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1 Introduction

As the semiconductor industry is nearing the limits of performance improvements to the current
technologies regarding silicon, there is a constant search for new non-traditional materials. In this
search, 2D materials have received an increased interest due to their vast amount of possibilities
in micro electronics. Graphene is a material which has gotten a significant amount of attention
since its experimental discovery. This is due to graphene consisting of a single sheet of atoms,
which can be obtained experimentally, resulting in the many unique properties [1].

However, graphene is just one material out of an endless amount of other 2D materials with
fascinating properties. A such group of 2D materials could be the transition metal dichalco-
genides (TMDs). Layers of TMDs are held together by weak van der Waals forces, and it is
therefore experimentally feasible to obtain a thickness of a single layer [2]. This project will
primarily concern itself with calculations regarding the properties of monolayer TMDs, however
the methods developed can easily be used for other 2D materials. To visualize a H-phase TMD,
one can look at figure [1.0.1] When a semiconductor absorbs a photon, a collective electronic

i | %mm% ;Lz

Figure 1.0.1: Blue dots indicate a transition metal atom, and orange indicates a chalgogen
atom. (a) A topdown-view showing the honeycomb structure and the lattice constant, a, and
(b) Planar views showing the second lattice constant, b.

state will jump to an excited collective state of higher energy. Single-electron transitions occur-
ring between a valence band and a conduction band leaves a hole in the valence band. The hole
and the electron will then interact through screened Coulomb forces, which may create a bound
state known as an exciton. The exciton will lower the bandgap of the semiconductor, thus one
can define an exciton binding energy to be the difference between the fundamental bandgap and
the optical bandgap.

The usual method for describing excitonic states is by solving the Bethe-Salpeter equation.
In this project, the Bethe-Salpeter is solved using single electron eigenstates described by a
plane wave expansion. In order to obtain all necessary single electron properties, a Density
Functional Theory (DFT) calculation can, among others, be performed. We made use of GPAW
[3H7], which is a Python-based library developed as an extension to the ASE module. The
GPAW library makes use of the projector-augmented wave method [§] in order to perform DFT
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calculations.

The reason for considering excitonic properties of TMDs is ultimately to accurately model
properties related to spontaneous emission. This means, that one needs to consider an interaction
picture, where an electromagnetic field carrying some momentum interacts with our 2D material,
which severely complicates calculations. In effect, the dispersion relation for excitons should be
calculated and then thermally averaged to obtain the radiative lifetimes. In an article by H.
Wang et al. they model these lifetimes using a Wannier-Mott model for excitons based on
a tight-binding formalism [9]. Based on this they predict radiative lifetimes in the order of
nanoseconds at room temperature, as well as a linear temperature dependence. M. Palummo
et al. also create a model for calculating this radiative lifetime [10], where they obtain lifetimes
around a nanosecond at room temperature as well.

Many have attempted to measure these radiative lifetimes, however, due to the difficulty of
manufacturing pristine TMDs without any impurities the measurements are often dominated
by non-radiative decay mechanisms [11]. C. Jin et al. claim to have developed a method for
describing intrinsic and effective lifetimes of WSey with high precission experimentally [12]. In
a set of articles by M. Amani et al. they propose that these impurities can be passivated using
either superacid treatment or by gating, achieving quantum yields of up to 100% [13H16]. In
these articles, M. Amani et al. measure lifetimes of around 10 nanoseconds. Moreover, using
passivating agents, H. M. Bretscher et al. have furthered this process, and thus developed an
extended passivation protocol, and find a lifetime around 3 nanoseconds [17].

In relation to this, we also wish to examine the Purcell effect. The Purcell effect describes
the enhancement of a material’s emission rate with regard to its dielectric environment |18
19]. As such, this requires modelling the general optical properties such as conductivity which
therefore is another focus of this project. In particular, these optical properties can also serve
as a benchmark for the exciton states calculated in this project by comparison to calculations
made in the software package GPAW, which can be found in the 2D database C2DB [20], or by
comparing with experimental observations.



2 Theory

This chapter will concern itself with describing theory needed to explain and model the radiative
properties of excitons. Maxwell’s equations will serve as a baseline for the quantum interaction
picture. In the interaction picture, the quantum mechanical harmonic oscillator formulated
in terms of photon quanta becomes relevant, and leads to a quantisation of the free-space
electromagnetic field. Moreover, linear perturbation theory will be extremely relevant when
describing optical phenomena - both in the single electron case and in the excitonic one. In
addition to this, the Bethe-Salpeter equation will be formulated in a base that includes spin-
orbit interaction. Furthermore, the optical properties will be discussed, which is centered around
the excitonic center-of-mass dispersion. These properties also include those induced by an
inhomogeneous dielectric environment, namely the Purcell effect.

2.1 Microscopic Formulation of Maxwell’s Equations

For the sake of creating an overview and weave the proceeding sections together, the microscopic
Maxwell equations will be presented here to serve as a stepping stone towards more complex
theory. They are given as

v.E="', (2.1.1)
€0
V.-B=0, (2.1.2)
0B
E=— 2.1.
V x P (2.1.3)
E
V x B = pug <J + 50(;) , (2.1.4)

where E is the electric field, p the charge density, B the magnetic field and J the current
density. All these quantities are functions of time and position, ¢ and r, respectively, but for
ease of notation the arguments are left out. As per usual, equation can be satisfied by
defining the electromagnetic vector-potential, A, such that

B=VxA. (2.1.5)
Similarly, the electric field can be written as
oA
E—_Vo_ 2.1.6

where ¢ is the usual scalar potential. Clearly, this definition of the electric field also satisfies
equation . However, the scalar- and vector-potential do not uniquely define the electro-
magnetic fields. If the pair of potentials, ¢’ and A’ satisfy equations and , another
pair of potentials, ¢ and A, can also be ensured to satisfy the equations by using the relations

o
¢=d+£, (2.1.7)

A=A -V, (2.1.8)
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where the arbitrary function § = &(r,t) is the so-called gauge function. It can be seen by
insertion, that this pair of potentials serve the exact same purpose for the electromagnetic
fields. The gauge can then be specified by some condition. An example of this could be the
Coulomb gauge, which is defined by letting the vector-potential satisfy

V-A=0. (2.1.9)

For the proceeding sections, the electromagnetic field will generally be in the Coulomb gauge.

2.1.1 Quantisation of the Free-Space Electromagnetic Field

The electromagnetic field is quantised in a quantisation cavity, which is simply a cubic region
of space of sidelength L without any real boundaries. In such a region, the waves should be
travelling and have periodic boundary conditions 21, ch. 4.2]. Moreover, the radiation field
can be separated into modes qA, where q denotes the wave vectors, and A denotes the unit
polarisation vectors. The wave vector for such a confinement is defined by

27N, 2mny 271N,
= L’ qQy = T: q> = L’
where n,,n,,n, € Z. Moreover, the unit polarisation vectors, ey, satisfy the Coulomb gauge
condition, if and only if they are transverse. If the basis was expanded by a non-transverse unit
vector, the resultant vector-potential would have non-vanishing divergence. Additionally, they
are chosen to be mutually orthogonal. Therefore, the following two criteria are satisfied:

e (2.1.10)

eqgr-d =0, eq\-eqv =10\, (2.1.11)

where 6,y is the Kronecker delta. The quantisation of the electromagnetic field is now performed
by associating each mode of the radiation field with the one-dimensional quantum mechanical
oscillator. The destruction and creation operators for a cavity mode g\ can be written as

« i . 1
aqx [ngr) = ngy [ngy —1)  and ag/\ Ingr) = (g +1)2 [ngx + 1) (2.1.12)

Here, the operators respectively create and destroy one photon of energy Aw, in the mode
gX. As such, the number operator, fqy, now specifies the number of photons excited in the
corresponding cavity mode, such that

figr = i)\ dqn- (2.1.13)

The origin of the number operator can be seen in appendix[A.1.1] The eigenvalue of the number
operator will simply be denoted as nqy, such that

TAlq)\ |nq>\> = nq)\ \nq)\> nq)\ = 1, 2, (2.1.14)

The orthonormal eigenstates |ngy) are called the photon-number states or the Fock states of the
electromagnetic field [21, ch. 4.4]. To specify a number state of the total electromagnetic field
in the cavity, an ordered string containing single-mode photon-number states is used. Different
cavity modes are independent, and corresponding associated operators commute. As such, the
commutation relations between these become

|dqns @l | = Faardrv (2.1.15)
The state of the total field may be expressed in a few different ways, namely
Inq, 1, Nay2s Mgyl Nay2s ) = (Mg, 1) [Nq,2) [Nay1) [Mg,2) - = [{naat] (2.1.16)

4
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where {nq)} denotes the complete set of numbers needed to specify all excitation levels of the
oscillators corresponding to the different cavity modes. The total number state only forms a
complete set for the radiation field when ngy € {Z*,0} for all g, \. The Hamiltonian of the
total electromagnetic field is then found by summing all the individual oscillator Hamiltonians,
that is

~

. . 1 o L
Hr = Z Z Hars  Haor = §hwq (anaL)\ + aLAaq)\) . (2.1.17)
a A=1,2

The single mode Hamiltonian expression here is also seen in equation (A.1.8). Therefore, the
energy eigenvalue equation for the multimode number state is clearly

A l{naal) = £ Y (e + 5 ) Hnaa ) (2.1.18)
qa A

The ground state of the radiation field is the state in which no photons are excited in any of
the field modes. This state is also called the vacuum state of the field, and can be expressed
formally as

ngx =0 Yq,A, (2.1.19)

which can be denoted as [{0}). The vacuum state condition can be expressed using the destruc-
tion operator as
agr [{0)) =0 Y, . (2.1.20)

The energy eigenvalue equation for the vacuum state is then easily seen to be
- 1
Hrl{0}) =) 5wq {0}) = Eo [{0}), (2.1.21)
a A

where Ej is called the vacuum energy, accordingly. Moreover, the energy eigenvalue equation
can be formulated with respect to the vacuum energy and the excitation energy as

Hrl{nga}) = (Er + Eo) [{ngx}) (2.1.22)
where the excitation energy is given as
Er =) hwgng. (2.1.23)
qa A

However, it should be noticed that the frequencies w, have no upper bound, which consequently
enables the vacuum energy to be infinite. By deriving classically |21} ch. 4.2 ], it can be shown
that the total radiative energy, corresponding to the classical Hamiltonian, is simply a sum of
of contributions from different modes on the form

Egx = e0Qw] (A ALy + AL Agy) | (2.1.24)

where (2 is the volume. Ay and A:;A are the free-space mode coefficients of the electromagnetic
potential, which is on the form:

A(r,t) = Z Z €qr (Aq,\e_i(“’qt_q'r) + AZ/\ei(w‘lt_q'r)> . (2.1.25)
a A=12

Naturally, the classical mode coefficients commute, but when equation (2.1.24)) is on the current
form, it can be compared to equation (2.1.17). As such, the classical vector-potential modal
coefficients can be converted to quantum-mechanical operators by substituting

1 1
B 3 h 3
Ay — 7 A* al . 2.1.2
a* < 2e0Qwq > far a < 260wy > ax ( 6)

5
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Effectively, this converts the classical vector-potential to an operator on the form:

Ar,t) =D D eqrdqa(r,t), (2.1.27)

q A=1,.2

where

1
A h 2. —i(wgt—q-r ~ i(wgt—q-r
Aga(r,t) = (QEDM) {ane (at=ar) 4 gf gilent=a >}. (2.1.28)

This quantised free-space field will be important in section [2.3.4]

2.2 Linear Perturbation Theory

To measure the properties of a system, it is necessary to understand the response of the system
when an external perturbation is applied. The external perturbation could be an electromagnetic
perturbation, such as light. If this perturbation is small, the response of the system can be
approximated to be linear in field strength. Consider now an unperturbed ground state system,
which can be described by a time-independent Hamiltonian, H’o. The ground state wave function
can be approximated as a Slater determinant, where the orbitals are given by the Schrodinger
equation, X

Hopn = B on. (2:2.1)

Here EY is the n’th eigenvalue and ¢, is the n’th stationary eigenfunction of the ground state,
which only depends on spatial coordinates. By introducing a perturbation, the electron state
will be excited. Instead of finding a completely new Hamiltonian for this exited state, the excited
Hamiltonian can be written as a sum of the unperturbed and interaction Hamiltonian:

H=Hy+H. (2.2.2)

By assuming the response of the perturbation to be characterised by a single frequency w and
only including first order terms of the interaction Hamiltonian, the time-dependent Schrédinger
equation becomes:

oY . 1.~ . 1 as

ih—— = { Hy + =~ Hye ™" + Z et } 1, 2.2.3

ot { 0™ pthe™ v (22.3)
where H; contains the spatial part of the perturbation. The total perturbed wave function can
be written as a sum of each time-independent wave function, ¢,,, as

Bt
hi

Y = Z anpne” "k, (2.2.4)

where a,, is a time-dependent coefficient. Since the response to the external perturbation is
assumed linear, the interaction Hamiltonian must therefore be linearly dependent on the field
strength. Hence, a,, must also be dependent of the field strength, e, meaning a,, = a,(g) for
the electric case. Consequently, this allows a, to be Taylor expanded with regard to the field
strength, i.e.
an = a® +aM +a@ 4 (2.2.5)
From this, it can be shown that the induced response due to a perturbation can be found using
[22]:
{m|Hilpn) {pnl X|om)
Epp — hw — iRl

X(W) :_anm

m,n

(2.2.6)
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where X (w) is the response, X is the corresponding operator, E,,, = E,, — E, is difference in
energy levels, and fp,, = f(Ey)— f(Ey) is the corresponding difference in distribution functions.
Thus, this derived expression is the first order time-dependent induced response due to some
perturbation. It also shows that knowing the interaction Hamiltonian and the induced response
operator, one can find the time-dependent induced response of the system.

2.3 Models of Excitons - The Bethe-Salpeter Equation

The aim of this chapter is to do accurate calculations on a many-electron system. In particular,
the focus will be many-body excited states, referred to as excitons. To start off, the all-electron
wave function will be approximated by Slater determinants, which is done by applying the
single-particle approximation. By disallowing spin-hybridisation, due to spin-orbit interactions,
between the conduction and valence bands, the ground state can be approximated with the
Slater determinant

10) = [(v1 1), (v1 1),y (n 1), (o )] (2.3.1)

This is a good approximation for semiconductors due to the energy difference between these
bands. As such, for every state n, there are four excitations due to spin, namely

[(vi 1) = (¢ 1)) = [(v1 1), (01 1), - (vi 1), (¢ 1)-esy (0 1), (o D] (2.3.2)
[(vi 1) = (¢ 1)) 2= [(v1 1), (01 1), oo(es 1), (vi 1)y (0 1), (o D)1 (2.3.3)
[(wi 1) = (¢ 1)) = (v 1), (01 1), - (vi 1), (¢ L)y (o 1), (o D] (2.3.4)
[(vi 1) = (¢ 1)) := (v 1), (v1 1), (¢ 1), (vi 1)y (o 1), (v 1) (2.3.5)
Writing this in vector notation as a spinor
bz
U g 1) = (e 1) | (230
|(vi 1) = (¢ 1))

Now, the excited states will be written as a linear combination of the excitations on the form of
equation ([2.3.6)):
lexc) = Z Wi - |v; — ¢j), (2.3.7)

where W;; are expansion factors, given as a vector to match the spinor. The main problem is
now to find the matrix elements of the Hamiltonian super-matrix between two arbitrary states,
written as

Tkl

e — cl>, (2.3.8)

where

N N
Z hna + Z Z Vv (rmf - rn’U’)a (239)

n=1 0,0’ n<n’

and hp, is the single-electron Hamiltonian, including spin-orbit coupling. The first step is to
analyse the ground state energy, which, using the rules for overlap of Slater determinants [23,
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ch. 16.3], can be written as

N
Ol = 5 3
mse{Tvl} n=1
1 2N
+ 3 Z Z { <vnm5, Vs ’ %4 ‘ UpMeg, vn/m’8> — <vnms, Vs ‘ \%4 ’ Vs, vnms> },

!
ms,ml n,n

fL + BSO ) Unms>

(2.3.10)

where the quantum number my is the secondary spin quantum number, h is the single-electron
Hamiltonian without spin-orbit coupling, and izgo is the spin-orbit interaction. The next step is
to look at the elements of the super-matrix H. This can be done fairly simply by using the rules
for matrix element between Slater determinants, mainly rules regarding single-electron operators
and two-electron operators |23, ch. 16.3]. In particular, there are fourteen non-zero elements of

the matrix ﬁfj Setting s # s, the diagonal elements are either:
Zero total spin:

<(vims) — (cjms) I:I} (vpms) — (clms)> = <O ‘ H ‘ 0> 8510k

+ Z Z { <vnmls’, cjmyg ’ \%4 | vnm;/, clms> — <vnm;/, cjmsg } \%4 | cmeg, vnm;/> }é}k
mie{1,l} n

— Z Z { <vnm/s', VMg | %4 ’ vpm’y, vims> — <vnm;/, VMg | \%4 | VMg, vnm;/> }6]-1 (2.3.11)

mie{t,l} n
+ <cjm8 h+ }Also ‘ clms> Oif — <vkms vims> dj1

— (oM, cim | V | vimg, cymg)y + (vgme, cjmg | V| eymeg, vimss)

iL-l—iLso

+1 total spin:
<(v¢m5) — (c;my) ﬁ‘ (vgms) — (clm;)> = <0 ‘ H ‘ 0> 8510k

" / " !/ " / / "
+ Z Z { <vnms, cimg ’ V ‘ Up Mg, clms> - <vnm5, Cimg } V ‘ CIMg, Up Mg }5%

mie{t,l} n

— Z Z { <vnm;’, VEMg ‘ % ‘ vnmg, fuims> — <funm;’, VMg ’ 1% ‘ VMg, vnmg> }5ﬂ (2.3.12)
mie{t,l} n

+ <cjmfg h+ ilso ‘ clmls> Oik — <vkm5 h + i‘LSO vim5> dji

— <vkms, cjm; | %4 ‘ VMg, clm;> .

