 < Lin f < 50m

Ks,k = 1.05 Lin f > 50m

For ultimate moment bearing capacity assessment of a bridge slab, the span of the slab
can be used as Lin f , which gives Ks,k = 1.23

The annual extreme vehicle weight and the position of the standard vehicles depend on
the passage situation. Four passage situations might be investigated:

• Normal passage. There are no restrictions. Standard vehicle A is placed in the
most dangerous loading lane and standard vehicle B in the second most dangerous
loading lane. Both are placed in the middle of their respective loading lanes.

• Conditional passage 1. Vehicles are restricted to the existing vehicle lanes. Standard
vehicle A is placed in the most dangerous vehicle lane and standard vehicle B in the
second most dangerous vehicle lane. Both are placed in the most dangerous position
within their respective vehicle lanes

• Conditional passage 2. Like conditional passage type 1 but with a restriction on the
speed of standard vehicle A of 10 km/h. The restricted vehicle speed means that
dynamic effects can be neglected.

18



4.2 Quantification of traffic load Aalborg University

• Conditional passage 3. Like conditional passage 2, but only standard vehicle A is
allowed to cross the bridge. Standard vehicle A is placed in the least dangerous
vehicle lane.

Østerå bridge is classified differently depending on the passage situation:

• Normal passage: Class 100
• Conditional passage type 1: Class 100
• Conditional passage type 2: Class 125
• Conditional passage type 3: Class 150

In this report the normal passage situation will be investigated but it will be limited to
only Standard vehicle A. This might be a significant simplification and for a real case, the
loading model should of course follow the guidelines of the existing codes and annexes.

As mentioned earlier Standard vehicle A should be positioned in the center of the loading
lane in normal passage. It is assumed that the wheels of the standard vehicles have a width
of 600 mm. Therefore 600 mm should be subtracted from the widths given in Appendix A
when determining the lateral spacing between the point loads of the two wheels.

In Figure 4.2 Østerå bridge is shown loaded by a standard vehicle in the center of the most
dangerous loading lane, which is the most outer loading lane.

Figure 4.2: Applied forces from standardvehicle A. The axle configuration of standard vehicle A
corresponds to the 7 rear axles of class 150 and up. Measurements are in [mm]

4.2 Quantification of traffic load

As the traffic load is simplified to the traffic load effect from the standard vehicle in only
one lane, the annual maximum traffic load from standard vehicles will be calculated as
for conditional passage type 3 by (4.3). However conditional passage implies a velocity
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of V = 10km/h, which makes the dynamic effect negligible [DS/EN 1991-2 DK NA:2017,
2017]. Although the extreme distribution is calculated as for conditional passage, a
dynamic effect will still be multiplied to the annual extreme vehicle weight.

FP(x) = exp(−Ni(1− FW(x))) (4.3)

Where:

FP(x) Extreme distribution for vehicle weight
FW(x) Distribution of vehicle weight for individual vehicles
Ni Number of vehicles in the reference period (1 year).

The weight of standard vehicles, W, is assumed to be normally distributed with parameters
as shown in Table 4.1.

Table 4.1: stochastic parameters for standard vehicles. The number of vehicles corresponds to
motor ways

Standard vehicle Mean [tons] Standard deviation [tons] Number of vehicles
Class 50 53.1 5.0 200
Class 60 63.4 5.0 200
Class 70 72.2 5.0 200
Class 80 82.5 5.0 150
Class 90 95.4 5.0 150
Class 100 109.2 5.0 100
Class 125 131.4 5.0 50
Class 150 157.6 5.0 50
Class 175 170.2 5.0 50
Class 200 201.0 5.0 50

The effect of the annual extreme distribution function can be seen from Figure 4.3 and 4.4,
which illustrate the probability density function and the cumulative distribution function
for the weight of both individual class 50 and 200 standard vehicles, and for the annual
extreme. In the figures W and P are divided by µW for easier comparison of the two
vehicle classes.

As can be seen from Figure 4.3 and 4.4 the coefficient of variation is of course larger for
class 50 standard vehicles than for class 200, since the standard variation is equal for the
two classes. It is also seen that µP is larger compared to µW for class 50 than for class 200,
which is both due to the higher number of vehicles per year for class 50 than for class 200
and the larger coefficient of variation. The 98 % fractile of P, which is the characteristic
value, is therefore also larger compared to the mean value of W, for class 50 than for class
200. For class 50 P0.98 = 1.35µW and for class 200 P0.98 = 1.08µW .
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Figure 4.3: Probability density function for total weight of a class 50 and 200 standard vehicle.
Both for individual vehicle weight, W, and for the annual extreme vehicle weight, P.

Figure 4.4: Cumulative distribution function for total weight of a class 50 and 200 standard vehicle.
Both for individual vehicles, W, and for the annual extreme, P.

21





5. Plastic upper bound slab theory

The bearing capacity model developed in this chapter is based on plastic upper bound
theory with load models as described in Chapter 4. Plastic upper bound theory for slabs
is based on the yield moment of the cross section. Therefore it is first shown, how the
yield moment is determined. Next a method for determining the bearing capacity for
bridges based on plastic upper bound theory is described. Lastly a parameter study will
be performed to show how changes in some of the parameters, included in the bearing
capacity model, affect the bearing capacity.

In this chapter characteristic values, indicated by the subscript k, for strengths and loads
are included in the equations. In following chapters these are substituted for design values
or stochastic values.

5.1 Yield moment of cross section

Plasticity theory requires that the cross section should be balanced, which means that the
reinforcement yields while failure happens in the concrete. For this to happen the ductility
of the reinforcement steel has to be sufficient. This is assumed for this project.

The calculation of the yield moment, myk, is based on the compressive stress strain curve
for concrete. Firstly DS/EN 1992-1-1 gives the parabolic-rectangular stress strain curve,
which is illustrated in Figure 5.2. This stress strain can be simplified into a bilinear stress
strain curve, which can be seen in Figure 5.1.

Figure 5.1: Compressive parabolic-rectangular
stress strain curve for concrete. [Jensen, 2012]

Figure 5.2: Compressive bilinear stress strain
curve for concrete. [Jensen, 2012]
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In DS/EN 1992-1-1 a further simplification of the bilinear stress strain curve is given as a
rectangular stress strain curve, neglecting the first part of the bilinear stress strain curve.
Then this rectangular stress strain curve is used to determine the yielding moment, for a
cross section where the reinforcement yields and the concrete reaches failure, see Figure
5.3. This corresponds to a balanced cross section. In the figure, εcu3 indicates the ultimate
compressive strain, fck indicates the characteristic compressive yield strength of concrete
and fyk indicates the characteristic tensile yield strength of the reinforcement.

Figure 5.3: Cross section at plastic failure. [Jensen, 2012]

This report only takes into account bending moment. Therefore the tensile forces and
compressive forces must be in equilibrium, which gives (5.1).

η fck λ x = As fyk (5.1)

Where:

η Factor, see Figure 5.3. η = 1 for concrete grade C12-C50 [Jensen, 2012].
λ Factor, see Figure 5.3. λ = 0.8 for concrete grade C12-C50 [Jensen, 2012].
x Height of area in compression
As Reinforcement area pr unit width
fck Characteristic compressive yield strength of concrete
fyk Characteristic tensile yield strength of reinforcement steel

The reinforcement ratio is introduced as (5.2).

ω =
As fyk

d η fck
(5.2)

Where:

ω Reinforcement ratio
d Distance from reinforcement to top, see Figure 5.3

From Figure 5.3, x can be calculated by (5.3).

x =
ω d
λ

(5.3)
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The moment is determined at the reinforcement, which gives the yield moment pr unit
width, myk, as (5.4).

myk = (d− λ x
2
)λ x η fck (5.4)

By substituting (5.3) into (5.4), (5.5) is found for the yield moment.

myk = (1− ω

2
)ω d2 η fck (5.5)

5.2 Application of upper bound slab theory for bridges

Upper bound theory states: "The load, which is found from the principle of virtual work
for an arbitrary geometric failure mechanism, is lager than or equal to the yield load of
the body". [Jensen and Bonnerup, 2014]

Therefore the aim is to set up different kinematically admissible failure mechanisms and
find the failure mechanism giving the smallest bearing capacity and therefore the one
closest to the exact bearing capacity for the specific case.

As will be described in a later chapter, the reliability method used in this project is Monte
Carlo simulation, which is very time demanding. Therefore in order to save time it is
chosen to determine the bearing capacity analytically from general failure mechanisms,
rather than numerical FEM calculations. In Chapter 6 the analytical results are compared to
numerical results of a FEM-software. Figure 5.4 illustrates the general failure mechanisms
evaluated in this project. The circles in the figure indicate point loads from standard
vehicle A.

Figure 5.4: General failure mechanisms indicated by the yield lines evaluated.
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No lengths are shown for the yield lines in Figure 5.4. The figure shows the general outline
for the failure mechanisms. The calculated bearing capacity is of course dependent on
the length of the yield lines. Therefore in order to get the bearing capacity value closest
to the exact value, the failure mechanisms with different lengths of yield lines should be
investigated. In order to find the lowest value of the bearing capacity a vector, a, is created
containing a number of different failure mechanisms. The application of this vector is
shown later in this chapter.

The bearing capacity will be determined as a factor C giving the relation between the
considered traffic load value, Qk, and the needed traffic load value for failure. Then C ≤ 1
results in yielding of the structure, and the reliability can be determined on account of the
axle configurations for specific standard vehicle classes.

C is determined from the principle of virtual work. The inner and outer work for any
particular failure mechanism can be determined by (5.6) and (5.7), respectively

Wi =
Ny

∑
j=1

myk,j θj lj (5.6)

where:

Wi Inner work
Ny Number of yield lines
θj Virtual rotation of yield line with index j
myk,j Characteristic yield moment per unit length of yield line with index j
lj Length of yield line with index j

Wo =
∫ ∫

A
Gk(x,y)δ(x,y)dx dy + C

NF

∑
i=1

Qk cF,i δi (5.7)

where:

Wo Outer work
A Displaced area of slab
Gk Characteristic permanent load
δ Virtual displacement
C Bearing capacity given as a factor multiplication factor on the traffic load needed for failure
NF Number of wheels
Qk Characteristic traffic load
cF,i Percentage of vehicles weight on i’th wheel
δi Virtual displacement of i’th wheel

By setting Wi = Wo, C can be determined for any particular failure mechanism. This is
determined for each failure mechanism contained in the vector a, and the calculated C-
value closest to the exact value, will be the smallest value. The expression for the C-value
closest to the exact value is given in (B.1)
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C = min
a

∑
Ny
j=1(myk( fyk, fck))j lj θj −

∫ ∫
A Gk δ(x,y)dx dy

∑NF
i=1 Qk cF,i δi

 (5.8)

In Appendix B an example of the calculation of the bearing capacity for a specific case
with a specific failure mechanism is presented.

All five of the general failure mechanisms should be considered when determining C,
since each of them can be critical depending on geometry, reinforcement arrangement,
position of standard vehicle A etc. This will be shown in the following section.

