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1 | Introduction

Climate change is one of the great challenges facing humanity in the 21st century consid-
ering, that the global temperature compared to the average since 1885 has been above the
average since the 1980’s, and in 2018 the global temperature anomaly was 0.82 degrees
Celsius [45]. Renewable sources of energy as alternatives to fossil fuel might be one of the
ways to solve this challenge, but on a global scale only 14% of the worldwide energy sup-
ply came from renewable sources in 2016 [31][1]. Even though renewable energy sources
generate a relatively small part of the global energy today, the future could see a signifi-
cant increase in contribution from these sources. In a report by the Global Commission on
the Geopolitics of Energy Transformation from 2019 [20] several prediction studies are sur-
veyed and it is hypothesised that the demand for renewable energy sources will supersede
that of fossil fuels between 2040 and 2050 [20, p. 17]. This is of course associated with a
lot of uncertainty but renewable energy production is already rapidly increasing and the
report lists several arguments why this is the case, including “declining cost” and “tech-
nological innovation” [20, pp. 18–23]. The report highlights wind and photovoltaic power
since they are undergoing “very rapid growth” [20, p. 15], but these technologies also face
many challenges, one of these being their uncertain nature due to being dependent on the
weather.

Figure 1.1: Source: [19] Figure 1.2: Source: [47]

China is in a unique position in regards to climate change. On the one hand China is the
worlds largest emitter of carbon dioxide with 27.2% of the total carbon dioxide emissions
in 2017 [19], but on the other hand they are also the worlds largest producer of renewable
energy with 26.5% of the total renewable energy produced in 2017, amounting to 17.4% of
domestic energy generation, according to [47, 3][2]. This of course has to do with the fact
that China is the worlds most populous country with almost 1.4 billion citizens in 2018
[12], but it also means that China as a country has a big responsibility in help solve the
climate change challenge.

[1]The main sources being biofuel, hydroelectrics, geothermal energy, photovoltaic power, wind
power and thermal energy.

[2]Counting nuclear energy in China’s energy production from renewable sources.
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Even though China generates most of its renewable energy from hydroelectrics, the contri-
bution from wind power is still significant with 5% of the total energy generated in 2018
[6]. Furthermore, there seems to be an exponential growth of power generated from wind
with only 11 GWh in 2008 versus 305 GWh in 2017 and the Chinese region of Inner Mon-
golia generates a surprising amount of this with 19% of the total generated wind power
in 2016 [32, 7]. This rapid growth is explained partly by government subsidies and declin-
ing price of installing wind turbine generators (WTG’s), but many other factors, such as
a huge offshore potential in China’s long coastline and challenges with power grid infras-
tructure due to the size of the country also play an important role in the growth rate [16,
54]. Of the companies contributing to China’s growth in the wind power sector, Goldwind
is in the lead being the single largest manufacturer of WTG’s in China, both in terms of
newly installed and total installed capacity. In 2018 WTG’s from Goldwind had a total
wind power capacity of 49 GW - the closest contender is United Power with 20 GW wind
power capacity in 2018 [9]. On an international level Goldwind primarily exports WTG’s
to Australia and Argentina as the largest buyers in 2018 [10]. Goldwind has a total of 7
global research and development facilities, including one in Hinnerup, Denmark, which
this project is written in cooperation with.

The system of generating electric power from the wind with WTG’s is complicated and
models can suffer from a significant degree of uncertainty. Models for electric power are
used in a variety of applications presented in the following section and advances for these
could lead to advances in the WTG industry. The theme throughout this thesis will be to
analyse specific physical processes behind power production in order to try to bring the
uncertainty down. This will be done with a statistical approach using Bayesian methods
and the models will be tested using data provided by Goldwind Denmark.
The following section will explore further what the theme of the thesis is, followed by some
considerations about methods and the specific focus of the thesis. The research question
will summarize the considerations followed by methodology and finally, the chapter will
be concluded with the delimitations of the thesis.

1.1 Modelling wind turbine generators

As mentioned, modelling a wind turbine generator is a complicated task. Many param-
eters influence the performance of a WTG, including design, wind flow, air composition,
surrounding terrain and presence of other nearby WTG’s. The amount of power gener-
ated over a period of time (measured in Watt (W)) is a simple measure of performance,
but other measures, such as the mechanical stress are also important, as they concern the
operational life span of the WTG. In this thesis the interaction between parameters that
influence the WTG and the generated power will be examined. Why this interaction is
important to companies in the WTG business, and what this thesis hopes to achieve, will
be covered shortly, but initially it should be specified what is actually modelled.
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As one might expect, wind speed is the most important input parameter for modelling
produced power from a WTG so let v ∈ R denote the (positive) wind speed measured in
m/s. Throughout the thesis v is usually associated with a degree of uncertainty and thus
it can be characterised as a realisation of a random variable which will be characterised in
chapter 3. The input, as will be reviewed in section 1.1.2, can be limited to only to wind
speed v, but other variables such as air density and wind direction can be relevant, along
with more “advanced parameters” like turbulence intensity. The available input variables
for this thesis will be explained in detail in Chapter 2. In terms of output variables the
generated power over a period time, P ∈ R, measured in kilo Watt hours (kWh) is the
variable of interest. In a simple setup with just one WTG, P is just a scalar, but it might
also refer to a collection of WTG’s referred to as a wind farm (WF) with P ∈ Rm where m
would be the number of WTG’s in the WF. In the scalar case with input limited to wind
speed, the input/output relation between v and P is modelled by a wind to power (W2P)
model, denoted simply as W2P : R→ R such that:

P = W2P(v; θ), (1.1)

where θ ∈ Θ is the parametrisation of the W2P model and Θ is the parameter space. The
W2P model in (1.1) is a simplification in different ways - e.g by assuming that there exists
a deterministic relation between v and P and assuming that input is limited only to wind
speed, but it is sufficient for the following considerations.

For wind turbine companies such as Goldwind, having access to accurate W2P models
is valuable for several reasons. One of these reasons is the need for accurate wind turbine
power curves (WTPC’s or, simply, power curve), which can be computed from a W2P mo-
del. A power curve is a function associating a certain wind speed with a certain power
generation from a specific WTG typically measured in kWh. Associated with the power
curve are values for three different wind speeds: cut-in (vc), rated (vr) and cut-out (vco) [33,
p. 77]. Cut-in is the lowest wind speed where the torque from the blades is greater than
the inertia of the system and below this wind speed no significant power is generated. At
the rated wind speed the WTG generates its maximum nominal power (Pnom) and above
the rated speed the WTG is controlled in order to maintain its rated power. The cut-out
is the maximum wind speed at which the WTG can safely operate and above this wind
speed the WTG is controlled to stop. See figure 1.3 for an illustration of a power curve. In
practice the power curve is not a simple function of only wind speed - see chapter 3 for
more details.
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Figure 1.3: Idealised wind turbine power curve. The cut-in, rated and cut-out wind speeds, denoted
vc, vr and vco respectively, as well as the nominal power Pnom are marked. Note that power is
displayed on the ordinate and thus the power curve is aggregated in the sense that any point of the
graph is the total amount of Watts (Joules/sec) generated with a certain wind speed over a specified
time period - e.g. 10 minutes.

A power curve is important to companies since it is used in the specifications for a WTG.
When commissioned to install one or more WTG’s at a particular site, the WTG company
will deliver a power curve that specifies how much power will be generated at that location
under different circumstances. Different factors affect this curve, so for a new location, en-
gineers will model a power curve specific for that location accounting for various factors†.
The power curve has to account for uncertainty in the model and will only be a lower
boundary of modelled power - e.g. 95% - since the company can be fined if the WTG’s do
not produce the promised power as predicted by the contract curve†.
Another use of a W2P model is in estimation of the annual energy production (AEP) [33, ch
7]. The AEP is estimated using long term weather forecasts and in practise it is associated
with a measure of uncertainty [33, pp. 118–119]. Like the power curve, the AEP is used in
the specifications of a WTG. If the AEP is not sufficiently accurate, it may be necessary to
report an AEP much lower than the true one in order to make sure that the WTG produces
at least as much energy as specified†. Of course, having access to accurate weather fore-
casts is also required in order to achieve accurate AEP estimates. Some additional details
about AEP calculations and how weather forecast are generated is covered in appendix C.1.

The accuracy of the W2P model is central both in terms of modelling the contract power
curve and estimation of the AEP and will be the main concern of this thesis. A calibrated
W2P model could potentially be a very accurate (digital) description of a physical WTG
and in recent years the concept of a digital twin have been used in many areas including in
the wind power industry [57]. The following section will explore the concept of a digital
twin.

1.1.1 Digital and physical twins

Several sources point to Dr. Michael Greives as the person introducing the concept of a
digital twin in 2002 [22, 29, 42], although the term itself was coined by John Vickers in
2011 [23, p. 177]. By Greives own definition from his 2019 paper [23], the Digital Twin is
the information construct of the Physical Twin [23, p. 176]. In a mathematical sense a digital
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twin is a model/function calibrated to behave like a physical object which is the physical
twin. There are a two important distinctions separating a digital twin and a model in
general. Firstly, a digital twin is always associated with a real physical object or at least
a prototype in development. Secondly, a digital twin receives real-time information about
the physical twin measured from sensors which is often transmitted via the internet [23,
p. 186]. Having a direct link to the physical twin (referred to as the digital thread) allows
for various exploitations of the model, such as real time evaluation of the model accuracy
or even calibrating the model in real time in order to match the behaviour of the physical
twin. An important factor accelerating continued use of digital twins is the expanding
internet of things enabling more devices to be connected via the digital thread allowing for
a digital twin to exist [23]. Uses of digital twins includes detecting cracks in WTG blades,
aircraft life prediction models and testing parameter adjustments for production lines be-
fore applying them in real systems [57, 58, 36].

Physical twin Digital twinDigital thread

P ≈ P̂ = W2P(v, θ)

(v, P)

Figure 1.4: Illustration of the concept of interaction between the physical and digital twin - a WTG,
with associated W2P-model is shown here. The arrow illustrates real time data sent from the physical
twin measured with on-site sensors.

The W2P model can be treated as the main component of a digital twin. Here the physical
twin would be a WTG or a WF where sensors measuring with some frequency are in-
stalled. This kind of data is referred to as Supervisory Control and Data Acquisition (SCADA)
data and for every time period the package (v, P) is transmitted to a central server forming
the digital thread. See figure 1.4 for an illustration of this concept.

Having a calibrated digital twin modelling a WTG can be advantageous for several rea-
sons. For this thesis the main use is the ability to test a developed model - that is, using
the acquired SCADA data on an existing WTG location as a training data for developing
and calibrating a W2P-model. Other uses for a digital twin includes monitoring and power
prediction. Monitoring a WTG using a digital twin can be done by continuously calibrat-
ing θ in an online setup and tracking how it changes over time and how that affects the
W2P-model†. For example, if the power curve based on W2P(·, θ) is significantly lower
than earlier then this could be a sign of degradation of the WTG or malfunctioning parts.
Power prediction is a somewhat a more straight forward use of a digital twin. Given a
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short time weather forecast, a digital twin can give predictions of the generated power and
these predictions are used extensively in the energy market [55]. Monitoring and predic-
tion will not be investigated in this thesis, but are mentioned as they are closely linked to
the concept of a digital twin.

1.1.2 Existing solutions

The concept of modelling power output from WTG’s is a well studied area. Surveying the
range of applied and suggested models in the literature, a useful shorthand is categorising
them into two categories: parametric models based on a relative small number of parameters
possibly using a-priori information about the system and non-parametric models using a rel-
atively large number of parameters where the model is data driven determined completely
from a data set. This section will explore these two categories. Other distinctions, such as
deterministic versus stochastic models, are relevant and will be explored further in chapter
3 and 4.

Parametric models In general parametric models are characterised by having a finite
set of parameters where the number of parameters is fixed before data is observed [21,
p. 115]. Depending on point of view the models can be either deterministic or probabilistic.
The simplest W2P-model is purely deterministic and based on theoretical physics. It is
based on the power equation for wind, stating what the power (kinetic energy per second)
of the wind Pwind over the WTG blades is [33, p. 10]:

Pwind = Ė =
1
2

ρπr2v3, (1.2)

where ρ is the density of the air in kg/m3, R is the blade length in m and v is wind
speed in m/s, which is assumed to be uniform over the area of the WTG blades. Not
all energy can be extracted from the wind though and a realistic model includes a power
coefficient CP = P/Pwind where P is the actual generated power. In 1919 Albert Betz found
the surprising result that even under ideal conditions the power coefficient is significantly
below unity. He found that, under some assumptions, CP ≤ 16/27 even under idealized
conditions [33, p. 19]. This result is referred to as Betz’s law or Betz’s limit stating that
maximum power generated for a WTG is Pmax = 16

2·27 ρπR2v3. A general W2P-model must
then fulfil the following relation [33, p. 19]:

P =
1
2

ρπR2v3CP for CP ≤
16
27

. (1.3)

Fitting (1.3) to a given WTG would require determining CP, which is done by simple linear
regression. A few things are worth mentioning about (1.3). Firstly, it is seen that the power
is proportional to the square of the swept area P ∝ R2 and the cube of the wind speed
P ∝ v3. Thus, installing large WTG’s at windy places maximises the generated power
and in this context offshore WTG’s are ideal. Secondly, (1.3) is of course a simplification
compared to a real physical system. Noteworthy simplifications includes the assumption
of constant wind speed across the swept area, a constant air pressure, unified direction
of wind flow, no turbulence and no loss of energy due to heat transfer [33]. Other than
the simplifications of the physics there is also an issue of measuring the variables in a real
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modelling scenario. If sensors for wind speed measurements are located behind the blades
relative to the wind direction, the measured wind speed is smaller than the one applying
force on the blades. This is due to a drop in wind speed which is caused by the blades
themselves [33, p. 18]. In conclusion: The model (1.3) is a simple model derived from
theoretical considerations and simplifications, but it lags a more detailed considerations of
the physical phenomena in play.

A large range of parametric models are described in the litterature. Many of these are
not based on the power equation in (1.2), but are rather data driven in the sense that they
infer information about the W2P model solely through observation without considerations
of physical effects. A survey from 2013 [39] reviewed several of these and in an accom-
panying paper it is found that a 5-parameter logistic model showed the best performance
[40][3]. It is given by:

P(v; θ) = d +
(a− d)(

1 +
( v

c
)b
)g (1.4)

where θ = (a, b, c, d, g). The parameters have the interpretation that a is the intercept at
v = 0, b is the asymmetry factor, c determines inflection point, d is the limit as v→ ∞ and
g is the steepness of the function. In W2P models a = 0, d = Pnom and (b, c, g) are fitted
based on observed data. Figure 1.5 shows a few parametrisations of the model.

Figure 1.5: Example of 5 parameter logistic model for wind speed between 0 and 10 m/s. The default
parameters are a = 0, b = 5, c = 10, d = 1, g = 30 and the subplots show the model with different
choices of b, c and g.

[3]Performance of parametric models including a linearised segmented curve, 4-parameter logistic mo-
del and the 5-parameter logistic model was compared to non-parametric models including a neural
network, data clustering model and data mining algorithm. The performance was measured in as the
root mean square error and mean absolute error across 5 different data sets and it was found that
the 5-parameter logistic model showed the best overall performance.



8 Chapter 1. Introduction

Non-parametric models With non-parametric models large datasets are used in order
to calibrate a model that matches input to target data. Just like a parametric model, a given
instance of a non-parametric model will have a finite number of parameters, but what sep-
arates them from parametric models is the fact that the number of parameters often scales
with the number of samples in the training set [21, p. 115]. So for non-parametric models,
the larger the training set is, the more advanced a model can potentially be. Uses of non-
parametric models for W2P models includes cubic spline interpolation, fuzzy methods,
k-nearest neighbours and neural networks [39]. Goldwind currently uses a W2P model
based on a neural network and this is explored further here.

Neural networks are popular in machine learning. By using neural networks, connections
between more advanced variables such as turbulence intensity and output can be discov-
ered and if the architecture is chosen appropriately and enough training data is available,
then the neural network is able to learn the patterns relating input to output using mul-
tidimensional optimization methods[4]. The model currently employed by Goldwind is
also a neural network, specifically a neural network with a feed forward architecture. A
feed forward neural network consists of a number of layers each representing an affine
operation of the input followed by an element wise non-linear operation. For the input
layer Goldwind takes wind speed, air density, wind shear, turbulence intensity and terrain
inclination as input. The architecture itself is a 4-layer feed forward neural network which
gives an input-layer, an output-layer as well as two hidden layers. The network has been
calibrated to model different types of WTG’s keeping the same structure. This has left
Goldwind with a functional network capable of simulating the power output of a WTG
with reasonable accuracy over a wide range of WTG’s installed at various locations†.

Another important model is the one set by the International Electrotechnical Commission
(IEC). The ICE 61400-12-2:2013 standard, titled Power performance of electricity-producing
wind turbines based on nacelle anemometry, specifies how power performance from a WTG
should be verified [30]. It also describes how to obtain the AEP estimate previously men-
tioned. The standard specifies that a power curve should be fitted using the methods of bins
where the power curve is determined as the average over certain wind speed bins [39][5].
As an example if bin i spans wind speeds between v0,i and v1,i then (vi, Pi) is a point on
the power curve where vi and Pi is the average wind speed and power respectively for
wind speeds observed in bin i given a set of observations. Linear interpolation can be used
to get values between the bins if necessary.

In general, non-parametric models can be very accurate but they also has some down-
falls which is discussed in the following section.

[4]See [5] for general theory about machine learning and neural networks.
[5]The full ICE 61400-12-2:2013 publication have not been available to the authors, so the methods

presented here is based on the description of the standard by [39].
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1.2 Methods and considerations

This thesis seeks to design a W2P-model, but before stating the research question some
considerations are made.

Contract W2P model The intended application for a W2P-model is relevant for the mo-
del design since it determines what prior information is available for calibration and which
inputs are accessible to the model. For the sake of the discussion here, W2P-models are
divided into categories: Models for wind resource assessment (WRA) before a WTG is phys-
ically installed and models used in site operation after installation. WRA is a multi-step
process where a specific site is assessed for its financial potential - an important output
here is the AEP estimate [33, p. 117]. Analysis for WRA can be performed using 3rd party
software giving different models and statistics for a specific site [33]. windPRO [60] is
one such software package and available for this thesis are a various statistics given by
windPRO in some lookup tables†. Examples of statistics in the lookup tables are wind
speed distributions and measures for turbulence - see chapter 2 for further description. A
W2P model designed for a WRA framework given statistics about the site and calibrated
using SCADA from existing WTG projects will be referred to as a contract W2P model. On
the other hand a W2P-model designed for site operation after installation has access to
SCADA measurements from the same site and has a wider range of applications such as
monitoring and power prediction as mentioned in the previous section. A W2P model
designed for this framework will be referred to as an operational W2P model. Figure 1.6 il-
lustrates the two frameworks. Both an operational and contract W2P model can be though
of as digital twin of a WTG although the former having direct access to SCADA from the
WTG is more closely linked to this concept.

For Goldwind designing a contract W2P-model is the main interest primarily since the
model can be used to give power curves and AEP estimates. The more accurate the con-
tract W2P-model is, the less uncertainty has to be accounted for in the power curve and
AEP estimation which means that a higher percentage of the modelled power can reported
- e.g. 99% of the predicted power instead of 95%†. Exploiting digital twin applications
like real time calibration or having time dependencies in the model is certainty also in
Goldwind’s interest, but it is secondary to having an accurate W2P-model for AEP estima-
tion. Of course model accuracy could potentially be improved by incorporating e.g. time
dependencies or real time calibration, but options like these are not available for a contract
W2P model since power curve and AEP are delivered to the customer before the WTG is
installed. Therefore the focus for this thesis will be to design the a contract W2P model
and further exploitations of the digital twin will not be considered.
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Figure 1.6: System diagram for a WTG project. The orange box is the focus of this thesis and the
green boxes contains the data supplied by Goldwind Denmark.

Methods for designing W2P model The methods discussed for modelling power
generation from WTG’s have various levels of complexity both in terms of calibrating
and evaluating the models of which the non-parametric methods are potentially the most
computationally complex models in both regards. The modelling capabilities of non-
parametric methods and neural networks can are unquestionable in particular when enough
data is available and since the solution currently employed by Goldwind is also a neural
network a natural conclusion could be that the design of a W2P model should be based
a neural network as well. Based on a few considerations though, this thesis will consider
parametric models.

