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Summary

The objective of this thesis is to investigate Separate Meter-In Separate Meter-Out,
SMISMO, control strategies for a hydraulic cylinder. The thesis is divided into two
main parts: a general analysis of hydraulic SMISMO systems, and analysis and
control of a given hydraulic SMISMO system.

In the first part of the thesis, a control combination analysis showed that it is possible
to control either flow, piston position, piston velocity, or piston acceleration along
with pressure highly independently.

This led to an analytical Relative Gain Array, RGA, analysis where cross couplings
were studied for parameter variations and di�erent operating conditions. From a
simplified RGA analysis with flows as inputs it was found that for low frequencies,
the cross couplings depend on the piston area ratio, –, and bulk modulus ratio, “,
and that the suggested pairing of inputs and outputs change when changing the
piston position from 0 [%] to 100 [%] of stroke length. For the transition frequency
range it was found that whether the diagonal and o�-diagonal RGA elements cross, is
mostly dependent on the piston position. Furthermore, heavy cross couplings occur
at the natural frequency. It was concluded that to ensure low coupling, the piston
working range is very limited for low frequencies, and if controlled as SISO, the closed
loop bandwidth should be designed such that frequencies above a frequency lower
than the natural frequency are filtered out. Instead a decoupling pre-compensator or
MIMO control was suggested to avoid heavy cross couplings and be able to increase
the bandwidth.

The analytic RGA analysis was extended to include the system with valve openings
as inputs. However, due to the complexity of the RGA elements when including
the orifice equations, it was only possible to analyse the couplings for low and high
frequencies. For low frequencies it was found that the necessary operating pressures
to avoid cross couplings are very limited. The two analytical RGA analyses were
compared and verified by a numerical RGA analysis, where only a low frequency
o�set was observed in the comparison. A numerical RGA analysis including the
leakage flow, viscous friction, and dead volume showed that the conclusions made
with the simplified analytic RGA analysis had an o�set at low frequencies and change
in resonance peak. At the intermediate frequency range, the results were, however,
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similar.

The second part of the thesis focuses on the analysis and control of a given hydraulic
SMISMO system. The system was modelled and validated by experimental data. An
analysis of the pole locations as a function of operating parameters showed that the
dynamic change of the linear model is large and very dependent on the linearisation
point. A worst-case linearisation point was found as a trade-o� between lowest
natural frequency, lowest damping ratio, and highest system couplings. From a
Singular Value Decomposition, SVD, it was found that the system gain depends
on the direction of the input vector and that the system is ill-conditioned. It was
concluded that the strong directionality and significant cross couplings may cause
control problems. Based on the analysis of the cross couplings and SVD, it was
decided to design MIMO controllers.

First, a MIMO controller using the pole placement, PP, method was designed. The
poles were placed such that the natural frequency and damping ratio were increased.
During the design process, it was found that the dynamics change significantly for
a small change in the pole locations. The velocity and pressure outputs were able
to follow the references to some degree however with errors. The load force had a
significant e�ect on the outputs where an increase in errors was seen.

A Linear Quadratic Regulator, LQR, controller with gain scheduling was designed
to check whether it was possible to improve the dynamics and reduce steady state
errors. The choice of gain scheduling was based on the change in location of the poles
when varying the piston position and the fact that small changes in pole locations
a�ected the dynamics significantly. The best response was obtained for pole locations
close to the open loop poles, however, the dynamics were not further improved.

Finally, a Linear Quadratic Integral, LQI, controller was designed to reduce steady
state errors. Two additional integrator poles were placed closer to the origin and it
was possible to move the complex conjugate pole pair further away from the origin
with an increased damping ratio. The LQI controller was able to remove steady state
errors and reduce overshoot for step responses. Furthermore, the LQI controller was
able to follow the reference when the load force was stepped which was not the case
for PP and LQR. This was also seen in the frequency response for the singular values
of the sensitivity function where the gain at low frequencies is significantly smaller for
LQI than for PP and LQR. In regards to measurement noise attenuation, the noise
transfer function for LQI had a significant resonance peak, however, the implemented
measurement noise did not a�ect the LQI controller as expected. In conclusion, the
system with LQI control proved best results.
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Chapter 1

Introduction

Traditionally, mechanically linked meter-in meter-out spool valves are used for hy-
draulic di�erential cylinders [Hansen et al., 2011a]. The conventional valve o�ers a
variety of control options, e.g. control of piston position, piston velocity, orifice flow,
chamber pressure, and piston force. The control options are, however, primarily stan-
dalone options due to only one control input being available. Due to a larger focus
on energy-saving, it is beneficial to control two states, e.g. flow and pressure. This
is possible with a Separate Meter-In Separate Meter-Out, SMISMO, configuration
where the valve opening to each chamber is controlled separately [Guangrong et al.,
2019]. This utilises the possibility to control an additional variable compared to a
mechanically linked meter-in meter-out spool valve [Rath and Zaev, 2017] which in-
creases the functionality of the system and could improve dynamic performance. This
thesis will, therefore, investigate suitable control strategies for a hydraulic cylinder
using SMISMO.

The thesis is divided into two main parts. The first part contains a general analysis
of hydraulic SMISMO systems and can be used as a guideline for a hydraulic cylinder
controlled by SMISMO valves. The second part contains an analysis and control of a
given hydraulic SMISMO system where the conclusions from the first part form the
basis for the second part.

The first part of the thesis will investigate:

• What are the suitable pairings of control variables for a hydraulic cylinder using
SMISMO?

• How do operating conditions and parameter variations influence the system
couplings?

1



2 Chapter 1. Introduction

These questions will be answered in a general perspective without considering the
application. Figure 3.1 is used for the analysis where each relevant system parameter
is varied.

	"

Figure 1.1: Sketch of the di�erential cylinder used for the analysis.

Several pairings of control variables arise and the variables considered to determine
suitable control strategies are: flow in both chambers, piston position, piston velocity,
piston acceleration, pressure in both chambers, and piston force. By answering the
questions without considering the application, this first part of the thesis can be used
as a guide when using SMISMO for a hydraulic cylinder.

The second part of the thesis contains an analysis of a specific hydraulic test setup
using SMISMO and will investigate:

• How can controllers be designed for the system to reduce reference tracking
error?

The reference tracking is evaluated during the transients and in steady state, and
the system should be insensitive to parameter variations and robust towards distur-
bances. The controllers will be designed based on the analysis of suitable pairings and
the coupling analysis. The chosen controllers will be tested by simulation where the
performance is compared for a chosen reference profile. Noise will be implemented in
the simulation since the controllers will not be tested experimentally as there is no
access to the laboratory due to the coronavirus pandemic. The comparison is done
for the specific system and will depend on the used approach. The conclusion of the
recommended controller design can, therefore, change when using SMISMO for other
systems.



Part I

General Analysis of Hydraulic

SMISMO Systems
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Chapter 2

General Dynamic Model

This chapter is the beginning of Part I. In Part I, the following question will be
answered first: What are the suitable pairings of control variables for a hydraulic
cylinder using SMISMO?

A general hydraulic model for a di�erential cylinder with two orifice openings as
inputs is presented in this chapter. The system equations are later used to determine
if each control combination is suitable. The model is based on commonly used
equations for describing such a system where modelling di�erences may occur when
considering the fluid sti�ness, leakage flow, and friction model. The di�erential
hydraulic cylinder is sketched in Figure 2.1 where the subscript ’p’ refers to the
piston side and ’r’ refers to the rod side of the cylinder.

!"!#
$%&

'#

(%	*#	 *"

$#
+#

	,-

$"
+"

Figure 2.1: Di�erential cylinder in SMISMO configuration.

The system inputs, up and ur, pressure in each chamber, pp and pr, flows, Qp and
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6 Chapter 2. General Dynamic Model

Qr, leakage flow, Qle, piston areas, Ap and Ar, mass, M , load force, Fl, and piston
position, xp, are defined in Figure 2.1. For a di�erential cylinder it follows that
Ap > Ar. The orifices in Figure 2.1 are not modelled, however, the valve openings,
up and ur, are considered inputs to the system and will be modelled later.

The continuity equation for each cylinder chamber is expressed in Equations (2.1)
and (2.2) where external leakage is neglected[Hansen, 2019, 76-78].

Qp ≠ Qle = Ap ẋp + Vp

—(pp) ṗp (2.1)

Qle ≠ Qr = ≠Ar ẋp + Vr

—(pr) ṗr (2.2)

— is the e�ective bulk modulus which is defined in Equation (2.3)[Hansen, 2019, 16-
17], where – is the percentage of air dissolved in the oil, n is the polytropic index
which is 1.4 for an adiabatic process, p0 is the atmospheric pressure, and —0 is the
maximum fluid sti�ness.

— =
(1 ≠ –) e

p0≠p
—0 + –

1
p0
p

2 1
n

1≠–

—0
e

p0≠p
—0 + –

n p0

1
p0
p

2 n+1
n

(2.3)

The internal leakage flow is expressed in Equation (2.4) and the volumes in Equations
(2.5) and (2.6)[Hansen, 2019, 76-78].

Qle = Cle (pp ≠ pr) (2.4)

Vp = Ap xp + Vp0 (2.5)

Vr = Ar (L ≠ xp) + Vr0 (2.6)

Cle is the leakage coe�cient, L is the cylinder stroke length, Vp0 is the piston side
volume when xp = 0, and Vr0 is the rod side volume when xp = L, i.e. the dead
volumes.

The free body diagram of the cylinder is sketched in Figure 2.2 and the acting forces
are expressed in Equation (2.7) using Newton’s Second Law of Motion [Hansen, 2019,
78-79].
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Figure 2.2: Free body diagram of a di�erential cylinder.

ÿ
F = M ẍp = Fp ≠ Ff ≠ Fl (2.7)

Where Fp is the piston force which is the force contribution from the pressure in each
chamber acting on each side of the piston head, Ff is the friction force acting against
the direction of movement which arises from the seals between piston and cylinder,
and Fl is the load force. The piston- and friction forces are defined in Equations
(2.8) and (2.9)[Hansen, 2019, 78-79].

Fp = Ap pp ≠ Ar pr (2.8)

Ff = B ẋp + Fc sgn(ẋp) (2.9)

B is the viscous damping coe�cient and Fc is the Coulomb friction coe�cient. The
three non-linear governing di�erential equations are rewritten in Equations (2.10) to
(2.12).

ẍp = 1
M

(Ap pp ≠ Ar pr ≠ B ẋp ≠ Fc sgn(ẋp) ≠ Fl) (2.10)

ṗp = —(pp)
Ap xp + Vp0

(Qp ≠ Cle (pp ≠ pr) ≠ Ap ẋp) (2.11)

ṗr = —(pr)
Ar (L ≠ xp) + Vr0

(Cle (pp ≠ pr) ≠ Qr + Ar ẋp) (2.12)

A general hydraulic model has now been derived and will be used for further analyses.
It should be noted that the equations are representative for a physical hydraulic
system and the system parameters for a specific test setup will therefore not be
validated to retain generality. Instead, the parameters will be varied within physical
grounds during analyses and the results should, therefore, apply for systems that are
modelled using the corresponding equations.
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Chapter 3

Control Combination Analysis

The purpose of the following analysis is to investigate the di�erent control combina-
tions which arise from a SMISMO configuration. All combinations are studied to find
out whether they are suitable for control purposes. The suitable control combinations
are further analysed to determine whether they can be controlled independently of
each other. The hydraulic cylinder used for the analysis was modelled in Chapter 2
and sketched in Figure 3.1.

!"!#

$#

%&	

(#
)#

	*+

("
)"

Figure 3.1: Di�erential cylinder used for analysis.

The governing di�erential Equations (2.10) to (2.12) are simplified in order to reduce
the complexity of the analysis. The frictional forces Ff = B ẋp + Fc sgn(ẋp) are
modelled as a part of the load force, Fl, as seen in Equation (3.1). However, the
velocity dependency of the load force is considered negligible compared to the size
of the load force. The magnitude of the load force is unknown. The leakage flow is
neglected, and the volumes Vp and Vr are seen as constants to further simplify the
model. The simplified di�erential equations are shown in Equations (3.1) to (3.3).

9



10 Chapter 3. Control Combination Analysis

ẍp = 1
M

(Fp ≠ Fl) (3.1)

ṗp = —(pp)
Vp

(Qp ≠ Ap ẋp) (3.2)

ṗr = —(pr)
Vr

(Ar ẋp ≠ Qr) (3.3)

The piston force, Fp is defined in Equation (3.4).

Fp = pp Ap ≠ pr Ar (3.4)

At steady state, i.e. constant pressures and velocity, the governing di�erential equa-
tions are simplified as shown in Equations (3.5) to (3.7).

0 = ppAp ≠ prAr ≠ Fl (3.5)

0 = Qp ≠ Ap ẋp (3.6)

0 = Ar ẋp ≠ Qr (3.7)

The equations have now been simplified to limit the analyses conducted during the
first part. After the analyses, the simplifications are evaluated in Section 5.5 by
comparison of the simplified equations with the initial equations to determine the
e�ects on the final conclusions.

3.1 Suitable Control Combinations

Each control option will be analysed to determine if the control option is suitable
or not. In Table 3.1 all the control combinations are shown, where the states in the
vertical axis are controlled with one valve, and the horizontal states are controlled
with the other valve. The valve orifices are directly controlled using control inputs
up and ur for the piston and rod side valve, respectively. For the bottom row referred
to as ’Slave’, one valve is opened as a function of the other, which is elaborated later.
The specific input and output pairing of the control inputs is not considered in the
following analysis, as this is discussed in Chapter 5.
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Qp ◊

Qr ◊ ◊

xp X X ◊

ẋp ◊ ◊ X ◊

ẍp X X X X ◊

pp X X X X X ◊

pr X X X X X ◊ ◊

Fp X X X X ◊ ◊ ◊ ◊

Slave X X X X X X X X ◊

Qp Qr xp ẋp ẍp pp pr Fp Slave

Table 3.1: Output combinations.

The vertical state is parred with the horizontal state and the control suitability for
each combination is determined. If a control combination is not able to achieve
steady state, it is not suitable. The control options marked with a red cross are
not suitable, the control options with yellow checkmarks are suitable but the states
should be controlled dependent on each other, and control options marked with green
checkmarks are suitable and can be controlled highly independent of each other,
however, reference limits exist. As an example, controlling Fp and xp is suitable
but cannot be controlled independently of each other as a yellow checkmark is given,
whereas, controlling pr and xp instead can be done highly independently of each other
as a green checkmark is given. All the control combinations that are not suitable are
explained first whereafter the suitable control options are explained.

MISO Control

The diagonal of Table 3.1 would require two inputs both controlling one state e.g.
MISO. MISO is disregarded, as the possibility to control one state is not the focus
of this thesis.

Flows

In this section, the outputs Qr and Qp are analysed. The pressure gradients should
equal zero in steady state: 0 = Qp ≠ Ap ẋp and 0 = Ar ẋp ≠ Qr which is desired
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for control purposes. Qp and Qr are algebraically connected and therefore strictly
dependent on each other. If Qp and Qr do not match, it would result in two di�erent
velocities, ẋp, and the system will not reach steady state, i.e. ẋp = Qp

Ap
”= Qr

Ar
. This

could be caused by the areas not being modelled correctly or an unmodelled external
leakage in e.g. one of the valves, which results in more flow exiting this chamber.
Controlling both flows is therefore not suitable.

Piston Velocity and Flows

In this section, the outputs ẋp and Qp and the outputs ẋp and Qr are analysed. In
steady state, the pressure gradients equal zero and from Equation (3.5), ẋp = Qp

Ap

which means the piston velocity, ẋp, and flow, Qp, are algebraically coupled. ẋp,ref

can therefore not be set independently of Qp,ref . If Qp,ref is set dependent on the
chosen ẋp,ref and Ap or leakage is modelled incorrectly, Qp,ref will result in a velocity
di�erent than the wanted ẋp,ref and the system will not be able to reach steady
state which is desired for control purposes. Controlling both the velocity and flow is
therefore not suitable.

Piston Force and Piston Acceleration

In this section, the outputs Fp and ẍp are analysed. The relation between Fp and ẍp is

given by: ẍp = 1
M

(
Fp˙ ˝¸ ˚

ppAp ≠ prAr ≠Fl). As the load force, Fl is unknown, a reference for
the piston force Fp can not be set to guarantee ẍp = 0 and thereby reach steady state.
Controlling both the piston force and piston acceleration is therefore not suitable.

Pressures

In this section, the outputs pr and pp are analysed. Controlling the two pressures,
and achieving steady state, would require knowledge of the load force as seen by:
0 = ppAp ≠ prAr ≠ Fl. If the pressure references do not match the load force, an
acceleration occurs and the system does not reach steady state. Controlling both
pressures is therefore not suitable.

Piston force and Pressures

In this section, the outputs Fp and pp and the outputs Fp and pr are analysed.
The piston force, Fp, is defined by Fp = ppAp ≠ prAr. Due to the unknown load
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force, Fp can be found from the pressure measurements of pp and pr. It follows
from the definition of the piston force that if pp,ref and Fp,ref are chosen, then pr is
predetermined. The value of pr does not necessarily result in steady state as the load
force is unknown. Controlling the piston force and pressure is, therefore, comparable
to controlling both pressures which is not suitable.

3.2 Dependent and Independent Control Combinations

It will be analysed if each control combination is able to move the piston in both
positive and negative direction with a positive and negative load force for each di-
rection. This result in the four cases shown in Figure 3.2, where the defined positive
direction of the velocity and load force is shown in case 2.
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Figure 3.2: Four force and piston direction cases where the load carrying chamber is enclosed by

red dashed lines.

The maximum magnitude of the piston force is defined to be larger than the max-
imum magnitude of the load force. As the areas of the piston are di�erent, the
maximum load force is dependent on the direction of the load force. The maximum
positive load force, Fl,pos, is defined as Fl,pos = psAp ≠ ptAr and the maximum neg-
ative load force, Fl,neg, is defined as Fl,neg = ptAp ≠ psAr. It should be noted that
|Fl,neg| < |Fl,pos| for a di�erential cylinder.

The control options marked with yellow checkmarks in Table 3.1 where the states
must be controlled dependent on each other are explained first and the green check-
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marks where the states can be controlled highly independent of each other are ex-
plained afterwards.

Piston Position and Flows

In this section, the outputs xp and Qp and the outputs xp and Qr are analysed. As
xp is the integral of ẋp, and ẋp is algebraically connected to Q in steady state, xp and
Q can not be controlled independently. As an example, a constant position reference
would contradict a velocity reference di�erent from zero.

Instead, it is possible to control the position and flow dependent on each other.
The position is the integral of the velocity, which means it is possible to feed back
velocity and position in a cascade configuration; the position will then be fed back in
the outer loop and the velocity in the inner loop. As flow is algebraically connected
to velocity, the flow reference, Qref , can be generated based on the position error
xp,error = xp,ref ≠ xp, i.e Qref (xp,error). It is possible to control the flow dependent
on the position error.

The argumentation for a cascade configuration is used for all yellow checkmarks
except for slave.

Piston Acceleration and Flows

In this section, the outputs ẍp and Qp and the outputs ẍp and Qr are analysed. Q

is closely related to ẋp and ẋp is the integral of ẍp. Q and ẍp can thereby not be
controlled independently.

The same argumentation follows as for piston position and flows. The acceleration
reference is calculated based on the flow error, i.e. ẍp,ref (Qerror), and controlled in a
cascade configuration with acceleration in the inner loop and flow in the outer loop.
It is possible to control the piston acceleration dependent on the flow error.

Piston Velocity and Position

In this section, the outputs ẋp and xp are analysed. The same argumentation follows
as for piston position and flows. The velocity reference is calculated based on the
position error, i.e. ẋp,ref (xp,error), and controlled in a cascade configuration with
velocity in the inner loop and position in the outer loop. It is possible to control the
piston velocity dependent on the position error.
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Piston Acceleration and Position

In this section, the outputs ẍp and xp are analysed. The same argumentation follows
as for piston position and flows, however, with a double integrator. The acceleration
reference is calculated based on the position error, i.e. ẍp,ref (xp,error), and controlled
in a cascade configuration with acceleration in the inner loop and position in the outer
loop. It is possible to control the piston acceleration dependent on the position error.

Piston Acceleration and Velocity

In this section, the outputs ẍp and ẋp are analysed. The same argumentation follows
as for piston position and flows. The acceleration reference is calculated based on
the velocity error, i.e. ẍp,ref (ẋp,error), and controlled in a cascade configuration with
acceleration in the inner loop and velocity in the outer loop. It is possible to control
the piston acceleration dependent on the velocity error.