These can be significantly simplified by introducing the quasi-particle energies,

N
h clms> + 2 Z {<Unm’5’,cjms ‘ %4 ‘ vnm;’,clms>

mle{t,l}n=1 (2.3.13)

" "
— <vnms, cjms ’ \% ‘ aqms, vnms> },

pams . /..
Ecjmz .f<c]ms

~

N
h vims> + Z Z {<vnm;’,vkms ‘ \%4 ’ vnmg,vims>
mie{t,|} n=1 (2.3.14)

" "
— <vnms, VMg ‘ %4 ’ VMg, vnm5> }

[V s .
Evimi .—<vkms
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However, due to these energies being the eigenstates of the underlying electronic system without
spin-orbit coupling, they must be orthogonal. Thus, by insertion and using the orthogonality,
these then give

<(vims) — (cjms) H‘ (vxmns) — (clms)> - (<o ‘ A ‘ o> + Eejm, — Em> S
— (oM, cim | V | vims, cymyg)y + (vgme, cymg | V| eyme, vims) (2.3.15)
+ <ijs hso ‘ Clms> Oik — <Ukms 'Uz'ms> it

and

iLSO

~

{(wims) — (e;ml) | 11

/ / /
— <vkms, cjmg ’ |4 ‘ VMg, clms> + <c]~ms

(vpms) — (clm;)> = (<O ‘ H ’ 0> + Ecjmfs — Evims> 3ik0j1

h+ fAZSO ‘ clmls> Oik — <vkm5 vim8> dj1,
(2.3.16)

iL—i—iLSO

respectively. The ground state energy (O|H|0) appears in all diagonal term of the matrix, and
can thus be set equal to zero by defining it as zero-point of energy. The off-diagonal terms of

ﬁf]l are:
Zero total spin, off-diagonal:

((wimy) = (emy)

Zero total spin to +1 total spin, I:

{(wims) = (esmy) | 7| (wgml) = (eimy) ) = = (opm,
Zero total spin to +1 total spin, II:
(vims) — (¢;ms) | H | (vpgms) — (ml) Y = (ejma
J j

Now, the following quantities may be defined, namely

I:I) (vpm?) — (clm;)> = (vgml, cyms |V | ami, vims ) . (2.3.17)

hso vim5> — —Copmt e (2.3.18)

hso ( clmg> G (2:3.19)

" " n i

n'mln"ml [ no_mom.__m
Knms,n’m's T <7”Lm5, nmg \ Vv | nmgmn mg ), (2.3.20)
n//m;/’n///mgl/
Cnms,n’m’S = Cnms ,n”m’s’én/,n”’és’,s”/a (2.3.21)

/NN /NN ) ~ o 11 1 ~

n'mg,n’m n’m n''m

) 8 = E, )" —F 5 )0y Omt
nMs, N M n'myg nms ) )

(2.3.22)
— <n'm'8 hso ‘ n”’m;”> 5n7n// + <nms hso ‘ n”m;/> (5n’,n’”] 5s,s”a 53’,8’”'
This allows for writing the super-matrix element as
[ pviteal viT,ert ¢t viT,er? cdyvil ctvil b
Eoteit — Koot T Kyfon ot Cei Towt Ko fcit
vil,erl vit,erl viT,erl clyvil
7 ~Cotiest Bt ~ Kuptesl 0 Cej ool
A ctil vi et vil,erl vit,erl
4leﬂJkT 0 Evklych - Kvklﬁch T Suliel
crlvil ctil vilcrl vilscrl vil,erl crlvil
L vk et chl»vkl T Suptiel E’Uki#jl - K'Ukl»‘ljl + Kvklﬁcjl_
(2.3.23)
The super-matrix eigenvalue problem now reads as
==kl
D IHGWy = B Wy (2.3.24)
kl

This is the general unscreened Bethe-Salpeter equation derived from Slater determinants with
spin-orbit interaction included.



Chapter 2. Theory Aalborg University

2.3.1 Excitons in Periodic Solids with Screening

This section shall specialize in the case of a periodic solid, where the orbitals are labeled by
a band index and wave vector k. Thus, the spinor states which will be analysed are the type
|vk — ck’). The process to derive these Hamiltonian matrix elements is the same as before,
however, the Coulomb interaction will be screened by surrounding charges. Thus, the Coulomb
potential should be replaced by a screened potential, W: [24]

(omsk, em K | V| v'msk, dmik") — (vmgk, em K |W [v'mk, dm k). (2.3.25)

The full matrix equation, where the screened Coulomb interaction is used, is called the screened
Bethe-Salpeter equation for solids, and will be given the acronym BSE. Another thing to note

is that for states of different k, the SO overlaps will be ¢¢¥7 Wk " — g,

cko,wko!

The screening interaction can be seen in figure 2.3.1] where a homogeneous layer with thickness
d and dielectric constant e, is placed between materials with dielectric constants ¢, and &p.
The charges in the middle layer will be screened by the layer itself, but also by the charges
in the surrounding sub- and superstrate. One can interpret the charges interaction through
field-lines connecting the charges. The lines should be understood as, if the charges are far from
one another the field line will mainly penetrate the surrounding dielectrics, meaning these will
mainly contribute to the screening and vice versa.

Z

Figure 2.3.1: An encapsulated 2D material, where the charges in the material will affect one
another through a screened Coulomb interaction.

As a starting point one should consider Gauss’ law in differential form
V-D(r) =e* (r—71'). (2.3.26)

Since D(r) = gpe(r)E(r) and the electric field is related through the potential as E(r) = —VV (r),

one can obtain: )

V- [e(r) (~VV ()] = =5 (r —1'). (2.3.27)
€0

Consider now the real-space potential written in terms of the 2D Fourier transform, that is

1 .
Vi(p,z,2) = o= v(z, 2 k)™ Pk, (2.3.28)

10
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where Ak is the in-plane momentum and p is the in-plane separation. In the considered geometry,
e(r) = e(#). Now, by inserting this Fourier transform into equation ([2.3.27)) and inverse Fourier
transforming both sides, one will obtain

K2e(2) — ie(z)i v(z, 25 K) = 55 (z—2) (2.3.29)
dz dz T 0 ' s
If 2’ is in the 2D layer, the equation can be solved by standard ansatz [22]:
Ce =7 z>d
2
o(z k) = o { Lemmlel | gonlst?l 4 B2l g << (2.3.30)
2¢0k | €
De<l==~ z<d

To solve the equation with these ansatz, appropriate boundary conditions have to be applied.
The potential and the normal component of D should be continuous, which can be expressed as

v(zt, 2 k) =v(z7, 2 k),

d d (2.3.31)
+ + - -
eT—u(z", 2 k) = —v(2, 2 K).
7 U ) 7 U )
Using these boundary conditions, one can isolate for each unknown coefficient, and obtain an

expression for the full potential in the desired layer [22],

e2e 1t (e — ey + (e + &) €27°<) (e + &4 + (€ — €q) 2K (=>—D)

2K) = - . (2332
vz, 2 %) 2keeq (e+ep)(e+eq)— (e —ep)(e —egq)e2rd ( )
where 2. = min{z, 2’} and 2= = max{z,2'}. Now, setting z = 2’ = d/2 will reduce equation
2:3:32) to
2
e
where
€—¢Eq €~ ¢
= 1-—- — . 2.3.34
fesy(K) 8( e—cat+(eteg)erd e—g+ (5+sb)e”d> ( )

It can be seen that the screening effect arises from e.sy, since if all the layers are the same
material meaning, ¢, = €, = ¢ then .y = €. Expanding equation ([2.3.34) to first order around
d = 0 will yield

~€“+5b+(5_1—5‘%+€§2e>/§d_ (2.3.35)

eerf(k) &

ef () 2 2 de
Here the first term is the average sub- and superstrate dielectric constant and the second term
in front of k is called the screening length. Usually this is written as the Keldysh potential
Eeff = € + 1ok, Where

e—1 e2+4el—2¢ €a +Eb
= — d, &= . 2.3.
ro ( 5 i cE= (2.3.36)

2.3.2 Current Density Operator

In order to describe a many-electron system perturbed by an electromagnetic field, the Hamil-
tonian should undergo a minimal substitution, that is p,, — P,, + eA(ry,t) for all electron
coordinates, n. The Hamiltonian will then be on the form

~ 1 ~2 ~ N 2 2 3
= %; {B2 + ey, - A(rn,t) + eA(rn,t) - Py, + [A(rn, )]} + %U(rn,rm), (2.3.37)

11
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where the last term represents the potential energy of the system. Using a monochromatic field,
the vector-potential can be written as

A(rp,t) = %(A(rn)e_i‘”t + A*(ry,)e™"), (2.3.38)

which shows that A(r,,t) is real, and agrees with equation (2.2.3). Consider the continuity
equation

— V- I(r,t) = e—p(r, 1), (2.3.39)

ot
where p(r) denotes the charge density. The eigenfunctions of equation (2.3.37)) can be approxi-
mated as Slater determinants, that is

. p1(r1) ... pn(r1)
Y(r1, .. TN ) = [or, . on| = vid B S (2.3.40)
p1(ry) .. en(rN)

For such Slater determinants the charge density is found as

(r,t) = e lon(r, 1) (2.3.41)

Next, the continuity equation can be revisited. To simplify it, denote the temporal derivative of
P as w, which means that zhvﬁ 7—[1/1 This also implies that ihp, = Hngon Therefore

—V-I(rt) = mZ{wn Lnon — onFaps} (2.3.42)

- 2m = Z {¢[D® +eb - A(r,t) + eA(r,t) - P| pn — c.c.}, (2.3.43)

where c.c. denotes the complex conjugate. Notice, that U was assumed real and therefore could
be cancelled. Moreover, the squared terms were also cancelled. From here the expression can
be divided into a ”momentum” part and a ”gauge part”, that is

~ VI =(=V-0),+(-V ), (2.3.44)

For the momentum part, denoted p, the expression is

-2
(=V-I), =5~ 252{% D7on) — on(P’en)*} (2.3.45)
zeh
=V Z {onVeon — oV} (2.3.46)
This means that the momentum current density, denoted J,, can be found as
zeh

J;D(r) = Z {‘an‘;on Sonvson} (2.3.47)

The gauge part in equation ([2.3.44]) arises from the cross terms and clearly must be

2
(VD) a= =5 DAL (V- A+ A-V)gu+ 0 (V-A+A-V) g} (2.3.48)

12
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If the Coulomb gauge is assumed, then V - A = 0, which reduces the expression to
o2
(=V D) g=—— > {eh A Von +pnA Vi), (2.3.49)
n
Thus, the gauge current density can be expressed as
2
e
Ja(r,t) = = ononA(r,1). (2.3.50)
n
Moreover, since J 4(r, t) is induced by A(r,t), it should be on a similar form, that is
1 . .
Ja(r,t) = i(JA(r)e*“’Jt + J%(r)e™t). (2.3.51)

This clearly shows equation ([2.3.50|) still holds true, if the temporal dependency is ignored. In
conclusion, the total current density can be written as

€ ~ ~
I(x) = Jp(v) + Jax) = 5= > (¢hDen — pubiy + 260, A(r)on) (2.3.52)

Now, the current density operator J should fulfill

J(r) = J@Z)*(rl, coorn)I (e, en)Y(er, . en)dry . dey (2.3.53)
= 5 2 (@hBpn — Pubil + 2e0] A (r)n) (2.3.54)

This equality can be shown to hold true, if j(r; ri,...,ry) takes the form
J(iry,...,ry) = % ; {6(r —rn)P,, + P,O(r — 1) + 2A(r,)0(r — 1)} - (2.3.55)

Due to Slater selection rules for sums of one electron operators 23| ch. 16], equation (2.3.53)
reduces to

36) = o 3 [ {5l = ra)py + Bdlr — 1) + 240600 — 1) fonlra )i (2:3.56)

The first and third terms on the RHS of equation ([2.3.56]) clearly provide the corresponding
terms on the RHS in equation (2.3.54)). To see that this holds true for the second term as well,
consider

f P5 (X ) Vb (r — 1) ()’

__ f (Vi (') 8(r — 1')pn(x')dr" (2.3.57)
+ > m f j [ (x)3(n1 = nh)pn ()] 17 6(ny — nb)d(ng — n)dnadns,
[n1,m2,n3]

where the summation in the second term is to be read as

[n1,n2,n3] € {[z,v, 2], [y, 2, 2], [z, 2, y]}, (2.3.58)

such that the sum cycles through all the Cartesian coordinates, and 77 denotes a Cartesian unit
vector. However, the factor proportional to 6(n; —n}) makes the entire second term vanish, due
to the wave functions vanishing in the limit of large r. Fortunately, the first term of equation

(12.3.57) reduces to the desired result in agreement with equation ([2.3.54)).

13
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2.3.3 Optical Properties of Excitonic Systems

Consider an electromagnetic vector potential on the form
A(r) = Age'dT, (2.3.59)

which is to say that its spatial Fourier decomposition only has a single component. Moreover,
the electric field can be written as

=-V¢' — QA’ (2.3.60)

where ¢’ is electric scalar potential. However, gauge fixing can be used to make the electric
potential vanish, if £ := @', where ®’ denotes the temporal integral of ¢’. This also means that
¢ = 0. In this gauge, it must hold true that E = iwA. The linear response function, @ (r,r’),
is the conductivity, which is a non-local variable, since it relates different parts of space. It can
be used to relate the electric field to the induced current density as

J(r) = iwf?(r,r')A(r’)dr’. (2.3.61)
This means that the following equation must be satisfied:
iw f @ (r, A )dr = (p|I(r;re, ... o) 0D (2.3.62)
The full time-dependent wave function, ¥(ry,...,ry,t), is a solution to the many-body time-
dependent Schrédinger equation of the form
m%t {3% + %ﬁle*iwt + %ﬂeim}\y. (2.3.63)

Notice, that ¥ is proportional to the fields perturbing the Hamiltonian [22, ch. 1]. As such, this
wave function can be expanded with respect to the field

=004 g® 4 (2.3.64)

where the superscript denotes the power of the perturbation. Considering only the last term
of the current density operator (equation ) - the one proportional to the field, only the
unperturbed part of the bra and ket of equation will remain. This is due to the fact that
the field corresponds to a first order perturbation, and only linear perturbations are considered
in this project. Thus,

Ja(r) =iw f @ a(r,t)A f Z d(r—ry)A n)]\II(O)drn. (2.3.65)

Since only the spatial part of the unperturbed wave function is being considered, ¥ (r) = 4(r),
where 1 (r) describes the Slater determinant of equation (2.3.40). Therefore, it can be seen that

f & a(r,r)A(r)dr’ = — 2 f ¥ ()0 (r — 1) (r)A(r)dr'. (2.3.66)

Moreover, > ¢! ¢y, is simply the electron density, n(r), so the expression can be reduced to
n

2
T alr, 1) = Z_jmn(r’)Té(r —1'), (2.3.67)

14
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where T is the unit dyadic. For the remaining part, equation (2.2.6) will be used. The
interaction Hamiltonian is now only given by

—Z{pn~ (rn) + A(rn) - Py}, (2.3.68)

since the term related to A? already has been incorporated in ‘& 4(r,r’). This means that the
current density, J,(r), can be written as

W Haplo) il Ip(rie, . on) W)
= — L . 2.3.
2. fi Fri — hw — ihl (2.3.69)
If £ =1, then f; = 0, so the expression can be written in terms of k£ > [
1 J,(r;ry, ...
Lw =23 flk<¢k|7'll,p|¢l><¢l\ p(E3TL, - IN)[WR) (2.3.70)

= Eyy — hw — ¢l

Now, specialising to the case of intrinsic semiconductors, the ground state Slater determinant
consists only of valence single-electron wave functions, that is

|0>:’90111""780'Ui7"'?<101)j7"‘790UN|' (2371)

Singly-excited states are of the form

[vi = €5 = |@Puyse ey PejresPujse s Puxls (2.3.72)

that is to say ¢,, has been excited to the state ;. Matrix elements for multiple excitations
will have vanishing contributions due to the Fermi Dirac distribution. This also holds true for
matrix elements between singly-excited states. The only contributions left is then those between
singly-excited states and the ground state - for intrinsic semiconductors. For the ground state
f ~ 1, whereas for the singly-excited states f ~ 0.

This project however, focuses heavily on excitonic states, which are essentially superpositions
of states on the form of equation . As mentioned in section such states can be written
as

lexc) = Z Wi — ¢y, (2.3.73)

where |v; — ¢;) is a spinor as seen in equatlon . For ease of notation, the spinor notation
will be removed. Instead ¢ and j will hold a spin index, such that an excitonic state can be
written simply as

lexc) = Z Ui v — ¢, (2.3.74)

where WP¢ is now a scalar. Essentially this means, that |[¢) = [0) and |¢)x) = |exc). The
current density then reduces to

(exc|H1|0) (O[T (r;r1,. .., rN)| exc)
= -2 2.3.
2 Foe ho 0 (2:3.75

exc

where the ground state energy has been set to zero, and F,,. is the corresponding eigenvalue to
the excitonic state |exc). Due to Slater determinant selection rules for a sum of single electron
operators [23, ch. 16], it can be seen that the expression reduces to

pr (D" Gy ri)lbe- Alro) + Alei) - Bilpu(ri)))
4m? Eepe — h(w + 1) (2.3.76)

exc

< (S o lrIy00e5 1) + 8l = 1)yl (13)) ).