The point that the current solution employed by Goldwind is a non-parametric model
might not be an argument for using these here. Even though it would be natural to follow
the current design regime, this could also simply lead to similar models to what is cur-
rently being used without much insight or model accuracy gained. Secondly, and more
importantly, this thesis seeks to gain insight into the complex interactions between input
variables such as wind speed, turbulence, wind shear etc. and for this a non-parametric
model is not the obvious choice. Non-parametric models, like neural networks, can achieve
very precise models but they do so by treating the system as a black box model and then
tries to learn patterns from a large data set. A calibrated non-parametric model can be
precise at mapping input to output but how the input parameters interact to produce
the output can be difficult to understand, in particular for models with high number of
parameters. Parametric models on the other hand are often easier to interpret and can be
designed based on the physical understanding of how the system works, possibly incorpo-
rating statistical properties of various variables like the ones available in the lookup tables.
Additionally, parametric models might be able to generalise better to different WTG types,
terrains, etc. than non-parametric by using the statistics for the specific site. Some non-
parametric models like neural networks might also be able to use the statistics as inputs,
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but it may be difficult to learn the dependencies.
There is certainly a conflict between the goal of designing the most accurate W2P model,
which is maybe most easily achieved by non-parametric models, and the goal of gaining
insight into the system, which is most easily achieved using parametric models, but for
this thesis the latter goal is deemed more important. Therefore, this thesis will avoid us-
ing non-parametric methods and instead focus on incorporating physical and statistical
knowledge of the system in direct way using a priori information of WTG’s and utilizing
a parametric model.

Model uncertainties It was briefly mentioned that the sensor measuring wind speed
is inaccurate if located behind the blades, which is the case for the available SCADA data.
Of course, the relation between measured wind speed and the one acting on the blades
could be modelled, but there might be a lot of uncertainty in the model. In general, the
problem of input uncertainty is a known issue to Goldwind Denmark in particular in
regards to the variables in the lookup tables like turbulence intensity of the wind speed
which are stochastic in nature - see chapter 2. If the wind speed v follows some probability
distribution then:

v ∼ pv(v; βv),

where pv is the probability density function (pdf) parametrised by βv. If the properties
of pv are known, the uncertainties of the W2P model can be analysed and possibly used
to increase to accuracy of the model. Therefore this thesis will also seek to analyse the
uncertainties of the input variables and use them directly in the modelling of the W2P
model. The uncertainties will be analysed using Bayesian methods where prior information
about a specific WTG can be incorporated into the model and used for calibration of
parameters.

1.3 Research question

Climate change is a serious issue and shifting from fossil fuel to renewable energy sources
like wind power could be a way to combat the problem. One area of research is modelling
power generation from WTG’s where better models are needed in order to make accurate
power curves, estimates of AEP, predicting short term power generation and monitoring.
This thesis seeks to design such - specifically a contract W2P model which is calibrated
for a particular wind farm prior to installation, in a wind resource assessment framework.
Parametric models will be used with the aim of modelling power production based on
the physical understanding of processes that affect this using the statistics about the site
given through the lookup tables. The available input data is known to be associated with
a significant degree of uncertainty and the W2P model should take this into account using
Bayesian methods. This is summarized in the research question for this thesis:

How is the power generation from a wind turbine generator modelled using parametric models
accounting for uncertainties using Bayesian methods?

In order to answer this, the following study questions are considered:
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1. Which physical processes should be modelled in order to characterise the W2P mo-
del?

2. How should the model itself be designed?

3. How can uncertainty be taken into account?

4. How is the model calibrated?

5. What are the statistical properties of the model, and how can these be used to analyse
it?

6. How does the model perform and is there a performance gain compared to existing
models?

1.4 Methodology

The thesis revolves around designing a contract W2P model given the inputs shown in the
block diagram in figure 1.6. Figure 1.7 shows which elements will be used to design the
block for the contract W2P model. The chapters for the thesis are laid out as follows.
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Figure 1.7: Contract W2P model unfolded

Initially chapter 2 describes the lookup tables and available SCADA data in detail. Then
chapter 3 models wind speed probability distributions under two different assumptions
using statistics given in the lookup tables. For one of the assumptions the relation between
measured wind speed and the wind speed acting on the WTG blades is modelled using
a nacelle transfer function (NTF) which is also described in chapter 3. The chapter then
goes on to develop an aggregated W2P (AW2P) model, which is a model for power over 10
minutes based on a short time W2P model. The short-time W2P model is based on theory
about pitch control which is how power production is controlled for the type of WTG
modelled here. In chapter 4, theory about Bayesian methods is described which is then
used to combine the (deterministic) AW2P model and wind speed distributions into two
different probabilistic W2P models. The last part of the block is parameter inference which
is covered in chapter 5 using the Metropolis Algorithm. The remaining chapters are chapter
6 where the performance of the developed methods is compared to existing methods,
chapter 7 is the discussion, chapter 8 the conclusion and finally chapter 9 suggests further
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studies. Appendix A is a list of used abbreviations, appendix B are various mathematical
definitions and results, appendix C are additional WTG engineering aspects and additional
modelling considerations, lastly, appendix D describes a few selected scripts.

1.5 Delimitations

It was mentioned that the variables available for input to the W2P model are know to
be associated with a degree of uncertainty. This might also be the case for the measured
power output P although it is a direct measurement and therefore more reliable than e.g
the wind speed. Therefore P is treated as the true value throughout the thesis.

The nominal power for a WTG, Pnom, is specified for a particular WTG model, but it
was found that the observed nominal power in the used data and the one according to
the specifications showed disagreement. This discrepancy can be explained e.g by changes
in manufacturing or calibration differences. Effects like these will not be modelled so the
effective Pnom will be inferred from data. Data from two WF’s are available and Pnom is
computed as the median power for observed wind speeds above the rated wind speed
separate for each wind farm - i.e one separate Pnom for each wind farm.

Finally, the physics of WTG’s is a well studied area based on Newtonian mechanics and
fluid dynamics to name a few. Theory about the physics of WTG’s will be used in the the-
sis, but only to the extent that it helps answering the research and study questions. Thus
some of the more subtle mechanics of WTG’s are left out.
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2 | Available data

This chapter describes the available data provided by Goldwind Denmark which consists
of SCADA data and lookup tables as highlighted in the figure below.
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The provided data are from two wind farms placed in South America and Asia with 32
WTG’s in each. The wind farm in South America is coastal whereas the wind farm in Asia
is mainland. SCADA measurements are available for the South American wind farm in
the time period 22-03-2018 to 11-09-2019 and for the Asian wind farm in the time period
01-01-2017 to 31-12-2018. The relative position for WTG’s at both sites can be seen in figure
2.1.

Figure 2.1: Relative position for the South American and Asian wind farm. The blue markers are the
positions of individual WTG’s

The WTG’s in both wind farms are the model GW 121/2500 with the following specifcia-
tions: Nominal power of 2500 kWh, a rotor hub height of 90 m, cut-in wind speed vc of 2.8
m/s, rated wind speed vr of 9.3 m/s and cut-out wind speed vco of 22 m/s [13]. Before
introducing the data, some WTG terminology is shown in figure 2.2.
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Figure 2.2: Illustration of WTG terminology. Image source: Colourbox

As observed in the figure, the blades are the three arms connecting to the rotor hub. The
rotor hub is the head of the wind turbine and the collective of blades and rotor hub is
referred to as the rotor system. The nacelle is the housing of all the internal components
e.g. motor, gears and electric components. On the nacelle is the anemometer measuring
wind speed and direction. Below the nacelle is the tower. [33, ch. 9].

2.1 SCADA

SCADA is a system of sensors taking different measurements at some sampling frequency,
logging the measurements which is used for monitoring and control of a WTG [33, p. 231].
Each WTG in the described wind farms is equipped with a SCADA system and mea-
surements are available in 10 minute resolution. The provided SCADA contains many
measurements for each 10 minute period - in some cases several hundreds - but only a few
of these are relevant here. The relevant SCADA data includes:

https://www.colourbox.dk/
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• 10-minute average horizontal wind speed measured by an anemometer in m/s. The
wind speed is measured behind the rotor system at the nacelle as shown in figure
2.2.

• 10-minute average horizontal wind direction (WD) measured by a wind vane in de-
grees with respect to north.

• 10-minute average temperature measured in Celsius.

• 10-minute total generated power measured in kWh rounded to the nearest whole
kWh.

• Status variables for each 10 minute period indicating the status of a WTG in different
ways. The status variables that are of interest here are variables that indicate when a
WTG is either malfunctioning or not operating. Some examples of these are: Manual
shut-down and Maintenance.

An example of how SCADA is structured is shown in table 2.1

WF WTG nr. Time WS [m/s] Temp. [◦C] WD [◦] P [kWh]

Asia 1 2017-01-01 00:00 5.00 21.57 173.23 134
2017-01-01 00:20 4.53 21.69 172.61 102
2017-01-01 00:30 3.71 21.56 185.60 71
2017-01-01 00:40 3.36 21.52 179.69 52
2017-01-01 00:50 3.63 21.42 178.76 59

Table 2.1: Example of SCADA data for the Asia wind farm. Empty rows refer to repeated values. The
shown values are based on the available data but random noise has been added due to confidentiality.

To visualise the SCADA data figure 2.3 and 2.4 show histograms of wind speed and wind
direction from the South American and Asian wind farm.

Figure 2.3
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Figure 2.4

The distribution of wind speed is seen as right-skewed for both wind farms, however the
histogram for South America seems multimodal where the histogram for Asia is unimodal.
Higher wind speeds are more frequent for the South America wind farm which aligns well
with the fact that it is a coastal wind farm - e.g. because of flat terrain. Figure 2.4 show
that the prevailing wind directions are from East and South for the Southern American and
Asian wind farm, respectively, with the prevailing wind direction being more dominant in
the Asian wind farm. Statistics for the wind speed is described further in section C.1.

2.2 Lookup tabels

The available lookup tables are based on calculations from windPRO - a 3rd-party wind
resource assessment software package. It provides general statistics for each WTG in the
two wind farms. The relevant statistics are described here.

Atmospheric condition The lookup tables gives the estimated mean air density ρ,
mean temperature T and mean air pressure p at hub height for each WTG. Air pressure
and temperature are related through the ideal gas law for a volume of gas [33, p. 42]

pV = nRT, (2.1)

where p is the pressure in Pa , V is the volume in m3, n is number of moles, R is the gas
constant in m3·Pa/(K·mol) and T is the temperature in Kelvin (K). Air density is a measure
of mass-per-unit volume. When measured in mol/m3 it is given by the number of moles
per unit volume:

ρ =
n
V
⇒ ρ =

p
RT

(2.2)
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Using that the molecular mass of dry air is M = 28.9644 g/mol and the gas constant
R = 8.31432 J/(mol · K) the air density in SI units is [33, p. 42]:

ρ =
p

RT
M

1000

[
kg
m3

]
(2.3)

Here it is seen that the density is given indirectly by pressure and temperature. Theoreti-
cally air density also depends on humidity, but the humidity is not available in the data so
this is not considered here.

Turbulence intensity In general, turbulence is a measure of the variability in wind
speed. One measure is turbulence intensity, which is defined as the ratio between the stan-
dard deviation and the mean of wind speed over intervals of 10 minute [33, p. 105][1]

TI =
σv

v
. (2.4)

The lookup tables provide different statistics for the turbulence intensity at different wind
speeds. The relevant statistics provided for this thesis are the mean and standard deviation
for TI - i.e. σTI and µTI. These statistics are given for each WTG with values for 12 different
wind direction sectors separated by 30◦ and with unique values for wind speeds from 3
m/s to 30 m/s with a resolution of 1 m/s. An example of a TI statistics is shown in table
2.2.

3 m/s 4 m/s . . . 30 m/s
WTG nr Sector Statistics — — . . . —

1

N
µTI 0.140 0.115 . . . 0.092
σTI 0.059 0.043 . . . 0.013

...
...

...
... . . .

...

NNW
µTI 0.151 0.124 . . . 0.039
σTI 0.053 0.045 . . . 0.012

...
...

...
...

... . . .
...

32

N
µTI 0.169 0.125 . . . 0.125
σTI 0.046 0.040 . . . 0.025

...
...

...
... . . .

...

NNW
µTI 0.164 0.134 . . . 0.074
σTI 0.046 0.040 . . . 0.021

Table 2.2: Example of available TI statistics. The statistics shown are based on the lookup table from
the South American wind farm with random noise added due to confidentiality.

µTI and σTI decreases with wind speed in the lookup tables. This implies that more varia-
tion is observed for lower wind speeds relative to the mean wind speed.

[1]Turbulence intensity can be interpreted as a measure of spread defined similarly to the coefficient
of variation which is 100 · σ/µ for a random variable with mean µ and standard deviation σ [15, p. 78].
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3 | WTG modelling

Various existing W2P models were discussed in section 1.1.2. This chapter will further
explore how to model the produced power from a WTG specifically with the available data
presented in chapter 2 in mind. Initially statistical models for wind speed is introduced
followed by the theory behind pitch control. A W2P based on pitch control is presented
along with some existing models and lastly, how to generate synthetic data is described.
This is illustrated in the highlighted boxes below.
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3.1 Wind speed modelling

SCADA provides 10 minutes nacelle wind speed averages denoted v. These measurements
are based on 1 Hz anemometer readings and the nacelle wind speed over the 10 minutes
should follow some distribution with the mean approximately equal to the sample mean v.
The lookup tables also provide statistics about the wind speed standard deviation within
10 minutes indirectly through the turbulence intensity. As described in section 2.2 the tur-
bulence intensity is defined as TI = σv/v, and the lookup tables provide E[TI] = µTI and
std[TI] = σTI for each WTG’s under different wind speeds and wind directions. Condi-
tioning on v gives the mean and variance for σv:

µσv | v = E[σv |v] = E[vTI |v] = v E[TI |v] = v µTI | v (3.1)

σ2
σv | v = Var[σv |v] = Var[vTI |v] = v2 Var[TI |v] = v2(std[TI |v])2 = v2σ2

TI | v (3.2)

As described in section C.1, the 10-minute average wind speeds v follows a Weibull dis-
tribution with statistics available in the lookup tables. The models in this thesis, though,
require statistics for shorter time periods - e.g. 1 second. Let vt denote the wind speed at
time t where t is a discrete variable and ∆t is the period between consecutive samples e.g.
vt and vt+1. As a simplification, the wind speed is assumed constant within periods of ∆t.
In chapter 4, Bayesian statistics are used to model the produced power and for this, the
conditional distribution for vt given v is needed. Several effects complicate this:

1. Temporal dependency In WTG engineering it is common practice to work with
wind speeds as 10-minute averages based on an assumption of a spectral gap for this
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time period which simplifies some modelling consideration. However in general,
the wind speed spectrum is non-white which means that wind speed features some
temporal dependence - see section 3.1.3.

2. Spatial dependency In a wind farm, the wind speeds that act on each WTG are
expected to be dependent due to proximity. Additionally, wake effects, which are
reduced wind speeds and increased turbulence from other upwind WTG’s, also
affect the spatial dependencies. Given the 10-minute average v for each WTG, the
spatial dependencies should be somewhat lower but it might still have an effect on
the distribution.

3. Blade shadowing The 10-minute average v, as described in section 2.1, is based on
nacelle measurements taken behind the blades. If the WTG is rotated towards the
wind, the nacelle measurements are lowered compared to the effective wind speed
acting on the blades due to wake effects from the blades and other parts of the
WTG. The wind in front of the blades is referred to as the free wind speed denoted
v f and the nacelle measured wind speed is denoted vnc. See section 3.1.2 for further
description.

4. Point measurement vs. vector field The free wind speed v f is different for every
point in the swept area. Additionally, the direction might have more than the hor-
izontal component. A vector field where each point in space has a 3-dimensional
wind vector characterises this.

Modelling all the above mentioned effects is beyond the scope of this thesis, so some
simplifying assumptions are made. Firstly, spatial dependency is simplified by assuming
conditional independence on the following form: Let vt(xi) and vt(xj) be the wind speed
of two different WTG’s in a wind farm at location xi and xj. Given the average wind speed
vi and vj measured at both WTG’s and t occurs within that timespan then independence
is assumed:

p(vt(xi), vt(xj) |vi, vj) = p(vt(xi) |vi, vj)p(vt(xj) |vi, vj)

= p(vt(xi) |vi)p(vt(xj) |vj) ∀ i 6= j,

where the subscripts in the pdf p is omitted. Secondly, in regards to describing the wind as
a vector field, it is assumed that the wind in the swept area of the WTG is a uniform field
with only a horizontal component. In regards to temporal dependency, this thesis assumes
conditional temporal independence in the following sense: If vt and vt′ are observed within
the same 10 minute period with mean wind speed v and additional statistics βv - e.g.
standard deviation - then:

p(vt, vt′ |v, βv) = p(vt |v, βv)p(vt′ |v, βv) ∀t 6= t′,

Independence between vt and vt′ is also assumed when t and t′ occur within different 10
minute periods given the statistics for each period. The advantage of assuming indepen-
dence is a simpler model easing theoretical considerations, although a W2P model based
on this might be less precise. To mitigate this, section 3.1.3 will describe some results for
wind speed temporal dependencies, but using them is beyond the scope here.

Finally, blade shadowing will be modelled by considering the nacelle transfer function that
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gives a relation between free and nacelle wind speed. Modelling blade shadowing is a way
of modelling input uncertainty considering v as the measured input by an average over vnc
and the free wind speed v f as the true input. As presented in the research question, this
thesis seeks to analyse the effect of uncertainty therefore two models will be presented:
One model accounting for uncertainty through blade shadowing and one that does not.
These models can then be compared analysing the accuracy of each. The models are based
on different assumptions about wind speed distributions which are presented in the re-
maining section. The assumptions will be based on existing literature but the modelling of
wind speed distribution as a whole is developed for this thesis.

Some notation should be clarified. v will generally refer to the free wind speed v f if
not otherwise specified. When needed, the distinction between free wind speed v f and
nacelle wind speed vnc is made explicit. The time discrete index t is sometimes omitted
when not necessary in which case v reefers to an arbitrary vt.

3.1.1 Wind speed assuming independence

Given average v, standard deviation σv and assuming temporal independence, vt is as-
sumed uncorrelated Gaussian with:

vt |v, σv ∼ N (v, σ2
v ) (3.3)

The Gaussian assumption is not well documented in the literature perhaps because the
distribution of vt |v, σv assuming temporal independence is not well studied in general as
it is not a common setup. The assumption of (3.3) was suggested in consultation with
Goldwind, and despite the flaw of allowing vt to be negative with some probability, it
might be a reasonable approach.

To fully characterise vt, the distribution for σv should also be specified. Despite σv be-
ing positive, a common assumption is a Gaussian distribution according to [17, p. 51].
Under this assumption, and using the statistic given in the lookup tables, it was found that
P(σv < 0) was significant in particular for low wind speeds where the mean standard devi-
ation is generally lower[1]. Negative standard deviations have no meaning and cause some
numerical issues in the later models so the assumption by [17] is altered slightly here to a
folded Gaussian distribution. The folded Gaussian distribution corresponds to the distri-
bution of Y = |X| where X is Gaussian with mean and variance µ and σ2. Here the folded
Gaussian distribution is denoted Y ∼ N+(µ, σ2). A folded Gaussian is approximately
Gaussian in particular for large (positive) means or small variances so the assumption of
folded Gaussian distribution is mostly similar to assuming a Gaussian distribution of σv.
See appendix B.1 for the pdf of a folded Gaussian. Another approach would be to use a
truncated Gaussian [25] where the bell shape is retained even for inputs close to 0. This
would result in a density similar to the Gaussian, when considering values of µσv close to
0, whereas the folded Gaussian becomes flat near 0, but nonetheless the folded Gaussian
distribution will be used since it is easier to simulate.

[1]Assuming Gaussian distribution for σv yields P(σv < 0) ≈ 2.4% for wind speeds between 2 and
4 m/s on average with the used lookup tables. In one case P(σv < 0) = 48% occurring at 2 m/s.
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Now consider v ∈ RN as the vector of wind speeds within a period of 10 minutes sampled
with time period ∆t. The SCADA data provides an average of v and σv stays constant
within this period. The distribution of v now becomes a multivariate normal distribution
with diagonal variance covariance matrix and folded Gaussian standard deviation:

v |v, σv ∼ N (v1N , σ2
v IN×N) and σv |v ∼ N+(µσv , σ2

σv) (3.4)

Figure 3.1 shows two a histogram of the v |v obtained through Monte Carlo simulation.

Figure 3.1: Simulation v|v with lookup statistic from a WTG in the South America wind farm. Only
a single element vt ∈ v is shown here. The normalised histogram shown is obtained through Monte
Carlo simulation according to (3.4).