Piston Force and Flows

In this section, the outputs Fp and Qp and the outputs Fp and Qr are analysed. The

piston force is related to piston acceleration: ẍp = 1
M

(
Fp˙ ˝¸ ˚

ppAp ≠ prAr ≠Fl), and the
flow is related to piston velocity. Due to the unknown load force, Fp can be found
from the pressure measurements of pp and pr.

To control the piston force and flow, the same argumentation follows as for piston
position and flows. The piston force reference is calculated based on the flow error,
i.e. Fp,ref (Qerror), and controlled in a cascade configuration with piston force in
the inner loop and flow in the outer loop. It is possible to control the piston force
dependent on the flow error.

Piston Force and Piston Position

In this section, the outputs Fp and xp are analysed. As Fp is comparable to the
piston acceleration, the same argumentation follows as for piston position and flows,
however, with a double integrator. The piston force reference is calculated based on
the position error, i.e. Fp,ref (xp,error), and controlled in a cascade configuration with
piston force in the inner loop and position in the outer loop. It is possible to control
the piston force dependent on the position error.
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Piston Force and Piston Velocity

In this section, the outputs Fp and ẋp are analysed. As Fp is comparable to the piston
acceleration, the same argumentation follows as for piston position and flows. The
piston force reference is calculated based on the velocity error, i.e. Fp,ref (ẋp,error),
and controlled in a cascade configuration with piston force in the inner loop and
velocity in the outer loop. It is possible to control the piston force dependent on the
velocity error.

Slave Control

Slave control can be used when only controlling for one state, where one input is
paired with the wanted state and the other input is determined from the area ratio
and the opening of the first input: ur = up

Ar
Ap

. Using this relationship between
the inputs, the system will reach steady state under the assumption that the valve
coe�cients and pressure di�erences across the vales are equal. The slave control
method is comparable to using one conventional valve connected to the two chambers,
where the valve spool position allows flow to enter one chamber, and exit the other
as they are mechanically linked.

Flow: Flow control of either flow is possible and if the area ratio of the piston
surface, – = Ar/Ap, is modelled incorrectly, then Qr ”= Qp–. This will however not
necessarily result in pressure build-up since an increased pressure will result in an
increased flow out of the chamber.

Position: Since the valves are coupled, Qp and Qr will be positive at the same time
or negative at the same time which will guarantee movement in the wanted direction.
A constant velocity is furthermore achieved by keeping the valve opening constant.

Velocity: As for controlling the position with slave, the valves will ensure movement
in the wanted direction. The wanted velocity is achieved by adjusting the valve
opening.

Acceleration: The same argument applies as for position and velocity.

Pressure and Piston Force: Controlling the pressures and piston force using slave is
comparable and possible however limited, as the pressure built up in one chamber
is dependent on the opposite chamber pressure, which is not directly controlled.
Furthermore, the achievable pressure and piston force are dependent on the load
force.

All the combinations that must be controlled depending on each other have been
analysed. The states that can be controlled highly independent of each other will be
analysed in the following sections.
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Pressures and Flows

In this section, the outputs pp and Qp, the outputs pp and Qr, the outputs pr and
Qp, and the outputs pr and Qr are analysed. The four cases from Figure 3.2 are used
for the analysis.

Case 1 :

A low pressure reference in the rod side chamber allows runaway of the load, as
the unknown load force acts in the same direction as the desired movement, i.e.
an overrunning load. Controlling the piston side pressure and rod side flow implies
balancing of the load as Qr is controlled in the load carrying chamber.[Hansen et al.,
2011b] pp,ref and Qref are highly independent of each other, however, when the pp,ref

approaches ps, Qref becomes limited due to the low pressure di�erence across the
valve.

Case 2 :

The load is resistive and controlling the pressure in the load carrying chamber would
require the reference to be pump pressure, pp,ref = ps, to guarantee movement in
the desired direction due to the load force being unknown. A pressure reference set
too low would risk the piston moving in the negative direction. Controlling the flow
in either of the chambers is possible, however as for case 1, the flow in the load
carrying chamber implies balancing the load. Having a pressure reference in the rod
side chamber enables the piston side chamber pressure to adjust according to the
load force.

If a control combination for flow and pressure works for case 1 then it also works for
case 4 when changing to control the other flow and pressure, respectively. The same
is true for cases 2 and 3, only the pressure in the load carrying chamber should be
the supply pressure in case 3.

The pressure should be controlled in the non-load carrying chamber. It is recom-
mended to control the flow in the load carrying chamber.

Pressures and Piston Position

In this section, the outputs pp and xp and the outputs pr and xp are analysed.

Case 1 :

The same argumentation follows as for case 1 for controlling pressure and flow. The
pressure in the non-load carrying chamber should be controlled, i.e. pp. pr, Qr, and
Qp will thereby adjust according to the chosen pp,ref , xp,ref , and the load force.

Case 2 : The same argumentation follows as for case 2 for controlling pressure and
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flow. The pressure in the non-load carrying chamber should be controlled, i.e. pr.
pp, Qr, and Qp will thereby adjust according to the chosen pr,ref , xp,ref , and the load
force.

For case 3 and 4, the same augmentation for case 1 and 2 applies. The pressure
should be controlled in the non-load carrying chamber.

Pressures and Piston Velocity

In this section, the outputs pp and ẋp and the outputs pr and ẋp are analysed. The
same argumentation as for pressure and piston position applies. The pressure should
be controlled in the non-load carrying chamber.

Pressures and Piston Acceleration

In this section, the outputs pp and ẍp and the outputs pr and ẍp are analysed. The
piston acceleration and pressure in each chamber are related as: ẍp = 1

M
(pp Ap ≠

pr Ar ≠ Fl). If ẍp is to be controlled, the pressure reference in one chamber can be
chosen while the pressure in the other chamber will change depending on ẍp,ref and
the load force. Compared to controlling Fp and ẍp which was not suitable, a degree
of freedom arises, as the other pressure is not controlled. ẍp and pressure can thereby
be chosen independently of each other.

Hereafter, the same argumentation as piston position and pressure applies. The
pressure should be controlled in the non-load carrying chamber.

All the suitable control combinations are found and marked by yellow and green
checkmarks in Table 3.1 which answers the question: What are the possible control
strategies for a hydraulic di�erential cylinder using SMISMO? The table is repeated
below with only green checkmarks where the combinations are numbered.

pp X1 X3 X5 X7 X9

pr X2 X4 X6 X8 X10

Qp Qr xp ẋp ẍp

Table 3.2: Highly independent control combinations.

The couplings of all the combinations with a green checkmark, where the states can be
controlled highly independent, will be analysed to answer the second problem; How
do operating conditions and parameter variations influence the system couplings?
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The couplings between the vertical and horizontal states in Table 3.2 will be analysed
using the relative gain array, RGA. This will be done analytically to see how the
couplings depend on operating conditions and parameter variations. The conclusion
is afterwards numerically validated by using parameters for a SMISMO test setup.
State space models are derived in the following section which are used for the RGA
analysis.
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Chapter 4

Linear State Space Models

Two state space models are derived to analyse the couplings analytically. The first
with flows as inputs, i.e. without the non-linear orifice equations, and the second
with valve openings as inputs. Both models neglect the leakage flow and viscous
friction which is done to simplify the analytic coupling analysis. The load force and
the Coulomb friction are modelled as a disturbance and not included in the state
space model. The volume dependency of the piston position will furthermore be
neglected when deriving the state space models. The volumes will however later be
varied by varying the piston position and the change of coupling will be analysed.

The state space models are derived in Section 4.1 and 4.2, and an extended state
space model is derived in Section 4.3 which will be used to numerically verify the
simplifications made in the analytic coupling analysis.

4.1 Model with Flows as Inputs

A general non-linear state space model is expressed in Equation (4.1)[Goodwin et al.,
2000, p. 53], where x is the state vector, u is the input vector, and y is the output
vector.

ẋ = f(x, u)
y = h(x) (4.1)

The state and inputs vectors of the model with flows as inputs are defined in Equation
(4.2) where the subscript ’f ’ refers to flows as inputs.

21
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xf =
Ë
ẋp pp pr

È
T

uf =
Ë
Qp Qr

È
T

(4.2)

The non-linear state space model is expressed in Equation (4.3) by using the sim-
plified di�erential Equations (3.1) to (3.3). It should be noted that the di�erential
equations are linear in this case as the bulk modulus and volumes are evaluated in a
linearisation point.

ff (xf , uf ) =

S

WU
ẋf,1
ẋf,2
ẋf,3

T

XV =

S

WWU

1
M

(pp Ap ≠ pr Ar ≠ Fl)
—(pú

p)
Vp(xú

p)(Qp ≠ Ap ẋp)
—(pú

r)
Vr(xú

p)(Ar ẋp ≠ Qr)

T

XXV (4.3)

To get a linear state space model, new variables are introduced: x̃ = x ≠ xú, ũ =
u ≠ uú, and ỹ = y ≠ yú. Asterisks, ú, denote linearisation points which are found in
an equilibrium point by satisfying Equation (4.4).[Hansen, 2019, 150-153]

0 = f(xú
, uú),

yú = h(xú) (4.4)

The linear state space model is expressed using Taylor series neglecting higher order
terms. The state equation is expressed in Equation (4.5) and the output equation is
expressed in Equation (4.6)[Goodwin et al., 2000, p. 52-54].

˙̃x ¥ ˆ f
ˆ x

----
xú,uú

¸ ˚˙ ˝
A

x̃ + ˆ f
ˆ u

----
xú,uú

¸ ˚˙ ˝
B

ũ = A x̃ + B ũ (4.5)

ỹ ¥ ˆ h
ˆ x

----
xú,uú

¸ ˚˙ ˝
C

x̃ + ˆ h
ˆ u

----
xú,uú

¸ ˚˙ ˝
D

ũ = C x̃ + D ũ (4.6)

where A, B, C, and D are Jacobian matrices evaluated in the linearisation point.
The state equation is expressed in Equation (4.7), whereas the C matrix is varied
for the output equation y = Cx for di�erent control combinations.[Philips and Parr,
2013, 84-87] Tildes, ,̃ are omitted for simplicity.
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ẋf =

S

WWU

0 Ap

M
≠Ar

M

≠—
ú
p Ap

V ú
p

0 0
—

ú
r Ar

V ú
r

0 0

T

XXV

¸ ˚˙ ˝
Af

xf +

S

WWU

0 0
—

ú
p

V ú
p

0
0 ≠ —

ú
r

V ú
r

T

XXV

¸ ˚˙ ˝
Bf

uf (4.7)

Transfer function matrices are found for all control combinations, i.e. C matrices,
using Equation (4.8).[Philips and Parr, 2013, 104-105]

G(s) = C (s I ≠ A)≠1 B (4.8)

which yields a 2x2 matrix for a system with two inputs and two outputs. To get
piston position, xp, and piston acceleration, ẍp, as output, transfer functions with
piston velocity, ẋp, as output are found and multiplied by 1/s and s, respectively. It
should be noted that the first state model is used to find transfer functions for the
control combinations 5 ≠ 10 in Table 3.2 as flows are inputs. The linear model block
diagram for flows as inputs is shown in Figure 4.1.

�� �

��

��

Figure 4.1: Linear model diagram for the model with flows as inputs.

The state space model is modified to have valve openings as inputs in the following
section. This further allows the flow to be the output of the state space model.
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4.2 Model with Valve Openings as Inputs

The orifice equations are included to get valve openings as inputs. The orifice equa-
tions are expressed in Equations (4.9) and (4.10)[Hansen, 2019, p. 92-93].

Qp =

Y
]

[
kvxvp

Ò
|ps ≠ pp| (ps≠pp)

|ps≠pp| , xvp Ø 0
kv |xvp|

Ò
|pt ≠ pp| (pt≠pp)

|pt≠pp| , xvp < 0
(4.9)

Qr =

Y
]

[
kvxvr


|pr ≠ pt| (pr≠pt)

|pr≠pt| , xvr Ø 0
kv |xvr|


|pr ≠ ps| (pr≠ps)

|pr≠ps| , xvr < 0
(4.10)

where xvp and xvr are the valve openings, ps is the supply pressure, and pt is the
tank pressure. It is assumed that the valve coe�cient, kv, is constant. The state
vector and new input vector are expressed in Equation (4.11) where the subscript ’v’
refers to valve openings as inputs.

xv =
Ë
ẋp pp pr

È
T

uv =
Ë
xvp xvr

È
T

(4.11)

The non-linear state space model is expressed in Equation (4.12) for positive and
negative valve openings, i.e. fv+(xv, uv) and fv≠(xv, uv), respectively.

fv+(xv, uv) =

S

WWU

1
M

(pp Ap ≠ pr Ar ≠ Fl)
—(pú

p)
Vp(xú

p)(kvxvp

Ò
|ps ≠ pp| (ps≠pp)

|ps≠pp| ≠ Ap ẋp)
—(pú

r)
Vr(xú

p)(Ar ẋp ≠ kvxvr


|pr ≠ pt| (pr≠pt)

|pr≠pt| )

T

XXV

fv≠(xv, uv) =

S

WWU

1
M

(pp Ap ≠ pr Ar ≠ Fl)
—(pú

p)
Vp(xú

p)(kv |xvp|
Ò

|pt ≠ pp| (pt≠pp)
|pt≠pp| ≠ Ap ẋp)

—(pú
r)

Vr(xú
p)(Ar ẋp ≠ kv |xvr|


|pr ≠ ps| (pr≠ps)

|pr≠ps| )

T

XXV (4.12)

The same approach as in Equations (4.5) and (4.6) is used to derive the linear state
space model. It should be noted that the supply and tank pressures are assumed
constant. The state equation is shown in Equation (4.13).
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The linearisation coe�cients, k, change depending on whether the orifice is connected
to supply or tank as shown from Equations (4.14) to (4.17), for p

ú
p < ps and p

ú
r < ps.

kQp,xvp =

Y
]

[
kvp

Ò
ps ≠ pú

p for (xv Ø 0)

kvp

Ò
|pt ≠ pú

p| for (xv < 0)
(4.14)

kQr,xvr =
I

kvr

Ô
pú

r ≠ pt for (xv Ø 0)
kvr


|pú

r ≠ ps| for (xv < 0)
(4.15)

kQp,pp =

Y
_]

_[

≠ x
ú
vpkvp

2
Ô

ps≠pú
p

for (xv Ø 0)
x

ú
vpkvp

2
Ô

|pt≠pú
p|

for (xv < 0)
(4.16)

kQr,pr =

Y
]

[

x
ú
vrkvr

2Ô
pú

r≠pt
for (xv Ø 0)

≠ x
ú
vrkvr

2
Ô

|pú
r≠ps|

for (xv < 0) (4.17)

Output equations for the four combinations with flows as outputs are expressed
in Equation (4.18). The remaining matrices with pressures, position, velocity, and
acceleration as outputs are not shown.

yQp,Pp =
C
Ap 0 0
0 1 0

D

xv yQp,Pr =
C
Ap 0 0
0 0 1

D

xv

yQr,Pp =
C
Ar 0 0
0 1 0

D

xv yQr,Pr =
C
Ar 0 0
0 0 1

D

xv (4.18)

The state space model with flows as outputs are found in steady state according to
Equation 4.18. The compression flow is thereby neglected.

The transfer function matrices, Gv, for each output matrix, C, is found by Equation
(4.8). It should be noted that the state model described in this section is used to
find transfer functions for all control combinations in Table 3.2 with valve openings
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as inputs. The linear model block diagram for valves as inputs is shown in Figure
4.2.

�� �

��

��

��

��

Figure 4.2: Linear model diagram for the model with valve openings as inputs.

4.3 Extended Model with Valve Openings as Inputs

To validate the analytic RGA analysis, a numerical comparison is made with an
extended state space model which is derived in this section. It includes the leakage
flow and viscous friction, and the piston position is included as a state.

The state vector and input vector are shown in Equation (4.19) where ’v’ in the
subscript ’v, e’ stands for valve as input and ’e’ stands for extended state space
model. The subscripts are used to distinguish between the three state space models.

xv,e =
Ë
xp ẋp pp pr

È
T

uv,e =
Ë
xvp xvr

È
T

(4.19)

The non-linear state space model is expressed in Equation (4.20) for positive and
negative valve openings, i.e. fv,e+(xv,e, uv,e) and fv,e≠(xv,e, uv,e), respectively.
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fv,e+(xv,e, uv,e) =

S

WWWWU

ẋp
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M

(pp Ap ≠ pr Ar ≠ B ẋp ≠ Fc sgn(ẋp) ≠ Fl)
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Ò
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T

XXXXV

fv,e≠(xv,e, uv,e) =

S
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ẋp
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T

XXXXV

(4.20)

The state equations are shown in Equation (4.21) where the Coulomb friction and
load force are seen as disturbances.

ẋv,e =

S

WWWU

0 1 0 0
0 ≠ B

M

Ap

M
≠Ar

M

kṗpxp kṗpẋp kṗppp kṗppr

kṗrxp kṗrẋp kṗrpp kṗrpr

T

XXXV

¸ ˚˙ ˝
Av,e

xv,e +

S

WWWU

0 0
0 0

kṗpxvp 0
0 kṗrxvr

T

XXXV

¸ ˚˙ ˝
Bv,e

uv,e (4.21)

The extended linear model block diagram is shown in Figure 4.3.
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Figure 4.3: Linear model diagram for the extended model.

The transfer function matrix, Gv,e, for each output matrix, C, is found by Equation
(4.8). The transfer function matrices for each state space model are used to find
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the cross couplings between the two inputs and two outputs using the Relative Gain
Array, RGA, which is described in Chapter 5.



Chapter 5

Relative Gain Array

For a general Multiple-Input Multiple-Output, MIMO, system, multiple outputs may
be controlled simultaneously using multiple inputs. System couplings occur in such
a system when one arbitrary input interacts with more than one output. The system
couplings are analysed with a relative gain array, RGA, analysis in this chapter. A
general MIMO system with two inputs, u(s), and two outputs, y(s), is shown in
Equations (5.1) and (5.2) where g(s) are entries in the transfer function matrix.

y1(s) = g11(s) u1(s) + g12(s) u2(s) (5.1)
y2(s) = g21(s) u1(s) + g22(s) u2(s) (5.2)

The cross couplings are illustrated in Figure 5.1 which shows the direct interaction
between each input and the two outputs.

�
�

� �

Figure 5.1: MIMO system coupling.
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If desired to control y1(s) using control input u1(s) two extreme cases can be stated,
one is open loop control where u2(s) = 0. This is shown in Equation (5.3) by setting
u2(s) = 0 in Equation (5.1).[Skogestad and Postlethwaite, 2005, p. 82-85]

u2(s) = 0 : y1(s) = g11(s) u1(s) (5.3)

The other extreme case is perfect closed loop control of the other loop, which implies
y2(s) = 0 for a regulator problem as the reference is zero. This yields Equation (5.4)
when applied in Equation (5.2).

y2(s) = 0 : g21(s) u1(s) + g22(s) u2(s) = 0 ∆ u2(s) = ≠g21(s)
g22(s) u1(s) (5.4)

which shows the interaction of the two control inputs. Inserting u2(s) into Equation
(5.1) yields Equation (5.5).

y1(s) =
3

g11(s) ≠ g21(s)
g22(s)g12(s)

4

¸ ˚˙ ˝
ĝ11(s)

u1(s) (5.5)

A relative gain can be defined between the two extreme cases which is shown in
Equation (5.6)[Skogestad and Postlethwaite, 2005, p. 84].

g11(s)
ĝ11(s) = g11(s)

g11(s) ≠ g21(s)
g22(s)g12(s)

= 1
1 ≠ g12(s) g21(s)

g11(s) g22(s)
= ⁄11(s) (5.6)

where ⁄11(s) is the RGA element. The RGA elements for a 2x2 transfer function
matrix are calculated in Equation (5.7) where Õ◊Õ denotes element-by-element mul-
tiplication[Skogestad and Postlethwaite, 2005, p. 82-83].

RGA(G(s)) = �(G(s)) �= G(s) ◊
1
G(s)≠1

2
T

(5.7)

�(G(s)) =
C
⁄11(s) ⁄12(s)
⁄21(s) ⁄22(s)

D

=
C

⁄11(s) 1 ≠ ⁄11(s)
1 ≠ ⁄11(s) ⁄11(s)

D

(5.8)

In Equation (5.8), for a 2x2 transfer function matrix, if ⁄11 = 1 the MIMO system
is perfectly decoupled and can be considered two SISO systems. An RGA element
of unit value means the magnitudes of g11(s) and ĝ11(s) are equal which can be
interpreted as g12(s) = 0, and thereby input u2(s) having no influence on y1(s) when
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y1(s) is controlled by u1(s). The same applies for y2(s) controlled by u2(s), where
g21(s) = 0 meaning the input u1(s) having no influence on y2(s). The proper input-
output SISO pairing would in this case be to control y1(s) with u1(s) and y2(s)
with u2(s). Figure 5.2 depicts the two possible input-output pairing possibilities, a
diagonal pairing or an o�-diagonal pairing.