5.3 Parameter study

For the parameter study a base case is chosen for calculation of C, and then parameters
such as permanent load and positioning of the traffic load, will be changed to show the
effect on C of these changes. The base case will be Østerå bridge loaded by a class 200
standard vehicle in the normal passage situation. For this base case the characteristic loads
and strength parameters, described in Chapter 3 and 4 are used. Figure 5.5 illustrates the
static system for Østerå bridge, along with cross sections. Loads and strength parameters
for the base case is given in Table 5.1.

Figure 5.5: Base case. All dimensions are in [mm].
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Table 5.1: Material parameters and loads for base case.

Parameter Value
Reinforcement yield strength fyk 550 MPa
Concrete strength fck 20 MPa
Traffic load Qk 2.58 MN
Permanent load Gk 35.6 kN/m2

C is calculated for the base case using the five previously mentioned failure mechanisms.
Figure 5.6 to 5.10 illustrates the effect on C of changing different parameters used in the
base case. Figure 5.6 shows the effect of change in reinforcement yield stress, Figure 5.7
shows the effect of change in dead load, Figure 5.8 shows the effect of change in slab
width, Figure 5.9 shows the effect of placement of the standard vehicle in regards to the
edge and 5.10 shows the effect of change in the span.
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Figure 5.6: Effect on C of changing the yield strength of reinforcement, which for the base case was
550 MPa.
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Figure 5.7: Effect on C of changing the dead load, which for the base case was 35.6 kN.
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Figure 5.8: Effect on C of changing the width, which for the base case was 33.1 m
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Figure 5.9: Effect on C of changing the distance of the vehicle to the edge, which for the base case
was 5.4 m
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Figure 5.10: Effect on C of changing the span of the bridge which for the base case was 9.1 m
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As can be seen from Figure 5.8, for the base case "Partial Ellipse" is the critical failure
mechanism. But as the width becomes smaller and the ratio between width and span
becomes more similiar to that of long-span bridges, the "Full Width" failure mechanism
becomes critical. Furthermore it can be seen that as the span increases C decreases for all
failure mechanisms, which is to be expected.

Figure 5.9 shows that as the distance to the edge increases, C determined with "Partial
Ellipse" is also increasing, and the "Full Ellipse" becomes critical at a certain distance.

As can be seen from Figure 5.7 and 5.6 the "Full Width" failure mechanism becomes critical
with both decreasing yield stress of reinforcement and increasing dead load. Furthermore
it can be seen that the slope of the "Full Width" failure mechanism is steeper than for the
other failure mechanisms.

From the steepness of the lines in figure 5.6 and 5.7 it can be seen that a change in reinforce-
ment strength and permanent load has larger effect on C for some failure mechanisms than
for others. It can be seen that for the failure mechanism "Full width" the steepness is large
compared to other failure mechanisms. This might mean that in the reliability assessment
the standard deviation of C will differ depending on the failure mechanism. Figure 5.8,
5.9 and 5.10, show that the geometry of the bridge and positioning of standard vehicle A,
affects which failure mechanism is critical. Therefore in Chapter 9, which describes the
reliability analysis, as a sensitivity measure, changes will be made to the geometry of the
bridge and the positioning of standard vehicle.

From looking at Figure 5.6 to 5.10 it can be seen that the failure mechanisms "Partial
Box" and "Interior Box" are not critical in any shown cases. Therefore these won’t be
investigated further in this report.
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6. Quantification of model uncertainty

When updating the reliability of existing bridges, there are some uncertainties, which
should be taken into account. The uncertainties can be divided into the following groups:

• Physical uncertainty: The natural randomness of a quantity such as yield strength
or the weight of a standard vehicle in a certain class.

• Measurement uncertainty: Uncertainty caused by imperfect measurements.
• Statistical uncertainty: Uncertainty due to limited sample size.
• Model uncertainty: Uncertainty related to imperfect knowledge or idealizations of

the mathematical model.

The physical uncertainty will be taken into account by modelling the basic variables as
stochastic variables corresponding to different distribution functions with some mean
and variance, as described in Chapter 8. The statistical uncertainties can be reduced by
increasing the sample size and the measurement uncertainties can be reduced by using
better methods and tools of measurement.

In this chapter the model uncertainty of the bearing capacity model, described in Chap-
ter 5, will be quantified by using the method from Annex D in [DS/EN-1990, 2007].
The standard procedure for evaluation of the resistance model described in Annex D
of [DS/EN-1990, 2007] gives a mean correction factor or bias, b, for the model, and a
corresponding coefficient of variation determined from the comparison of the resistance
model results to experimental results. However experiments aren’t carried out in this
project, nor are results from previously carried out experiments used. Instead of carrying
out experiments as prescribed by [DS/EN-1990, 2007] the results from the bearing capacity
model will be compared to the results of the FEM program, Optum MP [Optum, 2020].
Optum MP is a relatively newly developed program, which calculate the moment bearing
capacity of slabs using both upper and lower bound theories. However this introduces yet
another model uncertainty as the results from Optum MP might not correspond perfectly
with practical results. This model uncertainty is not included in the results shown below,
but should be accounted for in applications on real bridges.

Some uncertainties aren’t taken into account, such as the uncertainty in reinforcement
grade of the reinforcements used. The bearing capacity assessments in this project are
based on the static calculation documents. The position, size and grade of reinforcement
might differ in practice from design. This uncertainty can be reduced by taking samples at
the site of the existing bridge.

In the following section the computation model uncertainty will be quantified from the
standard procedure in [DS/EN-1990, 2007].
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6.1 Model uncertainty from the standard procedure in [DS/EN-1990, 2007]

The computation model uncertainty will be taken into account by using the following
model:

C = b ∆ Ct(X) (6.1)

Ct Bearing capacity from mathematical model as factor on traffic load for failure, see Chapter 5
b Mean correction factor for the model, bias
∆ Model Uncertainty: LN(1 , σ∆)
C Bearing capacity including uncertainty on computational model
X Physical uncertainties - stochastic variables

The standard procedure is a method of determining b and σ∆. For this a sample of 54
slabs with different geometries, load cases and material strengths are investigated. A
description of each case and the calculated bearing capacity from both Optum MP and
the analytic model described in Chapter 5, are shown in Appendix C. The results are
also illustrated in Figure 6.1, which also shows which failure mechanism was found to
be critical by the analytic model. Ce indicates the result found from Optum MP and Ct

indicates the result found from the analytic model.
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Figure 6.1: Comparison between Optum MP results and results from the model described in
Chapter 5.

The bias is found by the least squares method by (6.2).

b = ∑N
i=1 Ce(xi)Ct(xi)

∑N
i=1 Ct(xi)2

(6.2)

The error term for each calculated case, ∆i, is calculated by (6.3).
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∆i = ln(
Ce(xi)

b Ct(xi)
) (6.3)

The mean of the error terms ∆̄ is calculated by (6.4).

∆̄ =
1
N

N

∑
i=1

∆i (6.4)

The estimated value of the standard deviation, s∆, is calculated by (6.5).

s∆ =

√√√√ 1
N − 1

N

∑
i=1

(∆i − ∆̄)2 (6.5)

The estimated value of the coefficient of variation, V∆ is calculated by (6.6).

V∆ =
√

exp(s2
∆)− 1 (6.6)

This procedure has been used to determine the model uncertainty for both all failure
mechansims combined and each failure mechanism individually. The results are presented
in Table 6.1 and the biases are illustrated in Figure 6.2 and 6.3.

Table 6.1: Computational model uncertainty parameters.

Failure mechanism Bias. b [-] Coefficient of variation, V∆ [%]
Combined 0.95 2.8
Full Width 0.98 1.5
Partial Ellipse 0.95 1.5
Full Ellipse 0.93 0.9

As Table 6.1 shows, b < 1 for any failure mechanism. This is of course as expected since
b > 1 would not be possible according to plastic upper bound theory if Optum is assumed
to give the exact result.
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Figure 6.2: bias, b, for all failure mechanisms combined. The full line shows a bias, b = 1, and the
dashed line shows the calculated bias.
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Figure 6.3: bias, b, for each failure mechanism. The full line shows a bias, b = 1, and the dashed
line shows the calculated biases.
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7. Deterministic analysis

As the bearing capacity model has been described, and as the bias of the model has
been determined, the updated bearing capacity model can be used for bearing capacity
assessment. The bearing capacity assessment can be performed by partial safety factor
method through deterministic analysis with design values for material strengths and
loads. As described in Chapter 5, the bearing capacity, C, is given as a multiplication on
the traffic load needed for failure. The design value of C is determined by (7.1), which
corresponds to EN1990: STR (6.10a). Notice the multiplication of the bias, b, which is
found in Chapter 6. The static system is based on bridge dimensions, reinforcement and
material strength as described in Chapter 3, and loading as described in Chapter 4.

C = min
a

∑
Ny
j=1(my( fy,k/γMs, fc,k/γMc))j lj θj −

∫ ∫
A Gk γG δ(x,y)dx dy

∑NF
i=1 Qk γQ cF,i δi

b (7.1)

The deterministic analysis using the bearing capacity model from chapter 5 will be com-
pared to a more traditional bearing capacity model not taking into account the transverse
reinforcement. It is assumed that the traditional way to calculate the bearing capacity of
a bridge is to divide the slab into a series of 3.5 m wide beams and using beam theory
on the most unfavourably loaded beam. The beams are 3.5 m since this is assumed as
the distribution width for the traffic load. The plastic upper bound solution for beams
is calculated the same as for the "Full Width" failure mechanism for upper bound slab
solution. This means that (7.1), is also used for the traditionally calculated C, but with a
3.5 m wide beam instead of the whole slab. The principle is illustrated in Figure 7.1a. For
comparison figure 7.1b shows the failure mechanism, "Partial Ellipse", which was found
to be critical for Østerå Bridge using the upper bound bearing capacity model. The upper
bound slab model might give higher bearing capacity due to the higher number of yield
lines, which means that the inner work is larger compared to the traditional model.
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Figure 7.1: Principle for assumed traditional bearing capacity model and failure mechanism.

For the normal passage situation, the determined C-values for both the upper bound
model and for the traditional model, are given in Table 7.1.

Table 7.1: C found from deterministic analysis for normal passage.

Vehicle class Traditional model Model from Chapter 5
100 1.02 2.80
125 0.86 2.30
150 0.80 2.14
175 0.73 1.95
200 0.69 1.85

As can be seen from Table 7.1, using the traditional model, Østerå Bridge can be classified
for class 100 vehicles. This corresponds to the current classification of the bridge in
normal passage. However as the bridge is investigated only using standard vehicle A, the
"traditional model" might be conservative. But as the allowable vehicle class, which is
found with this model, is the same as what is given by the Road Directorate, this model
will be considered adequate for comparison with the upper bound model from Chapter 5.