Jp(r,w) = —

15
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Using equation (2.3.61)), it can easily be seen that the corresponding conductivity tensor,
@ p(r,1’) is given as

ooty = -2 5 S gz ATl (1) Con ) (o )

jwm?2 e Eepe — h(w + i) ’
(2.3.77)
where )
fts(rp,r) = §{ﬁn5(rn —r)+6(r, — )P, } (2.3.78)
The conductivity tensor is then found as
T (r,r') = T A(r,r') + Tp(r,r). (2.3.79)

The current density can now be recovered using equation (2.3.61)) again. This leads to the gauge

current density:

62

Ja(r) = En(r)A(r), (2.3.80)

where n(r) is the electron density. The momentum current density is a bit more complex.
Notice, that the following expressions holds true:

f Jeiq.r{wzj (r;) Ve, 6(r; — 1)ip, (ri)}dridr = jgoz‘j (r)Vreiq-rgpw (r)dr, (2.3.81)
| [t watrs = )9 (v basde = [ ot (69" Vi (). (23.52)
The first of these two can be shown using partial integration similar to that of equation (2.3.57)),

whereas the second of the two is trivial. Using these two, it is easily seen that the momentum
current density reduces to

_2¢? Ao cec) m<90c |7 (@)|pw;) {poy (10) [R5 (1, 1) [0, (1))
J,(r) = N4 J 5 —kh(w—i—il“) A (2.3.83)
exc ’L] kl exc
where 1
7t(q) = E{f)eiq'r +eI7Tpl (2.3.84)

Analogous to equation ([2.3.51)), the induced response, meaning the current density, is of an
equivalent form to the vector potential, and can thus be expressed as

J(r) = Jge'ar, (2.3.85)

This can be considered as a spatial Fourier decomposition with only a single component. As
such, the field strength, Jg, of the current density can be found as

= éJJ(r)e_iq'rdr, (2386)

For the gauge current density, the field strength simply reduces to
2

€
Joa = —F=Ay. 2.3.
04 = o Ao (2:3.8)

The field strength of the momentum current density, reduces to

26 AOZ Z \Ilexc e:L,C<SOCJ| ( )|<Pvz><90vk|ﬁ'(—Q)|<Pcl>

2.3,
Eege — h(w + i) (2:3.88)

Jop =
excij,kl
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In a crystalline system, the wave functions can be written as a product of a lattice periodic
function and a plane wave, that is ¢,k (r) = unk(r)exp(ik - r), by Bloch’s theorem. Moreover, if
[0c;) = |@aey and [py,) = |puk), then it must hold true that k' = k + q, which is in agreement
with conservation of momentum. Equation can be averaged by adding to it a similar
expression derived from equation , but with k and [ interchanged. This would lead to

26 Ao Eexe {pe; |7T( Nepw) {pu [T (—a)lpe,)
Jo, = E (W) were = : (2.3.89)
P exc ’L]?Zkl exc N h2 (w + ,LF)
It is worth noticing that
(e 1T (@)™ = {pu, [T (=)l ) - (2.3.90)

Moreover, J(r,t) = P(r, t), where P denotes the polarisation density, and P(r,t) = eg E(r, t),
where ¢ denotes the electric susceptibility. Therefore,

Jo = w?e0C - Ao. (2.3.91)
Using this, it is quite easy to see that
C(w,q) = — e? T Z Z qlexc exe ex6<30cg|7"( )‘90v1><%0vk|ﬁ'(_ )|90cl>
’ gomw2Q 50w2m29 E2,.— h?(w+1l)? '

excij,kl

(2.3.92)
The expression can be reduced by expanding the second term and using the Thomas-Reiche-
Kuhn sum rule [22], such that it reduces to

sls ZZ(‘I’??fC)* e:pc<906j‘ﬁ'( )’(Pvz><<pvk|fr<_ )’90Cl>
iJ :

(2.3.93)
M Eewc[ exc hQ(W + lr) ]

Y(wa q) =

excijkl

Diagonal elements of the susceptibility can be considered. For the zx-case, this would be

2
262h2 |Zkl l <90vk‘7rzv( |‘P61>‘

. 2.3.94

Alternatively, this expression can be written in terms of the excitonic states:

2¢2h? <0 \P q)| exc)|?
2.3.95
Xoa () 50m29 Z Eerc|E2%,. — h?(w +i1)2]’ ( )
where ' '

Po(q) = )] 3{pae™"" + e "97p, }. (2.3.96)

n

Equations (2.3.94) and (2.3.95)) computes the response in the z-direction induced by a field
propagating in the z-direction. Lastly, the zx element of the conductivity can easily be recovered
from the susceptibility, using o,, = —iwWe)Xzz-

2.3.4 Emission Rate for Two-Dimensional Systems

Fermi’s Golden rule will be the starting point for calculating the rate of spontaneous emission.
One formulation of this rule is as follows [|22]:

_ 2%2 Bt | 5125 (E o), (2.3.97)
f
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where 7 and f denotes initial and final states, respectively, and E;; = Ey — E;. Moreover, the
interaction Hamiltonian, H;,:, is the Hamiltonian seen in equation (2.3.37), but for a many-
electron system, that is

mt Y 2 {pe I‘e + A(I‘e) ﬁe} ) (2398)

where the sum covers all electrons in the system. The term involving the square of the vector-
potential corresponds to a second-order pertubation, and is therefore discarded. Next, the
free-space field may be quantised as seen in equation (2.1.27)), namely

=2, 2. e (260% ) {&quiqr +&2Ae—"qf}. (2.3.99)

q A=1,2

The final and initial states can be represented as
iy = lexc) @ [ngy =0y, [f)=100®|ngr = 1), (2.3.100)

where ® denotes a tensor product. Since aqy represents the annihilation operator, terms in-
volving this operator reduces to zero when operating on the initial state. What remains is
then

whe?

I=——— > leqr 3 0|3 {Pee '™ + e 9P }ewe)|* (hwy — Eexe). (2.3.101)
m=QegFege ar e

This can be reduced further by the fact that w, = cg and by letting E.;. = hw. Using the
scaling property of Dirac delta functions will lead to

2
me w . o
]._‘ = WMZ}\ |eq>\ . PELL‘C|25 (q _ E) , ELL‘C — <0‘ Z {pe ’qu'c + e q r6p6}|€$c>.

(2 3.102)
The ground state can be written as the simple Slater determinant seen in equation (2 . The
excitonic state can be expressed in a manner similar to equation ([2.3.7] , that is

lexc) = Z \I’Z’er vk - ek +Q)), (2.3.103)
v,c,k

where |vk — ¢(k + Q)) is a spinor, and AQ is the center-of-mass momentum of the excitonic
state. To ease notation in the proceeding, let k' = k+ Q. From here, the selection rules of matrix
elements between Slater determinants [23] may be used to rewrite the excitonic momentum to

Peve = 5 O DLW (ko[ pei7 4 ¢4 | cK0') (2:3.104)

vckao

where 0,0’ € {1, |}. The states |[vko) and |ck/c’) are single electron states, and the Kronecker
delta arises, since non spin preserving transitions are forbidden. Moreover, since the system
is assumed to be periodic, the single electron states can be Bloch-expanded, such that |[nk) =
un k(r)exp(ik - r). Using this expansion clearly shows that

(ty 1 €T | P T 4 eT9TR |y, et KTDTY o § q. (2.3.105)

However, for materials which are not periodic along z, ), = 0 where Q = Q|+ 20, and Q lies
in plane of the material. In such a system, the exciton momentum takes the form

1
Pemc = 5 2 \I/le{{; <'UkU ’ pe QH r+q:2) +e (QH‘I"’I‘QZZ)I’j ’ Ck/0'> 5qx,Qx(5qy7Qy- (23106)

v,c,k,0
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Now, it is worth mentioning that eq) are perpendicular unit vectors to the propagation vector
q, which has unit vector ¢. As such, the following trick can be used:

Dlegeqr = T —dd. (2.3.107)
A

Moreover, notice that in the limit of very small Ag,, the following relation must hold true:

Zf(qz)izz — Alq Jf(Qz)sz = ;Jf(qz)dqz, (2.3.108)
qz z z

where L is the side-length of the quantisation cavity as seen in equation (2.1.10)). Thus, by
converting the ¢, sum in equation ([2.3.102) to an integral, the expression can be rewritten as

2

& > w

r T 5 oA~ P, - Pl (T —qq)- Pezc - — 2. 2.3.1

(Q) 2m2 Aeghwe qzq: 6%,Qx5Qy’Qy f exc ( qq) 0 (q C) dq ( 3 09)
T4y

Technically, d4, @, 9,,q, can now be safely removed from the exciton momentum seen in equation

(2.3.106).

2.4 Purcell Effect

The Purcell effect describes the effects of the surroundings on emitted power of a (dipole) source.
As such, the emission rate and the lifetime of a given emitter can be tuned by changing the
immediate dielectric geometry. A two-dimensional emitter can hardly be considered a dielectric
material, so when such a material is incorporated in the geometry, the Fresnel coefficients will
be quite different from the usual ones. This is also described in this section.

2.4.1 A Planar Dipole

Consider a planar dipole, which corresponds to a dipole constrained to the plane z = zg with a
given in-plane momentum, hQ. The current density for this dipole is given as

J(r) = —Zu(Q)é(z — 29)e’QP, (2.4.1)

where p is the dipole moment, and A denotes the plane area, which will later be assumed to
be infinite. The direct electric field emitted by the dipole can be found using the direct Green’s
tensor as

E@(r) = iw,uoj(a(d)(r,r’) I )dPr (2.4.2)
The direct Green’s tensor is given as 25| ch. 10]
. a0
TV rr) = 8172 U M el (o) =y b= g,
T
—00
2.4.3
1 k2 — k2 —koky  Fhoka ( )
M = o | Theky K-k Fhyka |
17zl ‘T‘kmkzl $kykzl k% - k§1
where M follows the convention:
T Ty %
9T gy gz | . (2.4.4)
2x zy 22
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Using the Green’s formulation to calculate the electric field, the order of integration can be
changed, such that the r’ integral is carried out first. Clearly, the 2’ integral simply vanishes,
whereas the 2’ and y’ integrals provides the factors 6(Q, — k) and 6(Qy — ky), respectively.
Formally,

ipow® | i i(kaatkyy)

E(r) = Q2 4m (b, ky) - 1(Qu, Qy)0(Quz — kz)6(Qy — ky)e ™ Y dk, dk,
i pow?
2

The dissipated power, corresponding to the direct field, can be found using Poynting’s theorem,
which states that

M(Qr, Q) - 1(Qa, Qy)e’ @), (2.4.5)

dw () 1

=3 fv Re{J*(r) CE@ (r)}d%. (2.4.6)

Notice, that when J*(r) is inserted, the exponentials cancel. As such, the in-plane integrand
is independent of = and y, meaning that it will cancel with A~!. Furthermore, the z-integral
vanishes due to §(z — zp). The remaining expression is then

i7(d) pow® * M

W (Q) = P Re{ ((Q)" - M(Q) - m(@)}. (24.7)

Thus, this is the dissipated power of a planar dipole in a homogeneous dielectric environment.

In the case of an inhomogeneous dielectric environment, the electric field used in equation (2.4.6])
is

E(r) = E9 () + EO(r), (2.4.8)

where ¢ denotes the indirect field. Since the direct contribution to the dissipated power has
already been found, the focus should be directed towards the indirect contribution. In this case,
the corresponding indirect Green’s tensor for a single planar interface is [25, ch. 10]

Q0

‘6<z‘)(r, r') = 8% ﬂ [ﬁs + Wfp] gilks (@=a)tky (=) +har (4] g ik,
Y[
—00
2
O ky) | o ek
Y QA G T2 R P P X S (245)
2 2 Y r ’ -
kzl (kz + ky) 0 0 0
2] kyky,k ko (K2 + K2)
W - 2Rzl zhyhvzl z\ vy Y
NP = 7 (R ky) kakykz1 g1 ko (k + )

2(1.2 2
Rilkz + k) | g2 + k2)  —ky(k2 +k2) —(k2+ k2)/ka

The process for deriving the indirect dissipated power is analogous to that of the direct. The
final expression becomes

. . 3 S .
WO(Q) = B2=Re{ (w(Q))* - (M'(Q) + M"(Q) )™= w(Q)}. (2:4.10)
The mode-dependent Purcell effect, P(Q), is then defined as
_WIQ Wi | WOQ)
P(Q) := W(d)(Q) =1+ WT(QY (2.4.11)

meaning it is the ratio of dissipated power in an inhomogeneous environment to that of the
corresponding homogeneous environment.
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2.4.2 Fresnel Coefficients for a Conducting Sheet Interface

Consider a dielectric environment, where a two-dimensional sheet lies at height zg between two
materials with no magnetisation, such that

> +
ez) =" T (2.4.12)
€2, 2 <2

where both dielectric constants are assumed real and positive. This can also be seen in figure

241

r7

Figure 2.4.1: Two different media surrounding around an emitter.

The two dimensional interface between the two regions can then be described using a sheet
current Js and charge density ps;. The boundary conditions for such an interface are

(1) 2 x (E(p.z5) —E(p.z5)) =0, (2) 2- (21E(p. %) — 22E(p. 7)) = 2,

€0
(3) z x (B(p7 zy ) —B(p, za”)) = —pods, (4) 2- (B(Pa z ) — B(p, ZJ)) =0,

where the parallel and perpendicular subscripts are defined relative to the interface plane. Con-
sider then a single wave-component of the electric field propagating through the upper medium
towards the interface. The plane of incidence is taken to be the xz-plane and therefore, it should
hold that ¢ = ¢2 + ¢2,. From here, the two cases of s- and p-polarisation may be considered.

Firstly, for s-polarisation, the direct electric field can be expressed as
E@ = pd)giltar—a:i2) g (2.4.13)

Moreover, the magnetic field can then be found using iwB = V x E. In medium 1, the total
fields have contributions from the direct field and the indirect field. Similarly, in medium 2 the
total fields are merely the transmitted ones. The three electric and magnetic fields are then

) E(d) .
E@_— E(d)el(qﬂ*qzlz)g’ B@ — — (g1 + qxg)el(qurfqzlz), (2.4.14)
. L . E@) .
E® — E(Z)eZ(quL‘Jrqle)Q’ BO® — — (—qo1d + q:czé)el(qmﬂﬁﬂzzlZ)7 (2.4.15)
. E®) 4
EW) = pleiler—a22)5 B = — (4220 + qu2)e!(asT—0=22) (2.4.16)
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Applying the appropriate boundary conditions, (1) and (3), at z = zp = 0 then leads to
E® — g _ g0 — o, (2.4.17)
ngE(t) — @1 (E(d) — E(i)) = —witJs,y- (2.4.18)

Now, the usual current density can be found using J = ‘@ - E. For the sheet current density
‘o = @5 is a tensor which only relates z and y, and E = E|. Therefore, the sheet current
density can be found as J3 = 7 - E (z = zp). The sheet conductivity is assumed invariant with
respect to the in-plane angle and can therefore simply be replaced by os. This reduces equation
(12.4.18) to

ngE(t) — ¢ (E(d) - E(i)) = fw,uoasE(t). (2.4.19)

By inserting E) = E@ + E( in equation ([2.4.19) and solving for the reflective coefficient, one
will obtain 4
ED g — g2 — wpos

rg 1= = . 2.4.20
TE@ g+ e + whoos ( )
The transmission coefficient can be found using a similar approach. It is given as
E® 2
ts := -1 (2.4.21)

E(d) - q:1 + Q2 + W,UJOUS’
which is to say that t; = 1 + 7.

A similar approach can be used for the p-polarised part of the field. In this case, the
direct magnetic field is exclusively along the y-direction, such that

B@ = p@gi(az—t12)g (2.4.22)

where the electric field can be found using —iweE = ¢V x B. In any case, the three electric
and magnetic fields become

2 n(d
BU— pciar-tany B -~ OB b g syt (2.4.23)
1
, o ) 2 p(4) .
B0 = BOGileran9y B0 =~ COD( g5y g apelnnrens), (2.4.24)
1
2 t
B®) = pWgilezr—a=22)y  gH = _ CEBQ())((]zWAS + qp2)el( et —az22) (2.4.25)
2

Applying boundary conditions (1) and (3) leads to

B2 _(g) _ gLt _ (2.4.26)
£9 €1
B+ BY - BO = 47, ,. (2.4.27)
Once again, it can be used that J; = O'SE”, such that J, , = asEg(f), which leads to
2
B@ 4 gt _ gty _ H09sC4=2 pt). (2.4.28)
EoW

Now, by using the two boundary conditions and some algebra, the following expression for the
p-polarised reflection coefficient is found:

BY _ ga1e2 — gae1 + 42142205 (weo)

Ty 1= = . 2.4.29
P B q:1€2 + gz2€1 + QZIQZQUS(W€O)_1 ( )
Next, the transmission coefficient can be found as
BY BY qz1€2 qz1€2
=2 =12 7=(1— )Z . 2.4.30
’ B ( B@ ] g.0e1 " q22€1 ( )
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3 Implementation

For the purpose of modelling the electronic properties of the TMDs covered in this project, the
software library GPAW [3-7] has been used in conjunction with code of our own. Moreover,
we have made use of the DTU-developed database C2DB in order to avoid having to compute
already known properties of the 2D materials. This includes lattice constants, polarizability and
fundamental bandgaps among others.

In particular, GPAW was used for calculating the one-electron wave functions, in a plane wave
basis, using density functional theory (DFT) and the PAW method. The excitonic properties
were then determined by solving the Bethe-Salpeter equation (BSE) for the wave functions
obtained from the DFT, but scissor shifted to match the fundamental bandgap. Theoretical
fundamental bandgaps for the considered TMDs can be seen in table The BSE was then
solved for non-zero center of mass momenta, yielding a dispersion relation, which is then used
to calculate the emission rate. In this chapter, MoSs will be used as a reference TMD, such that
the results easily can be referred to literature considering MoS,.

TMD MOS2 MOSQQ WSQ WSGQ
GOWO Bandgap (eV) [20] | 2.53 2.12 | 253 | 2.10

Table 3.1: A table of the fundamental bandgap values for the considered TMDs calculated by
GOWO.

3.1 Density Functional Theory using GPAW

When performing DFT calculations using GPAW, there are many parameters which can be
tuned. One of these parameters is the choice of exchange-correlation functional, denoted XC.
The XC used in the report will be the so-called 'PBE’-functional [26], which is an example of
the generalised gradient approximation (GGA).

Another important metric that should be considered during the DFT calculations is the
choice of k-point grid. One of the main purposes of the DFT calculations in this project is to
enable a BSE calculation, and in such a calculation all k-points couple to one-another. Therefore,
it is not sufficient to merely consider the irreducible element, but instead the entire first Brillouin
zone should be discretised. However, as can be seen in figure the primary excitons are
localised in the K-point of symmetry. As such, it is numerically favorable to have a k-point
grid, where the K-point is found not along the edges, but in the interior of the grid. Thus, the
k-point grid used in this report is a Monkhorst-grid spanning k € ([0, 1], [0, 1]) in the space of
the reciprocal lattice vectors. Furthermore, it is chosen to be slightly displaced relative to the
I'-point, which can be seen in figure |[3.1.1aj and [3.1.1b]

As mentioned, all calculations will be performed in the PAW formalism with pseudo wave
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Figure 3.1.1: (a) A 30 x 30 grid in the basis of the two reciprocal lattice vectors. (b) The same
grid in reciprocal space.

functions in a planewave basis. As such, the pseudo wave basis is on the form
1 1
\/ﬁ V an

where n denotes the band, G is a linear superposition of the reciprocal lattice vectors and

|1Lnk> = Zénk(G)ei(k—‘rG).ra (311)
G

k denotes the k-vector. QY2 is a volumetric normalisation factor, and C;kl/ 2 represents a
normalisation of the non-normalised plane wave coefficients, C,1(G). More on this in section
0. 1.2

Clearly, it would be numerically impossible to expand the pesudo wave functions in a com-
plete basis of plane waves, so a cut-off energy must be chosen. Naturally, this energy should be
chosen in such a way, that the wave functions have converged. In figure the G-vectors
are represented as dots, which form a sphere in reciprocal space. In figure Dk |Gk (G|
is plotted against the absolute value of the corresponding G.