3.1.2 Nacelle transfer functions

Recall that wind speed measurements vnc are taken using an anemometer positioned at
the nacelle of a WTG (behind the blades). The free wind speed v f refers to the wind speed
in front of the WTG which was previously assumed uniform across the swept area. Figure
3.2 illustrates this setup.

In WTG engineering, the relation between vnc and v f is often characterised through a
nacelle transfer function (NTF) which is simply a function that links the two variables.
Noteworthy literature studying NTF’s includes: [37] proposing a new standard for estab-
lishing NTF’s by bin averages, [43] studying the effects of turbulence on NTFs, [28] using
the bin average method to establish NTF’s and [52] using data from the same wind farm
as [28] to calibrate NTF’s over a period of 6 years to detect degradation. Finally, [11] thor-
oughly investigates sources of uncertainty in the NTF’s, although this is done using data
from spinner anemometers rather than cup anemometers which the data used in this thesis is
measured with. All of the above mentioned articles have in common that they study NTF’s
by comparing measurements from a WTG with measurements from a nearby meteorological
tower (met-tower). A met-tower is a tall pole usually between 50 and 120 m tall equipped
with sensors at different heights in order to measure quantities like wind speed, wind di-
rection, temperature, barometric pressure, humidity [33, pp. 82–83]. As an example, [43]
compares measurements from a WTG with measurements from a met-tower distanced
2× blade diameter away form the WTG. Of course, measurements taken at a met-tower in
proximity to a WTG is not a true measurement of the free wind speed, but it is a good
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Figure 3.2: Free wind speed v f in front of the WTG compared to the measured nacelle wind speed
vnc using a cup anemometer.

approximation or at least a better approximation than the nacelle measured wind speed.

Ignoring uncertainties for the moment, the sources [43, 28, 52] suggest that there is a
linear relation between vnc and v f for lower wind speeds than around 14 m/s [43]:

v f = NTF(vnc; η) = η1vnc + η2 for v f ≤ 14 m/s,

where η = (η1, η2) is the parametrisation of the NTF. For higher wind speeds than about 14
m/s [43] finds that the relation becomes non-linear, but for the sake of this thesis a linear
relation can be assumed since wind speeds much above the rated wind speed vr = 9.3 m/s
are not directly modelled. If the parameter η is known the nacelle measured wind speeds
can simply be converted through the NTF, but for a given WTG this requires installation
of met-tower followed by a calibration. A reasonable assumption would be that if η has
been calibrated to a specific type of WTG, then η also applies for at WTG of the same type
at a different location given similar terrain. Still, one would expect η to vary from WTG to
WTG, therefore η is seen here as a stochastic variable. To get insight into the distribution
of η, figure 3.3 shows the estimated η from a few articles.
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Figure 3.3: Nacelle transfer functions and parameters. [43] (Martin et al) estimates two functions
and [28] (Hyeon-Wu et al.) estimates a single. The colors in the right figure are the pdf values
for a multivariate Gaussian distribution with parameters estimated from the three points giving
means µη1 ≈ 1.013 and µη2 ≈ 0.129, variances σ2

η1
≈ 6.078 · 10−3 and σ2

η2
≈ 0.252 and covariance

σ2
η1,η2
≈ −3.91 · 10−2.

Figure 3.3 shows that v f > vnc for most wind speeds with some disagreement for higher
values. It also suggests that η1 is negatively correlated with η2 so a possible distribution
for η is a multivariate Gaussian with mean µη and variance covariance matrix Ση which is
also shown in the figure. Guessing the type distribution from just three samples is ques-
tionable at best, but it might be a reasonable assumption for a prior distribution of η and
due to the lack of evidence from publicly available estimated NTF’s, this will be assumed.
Estimating the prior distribution for η could be required in different situations e.g. when
met-tower measurements are not available at a particular location or for modelling before
a WTG is installed. A suggested for best practise for doing this is to use data from the
same type of WTG with similar terrain and wind conditions. Unfortunately this thesis
lacks this information so in order to illustrate the effects of modelling the NTF, the values
for (µη , Ση) mentioned below figure 3.3 will be used.

Uncertainties in the NTF should also be considered. Uncertainties come from random
behaviour in the NTF and also from measurement uncertainties using anemometers in
general. [33, pp. 92–95] mentions a few different sources of error when measuring wind
speed from an anemometer - e.g. sensor calibration uncertainity, over speeding[2], mout-
ing effects etc [33, ch. 6]. In [11] the standard deviation, specifically when estimating
free wind speed based on anemometer readings, was found to be between about 0.1 and
0.6 m/s depending on the free wind speed, but as mentioned this was done using spinner
anemometers which are located on the rotor hub in front of the blades. In regards to distri-
bution, [33, p. 92] assumes additive Gaussian errors in wind speed measurements, so this
will also be used here. In conclusion, the relation between v f and vnc can be characterised
through the NTF with additive Gaussian error:

v f = NTF(vnc; η) + ξ = η1vnc + η2 + ξ where ξ ∼ N (0, σ2
ξ )

For the models used in chapter 4, the distribution of σ2
ξ is also required. Similar to (3.4), it

will be assumed that σξ follows a folded normal distribution with mean µ2
σξ

and standard

[2]The anemomenter might lack behind the current wind speed.
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deviation σσξ
. Again, the best practise would be to estimate these parameters from mea-

surements based on the same type of WTG, but these parameters are not available and it
will be assumed that µσξ

= 0.4 m/s and σσξ
= 0.2 m/s which resembles the findings in

[11].

3.1.3 Wind speed power spectrum

In regards to temporal correlation in wind speeds, one heavily cited article is [26] from
1956, which establishes the notion of a spectral gap for certain frequencies of measured
wind speeds. It the article frequencies between 1.94 · 10−7 and 0.25 Hz which corresponds
to time periods of approximately 60 days and 4 seconds were analysed using estimates for
the power spectral density (PSD) - see appendix B.2 for definition. The original graphic is
shown in figure 3.4.

Figure 3.4: Estimated wind speed PSD in m2/s2 based on measurements from a meteorological tower
at Brookhaven National Laboratory in the US between 1955-1956. The spectrum is pieced together
from 8 separate spectra based on data sets with different sampling frequencies. The abscissa shows
the frequency in cycles/hour in the first row and the time period in hours in the second row. Source:
[26, p. 161] - Reprinted with permission from the American Meteorological Society

Figure 3.4 shows 3 distinct peaks occurring at time periods of approximately 4 days, 12
hours and 1 minute. In [26] it is explained that the power at 4 days is caused by fluctua-
tions of large pressure systems in the scale of 1000 kilometers or more across. The smaller
peak at 12 hours is disregarded as it is only found in some of the used data sets although
it is mentioned that a 1 day spectral peak was expected. Finally, the peak at 1 minute
is explained by mechanical turbulence caused by wind flow over irregular terrains such as
hills or man-made objects like WTG’s [4] as well as convective turbulence caused by storms
and in particular thunderstorms [2]. Importantly the article argues that for time periods
between 1 hour to 6 minutes “there is no physical process could support wind-speed fluctuations
in this frequency range” [26, p. 164] which is the spectral gap. The spectral gap is exploited
in the wind industry by modelling 10 minute averages in the middle of the spectral gap,
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where the energy of the wind fluctuations is considered negligible [14]. From a fluid flow
perspective, fluctuations are characterised by eddy kinetic energy which is the component of
the fluid flow that represents fluctuation from the mean [14, 48]. By modelling wind speed
as 10 minute averages these phenomena has negligible effect.

For the sake of wind speed dependence the fact that the spectrum is clearly not from a
white process means that and some auto-correlation exists. A model accounting for this
based directly on the PSD is a mixture of sinusoids according to the following [53]:

vt =
q

∑
k=1

[Uk,1 sin (2π fkt) + Uk,2 cos (2π fkt)] for t ∈ Z,

where Uk,1, Uk,2 are zero mean independent random variables for k = 1, . . . q, q is the num-
ber of frequencies and ωk is the frequency index in cycles per unit time - e.g. if fk = 1 the
kth sinusoid makes a cycle every unit time [53, p. 167]. An approximate time series can
then be constructed based on an estimated PDS - e.g using the peaks in figure 3.4. Despite
this it has been chosen not to model like this. Firstly modelling the dependencies would
complicate the statistical models presented in chapter 4, which is beyond the scope here.
Secondly, since the modelled power will later be limited to a 10 minute total, modelling
the dependence in wind speed for small lags may not affect this too much. How exactly
dependencies in wind speed would affect the 10-minute total power is left as an open ques-
tion. Furthermore, the data provided by Goldwind Denmark is limited to the 10-minute
average so data required to analyse short-time dependencies have not been available.

3.2 Pitch control

The power generated from a WTG at a given wind speed highly depends on the aerody-
namics of the blades at different wind speeds. In section 1.1.2, a simple model for the
power was given as:

P =
1
2

CPρπR2v3 for CP ≤
16
27

,

but this kind of model is only accurate for a limited range of wind speeds when CP is fixed.
A more accurate model considers CP as a function of the momentary wind conditions
and the aerodynamics of the particular WTG. A common way to parametrise CP is by
considering the tip speed ratio (TSR) ψ and the pitch angle θ. The pitch angle is illustrated
in figure 3.5 and the tip speed ratio is defined as:

ψ =
ωR
v

,

where ω is the rotational speed of the WTG blades in radians/sec[3], R is the blade length
in meters and v is the wind speed in m/s.

[3]If the blades do a full rotation every T seconds the rotational speed is ω = 2π f = 2π/T, where
f = 1/T is the frequency in Hertz.
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Figure 3.5: Profile of WTG blade at distance r from the rotor hub with rotation in the y-z plane and
wind direction along the x-axis. The z-axis is towards the viewer. α is the angle of attack and θ is
the pitch angle. Lift force Flift and drag force Fdrag are respectively perpendicular and parallel to the
wind direction while the resultant aerodynamic drag force Fres is the addition of the two [33, p. 49].
To keep an optimal angle of attack, the pitch changes along the blade starting from almost parallel
to the x-axis at the root and decreasing along the blade - see more details in [33, pp. 49–53].

WTG blades are designed to achieve maximum lift and minimum drag along the full length
of the blades and these forces are highly dependent on the speed and direction of the wind
- see figure 3.5 for illustrations of lift and drag. The theory behind this is quite extensive
- see [33, ch. 4-5] - but for the purpose of this thesis it suffices to state that the power
coefficient can be considered as a function of TSR and pitch angle. A few methods are
available for modelling CP, ranging from ones that directly models the physical behaviour
to ones that are empirically fitted through observed data - see [24, sec. 2.1] for further
details. Figure 3.6 illustrates an empirical approach. By computing the TSR using sensor
data the pitch angle that maximises CP is obtained. Thus, pitch control is about pitching
the blades to obtain maximum CP under different turbulence conditions. In practise the
pitch can be controlled via eg. a PID-controller [61].

Pitch controlled WTG’s tends to follow a power curve similar to the one illustrated in
figure 1.3. The major benefit of pitch controlled WTG’s is their ability to maintain nomi-
nal power for higher wind speeds, which is achieved by increasing the pitch when wind
speeds approach the rated wind speed [33, pp. 75–76]. For comparison a stall-regulated
WTG has a fixed pitch and, for higher wind speeds where the TSR tends to be lower, less
efficiency is achieved according to figure 3.6.

A realistic W2P model considers the aerodynamics of the WTG and the effects from pitch
control. Modelling this directly requires modelling the moment to moment interactions
between varying wind speeds, turbulence conditions and pitching. This approach would
perhaps require a short-time statistical wind speed model, high frequency sensor measure-
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Figure 3.6: Relation between power coefficient CP, tip speed ratio ψ and pitch angle θ[4]. The
relation plotted here is modelled via an empirical formula with 5 parameters which can be fitted to
a particular WTG depending on design and turbulence conditions. The maximum CP ≈ 0.48 occurs
at θ = 0 and ψ ≈ 8.1. The parameters here are obtained from [24, p. 43] and do not necessarily agree
with the type of WTG used in this thesis.

ments for calibration, as well as knowledge about the applied pitch control algorithm. For
this thesis though, the W2P model is always the total power over a 10 minute period and
it is therefore argued that direct modelling of short time interactions is an overcomplica-
tion. Instead, the effects from turbulence and pitch control will be modelled indirectly
by assuming a fixed model depending only on wind speed. This model will mimic the
expected effects from pitch control and any short time deviations from this are assumed
to average out over the 10 minute period. As described in appendix C, power curves and
AEP estimations are based on 10 minute models, so having a W2P model that operates on
the same time scale is a benefit. The next section describes this model in details.

3.2.1 Pitch Control Wind Speed Model

To model the 10 minute average effects of pitch control on the power coefficient without
knowledge about the tip speed ratio, pitch and pitch algorithm, a model between the
power coefficient CP and wind speed v is established. The model for CP is develop for this
thesis and a few assumptions underlie this, drawing inspiration from a literature study
[38, 44], data exploration and consultations with Goldwind Denmark. As introduced in
section 1.1.2 the power coefficient is defined as the ratio:

CP =
P

Pwind
, (3.5)

where P is the power produced from a WTG and Pwind is the theoretical kinetic energy in
the wind given by 0.5ρπR2v3. To characterise CP as a function of v the following assump-

[4]Note the distinction between local and global pitch. Local pitch refers to the cross sectional pitch,
which is illustrated in figure 3.5 and changes along the blade while global pitch refers to pitching the
entire blade independent of local pitch angles. The pitch angle referred to in figure 3.6 is the global
pitch.
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tions are made:

1. Constant wind conditions: For some windspeed, the wind conditions and resulting
turbulence behaviour is always the same independent of wind direction. Note that
the assumption about wind direction neglects wake effects which are reduced wind
speeds and increased turbulence from other upwind WTG’s often present in a wind
farm.

2. Constant rotational speed: For some windspeed the rotational speed of the blades
is always the same which means that the tip speed ratio is fully determined by the
wind speed. This assumption is clearly not realistic since the inertia of the blades
will cause some delay of rotational speed with changing wind speed.

3. No delay in control: Pitch control is instantaneous. In practise some delay in control
will occur, but this is neglected.

4. Constant control: It is assumed that the blades are always pitched at the same angle
for a particular measured wind speed.

With these assumptions CP can be modelled as a function of only v and although the
assumptions are quite naive, the averaging effect over 10 minutes should make them more
realistic. To model the power coefficient a scatterplot of observed CP is inspected - see
figure 3.7. The relation between v and CP in figure 3.7 features some distinct regions
depending on v. The general behaviour is explained by the effect of pitch control on CP:

• For wind speeds between 0 and vc = 2.8 m/s the energy of the wind is not enough
to overcome the inertia of the system and CP is effectively 0.

• From cut-in to medium wind speeds (about 4 m/s) the rotation of the blades is low
causing the tip speed ratio to be low as well. Therefore the blades are pitched at a
higher angle than 0 to achieve larger CP in this region [33, p. 76].

• From about 4 m/s to 8 m/s the pitch angle is zero and CP is at its max which is also
seen in figure 3.6.

• For 8 m/s and above the wind speed begins to dominate the tip speed ratio again
causing it to be lowered and the pitch angle is increased to counteract this [33, p. 76].
In this region CP is lowered until the rated wind speed vr is reached.

• At vr and above, pitching is continually increased and CP is approximately inverse
proportional to v3, this is seen since Cp(v) ∝ Pnom

v3 , for v > vr. The effect on the
produced power is a flatting and in principle the nominal power Pnom should be
produced for v > vr for pitch controlled WTG’s.

These effects are partly seen in the SCADA data - see figure 3.9. It is observed that the pitch
angle is regulated up to roughly vc after which the pitch angle approximately becomes 0[◦]
and lastly above vr the pitch angle is seen to increase.
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Figure 3.7: Relation between power coeffi-
cient CP and wind speed v[5]. The dashed
red line follows the piecewise linear function
described by (3.6). The estimated Cmax is 0.57
in the interval [4.5, 7.5].

Figure 3.8: Power curve parametrised by (3.7)
and (3.6)

Figure 3.9: Relation between the wind speed, power production and pitch angle for raw data.

Based on these observation and the assumptions made, the following model for CP is
suggested:

CP(v) =


0 if v ≤ vc

(v− v1)a1 + Cmax if vc < v ≤ v1

Cmax if v1 < v ≤ v2

(v− v2)a2 + Cmax if v2 < v ≤ vr

, (3.6)

where the maximal efficiency is achieved between v1 and v2. An example of (3.6) is shown

[5]It is observed that a large portion of observed CP(v) in figure 3.8 is located above the theoretical
upper limit Cmax = 16/27 introduced as Betz limit in section 1.1.2. General measurement error could
explain this and in particular the effect of wind speed reduction behind the rotor system, introduced
in section 3.1.2, explains this observation well.
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in figure 3.7, where (a1, a2, Cmax) have been found using a least squares estimate, the wind
speed parameters are vc = 2.8 m/s, vr = 9.3 m/s from the WTG specifications and v1 = 4
m/s, v2 = 8 m/s are qualified guesses. With the model in (3.6) it is also possible to model
the power curve as a function of only v through the W2P model:

W2P(v; θ) =

{
1
2 ρπr2v3CP(v; θ) if v ≤ vr

Pnom else
, (3.7)

where θ = (a1, a2, Cmax). In principle, the W2P model in (3.7) also depends on the air den-
sity ρ. The results shown throughout the thesis uses ρ as input, but the dependence on ρ is
omitted in the W2P model to ease the notation[6]. Additionally, the wind speed parameters
v1 and v2 could be considered parameters for the W2P model since these are not known
from specification. This has not been chosen for two reasons. Firstly because a rough
approximation of v1 and v2 can quite easily be obtained from data, and secondly because
it was found that estimating these with the Metropolis Algorithm, which is presented in
chapter 5, the parameter estimates tended to fluctuate much more between iterations than
if using the rough approximations necessitating more iterations in the algorithm. In ap-
pendix C.2 the values are found to be v1 ≈ 3.87 m/s and v2 ≈ 7.93 m/s which is used
for the remaining thesis. It is assumed that θ is the same for WTG’s of the same type
independent of the specific site. Since all WTG’s used for this thesis are of the same type
it will only be necessary to estimate one θ.

An example of the power curve using (3.7) can be seen in figure 3.8. Based on figure
3.7 and 3.8 the models in (3.6) and (3.7) seem reasonably accurate upon first inspection.
More advanced models of CP could be suggested, but for the sake of simplicity a piecewise
linear model has been chosen.

To get the average effect of pitch control over 10 minutes the next section will introduce
a framework in which (3.6) and (3.7) are applied only over a short timespan and then 10
minute total power is analysed.

3.3 Aggregated W2P model

An aggregated wind to power (AW2P) model, which is a model of total power over 10 min-
utes, is now be presented. Let wind speed vt be assumed constant within intervals of
period ∆t [s] like in section 3.1 such that vt = v(τ)|τ=t∆t where τ is a continuous variable
and t is discrete. Since the v(τ) is constant over a period of ∆t the total power over that pe-
riod becomes proportional to the power at time e.g τ = t∆. Additionally it is assumed that
the W2P model suffers from a structural error which is modelled by additive independent
Gaussian noise with total variance σ2

ζ over ∆t:

Pt =
∫ (t+1)∆t

t∆t
P(v(τ))dτ = ∆tP(vt∆t) = ∆tW2P(vt; θ) + ζt, t = 0, 1, . . . , N − 1,

ζt ∼ N (0, σ2
ζ )

[6]Air density can be calculated using (2.3) with the mean pressure p from the lookup tables and
the temperature readings in the SCADA data.
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where N = 600 s/∆t is the number of discrete values within a 10 minute period. ∆t = 1
second have been used throughout the thesis giving N = 600. Now the total power over 10
minutes, which is the quantity of interest, is denoted P and is obtained through the AW2P
model again using that Pt is constant over periods of ∆t:[7]

P =
∫ 10min

0
P(vτ)dτ =

N

∑
t=1

Pt =
N

∑
t=1

∆tW2P(vt; θ) +
N

∑
t=1

ζt , AW2P(v; θ) +
N

∑
t=1

ζt︸ ︷︷ ︸
ζ

, (3.8)

where v ∈ RN is a vector of wind speeds and ζ is also Gaussian distributed with zero
mean an variance σ2

ζ
= Nσ2

ζ . P is measured in W which can be converted into kWh by
dividing with 1000× 60× 60.
As a final note, P in (3.8) refers to the power over 10 minutes in some arbitrary interval.
In a general setup Pn reefers to P for a particular time interval n. Distinctions between
different WTG’s and WF’s could also be denoted with additional subscripts but these will
not be needed.