'LDJRQDO�SDLULQJ 2II�GLDJRQDO�SDLULQJ

Figure 5.2: SISO systems for a 2x2 transfer function matrix.

In a SISO perspective, for a diagonal pairing, the transfer functions g12(s) and g21(s)
can be neglected as these have close to none or no influence on the outputs. For an
o�-diagonal pairing, the transfer functions g11(s) and g22(s) can be neglected. The
RGA analysis is consequently used to find the degree of coupling or even conclude
whether the MIMO system is decoupled and can be regarded as a combination of
SISO systems.

When calculating the RGA element, it is recommended to rearrange the transfer
function matrix G(s) as either Equation (5.9) or (5.10) to satisfy the following two
pairing rules [Skogestad and Postlethwaite, 2005, p. 85]:

1. "Prefer pairings such that the rearranged system, with the selected pairings
along the diagonal, has an RGA matrix close to identity at frequencies around
the closed-loop bandwidth."

2. "Avoid (if possible) pairing on negative steady state RGA elements."

C
y1(s)
y2(s)

D

=
C
g11(s) g12(s)
g21(s) g22(s)

D C
u1(s)
u2(s)

D

(5.9)
C
y2(s)
y1(s)

D

=
C
g21(s) g22(s)
g11(s) g12(s)

D C
u1(s)
u2(s)

D

(5.10)

Pairing rule 1 recommends that if G(s) is arranged as Equation (5.9), then
|g12(jÊb) g21(jÊb)| < |g11(jÊb) g22(jÊb)|, which results in an RGA matrix close to
identity at the closed-loop bandwidth, Êb. The relation between the transfer func-
tions and the RGA matrix is seen in Equations (5.6) to (5.8). Pairing rule 2 rec-
ommends that if G(s) is arranged as Equation (5.9), |g12(0) g21(0)| < |g11(0) g22(0)|,
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which results in positive steady state RGA elements, 0 Æ ⁄11(0) Æ 1. It should be
noted that the inequality signs between the transfer functions are opposite for the
arrangement in Equation (5.10).

A set of important properties of the RGA are listed below[Skogestad and Postleth-
waite, 2005, p. 88]:

• The rows and columns of the RGA matrix sum to 1

• The RGA elements are independent of the system input-output scaling

• The RGA element is equal to 1 if the transfer function matrix is upper or lower
triangular

It follows from the last property that RGA is a measure of two-way interaction[Skogestad
and Postlethwaite, 2005, p. 88-89]. That means the relation between g12(s) and
g11(s) and the relation between g21(s) and g22(s) are not analysed separately.

Range of the RGA Element

The values that the RGA element, ⁄11(s), can take are analysed to make it easier
to determine how heavy the cross couplings are for di�erent values of ⁄11(s). The
possible values of ⁄11(s) are found by analysing the relation between g12(s)g21(s)
and g11(s)g22(s). The RGA element, ⁄11, is plotted in Figure 5.3 as a function of
g12g21/g11g22 = gr to find the range of the RGA element.

Figure 5.3: ⁄11 as a function of the transfer function ratio.
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⁄11 ranges from ≠Œ to Œ but is limited to ≠6 and 6 in Figure 5.3. The cross cou-
plings are most significant at ⁄11 = 0.5 and ⁄11 = Œ which is where |g12(s) g21(s)| =
|g11(s) g22(s)|. If |g12(s) g21(s)| < |g11(s) g22(s)| and the pairings are arranged as
Equation (5.9), it follows that:

|g12(s) g21(s)| < |g11(s) g22(s)| … |g12(s) g21(s)|
|g11(s) g22(s)| < 1 … ≠1 < gr(s) < 1 (5.11)

Equation (5.11) shows that for |g12(s) g21(s)| < |g11(s) g22(s)| then gr(s) ranges from
≠1 and 1. It is seen in Figure 5.3 that ⁄11 varies from 0.5 to Œ in that range. When
gr(s) < ≠1 or gr(s) > 1 then |g12(s) g21(s)| > |g11(s) g22(s)| and ⁄11 varies from
≠Œ to 0.5. As seen in Figure 5.3, ⁄11 is strictly non-linear which makes it harder
to determine the degree of coupling for di�erent values of ⁄11. As an example, the
change in coupling is the same for ⁄11 = 0.5 to ⁄11 = 1 and for ⁄11 = 1 to ⁄11 = Œ.
A certain change in ⁄11 between 0.5 and 1 will thereby have a greater e�ect on the
coupling than the same change when ⁄11 > 1. In the following section, the limitations
of the RGA element is analysed.

RGA Limitations

A limitation of the RGA analysis occurs for RGA elements having a real and imag-
inary part. To accommodate the imaginary part which arises from substituting
s by jÊ, the absolute value of the RGA element can be computed. However,
the absolute value of the RGA element can result in misinterpretation of the sys-
tem couplings as shown in Figure 5.4. The gray domain shows values satisfying
|g12(s) g21(s)| < |g11(s) g22(s)| and for ⁄11’s outside this domain, the diagonal and
o�-diagonal elements of the transfer function matrix should be swapped, i.e. either
Equation (5.9) or Equation (5.10).
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Figure 5.4: The value and absolute value of the RGA element. The grey domain shows values

satisfying: |g12(s) g21(s)| < |g11(s) g22(s)|.

The contours of Figure 5.4 show the value, left plot, and the absolute value, right
plot, of the diagonal RGA element as a function of the real part of g12 g21 and g11 g22
with no imaginary part. For RGA elements of ≠1, the corresponding absolute value
of 1 can be misinterpreted as perfectly decoupled even though it is coupled and for
RGA elements of ≠0.5, the corresponding absolute value of 0.5 can be misinterpreted
as heavily coupled. This happens if the sign of g12 g21 and g11 g22 are equal which
is in the first and third quadrant of the right plot in Figure 5.4. It is di�cult to
determine the sign of the transfer functions as the change in phase as frequency
increases can change the sign of the real and imaginary part of ⁄11. Furthermore,
the sign convention when modelling the physical system may change the sign of the
transfer functions. The absolute function is not reversible which makes it hard to
determine the coupling by looking at |⁄11|.

In conclusion, if the RGA element contains no imaginary part, it is not recommended
to compute the absolute value. If the RGA element contains an imaginary part,
calculating the absolute value is a possibility, but it can be misleading as the sign of
⁄11 cannot be determined.
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5.1 Relative Gain Notation

The notation used throughout the following sections will be defined in this section.
The output combinations where the states can be controlled highly independently
found in Chapter 3 are repeated in the table below.

pp X1 X3 X5 X7 X9

pr X2 X4 X6 X8 X10

Qp Qr xp ẋp ẍp

Table 5.1: Highly independent control combinations.

State space models were derived with flows and valve openings as inputs in Section
4.1 and Section 4.2, respectively. From Table 5.1 it is seen that transfer functions
for combinations 5 ≠ 10 can be found for both flows and valve openings as inputs,
whereas transfer functions for combinations 1 ≠ 4 are found for valve openings as
inputs.

The relations between transfer functions with xvp as input and five of the outputs
from Table 5.1 are shown in Equation (5.12). The same relations are valid for xvr,
Qp, and Qr as inputs instead of xvp.

xp(s)
xvp(s) = gxpxvp(s)

ẋp(s)
xvp(s) = gẋpxvp(s) = gxpxvp(s) s

ẍp(s)
xvp(s) = gẍpxvp(s) = gxpxvp(s) s

2

Qp(s)
xvp(s) = gQpxvp(s) = gxpxvp(s) Ap s

Qr(s)
xvp(s) = gQrxvp(s) = gxpxvp(s) Ar s (5.12)

In Equation (5.12) the transfer function gxpxvp(s) is marked with red to show how it
is related to the other transfer functions, where it is seen that they are closely related.
The transfer function matrix where u1 = xvp, u2 = xvr, y1 = pp, and y2 = ẋp is found
using Equation (4.8) and the structure is shown in Equation (5.13).
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C
pp(s)
ẋp(s)

D

=
C
gppxvp(s) gppxvr (s)
gẋpxvp(s) gẋpxvr (s)

D C
xvp(s)
xvr(s)

D

=
C

gppxvp(s) gppxvr (s)
s gxpxvp(s) s gxpxvr (s)

D C
xvp(s)
xvr(s)

D

(5.13)

The relative gain for y1 = pp and y2 = ẋp, ⁄ppẋp , is found using Equation (5.6) and
expressed in Equation (5.14). The relative gain is a function of frequency, however,
(s) is omitted for simplicity.

⁄ppẋp = 1
1 ≠ gppQr (s) gẋpQp (s)

gppQp (s) gẋpQr (s)

= 1
1 ≠ gppQr (s) gxpQp (s)

gppQp (s) gxpQr (s)
s

s

= ⁄ppxp (5.14)

It is seen in Equation (5.14) that s is present in both the numerator and denominator
and cancels out. That means the relative gain for pp and ẋp as outputs is equal to
the relative gain for pp and xp as outputs. The same is valid for acceleration as
output where ’s2’ cancels out, and for each of the flows as output where either ’Ap s’
or ’Ar s’ cancel out due to the relations in Equation (5.12).

That means the relative gains are equal when piston side pressure is the first output
and either piston position, velocity, acceleration or one of the flows is the other output
when valve openings are inputs. The same is valid for rod side pressure instead of
piston side pressure. The same is also valid for flows as inputs. That gives four
di�erent relative gains; two for valve openings as inputs and two for flows as inputs.

Valve openings as inputs:

• Piston side pressure and one of the other outputs

• Rod side pressure and one of the other outputs

Flows as inputs:

• Piston side pressure and one of the other outputs

• Rod side pressure and one of the other outputs

The relative gains are further divided into diagonal and o�-diagonal pairing. The
relative gains are denoted such that the superscript refers to either the diagonal, i.e.
⁄

d, or o�-diagonal, i.e. ⁄
o. That means whether the pairing is on the diagonal or

the o�-diagonal of the transfer function matrix. The transfer function matrices are
always paired such that the first output is either pp or pr and the second output is
either xp, ẋp, ẍp, Qp, or Qr. An example is given below:
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C
pp(s)
xp(s)

D

=
C
gpp,xvp(s) gpp,xvr (s)
gxp,xvp(s) gxp,xvr (s)

D C
xvp(s)
xvr(s)

D

(5.15)

Where the diagonal pairing is pp/xvp and xp/xvr. The RGA analysis is based on the
diagonal pairing of the transfer function matrix, and y1 and y2 are swapped if desired
to pair the o�-diagonal.

The subscript of the relative gains refers to the subscript of the pressure and the
inputs, where p is piston side pressure, r is the rod side pressure, f is for flows as
inputs, and v is for valve openings as inputs. An example of piston side pressure
and one of the other outputs where flows are inputs is ’p, f ’. The relative gains when
pairing the diagonal are shown in Table 5.2.

pp - ⁄
d

p,f
u1 = Qp

u2 = Qr pr - ⁄
d

r,f

pp ⁄
d
p,vu1 = xvp

u2 = xvr pr ⁄
d
r,v

y1

y2
Qp Qr xp ẋp ẍp

Table 5.2: Relative gains when pairing the diagonal.

The relative gains when pairing the o�-diagonal are shown in Table 5.3.

pp - ⁄
o

p,f
u1 = Qp

u2 = Qr pr - ⁄
o

r,f

pp ⁄
o
p,vu1 = xvp

u2 = xvr pr ⁄
o
r,v

y2

y1
Qp Qr xp ẋp ẍp

Table 5.3: Relative gains when pairing the o�-diagonal.

In Tables 5.2 and 5.3, the first two rows are when flows are inputs and the following
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two rows are when valve openings are inputs. Rows marked with grey are for piston
side pressure as output and the remaining rows are for rod side pressure as output.
Columns refer to the other output with the corresponding output written in the
bottom row. It should be noted that for diagonal pairing in Table 5.2 the first
output is one of the pressures, and for o�-diagonal pairing in Table 5.3 the second
output is one of the pressures, i.e. the outputs are swapped.

The subscript, ’e’, is further added when using the extended state space model which
was derived in Section 4.3. An example is ⁄

d
r,v,e where the first output is rod side

pressure and the inputs are valve openings.

The cross couplings will be analysed for the systems with flows as inputs and with
valve openings as inputs in Section 5.2 and Section 5.3, respectively.
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5.2 Couplings with Flows as Inputs

The cross couplings with flows as inputs are analysed in this section. The analysis is
based on piston side pressure as one of the outputs throughout the section and the
conclusions for the rod side pressure as one of the outputs is written by the end of
the section. The system inputs are piston and rod side flows, Qp and Qr.

The relative gain, ⁄
d

p,f
, is found by the approach described in Equation (5.6) and

expressed in Equation (5.16).

⁄
d

p,f = Vp Vr M s
2 + A

2
r —r Vp

Vp Vr M s2 + A2
r —r Vp + A2

p —p Vr

(5.16)

The expression for ⁄
d

p,f
is derived in Appendix B.1. The relative gain, ⁄

o

p,f
, when

pairing the o�-diagonal is expressed in Equation (5.17), where it should be noted
that ⁄

o

p,f
= 1 ≠ ⁄

d

p,f
.

⁄
o

p,f =
A

2
p —p Vr

Vp Vr M s2 + A2
r —r Vp + A2

p —p Vr

(5.17)

The relative gain, ⁄
d

p,f
, from Equation (5.16) is rewritten to the inequality expressed

in Equation (5.18), which should be satisfied to get the gain as close to 1 as possible,
since ⁄

d

p,f
= 1 for a perfectly decoupled system.

|A2
p —p Vr| π |Vp Vr M s

2 + A
2
r —r Vp|

Ì

|A2
p —p| π

----Vp M s
2 + A

2
r —r

Vp

Vr

---- (5.18)

The volumes, Vp = xp Ap and Vr = (L≠xp) Ar, are substituted into Equation (5.18),
where the dead volumes, Vp0 and Vr0, are neglected for simplicity. These are included
in the numerical RGA analysis in Section 5.5 to check whether they have an impact
on the couplings.
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⁄
d

p,f ¥ 1 : |A2
p —p| π

-----xp Ap M s
2 + A

2
r —r

xp Ap

(L ≠ xp) Ar

-----

Ì

1 π
-----
xp M

Ap —p

s
2 + —r

—p

Ar

Ap

xp

L ≠ xp

----- (5.19)

The inequality is opposite if the o�-diagonal is paired instead as shown in Equation
(5.20).

⁄
o

p,f ¥ 1 : |A2
p —p| ∫

-----xp Ap M s
2 + A

2
r —r

xp Ap

(L ≠ xp) Ar

-----

Ì

1 ∫
-----
xp M

Ap —p

s
2 + —r

—p

Ar

Ap

xp

L ≠ xp

----- (5.20)

The relative gains in Equations (5.19) and (5.20) are evaluated in relevant frequencies
throughout the section.

5.2.1 Low Frequency Range

The relative gains are evaluated in the low frequency range by letting s æ 0. The
simplified expressions are shown in Equations (5.21) and (5.22), where “ = —r/—p,
– = Ar/Ap, and ‘ = xp/(L ≠ xp).

⁄
d

p,f ¥ 1 : 1 π
-----
—r

—p

Ar

Ap

xp

L ≠ xp

----- = |“ – ‘| (5.21)

⁄
o

p,f ¥ 1 : 1 ∫
-----
—r

—p

Ar

Ap

xp

L ≠ xp

----- = |“ – ‘| (5.22)

One parameter at a time is varied and the e�ect on the relative gain is studied. As
xp æ L, ‘ increases which means the right hand side, RHS, of Equations (5.21) and
(5.22) increases. If instead xp æ 0, ‘ decreases and the RHS decreases. The bulk
modulus is related to pressure: as pp increases, —p increases, and as pr increases,



5.2. Couplings with Flows as Inputs 41

—r increases. If the bulk modulus ratio, “, increases, the RHS of Equations (5.21)
and (5.22) increases. If instead “ decreases, the RHS decreases. Finally, the area
relation, –, is varied. As – increases, the RHS increases and as – decreases, the RHS
decreases.

Based on the above observations for low frequencies, couplings are less significant for
the diagonal pairing when pr > pp, xp æ L, and Ar/Ap = 1, and couplings are less
significant for the o�-diagonal pairing when pr < pp, xp æ 0, and Ar/Ap is as low as
possible. It is, however, not obvious from Equations (5.21) and (5.22) which impact
the pressures have on the couplings compared to piston position and area ratio. How
each of the variables of Equation (5.21) a�ects the couplings compared to each other
is analysed by choosing ranges of values for each variable.

It is decided to set a limit on the e�ective bulk modulus to 50 [%] of the oil bulk
modulus to keep a certain oil sti�ness. The e�ective bulk modulus is limited to 7000
[bar] for an oil bulk modulus of 14000 [bar] which is 50 [%][Pedersen et al., 2010, p.
148]. The range of the bulk modulus ratio, “, is shown in Equation (5.23).

0.5 Æ “ Æ 2 (5.23)

The area ratio, –, is varied from 0.4 to 1 such that the analysis is valid for both
di�erential and symmetric cylinders. The range is based on data from a hydraulic
cylinder supplier where the area ratios range from 0.5 to 0.88[TAON, 2020]. The
range of the area ratio is shown in Equation (5.24).

0.4 Æ – Æ 1 (5.24)

The piston position is varied from 5 [%] to 95 [%] of full stroke length where the range
of the ratio, ‘, is shown in Equation (5.25). That corresponds to a dead volume of 5
[%] in each end of the cylinder.

0.05 Æ ‘ Æ 19 (5.25)

Two contour plots are shown in Figure 5.5 where the bulk modulus ratio, “, is varied
on the x-axis and the piston position, xp, is varied from 5 [%] to 95 [%] of stroke
length on the y-axis. The contour levels show the value of the RHS of Equations
(5.21) and (5.22). The left plot is for – = 0.4 and the right plot is for – = 1, which
are the chosen lower and upper limits for the area ratio.
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Figure 5.5: The contour lines are the values of the RHS of Equations (5.21) and (5.22). At the

red line the RHS equals 1.

Figure 5.5 is used to determine for which combinations of xp, “, and – that will
result in RHS of Equations (5.21) and (5.22) significantly larger or less than 1.
Equation (5.21) is satisfied for large values of the contour levels above the red line
and the inputs and outputs must be parred through the diagonal. Equation (5.22) is
satisfied for small values of the contour levels below the red line and the inputs and
outputs must be parred through the o�-diagonal. The higher or lower the values of
the contour levels are compared to 1, the less the cross couplings.

A factor of minimum 4 between the RHS and LHS of Equations (5.21) and (5.22)
is arbitrarily chosen to keep the cross couplings low. A factor of 4 corresponds
to ⁄ = 0.8 which is deemed close enough to 1 for the cross couplings to be less
significant. This suggests a diagonal pairing for contour values greater than 4 and an
o�-diagonal pairing for values below 0.25. This factor is used throughout the section
to determine when each pairing should be used. For o�-diagonal pairing, the piston
position should be kept below approximately 30 [%] of the cylinder stroke length
when – = 0.4 and as – increases to 1, the piston position should be kept below
approximately 15 [%] of the cylinder stroke length. For diagonal pairing, the piston
position should be kept at 95 [%] of the cylinder stroke length when – = 0.4 and as
– increases to 1, the piston position should be kept above approximately 90 [%] of
the cylinder stroke length.

Figure 5.5 shows that coupling at low frequencies is more dependent on xp than “

and –. By changing xp from 5[%] to 95[%], the parring of inputs and outputs must
change which is true for any combination of – and “. This is not true for changing –

or “ from minimum to maximum for any combination with xp. It is concluded that for
low frequencies the parring of inputs and outputs must change for any combination
of – and “ when varying xp from 5[%] to 95[%].
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5.2.2 Transition Frequency Range

The low frequency range has now been analysed and the transition region is studied in
this section. The frequency dependent inequalities are repeated in Equations (5.26)
and (5.27) where s is substituted by jÊ.