The DFT calculation performed by GPAW includes a number of convergence criteria which
are performed throughout the cycle, and which can be tuned. Throughout this report, all DF'T
calculations are performed using the default convergence parameters, which are as follows:

e The energy change for the last three iterations should be less than 0.5 meV per valence
electron.

e The integrated absolute value of the change in density should be less than 0.0001 electrons
per valence electron.

e The integrated value of the square of the residuals of the Kohn-Sham equations should be
less than 4.0 - 1078 eV? per valence electron.

As mentioned, the lattice constants, and also the atomic positions in the unit cell, are
retrieved by using C2DB. For MoS,, this yields a lattice constant of a = 3.184 A and a sulphur-
sulphur distance of b = 3.127 A. Along the edges of the irreducible element, which is depicted
in figure (which can be compared to figure , the corresponding band structure can
be seen in figure

24



Chapter 3. Implementation Aalborg University

8
67 Lt 7
a4 i 6
ot i
—
B I S °|
. i it z
< 0 i o 4
N ‘si E;- v
24 i “ 3"
: : :: 5
-4 i |
AR ES HE3 M0 o 1}»
-B‘ﬁ\‘\/5
0 . )
-5 _ 0
D 5-10 1 0 10 15
k [A7] K, [A] Gl A
(a) (b)

Figure 3.1.2: DFT calculation for MoSy with 30 x 30 k-points and a cut-off energy of 450 eV. (a)
The G-vectors represented as blue dots in reciprocal space, and (b) is the sum over k-vectors
of the absolute value of the wave function for each G-vector used in the plane wave basis as a

function of the distance from the I'-point. Here, n spans seven valence bands and four conduction
bands.

However, the band structure depicted here is without spin-orbit coupling included. Moreover,
the current DF'T calculation produces a bandgap of about 1.6 eV, which should be compared
to an experimental value of 2.4 eV and a C2DB value of 2.53 eV. In order to correct
the bandgap, the conduction bands should be scissor-shifted by a value corresponding to the
difference - in this case about 0.9 eV.

3.1.1 Obtaining Spin-Orbit Eigenvalues

Spin-orbit coupling can be included non-selfconsistently using the spin-orbit module of GPAW.
In practise, it is done by first considering the full Hamiltonian in a basis of scalar-relativistic
Kohn-Sham eigenstates , that is

7_[nn’acr’ (k) = 5n05nn’500’ + <wna|h50|wn/a/> . (312)

Since spin-orbit coupling is strongest close to the nuclei, the wave functions can be restricted to
the regions inside the PAW-augmentation spheres [28]. In these regions, the wave functions can
be expanded as

‘wna> = Z <ﬁia‘1;ncf> |¢ga> ) (3'1'3)

where |¢% ) are the all-electron partial waves, |2 ) are their dual projectors, and [¢,,,» are the
smooth pseudo wave functions, which were also described in section This turns equation

B13) into
Hnn’ao/ (k) = 67L0'57L71’((50'c7" + Z Z @?g|'(;;na'>* ~?o" |'(Zn’o"> <¢?U|BSO|¢?U’> . (314)

a i?.]

The spin-orbit module returns both the spin-orbit eigenvalues but also the spin-orbit projection
along the z-axis. In addition, the module also includes a function for calculating the term
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Figure 3.1.3: (a) The Brillouin zone in gray and the irreducible element in orange, and (b) the
band structure of MoSy without spin-orbit interactions showing a bandgap of approximately 1.6
eV along with the density of states.

<¢fa|izso|¢‘?a,>, which is useful for calculating the spin-orbit coupling in the BSE, as seen in
section
3.1.2 Orthonormalisation of the Wave Functions

When plane wave coefficients of the pseudo waves are extracted from GPAW, they are not
represented in a way that orthonormalises the true wave functions. Orthonomalisation of the
true wave functions clearly requires that

<¢nk|¢n’k'> = 5nn’5kk’7 |¢nk> = ’&nk> + 22 (¢?(I‘) - éf(r)) <~?|77;nk> . (3-1-5)

The pseudo wave functions are on the form

~ 1 1
e = 7 Vo

Y Crie(G)ell G, (3.1.6)
G

If (;kl/ s removed, the pseudo waves do not meet the orthonormalisation criteria of the true
waves in equation . The bar over the plane wave coefficients is meant to indicate this fact,
and these coefficients are what GPAW outputs.

In the PAW formalism, the operator matrix element of a local operator is given by equation
A.2.19). Finding the overlap between wave functions corresponds to setting O=1in equation
A.2.19)), which leads to

Wkl = Duelne + D Bl Gy (CBfley = G21aD)  (3.1.7)

a 4,3
= <1/;nk|1/;n’k’> + Onn’,kk’ (318)

= s (3.1.9
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where Onn,7kk/ holds the PAW corrections terms. Setting n’ = n, k' = k and subtracting Onn/7kk/
on both sides leads to

1— Ot = Q an f (Z CF (G)ei(G k) ) (Z O (Gl G+ )dr (3.1.10)

Zchk (G§(G' — G) (3.1.11)

Qan G G

= —NCh (G2, (3.1.12)
an% k

where the last expression is found by combining Q2 with the Dirac delta function to create
the Kronecker delta, dg/ . Ultimately, this means we can rewrite the pseudo waves as

= 1- Onn,kk

i(G+k)r _ 1 =Omxk
iy = \FZC’”‘ T Ck(G) = Cok(G) S OGP (3.1.13)

3.2 Momentum Matrix Elements from a Plane Wave Basis with
PAW-Terms

In this section, we will discuss how to calculate momentum matrix elements using a plane
wave basis. This will prove useful when calculating the excitonic momentum seen in equation

(2.3.106|) and the electric susceptibility seen in equation (2.3.94). The pseudo wave functions

can be written as

nie) = \F D Cri(G)e! (G HT (3.2.1)

The k-vectors are two-dimensional, and k' = k + Q, where Q is also two-dimensional. The
momentum matrix elements are on the form

W D@ Yac) = Wse | 3{Pe™ W92 4 e UTHED By (4464, 0, 54,0, - (3.2.2)

For ease of notation, the Kronecker deltas will be removed by setting Q = q, where qj is the
component of q parallel to the material plane. Naturally, this also means that k/ = k + q, and
the momentum matrix elements take the form

Wkl D(A) [P = 5 <¢vk | petarTra=2) o omilayThasg Y (3.2.3)
=-3 <kalqeﬂ UTHeE) o) g — iR Pl UTTEDT (3.2.4)

From here, each term can be written in the PAW formalism using equation (A.2.19)), that is

WnlOlwy = (BalOlbw) + X, 3 Bl Bl ((8210165) = (321016) . (3:2.5)

a ij

For ease of notation, the momentum matrix elements will be written as a sum of its pseudo wave
part (denoted PS) and its PAW correction in agreement with equation (3.2.5)), that is

@l D(@) ey = Wuk|B(@[Vac) ps + okl B(D[Vac) paw - (3.2.6)
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First, consider the pseudo part of the momentum matrix elements, which can be rewritten as

ok |D(@) Ve pg (527
B~ it e e e e - 3.2.7

= —5 (e W ED o) — i (e WD i) )
h . . e ’

= 5 220 Ol GGG 4 K — e UTH9|C0 (G HEIT)  (3.28)
uc G @
h o

= fZZ " (G)Ca (GG +k + $)da, ¢, 0., f eHCeGama:)z g, (3.2.9)
z G G/

The z-integral is a bit more complicated than the in-plane ones. In GPAW, the unit cell is
structured such that the height is composed of a vacuum plus the thickness of the layer. In this
project we have used a vacuum parameter of 6 A. The thickness of the layer is about 3.2 A, so
the total height of the unit cell is about 15.2 A. Whatever this height may be, it will be denoted
as A, and it is illustrated in figure [3:2.1] GPAW structures the unit cell, such that the structure

2D material

} > 2

2A A 0 A 2N

Figure 3.2.1: This figure shows the virtual periodicity between the 2D layers, that GPAW uses
in its Fourier transform along the z-axis.

is centered in the interval (0,A), and therefore the z-integral should be evaluated in the same
limit. This reduces the pseudo part of the momentum matrix element to

h

Wadb(@Carps = 7p 25 2, CoklGa Gy, G:)Cuie (G, Gy, L)
Gz,Gy,G= G, N (3.2.10)
A~ A~ ~ e_lqz

Now, we may denote G = (G5, Gy, G,), and G’ := (G, Gy, G’,). Moreover, since we denote
AG, = G, — G, it is clear that AG, = 2mn/A where n € Z. With these notations, we can
simplify the expression to
. h e ia=A
Golp@Yadps = v Dy 2, Ci(G)Ca (GG +k + 9)—. (3.2.11)
A GaGoG. G AG, — q,

z

From here, the PAW terms of the momentum matrix elements should be considered. They are
given as

ok [P(@)[Vaae) p an

h - ¥ a7 —i(q-r 2)| .a Ta|.—i(qT z)| 1a
=—f;§<~gyka> @lae> (<Ol @m0 gty — (Gl am o) |G ) (3.2.12)
—ih Y Y 0" @ dac) (Ol TR g — (Gfle T IV ).

a 4,5
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However, in order to implement this numerically, we do not discretise q in three dimensions.
Instead, only q is used, and we calculate g. by

2 =\ — — lqy* (3.2.13)

Moreover, w can be assumed constant for the spontaneous emission calculations seen in section
since we mostly consider the lowest exciton, that is exciton A. Lastly, the wave functions
and corresponding energies calculated in this report are found using a technique, that doesn’t
incorporate non-local effects, as opposed to a GW-calculation. In order to correct the momentum
matrix elements, the following substitution should then be made [29-33]

GW _ GII{/V
A ~ K v,
okl D(Q) [Paae) = (o |B(Q) V) WETT (3.2.14)
ok v,

where DFT denotes the energies corresponding to a non scissor-shifted DFT calculation, and
GW denotes the energies of a GW-calculation (in our case, the scissor-shifted energies).

3.3 Bethe-Salpeter in a Plane-Wave Basis with PAW-Terms

To describe the excitonic properties, this section will concern itself with numerically solving
the BSE for 2D semiconductors. The first step will be to calculate the Coulomb (direct) and
exchange (indirect) kernel in the basis of planewaves with PAW-corrections. Following this,
the matrix equation including spin-orbit will be introduced as well as the excitonic momentum
elements in regards to the optical response. Finally, some numerical detail of the calculations
which where performed in this project will be presented.

3.3.1 The Coulomb and Exchange Kernel

As seen in equation (3.2.1)), the true wave functions can be decomposed into a lattice periodic
part and a phase part. The lattice periodic part can be found as

Ui (1) = P (r)e KT, (3.3.1)

In order to calculate the Coulomb and exchange kernel of the BSE, the next step is to Fourier
decompose the product

Ui (D) i (1) = g (0)e T () (3.3.2)
= L ie (GG (3.3.3)
G

As such, the Fourier coefficients of the above expansion can be calculated as

1 i(k—k —G)or
L mi (G) = Q f Yy (k—k'-G) Yk’ AT (3.3.4)
1 , '
_ 6 fw:kel(kk 7G)'rwmk/dr7 (335)

where the latter integral is taken over all space and the volume is correspondingly large, while

both are still confined to multiples of the unit cell. Now, since elk—K'=G)r j5 g local operator,
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equation (A.2.19) can be used. The integral then becomes
1 Ak —G)-r
Lemi (G) = Q N e [T (3.3.6)

- [ D enie - a)c@)
2

£ 20 2 B B e (€06 e TS g,) — (G =g ) |

(3.3.7)
Likewise, the potential W is also expanded, however, only in 2D Fourier components as

W(r,r') = >0 wiky + Gye =it G =) (3.3.8)
&),Gy

with s limited to the first Brillouin zone. The Coulomb or exchange kernel can now be written
as

akeatbrier | W) [Vaaptsrsy = D, D, wk) + G laka sis (Ga ) Ik, ok (G6)
k.G Ga,5,Gr.5
% JJ\ei(k[g—ka+Ga5+R|+G)'I‘ei(k(g—k»y-i-G.y(;—KZ—G||)~I'/d3rd3r/’

(3.3.9)

where the integrals demands G,s and G,s to have a z-component equal to zero, since the
potential W(r,r’) has been expanded in 2D. The only terms of the sum, which will yield a
non-zero result are those who satisfies both these conditions:

kﬁ—ka-i-Gag-l-R”-FGH:O,

(3.3.10)
k(g—ky-l—GM;—K,” _GH =0.

The limitation of k| being restrained to the Brillouin zone, results in s cancelling with the k’s,
yielding
(ka —kp) = k) = (ks — k),
Gag = *GH and Gﬂﬂj = G”
By defining V45 := <¢a,ka¢7,kw ‘ W(r,r') ‘ wg’k5¢57k6>, G := G|, and Kk := K|, equation (3.3.9)

now becomes

(3.3.11)

Vags = B w(k + G)lax, iy (—G) i, o1 (G). (3.3.12)
G

Now, for the Coulomb potential, o and 3 will be the valence bands v' and v, respectively, while
~ and § will be ¢ and ¢/, respectively. Setting k = k' — k, the potential becomes

V'U%O’?CLC/ = QQ ZwCOU(K’ + G)Iv’k',vk(_G)Ick,c’k'(G)‘ (3313)
G

For the exchange potential, & and ~ are the valence bands and 5 and ¢ are the conduction bands.
This consequently means the Bloch phases will vanish, since k, = kg and k, = kg, such that
k = 0. For the exchange integral the term with G = 0 can advantageously be removed from the
sum, improving numerical stability, meaning the exchange matrix elements becomes,

Vi ey = 0D Weae G) e ene (— G) Launc (G). (3.3.14)
G#0
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It’s worth noticing that Ik, gk, (—G) = ngﬂ ak,, (G). In the case of only looking at singlet
states, that is ignoring spin-orbit coupling, the Hamiltonian matrix elements can be determined
by [22, eq. 18.4]. Inserting the Coulomb and exchange kernels then gives

kK
Hy o =ESX) — 02 2 Ly oic(—G) L 1 (G)wcou(k — K + G)
(3.3.15)
+ 292 Z Iy'k’}dk’(_G)Ick,’uk(G)wexC(G))
G#0
where EZ( 2]1;) (EJ (k) — i",(k))ék?k/éi’i/éj,j/. Furthermore, one can easily introduce here the

two band approximation, v' = v and ¢ = c.

3.3.2 Including Spin-Orbit in the Bethe-Salpeter Equation

The SO-BSE super matrix elements are given as equation (2.3.23), which in the formalism
derived in this section is written as

r(kk') _ VCoul 4 Vexc C (k k') C(kvk') exc 7]
vivrerch CAZYIA viciervr vjvpercy crc)vivy vic|crvr
KK KK Kk k
7<1(} . C) E(, ) L V([)oul, , 0 C( )
erch CRTIOTA vivcpch erc)vjvy
)
C(k K ) 0 E(k,k’) _ VCoul _é—(k k')
chvTvT vivreyc) ”,TUTCiCi vivreyc)
exc C(kak/) C(k k) (k k') VCoul exc
B vicie v, e chvjvy CATE “l”lcl% vivepc] vicjepvy |

(3.3.16)
where CZ( i J = ({'|hsoli) Oy 0557, with the braket being given as equation (3 . Furthermore,

X . . .
the terms Ei(,ijj,) are defined as in equation ([2.3.22)), that is

(kk) _
By =

(B (40) = B2 850055 — (i | hso | i) 8150 + (3| hso | 1) 5] Ber- (33.17)

A consequence of including spin-orbit, is that one must include more bands of opposing parity
for a good result, due to spin hybridisation. An example of this can be seen in figure
When comparing with figure it is obvious that spin hybridisation is largest when two
bands of differing parity intersect. Furthermore, it can be seen that there is little to no spin
hybridisation around the K-valley for MoS,.

3.3.3 Calculation of Exciton Momentum Matrix Elements and the Dielectric
Response

With the use of the expression from equation (2.3.95)), one can calculate the optical properties
of a many-body system, if the single-particle momentum matrix elements are replaced by the
many-body momentum matrix elements, given by the operator

P=> > 0.a), Pula)=—5 (Ve 9™ +e79V,). (3.3.18)
o n=1

Since the many-body operator is just a sum over single-body operators and there is one difference
between the ground state and each of the basis states, the momentum matrix elements can be
written into a weighted sum

OPlezey = 31 DT Wk (vko | p(q) | cko”) Goar. (3.3.19)

v,c,k o,07
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Figure 3.3.1: (a) Band structure for MoSs excluding spin orbit but with parity displayed. (b)
Band structure of MoSy with spin-orbit interaction. The shade of the graph represent the
absolute value of the z-projection of the spin, |o.|. A low value for this, means that states of
differing spin hybridise.