Table 7.1 shows that using the model from Chapter 5, Østerå Bridge can be classified for
class 200 vehicles, which is the highest vehicle class investigated in this project. Moreover,
it can be seen that using the upper bound model, more then 2 class 100 vehicles, which
the bridge is classified for, could be stacked on top of each other without failure.
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8. Stochastic modelling

For the reliability-based bearing capacity assessment, and for determination of a proof load
factor, taking into account the resistance, stochastic models used to model the different
uncertainties described in Chapter 6. Three general stochastic models are investigated,
the stochastic model given by the danish road directorate in [Vejdirektoratet, 2004], the
stochastic model, which is the basis for the bridge specific national annex to Eurocodes
1990 and 1991, given in [Sørensen, 2009] and the stochastic model in [Sørensen, 2016].
The stochastic model in [Sørensen, 2016] is the same as that in [Sørensen, 2009], but with
a revised dynamic factor. The stochastic model from [Sørensen, 2009] and [Sørensen,
2016] will be investigated using the model uncertainty on the computational model
described in Chapter 6. The stochastic model given by [Vejdirektoratet, 2004] already
includes a model uncertainty on the computation model. Therefore the stochastic model
from [Vejdirektoratet, 2004] will be investigated with both the uncertainty model already
included and the uncertainty model found in Chapter 6. This gives a total of four stochastic
models to be investigated, which can be seen from Table 8.1.

Table 8.1: Stochastic models investigated in this report.

Stochastic
model

General stochastic model
Model uncertainty
on Computational model

1 [Sørensen, 2009] Chapter 6
2 [Sørensen, 2016] Chapter 6
3 [Vejdirektoratet, 2004] [Vejdirektoratet, 2004]
4 [Vejdirektoratet, 2004] Chapter 6

The stochastic models will be described further in the following, and differences in the
stochastic models will be illustrated by distribution figures. Finally the stochastic models
will be summed up in the end of this chapter.

8.1 Load model

In the scope of this project only traffic loads and self weights are considered, since loads
such as wind loads, snow loads etc. are assumed negligible for short span bridges.

8.1.1 Permanent load

The permanent load, G, is the self weight of the structure, which is modelled as a normally
distributed variable with a coefficient of variation VG = 5% in [Vejdirektoratet, 2004] and
VG = 10% in [Sørensen, 2009]. The stochastic model of [Sørensen, 2009] is for design of
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new bridges. For existing structures it can be argued that there is better knowledge on the
permanent load, and therefore VG = 5% is instead used for stochastic model 1 and 2.

A model uncertainty in connection with the permanent load is also introduced in [Vejdi-
rektoratet, 2004]. This is done by addition of IG to G. IG has mean value, µIG = 0 and a
standard deviation, σIG , equal to the standard deviation of the permanent load, σG.

Figure 8.1 shows the distribution of the permanent load with corresponding model un-
certainty for the four stochastic models. In stochastic model 1 and 2, there is no model
uncertainty on the permanent load included.

Figure 8.1: Permanent load distribution for the stochastic models.

As can be seen from Figure 8.1 the standard deviation is larger for stochastic model 3 and
4 than for stochastic mode 1 and 2. This is of course as expected since VG is the same for
all models, but model 1 and 2 include a model uncertainty.

8.1.2 Traffic load

The annual extreme traffic load is found as (8.1).

Q = P Ks (8.1)

Where:

Q Annual extreme traffic load
P Annual extreme vehicle weight
Ks Dynamic factor

The distribution for the annual extreme vehicle weight is the same for all stochastic models
and is described in Chapter 4.
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Dynamic effects

Dynamic effects during normal passage from vehicles on the bridge are modelled by
multiplying the static load with a dynamic factor, Ks. This is given by (8.2).

Ks = (1 + St) (8.2)

Where St is the dynamic supplement, which for global effects is normally distributed with
N(41.5/W,41.5/W) in both [Vejdirektoratet, 2004] and [Sørensen, 2009]. W is the weight
of the vehicle in kN. As mentioned earlier the dynamic factor model found in [Sørensen,
2016] will also be investigated. This found that a stochastic model with Ks=N(1.02,0.00128)
will give sufficient reliability for bridges.

Model uncertainty

In [Vejdirektoratet, 2004] the model uncertainty of the variable load is included by the
normally distributed stochastic variable, IQ, which has a mean value, µIQ = 1.0 and
coefficient of variation, VIQ as given in Table 8.2.

Table 8.2: Coefficient of variaton for IQ. [Vejdirektoratet, 2004]

Uncertainty in loading model Low Medium High
VIQ 0.10 0.15 0.20

VIQ can as a starting point be taken as low for conditional passage and for the normal
passage situations in which the relative influence of the ordinary traffic on safety is minor
[Vejdirektoratet, 2004]. This is assumed for the cases in this report.

In [Sørensen, 2009] IQ is lognormally distributed with µIQ = 1.0 and VIQ = 0.1.

Figure 8.2 shows the distribution of the traffic load for a class 200 standard vehicle with
corresponding model uncertainty for the four stochastic models.

Figure 8.2 shows that there seems to be little difference in the traffic load models for the
four stochastic models.
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Figure 8.2: Traffic load distribution for the stochastic models.

8.2 Material model

The materials used are concrete and reinforcement steel.

8.2.1 Reinforcement steel

In [Vejdirektoratet, 2004] the yield stress of non-prestressed reinforcement is assumed
lognormally distributed with stochastic parameters as shown in Table 3.2. Østerå bridge
is reinforced by Tentor steel.

In [Sørensen, 2009] the yield stress of reinforcement is lognormally distributed. For the
stochastic models based on [Sørensen, 2009], the mean from Table 3.2 will be used along
with a coefficient of variation of 7%

8.2.2 Concrete

In [Vejdirektoratet, 2004] the compressive strength of non-prestressed reinforcement is
assumed lognormally distributed with stochastic parameters given in Table 3.3.

In [Sørensen, 2009] the concrete strength is lognormally distributed. For the stochastic
models based on [Sørensen, 2009], the mean values for compressive concrete strength
from Table 3.3 will be used along with coefficient of variation of 14%

8.2.3 Model uncertainty

For material parameters the model uncertainty is included by multiplying the basic
strength parameters with the stochastic variable Im. Im is lognormally distributed with
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mean value, µIm = 1.0. The coefficient of variation, VIm , in [Vejdirektoratet, 2004] is given
by (8.3)

VIm =
√

V2
I1
+ V2

I2
+ V2

I3
+ 2(ρ1VI1 + ρ2VI2 + ρ3VI3)Vm (8.3)

Where:

VIm COV for material model uncertainty.
Vm Material coefficient of variation
VI1 COV for uncertainty for accuracy of computation model.
ρ1 Correlation between VI1 and Vm.
VI2 COV for model uncertainty for uncertainty in determination of material

parameter for the structure on the basis of the vicarious material parameter
ρ2 Correlation between VI2 and Vm.
VI3 COV for model uncertainty for material identity.
ρ3 Correlation between VI3 and Vm.

The coefficient of variation, VIi , and correlation, ρi, for i=1,2,3 are given in the following
Table 8.3.

Table 8.3: Coefficient of variation and correlation for Ii for i=1,2,3. [Vejdirektoratet, 2004]

Good Normal Poor
VIi 0.04 0.06 0.09
ρi -0.3 0.0 0.3

In stochastic model 4, the model uncertainty from Chapter 6 will be used. Therefore VI1

and ρ1 will not be included in the material model uncertainty for stochastic model 4.

[Vejdirektoratet, 2004] states: "Normal calculation accuracy is usually used in situations
where computation models are used that are generally accepted as being in conformity
with normal practice". As yield line theory is assumed normal practice for bearing capacity
calculation for slabs, VI1 and ρ1 are based on normal uncertainty for stochastic model 3.

According to [Vejdirektoratet, 2004], VI2 and ρ2 are based on poor uncertainty for concrete
and normal uncertainty for reinforcement in the preperation of DS 411. This will also be
used in this project.

[Vejdirektoratet, 2004] states: "Normally material identity is assumed when the materials
are assigned on the basis of the project material and there is no reason to doubt that the
bridge in question was not built in accordance with the project material". This is assumed
for Østerå bridge and therefore VI3 and ρ3 are based on normal uncertainty.

In [Sørensen, 2009] the material model uncertainty of VIm =0.11 and VIm =0.05 is used for
concrete and reinforcement strength, respectively, along with the mean values given in
Chapter 3.

Figure 8.3 shows the distribution of the reinforcement yield strength with corresponding
model uncertainty, and Figure 8.3 shows the distribution of the concrete strength with
corresponding model uncertainty, for the four stochastic models.
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Figure 8.3: Reinforcement yield strength distribution for the stochastic models.

Figure 8.4: Concrete strength distribution for the stochastic models.
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As can be seen from Figure 8.3 and 8.4 the standard deviation for the load parameters with
corresponding model uncertainties is largest for model 3 and smallest for model 1 and 2.

8.3 Applied stochastic models

Based on Chapter 5 and 6 as well as what is described in this chapter a general limit state
equation can be written as (8.4), where the yield moment and degree of reinforcement are
calculated by (8.5) and (8.6), respectively.

g = min
a

∑
Ny
j=1(my( fy Ims , fc Imc))j θj lj −

∫ ∫
A(IG + G)δ(x,y)dx dy

∑NF
i=1 IQ (1 + St)P cF,i δi

b ∆ − 1 (8.4)

my( fy, Ims, fc, Imc) = (1−
ω( fy, Ims, fc, Imc)

2
)ω( fy, Ims, fc, Imc)d2 η fc Imc (8.5)

ω( fy, Ims, fc, Imc) =
As fy Ims

d η fc Imc
(8.6)

a Vector containing different failure mechanisms, as described in Ct 5.
Ny Number of yield lines
fy Yield strength of steel, stochastic
Ims Model uncertainty on yield strength of steel, stochastic
fc Compressive strength of concrete, stochastic
Imc Model uncertainty on compressive strength of concrete, stochastic
my,j Yield moment at yield line with index j, stochastic as function of stochastic variables
θj Virtual rotation at yield line with index j
lj Length of yield line with index j
A Deflected area
G Permanent load, Stochastic
IG Model uncertainty of permanent load, stochastic
P Annual maximum vehicle weight, Stochastic
IQ Model uncertainty of traffic load,
St Dynamic factor, stochastic
δ Virtual deflection
NF Number of point loads
cF,i Percentage of extreme value traffic load on i’th wheel
b Bias of computation model
∆ Model uncertainty of computation model, stochastic
As Area of yielding reinforcement per unit length
ω Degree of reinforcement
d Distance from yielding reinforcement to edge of slab

The modelling described in the previous sections, gives the stochastic models in Table 8.4
for investigations in this report.
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Table 8.4: Parameters for stochastic models investigated in this project.