⁄
d

p,f ¥ 1 : 1 π
-----≠

xp M

Ap —p

Ê
2 + —r

—p

Ar

Ap

xp

(L ≠ xp)

----- (5.26)

⁄
o

p,f ¥ 1 : 1 ∫
-----≠

xp M

Ap —p

Ê
2 + —r

—p

Ar

Ap

xp

(L ≠ xp)

----- (5.27)

As the frequency, Ê, increases from 0, the absolute value of the RHS of Equations
(5.26) and (5.27) decrease until a certain frequency, Êw, where the RHS equals 0 as
seen in Equation (5.28).

≠ xp M

Ap —p

Ê
2
w + —r

—p

Ar

Ap

xp

(L ≠ xp) = 0 (5.28)

For the frequency, Êw, Equation (5.27) is satisfied and ⁄
o

p,f
= 1 which means the

system is fully decoupled when pairing the o�-diagonal. The frequency is expressed
in Equation (5.29).

Êw =
Û

—r

—p

Ar

Ap

xp

(L ≠ xp)
Ap —p

xp M
=

Û
Ar —r

M (L ≠ xp) (5.29)

The frequency, Êw, is compared to the natural frequency of the system to check
whether they are related. The natural frequency, Ên, is found by evaluating one of
the transfer functions.

gxpQp(s) = Ap —p Vr

s (M Vp Vr s2 + A2
p —p Vr + A2

r —r Vp) (5.30)

The transfer function, gxpQp(s), consists of an integrator and a second order system
from which the natural frequency is found and expressed in Equation (5.31). The
volumes are substituted and the derivation of all frequencies of interest can be found
in Appendix B.1.1.
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Ên =
Û

A2
p —p Vr + A2

r —r Vp

M Vp Vr

=
Û

Ap —p

M xp

+ Ê2
w (5.31)

It is then possible to express the frequency Êw as a function of Ên as shown in
Equation (5.32).

Êw =
Û

Ê2
n ≠ Ap —p

M xp

(5.32)

It is seen from Equation (5.32) that the frequency Êw depends on Ên. As —r and Ar

increase, both frequencies increase, and as —p and Ap increase, Ên increases whereas
Êw is una�ected.

It is desired to work in the frequency range up to the natural frequency and from
Equation (5.32) it is seen that Ên is larger than Êw. It is concluded that ⁄

o

p,f
= 1 at

the frequency Êw which is lower than the natural frequency.

5.2.3 Coupled Frequencies and High Frequencies

The frequencies, Êc and Êp, at which the cross couplings are most significant is when
⁄

d

p,f
= 0.5 and ⁄

d

p,f
æ Œ. Êc is found by setting ⁄

d

p,f
equal to a constant K which

is substituted by 0.5 afterwards. It should be noted that ⁄
d

p,f
and ⁄

o

p,f
cross, i.e.

⁄
d

p,f
= ⁄

o

p,f
= 0.5, at the frequency Êc.

⁄
d

p,f = ≠Vp Vr M Ê
2
c + A

2
r —r Vp

≠Vp Vr M Ê2
c + A2

r —r Vp + A2
p —p Vr

= K

Ì

Êc =
Û

K A2
p —p Vr + (K ≠ 1) A2

r —r Vp

(K ≠ 1) Vp Vr M
(5.33)

The constant K is then substituted by 0.5. It should be noted that the frequency
has to be real and positive, and for that reason, only positive solutions are shown
in Equation (5.34). For the frequency to be real, what is inside the square root in
Equation (5.34) has to be positive. The derivation can be found in Appendix B.1.1.

Êc =
Û

0.5 A2
p —p Vr ≠ 0.5 A2

r —r Vp

≠0.5 Vp Vr M
=

Û
Ar —r

M (L ≠ xp) ≠ Ap —p

M xp

(5.34)
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All parameters in Equation (5.34) are positive. There is a positive and a negative
fraction in Equation (5.34), which means Êc is only real if the following is satisfied:

Ap —p

xp M
Æ Ar —r

(L ≠ xp) M
∆ 1 Æ –“‘ (5.35)

To find the frequency Êp at which ⁄
d

p,f
peaks, i.e. ⁄

d

p,f
æ Œ, the relative gain is

reformulated in Equation (5.36) and s is substituted by j Êp.

⁄
d

p,f = 1
1 + A2

p —p Vr

Vp Vr M s2+A2
r —r Vp

= 1
1 + A2

p —p Vr

≠Vp Vr M Ê2
p+A2

r —r Vp

(5.36)

It is seen that the denominator in Equation (5.36) should equal 0 for ⁄
d

p,f
æ Œ which

happens when:

A
2
p —p Vr

≠Vp Vr M Ê2
p + A2

r —r Vp

= ≠1 (5.37)

The positive frequency, Êp, at which that happens is found in Equation (5.38).

Êp =
Û

A2
p —p Vr + A2

r —r Vp

Vp Vr M
=

Û
Ap —p

M xp

+ Ar —r

M (L ≠ xp) = Ên (5.38)

It is seen from Equation (5.38) that the frequency Êp is equal to the frequency Ên.
The same is valid for the peak of ⁄

o

p,f
which is derived in Equation (B.11).

It is concluded that heavy cross couplings occur at the frequency Êc expressed in
Equation (5.34) if Equation (5.35) is satisfied. Furthermore, heavy cross couplings
occur at the natural frequency, Ên, where ⁄

d

p,f
æ Œ . Finally, it should be noted that

⁄
d

p,f
æ 1 and ⁄

o

p,f
æ 0 as s æ Œ, i.e. when the frequency approaches infinity.

5.2.4 Conclusion for Piston Side Pressure

The cross couplings when the piston side pressure is one of the outputs were anal-
ysed by evaluating the relative gain, ⁄

d

p,f
at several frequencies. It is found that all

frequencies are a combination of the two terms, T1 and T2, as shown in Equation
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(5.39). It should be noted that Êc is only defined for T2 Æ T1 which was stated in
Equation (5.35).

T1 = Ar —r

M (L ≠ xp) , T2 = Ap —p

M xp

Êc =


T1 ≠ T2 for T2 Æ T1 ∆ 1 Æ –“‘

Êw =


T1

Êp =


T1 + T2 = Ên (5.39)

From Equation (5.39) it is seen that Êc < Êw < Êp. The known values of ⁄
d

p,f
and

⁄
o

p,f
are shown in Figure 5.6 for each of the frequencies starting from the lowest

frequency to the left. The distances between the points in Figure 5.6 are arbitrary.
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Figure 5.6: Values of ⁄d
p,f and ⁄o

p,f for each frequency.

The above analyses, summed in Figure 5.6, showed that ⁄
o

p,f
= 1 at a frequency, Êw,

i.e. there are no cross couplings when pairing the o�-diagonal. To keep the cross
couplings low for frequencies below Êw when pairing the o�-diagonal, the piston
position should be kept below approximately 30 [%] of the cylinder stroke length
when – = 0.4 and as – increases to 1, the piston position should be kept below
approximately 15 [%] of the cylinder stroke length. This is based on minimum a
factor of 4 in Figure 5.5. These piston positions result in |–“‘| < 1 which means ⁄

d

p,f

and ⁄
o

p,f
do not cross at Êc due to the inequality stated in Equation (5.35). Instead,

the cross couplings become significant at frequency Êp. In order to avoid working
at the frequency Êp, SISO controllers should be designed such that the closed loop
bandwidth is below Êp.

It is concluded, that to keep the cross couplings low when pairing the o�-diagonal,
the piston working range is very limited. Furthermore, controllers should be designed
such that the bandwidth limits the frequency range to avoid cross couplings. Instead,
it is suggested to design a decoupling pre-compensator or MIMO controllers to be
able to use the full piston working range and to be able to design a closed loop system
with a higher bandwidth.
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5.2.5 Conclusion for Rod Side Pressure

The relative gain, ⁄
d

r,f
, when the rod side pressure is one of the outputs is expressed

in Equation (5.40) for diagonal pairing.

⁄
d

r,f = A
2
r —r Vp

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(5.40)

The relative gain, ⁄
o

r,f
, when pairing the o�-diagonal is expressed in Equation (5.41).

⁄
o

r,f =
Vp Vr M s

2 + A
2
p —p Vr

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(5.41)

The cross couplings when rod side pressure is one of the outputs are analysed at
several frequencies. All calculations can be found in Appendix B.2. It is found that
all frequencies again are a combination of the two terms, T1 and T2, as shown in
Equation (5.42). It should be noted that Êc is only defined for T1 Æ T2 which is
stated in Equation (B.27).

T1 = Ar —r

M (L ≠ xp) , T2 = Ap —p

M xp

Êc =


T2 ≠ T1 for T2 Ø T1 ∆ 1 Ø –“‘

Êw =


T2

Êp =


T2 + T1 = Ên (5.42)

From Equation (5.42) it is seen that Êc < Êw < Êp. The known values of ⁄
d

r,f
and

⁄
o

r,f
are shown in Figure 5.7 for each of the frequencies starting from the lowest

frequency to the left.
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Figure 5.7: Values of ⁄d
r,f and ⁄o

r,f for each frequency.
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The analyses showed that ⁄
d

r,f
= 1 at a frequency, Êw, i.e. there are no cross couplings

when pairing the diagonal. To keep the cross couplings low for frequencies below Êw

when pairing the diagonal, the piston position should be kept at 95 [%] of the cylinder
stroke length when – = 0.4 and as – increases to 1, the piston position should be kept
above approximately 90 [%] of the cylinder stroke length. This is based on minimum
a factor of 4 in Figure 5.5. These piston positions result in |–“‘| > 1 which means
⁄

d

r,f
and ⁄

o

r,f
do not cross at Êc due to the inequality stated in Equation (B.27).

However, the working range is very limited and for – = 0.4 the piston cannot move
without the cross couplings becoming significant.

It is concluded that to keep the cross couplings low when pairing the diagonal, the
piston working range is very limited. Instead, it is suggested to design a decoupling
pre-compensator or MIMO controllers to be able to use the full piston working range.
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5.3 Couplings with Valve Openings as Inputs

In this section, the couplings are analysed for all control combinations in Table 3.2
with valve openings as input. The analysis is initially based on the piston side
pressure. The system inputs are piston and rod side valve openings, xvp and xrp.

The RGA-element for the diagonal pairing is shown in Equation (5.43). The expres-
sion is derived in Appendix B.3.

⁄
d

p,v = ≠
!
—pkQp,pp ≠ Vps

" 1
—rMkQr ,pr s + MVrs

2 + —rAr
2
2

Ap
2
—p (—rkQr ,pr + Vrs) ≠

!
—pkQp,pp ≠ Vps

" 1
—rMkQr ,pr s + MVrs2 + —rAr

2
2

(5.43)

where ⁄
d
p,v = 1 ≠ ⁄

o
p,v. It should be noted that the absolute value is calculated since

the relative gains with valve openings as inputs contain an imaginary part when
evaluated at a frequency.

The coupling analysis is limited to the low and high frequency range since it was not
possible to analyse Equation (5.43) for intermediate frequencies due to the complexity
of the analytical expression of the relative gain.

5.3.1 Low Frequency Range

For low frequencies, the expression for the RGA element is rewritten as shown in
Equation (5.44) as s æ 0 and it should be noted that for low frequencies, ⁄

d
p,v = ⁄

d
r,v.

⁄
d

p,v = ≠
–

2
kQp,pp

kQr,pr ≠ –2 kQp,pp

(5.44)

where, for the diagonal pairing the inequality shown in Equation (5.45) must hold
true for

--⁄Qppp

-- ¥ 1.

---kQp,pp –
2
--- ∫ |kQr,pr | (5.45)

It should be noted that the analysis becomes independent of volumes and thereby
also piston position. This was not the case when analysing the coupling with flows
as inputs in the low frequency range. Furthermore, it is assumed that if one cylinder
chamber is connected to the pump, the other is connected to tank i.e. the sign of
the valve opening, xv, for each valve is equal which is the case in steady state. The
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linearisation coe�cients of the orifice equation are dependent on the flow direction
and the low frequency analysis is therefore divided into positive and negative flows.

Positive Flows

Inserting linearisation coe�cients from Equations (4.16) and (4.17) for positive flow
into Equation (5.45) yields Equation (5.46) which must hold true in the case of a
diagonal pairing.

---⁄d

p,v

--- ¥ 1 : 1 ∫ 1
–2

x
ú
vr

xú
vp

kvr

kvp


|ps≠pú

p|Ô
|pú

r≠pt|
(5.46)

Where the asterisk denotes linearisation points. From the steady state flow equations,
the valve ratio is defined as shown in Equation (5.47). The steady state equations
are used since the coupling at low frequencies is analysed.

Qr = Qp –

kvr xvr

Ò
|pr ≠ pt| = kvp xvp

Ò
|ps ≠ pp| –

Ì
xvr

xvp

= –
kvp

kvr

Ô
|ps≠pp|Ô
|pr≠pt|

(5.47)

Substituting Equation (5.47) into Equation (5.46) yields Equation (5.48).

---⁄d

p,v

--- ¥ 1 : 1 ∫ 1
–

---ps ≠ p
ú
p

---

|pú
r ≠ pt|

(5.48)

As seen in the inequality in Equation (5.48), for a diagonal pairing the RHS must
be strictly lower than 1. Furthermore, the analysis becomes independent of the
valve coe�cient. The RHS of Equation (5.48) is computed and shown as black
contour levels depending on pp, pr, and –. The black contours showing the couplings
are initially explained, followed by an explanation of the coloured contours showing
steady state requirements.
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Figure 5.8: Contour levels of the RHS of Equation (5.48).

The pressures have been limited between 10 [%] and 100 [%] of the supply pressure
as operating at pressures below 10 [%] of supply pressure reduces the oil sti�ness
significantly. For – = 0.4, it is seen that for high pp, the inequality in Equation
(5.48) is satisfied as the contours are strictly lower than 1 i.e. diagonal pairing is
less coupled than the o�-diagonal pairing when operating in this pressure range. If
the contours are strictly greater than 1 which is the case in the lower pressure range,
the cross couplings when pairing the o�-diagonal are less significant. For – = 1 the
domain in which the contours are strictly greater than 1 is more limited, however, the
domain for contours strictly lower than 1 becomes larger. This is due to the contours
rotating counterclockwise about the lower right corner as – is increased from 0.4 to
1. The operating range where the system can be regarded as decoupled is in general
very restricted, regardless of –.

Figure 5.8 is valid for steady state, thus Equation (5.49) must be satisfied where
frictional forces are neglected.

Fl = pp Ap ≠ pr Ar (5.49)

Defining the maximum load forces as Equation (5.50) by assuming the minimum
system pressure as 10 [%] of the supply pressure to maintain a certain oil sti�ness.

Fl,neg = 0.1 ps Ap ≠ ps Ar

Fl,pos = ps Ap ≠ 0.1 ps Ar (5.50)
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Where |Fl,pos| > |Fl,neg| when – < 1 as the piston side pressure force contributes a
larger pressure force than the rod side when the two chamber pressures are equal.
It should be noted that Fl,neg is negative according to the load force convention
presented in Chapter 3 as the rod side chamber becomes load carrying. This is shown
in Figure 5.9 where Fl,neg and Fl,pos are positive in the direction of the arrows.

!"!# $%,'()	!"!# $%,#+,	 	-.	-.

/012	31445678	3ℎ1:;<4

Figure 5.9: Load force definition.

This definition of the load force ensures at least one combination of the pressures pp

and pr which equals the load force. By varying the load force in the interval Fl,neg to
Fl,pos, the values of pp and pr for satisfying Equation (5.49) are shown by the colored
contours in Figure 5.8. The contours describe pr as a function of pp, –, Fl, and Ar

as shown in Equation (5.51).

pr = pp

1
–

≠ Fl

Ar

, Fl,neg Æ Fl Æ Fl,pos (5.51)

The load force contours are however independent of Ar as the load force is calculated
using Ar. The pressures pp and pr are constrained between the green contour where
Fl = Fl,neg which is tangent to the upper left corner of the figure and the blue contour
where Fl = Fl,pos which is tangent to the lower right corner hence the green and blue
contours are not visible. A load force contour shows the pressure combinations to
achieve steady state, for the given load force.

The restriction in pressure operating range from the RHS of Equation (5.48) previ-
ously mentioned, also restricts the system load force if steady state is to be reached.
This can be seen in Figure 5.8 where – = 0.4. For a diagonal pairing i.e. contours
below 0.25, the load force of the system is restricted to approximately Fl > 0.5 Fl,pos.
For an o�-diagonal pairing i.e. contours above 4, the load force should be 0.4 Fl,neg <

Fl < 0.75 Fl,pos to reach steady state for the decoupled operating conditions. For
– = 1 and a diagonal pairing, the load force is restricted as Fl > 0.25 Fl,neg. For an
o�-diagonal pairing, the load force should satisfy 0.2 Fl,neg < Fl < 0.5 Fl,pos.

The friction e�ects of the piston have not been shown in Figure 5.8. As a result of
friction, the maximum load force would become numerically smaller, and the contours
would be squeezed towards the yellow contour where Fl = 0.
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If the supply pressure is over-dimensioned compared to the load force then the pres-
sure working area is reduced as shown in Appendix B.3.1 and the above conclusions
about the pressure working area will change.

Negative Flows

Substituting the linearisation coe�cients for negative flow into Equation (5.45) yields
Equation (5.52) which must hold true for the case of a diagonal pairing.

---⁄d

p,v

--- ¥ 1 : 1 ∫ 1
–2

x
ú
vr

xú
vp

kvr

kvp


|pt≠pú

p|Ô
|pú

r≠ps|
(5.52)

As for the positive flow, a valve opening ratio is defined as shown in Equation (5.53).

Qr = Qp –

kvr xvr

Ò
|pr ≠ ps| = kvp xvp

Ò
|pt ≠ pp| –

Ì
xvr

xvp

= –
kvp

kvr

Ô
|pt≠pp|Ô
|pr≠ps|

(5.53)

Where, substituting Equation (5.53) into Equation (5.52) yields Equation (5.54).

---⁄d

p,v

--- ¥ 1 : 1 ∫ 1
–

---pt ≠ p
ú
p

---

|pú
r ≠ ps| (5.54)

Figure 5.10 is equivalent to Figure 5.8, the black contour levels are however shown
for the RHS of Equation (5.54).
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Figure 5.10: Contour plot showing the value of the right hand side, RHS, of Equation (5.54).

The load force contours are equivalent to the load force contours for the positive
flow. For – = 0.4, a diagonal pairing is not possible as the threshold contour value of
0.25 is outside the operating range. For an o�-diagonal pairing, only pr needs to be
in the higher pressure range, and steady state is only achievable for Fl < 0.75 Fl,pos.

For – = 1, the operating pressures should be kept low and the load force, 0.5 Fl,neg <

Fl < 0.1 Fl,pos for a diagonal pairing. For an o�-diagonal pairing, only pr should be
in the higher pressure range and the load force Fl < 0.25 Fl,pos.

As – is increased from 0.4 to 1 the contours rotate clockwise around the upper left
corner where the diagonal pairing range increases and the o�-diagonal range decreases
correspondingly.

In conclusion to the steady state analysis, the necessary operating pressures to avoid
cross couplings are very limited. Furthermore, if the system is dimensioned according
to Equation (5.50), due to the system couplings, steady state can not be reached for
all load forces if the decoupled operating conditions are to be maintained.

The conclusions for lower frequencies are summarised in Table 5.4.
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– Q p Fl

High pp Fl > 0.5 Fl,pos

>0
Low pp and pr 0.4 Fl,neg < Fl < 0.75 Fl,pos

Not Possible Not Possible
0.4

<0
High pr Fl < 0.75 Fl,pos

High pp Fl > 0.25 Fl,neg

>0
Low pp and pr 0.2 Fl,neg < Fl < 0.5 Fl,pos

Low pp and pr 0.5 Fl,neg < Fl < 0.1 Fl,pos

1

<0
High pr Fl < 0.25 Fl,pos

Table 5.4: Summarised conclusions for the low frequency range for valve openings as inputs. Grey

rows are diagonal restrictions and white rows are o�-diagonal restrictions.

The table should be read from left to right, i.e. initially choosing an area ratio, –,
followed by a flow direction, which leads to the restrictions for either diagonal or
o�-diagonal pairing. It should be noted that the table values are approximations
and the values are based on the definition of load force. The results would, therefore,
depend on how the supply pressure is dimensioned compared to the load force. If –

is between 0.4 and 1 then the restrictions on the pressures will be in between.

5.3.2 High Frequency Range

The high frequency range is investigated by taking the expression for ⁄
d
p,v shown in

Equation (5.43) and substituting s = j Ê. For the diagonal pairing the expression in
Equation (5.55) must hold true.