We have deliberately chosen not to resolve the spin Kronecker delta, such that the momentum
elements match the basis of our BSE calculation. Naturally, for ease of notation one could
resolve the o’-sum using the Kronecker delta. The exciton wave function is normalized as

PN Sl (3.3.20)
v,c,k 0,07

cko

Is is now possible to convert the true exciton wave function coefficients W', ” ', into the exciton

wave coeffeicients for our chosen grid points, k. This is done with the usual conversion:

712
DIPHIESAE DI I [ R s

v,c.k 0,07 v,c g,0' k! o0’

2
Ue K o
v K.,o

AKLAK). (3.3.21)

This conversion emphasizes the importance of the chosen amount of k-points. Now, due to the
normalisation of the calculated wave function on the &’ -grid, we have

Ck/ /
> Z are =1, (3.3.22)
v,c,k’ 0,07
where a®%7 is the coefficients calculated on the k'-grid. For ease of notation, we’ll return

v,k o
to denoting k' as k, such that k now denotes our choice of k-point grid. Setting equation
(13.3.21)) equal to equation (3.3.22)), and using that both sums run over k, where the phase of the

coeflicients can be arbitrarily chosen, then

c,k,o’ c,k,o
poke ( S0 Ak Ak, (3.3.23)

This then turns equation (3.3.19)) into
Py = (0|P|exc) = Z D alwe (ol p(a)lew) door/ Dbz Aky. (3.3.24)

v,c,k 0,07
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For the purpose of calculating the in-plane tensor components of the dielectric response, we need
only the coordinates along x and y. Furthermore, we can approximate ¢ = 0, such that

A A c.k.o’ A~
<0|ny\exc> = W Z Z aq}it:o' <Uk|pxy‘ck> 600/ V Aka}Akya (3325)

v,c,k 0,07

where p,, is either the z- or y-coordinate of the p(q) — P(0) operator. Now, by taking the
absolute square of equation (3.3.25)), one will obtain

- A
|<O|ny‘€$c> ‘2 = 477r2 ’PS,acy‘2 > (3.3.26)

where

’ 2
Poay = ’Z N al% Y Coelpaylew) Sror| AkaAky. (3.3.27)

v,c,k 0,07

This means the susceptibility can be written as

_ e’n?A 3 | Ps.|”
2m2eom?Q < Es [EZ — h?(w + )2

sz(w) (3.3.28)

and since we are working with 2D materials, and are thus interested in the 2D susceptibility,
A and  will now cancel. Furthermore, due to the symmetries of the TMDs in question, we
require xzz = Xyy, thus one can advantageously calculate the average of these in order to reduce
numerical errors, that is

e*h? |Ps|?
xx = N ; 3.2
Xazyy (@) 2m2egm? ZS: Eg [E?q — h?(w + ’LF)Z] (3.3.29)

where

(3.3.30)

3.3.4 Numerical Detail Concerning the Bethe-Salpeter Equation

As seen in equation , it is necessary to calculate the product between plane wave coeffi-
cients, where one of the two has its argument shifted by an in-plane superposition of reciprocal
lattice vectors. However, when using plane waves in GPAW for the pseudo wave functions, the
plane wave bases at different k-points are not guaranteed to be the same. Explained in another
way, the pseudo wave |1 consists of N plane waves, while |1ﬁmk/> constitutes N’ plane waves.
As such, to calculate the overlap between the states, they must be put in the same basis. This
is implemented by first finding the unique G’s collectively for the plane wave expansion of all
pseudo waves. Then, each state is sorted to match this basis. If at a certain G the pseudo wave
in question doesn’t have a matching plane wave coefficient, the coefficient is simply defined to
be zero. Another step, that some may choose to include in BSE calculations is to sort the states
according to parity. The parity operator, II., can be defined as

ﬁz ‘wnk(-f:ya'z» = ’wnk(xa%_z»' (3'3'31)

We only check for parity inversion of the z-coordinate, since states of opposite parity will be
unable to have their in-plane dipole matrix elements couple, if ¢, = 0. This is a good approxi-
mation, since the momentum of photons is very small. Naturally, we can only check the parity
of the pseudo wave functions. However, the criterion of having either odd or even parity applies
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at every spacial coordinate, but outside the augmentation spheres the pseudo wave functions
become the true wave function. As such, checking the parity of the pseudo wave functions is suf-
ficient. Due to the parity operator having eigenvalue +1, numerically we merely need to check if
the pseudo wave functions are odd or even with respect to z. In figure the parity-sorted
band structure evaluated along the path I' - M — K — I' can be seen without spin-orbit
included. If spin-orbit coupling is not included in the BSE calculation, the memory-usage and
computation time can be severely reduced by including band parity. But, since the spin-orbit
operator couples bands of differing parity as well, this is not a viable option in our calculations.
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Figure 3.3.2: Reciprocal space with G’s of equal length highlighted by circles. Blue lines cor-
respond to G’s that have a length equal to some integer multiple of the length of a reciprocal
lattice vector.

Another important subject, when performing BSE calculations, is the G sum seen in equation
(3.3.15). Due to the Keldysh potential in the Coulomb term, G’s of increasing absolute value
contribute less to this term than small ones. A similar argument holds for the exchange term,
however the rate at which the G’s converge is slightly slower here. Therefore, when performing
the G summation, the terms with greatest impact are those with the smallest norm. In figure
G’s of equal length can be seen. The blue ones are those G’s with a length that is simply
a multiple of the length of a reciprocal lattice vector.

It is also important to notice, that overlaps such as I,/ ,,(—G) includes a G-shifted plane
wave coefficient. Since our basis does not consists of all possible G’s, larger values of G will
decrease the number of plane wave coefficients that contribute to the overlap. As such, the
contribution to the two potentials in the BSE would also weaken for large G’s due to this fact.

Convergence with respect to k-points

Naturally, we would like to use as few k-points as possible in order to decrease the time and
memory usage of the calculations. To achieve this, seven different DFT-calculations have been
performed, ranging from 18 x 18 k-points to 54 x 54 k-points. All DFT-calculations have been
performed using the PBE exchange correlation and with a cut-off frequency of 800 eV. Then,
BSE calculations were performed with G-radii corresponding to include 37 G-vectors, using
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two valence bands and four conduction bands counted with spin-orbit hybridisation, and with
a screening length of ro = 2way, [22], where a,, denotes the in-plane static total polarisability.
This polarisability is extracted from the C2DB databse. In figure[3.3.3] two different convergence
checks are shown. Figure shows the binding energy, Fj, as a function of the number of
k-points. The binding energy is calculated as

Ey, = E, — Ex, (3.3.32)

where E, denotes the fundamental bandgap, and Ex denotes the lowest exciton energy. As seen
from the parameters of the exponential fit to data points, the binding energy should converge
towards 0.55 eV in the limit of very high k-resolutions. In figure the 24 lowest exciton
energies are shown as a function of k-resolution. It should be noted that the states are degenerate.
At a resolution of 36 x 36 k-points the binding energy differs by <1% from that found using
54 x 54 k-points. Moreover, the exciton energies shown here deviates <2%, while the squared
absolute of the bright dipole matrix elements are off by up to 18%. However, at 42 x 42 k-points
this deviation is down to about 6% compared to 54 x 54, which suggest that it converges rather
rapidly with respect to k-density. However, at the A excitonic resonance the absolute squared
bright dipole matrix elements deviate <2%, when comparing a resolution of 36 x 36 to 54 x 54
k-points.
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Figure 3.3.3: (a) Convergence of binding energy with respect to k-density fitted with an expo-
nential function. (b) Convergence of the 24 lowest exciton energies with respect to k-density
displaying the absolute square of the (bright) corresponding dipole matrix elements as marker
size.

An important aspect of the BSE calculations, and therefore also of the DFT calculations,
is that the two fundamental excitons, A and B, are localised at the K-point, which in basis of
the reciprocal lattice vectors has coordinates (1/3,1/3). These excitonic states are displayed in
section [£.2l We choose the k-points such that they are distributed symmetrically around the
high symmetry points - especially the K-point. As evident from figure and the coordinate
of the K-point, this can only be done by having k-points distributed in multiples of three (or six
if you include the M-point) along the reciprocal vectors.

Ultimately, we have chosen a k-resolution of 39 x 39. At this density, which is a multiple of
three, the BSE can be calculated at decent speeds without exceeding the threshold of available
computer memory. Moreover, finding eigenvalues of m x m-matrices scales with m?, which
means memory usage and computation time quickly can get out of hand.
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Convergence with respect to Cut-off Energy

In figure the binding energy and the 24 lowest exciton energies are displayed as a function
of the cut-off energy. These calculations were performed on a 39 x 39 k-point grid using 4 x 4
spin-orbit hybridised bands and 37 G-vectors.
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Figure 3.3.4: (a) Convergence of binding energy with respect to cut-off energy. (b) Convergence
of the 24 lowest exciton energies with respect to cut-off energy displaying the absolute square
of the (bright) corresponding dipole matrix elements as marker size.

It seems the BSE calculations converge even at about 200 eV, where the exciton energies differ
<0.1% from those found at a cut-off energy of 800 eV. Moreover, the excitonic momentum of
the bright states differ by <0.5%. At a cut-off energy at 600 eV, the binding energy, excitonic
energies, and absolute squared dipole matrix elements all deviate <0.01%, compared to 800
eV. For the sake of ensuring that the interpolation method is reliable, which is discussed in the
following section, we have chosen to keep our cut-off energy at 600 eV. Higher cut-off energies do
not severely increase the time or memory-usage of the BSE calculations in the PAW formalism.
The time and memory-consuming part is calculating the PAW correction to the overlaps.

Convergence with respect to G-radii

In figure the binding energy and the 24 lowest exciton energies can be seen with respect to
the amount of G-vectors included in the Fourier decomposition’s of the BSE, as seen in equation
(3.3.3)). This can be compared to figure These calculations were performed on a 39 x 39
k-point grid, using a cut-off energy of 600 eV, and 4 x 4 spin-orbit hybridised bands.

It seems decent convergence is reached when 19 G-vectors are included in the Fourier decom-
position, which is also the amount of G-vectors, we have chosen to include. Compared to using
61 G-vectors, the binding energy is barely different, the excitonic energies deviate <0.1%, and
the absolute squared bright momentum matrix elements deviate <5%. It’s worth mentioning
that BSE computation time and memory usage scale somewhat linearly with increasing number
of G-vectors.

Convergence with respect to Bands

Another subject, which is quite important when calculating the Purcell effect for a 2D layer is the
sheet conductivity. In figure the sheet conductivity is displayed with respect to the number
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Figure 3.3.5: (a) Convergence of binding energy with respect to G-radii. (b) Convergence of the
24 lowest exciton energies with respect to G-radii displaying the absolute square of the (bright)
corresponding dipole matrix elements as marker size.

of bands included in the BSE calculation for MoSs. The calculations were performed using 19
G-vectors, 39 x 39 k-points, a cut-off energy of 600 eV, a dampening factor of AI' = 0.04 eV,
and finally @ = 0. In particular, the figure shows the importance of including an extra valence
band. Clearly, this increases the sheet conductivity at the A exciton peak, which is the essential
value(s) used for calculating Fresnel coefficients of a conducting 2D layer.

1 1.5 2 25 3 3.5 4
Photon Energy [eV]

Figure 3.3.6: Optical sheet conductivity with respect to number of bands displayed as v x c.
Each band includes two spin-orbit hybridised bands.

Due to the computing power and time required to perform BSE calculations with an increasing
numbers of bands, we will settle with showing and using conductivities found using 4 x 4 spin-
orbit hybridised bands.
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3.4 Bethe-Salpeter with Center of Mass Momentum

Of particular interest, when determining the spontaneous emission from a material, is the exciton
dispersion for their center of mass momentum. Adding a center of mass momentum Q to the
BSE simply amounts to replacing the conduction state |c,k) — |c,k + Q) for all conduction
states due to conservation of momentum. Applying this substitution to equation and

(13.3.14) gives

‘/quocié/(G) = Z wcou(k/ —k+ G)Iv’k’,vk(_G)IckJrQ,c’k/JrQ(G)v (341)
G

vecxcgv/<G) = Z weIC(G - Q)I’Uk,CkJrQ(_G)Ic’k’+Q,v’k’(G)' (342)
G

This means that for each Q, one needs an additional set of wave functions, calculated by the
DFT, at the point k + Q, meaning there are three ways of handling this.

e Method 1: Limit oneself to Q = k — k’ for points k, k’ already in the k-grid for the DFT.

e Method 2: Calculate the DFT anew for each Q # k — k' for points k, k" already in the
k-grid for the DFT.

e Method 3: Apply an interpolation scheme to attain the wave functions and energies at

k+Q

Of these three methods, it is the third method which has been implemented, due to it having
the versatility of method two without the need to evaluate a lot of timely DFT calculations.

3.4.1 Interpolation of the DFT-Quantities

Due to the wave functions having a random k-dependent phase, one must apply a phase correc-
tion in order to correctly interpolate these quantities. In particular, the wave functions are given
in a plane wave basis with coefficients given as Cp,x(G). Thus, in order to correct the phases, we
take the shared largest value for |Cp,x(G)|, as shared for all n and k, calling the corresponding
maXghared(G) =: Gmax. The next step is then to require Cpi(Gmax) to be entirely real and
positive by dividing through with e?@8(Cnk(Gmax)) for all of the planewaves Cynx(G). Likewise
the planewaves C,1/(G) are divided by the phase ¢’ *8(Cmi(Gmax))  This same phase correction
is applied to the PAW correction, by dividing through by the same phase for the quantities
AL

For the interpolation itself, there are a couple of different approaches. A general approach,
which is viable to almost any k-grid, is to make a Delanuay triangulation on the grid-points
and interpolate using this. This approach does however have some limitations as to which
interpolation schemes are applicable. Another, much slower, approach would be to use regression
and the least squares method. However, since a standard quadratic Monkhorst grid is being
used, then the k-grid will be a standard meshed grid in the basis of the reciprocal vectors.
Thus by switching the basis to the reciprocal vectors, one is able to apply gridded interpolation
schemes, which are much faster than a regression approach. In particular, the ’spline’ scheme
has been chosen, as implemented by the SciPy package for python.

To avoid doing extrapolation, the interpolant grid, has been chosen to range from [0, 1]G;
and [0, 1]G2, meaning the states at the opposite boundaries of the grid are the same. This is
then interpolated to a new grid, used for the BSE, where every state is unique. An issue arising
due to interpolation, is that the introduced error means that states are no longer normalised,
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which is solved by renormalising the interpolated states. To make this approach work, one has
to utilise the fact that for the plane wave expansion of the wavefunctions

Z k+Q ol (G+k+Q)r 2 k+Q (G + G') i(G+k+Q+G’)r (3.4.3)

meaning that by shifting the state by entire G vectors, the wavefunction stays the same, except
for a transformation to the plane-wave basis.

To make this interpolation scheme yield good results, the interpolant grid is required to have
a high enough resolution, for all the involved quantities to interpolate nicely. In figure the
()-dependence for different interpolant resolutions can be seen. The relative dipole oscillator
strength is a variable proportional to the absolute square of the parallel or perpendicular pro-
jection of the momentum elements on Q. The material WSey is shown here, since it has shown
to converge the slowest of the TMDs in question, due to having the most in-continuities. Based
on this, the interpolant resolution of 118 x 118 k-points was chosen for use in the presented
results, since lower resolutions shows bumps on the linear and parabolic band.
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Energies and Momentum Elements for WSes, 40x40 k-pts interpolant grid
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Figure 3.4.1: The @-dependence of the energies and momentum elements at different interpolant
resolutions. The squared projection of the parallel (perpendicular) momentum matrix elements
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upon Q is shown by the size of the circles (crosses).
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Choice of Q-Grid

In theory, one must tabulate the entire irreducible Brillouin zone to attain the exciton band
structure, however we find that for small values of (), tabulating in a single direction is sufficient,
since there is very little to no angular dependence, as can be seen in figure In addition, it
can also be seen that the momentum matrix elements for the upper linear band is purely parallel
to Q, while it is purely perpendicular to Q for the lower parabolic band.
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Figure 3.4.2: Lowest exciton energies and momentum element at different values of Q, as well
as the squared projection of the parallel (perpendicular) momentum matrix elements upon Q
shown by the size of the circles (crosses) for MoSs.

3.5 Emission for 2D-Materials

The emission rate for a 2D-material has been derived in section and is given by equation

(2.3.109)

62 PN . w
2p(Q) = 5 zeg 3 d b0y [Pl (T =) Posc (2~ ) o
ql’qy
2 (3.5.1)
9z w _ 9 9
=Ty S(q) 0 (% — q) da- PeaccHQ’ with Fon.
§0(2—q)dg. P L Q 2weghm?cA

There will therefore be two scenarios for ¢, namely propagating waves (g, € (—00,0)) and
evanescent waves (g, € i(—00,00)). Due to the delta function being an even function, the
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integration bounds can be changed to ¢, € (0,00) by multiplying the integral by 2. Thus,
calculating the integral for propagating waves by substituting ¢, = 4/¢% — Q2 yields

© gz 5 Y —q)dq PexCHQ
0 (E_q) q exc Q

_opy {F P Qand Qe [0,w/e) (3.5.3)
i Pech_QandQE[O,w/C)‘ a

It should be noted that in this case, P, is restricted to the xy-plane with no z-component.
Returning to Pe,., it is given as

A c o’ ~
Pexc = W 2 Z av’,ll?,a <’Uk|p(Q)‘Ck> 500’ V AkxAkya (354)

v,c,k 0,07
as in equation (3.3.24)). Here p has been written as a function of simply Q, that being the

in-plane component of q. This is justified due to the relation ¢.(w,q) = 4/ ‘Z—; — ||lq||?, where w
is assumed constant for the optical response around exciton A.

Assuming a pseudo-equilibrium for the excitons means their distribution should follow a
Boltzmann statistic. In addition, due to the large energy difference between the two lowest
exciton energies and the remaining excitons, one can safely assume that it is only these two
excitons which are occupied at room- and lower temperature. Thus, the mean emission rate is

yp—

- X (FI(Q)G_EI(Q)/kBT + Fz(Q)e‘E2<Q>/’fBT) : (3.5.5)
1 2

1Q|<w/c
with F; and Fy being the exciton energies, I'y and I'y the emission rates, and Z; and Zs the
partition functions for the two lowest excitons. The sum over the photon momenta runs over
Q@ < w/e, since a value higher than this would correspond to an evanescent wave. The expected
lifetime can, from this, be calculated by simply using (7) = 1/(T).

3.5.1 Quadratic and Linear Dispersion

The dispersion for the two lowest excitons in TMDs is generally that one is linear and the other
parabolic for small @, due to them being localised in the K-, and K’-valley. Defining exciton 1
as the parabolic and exciton 2 as the linear

h2 2

E = ¢ ,
2M

M and V are obtained by fitting Fy and Es to the BSE results. A useful definition is then

Ey = WV Q. (3.5.6)

M= MZQBT’ Yo 1= kz};- (3.5.7)

The partition functions are now
7, = %e—;vw _ 27‘:17%, (3.5.8)
Zy = %}eWQ = 2;4722 (3.5.9)
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Furthermore, it is assumed that I'g(Q) ~ I'¢ is constant for all states |Q| < w/c, then

2m (i ~1nQ)? —3Q
() =— ( [(Qe 2% +T'5(Q)e™ ™ (3.5.11)
A\ +73 |Q§/6< )
1 (93 )JQWJ“’/C ~1mQ)? —712Q
~ 1 r ;n@” 1 2Q) QdQde. 3.5.12
o (7%% ) (r@e 2(Q)e?) QdQ (3.5.12)

We may consider the linear (FE)Q)) and parabolic (Fél)) part separately, for the separate cases of

P,1lQand P, || Q.