3.4 Alternative models

As presented in chapter 1, existing W2P models in literature include the 5-parameter lo-
gistic (logistic) model and the method of bins (bin) model which only take wind speed as
input. The AW2P model also takes air density as input, so in order to make the existing
methods comparable these are extended to include air density as a parameter as well.
Based on the power in the wind, (1.3) gives that power is proportional to air density - i.e.
P ∝ ρ. Now let f be a function of wind speed given by the logistic or bins model with
parameters θ, then air density is accounted for using:

P(v, ρ) = f (v; θ)ρ

As described in section 2.2 the air density can be estimated as a function of temperature
T and air pressure p. Temperature is given as the 10 minute average T in the SCADA
data and the overall mean air pressure p is given by the lookup tables for each WTG -
thus ρ = ρ(T, p). Additionally, a W2P model should generalise to WTG’s with different
nominal power Pnom, so to account for this a normalised function fn(·) = f (·)/Pnom is
used in the model:

P(v, T, p; θ) = Pnom fn(v; θ)ρ(T, p). (3.9)

Given an observation (P, v, T, p), fn should be fitted through θ to the target variable de-
noted:

P̃ =
P

Pnom · ρ(T, p)
(3.10)

The method to fit f is different for the two models.

[7]Note that P is not at average as the notation might suggest.
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3.4.1 5-parameter logistic model

The logistic model for P̃ is given by:

fn(v; θ) = d +
(a− d)(

1 +
( v

c
)b
)g

θ = (a, b, c, d, e, g) is found by minimizing the mean squared error with terms of the form
(P̃− fn(v; θ))2 using the Nelder-Mead method implemented in the SciPy Optimize library
in Python [50] - see [18] for further description. The logistic model is fitted using the
training data described in section 6.1 with wind speeds between 1.8 m/s and 10 m/s.
Results are shown in figure 3.10 and 3.11.

Figure 3.10: Training data and fitted five-
parametric logistic power curve with
θ = (9.1 · 10−3, 4.3, 1.3 · 102, 0.86, 2.8 · 105).

Figure 3.11: CP = P/Pwind for different wind
speeds for SCADA data and the logistic mo-
del. PL is the estimated power by the logistic
model given by (3.9)

From visual inspection it is observed that the logistic model tends to either underestimate
or overestimate the produced power for a given wind speed. For low wind speeds the
logistic model approaches a = 9.1 · 10−3 > 0 which causes the differences between the
observed and modelled CP seen in figure 3.11.
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3.4.2 Method of bins

As described in section 1.1.2, the bin model is fitted by computing the average of wind
speed and power within wind speed bins of a chosen width. Given a set of Ndat observa-
tions {(vn, P̃n)}Ndat

n=1 these are grouped into subsets based on which wind speed bin vn fall
into. Denote these subsets {(vn,i, P̃n,i)}

Ni
n=1 for each wind bin i of size Ni where vn,i fall in

bin i. The average wind speed vi and P̃i within bins are then calculated according to:

vi =
1
Ni

Ni

∑
i=1

vn,i and P̃i =
1
Ni

Ni

∑
i=1

P̃n,i

Given the averages, fn is tabulated and linear interpolation is used to get values the tab-
ulated points. Here the bin width is chosen to be ∆v = 0.05 m/s giving 164 wind bins
between 1.8 m/s and 10 m/s. The training data described in section 6.1 is used to com-
pute the averages. A normalised power curve and the associated coefficient of power as a
function of wind speed can be seen in figure 3.12 and 3.13.

Figure 3.12: SCADA data and a the fitted bin
model.

Figure 3.13: CP = P/Pwind for different wind
speeds for SCADA data and the bin model.
PB is the estimated power by the bin model
given by (3.9)

It is observed that the model fits quite well, in the sense that the power curve and CP is
centralized through the data. But this method might not generalise as well to the test data.
This was also assessed in [39] where the bin model was critiqued for not accounting for
the local wind conditions - e.g. turbulence - when applied at different sites.
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3.5 Synthetic data

Synthetic data is later used to tabulate some wind speed distributions and is also used
to generate data for a controlled test of parameter inference. The algorithm to generate
synthetic data through simulation is described here.

For a 10 minute period, synthetic data contains total power P and average measured wind
speed v. These are obtained by first simulating the free wind speed v f which is constant
over periods of ∆t with N discrete wind speeds for the 10 minutes. v f is simulated ac-
cording to (3.4) denoting the mean wind speed µv. Total power is then given by the AW2P
model of the simulated wind speeds with additive structural error ζ according to (3.8).
If it assumed that the measured wind speed suffers from input uncertainty modelled by
the NTF, then the average measured wind speed v is modelled according to section 3.1.2,
otherwise µv is assumed known and v is set to this. The algorithm for simulation of data
is presented in algorithm 1.

Algorithm 1 Simulating free wind speed with mean µv

Input : wind speed standard deviation statistics (µσv , σ2
σv
), NTF parameter statis-

tics (µη , Ση), NTF standard deviation statistics (µσξ
, σ2

σξ
), W2P parameters θ,

structural error statistics σ2
ζ and whether to include NTF or not.

for n = 1, . . . , Nsim do
Simulate σv ∼ N+(µσv , σ2

σv
) (WS std.)

Simulate v f ∼ N (µv1N , σ2
v IN×N) (Free WS)

Simulate ζ ∼ N (0N , σ2
ζ IN×N) (Structural error)

P←W2P(v f ; θ) + ζ (W2P model + structural error)
Pn ← ∑N

t=1 Pt (Aggregated power)
if NTF then

Simulate σξ ∼ N+(µσξ
, σ2

σξ
) (NTF structural error std.)

Simulate ξ ∼ N (0N , σ2
ξ IN×N) (Structural NTF error)

Simulate η ∼ N (µη , Ση) (NTF parameters)

vn ← 1
N ∑N

t=1

(
v f ,t − η2 − ξt

η1

)
(Average WS through NTF)

else
vn ← µv (Known mean WS)

return {vn, Pn}Nsim
n=1

To get a representative sample of synthetic data, algorithm 1 is run multiple times for
different µv - e.g µv ∼ U (vmin, vmax) for some vmin and vmax. The algorithm is implemented
in sim_data.py - see appendix D. Note that the values µσv and σσv are given in the lookup
tables, the parameters and statistics for the NTF are based on those found in section 3.1.2.
θ and σζ are chosen based on the setup. An example of synthetic data with and without
the NTF is seen in figure 3.14 and 3.15.
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Figure 3.14: Power curve of synthetic data
parametrised by (3.7) and (3.6).

Figure 3.15: Relation between power coeffi-
cient CP and wind speed v. The solid red
line follows the piecewise linear function de-
scribed by (3.6).
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4 | Bayesian Inference

In chapter 3, different wind speed distributions were considered and the AW2P-model
was presented. The AW2P-model gives the total power over 10 minutes, but only a sin-
gle measurement, the average wind speed v, is available so the model suffers from input
uncertainty in the sense that the time-varying free wind speed is unobserved. Addition-
ally, input uncertainty also refers to wind speed measurements suffering from uncertainty
in general due to measurement errors and structural errors such as blade shadowing as
discussed in section 3.1. Handling input uncertainty using Bayesian theory was discussed
by [34] and [27] in the context of rainfall-runoff models using Bayesian Total Error Analysis
(BETAE). This thesis proposes a similar method to analyse the distribution of the aggre-
gated power P, which leads to a method for inferring model parameters. The proposed
method is similar to BETAE and will be dubbed Approximate Bayesian Total Error Analysis
(A-BETAE). A-BETAE offers modelling flexibility and low dimensional parameters com-
pared to the models in [34], but at the cost of using approximate distributions. The models
based on A-BETAE use the AW2P model to model power directly based on the probabilis-
tic modelling of wind speed giving probabilistic modelling of power which, to the extent
of the authors’ knowledge, is a novel approach. The focus of this chapter is highlighted in
the figure below.

NTF

Ch. 3

Wind speed
distribution

Ch. 3

(Probabilistic)
W2P model

Ch. 4

Parameter
Inference

Ch. 5

AW2P

Ch. 3

Short-time
W2P

Ch. 3

Pitch
Control

Ch. 3
SCADA
(traning)

Ch. 2

Lookup
tables

Ch. 2
Contract W2P model

Initially, this chapter will introduce the general framework for handling input uncertainty
in section 4.1, where A-BETAE is also presented. Section 4.2 discusses how to chose pa-
rameter priors in a Bayesian framework. For A-BETAE, distributions for wind speed are
required thus section 4.3 presents methods to obtain these. Section 4.4 then discusses how
to obtain an approximate distribution for the power P followed by the deviation of the
posterior distributions to be used in parameter inference in section 4.5. Finally, section 4.6
discusses some details about implementing A-BETAE.

4.1 Bayesian total error analysis

The following paragraph is inspired by [27]. Consider a statistical process modelled with
an observed input x, a model f parametrised by θ and an additive random error ζ, such
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that the output is y = f (x; θ) + ζ - scalar values are assumed for ease of notation. This
would be a common setup for modelling many processes, but some processes feature
additional sources of error. In particular, if input and/or output are not directly observed
additional models are needed to characterise the process. To do this consider an uncertainty
framework where it is assumed that there exist some true process which maps the input x
to the output y. In practise, the true process is not observed and the input x is observed
with some input error, the model f is corrupted by a structural error and the output is
observed with some output error [27]. Assuming that the input error δ, structural error ζ
and output error ε, commonly referred to as latent parameters, are all additive the process
is characterised by:

x̃ = x + δ (input error)

y = f (x; θ) + ζ (structural error)

ỹ = y + ε (output error)

x̃ and ỹ are the observed input and output respectively. Figure 4.1 illustrates this concept.
In Bayesian total error analysis models of this type are studied specifically with the aim

True Input

x

f (x; θ)

ζ
Structural errory

True output

ε

Output error

ỹ

δ

Input error

x̃
Observed data True process

Figure 4.1: Uncertainty framework. Inspiration : [27]

of estimating the parameter θ. Power production from WTG’s can be modelled in such a
uncertainty framework where input error characterises the relation between nacelle mea-
sured wind speed and free wind speed. Structural error characterises processes that affect
the power production but are not modelled in f (x; θ). In the delimitations it was assumed
that the produced power is directly observed, so output error is not applied here.

Given a set of observed data points D = {x̃n, ỹn}N
n=1, an objective function to estimate
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θ can be formulated via Bayes formula for conditional pdf’s [5, p. 22]:

p(θ |D) = p(D|θ)p(θ)
p(D) , (4.1)

where p(θ |D) is the posterior distribution, p(D|θ) is the likelihood/observation model and
p(θ) is the prior distribution[1]. Since the denominator in (4.1) is invariant under changes
to θ it is sufficient to consider

p(θ |D)︸ ︷︷ ︸
posterior

∝ p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

for optimization. Obtaining an analytical expression for the posterior can be trivial in some
cases, but, in the described uncertainty framework with various sources or error, it is gen-
erally more challenging. Furthermore, the models presented later in the chapter have the
added complication such that the distributions for δ, ζ and ε feature additional parameters
requiring modelling of prior distributions for these. To formalise this, let pδ(δ |βδ) and
pζ(ζ |βζ) be known conditional distributions for the input and structural error where βδ

and βζ are additional nuisance parameters[2] which follow known prior distributions p(βδ)
and p(βζ) - output error is omitted here. The process is now described as:

x̃ = x + δ where δ |βδ ∼ pδ(δ |βδ) and βδ ∼ p(βδ), (4.2)

y = f (x; θ) + ζ where ζ |βζ ∼ pζ(ζ |βζ) and βζ ∼ p(βζ), (4.3)

Obtaining an analytical expression for the posterior of θ given (x̃,y) may be difficult since
the likelihood is now affected by multiple random variables. A few methods may be used
to solve this.

Marginalisation In some cases, it might be possible to integrate out the nuisance pa-
rameters through marginalisation. In the case of (4.2) consider first the joint distribution
of x, βδ | x̃. The chain rule of conditional probability[3] gives that:

p(x, βδ | x̃) = p(x | x̃, βδ)p(βδ | x̃)

Using that x = x̃ − δ and corollary B.2.1 in the appendix about linear transformations of
random variables the pdf for x | x̃ is:

p(x | x̃, βδ) = pδ(x̃− x | x̃, βδ)p(βδ | x̃).

where pδ is specifically the pdf for δ. The distribution for x | x̃ is obtained through marginal-
isation by integrating over the domain of δ - say Ωδ:

p(x | x̃) =
∫

Ωδ

p(x | x̃, βδ) dβδ =
∫

Ωδ

pδ(x̃− x | x̃, βδ)p(βδ | x̃) dβδ (4.4)

Integrals like this are studied in the context of hierarchical models which offer solutions for
some specific distributions. In the context of hierarchical models p(x | x̃, βδ) is considered

[1]Note that the subscripts of the pdf’s will be omitted unless needed to ease the notation.
[2]A nuisance parameter refers to a parameter not of interest.
[3] p(a, b) = p(a |b)p(b)
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the first stage model and βδ is a random effect described by the second stage model p(βδ)
[41, p. 200]. Examples of two stage hierarchical models where the random effect can be
integrated out to obtain analytical solutions include: X |µ following a Poisson distribution
with parameter µ following a Gamma distribution with known parameters [41, p. 227] and
Y|σ2 following a Gaussian distribution with known mean and 1/σ2 following a Gamma
distribution with known parameters [41, p. 241]. One can try to build models in such a
way that marginalisation is possible, but this gives less modelling flexibility so it may not
always be desired.

Obtaining the likelihood Different techniques are available to obtain the likelihood.
If the distribution for x | x̃ is known the distribution for f (x; θ) |θ, x̃ is given by the general
change of variable theorem for scaler distributions stated in appendix B.2.1. As an example
say that f is just a scalar operation multiplying with θ then f (x; θ) | x̃, θ has pdf:

1
|θ| px | x̃

( x
θ

∣∣ x̃, θ
)

Obtaining the likelihood then requires combining the distribution of f (x; θ) | x̃, θ with
the distribution of the structural error. If the structural error is additive using moment-
generating function might yield an analytical expression for the likelihood by exploiting that
the moment-generating function of two independent random variables added together is a
product of the moment-generating functions for each of the random variables [46, p. 239][4].
The moment generating functions for each random variable can be found by table lookup
for known distributions, but obtaining the pdf for the combined distribution by the inverse
transformation may be more challenging.

The methods mentioned above are by no means an exhaustive list of ways to obtain the
likelihood, but it gives some insight and it highlights that finding the likelihood is gener-
ally a non-trivial task, in particular if distributions for the various uncertainties are chosen
based on physical considerations rather than choosing distributions that enables analytical
solutions to be found. To help this issue [34] suggests an alternative approach which is to
obtain an analytical expression for the posterior by including the latent1 parameters only
requiring that the various conditional distributions are known analytically. For the case of
the setup in (4.2) and (4.3), [34] then suggests to include δ, βδ and βζ in the posterior so
that the posterior based on a single observation (x̃, y) is:

p(θ, δ, βδ, βζ | x̃, y) ∝ p(y | x̃, θ, δ, βδ, βζ)p(θ, δ, βδ, βζ | x̃)

y = f (x; θ) + ζ so using corollary B.2.1 again gives the pdf for the likelihood:

p(y | x̃, θ, δ, βδ, βζ) = pζ(y− f (x̃− δ︸ ︷︷ ︸
x

; θ) | x̃, θ, δ, βζ),

The parameters can be assumed mutually independent other than the dependence of δ and
βδ. If the parameters are also assumed independent on the observation of x̃, which may or
may not be a good assumption, the prior is:

p(θ, δ, βδ, βζ | x̃) = p(θ)pδ(δ |βδ)p(βδ)p(βζ)

[4]The moment-generating function is defined as the expectation E[exp(tX)] for a continuous ran-
dom variable X and real number t.
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The posterior distribution then reduces to:

p(θ, δ, βδ, βζ | x̃, y) ∝ pζ(y− f (x̃− δ; θ) | x̃, θ, δ, βζ)p(βζ)pδ(δ |βδ)p(βδ)p(θ) (4.5)

The posterior in (4.5) can be evaluated directly with the distributions for the input and
structural error as well p(θ) chosen appropriately. There is no free lunch though, since the
posterior in (4.5) now includes the input error δ. For one thing this is a problem if the
spread of pδ(δ |βδ) and/or pζ(δ |βζ) is too large since each one observation is affected by
two sources of error from δ and ζ. If prior information about x is known, which is the case
for wind speed as described in appendix C.1, then including x in the posterior instead of
δ gives the parameter prior:

p(θ, x, βδ, βζ | x̃) ∝ p(θ)pδ(x̃− x |βδ, x̃)p(βδ)p(x)p(βζ),

omitting a few details. The additional prior information about x might help parameter
estimation. Another issue is the dimensionality of the parameters to be estimated. To see
this, consider a set of N observed inputs x̃ ∈ RN and outputs y ∈ RN . The parameters θ,
βδ and βζ are assumed the same for each observation but δ and ζ changes so let δ ∈ RN

and ζ ∈ RN be vectors of dimension N containing the individual input and structural
errors. If the errors are mutually independent the posterior is:

p(θ, δ, βδ, βζ | x̃, y) ∝
N

∏
n=1

(
pζ(yn − f (x̃n − δn︸ ︷︷ ︸

xn

; θ) | x̃n, δn, θ, βζ)pδ(δn |βδ)

)
p(βζ)p(βδ)p(θ),

(4.6)

The posterior in (4.6) is still not affected by the realisations of ζ, but due to the depen-
dence on the realisations on δ, the dimension of the parameters in the posterior now scales
linearly with the number of observations N. Any optimization algorithm would have to
estimate every realisation of δ in order to estimate the remaining parameters. This issue
is also discussed in [34], but it is found that if the input is measured “fairly accurately”
[34, p. 3] then parameter estimation is possible using Markov chain Monte Carlo (MCMC)
methods when the parameters are initialised carefully [34, p. 7]. These methods was at-
tempted for this thesis, but the issue with dimensionality proved to great and convergence
was not achieved using one MCMC method know as the Metropolis Algorithm. For the
AW2P model, introduced in section 3.3, which is the modelling of power over a 10 minute
period, the issue of dimension is aggravated even further since each observation is based
on 600 individual realisations of the input error over 10 minutes in such a way that each
observations adds 600 latent variables to be estimated. Thus using the method posed by
[34] without alteration is deemed infeasible here.

4.1.1 Approximate Bayesian Total error analysis

To overcome the outlined issues with BETAE this section proposes A-BETAE as an alter-
native method/modelling philosophy. The basic idea is summarized in a few points:

• Design a model according to some physical process in an uncertainty framework
featuring input, structural and output error (or some of these) without making com-
promises in regards to obtaining analytical solutions of the different distributions.
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• Perform marginalisation by integrating out nuisance variables where necessary in
order to get a low dimensional posterior distribution. If analytical solutions are
not available, use numerical methods such as numerical integration or Monte Carlo
simulation.

• Use approximate distributions to get a parametrisation for the likelihood if the exact
distribution cannot be obtained.

For the uncertainty framework given in (4.2) and (4.3), A-BETAE suggests to perform
marginalisation over βδ in order to get a distribution for x | x̃ as shown in (4.11) either by
solving the integral or using numerical methods. Then the distribution f (x; θ) | x̃, θ is found
either by using the change of variable method or by approximating the distribution. An
example of an approximation would be estimating the mean and variance then assuming
a Gaussian distribution. Finally, the distribution of

f (x; θ) + ζ | x̃, θ, βζ

is obtained either directly or by approximating the distribution. If both f (x; θ) and ζ are
Gaussian distributed and independent their sum would also be Gaussian with their means
and variances added.

The formulation of A-BETAE is somewhat vague since the implementation is specific to
the modelled case. The remaining chapter will give one example where section 4.3 uses
marginalisation to get a distribution for the free wind speed and section 4.4 uses an approx-
imate distribution for produced power by estimating the mean and variance of a Gaussian
distribution. Using numerical methods and approximate distributions might introduce
some undesired effects like bias in the parameter estimation - see chapter 7 for further
discussion.

4.2 Non-informative Bayesian inference priors

Bayes’ theorem given in the previous section states that:

postorior ∝ likelihood× prior

Here the prior is used to infer known information into the model also known as á priori
information. The impact of the prior on the posterior tends to depend on the sample size
N. When N is small the prior might have a great impact, while for larger N the likelihood,
which is often a product of N terms, will dominate and the effects of the prior vanishes
for N → ∞. The sample sizes for this thesis are in the order of 105 or even 106 so the
prior distribution might not have a great impact on the posterior but it should nonetheless
be considered. A few different prior distributions was modelled in chapter 3 based on in-
formation about of the physical phenomena at play, but when little information is known,
non-informative priors can be used.