56 Chapter 5. Relative Gain Array

⁄
d

p,v = k1 + k2 Ê
2 + j(k3 Ê + k4 Ê

3)
k1 + k2 Ê2 + j(k3 Ê + k4 Ê3) + (k5 + j k6 Ê) ¥ 1 (5.55)

k1 = ≠A
2
r —p —r kQppp

k2 = —p kQppp Vr M ≠ —r kQrpr Vp M

k3 = A
2
r —r Vp ≠ —p —r kQppp kQrpr M)

k4 = ≠Vp Vr M

k5 = A
2
p —p —r kQr,pr

k6 = A
2
p —p Vr

As the frequency is cubed in the numerator and denominator in Equation (5.55),
the expression goes to 1 as the frequency goes towards infinity. This is shown in
Equation (5.56).

lim
ÊæŒ

⁄
d

p,v(Ê) = 1 (5.56)

lim
ÊæŒ

⁄
o

p,v(Ê) = 0

This suggests that for larger frequencies, the diagonal pairing is recommended.

The RGA-element for rod side pressure as one of the outputs is shown in Equation
(5.57).

⁄
d

r,v = ≠
A

2
r —r

!
—pkQp,pp ≠ Vps

"

(—rkQr ,pr + Vrs)
1
≠—pMkQp,pps + MVps2 + Ap

2
—p

2
≠ A2

r —r
!
—pkQp,pp ≠ Vps

"

(5.57)

The high frequency range is investigated for ⁄
d
r,v where the expression in Equation

(5.58) must hold true for a diagonal pairing.
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⁄
d

r,v = k1 + j k2 Ê

k1 + j k2 Ê + k3 + k4 Ê2 + j(k5 Ê + k6 Ê3) ¥ 1 (5.58)

k1 = A
2
r —p —r kQppp

k2 = A
2
r —r Vp

k3 = A
2
p —p —r kQr,pr

k4 = ≠—r M Vp kQr,pr + —p M Vr kQp,pp

k5 = ≠—p —r M kQppp kQr,pr + A
2
p —p Vr

k6 = ≠M Vp Vr

Letting the frequency go towards infinity, the denominator becomes larger as the
frequency is cubed. This is shown in Equation (5.59).

lim
ÊæŒ

⁄
d

r,v(Ê) = 0 (5.59)

lim
ÊæŒ

⁄
o

r,v(Ê) = 1

This suggests that for larger frequencies, the o�-diagonal pairing is recommended.

The known values of ⁄
d
p,v and ⁄

o
p,v are shown in Figure 5.11.
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Figure 5.11: Values of ⁄d
p,v and ⁄o

p,v for each frequency.

The known values of ⁄
d
r,v and ⁄

o
r,v are shown in Figure 5.12.
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Figure 5.12: Values of ⁄d
r,v and ⁄o

r,v for each frequency.
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5.4 Comparison of Flows and Valve Openings as Inputs

The relative gain when pairing one of the pressures with either piston position,
velocity, or acceleration was analysed in Section 5.2 with flows as inputs. The relative
gain when pairing one of the pressures with either flow, piston position, velocity,
or acceleration was analysed in Section 5.3 with valve openings as inputs. These
conclusions are compared in this section to clarify the di�erence when changing the
inputs. It should be noted that it was only possible to evaluate the relative gain with
valve openings as inputs for low and high frequencies, i.e. s æ 0 and s æ Œ.

Low Frequency Range

At low frequencies, ⁄
d
p,v does not depend on the piston position whereas ⁄

d

p,f
is highly

dependent on piston position. The relative gains are repeated in Equations (5.60)
and (5.61) where the relation between them is seen.

⁄
d

p,f = Vp Vr M s
2 + A

2
r —r Vp

Vp Vr M s2 + A2
r —r Vp + A2

p —p Vr

=
nxppp

dxppp

(5.60)

⁄
d

p,v =
C1 + nxppp s

C1 + C2 + dxppp s
(5.61)

where C1, C2 and C3 are independent of piston position. The numerator and denom-
inator for ⁄

d

p,f
recur in ⁄

d
p,v but are multiplied by s. That means there is a relation

between them but at low frequencies s æ 0 the terms become neglectable for ⁄
d
p,v

and that is the reason why ⁄
d
p,v is independent of piston position for low frequencies.

High Frequency Range

For high frequencies, the conclusions in Equations (5.62) and (5.63) were found for
flows and valve openings as inputs respectively.

lim
ÊæŒ

⁄
d

p,f (Ê) = 1 and lim
ÊæŒ

⁄
o

r,f (Ê) = 1 (5.62)

lim
ÊæŒ

⁄
d

p,v(Ê) = 1 and lim
ÊæŒ

⁄
o

r,v(Ê) = 1 (5.63)
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By comparing the conclusions in Equations (5.62) and (5.63), it is seen that the
relative gains are equal for high frequencies independent of whether flows or valve
openings are inputs.

lim
ÊæŒ

⁄
d

p,v(Ê) = lim
ÊæŒ

⁄
d

p,f (Ê) = 1

lim
ÊæŒ

⁄
o

r,v(Ê) = lim
ÊæŒ

⁄
o

r,f (Ê) = 1 (5.64)

5.4.1 Final Conclusions

It is concluded that there is a relation between the cross couplings when using flows
as inputs compared to valve openings as inputs. The conclusions from Section 5.2
when flows are inputs are listed below:

• Piston side pressure and either position, velocity or acceleration as outputs:
o�-diagonal pairing should be used. However, the piston working range and
frequency range are very limited so a decoupling pre-compensator or MIMO
controllers are suggested.

• Rod side pressure and either position, velocity or acceleration as outputs: diag-
onal pairing should be used. However, the piston working range and frequency
range are very limited so a decoupling pre-compensator or MIMO controllers
are suggested.

It is not possible to conclude which pairing to use when valve openings are inputs
since the couplings are only analysed at s æ 0 and s æ Œ. In the following section,
the numerical RGA is calculated to verify the conclusions made in this section and
to check which impact it has on the couplings to use valve openings as inputs for the
entire frequency range.

5.5 Numerical RGA

The coupling has now been analysed analytically for the state space models with
flows and valve openings as inputs. The RGA element is found numerically to verify
the analytic conclusions. The analytic conclusions were limited to certain frequencies
whereas a numerical RGA analysis will show the coupling for the full frequency range.
Finally, the assumptions of neglecting leakage, viscous friction and dead volumes are
analysed numerically with the extended state space model described in Section 4.3.
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For this thesis, the numerical RGA analysis is, however, only analysed for a single
di�erential cylinder using SMISMO. The cylinder analysed is the main cylinder seen
in Figure 7.1 in Chapter 7 which will be described later. For this numerical analysis,
the main cylinder is analysed separately from the bearing and the load cylinder
where only the mass of the main piston is included. The used parameters for the
main cylinder are validated in Section 7.3. Even though the leakage flow in the main
cylinder is non-existent, for this numerical comparison, the leakage coe�cient was
arbitrarily chosen to Cle = 1 · 10≠13 to see how the leakage flow changes the RGA
element.

In Figure 5.13, ⁄
d

p,f
and ⁄

o

p,f
are compared for xp = 5 [%] and xp = 95 [%] of stroke

length. Figure 5.14 is the corresponding zoomed view at the frequencies Êc, Êw, and
Ên.

Figure 5.13: RGA elements for flows as inputs at xp = 5 [%] and xp = 95 [%].

Figure 5.14: Zoomed view at the frequencies of interest.
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The figures confirm that the recommended pairing at low frequencies depends on xp

which was realised by Figure 5.5. The conclusions at the di�erent frequencies Êc, Êw,
Êp, and ÊŒ are confirmed. For xp = 5 [%] Equation (5.35) is not satisfied and ⁄

d

p,f

and ⁄
o

p,f
do not cross. For xp = 95 [%], Equation (5.35) is satisfied and ⁄

d

p,f
= ⁄

o

p,f

at wc, which is seen in Figure 5.14.

The relative gains are compared for the three state space models from Section 4
to analyse the e�ects of including the non-linear orifice equations, viscous friction,
leakage, and dead volumes on the couplings. ⁄

d

p,f
is with flows as inputs, ⁄

d
p,v with

valve openings as inputs, and ⁄
d
p,v,e is for the extended model with valve openings as

inputs. To compare ⁄
d

p,f
with ⁄

d
p,v and ⁄

d
p,v,e, the absolute values are computed, since

⁄
d
p,v and ⁄

d
p,v,e have an imaginary part. The comparison is shown in Figure 5.15.
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Figure 5.15: Numerical RGA element when pairing pp and xp for all three state space models.

It must be pointed out, that the absolute value of the RGA element can be misleading
as described in Section 5. The RGA element plot is valid for all input-output pairings
which include pp. The same is true for the RGA elements of the extended model.
|⁄| is shown in decibel to clarify the di�erence, where 0 [dB] equals a unity gain.
By comparing |⁄o

p,f
| and |⁄o

p,v|, the RGA elements are identical for all frequencies
except for low frequencies. This conclusion agrees with the analytic analysis. It was,
however, only possible to compare them analytically at Ê = 0 and Ê æ Œ in Section
5.4.

When comparing with |⁄o
p,v,e|, the RGA element at low frequencies is further changed

due to the included leakage flow. The included viscous friction changes the RGA el-
ement around the natural frequency Ên. The included dead volume does slightly
change the RGA element at frequencies from approximately 10≠2 to 102 [rad/s], but
it does not change any conclusions of recommended pairing. The RGA element is
mostly changed in the low frequency range when analysing the coupling with the
three di�erent state space models. The recommended pairing for all three models
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is, however, the same; at frequencies below the natural frequency, the o�-diagonal
pairing |⁄o

p| is closest to 1, while above, pairing through the diagonal, |⁄d
p| is closer to

1. It is further seen in Figure 5.15 that the coupling of |⁄v,e| at intermediate frequen-
cies between 10≠2 and 102 can be estimated fairly precise with the low frequency
coupling of |⁄f | from Equations (5.21) and (5.22).

The conclusions of the analytical RGA analysis when flows are inputs are useful for
determining the couplings when valve openings are inputs as well. Furthermore, the
analytic conclusions are valid even though the leakage flow, viscous friction, and dead
volumes were neglected.

The numerical analysis for pairing pr and xp is shown in Figure 5.16.
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Figure 5.16: Numerical RGA element when pairing pr and xp for all three state space models.

The numerical conclusions follow the analytical conclusions in the same way as the
pairing of pp and xp. The same tendency when comparing the three models is seen.

Lastly, it is numerically confirmed that at low frequencies, the RGA element with
valve openings as inputs is independent of piston position as seen in Equation (5.48)
as the low frequency coupling did not change when changing the piston position.
With flows as inputs it is heavily dependent on the piston position as seen in Equation
(5.21).



Chapter 6

Conclusion

The focus of this thesis is Investigation of Separate Meter-In Separate Meter-Out
Control Strategies. The first part contains a general analysis of hydraulic SMISMO
systems and the following questions have been answered during Part I:

1. What are the suitable pairings of control variables for a hydraulic cylinder using
SMISMO?

2. How do operating conditions and parameter variations influence the system
couplings?

To answer the first question, a general dynamic model of a hydraulic cylinder in
SMISMO configuration was derived followed by a control combination analysis. The
analysis considered several control combinations and these were found to be either
not suitable, suitable but dependent, or suitable and highly independent. To answer
the second question, the highly independent control combinations were analysed in
an RGA analysis to determine how operating conditions and parameter variations
a�ect the couplings of the system.

Suitable Pairings

The suitable pairings were found to be either dependent or highly independent.
Pairings which were not suitable were algebraically coupled where steady state was
not achievable. The dependent pairings were not algebraically connected, however,
the references could not be set independently. The dependent control variables could
be implemented in a cascade control structure with the reference for the inner loop
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depending on the error of the outer loop. In Table 6.1, the non-suitable pairings of
control variables are marked with red crosses, the dependent pairings with yellow
checkmarks, and the highly independent pairings with green checkmarks.

Qp ◊

Qr ◊ ◊

xp X X ◊

ẋp ◊ ◊ X ◊

ẍp X X X X ◊

pp X X X X X ◊

pr X X X X X ◊ ◊

Fp X X X X ◊ ◊ ◊ ◊

Slave X X X X X X X X ◊

Qp Qr xp ẋp ẍp pp pr Fp Slave

Table 6.1: Not suitable, dependent, and highly independent control combinations.

The highly independent variables are not algebraically connected and the references
can be set independently of each other, however, limits exist. The highly indepen-
dent control combinations are evaluated for four cases, i.e. for positive and negative
load forces along with positive and negative velocities. All highly independent com-
binations contain the pressure, where the pressure must be controlled in the non-load
carrying chamber.

System Couplings

Based on Table 6.1, only the system couplings for highly independent control com-
binations were investigated. An analytic RGA analysis was conducted to generalise
the coupling analysis. The leakage flow, viscous friction, and dead volumes were
neglected to simplify the analytic expressions of the couplings. The simplifications
made for the analytical analysis were numerically verified where the leakage flow, vis-
cous friction, and dead volumes were included. It was found that similarities occurred
for intermediate frequencies, the natural frequency, and higher frequency. The low
frequency couplings did, however, vary between the numerical and analytic analysis
as the included leakage flow changed the low frequency coupling. The analytic ex-
pression of the low frequency coupling, when analysed with a state space model with
flows as inputs, did not change when the frequency increased from low frequencies
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up to and including intermediate frequencies, which is below the natural frequency.
At the intermediate frequencies, the couplings of the numerical and analytic model
were similar. The couplings at intermediate frequencies can thereby, with low error,
be found from the low-frequency analytic equation containing the piston position,
bulk modulus, and piston area ratio. The analytic analysis further showed that the
couplings at intermediate frequencies were mostly dependent on the piston position.

Both the analytic and numerical coupling analysis showed significant couplings at
the natural frequency. At higher frequencies, when controlling the piston or rod side
pressure along with either position, velocity, acceleration or flow and the frequency
Ê æ Œ, the couplings are minimal and independent of operating conditions and
parameters.
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Chapter 7

Dynamic Model

This chapter is the beginning of Part II. In Part II the following question will be
answered: How can controllers be designed for the system to reduce reference tracking
error?

In this chapter, the experimental setup and simulation model is presented. The ex-
perimental setup consists of two hydraulic cylinders which are connected to a bearing
allowing rotational movement around its centre point by translational movement of
the cylinder pistons. The setup is normally used for pitch control of a wind turbine
blade, however, as one of the cylinders is controlled by SMISMO valves, the setup
is used in this thesis. The cylinder pistons are mechanically linked as seen in Figure
7.1 and assumed rigid.

System Description 1
1.1 Test-setup

The test setup tries to replicate a pitch system used in wind turbines in the 2.3 to 3.6 MW
range for the purpose testing different types of control on the pitch cylinder. To emulate
the torque that the wing normally produces on the pitch bearing, a secondary cylinder
is mounted on the bottom of the bearing and will be denoted as the load side cylinder
throughout this report. To enable the ability to test pitch control, the torque that the
load cylinder produces, has to emulate the torque exerted on the turbine blade closely.
This torque is rarely constant due to change in wind speed, pitch angle, and turbulence
changing all the time. Therefore the goal of this project is to make a disturbance rejecting
and precise force control for implementation on the load side. On figure 1.1 the physical
test setup is shown from both below and above, respectively showing the load and pitch
cylinders.

Figure 1.1: Test setup seen from below and above.

For the two hydraulic cylinders used in the setup a schematic can be seen in figure 1.2.

Page 1 of 48

Seen from above Seen from below

Bearing

Main cylinder

Load cylinder

Figure 7.1: Mechanical diagram of the test setup [Hoberg et al., 2019].

A simple diagram of the dynamic model is shown in Figure 7.2 where the inputs are
valve openings: xvmp, xvmr, and xvl, and the output is piston position of the main
cylinder, xm. The subscript ’m’ refers to the main cylinder and the subscript ’l’
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refers to the load cylinder.

+\GUDXOLF�PRGHO
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Figure 7.2: Dynamic model diagram.

The hydraulic models are derived in the next section.

7.1 Hydraulic Model

The hydraulic diagram is shown in Figure 7.3 without the mechanical connection
between the cylinders. The directions of the valve openings are defined as in which
direction the valves are moved, e.g. when xvmp > 0 the piston side chamber is
connected to the pump and when xvmp < 0 the piston side chamber is connected to
the tank.
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Figure 7.3: Hydraulic diagram of the test setup.
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As seen in Figure 7.3, the main cylinder has a SMISMO valve configuration and
is used to test the suitable control combinations previously analysed. The load
cylinder is used for controlling the force acting on the main cylinder. The two
valves controlling the main cylinder are 4/3 direct drive valves manufactured by
Moog[Moog, 2020]. The valve controlling the load cylinder is a 4/3 flow regenerative
valve manufactured by Bosch Rexroth[Rexroth, 2020]. The flow can only exit the
rod side chamber of the load cylinder if the pressure drop across the check valve, i.e.
from the rod side chamber to supply pressure, exceeds pcv. The valve responses are
estimated in Appendix C.1.

The flow through the valves are modelled by orifice equations. The valves connected
to the main cylinder are modelled in Equations (7.1) and (7.2)[Hansen, 2019, p.
92-93]. The pressures and flows are defined in Figure 7.3.

Qmp =

Y
]

[
kvm xvmp

Ò
|ps ≠ pmp| (ps≠pmp)

|ps≠pmp| , xvmp Ø 0
kvm |xvmp|

Ò
|pt ≠ pmp| (pt≠pmp)

|pt≠pmp| , xvmp < 0
(7.1)

Qmr =

Y
]

[
kvm xvmr


|pmr ≠ pt| (pmr≠pt)

|pmr≠pt| , xvmr Ø 0
kvm |xvmr|


|pmr ≠ ps| (pmr≠ps)

|pmr≠ps| , xvmr < 0
(7.2)

The valve connected to the load cylinder is modelled in Equations (7.3) and (7.4).

Qlp =

Y
_]

_[

kvl xvl

Ò
|ps ≠ plp| (ps≠plp)

|ps≠plp| , xvl Ø 0

kvl |xvl|
Ò

|pt ≠ plp| (pt≠plp)
|pt≠plp| , xvl < 0

(7.3)

Qlr =

Y
_]

_[

kcv (plr ≠ ps), xvl Ø 0, plr ≠ ps Ø pcv

0, xvl Ø 0, plr ≠ ps < pcv

kvl |xvl|


|plr ≠ ps| (plr≠ps)
|plr≠ps| , xvl < 0

(7.4)

The check valve is modelled as a spring-loaded check valve; pcv is the pressure dif-
ference to overcome the spring force, and kcv is the check valve flow coe�cient. The
valve openings xvmp, xvmr, and xvl are normalised values between ≠1 and 1, and the
coe�cients kvm and kvl are defined in Equation (7.5)[Hansen, 2019, p. 93].

kvi = Qnom,i
�pnom,i

, i = m, l (7.5)
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The dynamics of the pressures in the cylinder chambers are modelled by the continu-
ity equations. The pressure dynamics in the main cylinder are expressed in Equation
(7.6)[Hansen, 2019, p. 77].

ṗmp = —(pmp)
Vmp0 + Amp xm

(Qmp ≠ Amp ẋm)

ṗmr = —(pmr)
Vmr0 + Amr (Lm ≠ xm)(Amr ẋm ≠ Qmr) (7.6)

The pressure dynamics in the load cylinder are expressed in Equation (7.7).

ṗlp = —(plp)
Vlp0 + Alp xm

(Qlp ≠ Alp ẋm)

ṗlr = —(plr)
Vlr0 + Alr (Lm ≠ xm)(Alr ẋm ≠ Qlr) (7.7)

The internal leakage flows in the cylinders are assumed negligible due to cylinder
seals. Vmp0, Vmr0, Vlp0, and Vlr0 are dead volumes which have been calculated based
on lengths and diameters of the connected hoses. The bulk modulus, —, is expressed
in Equation (7.8), where – is the percentage of air dissolved in the oil, n is the
polytropic index which is 1.4 for an adiabatic process, p0 is the atmospheric pressure,
and —0 is the maximum fluid sti�ness[Hansen, 2019, 16-17].

— =
(1 ≠ –) e

p0≠p
—0 + –

1
p0
p

2 1
n

1≠–

—0
e

p0≠p
—0 + –

n p0

1
p0
p

2 n+1
n

(7.8)

The forces caused by the pressures in the chambers of the hydraulic cylinders are
expressed in Equation (7.9).