Parabolic, P,, L Q:

w/e 27-1/2 w22
Fél)f 2[1 B (QC) ] e’ Qag — TV VAT 5
Y1c€

() e

0 w
2
(1) 2w
Parabolic, P, || Q:
w22
wje 21172 ex/Te” 22 erfi (M)
F(()l)f 2[1 — (QC> ] e—%(%Q)QQdQ _ QI‘(()l) iz . 2 - V2c
0 w g w“n (3.5.14)
2
~ v
~ FO @7

where erfi(x) denotes the imaginary error function.

Linear, P,, 1 Q:

o[- ()] = 1 () 0 ()]

0

2
~ T [ 1 _ W] (3.5.15)

Z T
~ Fémg
c
Linear, P, || Q:
w/e 271/2
[ (2] o
0 w
90,2 2 2
_ F(()Q)% {_ me (%) PN (%) " 7;02[1 (%) _ 7T202L1 (W)] (3.5.16)
c 2wy c 2wy c w5 c w5 c
2w?
~ TP
0 3¢2”

where I, (x) denotes the modified Bessel function of the first kind and L,,(x) denotes the modified
Struve function. The integrals in the above calculations have been carried out using different
CAS-tools. A general observed result for the materials being examined in this project, is that
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the exciton with linear dispersion is polarised almost entirely parallel to Q, and vice versa for
the parabolic one. Thus, the expectation value for the emission rate becomes

2
(T ~ 7”2 - [2 4 2pe )] (3.5.17)
V43 c 3
Another interesting expression to derive, would be one for the spectrum as a function of Q. In
practice, the normalised spectrum is given by the normalised summand of equation ([3.5.11])

[(Q) _ Ii(Q)e @ 4 Ty(Q)e @
ro) T1(0) + I'2(0) (3.5.18)

29-1/2 291/2
O € T € B I
. (3.5.19)

Y+

3.5.2 Numerical Integration of Dispersion

In practise I'g will depend on Q, especially for large values of Q. In addition, the assumption that
the linear dispersed exciton is polarised entirely parallel to Q and vice versa for the parabolic
dispersed exciton, is not guaranteed for non K-valley bound excitons. Finally, at temperatures
above a few kelvin, the partition function should be integrated numerically, since the linear
dispersion becomes non-linear at @@ » w/c. To improve upon this, one will have to solve the
integral in equation numerically. When doing this, one can also easily include additional
bright bands, since no assumptions of the dispersions will be made. The partition function can
be calculated using a simple trapezoidal numerical integration method, where it is thus required
that the BSE has been evaluated for enough values of Q. In addition, we still assume the
angular dependence of E,(Q) to be negligible, thus assuming that the BSE has been solved for
M, different values of @ € [0, Bw/c|, for some sufficiently large number B, the partition function
is
Mi—1 —Fn(Qi+1)/ksT | o—En(Q:)/ksT 2 = _ (2
7z - A Z e~ En(Qi+1)/kBT 4 o—En(Qi)/kB Q2. QZ (3.5.20)

2r 4 2 2

The upper limit on @ is set to Bw/c, since the corresponding energy at this point should give a
very low contribution at room temperature and lower. It is worth to note that at higher values
of @, the energy will go back to the case of Q = 0, however surpassing the energy barrier to get
there will be very unlikely, thus these states are assumed impossible in a pseudo equilibrium like
this. As a result of this, the value of B in this project is around 150.

Numerically calculating is done by assuming that T';(Q,0) depends on @ as a step
function and then solving the remaining integral as before. Furthermore, an interpolation scheme
has been implemented to make sure the steps are small enough for the integral to be accurate,
which becomes important due to how large the T'(Q)-values get at @ ~ w/c. Once again there
is assumed no angular dependence. Assuming the BSE has been solved for My different values
of @ € [0,w/c] the thermally averaged emission rate is

) = DD Tu(Qe Pr(@QrksT (3.5.21)

2 Zn S Q|<w/e

w/c
%ZAZZ f I (Q)e B (@/keTQaQ (3.5.22)

10

M2 1 —-En, Qz 1)/kBT En(Qz /kBT 2 — 2
n(Qit1)e " +I'n(Qi)e Qi1 — @
%Z 7 § § 5 2 . (3.5.23)

IZ
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The difference between the simple model (I'p-model) derived in the preceding section, and
this model for (I') for MoSs can be seen in ﬁgure For the rest of the project, the 'numerical’
model will be used, since it should be more accurate, and does not require significant computation
time or memory usage.

Lifetimes of TMDs vs Temperature

= Numerical approach
Ty Model

Lifetime [ns]

0.0

2
o

0 50 100 150 200 250 300

Temperature [[K]

Figure 3.5.1: (1) for MoSs as a function of temperature.

3.6 Purcell Enhancement

As seen in the previous sections, a given center of mass momentum, AQ, always induces a
response in the form of a dipole moment, which is either parallel or perpendicular to the mo-
mentum. Moreover, the response is independent of the direction of Q, which was shown in figure
B-42] Thus, letting Q = Q,y, implies that the dipole moment is oriented along either & or .
Using equations and , the direct dissipated power can be found as

1
_ powflp? JReqr g #1LQ

4 Re{%#f, nllQ

W (Q,) (3.6.1)

where it has been used that ), = 0. Similarly, the indirect dissipated power may be found as

() ;
(i) pow’ | pl? Re{ e kZ1d}> nlQ
WH@) = 4 P (Qy)k:1 2ik.1d ' (3.6.2)
Re{—Te : }a pllQ
Ultimately, this means that the Purcell effect, P(Qy), can be found as
Re{%eQikZld} Re{ T(p)(gfy)kZ1 eQikzld}
011z 0 (3.6.3)

P(Qy) =1+ Re{

A )

However, the expression can be reduced further. We consider only modes where Qf/ < k2, which
means that Re{k,1} = k.1. Moreover, it is worth noticing that k?; = k% — QZ. The expression

1
k21
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is then reduced to
P(Qy) =1+ Re{r(s)(Qy)eZikﬂd}(Suy,g — Re{r(p)(Qy)e%k“d}%bo. (3.6.4)

This is then the Purcell enhancement of a single mode @,. As such, the emission rate, and thus
the lifetime, is modified by

[(Qy) = P(Qy)T0(Qy)- (3.6.5)

In order to calculate the thermally averaged emission rate in an inhomogeneous environment,
I',(Q) in equation (3.5.23]) should then simply undergo the substitution I',,(Q)—P(Q)I',(Q).
3.6.1 Choice of Geometry

In order to calculate the Purcell effect, the dielectric geometry must first be established. We
have chosen to examine an environment such as the one seen in figure 3.6.1

&3

&

@ Source
N -

Figure 3.6.1: Dielectric environment considered in this project. The emitting layer consisting of
the TMD should be assumed infinitesimally thin for this purpose.

Formally, this can be written as

€1, 20 >=%2
e(z) =<e, 20—d>z>z. (3.6.6)

€3, z2>2z9p—d

From here, we will assume that €1 = 3. We need an effective reflection coefficient for the
entire material, if we are to calculate the Purcell effect. If the ”source” is located above but
infinitesimally close to the emitter, the reflection coefficients can then be calculated as

(Ef’f:) = ’I"és’p 2iqz1d Z ( (s:p) ésap QitZzld)n, (3.6.7)

The reflection coefficients are found as:

TS) _ WHoT s ’ r%’) _ qzlas(;’ffo) -, (3.6.8)
24,1 + WhoOs 2q.1€1 + qz105(weo)
423 — 4zl 423€1 — qz1€3
T%) _ % z ég) — 2z3°1 7 4z1°3 (3.6.9)

Q3+ Qa1 ¢:361 + qz1€3
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where equation (3.6.8) agrees with section m Equation (3.6.7) can be rewritten as
(s,P) \2iq.1d
(s:0) _ roy e

. _ _ 3.6.10
off T rg@)rg;vp)eQiq,zld ( !

Finally, the @-dependent Purcell enhancement should then be corrected, since exp(2ig.1d) is
included in the reflection coefficients (thus letting zyp = 0), such that

2+ Re{réjc)f(Qy)}éﬂy,o - Re{rg})f(Qy)}(Suz,o
5 ;

where the division by two arises due to the material emitting on both sides.

(3.6.11)

P(Qy) =

3.6.2 Enclosed Cavity Geometry

Another interesting geometry would be a fully enclosed cavity as illustrated in figure[3.6.2) where
multiple reflections will take place, meaning one would expect much bigger effects from the 2D
material. Consider the geometry in figure [3.6.2] here the upwards and downwards reflection

@ Source

Figure 3.6.2: The cavity environment considered in section m The emitting layer consisting
of the TMD should be assumed infinitesimally thin for this purpose.

coefficients are

0 2id3qz1
. . n /’r' e z
2id! * 2id 13
rup = r3e” %91y (Tdownﬁ?»e 3q21> = % 2id3qr (3.6.12)
= I — 73 wn 13677434
o 2id2qz1
. ) n r19€ z
_ 2id2qz1 ( * 2ld2qz1) _ 12
Fdown = T12€ > (e = : 3.6.13
own ! up 1— ,,.:pr12621d2q21 ’ ( )
where
0 2 2id
. , n t5r13est s
* 2 2id Z * 2id. E"13
Tap =TE + tEr13e 39z1 <7’down7"13e 3Qz1> =rg+ 1% rlgeQidsqzl s (3.6.14)
n—0 down
0 2 2id
. , n t5r10e4' 21
% _ 2 2idoq.1 % 2id2q:1 _ E'12
Tdown = TE + lErice g E <7’up7°12€ : =rp+ 1— Sidago1” (3.6.15)
= ruprlge
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Here tg is given as equation (2.4.21)) and (2.4.30) for s- and p-polarization. We have solved
these equations for rj  in section where the following expression was derived:

o = o 1ETC P £ YD (3.6.16)
Tdown = —2T1362id3q21 ’ -0

where

4 (1 _ TET1362id3q21) tQET12T1362iq.zl(d2+d3)

R (3.6.17)

2id 2
Dy = <1 — rgrige” 3qZ1) —

It should be noted here that when considering the limit of €1 = €9 = £3, only the plus solution
gives a finite answer, namely

lim Dy =1— 2rgrzedze, (3.6.18)
r13,712—0
. % -1 - TETlge%quZl i (1 — TETlgeQidwﬂ)
lim Tdown = 2id y (3619)
r13,712—0 —2r3e2td2qz=1

which in the case of the plus solution yields lim,,; r,—07],wn, = TE, as expected from equation
(3.6.15)). The exact same derivation can be done for r¥ , and can therefore be expressed as

up’
-1 - T’E’r’1262id2q21 + \/E
Thp = oyt , (3.6.20)
where
, 2 4 (1 — TErlgeQidN“) 12,1197 3020421 (d2+ds)

D, = <1 - 2“12%1) - b 3.6.21
u TET12€ 14+ TET13622d3q21 ( )

The @-dependent Purcell factor is then calculated using

2 1+ Redr® (s) 5 o —Relr® () S
+ € rup (Qy) + Tdown(Qy) Ny:o e Tup (Qy) + Tdown(Qy) Nz,o

P(Qy) = . (3.6.22)

2
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4 Results

In this section, we will show results based on the calculations presented in the preceding chap-
ter. In particular, the electronic band structures based on the DFT calculations and spectra
calculated from the BSE will be presented and described. Following this, the excitonic emission
oriented calculations will be presented, herein lies the energy levels and momentum element
projections for excitons with a center of mass momentum ¢ # 0, proceeded by the lifetimes
derived thereof. Finally, these results will be used to make a simple calculation for the Purcell
enhancement, and its role on the exciton lifetimes.

4.1 DFT Band Structures for TMDs

In figure the band structures of the four different TMDs are shown. They are plotted
along a path of time reversal symmetry, which can be seen in the flip of the z-spin projection
of the spin-orbit eigenvalues. The figure also shows the stronger effect of spin-orbit coupling
introduced in WSy and WSey, which is due to the increased mass of the tungsten atom compared
to molybdenum. It is worth noticing, that -K corresponds to K’ and -M to M.

4.2 Exciton Results of TMDs

As mentioned in section[3.1], the primary excitons A and A’ are localised at the K- and K’-points
of symmetry. These excitons form the start of the lowest linear and quadratic bright bands in
the excitonic dispersions seen in section In figures [4.2.1a] and [4.2.1b] the absolute value
of the wave-functions/eigenvectors corresponding to the two lowest bright excitonic states can
be seen for MoSs. The BSE calculation was performed using one valence band, two conduction
bands (one odd and one even), and with Q = w/c ~ 1073 A In figures |4.2.1c| and |4.2.1d|, plots
from the same calculation can be seen, but this time excitons B and B’ are displayed, which
correspond to the second-lowest bright exciton energy.

4.2.1 Optical Spectra of TMDs

In figure the sheet conductivities of the four TMDs in question can be seen with spin-orbit
coupling included. All calculations were performed using two valence bands and two conduction
bands. Furthermore, a damping factor of AI' = 0.04 eV has been used in all cases. Moreover,
all calculations were performed using @ = 0, since we found that there is virtually no difference
between using @) = 0 and using some ) smaller than w/c in the optical spectra. The only visible
difference is a small shift in the energies. Using the optical sheet conductivity, it is also possible
to calculate the optical absorbance. The transmittance can be found using |22, ch. 17]

2dw1m{c\/m}>’ e(w) =1 + ZM (4.2.1)

EQWOZ7

T(w) = exp <—
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Figure 4.1.1: DFT band diagrams for the four TMDs considered in this report with a cut-off

energy of 600 eV and 1800 k-points using the PBE functional. The highest valence eigenvalue
is set to 0 eV.

where d denotes the thickness of the layer. The optical absorbance is then found using A(w) =
1 — T(w), which can also be seen in figure [£.2.2]

4.2.2 Exciton Dispersions

In this section, the results obtained by performing the calculations detailed in section will
be presented. In figure [.2.3] and [£:2:4] the calculated dispersion relations are shown for the ten
lowest energy excitons, for low values of (). In particular, a lot of evaluated points are placed
in the region Q < w/c ~ 0.9 - 10_3A_1, since this is of particular interest when calculating the
emission. These figures clearly show the parabolic and non-analytical band for the materials
in question. Furthermore, a polynomial fit has been made for the lowest bright polynomial

band, which has a corresponding effective mass presented under each figure, as calculated by a
polynomial fit

2

Q) = Ep(0) + @5 = By(0) + 1Q? (122)
€ p

= Mp = —2m6f17 (423)

where f1 is the curvature of polynomial fit. For all cases the fit follows the calculated points
excellently, supporting some of the approximations made in section In addition, it can be

50



Chapter 4. Results Aalborg University

Exciton A Exciton A'

|2k, k)l

Exciton B Exciton B'

|2k, k)l

Figure 4.2.1: (a) The wave function of exciton A, which is localised at the K-point, and (b) the
wave function of exciton A’ localised at the K’-point. (c¢) The wave function of exciton B, which
is localised at the K-point, and (d) the wave function of exciton B’ localised at the K’-point.

seen that the non-analytical band only stays linear for very low values of (), explaining the
deviation shown in figure [3.5.1

o1
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Figure 4.2.2: The sheet conductivity and absorbance of (a) MoSsg, (b) MoSes, (¢) WSs, and (d)
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Exciton Energies and Momentum Elements for MoS,
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Figure 4.2.3: Dispersion plots for (a) MoSe and (b) MoSes, fitted with a polynomial fit. The
effective masses calculated as per equation has been added to each plot. The plots also
show the squared projection of the momentum matrix elements upon Q for each point. The
larger the circle (cross) the more optical activity along the parallel (perpendicular) projection.
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Figure 4.2.4: Dispersion plots for (a) WSs and (b) WSey, fitted with a polynomial fit. The
effective masses calculated as per equation has been added to each plot. The plots also
show the squared projection of the momentum matrix elements upon Q for each point. The
larger the circle (cross) the more optical activity along the parallel (perpendicular) projection.
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4.3 Emission Results for TMDs

This section will focus on the results of the emission model explained in section [3.5 Figure
[4-3.Ta] shows the thermally averaged radiative lifetime at different temperatures for the different
TMDs. It can be seen that the relation is mostly linear due to the prevalence of the parabolic
band, in agreement with the articles [9, [10]. Figure shows the angular dependence of
emission. It can be seen that this spectrum is largely independent of the TMD in question.

Lifetimes vs Temperature Normalised Emission Spectrum at 300K
—— MoSy 2001/ — MoS,
175 MoSes MoSes
— WS, 1751 —— WS,
150 —— WSey —_— WSey
= 15.0
1.25 %
= 2125
&1 A
e Z100
-E 0.75 E ~
5 7.5
0.50 &
5.0
0.25
2.5
0.00

0 50 100 150 200 250 300 0.0 0.2 0.4 0.6 0.8 1.0
Temperature [K] Q/ Qo
(a) (b)

Figure 4.3.1: (a): Calculated lifetimes for the different TMDs at different temperatures. (b):
Calculated normalised emission I'(Q) /Ty at T" = 300K, as a function of @), where Qnax = w/c ~

0.9-1073A ",

4.4 Purcell Effect on Lifetimes

In figure[4.4.1] the lifetimes for the four TMDs in various dielectric environment can be seen. The
geometry is as displayed in figure with €1 = g9 = 1 and a sapphire reflector with refractive
index n = 1.75. These computations were performed using the Purcell effect procedure described
in section [3.6 However, ¢, and &, used in computing the screened potentials for the BSE are
still set equal to 1. These plots shows the general tendency a substrate close to the layer with
dielectric constant 3 leads to a more extreme Purcell enhancement.