When designing a non-informative prior, one might suggest the following conditions:

• The prior have little to no impact on the posterior distribution.

• The prior do not assume á priori information and lets the data speak for itself.
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Based on these points an obvious suggestion would be a uniform prior distribution how-
ever if the bounds for the input is not known or if the input is unbounded, then it might
be necessary make some assumptions. Another issue with the uniform distribution is the
fact that the choice of parametrisation - say for a parameter θ - impacts inference. To
see this, consider an example where θ follows a uniform distribution between a, b ∈ R

such that θ ∼ U (a, b). Had one instead chosen the parametrisation ψ = g(θ) such that
ψ ∼ U (g(a), g(b)) then:

P(a ≤ θ ≤ b) =
∫ b

a
pθ(θ) dθ 6=

∫ g(b)

g(a)
pψ(ψ) dψ = P(g(a) ≤ ψ ≤ g(b)), (4.7)

except for some trivial cases. If equality is achieved in (4.7) for any choice of g it is then
said that the prior is invariant under reparametrisation [46, p. 361]. A family of priors known
as Jeffreys’ prior achieves this property by defining the prior based on the likelihood.

Definition 4.2.1 (Jeffreys’ prior) [46, p. 361] Let pY(y|θ) be a likelihood pdf for the random
variable Y parametrised by θ. The prior distribution for θ follows Jeffreys’ prior if:

pθ(θ) ∝
√

det(i(θ)),

where i(θ) is the expected information corresponding to y and θ - see appendix B.2.1.

The expected information can be interpreted as how much information about θ an obser-
vation of the random variable gives and having the prior distribution depend on this in
Jeffreys’ prior might be good property. Proposition B.2 in the appendix gives that Jeffrey’s
prior is invariant under reparametrisation (up to proportionality) if the Jeffrey’s calculated
calculated with respect to ψ = g(θ) is the same the same as reparametrising Jeffrey’s prior
for θ then using the change of variable proposition in appendix B.2.1 to get pψ. In other
words the prior is invariant if it does not matter if pψ is obtained directly from Jeffrey’s
prior or if Jeffrey’s prior for pθ is first found then transformed using the change of variable
proposition. Invariance is proven by the proposition below for a scalar variable.

Proposition 4.2.1 Let θ ∈ R be a random variable with pdf pθ(θ) ∝
√

det(iθ(θ)), pψ(ψ) ∝√
det(iψ(ψ)), and likelihood pθ(y; θ) = pψ(y; g(θ)) such that ψ = g(θ). Then

pθ(θ) ∝
∣∣∣∣ d
dθ

g(θ)
∣∣∣∣ pψ(g(θ)). (4.8)

Proof The proof is inspired by [56]. For scalar expected information det(iθ(θ)) = iθ(θ)
and it follows that:

pθ(θ) ∝
√

iθ(θ) ∝
∣∣∣∣ d
dθ

g(θ)
∣∣∣∣ pψ(g(θ))⇔ iθ(θ) ∝

(
d
dθ

g(θ)
)2

p2
ψ(g(θ))
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Using lemma B.2.1 and the chain rule for derivatives:

iθ(θ) = −
∫ ( d2

d2θ
`θ(y; θ)

)
pθ(y; θ)dy

=
∫ ( d

dθ
`θ(y; θ)

)2
pθ(y; θ)dy (Lemma B.2.1)

=
∫ ( d

dθ
`ψ(y; g(θ))

)2
pψ(y; g(θ))dy

=
∫ ( d

dψ
`ψ(y; ψ)

d
dθ

g(θ)
)2

pψ(y; ψ)dy (Chain rule)

=

(
d
dθ

g(θ)
)2 ∫ ( d

dψ
`ψ(y; ψ)

)2
pψ(y; ψ)dy︸ ︷︷ ︸

iψ(ψ)

∝
(

d
dθ

g(θ)
)2

p2
ψ(ψ) =

(
d
dθ

g(θ)
)2

p2
ψ(g(θ)) �

Jeffrey’s prior for Gaussian distributed random variables is given by the proposition below.

Proposition 4.2.2 Let Y ∼ N (µ, σ2) with parameters θ = (µ, σ). If θ follows Jeffreys’ prior then:

pθ(θ) ∝
1
σ2

Proof Let Y ∼ N (µ, σ2) and θ = (µ, σ), the log-likelihood is given by

log p(θ|y) = − log σ− (y− µ)2

2σ2

By applying the definition of the expected information the following is obtained

i(θ) = −E
[

∂2

∂θ∂θT `(θ|y)
]

= −E




∂2

∂µ2 `(θ|y)
∂2

∂µ∂σ
`(θ|y)

∂2

∂σ∂µ
`(θ|y) ∂2

∂σ2 `(θ|y)




= −E


 − 1

σ2 −2(y− µ)

σ3

−2(y− µ)

σ3
1
σ2 −

3(y− µ)2

σ4




By applying the expected value it is observed that E[(y− µ)] = 0, E[(y− µ)2] = σ2 and the
expression becomes

i(θ) =

 1
σ2 0

0
2
σ2

 (4.9)
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the Jefferys prior becomes √
det(i(θ)) =

√
1
σ2 ·

2
σ2 ∝

1
σ2 (4.10)

�

Remark 4.1 Jeffrey’s prior for Gaussian random variable is improper in the sense that:∫ ∞

0
σ−2 dσ = lim

a→0+

∫ 1

a
σ−2dσ + lim

b→∞

∫ b

1
σ−2dσ = lim

a→0+

(
1
a
− 1
)
+ lim

b→∞

(
1− 1

b

)
= ∞

In general, this not necessarily a problem as long the posterior pdf with input y given by:

p(θ|y) = p(y |θ)pθ(θ)

p(y)
=

p(y |θ)pθ(θ)∫
p(y |θ′)pθ(θ

′)dθ′

is a possible pdf which happens when the denominator is finite [56]. The proof is omitted.

In the proposition it is observed that pθ(θ) is constant with respect to µ, thus when the
variance σ2 is fixed a flat prior is obtained.

4.3 Obtaining marginal wind speed distributions

In order to estimate the first and second order moment of the aggregated power P, a
few marginal distributions of the wind speed are needed. Similar to previous setups, let
v =

[
v1 . . . vN

]T ∈ RN be the vector of wind speeds over a 10 minute period and let v be
the measured average over that period. vt ∈ v is used as shorthand for the free wind speed
v f ,t omitting the subscript f unless the distinction between free and nacelle wind speed is
needed. The conditional pdf pvt(vt |v) and the joint conditional pdf pvt ,vt′ (vt, vt′ |v) for time
instances t 6= t′ are desired. Two distributions are modelled: One where v is considered
the true mean, i.e v = E[vt] and one where uncertainty with respect to v is considered
through the nacelle transfer function.

4.3.1 Assuming known mean free wind speed

Assuming that v is the true mean of the free wind speed gives the distribution introduced
in (3.4) which was:

v |v, σv ∼ N (v1N , σ2
v IN×N) and σv |v ∼ N+(µσv , σ2

σv)

To obtain the marginal distribution of vt |v requires integration over σv as well as all vt′ for
t′ 6= t. First the joint distribution of v |v, σv is factored as:

pv(v|v, σv) =
N

∏
t=1

pvt(vt |v, σ2
v ),

due to the i.i.d property where pvt(vt |v, σ2
v ) is the pdf of a Gaussian distribution with

mean v and variance σ2
v . Now using the chain rule of conditional probability:

pvt(vt, σv |v) = pvt(vt |v, σv)pσv(σv |v). (4.11)
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The distribution of vt|v is obtained by marginalisation:

pvt ,σv(vt|v) =
∫ ∞

0
pvt(vt |v, σv)pσv(σv |v) dσv, (4.12)

where pσv is the pdf of a folded normal distribution with parameters according to (3.1) and
(3.2). The integral in (4.12) can be computed numerically[5]. For this an adaptive numerical
integration method will be applied - see [49] for the used software.

The joint distribution pvt ,vt′ (vt, vt′ |v) is obtained similarly:

pvt ,vt′ (vt, vt′ |v) =
∫ ∞

0
pvt ,vt′ (vt, vt′ |v, σv)pσv(σv |v) dσv, (4.13)

where pvt ,vt′ (vt, vt′ |v, σv) is the pdf of a bivariate uncorrelated Gaussian distribution which
has the feature that it only depends on vt and vt′ through their total Euclidean distance to
the mean v:

pvt ,vt′ (vt, vt′ |v, σv) = pvt(vt |v, σv)pvt′ (vt′ |v, σv)

=
1

2πσ2
v

exp
(
− 1

2σ2
v

(
(vt − v)2 + (vt′ − v)2

))
=

1
2πσ2

v
exp

(
− 1

2σ2
v

∥∥∥∥[vt − v
vt′ − v

]∥∥∥∥2

︸ ︷︷ ︸
d2

)
,

where ‖·‖ denotes the `2 norm - see appendix B.2.2. Thus (4.13) is fully characterised
only with respect to the one dimensional variable d which is also equivalent to tabulat-
ing (4.12) with (vt − v)2 = d2 and scaling the result by (

√
2πσv)−1. See section 4.6 for

implementation details.

4.3.2 Free wind speed measurements through nacelle transfer function

Characterising the marginal distributions as having input uncertainty with respect to the
mean is more involved since the relation between nacelle measured wind speed vnc and
free wind speed v f should be considered through the nacelle transfer function. Denoting
µv = E[v f ] as the mean free wind speed over 10 minutes, the assumptions according to
section 3.1 in regards to the free wind speed are then:

v f |µv, σv ∼ N (µv1N , σ2
v IN×N), σv |v ∼ N+(µσv , σ2

σv),

The measured average wind speed is:

v =
1
N

N

∑
t=1

vnc,t,

[5]To obtain an analytical solution requires evaluating an integral of the form∫
x−1 exp

(
ax−2 + bx2 + cx + d

)
dx for real numbers a, b, c, d which, to the extent of the knowl-

edge of the authors, has no closed form solution.
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where the free and nacelle wind speeds are linked through the NTF:

v f ,t = NTF(vnc,t; η) + ξt = η1vnc,t + η2 + ξt, (4.14)

where η are NTF coefficients following a bivariate Gaussian prior distribution:

η ∼ N (µη , Ση),

and ξt is additive noise drawn independently from a Gaussian distribution:

ξt |σξ ∼ N (0, σ2
ξ ) with σξ ∼ N+(µσξ

, σ2
σξ
).

For a given 10 minute period, the parameters σv, σξ and η are assumed constant but each
is drawn independently between periods[6]. Note that values for the prior distribution pa-
rameters µη , Ση , µσξ

and σσξ
were not available in the lookup tables so the values suggested

in section 3.1.2 based on the literature are used in the implementation. To obtain pvt(vt |v)
and pvt ,vt′ (vt, vt′ |v), marginalisation with respect to σv, η, σξ is now required. Note that
by marginalising out η this parameter cannot be estimated based on the marginal distribu-
tions so if η is desired another method is needed.

Obtaining the marginal distributions could be done similarly to the previous sections
through numerical integration but the increased dimension offers a challenge. Computing
e.g. pvt(vt |v) requires marginalisation over σv, η and σξ but the parameters are coupled so
the multidimensional integral in the marginalisation do not factor into separate integrals.
In [41, p. 200], parameters like this are referred to as crossed random effects. The compu-
tational complexity of numerically integrating over crossed random effects is exponential
with respect to the number of crossed random effects [41, p. 199], so instead the marginal
distributions are obtained through Monte Carlo Simulations.
To estimate the distributions using Monte Carlo simulation first requires realisations of
the form {vn, v f ,n}

Nsim
n=1 according to the assumptions above where each vn is the average

observed wind speed over a period with free wind speeds v f ,n. Algorithm 1 describes how
to obtain realisations given the mean wind speed µv and the algorithm can be repeated
multiple times for different µv in a suitable range to get a set of representative realisations
- see further details in section 4.6. Given the realisations, the marginal distributions can be
estimated using a Gaussian kernel density estimator. In general if {xn}Nsim

n=1 are realisations of
a random process X of dimension D, the isotropic Gaussian kernel density estimate is [5,
p. 123]:

pX(x) =
1

Nsim

Nsim

∑
n=1

1
√

2πh2D exp

(
−‖x− xn‖2

2h2

)
,

where h is a smoothing parameter/bandwidth chosen according to Scott’s rule described in
appendix B. To obtain pvt(vt |v0) for a particular v0, choose the subset of realisations that
have observed average wind speed v0 and denote them {vn,0, v f ,n,0}

Nsim,0
n=1 . The distribution

[6]The assumption that η is drawn independently each 10 minute period is made to ensure temporal
independence of power distribution presented in section 4.4 although some dependence is perhaps
more realistic from a modelling perspective.
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is then estimated using the Gaussian kernel using each v f ,n,0 as Nsim separate observations
of dimension D = 1. To obtain the joint marginal distribution pvt ,vt′ (vt, vt′ |v) divide
each v f ,n,0 into two parts of size N/2 and use those as separate observations in a kernel
estimator with D = 2.

4.4 Power distribution

As described in section 4.1.1, A-BETAE seeks to obtain an approximate distribution of the
modelled quantity using marginalised distributions describing the input uncertainty. Here
the modelled quantity is the total power over a 10-minute period P and the input uncer-
tainty is characterised by the marginal distributions for vt |v and vt, vt′ |v with or without
assuming known mean free wind speed according to section 4.3.1 and 4.3.2 respectively.
In either case, the distribution of P is given by the wind speed distributions and the W2P
model from (3.7). P was modelled by the sum of Pt generated over periods of ∆t with
Gaussian additive noise:

P = AW2P(v; θ) + ζ =
N

∑
t=1

∆tW2P(vt; θ) +
N

∑
t=1

ζt =
N

∑
t=1

Pt +
N

∑
t=1

ζt (4.15)

Let P̂ = AW2P(v; θ) and P̂t = ∆tW2P(vt; θ) denote the modelled power via the AW2P and
W2P model respectively. The Central limit theorem states that the sum of any identically
distributed independent random variables converges in distribution to a Gaussian distri-
bution [46, p. 268]. In the case of P̂, the requirement of identically distributed variables is
fulfilled since each P̂t has the same distribution, but the requirement of being independent
is not. In the setup where v is assumed to be the true mean of the free wind speed, vt |v, σv
is independent of vt′ |v, σv for t 6= t′ but the distribution of vt |v is dependent on vt′ |v since
they share the same standard deviation - thus factoring of the joint pdf pvt ,vt′ (vt, vt′ |v)
is not possible[7]. Accounting for uncertainty with respect to v further complicates the
dependence since now each realisation also shares NTF coefficient η as well as the NTF
structural error standard deviation σξ .
To give some context, distributions like these are seen in hierarchical models and in some
cases the dependence between the variables can be made explicit. As an example if
Xi = U + εi for i = 1, . . . , N where U is zero mean Gaussian distributed with variance
σ2

u independent of εi which is also zero mean Gaussian with variance σ2
ε and each εi are

mutually independent, then the covariance is given by [41, p. 163]:

Cov[Xi, Xj] =

{
σ2

u + σ2
ε for i = j

σ2
u for i 6= j

(4.16)

This example is somewhat similar to the distribution of v |v since each vt ∈ v share the
same realisation of standard deviation and possibly also η and σξ , but are otherwise inde-

pendent. In summary, P̂ is the sum of dependent identically distributed random variables.
An analytical expression of the distribution - or even the first and second order moment - is
not trivially obtained since the W2P model is highly non-linear and since the marginal dis-
tributions for the wind speeds are also not available as analytical expressions. To overcome

[7]Technically this has not been shown.



4.4. Power distribution 51

this issue the principle of A-BETAE is used by using an approximate distribution - here a
Gaussian distribution for P̂ is used. This is a somewhat crude approximation and should
be analysed further, but it gives an efficient way to characterise the distribution using its
moments and at least the central limit theorem gives an asymptotic Gaussian distribution
if the wind speeds were independent. See further discussion of this in chapter 7. Modelled
power is therefore approximated using:

P̂ |v, θ ∼ N (µ
P̂
(v; θ), σ2

P̂
(v; θ)), (4.17)

such that the mean and variance are functions of observed average wind speed v and
parametrisation of the W2P model θ. Furthermore, in section 3.1 it was assumed that wind
speeds for different 10-minute periods given statistics are independent - i.e vn |vn, σv,n, ηn, σξ,n
is independent of vn′ |vn′ , σv,n′ , ηn′ , σξ,n′ when modelling the effect of the NTF. In section
4.3.2 it was assumed that σv, η and σξ are drawn independently for different 10 minute pe-
riods giving that vn |vn is independent of vn′ |vn′ after marginalisation over the statistics.
Since the modelled power P̂ is just a function of v it then follows that the power between
two time periods P̂n and P̂n′ are conditionally independent for n 6= n′ such that[8]:

p
P̂n ,P̂n′

(P̂n, P̂n′ |vn, vn′ , θ) = p
P̂n
(P̂n |vn, vn′ , θ)p

P̂n′
(P̂n′ |vn, vn′ , θ)

= p
P̂n
(P̂n |vn, θ)p

P̂n′
(P̂n′ |vn′ , θ), (4.18)

where vn and vn′ are the average wind speeds for the respective periods.

Since P̂ is as sum over P̂t, the statistics can be obtained by characterising P̂t.
Specifically the mean and variance is:

E[P̂ |v, θ] =
N

∑
t=1

E[P̂t |v, θ] = N E[P̂1 |v, θ]

Var[P̂ |v, θ] =
N

∑
t=1

Var[P̂t |v, θ] +
N

∑
t=1

N

∑
t′=1
t′ 6=t

Cov[P̂t, P̂t′ |v, θ]

= N Var[P̂1 |v, θ] + N(N − 1)Cov[P̂1, P̂2 |v, θ],

using that P̂t is identically distributed for each t = 1, . . . , N - thus characterising mean and
variance for P̂1 and covariance between P̂1 and P̂2 is sufficient. In other words the covari-
ance structure is the same in the off diagonal elements, similar to the example in (4.16).
Now denote pvt(vt,m |v) and pvt ,vt′ (vt,m, vt,m′ |v) for m = 1, . . . , M as the distributions sam-
pled equidistantly with distance ∆v at M and M2 discrete points respectively in an appro-
priate range using the methods in the previous section. The moments of P̂t = ∆tW2P(vt; θ)

[8]Generally, if two random variables (X, Y) are independent then it follows directly from the
multivariate change of variable theorem that (U, V) = ( f (X), f (Y)) are also independent for some
function f [46, p. 184].
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can then be approximated using the midpoint-integration rule:

E[P̂t |v, θ] =
∫ ∞

−∞
∆tW2P(vt; θ)pvt(vt |v)dvt ≈

M

∑
m=1

∆tW2P(vt,m; θ)pvt(vt,m |v)∆v (4.19)

E[P̂2
t |v, θ] =

∫ ∞

−∞
(∆t)2W2P2(vt; θ)pvt(vt |v)dvt ≈

M

∑
m=1

(∆t)2W2P2(vt,m; θ)pvt(vt,m |v)∆v

(4.20)

E[P̂t P̂t′ |v, θ] =
∫ ∞

−∞

∫ ∞

−∞
(∆t)2W2P(vt; θ)W2P(vt′ ; θ)pvt ,vt′ (vt, vt′ |v)dvtdvt′

≈
M

∑
m=1

M

∑
m′=1

(∆t)2W2P(vt,m; θ)W2P(vt′ ,m′ ; θ)pvt,m ,vt′ ,m′ (vt,m, vt′ ,m′ |v)(∆v)2

(4.21)

From these the variance and covariance estimates are obtained through:

Var[P̂t |v, θ] = E[P̂2
t |v, θ]− E[P̂t |v, θ]2

Cov[P̂t, P̂t′ |v, θ] = E[P̂t P̂t′ |v, θ]− E[P̂t |v, θ]E[P̂t′ |v, θ] = E[P̂t P̂t′ |v, θ]− E[P̂t |v, θ]2

The estimates for mean and variance will be used for parameter inference, but given the
parameters the mean estimate µ

P̂
(v; θ) is also used to model the power output given in-

puts v and θ. This model will depend on the distributions for the wind speed so let the
probabilistic AW2P model refer to the model using the wind speed distributions assuming
known mean free wind speed given in section 4.3.1 and let the probabilistic NTF-AW2P mo-
del refer to the model using the distributions in section 4.3.2 where the free wind speed is
modelled via the NTF. As shorthand these models will just be referred as the AW2P and
NTF-AW2P model for the remainder of the thesis (ignoring the previous definition of the
AW2P model). For a given v and parameter θ the AW2P model is then:

AW2P(v; θ) = µ
P̂
(v; θ) = E[P̂ |v, θ] (4.22)

where the wind speed distributions are given as in section 4.3.1. The NTF-AW2P model is
evaluated similarly but using the wind speeds distributions given in section 4.3.2.