Stochastic model Distribution type Mean COV Characteristic
Reinforcement strength

1 and 2 fy Lognormal 623 MPa 7% 5% (554 MPa)
3 and 4 fy Lognormal 623 MPa 4% 550 MPa (0.1%)

Reinforcement strength model uncertainty
1 and 2 Ims Lognormal 1 5 %
3 Ims Lognormal 1 10.4 % (1)

4 Ims Lognormal 1 8.5 % (1)

Concrete strength
1 and 2 fc Lognormal 20 MPa 14% 5% (15.8 MPa)
3 and 4 fc Lognormal 20 MPa 18% 5% (14.7 MPa)

Concrete strength model uncertainty
1 and 2 Imc Lognormal 1 11 %
3 Imc Lognormal 1 15.8 % (1)

4 Imc Lognormal 1 14.6 % (1)

Permanent load
1 and 2 G Normal 35.5 kN/m2 10% 50 %
3 and 4 G Normal 35.5 kN/m2 5% 50 %

Permanent load model uncertainty
1 and 2 Not included
3 and 4 IG Normal 0 σIG = σG

(2)

Annual maximum vehicle weight
All Q See Ct 4 98 %

Annual maximum vehicle weight model uncertainty
1 and 2 IQ Lognormal 1 10%
3 and 4 IQ Normal 1 10%

Vehicle weight
All W Normal See Ct 4 See Ct 4

Dynamic factor
1, 3 and 4 St Normal 41.5/W (W in kN) 100 % 0.23 (3)

2 (1+St) Normal 1.02 0.125 % 1.23 (3)

Bias
All b Deterministic See Ct 6

Computation model uncertainty
1, 2 and 4 ∆ Lognormal 1 See Ct 6
3 Included in Im

(1) The difference in coefficient of variation value between model 3 and 4 is due to the inclusion of computational model
uncertainty in Im in model 3.
(2) Since the mean value is 0, the coefficient of variation is undefined. Therefore this is instead given as the standard
deviation.
(3) This value is specifically found for the span of Østerå bridge of 9.1 m. See Chapter 4, to see how this changes for other
spans.
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9. Reliability analysis

An existing bridge can be up classified if it is shown that the annual reliability index, with
the load model for the given vehicle class, is equal to or larger than the required annual
reliability index. The required annual probability of failure was in Chapter 2 found to
be Pf = 10−6 for existing bridges in CC3, corresponding to an annual reliability index of
β = 4.8

In this chapter the reliability method will first be specified and then the reliability analyses
will be performed. Lastly a parameter study will be presented.

9.1 Reliability method

To asses the reliability using the presented bearing capacity model, it is chosen to use
Monte-Carlo simulations over e.g. first-order and second-order reliability methods, due
to the high degree of non-linearity associated with the model. As can be seen from Section
5.3, different values of the stochastic variables may cause different failure mechanisms to
be critical. This can be taken into account through Monte-Carlo simulations, where the
critical failure mechanism can be determined for each simulated set of realisations of the
stochastic variables.

When performing Monte-Carlo simulations the uncertainty of the estimated reliability
depends on the number of failures. In order to secure a sufficient confidence in the
estimate there should be a sufficient number of simulations giving failure. This is secured
by performing 100 times the reciprocal of the desired probability of failure. Therefore
in order to secure a sufficient confidence for a probability of failure of Pf = 10−6, 108

simulations are performed. This gives a standard deviation on the estimate of s = 10−7 if
Pf = 10−6 as determined by (9.1). This corresponds to a coefficient of variation of 0.1.

s =

√
Pf (1− Pf )

number of simulations
(9.1)

9.2 Reliability analysis

The limit state function for the bearing capacity model is written as (9.2).
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g = min
a

∑
Ny
j=1(my( fy, I fy , fc, I fc))j θj −

∫ ∫
A(IG + G)δ(x,y)dx dy

∑NF
i=1 IQ (1 + St)Q cF,i δi

b ∆

︸ ︷︷ ︸
C

−1 (9.2)

Where:

a Vector containing different failure mechanisms, as described in Ct 5.
Ny Number of yield lines
fy Yield strength of steel, stochastic
I fy Model uncertainty on yield strength of steel, stochastic
fc Compressive strength of concrete, stochastic
I fc Model uncertainty on compressive strength of concrete, stochastic
my,j Yield moment at yield line with index j, stochastic as function of stochastic variables
θj Virtual rotation at yield line with index j
A Deflected area
G Permanent load, Stochastic
IG Model uncertainty of permanent load, stochastic
Q Annual maximum traffic load, Stochastic
IQ Model uncertainty of traffic load,
St Dynamic factor, stochastic
δ Virtual deflection
NF Number of point loads
cF,i Percentage of extreme value traffic load on i’th wheel
b Bias of computation model
∆ Model uncertainty of computation model, stochastic

When performing the simulations every set of realizations of stochastic variables giving
g ≤ 0 or C ≤ 1 are stored as failures. As described in Chapter 5 C gives a factor multiplied
to the realized traffic load, that would precisely give failure given the simulated set of
realizations. This means that C=1 just gives failure for the realized case, and C-values
lower also gives failure.

When 108 simulations are performed for Østerå Bridge with a class 200 standard vehicle
and the stochastic models described in Chapter 8, no failures are realized. This means
that solely based on the reliability-based bearing capacity assessment the bridge could be
up-classified for allowance of class 200 standard vehicles. However it should be noted
that this estimate is based on previously mentioned simplifications and limitations, such
as the neglect of Standard Vehicle B and ordinary traffic in the load model.

In order to get some data for the parameter study and to compare the reliability-based
analysis to a deterministic analysis, the variable z is introduced into (9.2), see (9.3).

g = min
a

 z ∑
Ny
j=1(my( fy, I fy , fc, I fc))j θj −

∫ ∫
A(IG + G)δ(x,y)dx dy

∑NF
i=1 IQ (1 + St)Q cF,i δi

b ∆

︸ ︷︷ ︸
C

−1 (9.3)
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z is determined from the design equation, such that the resistance multiplied by z ac-
curately gives failure i.e. design based on the partial safety factor approach. Based on
the limit state equation (9.2) the design equations can be written as (9.4) and (9.5), which
correspond to EN1990: STR (6.10a) and EN1990: STR (6.10b), respectively. za and zb are
found from these two equations and z is found as z=max[za,zb].

min
a

[
za

Ny

∑
j=1

(my( fy,k γms, fc,k γmc))j θj −
∫ ∫

A
Gk γGa δ(x,y)dx dy

]
b = 0 (9.4)

min
a

 zb ∑
Ny
j=1(my( fy,k γms, fc,k γmc))j θj −

∫ ∫
A Gk γGb δ(x,y)dx dy

∑NF
i=1 Qk γQ cF,i (1 + St)k δi

b = 1 (9.5)

The value of the partial safety factors, which are included in (9.4) and (9.5) can be found
in Table 2.1.

108 simulations of (9.3) have been performed for Østerå bridge using all 4 stochastic
models with a class 200 standard vehicle. For stochastic model 3 the C-values for all
realizations has been put into a histogram, which is shown in Figure 9.1. Furthermore
the critical failure mechanism has been stored for each simulation. For description of the
failure mechanisms see Figure 5.4.

Figure 9.1: The distribution of the realized factor C for the stochastic model 1, normalized for
probability density.

It can be seen from Figure 9.1, that for most of the simulations, the critical failure mecha-
nism is "Partial Ellipse". However at the tail end, where C≤1, some of the simulations give
"Full Width" as the critical failure mechanism. In the parameter study it will be shown
how changes in geometry affects, which failure mechanisms are critical and in turn how
this affects the reliability.

In Table 9.1 the results for all stochastic models are shown. In Table Table 9.1 some annual
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probabilities of failure are lower than 10−6. It should be noted that for these the coefficient
of variation of the estimate is of course larger than 0.1.

Table 9.1: Results from simulations of (9.3).

Stochastic model z Pf β

1 0.74 0.02 · 10−6 5.49
2 0.74 0.02 · 10−6 5.49
3 0.75 3.25 · 10−6 4.51
4 0.75 0.10 · 10−6 5.20

It can be seen from Table 9.1 that all but stochastic model 3 give an annual reliability lower
than the required annual reliability. This could suggest that using the partial safety factor
method would not give the desired reliability for stochastic model 3. Stochastic model 3
and 4 are based on the stochastic model of [Vejdirektoratet, 2004], which should be used
for classification of existing bridges according to [Vejdirektoratet, 2017].

Table 9.1 shows no difference in the results for stochastic model 1 and 2. The only
difference between these stochastic models is the dynamic factor. This suggests that the
chosen dynamic factor model has little importance on the reliability. Furthermore the
Table shows relatively large difference in the results between stochastic model 3 and 4. The
difference here is that the model uncertainty on the bearing capacity model is multiplied to
C for model 4 as described in Chapter 6. For model 3 the model uncertainty on the bearing
capacity model is included in the material model uncertainties. This might suggest that
the material model uncertainties has high importance for the reliability. The importance
of the stochastic variables will be investigated further in the parameter study.

Simulations of (9.3) are also performed for the traditional bearing capacity model, which
is described in Chapter 7, with a class 200 vehicle. The results can be seen in Table 9.2. If
no failures are realized with 108 simulations, the annual probability of failure is just given
as < 0.01 · 10−6

Table 9.2: Results from simulations of (9.2) with the traditional model.

Stochastic model z Pf β

1 1.52 < 0.01 · 10−6 >5.61
2 1.52 < 0.01 · 10−6 >5.61
3 1.53 0.08 · 10−6 5.24
4 1.53 < 0.01 · 10−6 >5.61

In Table 9.2 it is shown, that the annual probability of failure is lower than the required
annual probability of failure for all stochastic models. This suggests that using the partial
safety factor method for the traditional model gives sufficient reliability. The reliability
index is also larger for the traditional bearing capacity model than what was found for
the upper bound model in Table 9.1. However, as was found in Chapter 7, there is a lot to
be gained from using the upper bound model, as Østerå bridge can be classified for class
125 vehicle using the traditional model and class 200 using the upper bound model, when
performing deterministic bearing capacity assessment.
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9.3 Parameter study

As a sensitivity measure the α-vector will be used. The α-vector corresponds to the unit
vector for the shortest distance to failure in u-space, and it gives a measure on the relative
importance of the stochastic variables. An estimate for the α-vector can be determined by
normalizing the realized variables giving failure and putting the normalized mean values
into a vector, and then dividing by the magnitude of the vector giving the unit vector. This
is illustrated in Figure 9.2. The normalized variable, u, is found from the realized variable
x by (9.6),

u = Φ−1(FX(x)) (9.6)

Figure 9.2: Illustration for description of α

For the stochastic variables, the cumulative distribution functions, FX, are given in Chap-
ter 8. In Chapter 8 probability density graphs are shown for the basic variables with
corresponding model uncertainties. These graphs are used to determine FX(x) in order to
create a second α-vector containing an entry for each basic variable with corresponding
model uncertainty.