Fm = pmp Amp¸ ˚˙ ˝
Fmp

≠ pmr Amr¸ ˚˙ ˝
Fmr

Fl = plp Alp¸ ˚˙ ˝
Flp

≠ plr Alr¸ ˚˙ ˝
Flr

(7.9)

The frictional forces in the cylinders are included in the mechanical model in the
following section.
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7.2 Mechanical Model

The mechanical connection between the cylinders is sketched in Figure 7.4. The left
figure shows forces and torques, and the right figure shows angles, lengths, and centres
of mass. Parameters in blue are variables while parameters in red are constants.
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Figure 7.4: Diagram of the test setup.

The cylinder and bearing constants are listed in Table 7.1 where I is the moment of
inertia of the bearing, Mm and Ml are the masses of the pistons, and Lm and Ll are
stroke lengths for the main and load cylinder, respectively. Amp and Amr are piston
areas in the main cylinder seen from the piston and rod side chambers, respectively,
and Alp and Alr are piston areas in the load cylinder seen from the piston and rod
side chambers, respectively.
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Main cylinder Load cylinder Bearing

Parameter Value Unit Parameter Value Unit Parameter Value Unit

Mm 80 [kg] Ml 104 [kg] I 380 [kg m
2]

Lm 0.7956 [m] Ll 1.308 [m] ◊tot 155.35 [o]

Amp 0.0154 [m2] Alp 0.0154 [m2] ◊m,max 118.03 [o]

Amr 0.0090 [m2] Alr 0.0090 [m2] ◊m,min 31.87 [o]

rm 0.583 [m] rl 0.9847 [m] ◊l,max 123.49 [o]

Hm 1.415 [m] Hl 1.855 [m] ◊l,min 37.324 [o]

Sm,min 0.97 [m] Sl,min 1.227 [m]

Sm,max 1.766 [m] Sl,max 2.535 [m]

Table 7.1: Constants for the mechanical model[Vedel et al., 2019].

It should be noted that Sm = Sm,min + xm and Sl = Sl,min + xl, where xm and xl

are the piston positions as defined in Figure 7.3. From the law of cosines, Sm,max is
found from Sl,min, and Sl,max is found from Sm,min. The stroke lengths are thereby
Lm = Sm,max ≠ Sm,min and Ll = Sl,max ≠ Sl,min. The minimum and maximum
values of the bearing angles ◊m and ◊l are found from Equations (C.4) and (C.11)
in Appendix C.3 at xm = 0 and xm = Lm. One of the pistons will thereby reach
maximum stroke length when the other reach minimum stroke length. The calculated
stroke length Lm has been confirmed from experimental data.

The torques caused by the forces from the hydraulic cylinders are expressed in Equa-
tion (7.10).

·m = Fm sin(Âm) rm

·l = Fl sin(Âl) rl (7.10)

Frictional forces in the hydraulic cylinders are modelled as part of the friction torque
in the bearing which is expressed in Equation (7.11).[Hansen, 2019, p. 155]

·f = ·c tanh(◊̇ c) + B ◊̇, ◊̇ ”= 0 (7.11)

The friction torque is modelled as a combination of Coulomb and viscous friction.
The discontinuous Coulomb friction is modelled by a continuous hyperbolic tangent
function to avoid numerical complications, where the hyperbolic tangent function
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approaches the sign function as c æ Œ. A sketch of the friction torque as a function
of angular velocity is shown in Figure 7.5.

Figure 7.5: Friction model.

Newton’s Second Law of Motion is expressed for the bearing in Equation (7.12).

◊̈ Ieq = ·m ≠ ·l ≠ ·f (7.12)

The moment of inertia is expressed in Equation (7.13)[Meriam and Kraige, 2013, p.
642]. It should be noted that the exact positions of the centre of masses for the two
pistons are not known, however, the lengths to the centre of masses are assumed to
be approximately rm and rl regardless of the piston position.

Ieq = I + Mm r
2
m + Ml r

2
l (7.13)

The mechanical model in Equation (7.12) is defined in joint space. To express the
model in actuator space, i.e. seen from the main cylinder, algebraic equations de-
scribing the relation between angles and piston positions are derived. The derivation
can be found in Appendix C.3.

The mechanical model is expressed in actuator space in Equation (7.14).

ẍm = 1
Ieq Gm

3
Fm Gm1 ≠ (B Gm + Ieq Gn ẋm) ẋm ≠ tanh(ẋm c) ·C ≠ Fl Gl1

4
(7.14)

It should be noted that Gm, Gn, Gm1, and Gl1 are all functions of the main piston
position, xm. Expressions for Gm, Gn, Gm1, and Gl1 can be found in Equation (C.13)
in Appendix C.3.
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7.3 Model Validation

The non-linear dynamic simulation model previously presented is validated against
experimental data in this section. The soft system parameters are varied on physical
grounds, to properly mimic the physical system response where the emphasis is put
on capturing the dynamics.

The oil bulk modulus —0, air content in the fluid –, Coulomb and viscous friction
coe�cients, ·c and B, are varied during validation due to high uncertainties. The
proportional valve coe�cients, kvm and kvl, are less uncertain and are varied close
to the given datasheet values. The check valve coe�cient, kcv, and the check valve
crack pressure, pcv, are varied close to validated values from a previous student
project [Vedel et al., 2019]. The dead volume in each chamber Vmp0, Vmr0, Vlp0, and
Vlr0, is calculated based on hose dimensions. The uncertainty is therefore low and
the dead volumes are not changed.

The validated parameters are shown in Table 7.2

Parameter Value Unit Parameter Value Unit

B 45 · 103 [Nms/rad] – 5 [%]

·c 200 [Nm] —0 11.2 · 103 [bar]

pcv 0.5 [bar] Vmp0 2.5 · 10≠4 [m3]

kvl 3 · 10≠7 [m3
/(sPa

0.5)] Vmr0 8.5 · 10≠4 [m3]

kvm 2.6 · 10≠7 [m3
/(sPa

0.5)] Vlp0 11 · 10≠4 [m3]

kcv 1.9 · 10≠10 [m3
/(sPa)] Vlr0 7.1 · 10≠4 [m3]

Table 7.2: Validated system parameters found from experimental tests.

The system dynamics are excited manually in open loop using the servo valves.
The valve opening references are logged and used as input to the simulation, as
no measurements of the actual openings are available. The actual spool position is
modelled with the second order approximation as described in Appendix C.1. The
measured pump pressure is used in the simulation model while the tank pressure is
assumed constant as it is not measured. The pump pressure varies up to 25 [bar]
during the tested steps.

The validation is done with three tests where each valve is stepped while the two
other valves are kept constant. The piston position and pressures from the tests are
then compared with the simulation. The valve for the main cylinder connected to the
piston side, xvmp, is stepped in Figure 7.6, the valve for the main cylinder connected
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to the rod side, xvmr, is stepped in Figure 7.7, and the valve for the load cylinder,
xvl, is stepped in Figure 7.8. All steps occur at t = 0 [s]. For Figure 7.6, the pump
pressure and flows are also shown, however, it should be noted that only simulated
flows are shown as these were not measured in the experimental tests.

Figure 7.6: Stepping xvmp from 50 [%] to ≠80 [%] at t = 0[s].

Figure 7.7: Stepping xvmr from ≠40 [%] to 40 [%] at t = 0[s].
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Figure 7.8: Stepping xvl from 30 [%] to ≠10 [%] at t = 0[s].

The valve dynamics are not obvious in the figures due to a faster bandwidth compared
to the pressure and position dynamics. For all three comparisons, it can be seen how
in general the tendency of the simulated response compared to experimental response
is similar.

During the validation the parameters from Table 7.2 were varied and it was found
that the parameters ·c and B had limited influence on the responses.

The validation is made with data from a previous student project since there was
no access to the laboratory[Vedel et al., 2019]. Ideally, the dynamics should be vali-
dated for more piston positions. Furthermore, the relation between the initial pitch
angle and piston position are not known exactly. The actual torque and simulated
torque will thereby di�er. Validation errors could also be caused by deviations in
the measured pressures and piston position due to sensor o�sets, inaccuracy, and
noise. However, these e�ects are not expected to change the results considerably.
The model is derived for control design and testing purposes where the emphasis is
put on capturing the system dynamics. As the frequency, damping ratio and natu-
ral gain are captured within acceptable margins, the simulation model is considered
validated.



Chapter 8

Analysis of Dynamic Model

This chapter contains a linear analysis of the non-linear dynamic model presented in
the previous chapter. The analysis is made for the main cylinder, as this is where
the SMISMO control strategy is tested. Control for the load cylinder will not be
designed since there is no access to the test facilities. Based on the coupling analysis
in Chapter 5 there is no significant benefit in choosing either of the analysed control
combinations in Table 3.2. It is therefore chosen to design controllers for piston
velocity, ẋm, and the other state to be controlled is either piston side pressure, pmp,
or rod side pressure, pmr.

8.1 Linear Model

The non-linear dynamic model of the main cylinder derived in Equations (7.6) and
(7.14) is linearised in order to analyse the system and be able to design linear con-
trollers. The state and input vectors are expressed in Equation (8.1).

x =
Ë
ẋm pmp pmr

È
T

u =
Ë
xvmp xvmr

È
T

(8.1)

It should be noted that the dynamics of the load cylinder are not included and the
load force from the load cylinder, Fl, is seen as a disturbance to the linear model.
Furthermore, the piston position is not included as a state as described by the end of
this section.

The same approach as described in Equations (4.5) and (4.6) is used to derive the
linear state space model. The state equation is shown in Equation (8.2).
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ẋ =

S

WU
a11 a12 a13
a21 a22 0
a31 0 a33

T

XV

¸ ˚˙ ˝
A

x +

S

WU
0 0

b21 0
0 b32

T

XV

¸ ˚˙ ˝
B

u (8.2)

The output matrices are determined based on the chosen pairing which is analysed
in Section 8.2.1. The linearisation coe�cients in the A and B matrices depend on
the linearisation point. The choice of linearisation points is described in Section 8.2.
The linear model is validated in Appendix C.5.

The piston position is removed as a state to simplify the analysis by reducing the
order of the linear model. To check whether removing piston position as a state
a�ects the dynamics, the state space model is compared to a fourth order state space
model where piston position is included as a state. The coe�cients varying as a
function of the piston position are the volumes, Gm, Gn, Gm1, and Gl1. The transfer
functions are found for y1 = pmp and y2 = ẋm, and u1 = xvmp and u2 = xvmr.
The elements of the transfer function matrix without piston position as a state are
denoted g11(s), g12(s), g21(s), and g22(s), while the elements of the transfer function
matrix with piston position as a state are denoted h11(s), h12(s), h21(s), and h22(s).

The dynamics of the two models are compared for several linearisations points. The
bode diagrams are compared to check the di�erence between gains, phases, damping
ratios, and natural frequencies. The bode diagrams for the four elements of each
transfer functions matrix are shown in Figure 8.1. Both models are linearised in
an equilibrium point, i.e. ẋm = 0, and the other linearisation points are arbitrarily
chosen.
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Figure 8.1: Comparison of transfer functions.

In Figure 8.1, it is seen that the transfer functions for the two models are on top
for frequencies greater than approximately 10≠12 [rad/s]. When compared for pis-
ton velocities di�erent from zero the same conclusions were seen, where deviations
between the third and fourth order models occurred for frequencies up to maximum
10≠2 [rad/s].

That means the gains and phases are equal above that frequency, and that the
damping ratios and natural frequencies are equal. The bode diagrams are plotted for
several linearisation points and pmr as output and the same tendency is seen. It is
concluded that the change in parameters varying as a function of the piston position,
i.e. the volumes, Gm, Gn, Gm1, and Gl1, is assumed minimal in the vicinity of the
linearisation point. The piston position is therefore not included as a state in the
linear model and the system order is reduced.
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8.2 Linearisation Point Analysis

A preliminary control design is proposed in which one linearisation point is chosen
based on a worst-case scenario and a linear controller is designed based on the linear
model. If controllers are designed such that they perform well under worst-case
conditions, then it is expected that they perform well or even better under better
conditions. The considered worst-case criteria are: lowest system damping ratio,
lowest natural frequency, and system couplings. The choice of linearisation thus
becomes a combination between the considered criteria and a trade-o� between how
much each criterion is weighted. The designed controller is then assumed to ensure
system stability in the whole operating domain as this is the most conservative case.

To determine a worst-case scenario, the system stability and dynamics are inves-
tigated by calculating the eigenvalues of the system matrix. As the linear model
response depends on the chosen operating points, these are varied to determine their
influence on system dynamics to conclude on the dynamic change. To linearise the
non-linear model, six dependent operating points must be found; piston position,
x

ú
m, piston velocity, ẋ

ú
m, piston side pressure, p

ú
mp, rod side pressure, p

ú
mr, piston side

valve opening, x
ú
vmp, and rod side valve opening, x

ú
vmr. The three dynamic equations

for the system are solved in steady state; Newton’s Second Law from Equation (7.14)
and two continuity equations from Equation (7.6) i.e. where ẍm = 0, ṗmp = 0, and
ṗmr = 0. Three operating points should, therefore, be chosen and the remaining
three are calculated using the steady state equations.

The system is modelled as a third order system containing two complex poles and
one real pole. Figure 8.2 shows the natural frequency and damping ratio of the
system poles as a function of the normalised piston position when linearised for
three di�erent piston velocities. It should be noted that the complex conjugate poles
are far from the origin compared to the real pole.

0 50 100
200

400

600
Complex poles

0 50 100
0.1

0.2

0.3

Complex poles

0 50 100
0

5

10

Real pole

Figure 8.2: Natural frequency and damping ratio of poles for the whole piston stroke length. The

arbitrarily chosen linearisation point is pú
mp = 100 [bar].
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The natural frequency of the complex poles is high for lower piston positions and
decreases as the piston position is increased where it is close to constant for stroke
lengths above 25 [%]. The damping ratio of the complex poles is lowest for lower
piston positions and increases as the piston position increases.

The natural frequency of the real pole increases slightly as the piston position in-
creases and decreases as the magnitude of the velocity linearisation point decreases.
The natural frequency of the real pole is lower than the complex poles as it is closer
to the origin. The tendency of Figure 8.2 is the same when linearised for various
piston side pressures.

A sweep of piston side pressure is shown in Figure 8.3.
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Figure 8.3: Natural frequency and damping ratio of poles when sweeping for all values of pú
mp.

The arbitrarily chosen linearisation points are xú
m = 50 [%] and ẋú

m = 0.005 [m/s].

The frequency is increasing and the damping ratio decreasing of the complex poles
as the pressure is increased. The natural frequency of the real pole is low in most
of the pressure range and increases as the pressure approaches supply pressure. The
same tendency is seen when linearised for other piston positions and velocities.

In conclusion, the dynamic change of the linear model is large and very dependent
on the chosen linearisation point which is evident from Figures 8.2 and 8.3. The
validity of the linear model is therefore limited when considering di�erent operating
points.

According to Figure 8.3, p
ú
mp is chosen as 50 [bar] which is a compromise between low

natural frequency and damping ratio. The steady state pressure is then calculated
for p

ú
mr.

The corresponding piston position is calculated based on the coupling analysis pre-
sented in Chapter 5 where most coupling occurs. It was concluded from Figure 5.15
that the couplings in the intermediate frequency range can be predicted by calculat-
ing the couplings at low frequencies using Equation (5.16) where flows are inputs.
Equation (5.21) presented in Chapter 5 where the most coupling occurs is solved for
piston position and written in Equation (8.3).
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-----
—(pú

mr)
—(pú

mp)
Amr

Amp

x
ú
m

Lm ≠ xú
m

----- = 1 æ x
ú
m =

—(pú
mp) Amp Lm

—(pú
mp) Amp + —(pú

mr) Amr

(8.3)

Based on the chosen pressures, the e�ective bulk modulus is calculated to find the
corresponding piston position where the couplings are most significant. The corre-
sponding piston position calculated becomes 57.5 [%] of stroke length. As a com-
promise between the calculated piston position and a lower damping ratio for lower
piston positions in Figure 8.2, the linearisation point of the piston position is chosen
to be 50 [%].

As the piston is expected to follow a trajectory, a piston velocity di�erent from zero is
chosen. A small positive piston velocity is arbitrarily chosen as 0.005 [m/s] based on
the natural frequency of the real pole in Figure 8.2 which becomes slower when the
piston velocity approaches 0 [m/s]. The piston is also expected to move in negative
directions, which contradicts the positive velocity linearisation point.

The rod side pressure, piston side valve opening, and rod side valve opening lineari-
sation points are reevaluated for the chosen piston position, velocity, and piston side
pressure to get the exact linearisation points in equilibrium. The final linearisation
points are shown in Table 8.1.

x
ú
m [%] ẋ

ú
m [m/s] p

ú
mp [bar] p

ú
mr [bar] x

ú
vmp [%] x

ú
vmr [%]

50 0.005 49 83 8 6

Table 8.1: Worst case linearisation points.

The resulting poles are shown in Figure 8.4.
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Figure 8.4: The linear model poles when linearising for the worst case scenario linearisation points

in Table 8.1
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8.2.1 RGA Analysis

In this section, an RGA analysis of the worst-case linearisation point from the pre-
vious section is conducted. The pressure is initially chosen as the first output and
the velocity as the second as in the RGA analysis in Chapter 5. The RGA element
for pairing pmp and ẋm, and for pairing pmr and ẋm is seen in Figure 8.5.
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Figure 8.5: RGA elements for the chosen linearisation point.

⁄
d
p and ⁄

o
p refer to the RGA elements with pmp for diagonal and o�-diagonal pairing,

respectively. ⁄
d
r and ⁄

o
r refer to the RGA elements with pmr for diagonal and o�-

diagonal pairing, respectively. The coupling is significant at intermediate frequencies
around 10 [rad/s] as the linearisation point was chosen close to the piston position
and pressures resulting in most coupling. It is chosen to pair for the RGA element
closest to 1 at frequencies below the natural frequency. Since the o�-diagonal is
closest to 1 at frequencies below the natural frequency when pairing with either pmp

or pmr, the chosen output vectors become:

yp = [ẋm pmp]T (8.4)
yr = [ẋm pmr]T (8.5)

8.2.2 Scaled State Space Model

A scaled model is needed for the singular value decomposition analysis in Section 8.3
since the singular values depend on the scaling. In Equation (8.6), the scaled transfer
function matrices, Gp,s and Gr,s, are presented [Skogestad and Postlethwaite, 2005,
5-6].



86 Chapter 8. Analysis of Dynamic Model

Gp,s = M≠1
py GpMu

Gr,s = M≠1
ry GrMu (8.6)

Gp and Gr are the unscaled transfer function matrices. Mpy, Mry, and Mu are
the diagonal scaling matrices shown in Equations (8.7) and (8.8) which contain the
largest allowed control outputs, ẋm,max, pmp,max, and pmr,max, and the largest system
inputs, xvmp,max and xvmr,max.

Mpy =
C
ẋm,max 0

0 pmp,max

D

Mry =
C
ẋm,max 0

0 pmr,max

D

(8.7)

Mu =
C
xvmp,max 0

0 xvmr,max

D

= I (8.8)

The maximum piston- and rod side pressures are chosen to be the pump pressure.
The maximum velocity is calculated based on the orifice and continuity equations
in steady state. The valve is fully opened, and the pressure drop across the valve
is the di�erence between maximum and minimum system pressures. For the piston
side flow, the calculation of maximum velocity is shown in Equation (8.9) where the
compression flow is assumed negligible.

Qmp,max = kvm


ps ≠ pmp, pmp = pt

ẋm,max = Qmp,max

Amp

(8.9)

The maximum velocity in steady state is limited by the piston side flow since Amp >

Amr. The maximum parameters are shown in Table 8.2.

Parameter Value Unit

pmp,max 200 [bar]

pmr,max 200 [bar]

ẋm,max 0.0744 [m/s]

Table 8.2: Maximum values used to normalise the state space model.
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8.3 Singular Value Decomposition

The variation of the system gain is analysed in this section using Singular Value
Decomposition, SVD. The gain of a MIMO system can be calculated using the 2-
norm as shown in Equation (8.10).

||y(Ê)||2
||u(Ê)||2

= ||Gs(jÊ) u(Ê)||2
||u(Ê)||2

(8.10)

The gain is independent of the input magnitude, ||u(jÊ)||2, but it depends on the
frequency, Ê, and the direction of the input vector[Skogestad and Postlethwaite, 2005,
p. 73]. The minimum and maximum gains when varying the direction of the input
vector are the minimum and maximum singular values, i.e. ‡ and ‡, respectively.
The scaled transfer function matrix, Gs, can be decomposed using singular value
decomposition as shown in Equation (8.11) where H denotes the complex conjugate
transpose[Skogestad and Postlethwaite, 2005, p. 76].