A few notes in regards to computation. For parameter inference it is important that the
likelihood distribution p

P̂
(P̂ |v, θ) can be evaluated readily under different values of θ.

Since the pdf’s pvt(vt,m |v) and pvt ,vt′ (vt,m, vt,m′ |v) are invariant under changes to θ, these
can be tabulated prior to inference. The main computational effort is then estimating the
moments in (4.19)-(4.21) in particular the double sum in (4.21).

4.5 Posteriors and logarithm posteriors

As mentioned in section 4.1 parameter inference for a Bayesian setup uses the posterior
distribution for the parameters given observed data. The parameters to be estimated are
θ = (Cmax, a1, a2) from the W2P model and the standard deviation for the structural error
σζ . The posterior is constructed based on a training data set including observed power
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P ∈ RNdat and average wind speed v ∈ RNdat over a total of Ndat 10-minute periods from
one or more WTG’s. Similarly to section 4.1 the posterior distribution is obtained using
Bayes formula:[9]

p(θ, σζ |P, v) =
p(P |θ, σζ , v)p(θ, σζ |v)

p(P |v)

In chapter 5 the Metropolis Algorithm will be introduced as a method for inference. This
algorithm only considers ratios of posterior distributions so it is only necessary to know
the posterior up to proportionality giving:

p(θ, σζ |P, v) ∝ p(P |θ, σζ , v)p(θ, σζ),

assuming that the prior on the parameters are independent of v. According to the previous
section each Pn ∈ P is modelled as the AW2P model with additive structural error both of
which follow a conditional Gaussian distribution such that:

Pn = AW2P(vn; θ) + ζn = P̂n + ζn with

P̂n |vn, θ ∼ N (µ
P̂
(vn; θ), σ2

P̂
(vn; θ)) and ζn |σ2

ζ
∼ N (0, σ2

ζ
)⇒

Pn |vn, θ, σ2
ζ
∼ N (µ

P̂
(vn; θ), σ2

P̂
(vn; θ) + σ2

ζ
)

Let the total variance be denoted as σ2
T(vn; θ, σζ) = σ2

P̂
(vn, θ) + σ2

ζ
. The likelihood distribu-

tion is then:

p
(

P |θ, σζ , v
)
=

1

(
√

2π)Ndat ∏Ndat
n=1 σT(vn; θ, σζ)

exp

−1
2

Ndat

∑
n=1

(
Pn − µ

P̂
(vn; θ)

σT(vn; θ, σζ)

)2


∝
Ndat

∏
n=1

σ−1
T (vn; θ, σζ) exp

−1
2

(
Pn − µ

P̂
(vn; θ)

σT(vn; θ, σζ)

)2
 , (4.23)

For the prior p(θ, σζ) = p(Cmax, a1, a2, σζ), the parameters are assumed mutually indepen-
dent which allows factoring the prior:

p(Cmax, a1, a2, σζ) = p(Cmax)p(a1)p(a2)p(σζ) (4.24)

Little information is known about the W2P model parameters in θ. Theoretically Cmax ≤
16/27 as described in section 1.1.2, but as shown in figure 3.7, uncertainty in the input
might cause Cmax to appear lager than the limit so it will be assumed that Cmax follows
a uniform distribution in the range [0, 1]. From the theory about pitch control it is also
known that a1 ≥ 0 and a2 ≤ 0 - some experimentation with the available data shows that
they are in the range [0, 1] and [−0.5, 0] for a1 and a2 so a uniform distribution in those
ranges is assumed. Little is known about the structural error standard deviation σζ so the
non-informative Jeffrey’s prior based on Gaussian likelihood will be assumed. Thus:

p(Cmax, a1, a2, σζ) ∝ 1[0,1](Cmax)1[0,1](a1)1[−0.5,0](a2)σ
−2
ζ

, (4.25)

[9]Again, the subscripts of the pdf’s are omitted to ease the notation.
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where 1 is the indicator function mapping to either 0 or 1 - see appendix B. For large Ndat,
the numerical values for the posterior typically approach 0 and to overcome this the log-
posterior distribution is used giving large negative values which suffer less from numerical
issues. Combining (4.23) and (4.25) gives the log-posterior distribution:

`(Cmax, a1, a2︸ ︷︷ ︸
θ

, σζ |P, v) = log p(Cmax, a1, a2, σζ |P, v)

∝ −
Ndat

∑
n=1

log(σT(vn; θ, σζ))−
1
2

(
Pn − µ

P̂
(vn; θ)

σT(vn; θ, σζ)

)2


− 2 log(σζ) + `(Cmax) + `(a1) + `(a2), (4.26)

where the last three terms are the log-priors for the W2P parameters which maps to either
−∞ or 0.

To aid the reader in understanding the process, figure 4.2 summarises the different com-
putations needed to evaluate to log posterior.

Parameters

Observation

Wind speed
distribution

Estimate statistics

for P̂
Log posterior

v f |v

θ

v

P

µ
P̂
(v, θ)

σ2
P̂
(v; θ)

`(θ, σζ |P; v)

σ2
ζ

Figure 4.2: The process of computing the log posterior given parameters, observations and wind
speed distribution. The example shown here is for a single observation, but the principle generalises
to more observations. The wind speed distribution is derived in section 4.3 either assuming mea-
sured free wind speed (AW2P model) or modelling it via the NTF (NTF-AW2P model). The mean

and variance for P̂ is computed based on the considerations in section 4.4. The mean µ
P̂
(v; θ) is

particularly important since the AW2P and NTF-AW2P model estimate power P using this. The log
posterior is given by (4.26) using the shown inputs.

4.6 Implementation

The main computational effort of evaluating the log posterior, as shown in figure 4.2, lies in
estimating the wind speed distributions v f |v and evaluating the statistics for the modelled

power P̂. For any observation the statistics are determined by the measured wind speed,
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wind direction and WTG number which determines which values to use from the lookup
tables. Specifically, the wind speed distributions uses the mean and variance of the wind
speed standard deviation µσv and σ2

σv from the lookup tables. As described in section
2.2, the lookup tables provide different statistics for each WTG, each of 12 wind direction
sectors and each wind speed between 3 and 30 m/s with 1 m/s interval. The statistics
have been extrapolated and then interpolated to get values for each wind speed between
1.8 and 10 m/s with 0.05 m/s intervals giving statistics for 165 separate wind speeds[10].
The South America and Asia wind farms both contain 32 WTG’s so in total there are
2 wind farms ×32 WTG’s ×12 wind sectors ×165 wind speeds = 126720 different wind
speed distributions. Computing the log posterior for a set of observations will only require
a subset of the distributions depending on the experiment. Furthermore, the data shows
that the majority of wind directions tends to fall within 3 or 4 sectors further limiting the
needed distributions.

Wind speed distributions The free wind speed distributions have been estimated as-
suming no input uncertainty according to section 4.3.1 using numerical integration and
assuming input uncertainty according to section 4.3.2 using Monte Carlo simulation. In
each case the distributions are evaluated at 700 equidistant points for wind speeds between
0 and 15 m/s. As an example pvt(vt |v = 4 m/s) is tabulated for vt at 700 points between
0 and 15 m/s and pvt ,vt′ (vt, vt′ |v = 4 m/s) in an equivalent grid of 7002 points[11] For the
Monte Carlo simulation each distribution kernel density estimate was based on about 105

realisations each. Figure 4.4 shows a few examples of the tabulated distributions.

Figure 4.3: Examples of marginal wind speed distributions for a WTG at a particular section with
different observed average wind speeds. Notice that, when accounting for input uncertainty, the
most probable wind speed is not the observed average marked by the dashed line in the left plot.

[10]Extrapolation is done with the least squares fit for a straight line for µσv and a second order
polynomial for σ2

σv
to get the statistics for 1 and 2 m/s. Then linear interpolation is used to increase

wind speed the resolution to 0.05 m/s. The range 1.8 to 10 is chosen such that it slightly exceeds the
range of the cut-in (2.8 m/s) and rated (9.3 m/s) wind speed

[11]Remember that pvt ,vt′ (vt, vt′ |v) only depends on the Euclidean distance of vt and vt′ to v so in
practice is sufficient to evaluate the joint distribution on a line.
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Figure 4.4: Examples of joint wind speed distributions for a WTG similar to figure 4.3. The red
stars in the left plots mark the observed average. The upper left picture features some distinct
ripples. These are not expected, but are explained by the use of Monte Carlo simulation to obtain the
distribution and the fact that the logarithmic scale enhances small differences. Note that the ripples
are necessarily circular since the distribution is only tabulated on a line and then repeated based on
distance away from the center.

Power distributions Given the wind speed distributions, the mean and variance of the
power distribution is estimated according to section 4.4. Figure 4.5 shows some examples at
different wind speeds with no input uncertainty and figure 4.6 shows examples with input
uncertainty. The script likelihood_stats.py computes these estimates - see appendix D.
The figure clearly exemplifies some of the inaccuracies by using approximate distributions.
At wind speeds between 3 and 9 m/s the assumption of a normal distribution seems
reasonable but as the wind speeds approaches the cut-in, where power production is zero
the distributions become left-screwed. Similarly, when the wind speed approaches the
rated wind speed where power production becomes constant the distributions become
right-screwed. The mean and variance seem to agree with the simulations in the upper plot
but the lower plot where input uncertainty is assumed the variance estimates disagree with
the sample variances. The authors were unable to locate the source of this disagreement.
One explanation is that a slight bias, perhaps in the wind speed distributions, is amplified
through the inference computations. In general the inference computations were very
sensitive to the implementation method. As an example it was found that computing
covariance as Cov[vt, vt′ ] = E[(vt − E[vt])(vt′ − E[vt′ ])] yielded much different results than
Cov[vt, vt′ ] = E[vtvt′ ]− E[vt]E[v′t] although they are theoretically equivalent. Despite this
the variance estimates will be used in the remaining analysis despite their flaws. See
chapter 7 for further discussion.
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Figure 4.5: Distribution of power for one WTG using the AW2P model with no input uncertainty
with respect to average measured wind speed. Average wind speeds between 2 and 10 m/s are
simulated with known W2P model parameters θ. The single red dot mark the estimated mean and
the line mark the 25th and 75th percentile of the fitted normal distribution. The blue histograms are
simulated using the same θ. The sample mean and variance are compared and compared to the
estimated values where the relative error to the sample statistics are shown in the legends.

Figure 4.6: Distributions of power similar to figure 4.5 but using the NTF-AW2P model where input
uncertainty is modelled through the NTF.





59

5 | Markov Chain Monte Carlo
Methods

Chapter 4 presented an uncertainty framework to characterise the probability distribu-
tion of power generated from a W2P model using either the AW2P or NTF-AW2P model
followed by the derivation of the posterior distribution for the parameters given a set of ob-
servations. To estimate parameters, [27] suggests using MCMC methods and in particular
the Metropolis Algorithm. MCMC methods are used to sample from distributions - in par-
ticular, distributions that would be difficult to sample from using simulation methods such
as the inverse transformation or the rejection method [46, ch. 5]. Some MCMC methods
like the Metropolis Algorithm have the added flexibility that the pdf of distribution is only
needed up to proportionality so any constants that are difficult to obtain analytically or are
computationally complex can be left out. For parameter estimation, a sufficient number
of simulations obtained using MCMC methods can be used to infer statistics about the
parameters like the sample mean or even confidence intervals. This chapter will introduce
the Metropolis Algorithm as a method for parameter estimation as highlighted below. A
few theoretical facts are presented, but more detailed considerations are left out. Finally,
the Metropolis Algorithm will be tested using synthetic data.

NTF

Ch. 3

Wind speed
distribution

Ch. 3

(Probabilistic)
W2P model

Ch. 4
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Inference

Ch. 5

AW2P

Ch. 3

Short-time
W2P

Ch. 3
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Control

Ch. 3
SCADA
(traning)

Ch. 2

Lookup
tables

Ch. 2
Contract W2P model

5.1 Metropolis Algorithm

Let Z ∈ Rd be a random variable with pdf pZ(z). The principle behind the Metropolis
Algorithm is to simulate Z with target pdf pZ by simulating a sequence of realisations

z(1), z(2), . . . , z(τ)

such that the distribution of Z(τ) converges to the distribution of Z for τ → ∞ by some
definition of convergence. This is done by imposing a first order Markov property on the
sequence which gives that [46, p. 445]:

P
(

Z(τ+1) = z(τ+1) |Z(τ) = z(τ), . . . , Z(1) = z(1)
)
= P

(
Z(τ+1) = z(τ+1) |Z(τ) = z(τ)

)
,
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which reduces the problem of simulating the sequence to simulating z(τ+1) given z(τ).
The Metropolis Algorithm does this in a rejection sample manner where new states z∗ are
simulated from a proposal distribution with pdf q(z∗|z(τ)), which depends only on the
previous state z(τ). The proposal distribution chosen should be sufficiently simple such
that direct sampling can be done in an efficient manner. In each iteration of the algorithm
a candidate realization z∗ is drawn from the proposal distribution and accepted with the
following probability:

A(z∗, z(τ)) = min
{

1,
pZ(z∗)

pZ(z(τ))

}
. (5.1)

This is realised by simulating a random number u with distribution U ∼ U (0, 1) and ac-
cepting the candidate if A(z∗, z(τ)) > u. By doing so, z∗ is accepted with probability 1 if
it increases the probability pZ(z∗) ≥ pZ(z(τ)) and otherwise according to the ratio in (5.1).
If z∗ is accepted a new element is added to the sequence such that z(τ+1) = z∗, otherwise
z∗ is rejected and z(τ+1) = z(τ). The ratio in (5.1) is only applicable for symmetric pro-
posal distribution where q(z∗|z(τ)) = q(z(τ)|z∗). For asymmetrical q the proposal density
is included in the ratio which is known as the Metropolis-Hastings Algorithm [5, p. 541]. As
mentioned, p is only needed up to proportionality - (5.1) shows this since any constants
simply vanish in the ratio so if pZ(z) = cp̃Z(z) it is sufficient to know p̃Z(z). The Metropo-
lis Algorithm is summarized in algorithm 2 and implemented in the script metropolis.py
- see appendix D.

Algorithm 2 Metropolis Algorithm

Input: Target distribution pdf p, proposal density q, number of iterations T and
initial state z(0)

for τ = 1, . . . , T do
Simulate (Z∗ = z∗) ∼ q(·|z(τ)) Sample proposal
Simulate (U = u) ∼ U (0, 1)
if A(z∗, z(τ)) > u then

z(τ+1) ← z∗ Accept sample
else

z(τ+1) ← z(τ) Reject sample
return {z(τ)}T

τ=0

From an optimization point of view the Metropolis Algorithm seems reasonable and the
fact that candidate states are sometimes accepted despite lowering the pdf can help z es-
cape from a local minimum of p. It also turns out that Z(τ) converges to the true distribu-
tion and in the Metropolis Algorithm but the details and exact conditions are omitted here
- see [5]. Implementing the Metropolis Algorithm in practise requires some considerations.

Proposal distribution The choice of proposal distribution will highly affect the accep-
tance ratio which is defined as the ratio of accepted samples to the total number generated.
A suggestion is to use an uncorrelated Gaussian proposal distribution with mean in the
current state and the variance σ2

q such that Z∗ |z(τ) ∼ Nd

(
z(τ), σ2

q Id×d

)
. The value of σ2

q

can be used to obtain the desired acceptance ratio - a rule of thumb is to choose it such
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that 20− 50% of samples are accepted on average to sufficiently explore the target distri-
bution [1, p. 20]. If the range of likely values for the different entries of z differs by one
or more orders of magnitude, the target proposal distribution can be changed to give an
individual variance for each parameter such that the covariance structure is a matrix with
(σ2

q,1, . . . , σ2
q,d) on the main diagonal and zeroes elsewhere.

Log distributions Metropolis Algorithm is easily converted to handle densities in the
logarithmic domain like the log-posterior distribution derived in section 4.5. Given `(z) =
log(p(z)), samples will be accepted with the following pseudo-probability:

A`(z
∗, z(τ)) = min

{
0, `(z∗)− `(z(τ))

}
.

Accepting z∗ when A`(z∗, z(τ)) > log(u) gives an equivalent algorithm for u simulated
uniformly between 0 and 1.

Burn in When using the Metropolis Algorithm to infer statistics about Z - e.g mean or
variance - it is often required to discard some of the initial sequence depending on how z(0)

is initialised. This is referred to as burn-in and from the generated sequence z(0), . . . , z(τ)

the first Nburn states are discarded.

5.2 Experiment on synthetic data

In this section the Metropolis Algorithm will be used to simulate the parameters for the
AW2P and NTF-AW2P model given their respective log-posterior distributions using syn-
thetic data generated according to algorithm 1. The two models share the same set of
parameters (a1, a2, Cmax, σζ) as well as log posterior in (4.26), but the mean and variance
estimates of modelled power µ

P̂
(v; θ) and σ2

P̂
(v; θ) and settings for simulating data are dif-

ferent.

In the following test the state consists of z(τ) =
[

a(τ)1 a(τ)2 C(τ)
max σ

(τ)

ζ

]T
∈ R4. When

choosing the initial state z(0) to ease the parameter estimation a(0)1 , a(0)2 and C(0)
max are set

to the least squares estimate of the deterministic W2P model which the AW2P and NTF-
AW2P models are based on. The model is given by (3.6) and (3.7) and is piecewise linear
with respect to the parameters, so given 10-minute power P and 10-minute average wind
speed v the parameters are found by constructing an appropriate design matrix and using
the normal equations - see appendix B. Choosing the initial state for σ

(0)
ζ

is done somewhat
arbitrarily. When using real data in the next chapter it will be based on a qualified guess
and in the experiment here it is chosen as the true value with added random noise.

For proposal distribution an uncorrelated multivariate Gaussian was chosen. The param-
eters (a1, a2, Cmax) are numerically bounded between −0.5 and 1 and have been grouped
to have the same variance σ2

q,W2P in the proposal distribution. The structural error σζ is 2
in the synthetic data and is given a separate variance σ2

q,ζ
in the proposal distribution. The
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exact values of σ2
q,W2P and σ2

q,ζ
are chosen based on empirical experimentation to get an

acceptance rate of 20− 50%. An experiment simulating the parameters with log-posterior
given by the AW2P model is shown below. The experiment uses 10, 000 simulated data-
points (Pn, vn) for n = 1, . . . , 10000 with wind speed statistics from the same WTG in the
South American wind farm and average wind speed for each between 1.8 and 10 m/s.
Simulation is done without the influence of the NTF on the average measured wind speed
by setting NTF = FALSE in algorithm 1. See figure 5.1 for results.

Figure 5.1: Traceplots and histograms for the different states using the Metropolis Algorithm given
the log-posterior for the AW2P model. The algorithm used 105 iterations and an acceptance rate of
40% was achieved. The average of each entry in the sequence after a burn-in of 5000 states is shown
in the traceplots.

A similar experiment is done for the NTF-AW2P model using the log-posterior for this.
Synthetic Data is simulated with the influence of the NTF on the average measured wind
speed by setting NTF = TRUE in algorithm 1. See figure 5.2 for results.
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Figure 5.2: Traceplots and histograms for the different states using the Metropolis Algorithm given
the log-posterior for the NTF-AW2P model. The algorithm used 105 iterations and an acceptance
rate of 19% was achieved. The average of each entry in the sequence after a burn-in of 5000 states is
shown in the traceplots.

Results from the two experiments show that the parameters converge after a few thousand
steps with relatively small variance after the burn-in period. Some of the parameters seen
to exhibit a bias when comparing the average values after burn-in to the true parameter
values. This is quantified in table 5.1.

(â1 − a1) (â2 − a2) (Ĉmax − Cmax) (σ̂ζ − σζ)

AW2P −1.60 · 10−3 3.00 · 10−3 −2.00 · 10−4 −6.44 · 10−1

NTF AW2P −3.30 · 10−3 −7.00 · 10−4 1.30 · 10−4 4.34

Table 5.1: Difference between the true parameter values (a1, a2, Cmax, σζ) and the estimates ones for

synthetic data (â1, â2, Ĉmax, σ̂ζ) for the two experiments.