As mentioned earlier 108 simulations of (9.2) gave no failures for Østerå Bridge with a
class 200 standard vehicle. Therefore instead the α-values are found from (9.3), which
includes z. For the 4 stochastic models, α is shown in Figure 9.3 and 9.4. It should be noted
that IG and ∆ are included in some of the stochastic models but not all. Figure 9.3 shows
the α-values for all stochastic variables individually and Figure 9.4 shows the α-values
for the basic variables multiplied by the corresponding model uncertainties. It Should
also be noted that for stochastic model 1 and 2, only two failures were realized with 108

simulations, which means that for these two stochastic models, the estimated α-vector
might differ significantly from the actual α-vector.
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Figure 9.3: α for simulations based on (9.3) with the 4 stochastic models for Østerå Bridge with a
class 200 standard vehicle.

Figure 9.4: α determined based for simulations based on (9.3) with the 4 stochastic models for
Østerå Bridge with a class 200 standard vehicle.

52



9.3 Parameter study Aalborg University

It can be seen from Figure 9.3 and 9.4 that for all stochastic models the reinforcement
yield stress, fy, and the respective model uncertainty, I fy , have high importance. This
corresponds to what was deduced from Table 9.1. Furthermore it can be seen that fy has
higher importance than I fy for model 1 and 2 and vice versa for model 3 and 4. This can
be explained by model 1 and 2 having larger COV for fy and smaller COV for I fy than
model 3 and 4.

Figure 9.3 shows that the dynamic factor, Ks, has little importance in stochastic models 2,
3 and 4. This builds on the statement made earlier in this chapter. However for stochastic
model 1 it seems that Ks has higher importance than for the other stochastic models. This
however might be due to the low number of realized failures for stochastic model 1 and 2,
which increases the uncertainty on the estimated α-vector.

From Figure 9.3 it can be seen that both the concrete strength, fc, the corresponding model
uncertainty, fc and the annual extreme value vehicle weight, P, have little importance.
However the model uncertainty for the traffic load, IQ, has some importance, which means
that P Ks IQ still has some importance. This can be seen from Figure 9.4

It can be seen from Figure 9.4 that for stochastic model 1, 3 and 4 the permanent load
and corresponding model uncertainty, G + IG, has higher importance than the traffic load
and corresponding model uncertainty, P Ks IQ. As can be seen from Figure 9.1 the critical
failure mechanisms for realized failures are mostly "Partial ellipse". If standard vehicle A
is moved closer to the edge, the plastically displaced area of the bridge would probably be
reduced, which could result in P Ks IQ being more important than G + IG.

In Chapter 5 it was hypothesized that the geometry of the bridge and the positioning of
standard vehicle A, could have high importance on the reliability of the bridge. This was
hypothesized on the basis that the change in C from change in some stochastic variables
were higher for some failure mechanisms than others. Since the critical failure mechanism
is highly dependent on geometry and traffic load positioning, these parameters might
also have influence on the reliability. Therefore as a parameter study, the annual reliability
index will be determined for different bridge spans and positions of standard vehicle A
in relation to the free edge. Again (9.3) will be used, where z is found from the design
equation i.e. z is found from the partial safety factor method. To decrease computation
time only stochastic model 1 will be investigated for this. The results are shown in Table
9.3. For illustration of WQ and L, see Figure 5.5.
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Table 9.3: Results for different spans and positions of standard vehicle A on the bridge for stochastic
model 1.

WQ [m] z Pf β Critical failure mechanism for Cd

L=5m
0 0.32 <0.01·10−6 >5.61 Partial ellipse
2.8 0.26 <0.01·10−6 >5.61 Partial ellipse
8.4 0.25 <0.01·10−6 >5.61 Full ellipse
14 0.25 <0.01·10−6 >5.61 Full ellipse

L=9.1m
0 0.83 0.01·10−6 5.61 Partial ellipse
2.8 0.74 0.02·10−6 5.49 Partial ellipse
8.4 0.66 0.35·10−6 4.96 Partial ellipse
14 0.62 6.26·10−6 4.37 Full Width

L=13.2m
0 1.41 0.11·10−6 5.20 Partial ellipse
2.8 1.33 2.12·10−6 4.60 Partial ellipse
8.4 1.29 7.08·10−6 4.37 Full width
14 1.29 8.91·10−6 4.29 Full width

As it can be seen from Table 9.3, the span of the bridge and the position of the standard
vehicle has high importance on the reliability of the bridge, and sufficient reliability is
not found for all cases. It can also be seen that when the standard vehicle is moved away
from the edge and the failure mechanism before and after are either "Full Ellipse" or "Full
Width", z does not change. Otherwise z decreases as the vehicle is moved inward. This is
as expected since Figure 5.9 showed that C found for the failure mechanisms "Full Width"
and "Full Ellipse" are independent on transverse positioning of the vehicle and that C
determined for "Partial Ellipse" increases when the vehicle is moved inward.

Figure 9.5 shows the distribution of C determined for each failure mechanism individually
for the cases where the span is L=9.1 m but the distance to the edge is changing. In
the following a corresponding figure is also shown, but only with the critical failure
mechanism.
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Figure 9.5: Distribution of C determined for each failure mechanism individually for the case
where L=9.1 m. The histograms are normalized for probability density.
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It can be seen from Figure 9.5, that, as expected, C determined for "Full Width" has a larger
standard deviation than for the other failure mechanisms. It is also seen that the standard
deviation of C determined from "Partial Ellipse" increases as the distance to the edge, WQ,
increases. When WQ increases the displaced area for "Partial Ellipse" also increases. For
"Full Width" the displaced area is the whole slab. This might all suggest that the standard
deviation of C increases as a larger part of the total load effect comes from the permanent
load. This would also explain, why the annual reliability index determined from the
traditional bearing capacity model is larger, since this is calculated as "Full Width" but
only for a 3.5 m wide slab.

Figure 9.5 shows that for "Full Ellipse" and "Full width" the mean of C decreases when WQ

increases and that the standard deviation of C increases. These two failure mechanisms
should be independent on WQ, so the change in mean and standard deviation must be
due to the decrease in z.

Figure 9.6 shows the distribution of C, and which failure mechanism was critical for the
cases where L=9.1 m.

Figure 9.6 shows that "Partial ellipse" was critical for all realized failures i.e. C ≤ 1,
when WQ = 0 m, but as WQ increases more realizations give "Full Width" as the critical
failure mechanism. From Table 9.3 it can be seen that more failures are realized when WQ

increases. This is as expected since Figure 9.5 showed that the standard deviation of C
determined from "Full Width" was larger than for the other failure mechanisms.
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Figure 9.6: Distribution of C, and which failure mechanism was critical for cases where L=9.1 m.
The histograms are normalized for probability density.
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A parameter study is also performed for the span of the bridge, L. Figure 9.7 shows the
distribution of C determined for each failure mechanism individually for the cases where
the distance to the edge is WQ = 2.8 m but the span is changing.

Figure 9.7: Distribution of C determined for each failure mechanism individually for the case
where WQ = 2.8 m. The histograms are normalized for probability density.

Figure 9.7 shows that again the failure mechanism giving the highest standard deviation
of C is "Full Width", and that the mean of C from "Full Width" decreases with increasing
L. It is also seen that the standard deviation of C from "Partial Ellipse" increases slightly
with increasing L. These could be the reasons for the reliability index decreasing with
increasing L in Table 9.3.

With more time for the project it could be interesting to investigate, if general boundaries
for the relevant parameters could be set up, such that the required reliability would always
be reached, when using the partial coefficient method with partial coefficients as given in
Chapter 2.
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10. Proof loading

If the bridge can not be proven for the desired vehicle class through either deterministic
or stochastic analysis, it might be proven through proof loading. Furthermore it might
be necessary to prove that the classification found from calculation is also applicable in
practice, since the upper bound model gives a bearing capacity much higher than what
the traditional bearing capacity model gives. However proof loading of the bridge comes
with a risk of the bridge failing during the proof loading. when performing the proof
load test, devices for measuring strains should be used, so that the proof load test can be
stopped before failure happens.

The proof load is the additional load the structure carries during the proof load test
besides the permanent load existing before the proof load is applied. Proof loading can
be performed by applying dead load to a series of connected hydraulic jacks placed such
that the proof loading corresponds to the axle configuration of the standard vehicle for
the desired vehicle class. The proof load should be of a magnitude, which, if the bridge
survives the proof loading, proves that the annual reliability index of the bridge is larger
than or equal to the desired annual reliability index for the given classification. The
magnitude of the proof load is found as a factor, η, multiplied to the characteristic extreme
value vehicle weight and characteristic dynamic factor, Qk Ks,k, such that η Qk Ks,k proves
the desired annual reliability index. The proof load factor, η, can be found differently
based on whether there is prior knowledge on the resistance. In the following sections, η

will be determined both for the case with and without knowledge on the resistance.

10.1 Without prior knowledge on resistance

Without prior knowledge on the resistance, the proof load factor will be determined purely
from the additional loading. In this case the permanent load is assumed constant, such
that the proof load can be determined purely on the basis of the traffic load. However
the sensitivity analysis in Chapter 9 showed that the permanent load of the bridge had
high importance on the reliability. This means that a small increase in permanent load
might mean that the bridge does not reach the desired annual reliability index, when the
classification is based on the proof loading factor found without prior knowledge on the
resistance

The proof loading factor, η, is determined such that the probability of the traffic load
exceeding the proof load, η Qk Ks,k, is equal to the required annual probability of failure of
Pf = 10−6. This corresponds to an annual reliability index of β = 4.8. The annual reliability
index with proof loading is determined from the limit state equation (10.1).
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g = η Qk Ks,k −Q Ks IQ (10.1)

Where:

Q Annual extreme vehicle weight (Characteristic value: 98% quantile).
IQ Traffic load model uncertainty
Ks Dynamic factor
η Proof loading factor

The annual reliability index and therefore the proof load factor is determined through
Monte Carlo simulations. As was described in Chapter 9, 108 simulations are performed
in order to get sufficient confidence on the estimate.

The proof load factor without knowledge on the resistance is found for vehicle class 50 to
200 for all 4 stochastic models. The results are presented in Table 10.1. As the stochastic
variables included in (10.1) have similar distributions in stochastic model 3 and 4, the
proof load factor for these models are equal.

Table 10.1: Proof load factor, η, without prior knowledge on the resistance. The values in the
parenthesis are the proof loads, η Qk Ks,k

Standard vehicle Stochastic model
class 1 2 3 and 4
50 1.45 (128 ton) 1.27 (112 ton) 1.38 (122 ton)
60 1.42 (143 ton) 1.28 (129 ton) 1.34 (135 ton)
70 1.40 (156 ton) 1.28 (143 ton) 1.32 (147 ton)
80 1.38 (171 ton) 1.28 (159 ton) 1.29 (160 ton)
90 1.36 (190 ton) 1.28 (179 ton) 1.28 (179 ton)
100 1.35 (211 ton) 1.29 (201 ton) 1.26 (197 ton)
125 1.33 (242 ton) 1.29 (235 ton) 1.24 (224 ton)
150 1.32 (283 ton) 1.29 (277 ton) 1.23 (264 ton)
175 1.32 (304 ton) 1.30 (299 ton) 1.23 (283 ton)
200 1.32 (354 ton) 1.30 (348 ton) 1.22 (327 ton)

It can be seen from Table 10.1 that for stochastic model 1, 3 and 4 the proof loading factor
decreases with increasing vehicle class. However for stochastic model 2, the proof load
factor increases slightly with increasing vehicle weight. The difference might stem from
the difference in Ks between the stochastic model 1, 3 and 4, and stochastic model 2. For
stochastic model 2 mean and standard deviation of Ks is independent on vehicle weight
while the mean and standard deviation of the dynamic factor decreases with increasing
vehicle weight for the other models.