Gs = U � VH (8.11)

where � is a matrix containing non-negative singular values, ‡, along its main di-
agonal, and U and V are unitary matrices of output and input singular vectors,
respectively[Skogestad and Postlethwaite, 2005, p. 76]. The minimum and max-
imum singular values are expressed in Equation (8.12), where ⁄min and ⁄max are
the minimum and maximum eigenvalues, respectively[Skogestad and Postlethwaite,
2005, p. 76].

‡ =
Ò

⁄min(GH

s Gs), ‡ =
Ò

⁄max(GH

s Gs) (8.12)

The condition number, “, is defined as the ratio between the maximum and minimum
singular values as shown in Equation (8.13)[Skogestad and Postlethwaite, 2005, p.
82].

“ = ‡

‡
(8.13)

A large condition number indicates that the directional dependency is strong and the
system is said to be ill-conditioned. The scaled transfer function matrix described in
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Section 8.2.2 is used to calculate the singular values as the condition number depends
on the scaling of the system[Skogestad and Postlethwaite, 2005, p. 82].

The minimum and maximum singular values for the system are plotted in Figure
8.6. ‡p and ‡p are maximum and minimum singular values when the outputs are
y1 = ẋm and y2 = pp, and ‡r and ‡r are maximum and minimum singular values
when the outputs are y1 = ẋm and y2 = pr.
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Figure 8.6: Minimum and maximum singular values. The left plot is for pp as second output, and

the right plot is for pr as second output.

It is seen in Figure 8.6 that for low frequencies ‡p ∫ ‡p and ‡r ∫ ‡r. As the
frequency increases, both set of minimum and maximum singular values approach
each other up to a frequency around 5≠9 [rad/s] where the maximum and minimum
singular values are closest. The ratios between the maximum and minimum singular
values increase as the frequency further increases up to the point where ‡p and ‡r

peak. The condition numbers, “p and “r, are plotted in Figure 8.7.
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Figure 8.7: Condition numbers. The left plot is for pp as second output, and the right plot is for

pr as second output.

The same tendency is seen for the condition numbers as for the maximum and mini-
mum singular values. At low frequencies, both condition numbers are approximately
constant and start to decrease as the frequency increases. “p approaches 1 around 5
[rad/s] and “r approaches 1 around 9 [rad/s]. Both condition numbers increase as the
frequency further increases and peak at around 180 [rad/s]. That means the system
has a strong directionality as the system gain varies with the direction of the input
vector. A large condition number may indicate control problems, however, a small
value of ‡ is generally not desirable which is not necessarily the case for a large value
of ‡. Both condition numbers are large and ‡p and ‡r are small at a frequency around
180 [rad/s] which is also close to the frequency at which the RGA elements peak as
shown in Figure 8.5. This may indicate control problems[Skogestad and Postleth-
waite, 2005, p. 82]. It is concluded that as the couplings are significant around the
natural frequency and the system is ill-conditioned, a decoupling pre-compensator or
MIMO controllers should be designed.
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Chapter 9

Control

In this chapter, the controllers are designed based on the analysis of the dynamic
model. The control objective is presented in the first section followed by the control
strategy.

9.1 Control Objective

Characteristics for control systems are stability, disturbance rejection, sensitivity,
steady state error, transient response, and closed loop frequency response [Philips
and Parr, 2013, p. 175]. In regards to stability, the closed loop poles are placed
in the left half s-plane and the system is considered stable if the reference tracking
error does not blow up. The controller must, furthermore, maintain system stability
when disturbances from, e.g. the load force, are applied. In regards to sensitivity, it
is important to analyse the sensitivity of the control system to parameter variations
as the model is not an exact representation of the physical system. In addition, it is
desired to minimise the steady state error for both the velocity and pressure control.
This is evaluated on a stepped and ramped reference. The transient response is
evaluated on a stepped reference, where it is desired to minimise the rise time and
settling time while having a low or no overshoot. Finally, the closed loop frequency
response is evaluated at a sinusoidal reference and with a wide frequency range
reference. The controllers will be designed by taking into account the explained
characteristics of a control system.

The control of the velocity and pressure are weighted equally during controller design
to limit the possible control options. As an example; the reference for the pressure
will not be made based on the velocity reference to reduce the tracking error of
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the velocity. The references are designed independently of each other. Making a
reference based on the other reference could, however, improve the tracking. The
overall control objective is to minimise the tracking error for both the velocity and
pressure during the di�erent references.

The piston velocity is one of the states to be controlled, however, it is not measured
in the experimental setup. Knowledge of the velocity is, therefore, necessary if a
reference is to be followed. Several techniques for state estimation of unmeasured
states based on measured states exist[Skogestad and Postlethwaite, 2005, 346-348] or
alternatively computing the derivative of the position measurement. As the purpose
is to test control strategies and the results are purely simulation-based, the velocity is
assumed to be measured.

It is chosen not to change the direction of the load force during reference tracking. A
change in the direction of the load force changes which pressure is to be controlled.
As the direction of the load force is not changed, the same controller is used and
switching between controllers during reference tracking is not considered. The con-
trollers are designed for velocity and rod side pressure. The same controllers are used
for velocity and piston side pressure if the response is satisfactory. As a final remark,
the controllers are designed for the unscaled model.

9.2 Control Strategy

In this section, several relevant control strategies are studied which account for the
strong directional dependency of the input vector, and the cross couplings as it was
earlier found that the couplings are significant when varying operating parameters.
As a starting point, a controller is chosen and designed. Other controllers will here-
after be designed to improve the reference tracking.

Classical SISO Control Methods with Decoupling Pre-compensator

Classical SISO control methods include proportional, integral, and di�erential con-
trollers as well as lag and lead controllers. These controllers are in general simple
and have proven robustness as the resultant closed loop system tends to be insen-
sitive to small model inaccuracies.[Philips and Parr, 2013, p. 449] Transient and
steady state responses can be improved depending on the choice of controllers. To
avoid significant cross couplings when dealing with MIMO systems, a decoupling pre-
compensator should be designed and implemented along with the SISO controllers.
A decoupling pre-compensator is based on the system model which means it requires
an accurate model.[Skogestad and Postlethwaite, 2005, p. 92]

Pole Placement Control Methods

Pole placement methods o�er a more complete control by meeting a larger number
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of specifications than classical SISO methods. Pole placement depends on having
an accurate model.[Philips and Parr, 2013, p. 449] Full state feedback requires all
states to be measured. The states are assumed measurable since the controllers
performance are only simulated.

Optimal Control Methods

Optimal control methods include, among others, LQR which is comparable to a
pole placement method. LQR search to reach the reference as fast as possible with-
out aggressive input values while maintaining good stability margins.[Skogestad and
Postlethwaite, 2005, p. 349] An extension to LQR is LQI where integrators are
implemented to improve the steady state accuracy[Philips and Parr, 2013, p. 486].

Besides the above-mentioned control methods, there exist several other linear control
methods along with non-linear control methods. It is chosen to design MIMO con-
trollers using pole placement as this allows closed loop poles to be placed in desired
locations. If the controllers do not satisfy the desired performance, other MIMO
controllers will be designed based on the achieved performance.

9.3 Pole Placement Control

In this section, controllers are designed using the pole placement method. All states
are assumed measurable which means full state feedback is utilised. The notation
for time dependence e.g. x(t) is omitted for the remainder of this chapter for ease of
reading such x(t) = x. To check whether the system is controllable, the controllability
matrix for a third order system is expressed in Equation (9.1)[Philips and Parr, 2013,
p. 477-478].

Co =
Ë
B A B A2 B

È
(9.1)

The system is completely controllable since rank(Co) = 3 for all linearisation points
[Brogan, 1991, p. 377-378]. As the system is completely controllable, any set
of desired closed loop poles can be achieved by a constant feedback gain matrix
KP P [Brogan, 1991, p. 448].

Pole placement design allows all closed loop poles to be placed in desirable locations.
The desirable pole locations are found by choosing the desired dynamics of the closed
loop system. As mentioned earlier, the uncompensated system consists of a complex
conjugate pole pair and a real pole hence the system is a combination of a first and
a second order system. The desirable pole locations, ⁄1, ⁄2, and ⁄3, are found by
solving the characteristic equations for a first and second order system as shown in
Equation (9.2)[Philips and Parr, 2013, p. 137-140].
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·s + 1 = 0 æ ⁄1 = ≠1
·

s
2 + 2 ’ Ên s + Ê

2
n = 0 æ ⁄2, ⁄3 = ≠ ’ Ên ± jÊn

Ò
1 ≠ ’2 (9.2)

The system input for a full state feedback controller is expressed in Equation (9.3)
for a non-zero set point[Brogan, 1991, p. 443-445].

u = ≠KP P x + F r (9.3)

Where r is the reference vector, KP P is the feedback gain matrix, and F is a pre-
compensator and is defined in Equation (9.4). It should be noted that r is a 2x1
column vector, KP P is a 2x3 matrix, and F is a 2x2 matrix.

F = ≠
Ë
C(A ≠ B KP P )≠1B

È≠1
(9.4)

F is the inverse of the closed loop system gain and is found by evaluating the linear
model in steady state when the outputs are equal to the references. That ensures
zero steady state error in the linearisation point for the linear model. A general block
diagram for a linear system with full state feedback control is shown in Figure 9.1.

A

B C) +++
-

[[ \ur
s
1

.

.PP

Figure 9.1: Simple block diagram of the controlled system using pole placement.

Where u = [xvmp xvmr]T and x = [ẋm pmp pmr]T . y changes depending on
which pressure to control. The feedback gain matrix KP P is found by comparing the
closed loop system dynamics with the desired dynamics. However, as it results in an
underdetermined system of linear equations, an infinite number of solutions exist for
the feedback gain matrix KP P .

A way to get all solutions of the KP P matrix is by using the method described
in [Brogan, 1991]. The deviation of the feedback gain matrix KP P is included in
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Appendix D.1. It is found that the feedback gain matrix KP P is a function of the
six parameters: –1, –2, –3, —1, —2, and —3. This allows the possibility to set up
constraints to find a unique solution for KP P . This process has not been included
as it is not the focus of this thesis. Instead, the command place in MATLAB is
used to choose a feedback gain matrix KP P . This command defines constraints
to find a solution that minimises the sensitivity to perturbations to get a robust
solution[MathWorks, 2020].

9.3.1 Design of Pole Placement Control

The desired closed loop poles were located at Ên = 125 [rad/s] and ’ = 0.7 for the
complex poles and · = 0.1 [s] for the real pole. This was to increase the system
damping where a damping ratio of ’ = 0.7 achieves a combination of fast rise time
and small overshoot[Philips and Parr, 2013, p. 141]. A faster response is furthermore
achieved by moving the real pole further from the origin. The error between refer-
ences and outputs increased when changing the location of the complex conjugate
pole pair. The increased error was caused by large control signals when moving the
closed loop poles away from the open loop system poles. The complex conjugate poles
were placed close to the open loop poles instead, however, with increased damping.
The real pole was moved along the negative real axis by changing · . The location of
the closed loop eigenvalues was observed to be highly limited by the valve dynamics.
The smallest errors were obtained at the final locations in Table 9.1 where piston
side pressure and rod side pressure refer to the pressure which is being controlled.

Uncompensated system Piston side pressure Rod side pressure

⁄1 ≠0.464 ≠10 ≠20

⁄2 ≠44.5 + j165 ≠45 + j143 ≠45 + j143

⁄3 ≠44.5 ≠ j165 ≠45 ≠ j143 ≠45 ≠ j143

Table 9.1: Locations of eigenvalues for the uncompensated system and with state feedback control.

The final locations correspond to ’ = 0.3 and Ên = 150 [rad/s] for the second
order system, · = 0.1 [s] for piston side pressure control and · = 0.05 [s] for rod
side pressure control for the first order system according to Equation (9.2). The
locations of the eigenvalues are plotted in Figure 9.2 along with the location of the
valve eigenvalues.
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Figure 9.2: Valve eigenvalues, open loop system eigenvalues and closed loop poles for rod side and

piston side pressure control.

The closed loop poles have been computed as a function of the piston position stroke
length by calculating the eigenvalues for the closed loop system using the same
feedback gain matrix, KP P , obtained by pole placement. The non-linear model
is linearised for each piston position while using the worst-case linearisation points.
The corresponding eigenvalues are then found for each closed loop system matrix,
Acl = A≠B KP P , by updating A and B according to the linearised piston position.
The eigenvalues for the closed loop system as a function of piston position are shown
in Figure 9.3, where the eigenvalues are coloured to distinguish between linearised
piston positions and the red dashed line shows the estimated natural frequency of
the valve.
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Figure 9.3: Closed loop pole trace when linearised as a function of the piston position using a

constant feedback gain matrix obtained by pole placement. The red dashed line shows the natural

frequency of the valve.

For lower piston positions the feedback gains found by pole placement move the com-
plex conjugate closed loop poles outside of the valves operating frequency however for
most of the piston stroke length, the closed loop poles are below the frequency. The
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high-frequency control e�ort is therefore expected to be filtered by the valve dynam-
ics as the closed loop frequency in the lower positions is dictated by the actuating
frequency of the valve. Furthermore, it is expected that the closed loop response is
dominated by the real pole which moves away from the origin as the piston position
is increased. It should be noted that the pole locations in Figure 9.3 are only valid
for the linear model for the specific operating points, i.e. velocity, pressures, and
valve openings.

The step response when controlling the rod side pressure is now analysed. The com-
pensated response is compared to the uncompensated to determine if the controllers
improve the response, as the closed loop poles and open loop poles are relatively
close to each other. The step tests are performed in the linear model to leave out
any e�ects caused by non-linearities. The linear model is linearised in the worst-case
linearisation point and the velocity reference is stepped, while the rod side pressure
reference is constant. The velocity, rod side pressure and valve control e�ort can be
seen in Figure 9.4 when compensated and uncompensated. A pre-compensator, F, is
calculated for the open loop system as well to be able to compare the uncompensated
system with the compensated system.
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Figure 9.4: Piston velocity, rod side pressure and control e�ort comparison of open loop and closed

loop response in the linear model.

It can be seen that the response for both velocity and pressure improved when closed
loop controlled. Both have less overshoot and a more damped response. The settling
time is improved for both responses especially the pressure which decreased from a
settling time of approximately 8 [s] to approximately 0.1 [s]. It can furthermore be
seen that the control e�ort does not saturate.

Both pressure and velocity responses improved when tested in the particular linear
model, however, as it was previously concluded from the linear analysis that the
dynamics change depending on operating point, the closed loop step response is
tested for the linear model when linearised in three di�erent piston positions. This
is to determine how the response varies for di�erent operating points. The step
responses for a velocity reference and a constant rod side pressure reference can be
seen in Figure 9.5 when tested in the linear model which is linearised in 10, 50 and
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90 [%] of total stroke length.
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Figure 9.5: Closed loop response of velocity and pressure when tested on the linear model in three

di�erent piston positions: 10, 50 and 90 [%] of maximum stroke length.

It can be seen that the response do change when tested in other operating points.
The velocity response shows a larger overshoot in the lower piston position, while the
response seems improved further for the larger piston positions. The opposite is seen
for the rod side pressure tracking, where a large spike happens in the larger position
while the response improved in lower piston position. Furthermore, a steady state
error occurs on both velocity and pressure.

During the design process, it was found that the closed loop system dynamics change
significantly for small changes in the location of the complex conjugate pole pair. The
dynamics changed when varying the piston position. It was also shown in Figure 8.2
in Section 8.2 that the location of the poles changes when varying the linearisation
point. That means if the poles are placed at the same location regardless of the
linearisation point it might result in high control signals in the domain where the
closed loop poles are far away from the open loop poles. A way to improve the
dynamics in the whole working domain is by implementing gain scheduling. The non-
linear model is then linearised depending on the operating point and the controller
gains are found for each operating point and updated real-time. By implementing a
Linear Quadratic Regulator, LQR, it is not necessary to place the poles but instead
tune the penalty matrices Q and R. The LQR control approach with gain scheduling
is described in the following section.
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9.4 Linear Quadratic Regulator

Linear Quadratic Regulator, LQR, control with gain scheduling is chosen to improve
the response compared to the pole placement method. The implementation is iden-
tical to the pole placement, i.e. full state feedback with a pre-compensator, and only
the feedback and pre-compensator gains will be updated according to the piston
position. The implementation is shown in Figure 9.6.
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B C) +++
-

[[ \ur
s
1

.
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Figure 9.6: Simple block diagram of the controlled system using LQR with gain scheduling.

The arrows in Figure 9.6 indicate that F and KLQR are varied as a function of the
piston position. As a non-zero set point is desired the control law becomes as shown
in Equation (9.5)[Brogan, 1991, p. 443-445].

u = ≠KLQR x + F r (9.5)

where F is the inverse closed loop DC-gain and shown in Equation (9.6).

F = ≠
Ë
C(A ≠ B KLQR)≠1B

È≠1
(9.6)

The optimal feedback gain matrix, KLQR, is expressed in Equation (9.7).[Skogestad
and Postlethwaite, 2005, p. 346]

KLQR = R≠1 BT P (9.7)

where P = PT Ø 0 is the unique positive semi-definite solution of the Riccati equa-
tion in Equation (9.8).[Skogestad and Postlethwaite, 2005, p. 346]

AT P + P A ≠ P B R≠1 BT P + Q = 0 (9.8)
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Q and R are penalty matrices which are to be chosen. Q is a positive semi-definite
diagonal matrix, Q = QT Ø 0, and R is a positive definite diagonal matrix, R =
RT

> 0. The control gain calculated by Equations (9.7) and (9.8) minimises the
quadratic cost function in Equation (9.9). [Skogestad and Postlethwaite, 2005, p.
346]

Jr =
⁄ Œ

0
[xT Qx + uT Ru] dt (9.9)

It seen from Equation (9.9) that Q relates to the response of the states, x, and R
relates to the control signals, u. The advantage of using the LQR algorithm for
finding the feedback gain lies in the ability to weigh both the state response and
control signals. Based on the chosen weight matrices Q and R, the gain matrix
KLQR can be found which satisfies the desired closed loop response and magnitude
of control signals.

A gain scheduling strategy is utilised to decrease the steady state error seen during
the pole placement design, and furthermore compensate for the varying piston po-
sition which were seen in Figure 9.5. The non-linear model is therefore linearised
as a function of piston position, and the feedback gain matrix, KLQR, and pre-
compensator, F, are recomputed for the varying system and input matrices while
the weight matrices are kept constant. To get smooth functions and avoid unwanted
dynamics for KLQR and F, the points are linearly interpolated with a step size of 1
[%] of the stroke length.

9.4.1 Design of LQR Control

As a starting point for determining the weight matrices, Bryson’s rule is used which
normalises the control variables and inputs as shown in Equation (9.10).[Johansen,
2019]

Q(i, i) = 1
e

2
i,max

i œ [1, 2, 3]

R(j, j) = 1
u

2
j,max

j œ [1, 2] (9.10)

Where ei,max and uj,max are the maximum deviation of the controlled states and
control inputs, respectively. Bryson’s rule is used as a starting point for an iterative
process using the simulation while changing the diagonal entries of Q and R until
a satisfactory response in achieved. The weight matrices, Q and R, have been de-
termined based on the worst-case linearisation point which was found in Section 8.2.
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The input weight matrix, R, is increased from the normalised value to penalise large
control inputs which had a stabilising e�ect when a load force was applied however
at the cost of slower response. The entry of Q corresponding to the weight of the
velocity error is decreased as that resulted in a satisfactory response however the en-
tries were increased for the pressures to obtain better reference tracking. Controlling
the rod side or the piston side pressures yielded satisfactory results using the same
feedback gain and pre-compensator gain matrix.

The location of the uncompensated open loop poles and compensated closed loop
poles as a function of the piston position are shown in Figure 9.7.
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Figure 9.7: Uncompensated system when linearised for the whole piston stroke length, and com-

pensated system when the gains are updated as a function of piston position. The red dashed line

shows the natural frequency of the valves.

The compensated poles have been placed close to the uncompensated. The real pole
of the compensated system is however increased compared to the uncompensated.
Furthermore, at lower piston positions, the complex conjugate pole pair exceeds the
natural frequency of the valve. The control e�ort containing frequency content above
the natural frequency of the valve is therefore mitigated due to the physical limitation
of the valve as for pole placement. As the pole location of the compensated system
is close to the uncompensated, the step responses are compared. The purpose is to
determine whether the compensated system has been shaped any di�erent than the
uncompensated and conclude on whether open loop control would yield a similar and
satisfactory response. The responses of velocity, rod side pressure, and control e�ort
are seen in Figure 9.9.
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Figure 9.8: Piston velocity, rod side pressure, and control e�ort comparison of open loop and

closed loop response in the linear model.