The table shows that the bias in parameter estimation is in the order of 10−4 to 10−3 for
a1, a2 and Cmax. The error could be due to random fluctuations although some of the his-
tograms of the simulated sequences suggest a structural error. In either case the estimation
error is relatively small. The error for estimated σζ , however is larger in particular for the
NTF-AW2P model. It is hypothesised that this is due to the variance estimate problems
presented in section 4.6 - see further discussion in chapter 7.
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Methods

In order to test if the performance of the Metropolis Algorithm is consistent, multiple
sequences have been simulated on the same synthetic data but with different initial states.
A good measure of consistency is convergence to the same parameters independent of
initial state and random seed for the proposal distribution. Three different sequences are
simulated for both the AW2P and NTF-AW2P model and the results can be seen in figure
5.3.

Figure 5.3: Traceplots for three runs of the of the Metropolis Algorithm on the same synthetic using
either the AW2P or NTF-AW2P model. The dashed orange, light blue and green lines are the sample
averages after the burn-in period although some these are difficult to distinguish here.

The results show that the simulated sequences converge to the same parameters with both
models although the a1 parameter has a larger variance than the others and the estimated
means are slightly different. The different sequences for a1 crosses paths multiple times so
based on the Markov property, it is expected that the estimated means will also converge
to the same values for longer chains.
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6 | Performance Analysis

This Chapter presents the results from a few tests where the AW2P and NTF-AW2P models
have been evaluated on the available SCADA data. For comparison, results using the
method of bins model and 5-parameter logistic model presented in section 3.4 will also be
shown. Section 6.1 describes the performed tests in detail and section 6.2 covers parameter
estimation. Section 6.3 then compares the different models using various measures of error
and section 6.4 analyses the residuals for the AW2P and NTF-AW2P models.

6.1 Case setup: Training and test

As described in chapter 2, the available data includes a South American and an Asian wind
farm. To analyse the performance, the following case is considered.

Case 10 WTG’s in the South America wind farm are installed and have been operational
over a period of time. A customer now wants to invest in two new projects installing:

• 22 additional WTG’s in the South America wind farm.

• 32 WTG’s at a new location in Asia.

All the new WTG’s are of the same type, but the site in Asia is mainland whereas the South
America site is a coastal wind farm. The customer wants to know how much power pro-
duction they can expect from the new projects under various inputs such as wind speed,
temperature, and air density. To do this, lookup tables are produced using WRA software
for the proposed new WTG’s location. A power curve based on the lookup tables is esti-
mated and delivered to the customer, who decides to invest in the projects based on the
power curves[1]. The WTG’s are installed and after a while, the customer wants to know
how accurate the power curves they were delivered based on measurements from the in-
stalled WTG’s.

To simulate the proposed case, WTG 1-10 in South America will be treated as the ex-
isting WTG’s which can be used as training data to estimate parameters for the models
acting as the power curves. Given the parameters, the models are evaluated on the test
data which are the remaining WTG’s in the South America wind farm and the entire Asia
wind farm. With the data setup, it is possible to analyse how well the models generalises
from training to test data. In particular, it is interesting to see how well the models gener-
alise to the Asia wind farm where the mainland climate is different from the climate of the
coastal South America wind farm. Note that the time of installation described in the case
does not reflect the actual time of installation - the time horizons is as described in chapter
2 and the training/test data is simply separated in groups of WTG’s.

[1]In a real case, the AEP (annual energy production) would be computed from the power curve
using long-time weather predictions, but this is not considered here.
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A few notes in regard to the SCADA data. In raw form, the SCADA data contains quite a
bit of outliers when comparing produced power at different wind speeds. Some of these
outliers are explained by the SCADA through status variables as described in section 2.1.
After filtering for status variables, the data still contains outliers - in particular below the
average power curve. The outliers can be filtered out by sorting the data into small wind
speed bins and removing power outside some interval for each bin determined by certain
quantiles. Figure 6.1 shown an example where data have been removed based on status
variables and outliers have been removed based on chosen percentiles[2]. Both training
and test data have been filtered using the status variables, but outliers based on percentiles
are only removed in the training data in order to get realistic error measurements in the
test[3]. Additionally, data points for wind speeds below 1.8 m/s and above 10 m/s are also
removed from the data since the power should be 0 below 1.8 m/s and nominal power
above 10 m/s and any deviations from this are assumed to be an error[4]. After filtering
the training data for WTG 1-10 in South America contains about 170, 000 measurements,
the test data for WTG 11-33 in South America contains about 410, 000 measurements and
the test data for the Asian wind farm contains about 2, 500, 000 measurements.

Figure 6.1: Removed data points for one WTG.

[2]Larger outliers are seen a high wind speeds, so the values outside the 2nd and 99.5th percentile
in the interval 0 to 7.5 m/s are removed while values outside the 7th and 99.5th percentile above 7.5
m/s are removed. The width of each wind speed bin is 0.05 m/s

[3]Another reason why outliers have not been removed in the training data is the fact that finding
the percentile values that removes all the “true outliers” and nothing else is quite challenging in
particular when applying the percentiles across different WTG’s and the two wind farms .

[4]In principle the power should be 0 below the cut-in wind speed at 2.8 m/s and nominal power
above rated wind speed at 9.3 m/s, but in practise, these bounds are extended due to fluctuations in
the wind speed within each 10-minute period.
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6.2 Parameter estimation

The parameter estimates using the training data with the Metropolis Algorithm for the
AW2P and NTF-AW2P models will be presented in this section. Similar to the test with
synthetic data, the parameters to be estimated are the W2P parameters θ = (a1, a2, Cmax)
and the structural error standard deviation σζ . The variances for the transition kernel was
changed slightly from those used in the synthetic data to get an acceptance rate between
20% and 50%. The traceplots and histograms for the parameters can be seen in figure 6.2
and 6.3 for the AW2P and NTF-AW2P models respectively.

Figure 6.2: Parameter estimates for the AW2P model using training data with a burn-in of 4000. The
average parameters and their sample standard deviation after the burn - i.e µ± σ - are
a1 = 0.16± 1.8 · 10−3, a2 = −0.13± 3.9 · 10−4, Cmax = 0.69± 1.6 · 10−4 and σζ = 11± 2.4 · 10−2

In figure 6.2, the parameters for the AW2P model show convergence although a1 is by
far the slowest to converge requiring about 4 times as long before stabilising. Similar
convergence behaviour was seen in parameter estimation using synthetic data suggesting
that a1 in the AW2P model generally converges slowly using the Metropolis Algorithm.
The acceptance rate was 34% for the AW2P model.
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Figure 6.3: Parameter estimates for the NTF-AW2P model using training data with a burn-in of
10,000. The average parameters and their sample standard deviation - i.e µ± σ - after the burn in are
a1 = 0.36± 2.8 · 10−3, a2 = −4.5 · 10−2 ± 4.2 · 10−4, Cmax = 0.63± 1.7 · 10−4 and σζ = 11± 2.4 · 10−2

Similar convergence behaviour is seen for parameter estimation with the NTF-AW2P model
in figure 6.3 although a1 now required 10.000 accepted samples before convergence. The
acceptance rate was similarly 34% for the NTF-AW2P model.
Comparing the parameters from the two models it is seen that σζ are the same within the
given precision while the other parameters differ more. Cmax for the NTF-AW2P model is
lower than for the AW2P model but both values are above the theoretical limit at
16/27 ≈ 59% perhaps due to measuring uncertainties.

6.3 Performance

The performance of the AW2P and NTF-AW2P model will be assessed in this section by cal-
culating the errors between modelled and observed power and the errors are summarised
in a few different statistics. As a baseline, the method of bins (bin) and the 5-parameter
logistic (logistic) model presented in section 3.4 are used as reference models. Before pre-
senting the error statistics, the modelled power for the test and training data is presented
in figure 6.4.
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Figure 6.4: Modelled versus observed power for wind speeds between 1.8 and 10 m/s. The Asia
test data in the lower plots shows some observations that seem systematically below the remaining
power curve - this could be explained by some control errors e.g. in pitch control.

The error between modelled and observed power for the different models is defined as
the difference measured in kWh. Given the error, the mean squared error (MSE), mean
absolute error (MAE), median absolute error (50th percentile) (Med AE), and the mean
error (ME) is computed. The training set and test sets have data from several WTG’s so
the minimum and maximum MAE (min MAE, max MAE) between WTG’s for each data
set is also computed. Finally, the MAE is computed in three regions depending on the
wind speed. The regions are chosen based on the limits for the analysed wind speeds and
different regions for the power coefficient CP described in section 3.2.1. The regions are
1.8− 3.87 m/s (reg 1), 3.87− 7.93 m/s (reg 2) and 7.93− 10 m/s (reg 3). In table 6.1 the
error measurements are shown for the training and test data sets. To visualise the error
figure 6.5 shows boxplots for the absolute error (AE) across the three data sets.
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SA Traning MSE MAE Med AE ME min MAE max MAE reg 1 MAE reg 2 MAE reg 3 MAE

AW2P 153.0 8.1 4.9 0.4 6.7 9.6 4.0 10.1 12.6
NTF-AW2P 150.0 8.1 4.9 0.1 6.7 9.6 4.0 10.1 12.0
logistic 209.3 10.7 7.9 0.9 9.5 12.1 5.7 11.9 16.3
bin 144.3 7.9 4.9 0.1 6.4 10.0 3.9 9.9 11.7

SA Test MSE MAE Med AE ME min MAE max MAE reg 1 MAE reg 2 MAE reg 3 MAE

AW2P 681.8 12.4 5.9 -3.8 9.1 41.8 5.0 14.2 21.2
NTF-AW2P 680.8 12.3 5.9 -4.0 9.1 41.9 5.1 14.1 21.0
logistic 716.8 14.4 8.5 -3.7 11.4 42.6 6.6 15.9 22.4
bin 679.0 12.1 5.8 -4.3 8.8 41.8 5.0 14.0 20.2

Asia Test MSE MAE Med AE ME min MAE max MAE reg 1 MAE reg 2 MAE reg 3 MAE

AW2P 433.5 12.8 8.2 -9.6 8.9 19.4 5.8 16.5 24.4
NTF-AW2P 434.8 12.8 8.3 -9.8 8.8 19.6 5.8 16.5 24.8
logistic 359.5 10.9 6.2 -3.2 8.2 14.7 4.7 13.5 24.5
bin 344.3 10.8 6.5 -4.3 8.4 15.3 4.7 13.3 25.5

Table 6.1: Error statistics for the training and two test data sets for the four models AW2P, NTF-
AW2P, 5-parameter logistic, and method of bins model. The smallest value for each error statistic in
the training and test sets is marked with bold font.

Figure 6.5: Boxplot for the absolute over the four models. The boxes mark Q1 and Q3 (25th and
75th percentile) and the whiskers are located at Q1 − 1.5(Q3 −Q1) and Q3 + 1.5(Q3 −Q1). Outliers
outside the whiskers are not shown here.

In the training data, it is observed that the method of bins performs the best but compa-
rable to that of the AW2P and NTF-AW2P across all error measurements, except for max
MAE. The same trend is seen in the test data for the South-American wind farm, with
the bin model having a slightly lower error in most of the error measurements. In the
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Asian test set the bin and logistic model is seen to perform better compared to the AW2P
and NTF-AW2P in all but one statistic, with the AW2P and NTF-AW2P having similar
performance. The test data sets have negative mean error (bias) for all models, but this is
explained by the negative outliers which were removed in the training set but not the test
sets.
Lastly, the models are compared visually in a power curve. The models are not unique for
particular wind speed, so to be able to compare the models in a single plot the average
modelled power in wind bins of size 0.05 m/s is taken similarly to the method of bins
model. See figure 6.6.

Figure 6.6: Average produced power for the four models at different wind speeds on the training
and test data sets.
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6.4 Residual analysis

To get further insight into the performance of the AW2P and NTF-AW2P model, the resid-
ual between the observed power and estimated power of the test data sets are evaluated in
this section.
Since the distribution of produced power is available, approximated as a Gaussian distri-
bution in section 4.4, the confidence intervals can be readily obtained. Figure 6.7 shows the
estimated power along with the estimated 95% confidence intervals for the training data.
The residual plots show that at little less than 95% of the observed data points are inside
the 95% confidence for the test data while the training data show better alignment. This
is partly expected since outliers are not removed in the test data, but other effects might
cause the data points to exceed the confidence intervals more than they should according
to the models.

Figure 6.7: Power at different wind speeds observed in SCADA data and estimated via the AW2P
and NTF-AW2P model with accompanying 95% confidence intervals. The figure titles reveal how
many percent of the observed data points fall within the confidence intervals.

AW2P and NTF-AW2P models both yield an estimate for the mean and variance for the
approximated Gaussian distribution. To check how accurate the approximation is, the
standardised residuals can be analysed using that they should follow a standard Gaussian
distribution - i.e:

P− µP(v, θ)√
σ2

P
(v, θ)

∼ N (0, 1)

This is analysed in a few ways. Firstly, figure 6.8 shows the standardised residuals plot-
ted along different inputs to check for any remaining dependence on the input variables.
Secondly the distribution is more directly analysed in figure 6.9 in a histogram and a
Quantile-Quantile (Q-Q) plot.
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Figure 6.8: Standardised residuals (along the ordinate) for the different models and wind farms in
the test data with. It should be noted that WTG 26 in the South American wind farm has significant
outliers. The dashed red lines are the 95% confidence intervals of a standard Gaussian.

Figure 6.9: Q-Q plots and histograms for the standardised residuals for the different models and
wind farms in the test data. The labels in the Q-Q plots show the slope and intercept of the best
straight line fit which should be (1, 0) if the normalised residuals were truly standard Gaussian
distributed.
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The residual plots could suggest that the wind speed influences the normalised residuals
while dependence on the temperature and wind direction is not clear based on visual in-
spection. The residual plot concerning the WTG number shows that different WTG’s have
slightly different residual distributions although it is not clear how and the time subgroup-
ing might also affect the residuals due to e.g. seasonal fluctuations.

The previous observations showed that data mainly have negative outliers and the Q-Q
plots confirm this by showing larger values for the large quantiles - in particular for the
negative quantiles. The histograms also show that the residual distribution is not quite
Gaussian with heavier tails. It is interesting to observe that the distribution for the residu-
als in the Asia wind farm are negatively skewed while it is more or less symmetric for the
Southern American wind farm.

Based on the different visualisations it is safe to conclude that the normalised residuals
are not exactly standard Gaussian distributed although some similarities are seen. Rea-
sons why the models do not align with the data could be due to operational reasons such
as errors in the pitch control of the WTG blades, unreported regulation of the produced
power due to energy grid considerations or errors in the measurements. Of course, the
AW2P and NTF-AW2P models only consider a few of the physical phenomena at play, so
the distribution of the residuals is surely also affected by processes that are not modelled
- a few of these is mentioned in chapter 9.
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7 | Discussion

The research question asked:

How is the power generation from a wind turbine generator modelled using parametric models
accounting for uncertainties using Bayesian methods?

This chapter will discuss the methods and results presented so far in the context of the
research question, as well as the accompanying study questions presented in section 1.3.
The issue with variance estimation using the NTF-AW2P model is discussed initially.

Variance estimation error The AW2P and NTF-AW2P model approximates the dis-
tribution for the modelled power with a Gaussian distribution by estimating it’s mean
and variance. In figure 4.6 it was shown that the variance estimates for wind speeds be-
low 6 m/s and above 9 m/s for the NTF-AW2P model were noticeably lower than the
sample variance obtained through Monte Carlo simulation. Possible explanations for this
disagreement include:

1. Inaccurate wind speed distribution. Since the NTF-AW2P model is based on wind
speed distributions obtained through Monte Carlo simulation, having too few real-
isations in the simulations could cause inaccuracies in the distributions that propa-
gates through to the variance estimation. The method of simulation as described in
algorithm 1 could also be mistaken.

2. Numerical issues when estimating the variance by numerical integration.

3. Procedural error. Some modelling or theoretical aspect could be mistaken in the
variance estimation.

4. Implementation error.

Given that the AW2P and NTF-AW2P only differ in the modelling assumptions and meth-
ods for simulating wind speed distributions, it is likely that error in the variance estimate
is caused by option 1 or 3 in the above list. This is only speculation, but a relevant ques-
tion is where and how the error affects the model. Importantly, the variance estimate is
used to evaluate the log-posterior which is used for parameter inference. It is also used
to give confidence intervals for produced power at different wind speeds. Figure 5.1 and
5.2 showed that the parameter estimates using synthetic data were relatively accurate for
the W2P model parameters θ = (a1, a2, Cmax) but the standard deviation for the structural
error σζ was over overestimated for the NTF-AW2P model which aligns well with the ob-
servation that he variance for the modelled power is underestimated. In regards to the
performance of the NTF-AW2P, the problem with the variance should not be too severe
since the mean estimate, which is the output of the model, is fairly accurate given the
correct θ. Conclusions made for the NTF-AW2P model will take these considerations into
account, but it will not be possible to draw a definite conclusion for the model due to the
variance estimation issue.
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Performance This thesis sought to establish a parametric model for WTG power pro-
duction based on a physical understanding of the underlying processes using Bayesian
methods to model different sources of uncertainty. The intended application was a con-
tract W2P model which is calibrated before installation of a wind farm. The current design
regime for W2P models is data-driven where models are fitted based on observations
mostly without considering the underlying physical processes. So is it possible to design
models outside this regime achieving better performance? The case used in the perfor-
mance analysis is a setup where it is potentially beneficial to use models that are based
on the physical process since these can directly incorporate the site-specific information
available through the lookup tables before the wind farm is installed. The AW2P and
NTF-AW2P model does this and the performance analysis compares these to the data-
driven models. Based on the different error measurements presented in table 6.1 it is safe
to conclude that the proposed models do not show any performance gain compared to
the baseline models (logistic and bin model). The baseline models generalises better to
the test data in the Asia wind farm than the AW2P and NTF-AW2P model across most
performance measures which is somewhat surprising. This is not conclusive proof that
models based on the physical processes of a WTG using Bayesian methods cannot be used
to increased performance over data-driven methods, at least this thesis was not able to
show any.

The AW2P and NTF-AW2P models are based on different assumptions about the input
uncertainty of the wind speed, and comparing these gives some insight into how to model
this. The AW2P model assumes that the measured average wind speed is the mean of the
free wind speed in front of the WTG and the NTF-AW2P model omits this assumption
and models the relation between free and nacelle wind speed using an NTF. One would
expect that the NTF-AW2P model performs better assuming it is based on more realistic
assumptions, but comparing the performance of the two models shows almost the same
performance across all performance measures, so this might not be the case. One prob-
lematic assumption for the NTF model is for the prior information on the NTF-coefficients
η which was inferred by comparing results from [43] and [28]. The used here WTG’s are
of different types and basing the prior information for η on WTG’s of the same type and
in similar terrain as the modelled ones would be a better practise. Another explanation for
similar performance is the AW2P model being similar to the NTF-AW2P when fitted using
the same data since they only differ by modelling wind speed through the NTF, which is
linear function, thus AW2P is almost equivalent to NTF-AW2P under reparameterisation
which is seen in (3.6) and (3.7) when ignoring random effects effects. The issue with vari-
ance estimation might also affect the performance, but in any case, it is assessed that no
performance gain is found by modelling the NTF.

The developed models are based on several simplifying assumptions and a few approxi-
mations - improving any of these might yield better models. A hypothesis based on the
standardised residuals in figure 6.8 is that the residuals have some dependence left on
the wind speed and modelling this could improve the models. Finding a more appropri-
ate distribution for the power than the Gaussian could also yield an improvement. The
histograms in figure 6.9 show that the residuals have heavier tails than a Gaussian dis-
tribution with a distinct peak around zero. A distribution like the Laplace distribution
which decreases less rapidly from its mean would characterise the residuals better [35,
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p. 298]. Modelling the underlying physical processes responsible for power production,
with more advanced models accounting for additional effect, is certainly also relevant
when discussing improvements - some examples are given in chapter 9.