For the stochastic variables in (10.1) the only difference between stochastic model 1 and
stochastic model 3 and 4 is the distribution type for IQ. In stochastic model 1 IQ is
Lognormally distributed while IQ is normally distributed for stochastic model 3 and 4. As
can be seen from Table 10.1 the proof load factor is smaller for stochastic model 3 and 4
than for stochastic model 1, which is to be expected.
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The method for determination of the proof load factor, which is described in this section,
corresponds to the method used in the SBi-guide for assessment of existing structures,
[Pedersen, 2015]. This is shown in Appendix D.

If instead the proof load is determined as η Qk, the results for η can be seen in Table 10.2.

Table 10.2: Proof loading factor, η, without prior knowledge on the resistance. The values in the
parenthesis are the proof loads, η Qk

Standard vehicle Stochastic model
class 1 2 3 and 4
50 1.78 (128 ton) 1.56 (112 ton) 1.70 (122 ton)
60 1.75 (143 ton) 1.57 (129 ton) 1.65 (135 ton)
70 1.72 (156 ton) 1.57 (143 ton) 1.62 (147 ton)
80 1.70 (171 ton) 1.57 (159 ton) 1.59 (160 ton)
90 1.67 (190 ton) 1.57 (179 ton) 1.57 (179 ton)
100 1.66 (211 ton) 1.58 (201 ton) 1.55 (197 ton)
125 1.64 (242 ton) 1.59 (235 ton) 1.53 (224 ton)
150 1.62 (283 ton) 1.59 (277 ton) 1.51 (264 ton)
175 1.62 (304 ton) 1.60 (299 ton) 1.51 (283 ton)
200 1.62 (354 ton) 1.60 (348 ton) 1.50 (327 ton)

The total weight in Table 10.2 is of course the same as that in Table 10.1, but the proof load
factor is just increased proportionally to the characteristic dynamic factor.

10.2 With prior knowledge on the resistance

When there is prior knowledge on the resistance, the proof load factor is conditioned on
the assumption on the resistance modelling. The proof load factor is determined such that
the probability of the bridge failing during its lifetime given that the bridge survives the
proof loading is equal to the required annual probability of failure.

As described in Chapter 9 no failures are realized when performing 108 simulations for
Østerå Bridge with a class 200 standard vehicle. Therefore the proof load factor can not be
determined for Østerå Bridge when only performing 108 simulations. A factor, z, will be
determined from the design equation. Using this approach η is found as the proof loading
factor needed to prove that the result found from deterministic analysis is adequate for
up-classification.

A general limit state equation corresponding to failure of the bridge is written as (10.2).

g = min
a

 z ∑
Ny
j=1(my( fy Ims , fc Imc))j θj lj −

∫ ∫
A(IG + G)δ(x,y)dx dy

∑NF
i=1 IQ Ks P cF,i δi

b ∆ − 1 (10.2)

Where:
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a Vector containing different failure mechanisms, as described in Ct 5.
z Design variable found from design equation
Ny Number of yield lines
fy Yield strength of steel, stochastic
Ims Model uncertainty on yield strength of steel, stochastic
fc Compressive strength of concrete, stochastic
Imc Model uncertainty on compressive strength of concrete, stochastic
my,j Yield moment at yield line with index j, stochastic as function of stochastic variables
θj Virtual rotation at yield line with index j
lj Length of yield line with index j
A Deflected area
G Permanent load, Stochastic
IG Model uncertainty of permanent load, stochastic
P Annual extreme vehicle weight, Stochastic
IQ Model uncertainty of traffic load,
Ks Dynamic factor, stochastic
δ Virtual deflection
NF Number of point loads
cF,i Percentage of extreme value traffic load on i’th wheel
b Bias of computation model
∆ Model uncertainty of computation model, stochastic

The probability of event A given event B can be written as (10.3).

P(A|B) = P(A ∩ B)
P(B)

(10.3)

Event A corresponds to failure of the bridge during its lifetime, which from the limit
state equation can be determined as (10.4). Event B corresponds to survival of the bridge
during the proof loading, which from the limit state equation can be determined as (10.5).

A : min
a

 z ∑
Ny
j=1(my( fy, fc))j θj lj −

∫ ∫
A(IG + G)δ(x,y)dx dy

∑NF
i=1 IQ Ks P cF,i δi

b ∆ ≤ 1 (10.4)

B : min
a

 z ∑
Ny
j=1(my( fy, fc))j θj lj −

∫ ∫
A(IG + G)δ(x,y)dx dy

∑NF
i=1 η Pk Ks,k cF,i δi

b ∆ > 1 (10.5)

The design parameter, z, in (10.4) and (10.5) is determined the same way as was described
in Chapter 9.

There is a possibility, that the system will fail during the proof loading, which should be
taken into concern when choosing to perform a proof loading test or not. The probability
of the bridge failing during proof load testing is found by 1-P(B).
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It is assumed that the knowledge on the resistance is uncertain. This is modelled by
modelling the mean and coefficient of variation of both the concrete and reinforcement
strengths as stochastic variables in (10.4) and (10.5):

• µ fy : Lognormal distributed with coefficient of variation, Vµ fy

• µ fc : Lognormal distributed with coefficient of variation, Vµ fc

• V fy : Lognormal distributed with coefficient of variation, VVfy

• V fc : Lognormal distributed with coefficient of variation, VVfc

two levels of uncertainty on the resistance are considered:

• Little uncertainty: Vµ fy
, Vµ fc

= 0.10 and VVfy
, VVfc

= 0.05
• Large uncertainty: Vµ fy

, Vµ fc
= 0.20 and VVfy

, VVfc
= 0.20

By acquiring knowledge on the material properties the uncertainty might be reduced. This
could for example be done by taking out specimens of the material for testing.

When determining the proof load factor through Monte Carlo simulations, z is determined
first. Then 108 simulations are performed for (10.4) and (10.5), and then η is found such
that the probability P(A|B) is equal to the desired annual probability of failure.

η is found for stochastic model 1, 3 and 4 for a class 200 standard vehicle. It is found using
both little and large uncertainty on the resistance. The results for η can be seen from Table
10.3, and the probability of failure during proof loading can be seen from Table 10.4.

Table 10.3: Proof loading factor, η, for class 200 vehicles with prior knowledge on the resistance.
The values in parenthesis are values for the proof loads.

Uncertainty on Stochastic model
resistance 1 2 3 4
Little 1.12 (300 ton) 1.11 (297 ton) 1.08 (289 ton) 1.06 (284 ton)
Very large 1.19 (319 ton) 1.18 (316 ton) 1.12 (300 ton) 1.11 (300 ton)

Table 10.4: Probability of failure during proof load testing with proof load factors from Table 10.3.

Uncertainty on Stochastic model
resistance 1 2 3 4
Little 0.2% 0.2% 0.2% 0.1%
Large 5.1% 4.9% 4.1% 3.5%

Comparing Table 10.1 and 10.3 it can be seen that as expected the proof load factor
is smaller when the resistance is taken into account. It can be seen for the case with
knowledge on the resistance, that the value of η depends on, which stochastic model is
used. This follows what was found for the case without knowledge on the resistance. It
can also be seen that the level of uncertainty on the resistance has some importance for
the proof load factor. Furthermore by looking at Table 10.4 it can be seen that the level
of uncertainty on the resistance also has some importance on the probability of failure
during proof load testing. Therefore it might be beneficial to e.g. take out samples of the
reinforcement to minimize the level of uncertainty.

For stochastic model 3 and 4, η was the same for the case with no knowledge on the
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resistance, since the traffic load model is the same for these two models. However when
there is knowledge on the resistance it is seen from Table 10.3 that η is larger for stochastic
model 3 than for model 4. Table 9.1 showed that the annual reliability is larger for
stochastic model 4 than for model 3, which might explain the difference in η for the two
models, when there is knowledge on the resistance.

As mentioned earlier, in this chapter it is investigated how large the proof load factor
should be, in order to prove experimentally, that the highest allowable vehicle class found
from deterministic analysis gives the required annual reliability. As explained this is done
by determining z from the design equation with the desired vehicle class. With more
time for the project it would be interesting to determine η and 1-P(B) for a case where
deterministic analysis could not prove the bearing capacity with the desired vehicle class,
but where the desired vehicle class is still to be proven experimentally. This could be done
by determining z from the design equation with e.g. a class 175 standard vehicle, and then
determining η and 1-P(B) with a class 200 standard vehicle. Furthermore the proof load
could be investigate for more vehicle classes with more time for the project.

Calculations for the proof load factor are also performed for the traditional bearing capacity
model. The results can be seen in Table 10.5 and 10.6.

Table 10.5: Proof loading factor, η, for class 200 vehicles with prior knowledge on the resistance
and based on the traditional bearing capacity model. The values in parenthesis are values for the
proof loads.

Uncertainty on Stochastic model
resistance 1 2 3 4
Little 1.16 (311 ton) 1.15 (308 ton) 1.10 (295 ton) 1.08 (289 ton)
Large 1.21 (324 ton) 1.20 (322 ton) 1.14 (306 ton) 1.13 (306 ton)

Table 10.6: Probability of failure during proof load testing with proof load factors from Table 10.5

Uncertainty on Stochastic model
resistance 1 2 3 4
Little 0.6% 0.5% 0.5% 0.2%
Very large 8.3% 7.8% 6.0% 5.3%

Table 10.5 shows that for the traditional bearing capacity model, the proof load factor
is generally slightly larger than for the upper bound slab model. As was discussed in
Chapter 9, a larger part of the total load effect comes from the traffic load for the traditional
model than for the upper bound slab model. Since it is only the traffic load, which changes
from event A and B, this might explain the increase of η.

Looking at Table 10.6 it can be seen that the probability of failure during proof loading is
larger for the traditional model than for the upper bound model. This could be expected
since the proof load is larger, although Chapter 9 showed that the probability of failure
during its lifetime was lower for the traditional bearing capacity model.

In Chapter 9 a parameter study was performed to investigate how changes in different
parameters affect the annual reliability. Similiarly, this will be done in the following to
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investigate the effect on η and 1-P(B) of changing different parameters.

10.2.1 Parameter study

For this parameter study, it is investigated how change in the span, L, and distance to the
edge, WQ, affects η and 1-P(B). In order to save time, the parameters are only investigated
for stochastic model 1 with large uncertainty on the resistance and with a class 200 vehicle.
The results can be seen in Table 10.7.