In figure [£.4.2] the lifetimes of the four TMDs can be seen inside the closed cavity config-
ureation shown in figure [3.6.2 Here the bottom-most layer is set as a Bragg reflector of 16
alternating layers of TiOy (n = 2.57) and SiOy (n = 1.46), while the uppermost layer is set
as sapphire with refractive index n = 1.75. The computations were done using the procedure
outlines in section with 1 = 1.
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Figure 4.4.1: The Purcell effect on the lifetimes of (a) MoSs, (b) MoSesz, (¢c) WSa, and (d) WSes
with respect to the distance (d in figure 3.6.1) to a sapphire (n = 1.75) reflector.
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Figure 4.4.2: The Purcell effect on the lifetimes of (a) MoSa, (b) MoSes, (¢) WSq, and (d) WSes
with respect to the distances to the cavity walls (dy and dj in figure [3.6.2). Here the upper wall
is once again sapphire, while the bottom wall is a Bragg reflector with 16 layers of alternating

TiO and SiO.
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5 Discussion

This chapter seeks to discuss the many factors which have played significant roles in calculating
the optical and radiative properties of the TMDs. Furthermore, measurements and calculations
by other groups will be compared to the results obtained in this project and further discussed.
In addition, the models used in this project will be applied to InoSes and CoHy showing the
versatility of the models. Finally, the many approximations and simplifications made in our
model will be discussed.

5.1 Optical Spectra

The optical absorbance of MoSs, as an example, can be compared to the optical absorbance
found from BSE-calculations seen in C2DB [20]. There seems to be a lot of resemblance except
for the C-peak at 3 eV, which peaks sharply to about 70% absorbance in the C2DB dataset.
However, it is worth noticing that the C2DB absorbance was found using 4 x 4 bands and a
cut-off energy of 50 eV compared to 2 x 2 spin-orbit hybridised bands and a cut-off energy of
600 eV in our case.

MoS,, d = 6.5 A MoSes, d=9.5A
300 T T 350 T
——Jung et al. ——Hsu et al.
Our Data, hl' = 0.065 eV Our Data, AI' = 0.06 eV

250 | Shifted, hI' = 0.065 eV || 300 [ Shifted, Al' = 0.06 eV [

200 -
=
3 150
=

100 [

50
0=

1 15 2 2.5 1 1.5 2 25
Photon Energy [eV] Photon Energy [eV]

(a) (b)

Figure 5.1.1: Sheet susceptibility of molybdenum-based TMDs compared to experimentally
obtained data.

Furthermore, it’s interesting to compare our optical properties to experimental values. The
sheet susceptibility is found as Im{x} = 2nkd, where 1 = n + ik denotes the refractive index,
and d denotes the layer thickness. In figures and we have used d = 6.5 A for sulphur-
based TMDs and d = 9.5 A for selenide-based TMDs, since these choices seems to yield the best
results for us. This should be compared to MoSs-thicknesses of 6-7.5 A and WSes-thicknesses
of ~8 A [34} 135]. All TMDs except for MoSe; has been compared to data obtained by G. Jung
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Figure 5.1.2: Sheet susceptibility of tungsten-based TMDs compared to experimentally obtained
data.

et al. [36], where they measure the refrative index of TMDs on sapphire using conventional
spectroscopic ellipsometry. As such, our BSE calculations were performed using &, = (1.76)2,
which corresponds to A exciton resonance [37], but the GW bandgap is still based on vacuum
parameters. As such, a shift is in the energies is expected and accounted for. In the case of
MoSez, we have used experimental data found by C. Hsu et al. 38|, where they measured the
optical response on a SiOs-substrate of varying thickness, and then extrapolated the data to
find the vacuum response. Thus, our calculations were performed using €, = 1, and the data fits
rather well, but a small shift in energy is still needed. For the tungsten-based TMDs, we have
also tried using a I' that varies linearly with w, whenever w exceeds the A exciton resonance,
which seems to yield well-behaved correlation with the experimental data.

It is important to notice, that the refractive index of the substrate also varies with w, which
is not taken into consideration in these calculations. Moreover, we see improved correlation
between our computations and experimental data, when we use I' = I'(w), which to no surprise
suggests that this might be the case.

Another important thing to note is the connection between the linewidth parameter I",, and
the emission rate I'y = %, since broadening effects should be partially connected to the emission
rate. In figure we use ', = 0.04eV/h ~ 6.08 - 103571, this corresponds to a lifetime of
Tw = 1.65 - 1072 ns. Presumably, other factors might play more significant roles in determining
the broadening, such as structural defects, impurities and temperature broadening.

5.2 Exciton Dispersions

In figure and the exciton dispersions and effective masses of the lowest bright excitons
can be seen. The effective masses can be compared to those attained from a more naive approach,
that is, assuming the exciton effective mass is simply the sum of the effective masses of the holes
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and electrons. Thus, using data from [20], the effective masses should be

MoSy: Mz, =0.43+0.53 = 0.96 BSE: 1.40, (5.2.1)
MoSey:  MZ, =0.49 +0.58 = 1.07 BSE: 1.53, (5.2.2)
WSy: MZ, =0.33+0.34=0.67 BSE: 0.867, (5.2.3)
WSey:  MZ, =0.39+0.36 = 0.75 BSE: 0.877. (5.2.4)

For WS, and WSes these results are fairly close to the effective masses obtained by fitting,
however they are significantly lower than the masses obtained for MoSy and MoSes.

In an article by D. Y. Qiu et al. [39], they perform a similar calculation of the Q-dependence
of energy for MoSs. They similarly find a parabolic and a linear band. In addition, their
parabolic fit yields a effective mass of M; ~ 1.4. Furthermore, they explain the deviation
between the naive approach to effective masses and the observed effective masses, by an effec-
tive Hamiltonian, which they fit the ab-initio calculations to, yielding an expressions for the
parabolic- and linear band.

Similar results are found by T. Deilmann et al. [40]. They also perform a calculation for
MoSs, albeit this time including the parallel projection of the momentum elements. The article
once again shows similar dispersions to those of this project, and furthermore the sizes of the
momentum elements seem to agree. They also make calculations for the other TMDs presented
in this project, which all agree with the tendencies of our results.

A few attempts at measuring these dispersions have been made. In particular for WSes, an
article has been published by J. Hong et al. [41], where they use momentum resolved electron
energy loss spectroscopy (¢-EELS) to measure the dispersion. They find a parabolic dispersion
with an effective mass of M ;_ rELs = 0.65, which is significantly lower than the calculated effective
mass. This deviation is expected to be caused by a combination of the silicon substrate the
measurements were made upon and an error introduced by the scissor shift approximation. In
particular, when comparing the DFT to the GOWO calculations of C2DB, the valence band
seems to have a significantly lower effective mass for the GOWO calculation. In an article by M.
Schneider et al. [42], they attempt to measure the dispersion for WSes optically and obtain very
low values of this effective mass. An obvious problem of measuring the dispersion optically is of
course the optical momentum limit, meaning that the curvature of the parabolic dispersion is
insoluble compared to the optical broadening at the effective masses predicted in this project.
Furthermore, an explanation for extremely low observed values of the effective masses could be
the linear bands, as is also proposed in the article.

5.3 Emission

In figure the excitonic lifetimes’ dependence on the temperature, for different types
of TMDs, can be seen. As expected from section the dependence is somewhat linear,
which has also been concluded in different kinds of literature |9} |10, |43]. When comparing our
theoretically obtained lifetimes with the lifetimes obtained experimentally, seen in table our
lifetimes generally undershoot the experimental measurements. Some of this can be attributed
to the fact that our calculations are for TMDs in vacuum, while all experimental data found, is
for TMDs placed on a quartz or a silicon substrate. However, if we were to include effects arising
from the dielectric environment, the calculations would be considerably more intricate. First
of all, the pseudo-energy and BSE calculations would need a screened potential incorporating
the substrate. Moreover, the Purcell enhancement discussed in chapter [2.4] would need to be
included as well. To get a grasp on how crucial the Purcell enhancement is, one should look at
figure where it can be seen that the lifetime can vary significantly with an in- or decrease
in the distance from the reflector.
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Table 5.1: Experimental and theoretical lifetimes of examined TMDs at 300 K. The data needed
to calculate the lifetimes of MoSs, MoSes, WS, and WSe; were found using the conventional
method of time-resolved photoluminescence (PL). When measured upon, MoSy, MoSes and
WSeq were all placed on a SiO9 (n = 1.45) substrate and WS, was placed on a SiOy (n = 1.45)
- silicon (n = 3.96) substrate.

Experimental Theoretical
MoS2 | 2+0.1 ns |44] or 3+ 1ns [17] 1.10 ns
MoSey | 900 ps [45] 1.87 ns
WS, 805 + 37 ps [46] or 71 ~ 248 ps and 7 ~ 800 ps [47] | 0.46 ns
WSey | 4 ns [12] or 4.1 ns [48] 0.87 ns

It is worth pointing out that photoluminescence varies significantly with the defects and
impurities of the sample |12]. Moreover, the calculations of this project do not take the existence
of dark states below bright excitonic states into account. The low energy dark excitons can
significantly reduce the number of bright excitons at thermal equilibrium, and therefore PL
measurements can give an “effective” radiative lifetime orders of magnitude longer than the
intrinsic radiative lifetime of the purely bright excitons [12].

5.3.1 General Defects

There is a significant difference between the perfect intrinsic 2D structured TMDs and the
ones manufactured in practice. Manufactured TMDs will have a number of possible impurities,
which have effects on the electronic properties. The most common structural defect in TMDs are
vacancies [49]. In MoS,, sulphur vacancies will create unpaired electrons, resulting in n-doping
the material, which will form a non-zero density of occupied states in the bandgap. In addition
to sulphur vacancies, molybdenum vacancies may also occur, which will p-dope the material,
and it has been shown that a single sample of MoSs can exhibit both vacancies in different areas
of the sample [50].

Less dominating defects in TMDs are other atomic species replacing vacancies in the lattice,
which can result in further p- or n-doping. Furthermore, since the TMDs can have edges and
ripples on the surface, as well as the TMDs folding onto themselves. Therefore, the TMDs will
not have a perfect infinite periodicity, which will have an effect on the electronic properties [49].
Overall, these defects have been found to result in two effects regarding the excitonic lifetime in
TMDs, namely creating a defect-mediated non-radiative Auger decay process [14], and creating
dark states with a significantly longer lifetime |17, |51]. The first of these effects is usually
counteracted by passivating the chalcoginide vacancies by using either superacid treatment or
voltage gating [13-16]. Furthermore, the second of these defects has been counteracted by
further chemical treatment as shown in the article by H. M. Bretscher [17]. In addition, C. Jin
et al. [12] postulates that for WSey at exciton A resonance, only ~ 4% of the states remain
bright at room temperature.

Both the experimental values for MoSy |17, |44] were measured on a SiOg substrate, using
either a superacid or gate voltage to prevent sulphur vacancies and chemically treated the sample
to prevent dark states. H. L. Pradeepa et al. [44], who found the lifetime to be 2 ns, mechanically
exfoliated the sample onto the substrate, whereas H. Bretscher et al. |17], who found a lifetime
of 3 ns, chemically grew their sample on the substrate. Thus, experimental data where the
sample is chemically grown, and where vacancies and dark states have been diminished, seem
to agree with our data the most. The remaining experimental data from table only takes
a few or none of the aforementioned affecting factors into account, and this experimental data
does indeed deviate significantly from our theoretical data.
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5.3.2 Intrinsic Radiative Decay and Spin-Forbidden Dark States

In an article by C. Robert et al. [52], they measured the lifetime of MoSes and WSey at temper-
atures as low as 7 K. They found that for these extremely low temperatures, the defect assisted
decay processes are negligible compared to the radiative decay, allowing for measurements of
the intrinsic radiative decay rate. Furthermore, they find that at temperatures below 40 K, the
decay rate is much faster than the time it takes to reach a thermal quasi-equilibrium. Using
this, they measured the intrinsic radiative lifetimes to be 7° , = 1.8 = 0.2ps for MoSe; and
Tfad = 2.0 £ 0.2ps for WSey. These values should be compared to the quantity F%’ that is the
non-thermally distributed lifetime, which in our case is 0.42 ps for MoSes and 0.29 ps for WSes.
Explanations for this deviation can, among other, be thermal scattering and the linewidth and
pulse-time of the excitation laser, which changes the initial distribution of excitons. Further-
more, in the article they conclude that the result for WSes is unreliable due to spin-forbidden
dark states beneath the bright excitonic states. However, they wrongly conclude that since
DFTs and GOWO calculations for MoSey show that the band-gap is spin-allowed, then the low-
est energy exciton should be aswell. The BSE-calculations of this project, as well as others [53],
show that the lowest exciton state for all the TMDs presented in this project is a dark state.

5.3.3 The Quasi Equilibrium Assumption

Another approximation used in the computation of the radiative lifetimes is the thermal aver-
aging seen in equation . It suggests a thermal equilibrium of the excitonic states, but
excitonic states should not be able to be in such an equilibrium, since they in their very ex-
istence are (thermal) excitations. Thus, what we use can perhaps be described as a thermal
quasi-equilibrium, which is to be understood as the thermal equilibrium of the excitonic states.
This should however be a decent approximation, if the thermal scattering is much faster that
the emission rate, which should be the case at room temperature since the phonon scattering
scales with temperature.

In an article by A. O. Slobodenuik et al. [54], they study the thermal distribution of an
excitonic reservoir in a 2D material. They find different cases depending on the emission rate
and phonon scattering rate, where in some cases it is possible for a depletion of the optically
active part of the reservoir to happen. This especially happens at low temperatures, which causes
the phonon scattering rate to become the dominant part of the emission process. This could
be a possible explanation of the results obtained in the article |52, where for low temperatures
a reciprocal proportionality to temperature is observed. However, at room temperature the
phonon scattering rate is expected to be fast enough for the quasi equilibrium assumption to
hold true.

5.3.4 Biexcitons and Trions

The calculations in this project take no regard to any excitation beyond the singly excited exci-
ton. Thus, the effects of multiple excitons, trions, and biexcitons, which have proven prevalent
in the TMDs presented in this project |16, are not taken into account. In the article by D.
Lien et al. [16], they study the effect on the quantum yield of these effects, where they found
that biexcitons start dominating at high exciton generation rates, meaning that effects of these
could have played a significant role on the measurements referred to in the previous sections.
Furthermore, trions are of particular importance due to the often n-doped nature of TMDs,
offering free electrons to the formation of these. The exact effect of biexcitons and trions are
difficult to quantify in terms of emission rate, however they significantly add to the difficulty of
obtaining reliable measurements of the intrinsic exciton emission.
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5.4 Purcell Effect

The dielectric geometry seen in figure [4.4.1]is extremely simple, but still shows the importance
of the Purcell effect attributed from a substrate. In particular, it shows that the substrate can
significantly improve the emission rate of the emitter placed upon it. In an article by J. Horng
et al. [18], a slightly more complicated geometry is used as they experimentally consider MoSes
encapsulated in hBN. Compared to figure they use sapphire as 3, while €5 corresponds
to a Bragg reflector of alternating SiO2 and TiOs9 layers [19]. As they vary the mirror distance,
ds, of a vacuum layer (corresponding to our £1), they measure the reflection contrast of the
entire geometry. At the A excitonic resonance, they observe a periodic dependence (with some
broadening) ranging all the way from nearly 0% absorption to almost 100% with respect to d,
which can be attributed to the Purcell effect. At distances corresponding to low absorption,
the MoSes-layer most likely reaches an excitonic saturation, meaning all the available excitonic
states at that energy are occupied. For the sections of high absorption, the opposite is then
thought to be the case, namely that the emission rate is much faster than the absorption rate,
making absorption possible. In figure [4.4.2] we also see some periodicity in the lifetime with
respect to distance, which might oscillate sufficiently in amplitude to allow for switching between
the two extremes of saturation.

In a more naive approach, one might choose to simply model the Purcell enhancement of
2D-materials based on the assumption of a point dipole as opposed to our planar dipole. This
would lead to the following expression for the Purcell enhancement of a point dipole near a

surface [22, ch. 33], namely
0 2
J e (r(s) — r(p)qz;>e2iq“ddqp , (5.4.1)
0 9=1 a7

0 q3 )
f % ) Piadgy | (5.4.2)
0 94z1
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3
P, =14+ —Re
2q} {

where the subscript denotes the orientation of the dipole with respect to the surface. Clearly,
this does not incorporate the Q-dependence similarly to what we find, instead the Purcell
enhancement is found identically for all Q, which is then multiplied by the vacuum emission
rate.

A strength of having the field described in a Green’s formalism is that one can easily gen-
eralise the formulas to more complicated and advanced geometries. These formulas are rarely
solvable analytically, however there exists a rich field of methods for solving these numerically us-
ing volume and surface integration methods [55]. Practically, this is done by replacing equation
with the more general expression [55]

tk|r—r/|

GV (e, ) = (T’ + 1vv> ¢ (5.4.3)

This then allows for efficiently modelling the Purcell enhancement of complicated structures,
and furthermore allows for said structures to be periodic or set in a layered reference geometry.

A noteworthy remark regarding the Purcell calculations of this project is, that none of them
take evanescent waves into account. Naturally, it should be expected that when the emitter is
enclosed in a narrow cavity, that such waves will have a significant effect. However, in the case
of vacuum surroundings, they should play no role at all.
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5.5 Other 2D Materials

The parabolic and linear band observed for MoSs, MoSes, WSe, and WSey are naturally not
a general property for all 2D-materials, rather most materials don’t have this attribute due to
their bandgap not being centered at a spin symmetric k-point. A direct semiconductor with
only a parabolic band could be CoHs, which has a bandgap around the I'-point of symmetry.
Furthermore, many 2D materials are indirect semiconductors, which also changes their emission
profiles significantly. One such material could be InsSey, which has an indirect bandgap centered
around the I'-point of symmetry. The energies and momentum elements can be seen in figure
The mostly constant momentum elements and purely parabolic dispersion of CoHs gives
a linear temperature dependence for the optical lifetime calculations, as can be seen in figure
On the other hand, the non I'-centered pseudo ground-state for InpSey yields a reciprocal
dependence on the temperature, as shown in figure

In an article by T. Venanzi et al. [56], they measure on few layer InSe, where they also find
a reciprocal dependence on temperature for the lifetime. Furthermore, in the measurements
taken at T' = 4K, they find that the lifetimes for few layer InSe grows very large, around 400 ns,
as expected due to the indirect bandgap. This is in accordance with the well known fact that
InySes approaches a direct bandgap, as the crystal approaches bulk. In our model, the lifetime
at T' = 4K grows huge, however measurements will measure significantly lower lifetimes due to
phonons and defects. Furthermore they also measure the temperature dependence of 24-layer
InSe where they also find a reciprocal temperature dependence in accordance with

It is worth noticing that while the assumption that the angular dependence of @ is irrelevant
for the TMDs shown in this project, the same may not be true for other materials such as InsSes
and CoHg, potentially adding some error to the optical lifetimes presented here.