Power curve uncertainty The different models for this thesis output the total power
over 10 minutes, since this is a common setting in the WTG industry for W2P models.
As described in section 3.1.3, 10 minutes is specifically used due to the assumption of
a spectral gap but modelling the 10-minute power poses some challenges though. For
one, it complicates characterising the power distribution as in section 4.4 where the 10
minute-total power is the sum over several random variables, and obtaining an analytical
expression for the distribution is not feasible in many cases. Secondly, by modelling the
power aggregated over 10 minutes based on a single observation through the average
wind speed v, the spread of the power distribution becomes quite large. This is seen in
the simulated power distributions in figure 4.5 where the distance between the 25th and
75th percentile spans more than 10 kWh at wind speeds above 4 m/s. This observation
is based on the assumptions behind the model but the power distribution necessarily has
to have a non-zero spread unless it is assumed that the wind speed over 10 minutes is
deterministic given v. This means that the absolute precision of any model is limited by
the variation in the wind - i.e turbulence. Modelling the power over shorter periods would
lessen the spread but it may not be desired to model shorter periods depending on the
application. As described in section C.1, the models designed in this thesis can be used
for AEP calculation where the model has to output 10-minute power since the calculation
is based on statistics for 10-minute average wind speeds. In applications where e.g. the
wind speed is measured more frequently, it will be possible to increase the accuracy of the
model, but these have not been studied here.

BETAE in WTG modelling The AW2P and NTF-AW2P models are based on a deter-
ministic W2P model in (3.7) mapping wind speed to power. The models become stochastic
when modelling the input wind speed as a stochastic variable. Chapter 4 showed that ob-
taining the posterior distribution for the parameters for these models is non-trivial when
the input for the models suffers from uncertainty. By using a few approximations for the
various distributions it was possible to obtain a low dimensional expression for the pos-
terior making parameter estimation feasible which was the idea of A-BETAE. The use of
approximations also has its downsides, so a few points are discussed here.
The wind speed is modelled as a stochastic process described in section 3.1 and the as-
sumptions for the various distributions are made with no regard to the feasibility of inte-
grating out nuisance parameters which necessitates the use of numerical methods to per-
form the integration. This is a somewhat extremist approach and perhaps a compromise
would be better especially when considering that the assumptions of prior distributions for
the nuisance parameters are based on limited evidence. A good example of a compromise
would be in the conditional distribution for the wind speed:

v |v, σv ∼ N (v, σ2
v ) and σv |v ∼ N+(µσv , σ2

σv),

where a folded Gaussian distribution with known parameters (µσv , σ2
σv) is assumed for the

standard deviation σv. Had it instead been assumed that 1/σ2
v followed a gamma distribu-

tion with parameters given by a reparametrisation (α(µσv , σ2
σv), β(µσv , σ2

σv)), the marginal
distribution v |v has an analytical expression though the t-distribution [41, p. 242].
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Another point of critique is the use of a Gaussian distribution to approximate the dis-
tribution of power production. As previously mentioned the normalised residuals are
characterised better by the Laplace, see appendix B.1, than Gaussian distribution, but from
the simulations of synthetic data in figure 4.5 it was also seen that the power distribution
becomes skewed for wind speeds close to the cut-in and rated wind speed. Using a dis-
tribution with a non-zero skew could yield a more accurate description, although if the
skew is to be numerically estimated similar to the mean and variance it would require
evaluating a triple sum, which would greatly increase the computational complexity using
a numerical approach[1].

Parameter estimation using Metropolis To round off the discussion, the parameter
estimation for the AW2P and NTF-AW2P model using the Metropolis Algorithm is re-
viewed. Both models had relatively quick convergence using either synthetic or SCADA
data. The only exception was for the NTF-AW2P model using SCADA data as shown in
figure 6.3 where a burn-in of 10,000 was required, but this was mostly due to poor initial-
ization of the a1 parameter. Figure 5.3 also showed that the parameters converge to the
same value with different Markov chains on the synthetic data although this has not been
shown using SCADA data. One issue is that the standard deviation for the structural error
σζ converged to the wrong value using synthetic data as shown in table 5.1. As previously
mentioned in the discussion, this issue is possibly linked with the variance estimation er-
ror for the modelled power. This has been investigated further and it was found that the
posterior approximately has its maximum value in the true parameter values when using
synthetic data except for σζ which is noticeably different - see figure 7.1. The figure also
shows that the posterior has the wrong maxima not only for the NTF-AW2P model which
is known to have some errors but also for the AW2P model. The bias for the AW2P mo-
del with respect to σζ is certainly lower but it does show that the distribution for power
under this model also has some inaccuracies perhaps due to numerical inaccuracies. From
this, it is concluded that the issue is not with the Metropolis Algorithm but rather with
inaccuracies in the posterior for the two models.

Figure 7.1: Log-posterior for the AW2P model (left) and NTF-AW2P model (right) using synthetic
data. The parameter θ is the true value from the synthetic data and is not changed. The log poste-
rior is computed up to proportionality according to (4.26) so the values shown on the ordinate are
proportional to the log posterior.

[1]The skew or skewness of a random variable is defined as the third-order standardised moment
- i.e E[((X− µ)/σ)3] for a random variable with mean µ and standard deviation σ [46, p. 153].
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8 | Conclusion

The current design regime for contract W2P models is data-driven where models are fitted
based on observations, mostly disregarding the physical processes driving the production
of power from WTG’s. This thesis has taken another approach by directly modelling the
physical processes and using Bayesian methods to obtain a probability distribution of the
produced power.

A deterministic W2P model has been designed to take wind speed and air density as
input and modelling the power coefficient CP as a function of wind speed based on some
simplifying assumptions of how a WTG controls power generation through pitch control
of its blades. Wind speed is modelled as a random variable ignoring temporal dependen-
cies either assuming that the average observed wind speed is the true mean of the free
wind speed in front of the WTG or modelling the relation between the free wind speed
and the nacelle measured wind speed behind the blades using a nacelle transfer function.
Applying the deterministic W2P model on the wind speed distributions and aggregating
power production over 10 minutes yields the probabilistic AW2P and NTF-AW2P model.
Methods to obtain a posterior distribution for model parameters have been presented, but
it is found that this is intractable without using approximate distributions or by including
latent parameters in the posterior which greatly increases its dimension. The former op-
tion is chosen and the power is approximated using a Gaussian distribution with estimated
mean and variance. Here it is concluded that the variance estimate for the NTF-AW2P mo-
del suffers from inaccuracies due to an unknown error although that error does not affect
the model output which is the estimated mean.
Parameter estimation using the Metropolis Algorithm shows convergence for both models
using synthetic data as well as SCADA data. Experiments with synthetic data showed that
both models approximately converge to the true parameters in the algorithm except for
the structural error standard deviation and it is concluded that this is due to inaccuracies
in the estimation of the posterior rather than issues with the Metropolis Algorithm.

In the performance analysis, the AW2P and NTF-AW2P models are evaluated on data
from a training set in a South American wind farm and two test sets - one in the same
South American wind farm but for different WTG’s and one in an Asian wind farm. As a
baseline, two existing models, namely a 5-parameter logistic model and a method of bins
model, were used as a comparison. The thesis found no gain in performance using the
AW2P and NTF-AW2P model compared to the existing models with similar performance
for the test set in South America and worse performance for the test set in Asia. The AW2P
and NTF-AW2P models showed similar performance compared to each other so modelling
the free wind speed through the nacelle transfer function gives no noticeable gain in per-
formance for the models here. It is concluded that the AW2P and NTF-AW2P model are
inferior to the existing models with the current implementation as contract W2P models,
although the used methods could be applied in more advanced models under different
assumptions to try and achieve better performance.
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9 | Further Studies

The developed models for this thesis could be improved on numerous fronts. Apart from
improving the approximations in the statistical framework, the W2P models were based
on several simplifying assumptions about the physical process behind power generations
and improving these could potentially yield a gain in performance. A few of these are
discussed here.

Terrain How wind flows at a WTG site is affected by the type of terrain like ground
inclination, presence of surrounding objects like trees or cliffs, roughness of ground and
onshore vs. offshore location etc [33, ch. 8]. In wind resource assessment (WRA) these
effects are accounted for using software like the mentioned windPRO. An important factor
which depends on terrain is wind speed statistics, as described in appendix C.1. Other
effects are wind flow inclination and wind shear.

Wind flow inclination The anemometer placed on a WTG measures horizontal wind
speed, but the free wind acting on the blades my also have a vertical component. To
correctly model the energy in the wind, the anemometer can be calibrated according to:

v f = vnc cos(θ),

where θ is the inclination angle, v f is the resultant wind speed and vnc is the nacelle
measured horizontal wind speed [59]. WRA software can estimate the average inclination
angle, but the accuracy of the calibrated wind speed measurements is impacted by higher
angles [33, p. 86]. Accounting for the impact of average inclination on wind speed statistics
could result in a more accurate description of uncertainties in a W2P model.

Wind shear Wind shear is a measure of how wind speed changes for different altitudes.
If v1 and v2 are wind speeds at heights above ground h1 and h2, their ratio is modelled by
the wind shear exponent γ [33, p. 38]:

v2

v1
=

(
h2

h1

)γ

Wind shear is affected by the roughness of the terrain and WRA software can compute the
expected wind shear exponent. As an example, γ ≈ 0.08 at open sea and γ ≈ 0.39 in a
large city with tall buildings [33, p. 40]. Modelling how shear affects the force applied on
WTG blades at different heights could improve a W2P model.

Wake effects Wake is the reduction of wind and increased turbulence caused by e.g.
the presence of a WTG. In a wind farm, increased turbulence cause greater stress at the
WTG structures and lower wind speeds causes decreased energy production in the range
of 2− 20% depending on the relative WTG positions [33, p. 161]. Modelling wake effects
in a W2P model based on wind direction could be an improvement.
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A | List of abbreviations

WTG Wind turbine generator

W Watt

Wh Watt hours

kWh Kilo Watt hours

WF Wind farm

W2P Wind to power (model)

WTPC Wind turbine power curve

AEP Annual energy production

SCADA Supervisory Control and Data Acquisition

WRA Wind resource assessment

pdf Probability density function

CP Power coefficient

NTF Nacelle transfer function

TSR Tip speed ratio

PID Proportional Integral Derivative

AW2P Aggregated wind to power

std Standard deviation

BETAE Bayesian total error analysis

A-BETAE Approximate Bayesian total error analysis

MCMC Markov Chain Monte Carlo

Q-Q Quantile-Quantile
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B | Mathematical definitions and
results

B.1 List of distributions

A few distributions are used through the thesis. Their probability density functions are
listed here.

Let X be a real valued continuous random variable with range R of dimension N and
pdf pX . The thesis uses the following distributions:

• Gaussian distribution:

pX(x) =
1√

2πσ2
exp

(
− 1

2σ2 (x− µ)2
)

with R = R parametrised by mean µ ∈ R and variance σ2 ∈ R+,
written X ∼ N (µ, σ2).

• Folded Gaussian distribution:

pX(x) =
1√

2πσ2

(
exp

(
− 1

2σ2 (x− µ)2
)
+ exp

(
− 1

2σ2 (x + µ)2
))

with R = [0, ∞) parametrised by µ ∈ R+ and σ2 ∈ R+, written X ∼ N+(µ, σ2).

• Multivariate Gaussian distribution:

pX(x) =
1√

(2π)N |Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
with R = RN parametrised by mean µ ∈ RN and Σ ∈ RN×N is the symmetric,
positive semi-definte variance-covariance matrix, written X ∼ N (µ, Σ).

• Uniform distribution
pX(x) =

1
b− a

with R = [a, b] parametrised by the a ∈ R and b ∈ R for a < b, written X ∼ U (a, b).

• Laplace distribution

pX(x) =
1√
2σ

exp

(
−
√

2
σ
|x− µ|

)

with R = R parametrised by the mean µ ∈ R and standard deviation σ ∈ R+,
written X ∼ L(µ, σ).
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B.2 Results and definitions

Definition B.2.1 (Observed and expected information) [41, p. 18] Let pY(y|θ) the likelihood
for the stochastic variable Y parametrised by real valued θ ∈ Rm and `Y(y|θ) = log pY(y|θ) the
log likelihood. The observed information corresponding to y and θ is:

j(θ; y) = − ∂2

∂θ∂θT `(θ|y),

and the expected information corrosponding to θ and Y is:

i(θ) = E(j(θ|Y))

Lemma B.2.1 [41, p. 19] Let Y be a stochastic variable with likelihood `θ(θ; Y), for reasonable well
behave likelihood the following holds:

E
[
− d2

d2θ
`(θ; Y)

]
= E

[(
d
dθ

`(θ; Y)
)2
]

Definition B.2.2 (`2-norm) The `2-norm is the function ‖·‖ : RN → R+ is defined as:

‖x‖ =

√√√√ N

∑
i=1

x2
i

where x ∈ RN is some real valued vector.

Definition B.2.3 (Indicator function) Let x ∈ X and A ⊆ X. The indicator function
1A : X → {0, 1} is defined as:

1A(x) =

{
1 if x ∈ A
0 if x /∈ A

Proposition B.2.1 (Change of variable) [46, p. 94] Let X be a continuous random variable
with density pX and let g be a strictly increasing or decreasing differentiable function, further let
Y = g(X). Then Y has pdf

pY(y) =
∣∣∣∣ d
dy

g−1(y)
∣∣∣∣ pX(g−1(y)) =

∣∣∣∣dx
dy

∣∣∣∣ pX(x)

Corollary B.2.1 Let X be a continuous random variable with pdf pX with and let Y = aX + b
with a 6= 0. Then Y has pdf:

pY(y) =
1
|a| pX

(
y− b

a

)
Proof Let g(x) = ax + b which is differentiable and either strictly increasing or decreasing
depending on a when a 6= 0. Using proposition B.2.1 and g−1(y) = (y− b)/a it follows
immediately that:

pY(y) =
∣∣∣∣ d
dy

y− b
a

∣∣∣∣ pX

(
y− b

a

)
=

1
|a| pX

(
y− b

a

)
�
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Scott’s rule Choosing bandwidth h for a kernel density estimator, the heuristic known
as Scott’s rule can be used which uses [51, p. 164]:

h ≈ σ̂X · (Nsim)−(D+4),

where σ̂X is the estimation standard deviation for an observed data set X. Choosing band-
width according to Scott’s rule minimizes the according to certain measures when the
underlying process is uncorrelated multivariate Gaussian [51, p. 163].

Normal Equations [41, p. 48]. Let A ∈ Rn×m and y ∈ Rn. Then x ∈ Rm is the least
squares solution to Ax = y if and only if x is a solution to the normal equations:

ATAx = ATy

If rank(A) ≥ m then the solution is given uniquely by:

x̂ = (ATA)−1ATy

Power spectral density Let X[n] be a time discrete stochastic process with n ∈ Z. If
X[n] is week sense stationary defined as having constant mean

µX [n] = E[X[n]] = µ ∀n ∈ Z,

and autocovariance function (ACF) only dependent on lag:

rX [n, n + k] = E[X[n]X[n + k]] = rX [k] ∀n, k ∈ Z,

then the power spectral density (PSD) is defined as the discrete time Fourier transform of
the ACF [35, p. 571]:

PX( f ) = ∑
k∈Z

rX [k] exp (−j2π f k) ,

if it exists.

Transformation of Random variable For some random variable X ∼ pX it is given
by definition that:

P(a ≤ X ≤ b) =
∫ b

a
pX(x)dx

if a monotone (increasing) transformation Y = g(X) is applied, then the following holds
[8]: ∫ b

a
pX(x)dx =

∫ g(b)

g(a)
pY(y)dy, (B.1)

where pY(y) is given by the change of variable theorem B.2.1.
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C.1 Annual Energy Production and wind speed statistics

AEP is the estimated the amount of energy produced over an entire year for a WTG or WF
and is an important measure in wind resource assessment. Consider the case of estimating
AEP for a single WTG with known power curve given by a W2P model with parameters
θ. Let v ∈ RN be a long-term forecast of wind speed over a year with N being the number
of samples in a year for a given resolution of v. Estimated is AEP then simply:

AEP =
N

∑
n=1

W2P(vn; θ). (C.1)

Forecasts of wind speed including uncertainty measures can be obtained by modelling the
average wind speed short intervals as a random variable. In the wind turbine industry the
convention is to model 10-minute average wind speeds as Weibull distributed [33, p. 32].

Definition C.1.1 (Weibull distribution) [33, p. 30] If a random variable T has pdf on

f (t) =
α

λ

(
t
λ

)α−1
exp

[
−
(

t
λ

)α]
, for t ∈ [0, ∞)

then T is said to follow a two-parameter[1] Weibull distribution with shape parameter α > 0 and
scale parameter λ > 0, written T ∼ W(α, λ).

Remark C.1 The Weibull distribution has mean

µ = λΓ(1 + 1/α)

and variance
σ2 = λ2

(
Γ(1 + 2/α)− Γ2(1 + 1/α)

)
where Γ is the Gamma function [33, p. 33].

Remark C.2 For α = 1 (C.1.1) reduces to the pdf of a exponential distribution and for
α = 2 it is equivalent to the pdf of a Rayleigh distribution [35, p. 302].

Modelling wind speed as Weibull distributed, v ∼ W(α, λ), the shape parameter is unitless
and the scale parameter λ is measured in m/s. According to [33] modelling wind speed
as a Weibull distribution tends to be a good assumption for many locations and as a

[1]A three-parameter Weibull distribution exists with an additional parameter taking location into
account, however only the 2 parameter version is used when dealing with wind profiles.
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rule of thump α ≈ 2. Furthermore, when modelling minute 10 average wind speed as a
stochastic process vn, it can be assumed that subsequent samples are uncorrelated - see
further description in section 3.1.3. Illustrations of the Weibull distributions for different α
and λ parameters can be seen in figure C.1.

Figure C.1: (Left) figure shows a Weibull pdf with λ = 8 and varying scale parameter α. Similarly,
the (Right) figure shows the same for α = 2 and varying λ.

In regards to obtaining wind speed forecasts for AEP estimation, WRA software like the
mentioned windPRO, is used to obtain (α, λ) in different wind direction sectors along with
a frequency parameter f specifying what percentage of time the wind direction is expected
to fall in each sector [33, ch. 7]. Given (α, λ, f )i for each wind direction sector i, mean AEP
and associated uncertainty can be obtained using (C.1).

The Weibull distribution is fitted on the available data to see how well the assumption
applies for the two wind farms. Closed-form solutions for the maximum likelihood esti-
mate for (α, λ) is not found in the literature, however the following approximations can be
used [33, p. 34]:

α̂ =

(
σ

µ

)−1.086
and (C.2)

λ̂ =
µ

Γ
(

1 +
1
α̂

) , (C.3)

where µ and σ is the mean and standard deviation which is estimated for a given data set.
An illustration of a Weibull distribution fitted using (C.2) and (C.3) can be seen in figure
C.2.
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Figure C.2: Histogram for wind speed data and a fitted Weibull pdf. The (left) figure shows data for
the South American wind farm and the (right) for the Asian wind farm.

C.2 Estimation of v1 and v2

v1 and v2 are estimated to be the values that minimises the sum of squared error (SSE)
between estimated and observed power. Let P ∈ RNdat be observed 10 minute total power
and v ∈ RNdat 10 minute average wind speed for Ndat data points. The function for the
power coefficient in (3.6) states that

vc = 2.8 m/s ≤ v1 ≤ v2 ≤ vr = 9.3 m/s

so v1 and v2 are simply found by finding the point with lowest SSE in an appropriate grid.
The SSE is obtained in the following steps:

1. Chose v1 and v2 at a point in the grid.

2. Calculate θ = (a1, a2, Cmax) as the least square estimate by the same method used in
section 5.2 to initialise θ for the Metropolis Algorithm.

3. Estimate P̂n = µ
P̂
(vn, θ) for n = 1, . . . , Ndat using the AW2P or NTF-AW2P model.

Note that µ
P̂
(vn, θ) depends on v1 and v2 despite being omitted from notation.

4. Set SSE =
∥∥∥P̂− P

∥∥∥2
.

This have been performed using a subset of the training data described in section 6.1
modelling power is modelled according to the AW2P model. Figure C.3 and C.4 shows the
results.
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Figure C.3: SSE for different values of v1 and
v2 showed as the 2nd nested log
log2(SSE) = log(log(SSE)) to emphasise
small differences. v1 = 3.87 and v2 = 7.93
have the lowest SSE.

Figure C.4: Plot of power coefficient CP =
P/Pwind as defined in (3.5) for the training
data. The estimated v1 and v2 are shown in
the plot.
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D | Software

The relevant scripts developed during the project period has been attached with the hand-
in of the project. The scripts are all made in Python 3.7.

The available scripts include:

• sim_data.py is used to generate synthetic data for the AW2P and NTF-AW2P model.

• likelihood_stats.py is used for calculating the moments see (4.19),(4.20) and (4.21).

• metropolis.py is used to perform parameter inference through the Metropolis Al-
gorithm see algorithm 2.

References to data have been removed. Note that the scripts cannot be run as they rely on
confidential data which is not included.
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