Table 10.7: Results for different spans and positions of standard vehicle A on the bridge for
stochastic model 1 with large uncertainty on the resistance. The results are with a class 200
standard vehicle.

WQ [m] η ηQk 1-P(B)
L=5m

0 1.18 316 ton 4.4%
2.8 1.17 314 ton 4.6%
14 1.17 314 ton 4.3%

L=9.1m
0 1.19 319 ton 4.7%
2.8 1.19 319 ton 5.1%
14 1.16 311 ton 5.9%

L=13.2m
0 1.21 324 ton 5.2%
2.8 1.21 324 ton 5.5%
14 1.18 316 ton 6.0%

Looking at Table 10.7 it seems that as WQ increases, η decreases. As was discussed in
Chapter 9, when WQ increases a larger part of the total load effect comes from the traffic
load. This might explain why η decreases with increasing WQ, although Table 9.3 showed
that the annual reliability was also decreasing with increasing WQ. Table 10.7 also shows
that η increases slightly for increasing L for most cases.

It might be expected that the probability of failure during proof loading, 1-P(B), would be
largest for the cases with the largest proof load factors in Table 10.7. However this is not
the case. If Table 10.7 is instead compared to Table 9.3, it can be seen that as the annual
probability of failure increases, the probability of failure during proof load testing also
increases.
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Engineering decisions most often rely on the economic aspects of the project. From a
socioeconomic viewpoint it might be interesting to investigate the decision on whether to
up-classify existing routes, based on the costs and benefits of an up-classification of the
existing route. For this project it is however assumed, that the governing bodies already
have decided, that an up-classification has to be performed along the route, and that the
limiting factor along the route is a bridge, which can not be up-classified based on the
traditional bearing capacity model. Furthermore it is assumed, that if bearing capacity
assessment using upper bound theory shows, that the bridge can be up-classified, then it
should be proven through proof load testing. The decision framework developed in this
project is based on bridges, which can be up-classified based on deterministic calculations
using the upper bound bearing capacity model. Thereby the probability of failure during
proof loading from Chapter 10 can be used for the decision framework. The route can
then be up-classified by strengthening the bridge according to traditional bearing capacity
models, building a new bridge or up-classifying the bridge based on successful proof
load testing. However the proof load testing can also result in failure of the bridge, which
means that a new bridge has to be erected. Furthermore the proof load testing can be
stopped before the required proof load is reached, which means that the bridge should
either be strengthened or a new bridge should be erected. The overall decision tree is
illustrated in Figure 11.1.

Figure 11.1: Overall decision tree.
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Figure 11.1 shows that in some cases there is a choice between strengthening the existing
bridge and building a new bridge. In these cases it is assumed that the existing bridge
will be strengthened, since this is cheaper. Thereby the decision tree in the figure can be
limited to only a decision on whether to proof load test or not. The decision on proof load
testing is based on the expected cost of the proof load test, U1, and the expected cost of
not proof loading, U0. To determine these utilities Figure 11.2 is used.

Figure 11.2: Decision tree for decision on proof loading.

The costs and prior probabilities for determining the expected costs are listed in Table 11.1.
The expected costs are determined for each of the 4 stochastic models with the different
uncertainty levels on the resistance. The probability of failure during proof load testing
for these cases can be seen in Table 10.4.

Table 11.1: Proof loading factor, η, for class 200 vehicles with prior knowledge on the resistance.
The values in parenthesis are the probability of failure during proof loading.

Parameter Value
Prob. of bearing capacity ≥ proof load P(X1) 1-P(X2)
Prob. of bearing capacity < proof load P(X2) See Chapter 10
Prob. of stopping the proof load test conditional on
bearing capacity ≥ proof load

P(Z1|X1) 0

Prob. of not stopping the proof load test conditional on
bearing capacity ≥ proof load

P(Z2|X1) 1

Prob. of stopping the proof load test conditional on
bearing capacity < proof load

P(Z1|X2) 0.99

Prob. of not stopping the proof load test conditional on
bearing capacity < proof load

P(Z2|X2) 0.01

Cost of strengthening existing bridge C1 4000 kr/m2

Cost of building new bridge C2 20 000 kr/m2

Cost of proof load testing C3 200 000 kr

As can be seen from Table 11.1 it is assumed that P(Z1|X1)=0, which means that it is
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assumed that the test is only stopped if the bearing capacity is too low to survive the
required proof load. This however might be optimistic, and therefore the effect of this on
the expected costs will be investigated in a following parameter study. Furthermore it can
be seen that the cost of strengthening the bridge or building a new bridge is dependent
on the area of the bridge, while cost of the proof load test is a set cost. Therefore this
parameter will also be investigated in the parameter study.

The expected cost of not performing the proof load test is just the cost of strengthening the
bridge or U0 = C1. The method for calculating U1 is shown in Appendix E.

The decision on whether to proof load test or not should of course be taken based on
cheapest option. Therefore U = min(U0,U1). Using the probability of failure during proof
load testing given in Table 10.4 and the geometry of Østerå Bridge, U0 and U1 have been
determined, which can be seen in Table 11.2.

Table 11.2: expected cost of not proof load testing, U0, and expected cost of proof load testing, U1,
for different proof load factors and levels of uncertainty found in Table 10.3 and 10.4.

Expected cost Stochastic model
1 2 3 4

Little uncertainty
U0 1 205 000 kr 1 205 000 kr 1 205 000 kr 1 205 000 kr
U1 203 000 kr 203 000 kr 203 000 kr 201 000 kr

Very large uncertainty
U0 1 205 000 kr 1 205 000 kr 1 205 000 kr 1 205 000 kr
U1 264 000 kr 261 000 kr 251 000 kr 244 000 kr

It can be seen from Table 10.4 that for Østerå bridge the expected cost of performing the
proof load test is much lower than the expected cost of not performing the proof load
test. This is true for all stochastic models and levels of uncertainty. Of course U0 does not
change, as this is independent on the probability of failure during proof load. However as
both the probability of failure during proof load testing and the costs given in Table 11.1
are dependent on the geometry of the bridge, investigations for the area are made in the
parameter study.

As U1 is much lower than U0 for all cases in Table 11.2 it might also be interesting to
investigate how the expected costs would be affected if the proof load test was performed
for vehicle classes larger than what could be proven for by the partial safety factor method.
However for this the corresponding proof load factor and P(X2) would have to be deter-
mined in order to determine U1, which is time demanding. With more time for the project,
this could have been investigated. This was also discussed for further work in Chapter 10.
Instead in the following parameter study, it will just be investigated how changes in P(X2)
will affect the expected costs.
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11.1 Parameter study

As mentioned earlier, in this parameter study the effect on the expected costs from chang-
ing the area, P(X2) and P(Z2|X1) will be investigated. The results for this can be seen
in Figure 11.3 for stochastic model 1 with large uncertainty on the resistance and the
geometry of Østerå Bridge.

Figure 11.3: Effect on expected costs of change in different parameters.

Figure 11.3a shows that P(X2), which is the probability that the bearing capacity is smaller
than the required proof load, can be almost 0.8 before U1 becomes larger than U0. This
might suggest that there could be something to be gained if instead the proof load test was
performed for vehicle classes larger than what could be proven for by the partial safety
factor method.

From Figure 11.3b it can be seen that P(Z1|X1), which is the probability of the proof load
being stopped conditional on the bearing capacity being larger than the proof load, is
around 0.8 before U1 becomes larger than U0. This could suggest that although P(Z1|X1)=0
might be optimistic, with the costs and the other probabilities in Table 11.1, this parameter
does not have much importance for the decision on proof load testing.

As was mentioned earlier in this chapter, the area of the bridge might be important for
the decision on proof load testing, since some of the costs in Table 11.1 are dependent on
the area. In Figure 11.3c the width of the bridge and thereby the area is reduced. As can
be seen from the figure, the width can be reduced from 33.1 m to almost 5 m before U1

becomes larger than U0.
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12. Conclusion

The purpose of this report was to investigate how plastic upper bound theory could be
used for up-classification of short span bridges. This was investigated for both determinis-
tic, reliability-based and experimental bearing capacity assessment. A bridge, which in
this report is designated Østerå bridge, was used as a base case for the calculations, and
parameter studies were performed in relevant chapters.

From the load models of the existing norms, it was found that the traffic load of a given
vehicle class, was to be applied as a concentrated point load for each wheel of the standard
vehicle. The whole weight of the vehicle should be distributed onto the wheels, with a set
percentage for each wheel. From plastic upper bound theory a method for determining
the bearing capacity based on this traffic load was developed. It was found, that through
upper bound plasticity theory, the bearing capacity could be determined as a factor, C,
which is the ratio between the applied traffic load, and the traffic load leading to failure.
In the parameter study it was found that three of the considered failure mechanisms could
each be critical depending on parameters, such as width of the bridge or reinforcement
yield stress. What was found to be interesting from the paramenter study, was that
changes in the loads and strength parameters affected C differently depending on the
failure mechanism. This meant, that since strengths and loads were stochastic variables in
the reliability-based bearing capacity assessment, that the mean and standard deviation of
C would differ depending on the critical failure mechanism.

For Østerå Bridge bearing capacity assessment was performed with the partial safety
factor method for both the developed upper bound model and for a more traditional
model. Calculations using the traditional model showed that Østerå bridge could be
classified for class 100 vehicles, which is also what the bridge is classified for at the time
of this report. On the other hand calculations using the developed upper bound model
showed that the bridge could be classified for class 200 vehicles, which are the heaviest
vehicles investigated for in this report, and moreover that C = 2.8 using a class 100 vehicle.

The required annual probability of global failure for existing bridges is P f = 10−6. The
reliability method used for the reliability-based bearing capacity assessment was Monte-
Carlo simulations with 108 simulations. For Østerå bridge none of the 108 gave failure
when using a class 200 vehicle, which meant that the bridge could also be classified for class
200 vehicle on the basis of reliability-based assessment. The reliability-based method was
compared to the partial safety factor method for Østerå Bridge using 4 different stochastic
models, and it was found for 3 of the stochastic models, that the reliability-based method
could potentially give higher classification than the partial safety factor method. However
it was hypothesized from the parameter study, that this was highly dependent on how
much of the total load effect was from the traffic load and the permanent load, respectively.
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For experimental bearing capacity assessment a proof load factor, which is needed for
classification based on proof load tests, was determined taking into account knowledge
on the resistance. This was again based on the upper bound model and Mote Carlo
simulations. It was determined as a factor multiplied to the characteristic traffic load,
giving the required proof load, such that if the bridge survived the proof load, the required
annual reliability would be proven. The proof load was found as the proof load needed
to prove that the reliability of the bridge with the desired vehicle class was sufficient if
the partial safety factor method showed that the bridge could be classified for the desired
vehicle class. With this it was found that the required proof load factor was lower, when
taking into account knowledge on the resistance. The probability of failure during the
proof load was also determined, and this was used to investigate the decision on proof
loading. It was found that the expected cost of proof loading was much lower than the
expected cost of not proof loading, if partial safety factor method showed that the bridge
could be classified for the desired vehicle class. Further work could be done, where the
decision on proof loading could be investigated if analytic methods could not prove the
bridge for the desired vehicle class.
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Figure A.1: Axel configuration for standard vehicles. [Vejdirektoratet, 2004]
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B. Bearing capacity calculation example

In this chapter the bearing capacity will be calculated for a specific failure mechanism.
The specific failure mechanism is "PartialBox" with dimensions and loading as shown in
Figure B.1. The slab is additionally loaded by a uniformly distributed load, Gk.