The reciprocal temperature dependence for InaSes seen in figure can be explained
fairly simply from the Boltzmann factor, and can be described by considering the system as a
two-band system involving an optically active band of constant energy E1(Q) = &1 for Q < w/c
and a non-optical active parabolic band of energy, centered around the indirect bandgap Q;nq,

Ey(Q) = W. Defining v = 4/ MZZT? the partition functions can then be expressed as

1
_= Ae *BT (2
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To calculate the emission rate, one needs only to sum over the optically active band. Assuming
the momentum element to be constant for @ < w/c, as well as utilising the fact that it is always
perpendicular to Q and parallel to z, the Q-dependent 2D emission rate can be found as
Q*c
I'yp(Q) = 2T , (5.5.5)

4

where T’y is defined as in equation (3.5.1)). Equation (5.5.5) only holds true for P, || z. The
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Exciton Energies and Momentum Elements for [nsSes
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Figure 5.5.1: Dispersion plots for (a) InaSes and (b) CyHs. The plots also show the squared
projection of the momentum matrix elements upon Q for each point. The larger the circle
(cross) the more optical activity along the parallel (perpendicular) projection.

65



Chapter 5. Discussion Aalborg University
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Figure 5.5.2: Plots of the lifetime with respect to temperature of (a) IngSes and (b) CoHy, based
on the dispersion plots in figure m
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Most of these quantities can be approximated directly from a DFT bandstructure and a BSE

calculation for Q = 0. Setting M = 3me, Qing = 0.25A_1, w = @, g1 = 50meV and

I' = 1.662 - 103 s~!, yields the plot of figure m Finally, we have calculated the both the
in-plane and out-of-plane elements of the sheet conductivity tensor and optical absorption for
InySes, which can be seen in figure As expected, the lowest exciton peak is z-polarised.
Comparing to C2DB the results show many of the same features, with some differences, expected
to be caused by the Keldysh screening used in our calculation.

In an article by Han-Chin Cha et al. [57], they perform spectroscopic and microscopic
measurements on monolayer flakes of InoSes, which have been obtained through chemical vapor
deposition. In their optical absorption spectra they see a large broadening, where no visible
peaks in the area between 1 eV and 4 eV can be distinguished. This broadening can be due to
aforementioned factors such as structural defects, impurities and temperature broadening. We
calculated the optical absorbance spectra of 1-layer InaSes, which can be seen on figure [5.5.5
where the thickness d was set to 16.93 A, which is the lattice parameter they measure in the
article [57]. It can be seen that, for a large broadening, Al' = 0.35 eV, our calculated result are
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2-Band model of the lifetimes of In,Se,
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Figure 5.5.3: Comparison between the calculated lifetimes for InsSes, as calculated by the BSE-
model and the simple 2D model of equation (5.5.9).
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Figure 5.5.4: Optical spectra of InsSes using A' = 0.05 eV and 4 x 4 bands including spin-orbit
hybridisation.

quite similar to the optical absorbance spectra in their article. They also measured a PL spectra
where they found emission peaks at ~ 2.4 eV, which they assigned to peak A, and a broad peak
at 2.95 which the assigned to the B peak. These values are in terms of energy quite close the
the peaks calculated in this project, with some shift due to the substrate.

5.6 Computational Handling

On the computational side of things there have been made a couple of approximations, which
can introduce some amount of error to the calculations presented in this report. In particular,
the approximation of using a Keldysh potential and scissor shift operator are among the most
significant of these. Comparing the DFT and GOWO results found in C2DB [20], one finds that
the effective mass of the hole should be lower than that of the DFT, for all the TMDs presented.
This in turn will reduce the effective mass of the exciton, and thus reduce the theorised lifetime.
The effect of the Keldysh approximation is more complicated, but effectively it should have a
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Figure 5.5.5: Optical absorbance spectra of 1-layer InsSes.

delocalising effect on the exciton states. However, due to the strong localisation of the A and
B excitons, these should not be affected much, in accordance with the comparisons discussed in
section [B.11

The calculation includes a lot of different parameters to converge, in order to obtain reli-
able results. These have been introduced throughout the implementation section, and seem to
converge at the resolutions used in the presented calculations, however higher parameters are
expected to improve results further and yield a slight correction to the results, which seems to
be less than 5% for MoS;. An example of this is that the linear and parabolic band should
be entirely degenerate for Q = 0, but the results presented don’t entirely reflect this due to
numerical error.
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6 Summary

In summary, we have presented a theoretical model for describing emission properties of TMDs,
as well as other 2-dimensional semiconductors. The model implements a Bethe-Salpeter cal-
culation based on a scissor-shifted DFT calculation, where the reciprocal space is interpolated
to achieve a semi-continuous k-point grid allowing for a continuous momentum calculation of
optical calculations for a photon with momentum q. This enables modelling the emission rates
of the system based on a thermal quasi-equilibrium for the excitons, as well as obtaining an
angular spectrum of normalised lifetimes. The angular spectrum as well as the emission rates
are then used in an optical model, allowing for obtaining the Purcell factor of a layered optical
environment. Furthermore, this calculation is also shown to be generalisable to any environment
using the Green’s function formalism.

From this model multiple results can be obtained. Firstly, the BSE results provide the basis
for optical properties using linear perturbation theory, which shows good agreement with ex-
perimental data. Secondly, the interpolated semi-continuous BSE results provide the lifetime
calculations which are found to be in the ns range, in agreement with experimental data. When
considering all the external factors, as well as the Purcell factor, these results seem very rea-
sonable. Finally, the Purcell calculations show a periodic tendency with respect to the distance
between the source and reflector, which has also been shown experimentally.
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A Appendix

A.1 Quantum Harmonic Oscillator - Annihilation and Creation
Operators

Consider the Hamiltonian of a one-dimensional quantum mechanical system with a harmonic
potential, namely

A T
H=—+ —mwr-. A1l
2m 2 ( )
Here, p = —ihAV is the momentum operator and T = r is simply the position operator. From

here, two new operators may be defined, which are given as

1
a4 = ——(mwr + ip), Al1.2
Vamin P) (A.1.2)
1
it = ——— (mwf — ip A1.3
a mwnr ). .
(i — i) (A1)

a and a' are called the annihilation/destruction- and creation operator of the harmonic oscillator,
respectively. They do not represent any observable of the system [21], they do however have
very useful properties for further calculations. By rearranging, the following can be seen:

h
= il + a Al4
P 5 (@ +a), (A.1.4)
hw
p=i m2 @' - a). (A.1.5)

1 (. 1
aal = — - Al
ad' =+ <7—t + 2hw) , (A.1.6)
o= (%- o). (A.1.7)
huw 2

This shows, that [@,a!] = 1. Moreover, by adding equations (A.1.6) and (A.1.7), it can be seen
that

P | 1
H = S hw (aat +a'a) = hw <aT& - 2> : (A.1.8)

Thus, the Hamiltonian can be written in terms of the two new operators. Now, let |n) denote
the eigenstate with eigenvalue E,,. As such, the eigenvalue equation is now simply

Hn) = hw (a’f& + ;) In) = Ey n). (A.1.9)
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Letting af operate from the left on both sides of equation (A.1.9) results in
1
Enal |n) = hw (aTaTa + 25J> n) (A.1.10)
1
— hw (afaeﬁ —al + 2&*) In). (A.1.11)

Here, the commutation relation was put to use. Next, the equation can be rearranged such that
it reads

hw <aTa + ;) at|lny = Ha' |n) = (B, + hw)al |n). (A.1.12)

As such, the harmonic oscillator has an eigenstate a' |n) with corresponding eigenvalue E,, + hw.
This eigenstate and eigenvalue will be denoted as a' [n) = |n + 1) and E,, + hw = E, 1. Now

equation (A.1.12)) can be rewritten as
Hin+1)=Epy1|n+1), (A.1.13)

This means that for a given energy level, E,, of the harmonic-oscillator, a higher energy level,
FE, 1, differing by hw exists. As such, the energy levels are equispaced and have no upper
bounds, the latter of these properties agreeing with classical mechanics. Analogously, it can be
shown that

Ha|a) = Ep_1a|n), (A.1.14)

where E,_1 = E, — hw is the eigenvalue of the eigenstate a|n). Using a similar notation as

previously, one can write equation (A.1.14) as
Hin—1)= E,_1|n), (A.1.15)

where |n — 1) = a|n). However, the total energy of the oscillator is positive, implying a lower
bound. As such, iterative use of @ on any eigenstate should at some point result in the ground
state, which will be denoted as |0) with energy Fy. As such, when considering

Hai |0) = (Eo — hw)a |0, (A.1.16)

the only solution must be @ |0) = 0, since there is no eigenstate of lower energy than the ground
state. Using this solution for the ground state in equation (A.1.9)), it can be seen that

- 1
H|0) = ihw |0) = Ep |0). (A.1.17)
This means that Ey = hw/2, which leads to

1
E, = (n + 2) hw, n=1,23,.., (A.1.18)

and this is in agreement with the usual result for the quantum harmonic oscillator. In conclusion,
the operators @ and af respectively destroys or creates a quantum of energy with a value of fiw
in the oscillators excitation energy.
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A.1.1 Number Operator

The number operator, denoted 7, may be defined as

n = ala. (A.1.19)
When looking at equation (A.1.9) and (A.1.18)), it is evident that
niny =n|n)y. (A.1.20)

The derivation so far has not taken normalisation of the eigenstates |n) into account. If the
eigenstates are normalised, the following conditions must hold true, namely that

n—1|n—1)={(n|ny=mh+1|n+1)=1, n>0. (A.1.21)

When different normalised eigenstates are related, additional factors must appear. As an exam-
ple, the unnormalised relation from before reads |[n — 1) = a|n), which can be compared to the
normalised case, namely

Cpln—1)=aln). (A.1.22)
Now, by using the Hermitian conjugate on both sides, it can be seen that

{(n—1| ClCn |n —1) = (n| ata ny,
|C|? = n. (A.1.23)

Ultimately, this results in the expression, that
aln) =n2|n—1), (A.1.24)

which is in agreement with the expected result of the ground state. The same approach can be
used for a' |n) = |n + 1), meaning

atny = (n+ D)2 jn+1). (A.1.25)

Since it can be advantageous to work with normalised eigenstates, equation and equa-
tion will be the preferred equations to work with. Moreover, different eigenstates of the
oscillator are orthogonal. As such, the only nonvanishing matrix elements of the annihilation
and creation operaters are

(n—1lany=n2 and (n+1lal|n) = (n+1)2, (A.1.26)

respectively.
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A.2 The Projector Augmented Wave Method

The purpose of this section is to give a description of the basic theory of the projector augmented
wave (PAW) method. This knowledge is the foundation of all calculation in this report. Due
to the orthogonality of wave functions in density functional theory (DFT), they will oscillate
rapidly close to the core of an atom, since all the states are non-zero in this region. When
moving substantially further away from the core, only the higher energy states are non-zero,
meaning the the wave function in this area is a lot smoother.

A.2.1 Transformation Operator

To address the problem of the wave function being significantly different in varying regions of
space, a linear transformation 7 is needed. This transformation should take an auxiliary smooth
wave function [i,) to the all true Kohn-Sham (KS) single particle wave function [, ), as such

Yy = T [dhn), (A.2.1)

where the subscript n contains a k index, a band index and a spin index. The transformed KS
equation is then given by

TTHT [0 = enTIT [0 . (A2.2)

Now 7 has to be defined in a suitable way, such that the auxiliary wave functions becomes
smooth, when solving equation . Since the wave function already is smooth from a
curtain minimum distance from the core, then 7~ only has to modify the wave function below
this minimum. This minimum can be seen as an augmentation sphere. Therefore, 7 should be
defined as
T=1+>T" (A.2.3)
a

where a is an atom index, and 7 is an atom centered transformation, which has no effect
outside the augmentation sphere, given as |[r — R%| < r%. The cut-off radii, r?, is chosen such
that there is no overlap between augmentation spheres of different atoms. Now for each of
the partial waves ¢ of the total wave function, a corresponding smooth auxiliary partial wave

function, <Z~>§” is defined such that
05 = (1+T)I60y =TI = |6t — 16 (A.2.4)

for all 7,a. Since 7 has no effect outside the augmentation spheres, this requires the partial
waves to be the same outside the spheres, meaning

Va, ¢i(r) = ¢%(r), for r > r¢. (A.2.5)

The smooth partial wave function is assumed to form a complete set inside the sphere, which
means it can be expanded as

[Uny = Y Pl 6%y, for[r — R?| <12, (A.2.6)

where P% is an unknown expansion factor. With the knowledge that [¢¢) = T |¢¢), it can be
seen that

[y =T [n) = ZP& ¢, for[r —R"| <7, (A.2.7)
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which means that ¢ and ¢ have the exact same expansion coefficients. Due to the assumption
of T being linear, the expansion coefficients must be linear functionals of |1, ), meaning that

Pl = i) = | % (0~ RY) Gu(w)r (A.28)

where |p¢) are some fixed functions termed smooth projector functions [8]. Due to the lack of
overlap between each augmentation sphere, the one center expansion of the smooth all electron
wave function [¢p2) = 3. [¢%) (5%t is expected to reduce to |1 itself inside the augmentation
sphere denoted by a. This means the smooth projector function must satisfy

DeH &g =1, (A.2.9)
i
inside each of the augmentation spheres. Thus, this also means that
<ﬁla1’é’(tl2> = 57:177:27 fOI' ’I' - Ra‘ < r(cl7 (A210)

in other words this implies the projector function is orthonormal to the smooth partial waves
inside the augmentation spheres. Now by combining equation (A.2.4) and (A.2.9), it can be

seen that
7o = 270168 @ = 3 (1) — 190 <. (A2.11)

Now by using equation ([A.2.3)) an expression for the linear transformation T can be found,
—1+ZZ(|¢G 160)) el (A.212)

Then the transformation of the all electron KS wave function, 1, (r) = {(r|¢,,) can be obtained

as
Un( )+ 22 <¢z )) @ 1¥n) (A.2.13)
where @n(r) can be found by solving the eigenvalue problem in equation (A.2.2]).

A.2.2 Local Operator Matrix Elements

Consider a local operator, O. An operator is said to be local if it does not correlate separate
parts of space [8], that is if
Oy =0 for r#71'. (A.2.14)

In the PAW formalism, the local operator matrix element between two different states, v,, and

Y, can be expressed using equation as
+ 2< Habny” (8 (x) = $(x)|Olh)
+ 2<p]|¢n ) (nlOl8h(r) = 3 (x)) (A.2.15)

+ ZZ Ba (B} )" (5 ) (0 (r) — 6(x)| O] S () — 4(x)).

a,i b,j

The Kronecker delta-function on the last term occurs due to the operator being local. This can
be seen by use of equation (A.2.5)). If r is in augmentation sphere a and a # b, then qbl]’-(r) — qbg.(r)
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will vanish, and vice versa. If r is neither in augmentation spheres a or b, then both the bra and
the ket will vanish. From here, equation (A.2.9) can be used, since

(g5 (r) = 6 (r)|Oldnr) = (¢ (r) — &£ (r)|O 1F) B s , (A.2.16)
(a0l (x) = §(x)) = (u| 157 (710165 (x) = G5(x)) - (A.2.17)

Inserting these two expressions in equation (A.2.15)), replacing b by a in the third term, and dis-
solving the Kronecker delta-function in the sum in the last term, makes the following expression
come to life:

3N By B [y (B2 (x) — G (r)]O]6%)

+ 20 D B ) Y (1016 (r) — 6 (x)) (A.2.18)
a ,j
£ 20 D B B ) (01 (x) = 3 ()01 (x) - 35 (x)

From here, the rest of the procedure simply involves cancelling equal terms of opposite sign, and
the expression reduces to

Wl Ol = Wl Olibry + 3, 2 Gl (G515 (0210165 = (3710165)) . (A.2.19)

a i,j
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A.3 Cavity Fresnel Coefficients

This section will concern itself with the derivation of the reflection coefficient, rj . The two
reflection coefficient, which are the starting point, can be seen in the following;:

0 2 2id
. . n t riae 34z1
* 2 2id, * 2id E"13
Tap = TE + tprize” @ Z Tiown13€" ¢ ) =rp + " g (A.3.1)
1—r r13e4t43d=1
n=0 down' 13
0 2 2id
. . n t rioe 24z1
* _ 2 22d2q 1 * Qldzq 1 _ E 12
Tdown = TE T+ tETlQG 8 Z (rupT12e * =Tp + 1_ = Sidagor " (A32)
fors ruprlge
From here, we simply need to solve two equations with two variables. This is as follows:
2 r e2id2qz1
* ET12
T =7 . A3.3
down E+ 1— ’l“ﬁijQezlequ ( )
. 27 9e2id24z1
— rlﬂzprlze%dwn -1— E* (A.3.4)
Tdown — TE
) +2 lerlgeQi(d3+d2)qz1 12 r12€2id2‘IZ1
- TETIQGQZdZQZ:l + 1E p s = 1 75'1* (A.3.5)
~ Tdown’13€ i Tdown — TE
2 2i(ds+d 2 2id;
%idyq.y _ LET12713€ s bd)ass 45y peidadan
= 1—rgrige =1 Sidnda " (A.3.6)
~ Tdown'136 Tdown — TE
2id 2 2id 2 2i(d3+d
_ (1 — Town’13€” 3q21) tpri2e” 2 + (ri o, — TE) tgriorise i(d3+d2)qz1 (A37)
B ek 2id * _ e
(1 Tdown'13€ 3q21) (rdown TE)
(1 _ rEf,,lSe?stqﬂ) t%rme?ﬂqul
- r* —TrEp — (T‘* )27' e2td3qz1 + rpr® rqae2id3gz1 (A38)
down E down 13 E"down’ 13
1+ rErlgeZidwzl) 12 1 9e2id24=1 . :
E 12 _ 22d3q 1 * * 2 27,Cl3q 1
1+ TE1”1282id2‘1z1 TrE = (1 T rET13€ : )Tdown - (Tdown) r13€ -
(A.3.9)
2id
« _ —l—rprige™®t 4+ /Dy A.3.10
= Tdown = 2%d y ( 0. )
—27’136 143421
where
) 2 4(1-— TE?”lgeZidSqu 2 T127«13821qz1(d2+d3)
Dy = (1 — TET’13622d3q21) — ( ) E2.d . (A311)
1 + rgrigest@2d=1
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