Figure B.1: Example of yield lines with loading for the failure mechanism, "PartialBox"

As shown in the main report the bearing capacity, C, is generally calculated by the
expression:

C =
∑

Ny
j=1 myk,j θj lj −

∫ ∫
A Gk δ(x,y)dx dy

∑NF
i=1 Qk cF,i δi

C =

∑
Ny
j=1(myk( fyk, fck))j lj θj −

∫ ∫
A Gk δ(x,y)dx dy

∑NF
i=1 Qk cF,i δi

 (B.1)

In the following is shown how each part of this equation, is expanded into corresponding
expressions for the specific case. For the parts corresponding to the outer work and thereby
the loads, Figure B.2 is used. The four displaced areas are assigned roman numerals in
order to easier show the relation between the figure and the expressions.
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Figure B.2: Figure for determination of the outer work.

The maximum virtual displacement of the failure mechanism is equal to a virtual displace-
ment, δ, which corresponds to the displacement of area I, as can be seen from Figure B.2.
The displacement at any other point is determined from this as each of the displaced areas
are assumed to be rigid bodies. The outer work performed by the concentrated loads can
then be expressed as:

NF

∑
i=1

Qk cF,i δi = Qk cF1
c2

a2
δ + Qk cF2

c2

a2
δ + Qk cF3 δ + Qk cF4 δ + Qk cF5

c1

a1
δ + Qk cF6

c1

a1
δ

The outer work performed by the uniformly distributed load, Gk, can be expressed as:

∫ ∫
A

Gk δ(x,y)dx dy =Gk b1 (L− a1 − a2)δ︸ ︷︷ ︸
I

+Gk( a1 b1
δ

2
+

a1 b2

2
δ

3
)︸ ︷︷ ︸

II

+ Gk( a2 b1
δ

2
+

a2 b2

2
δ

3
)︸ ︷︷ ︸

III

+ Gk ((L− a1 − a2)b2
δ

2
+

a1 b2

2
δ

3
+

a2 b2

2
δ

3
)︸ ︷︷ ︸

IV

For determination of the inner work Figure B.3 is used. The reinforcement is assumed as
both an upper and lower grid with reinforcement lying in transverse and longitudinal
directions. Therefore the determination of the inner work is based on the yield moments
arising from the four yield moments shown in the figure. Each yield moment is assigned
a name with the index after yk corresponding to the direction of the reinforcement (t for
transverse and l for longitudinal).
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Figure B.3: Figure for determination of the inner work.

The inner work is expressed by:

Ny

∑
j=1

myk,j lj θj =(m+
yk,l + m−yk,l) (b1 + b2)

1
a1

δ︸ ︷︷ ︸
II

+(m+
yk,l + m−yk,l) (b1 + b2)

1
a2

δ︸ ︷︷ ︸
III

(m+
yk,t + m−yk,t)L

1
b2

δ︸ ︷︷ ︸
IV

In some cases the axis of rotation doesn’t run along the transverse or longitudinal direction,
as illustrated in Figure B.4. In such a case as the one illustrated the inner work is calculated
by:

Ny

∑
j=1

myk,j lj θj =(
√
(m+

yk,l cosv)2 + (m+
yk,t sinv)2 +

√
(m−yk,l cosv)2 + (m−yk,t sinv)2) a

1
b

δ

(B.2)
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Figure B.4: Figure for determination of the inner work.
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C. Cases for determination of model uncertainty
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L=9.1 m
Test no. d [m] B [m] Dead load [kPa] Yield stress [MPa] C_t [-] C_e [-]
1 6 33.1 35.6 623 7.28 6.75
2 6 33.1 39.1 623 7.07 6.63
3 6 33.1 35.6 573 6.50 6.11
4 6 33.1 39.1 573 6.26 5.99
5 6 33.1 35.6 523 5.70 5.47
6 6 33.1 39.1 523 5.46 5.30
7 6 14.5 35.6 623 7.28 6.75
8 6 14.5 39.1 623 7.07 6.63
9 6 14.5 35.6 573 6.50 6.11
10 6 14.5 39.1 573 6.23 5.99
11 6 14.5 35.6 523 5.67 5.47
12 6 14.5 39.1 523 5.33 5.30
13 7 33.1 35.6 623 7.28 6.75
14 7 33.1 39.1 623 7.15 6.63
15 7 33.1 35.6 573 6.57 6.11
16 7 33.1 39.1 573 6.43 5.99
17 7 33.1 35.6 523 5.85 5.47
18 7 33.1 39.1 523 5.72 5.30
19 4.5 12 35.6 623 6.20 6.19
20 4.5 12 39.1 623 5.91 5.90
21 4.5 12 35.6 573 5.44 5.44
22 4.5 12 39.1 573 5.16 5.14
23 4.5 12 35.6 523 4.69 4.68
24 4.5 12 39.1 523 4.41 4.40
25 5.5 14 35.6 623 7.04 6.81
26 5.5 14 39.1 623 6.82 6.63
27 5.5 14 35.6 573 6.27 6.05
28 5.5 14 39.1 573 6.02 5.82
29 5.5 14 35.6 523 5.47 5.30
30 5.5 14 39.1 523 5.14 5.06
31 12 33.1 35.6 345 3.34 3.14
32 12 33.1 39.1 345 3.19 3.00
33 12 33.1 35.6 295 2.63 2.47
34 12 33.1 39.1 295 2.39 2.33
35 12 33.1 35.6 245 1.62 1.51
36 12 33.1 39.1 245 0.91 0.90
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L=12 m
Test no. d [m] B [m] Dead load [kPa] Yield stress [MPa] C_t [-] C_e [-]
37 12 33.1 35.6 623 4.63 4.25
38 12 33.1 39.1 623 4.45 4.07
39 12 33.1 35.6 573 4.10 3.78
40 12 33.1 39.1 573 3.76 3.61
41 12 33.1 35.6 523 3.42 3.26
42 12 33.1 39.1 523 3.01 2.85
43 4.5 19 35.6 623 3.38 3.20
44 4.5 19 39.1 623 3.16 2.97
45 4.5 19 35.6 573 2.92 2.73
46 4.5 19 39.1 573 2.61 2.56
47 4.5 19 35.6 523 2.37 2.33
48 4.5 19 39.1 523 1.92 1.91
49 4.5 17 35.6 623 3.36 3.20
50 4.5 17 39.1 623 2.95 2.94
51 4.5 17 35.6 573 2.74 2.73
52 4.5 17 39.1 573 2.33 2.33
53 4.5 17 35.6 523 2.12 2.12
54 4.5 17 39.1 523 1.73 1.72
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D. Proof load factor for existing structures

In the SBi-guide 251, [Pedersen, 2015], proof load factors are given for existing structures
with 1 variable load, where there is no knowledge on the resistance. The procedure for
how these proof load factors are determined corresponds to the procedure described in
Chapter 10. In this chapter, the procedure used for [Pedersen, 2015] will be shown.

The proof load is determined such that the probability, that the additional action on the
structure is larger than or equal to the proof load, is equal to the desired probability of
failure. By additional action is meant the load, not including the permanent load from
before the proof loading test, which will be applied to the structure. The proof load factor,
η, is determined as a factor multiplied to the characteristic additional load, Sk, giving the
proof load η Sk. The characteristic additional load is the permanent load added to the
structure after the proof load test, G, and the variable load, Q applied to the structure. Sk

is given by (D.1).

Sk = (1− α)Gk + α Qk (D.1)

α is included in (D.1) to determine a proof load factor dependent on the percentage of the
additional load coming from the variable load. The limit state equation for determination
of η is given by (D.2).

g = Sk η − ((1− α)G + α Q) (D.2)

The distribution parameters for G and Q can be seen from Table D.1.

Table D.1: Distribution parameters for G and Q.

Parameter Distribution type COV Characteristic, fractile
Permanent load G Normal 0.1 50 %
Variable load Q Gumbel 0.4 98 % (2.04 µQ)

A Gumbel distribution is given by (D.3), where parameters a and b are determined from
(D.4) and (D.5).

FX(x) = exp(−exp(−a(x− b))) (D.3)
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a =
π

V
√

6
(D.4)

b = µ− 0.5772
a

(D.5)

In determination of η, the variable load and the permanent load are normalized with
respect to the characteristic values. This means that Gk and Qk are set to 1. To determine
η, 109 simulations are performed for G and Q. For the permanent load, µG=Gk=1. For
simulations of Q, the mean is set to µQ = Qk/2.04 = 1/2.04 = 0.49. η is determined for
different α-values, such that the probability of failure for (D.2) is equal to the desired
probability of failure. The results are listed in Table D.2.

Table D.2: Values for the proof load factor, η.

α β=3.2 β=3.8 β=4.3 β=4.7 β=5.2
0 1.52 1.85 2.19 2.48 2.87
25 1.39 1.65 1.89 2.11 2.40
50 1.28 1.45 1.61 1.75 1.95
60 1.24 1.38 1.51 1.62 1.78
65 1.22 1.34 1.46 1.56 1.69
70 1.20 1.31 1.41 1.50 1.61
75 1.20 1.29 1.37 1.44 1.54
80 1.20 1.27 1.34 1.40 1.48
85 1.21 1.28 1.33 1.37 1.43
90 1.24 1.30 1.34 1.38 1.43
95 1.28 1.34 1.38 1.42 1.47
100 1.32 1.38 1.43 1.47 1.52

The values in Table D.2 are exactly the same as the values given for the proof load factor
in [Pedersen, 2015].
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E. Calculation of expected cost

The expected cost of proof load testing, U1, can be determined from Figure E.1.

Figure E.1: Decision tree for decision on proof loading.

U1 is determined from (E.1).

U1 = P(Z1) (C1 + C3) + P(X1|Z2)P(Z2)C3 + P(X2|Z2)P(Z2) (C2 + C3) (E.1)

The probabilities P(X1|Z2) and P(X2|Z2) can be determined by (E.2) and (E.3).

P(X1|Z2) =
P(Z2|X1)P(X1)

P(Z2|X1)P(X1) + P(Z2|X2)P(X2)
(E.2)

P(X2|Z2) =
P(Z2|X2)P(X2)

P(Z2|X1)P(X1) + P(Z2|X2)P(X2)
(E.3)

The probabilities P(Z1) and P(Z2) is determined from (E.4)

P(Zi) = P(Zi|Xi)P(Xi) + P(Zi|Xj)P(Xj) (E.4)
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