The velocity response is close to identical when comparing the compensated and
uncompensated responses. The pressure response is similar however a settling time
of approximately 2 [s] is achieved compared to 8 [s] when open loop controlled. A
slight improvement is expected as the real pole is moved further away from the origin
for the compensated pole map in Figure 9.7. The valve responses are very similar and
do not saturate. While the pressure response improved when closed loop controlled,
both pressure and velocity are oscillatory with a large overshoot.

The benefit in choosing gain scheduling lies in achieving the desired response even
when operating conditions change. As the closed loop response did improve compared
to open loop and to analyse the e�ects of change in operating conditions, the closed
loop response is shown when tested on the linear model in three piston positions.
The velocity and rod side pressure response is shown in Figure 9.9.
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Figure 9.9: Closed loop response of velocity and pressure when tested on the linear model in three

di�erent piston positions: 10, 50 and 90 [%] of maximum stroke length.

Both the velocity and pressure responses are oscillatory with large overshoot. This
is also evident from the pole map in Figure 9.7 where the largest damping ratio is
approximately ’ = 0.3 for the complex conjugate pole pair. There is no improvement
in the transient response compared to pole placement, however, the steady state error
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for both velocity and rod side pressure has been eliminated although not evident in
Figure 9.9.

As the steady state error depends on operating points and these are expected to
vary in the non-linear model, an integrator is added to the control structure in the
next section to guarantee no steady state error during steps, independently of the
operating point. This is furthermore to improve the steady state error when operating
conditions are changed due to a disturbance. The controller gains will be found using
optimal quadratic theory. The controller thus becomes a Linear Quadratic Integral
controller, which will be described in the following section.
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9.5 Linear Quadratic Integral Control

Linear Quadratic Integral, LQI, control is implemented to remove steady state errors
on velocity and pressure during step references by increasing from a system type
0 to a system type 1[Philips and Parr, 2013, p. 199]. An integrator for both the
velocity and pressure is implemented as the velocity and pressure control are weighted
equally. The system is augmented by introducing two error states defined in Equation
(9.11).[Johansen, 2019]

ż =
C
ẋm,ref ≠ ẋm

pm,ref ≠ pm

D

= r ≠ C x (9.11)

where the pressure error state is either piston or rod side pressure depending on
which is controlled. The augmented state space model is shown in Equation (9.12)
and the corresponding block diagram in Figure 9.10.[Johansen, 2019]

C
ẋ
ż

D

=

Aa˙ ˝¸ ˚C
A 0

≠C 0

D
xa˙˝¸˚C
x
z

D

+

Ba˙˝¸˚C
B
0

D

u +
C
0
I

D

r (9.12)

y =
Ë
C 0

È

¸ ˚˙ ˝
Ca

C
x
z

D
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-

] [ \ur
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Figure 9.10: Simple block diagram of the controlled system using LQI control.

It should be noted that in addition to state feedback, an outer loop controls the
output which is not the case for pole placement and LQR. The LQI controller thereby
acts on the error between the reference and output. The control law is expressed in
Equation (9.13).[Johansen, 2019]
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u = ≠Ka xa (9.13)

where Ka = [KLQI KI ] and the gain matrices KLQI and KI are determined using
the optimal quadratic theory presented in Section 9.4. Ka is the solution to the
Riccati equation for the augmented model.

9.5.1 Design of LQI Control

Gain scheduling has not been utilised for this control method as it is expected that the
integrator can compensate for the steady state error in all piston positions which was
the largest improvement compared to a constant gain. Furthermore, gain schedul-
ing did not prove advantageous compared to a constant gain when comparing the
dynamic response of pole placement and LQR with gain scheduling.

The weight matrices Q and R are tuned for the worst-case linearisation point. Both
weight matrices are chosen similar to those of LQR however as Q is expanded with
two additional diagonal entries compared to LQR due to the two error states, two
additional parameters must be tuned. The weight of the error states has been chosen
considerably larger than the weight of the three system states which resulted in a
faster response as KI is increased. The pole locations of the uncompensated and
compensated system for piston and rod side pressure are shown in Table 9.2.

Uncompensated system Compensated system

⁄1 ≠0.464 ≠29.6

⁄2 ≠44.5 + j165 ≠46.4 + j167

⁄3 ≠44.5 ≠ j165 ≠46.4 ≠ j167

⁄4 ≠9 + j8.8

⁄5 ≠9 ≠ j8.8

Table 9.2: Locations of eigenvalues for the uncompensated system and with LQI control.

The closed loop and open loop poles have been plotted as a function of the piston
position in Figure 9.11 using the constant gain matrix Ka.
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Figure 9.11: Closed loop pole location when linearised for the whole piston stroke length using a

constant feedback gain matrix obtained by LQI. A zoomed view of the poles close to the origin is

provided in the right figure. The red dashed line shows the natural frequency of the valve.

The complex conjugate pole pair around 10 [rad/s] does not move significantly when
the piston position is changed with a damping ratio of approximately ’ = 0.7. From
Figure 9.11 it is however evident that the real pole is more aggressive compared to
the gain scheduled LQR controller and similar to pole placement travelling from 20
to 40 [rad/s] as the piston position is increased. The faster complex conjugate pole
pair exceeds the natural frequency of the valve as was also seen from the previous
control methods.

The compensated and uncompensated velocity, rod side pressure and control e�ort
step responses are compared in Figure 9.12.
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Figure 9.12: Piston velocity, rod side pressure and control e�ort comparison of open loop and

closed loop response in the linear model.

The velocity and pressure responses of the compensated system have improved com-
pared to the uncompensated. It can be seen that the damping of both velocity and
pressure is increased and the velocity response has no overshoot. This is also seen in
the pole map in Figure 9.11 where the real pole and slowest complex conjugate pole
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pair increase the system damping. The valve responses of the compensated system
are less aggressive compared to the uncompensated and do not saturate.

The velocity and pressure responses for the compensated system have furthermore
been tested on a step response for three di�erent piston positions in the linear model.
This is to conclude on the transient and steady state response when operating con-
ditions change. The results can be seen in Figure 9.13.
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Figure 9.13: Closed loop response of velocity and pressure when tested on the linear model in

three di�erent piston positions: 10, 50 and 90 [%] of maximum stroke length.

Figure 9.13 shows a satisfactory velocity response which is close to independent of the
piston position with a settling time of approximately 0.2 [s]. The rod side pressure
response varies when tested in di�erent piston positions and the worst response is
seen close to the end of the stroke length. The settling time for the rod side pressure
is approximately 0.5 [s] in all three piston positions. Both velocity and rod side
pressures have no steady state error regardless of the tested piston position.

The step responses have now been tested in the linear model for pole placement, LQR
with gain scheduling and LQI. The pole placement method showed an underdamped
velocity and rod side pressure response, however, a satisfactory settling time. When
evaluated in other piston positions, the responses varied and a steady state error
occurred. A gain scheduling strategy was proposed to compensate for the change in
dynamics when operating conditions varied and furthermore to decrease steady state
errors. The response was tuned using LQR, however, when compared to the open
loop dynamic response there was no significant improvement. The transient response
did not improve when evaluated in other piston positions, however, the steady state
error was eliminated for both pressure and velocity at the linearisation point of the
pressure and velocity. It was decided to implement an integrator to guarantee no
steady state error for a step reference as an error was expected when the controller
was tested in the non-linear model. This is due to the implemented gain scheduling
only compensating for a change in piston position while other operating conditions
could change causing a steady state error. The results of the velocity and rod side
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pressure responses have improved and the steady state error is removed.

The responses have only been compared in the linear model, and the results when
tested in the non-linear model are shown in the next chapter where the control
strategies are compared. In the next section, the system is analysed to determine
the three controllers capabilities when subjected to disturbance and noise.
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9.6 Disturbance and Noise Analysis

In this section, the frequency responses of the system with controllers are analysed.
The analysis is used to compare the controllers on reference tracking, disturbance
rejection, and noise attenuation. Throughout the section, the frequency dependency
(s) is omitted for simplicity and a scaled state space model is used to be able to com-
pare the frequency responses. The relation between the unscaled state space model
and the scaled state space model is shown in Equation (9.14) where the subscript
’s’ refers to the scaled model. The inputs are unchanged as the valve openings are
already normalised.

x = Mx xs, ẋ = Mx ẋs, u = Mu us, y = My ys

Mx =

S

WU
ẋm,max 0 0

0 ps 0
0 0 ps

T

XV , Mu = I, My =
C
ẋm,max 0

0 ps

D

(9.14)

The scaled state space model is expressed in Equation (9.15).

ẋs = M≠1
x A Mx¸ ˚˙ ˝

As

xs + M≠1
x A Mu¸ ˚˙ ˝

Bs

us, ys = M≠1
y C Mx

¸ ˚˙ ˝
Cs

xs (9.15)

The Q and R matrices are likewise scaled by setting ei,max = uj,max = 1 according
to Equation (9.10) as these were equal to the maximum values used in the scaled
model.

The block diagram of the compensated closed loop system controlled using the pole
placement method and LQR using the gains from the worst-case linearisation point
is shown in Figure 9.14 where disturbance, d, and measurement noise, n, are imple-
mented. It should be noted that d and n are scaled 3x1 column vectors.
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Figure 9.14: Block diagram of system controlled using pole placement and LQR with disturbance

and noise.

In Figure 9.14 the disturbance is included in the state equation and could be the
term including the load force, Fl, in the mechanical model. The noise is added to
the feedback signal as it only a�ects the measurements.

The closed loop transfer function matrix, Gcl, sensitivity function, S, and noise trans-
fer function matrix, T, are expressed in Equation (9.16) and derived in Appendix
D.2.1.

ys = Cs (s I ≠ As + Bs Ks)≠1 Bs Fs¸ ˚˙ ˝
Gcl

rs + Cs (s I ≠ As + Bs Ks)≠1
¸ ˚˙ ˝

S

d

≠ Cs (s I ≠ As + Bs Ks)≠1 Bs Ks¸ ˚˙ ˝
T

n (9.16)

The block diagram of the compensated closed loop system controlled by LQI is shown
in Figure 9.15 where disturbance and measurement noise are implemented. The noise
is added to the feedback signal and a�ects both the states and outputs which are fed
back.
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Figure 9.15: Block diagram of system controlled using LQI with disturbance and noise.

The closed loop transfer function matrix, Gcl, sensitivity function, S, and noise trans-
fer function matrix, T, are expressed in Equation (9.17) and derived in Appendix
D.2.2.

ys = ≠ Cs

3
s I ≠ As + Bs KLQI s ≠ Bs KI s

1
s

I Cs

4≠1
Bs KI s

1
s

I
¸ ˚˙ ˝

Gcl

rs

+ Cs

3
s I ≠ As + Bs KLQI s ≠ Bs KI s

1
s

I Cs

4≠1

¸ ˚˙ ˝
S

d

+ Cs

3
s I ≠ As + Bs KLQI s ≠ Bs KI s

1
s

I Cs

4≠1 3
Bs KI s

1
s

I Cs ≠ BsKLQI s

4

¸ ˚˙ ˝
T

n

(9.17)

Singular Value Decomposition, SVD, which was described in Section 8.3 can be used
to find the maximum and minimum singular values of Gcl, S, and T. These maxi-
mum and minimum singular values are used to analyse and compare the closed loop
systems. The ability of the closed loop system to track references, reject distur-
bances, and attenuate noise can be analysed by the criteria listed below[Skogestad
and Postlethwaite, 2005, p. 341-342]:

• Reference tracking: ‡(Gcl) ¥ ‡(Gcl) ¥ 1

• Disturbance rejection: ‡(S) small

• Noise attenuation: ‡(T) small
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However, disturbance rejection is often a requirement for low frequencies whereas
noise attenuation is often a requirement for higher frequencies[Skogestad and Postleth-
waite, 2005, p. 341-342].

The maximum and minimum singular values of the closed loop transfer function ma-
trices, sensitivity function matrices, and noise transfer function matrices are plotted
in Figure 9.16 for the three controllers. The solid lines are maximum singular val-
ues and the dashed lines are minimum singular values. The red graphs are for pole
placement, PP, control, blue graphs are for LQR control, and green graphs are for
LQI control.
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Figure 9.16: Singular values of the closed loop transfer function matrices, sensitivity function

matrices, and noise transfer function matrices for the system with controllers.

The left plot in Figure 9.16 shows the frequency responses of the singular values for
the three closed loop transfer functions, i.e the relationship between references and
outputs. It is seen that ‡(Gcl) ¥ ‡(Gcl) ¥ 1 for frequencies below approximately 1
[rad/s] for all controllers. For the system with LQR control, the minimum singular
value starts to decrease at around 1 [rad/s] whereas the maximum singular value
is unchanged which means that the gain varies with the direction of the reference
vector and that the outputs are not able to follow the references for all reference
vector directions. The maximum and minimum singular values diverge around 5
[rad/s] for PP and around 10 [rad/s] for LQI which means the outputs are able to
follow higher frequency references for all directions compared to PP and LQR. The
two additional integrator poles for LQI result in a steeper decrease in the closed
loop system gain for higher frequencies. For the systems with PP and LQR control,
the maximum singular values have a resonance peak of 6 [dB] at around 200 [rad/s]
whereas the maximum singular value for LQI is less a�ected and has a lower gain.
This is also seen from the location of the poles for LQI in Figure 9.11 where the
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complex conjugate pole pair results in a higher damping ratio compared to PP and
LQR in Figure 9.3 and 9.7, respectively. The resonance peak at 200 [rad/s] for PP
and LQR results in amplification of the output signals for some directions of the
reference vector. That results in overshoot where a peak of 6 [dB] corresponds to a
gain of approximately 2 which is undesired.

The middle plot in Figure 9.16 shows the frequency responses of the singular values
for the three sensitivity functions, i.e the relationship between disturbances and
outputs. The gains of the singular values for the LQI control method are significantly
smaller for lower frequencies compared to PP and LQR which indicates that the LQI
controller is more capable of rejecting low frequency disturbances, e.g. a constant
load force. At lower frequencies, the system with LQR control has a slightly higher
gain than PP, however still around -20 [dB] for both. For higher frequencies, the
responses are similar for all controllers where the gains start to decrease which means
higher frequency disturbances have a smaller impact on the outputs. The ability of
the closed loop systems to reject the load force, Fl, will be further studied when
implementing the controllers in the non-linear model in Chapter 10.

The right plot in Figure 9.16 shows the frequency responses of the singular values
for the three noise transfer functions, i.e the relationship between measurement noise
and outputs. For the system with LQI control, the maximum singular value has a
significant resonance peak around 200 [rad/s] which indicates that noise is amplified
at these frequencies for some of the directions of the noise vector. The system with
LQR control is more capable of attenuating measurement noise at higher frequencies
according to Figure 9.16 compared to both PP and LQI, which is desired in a noisy
environment.

Even though the LQI controller results in a good closed loop response and reject low
frequency disturbances, it is not expected to perform well in practice due to the noise
amplification according to the right plot in Figure 9.16. However, it should be noted
that the valve dynamics are not included which may filter out higher frequencies.
Furthermore, the gain of the closed loop frequency response starts to decrease around
10 [rad/s] which means frequencies of the noise above 10 [rad/s] could be low pass
filtered. It will, however, introduce phase lag.

In conclusion, the LQI controller is able to track references over a larger frequency
range compared to PP and LQR as ‡(Gcl) ¥ ‡(Gcl) ¥ 1 up to a higher frequency.
LQI is better at rejecting low frequency disturbances than PP and LQR as ‡(S) is
smaller for lower frequencies, however LQI has a higher noise gain which means
measurement noise may be amplified. LQR is better at attenuate measurement noise
compared to PP and LQI as ‡(T) is smaller for higher frequencies. Based on the
closed loop, disturbance, and noise analysis, LQI yields the best results if measure-
ment noise is accounted for.
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Chapter 10

Results and Discussion

The results when implementing the controllers designed in Chapter 9 are presented
in this chapter. For each of the control methods, the following characteristics are
analysed: stability, disturbance rejection, sensitivity to parameter variation, steady
state error, transient response, and closed loop frequency response[Philips and Parr,
2013, p. 175]. These characteristics are analysed to be able to compare the di�erent
control methods.

As there was no access to the physical test facilities to evaluate the designed con-
trollers, emphasis is put on testing the controllers in a physical environment. All
controllers are tested in the non-linear simulation model where measurement noise
and discrete e�ects are included as described in Appendix C.2. The sensitivity to-
wards model uncertainties of each control system is analysed by varying system
parameters. The disturbance rejection is tested by adding the load force. The max-
imum allowed load force is defined in Appendix C.4. Steady state and transient
responses are analysed visually and by calculating the Mean Absolute Error, MAE,
between the references and system outputs.

10.1 Simulation Results

In this section, the controllers are tested in the non-linear simulation model. A ref-
erence trajectory is developed to compare the controller performance. The reference
tracking of the controllers will first be visually compared for two di�erent test condi-
tions. First with a varying velocity and constant pressure references and thereafter a
low amplitude sinusoidal velocity reference and varying pressure reference. Hereafter,
the reference tracking for parameter variation and for other operating conditions is
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numerically compared with the Mean Absolute Error, MAE, between reference and
output. Finally, the steady state errors for PP and LQR are compared.

10.1.1 Visual Comparison of First Test Condition

The first test condition for visual comparison is with the velocity reference shown in
Figure 10.1.

Figure 10.1: Velocity reference containing ramp, low frequency sinusoidal, step and wide-frequency

reference.

The velocity reference includes a ramp, sinusoidal, stepped, and wide-frequency ref-
erence. The initial piston position is 50 [%] of stroke length, the peak velocity is
±0.025 [m/s] and the rod side pressure reference, pmr,ref , is constant at 50 [bar]. As
no load force is applied during these tests, the maximum negative velocity is ≠0.03
[m/s] and the maximum positive velocity is 0.05 [m/s] for pmr,ref =50 [bar] according
to Figure C.9 which means the references are within the saturation limits.

Ramp and Step References

The PP, LQR with gain scheduling, and LQI controllers are compared for ramp and
step references in Figure 10.2
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Figure 10.2: Velocity and rod side pressure response for the velocity reference presented in Figure

10.1 and a constant rod side pressure reference.

The steady state velocity error during step for PP and LQR is constant and for ramp
references increasing, while the error is zero for the step reference and constant during
the ramp when considering LQI. This is due to the PP and LQR controlled systems
being type 0 systems while the order of the LQI controlled system was increased to
a type 1 when the integrators were added[Philips and Parr, 2013, 199].

PP and LQR are not able to follow negative velocity references. This could be
caused by the controllers being developed based on a linear model which is linearised
in a positive velocity. As the velocity reference is in the opposite direction, a larger
control gain is required due to the area ratio which is not accounted for in the control
design. LQI can follow negative velocity references as the integrator compensates for
the error between outputs and references.

The step responses of the velocity show a fast rise time, large overshoot and oscilla-
tory response for LQR. A smaller overshoot and less oscillatory response is achieved
for PP while the rise time is lower compared to LQR. LQI shows the slowest response
however without any oscillations and overshoot. The settling time of PP and LQR
are similar, where LQI is slower.

These results were also found during the design of the controllers where a slower
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and more damped response was seen for LQI when tested on the linear model as a
slower complex conjugate pole pair was placed with a damping ratio of approximately
’ = 0.7. PP and LQR are seen to be more dominated by the underdamped complex
conjugate pole pair.

The rod side pressure controlled using PP and LQR shows a general o�set compared
to the reference, where the o�set is greatest for LQR. When the rod side pressure is
controlled by LQI the tracking is generally better and during the constant velocity
reference, the steady state pressure error is eliminated. The pressure response during
all references in Figure 10.1 is similar and is therefore not commented further.

Sinusoidal and Wide-Frequency References

The PP, LQR with gain scheduling, and LQI controllers are compared for sinusoidal
and wide-frequency references in Figure 10.3.
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Figure 10.3: Velocity and rod side pressure response for the velocity reference presented in Figure

10.1 and a constant rod side pressure reference.

PP and LQR are not capable of following negative velocity references for the sinu-
soidal and wide-frequency references as was also seen for the ramp reference. The
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bandwidth of PP and LQR is however higher for the wide-frequency range com-
pared to LQI for positive velocities, where satisfactory reference tracking is achieved.
LQI generally lags the wide-frequency reference due to the additional slower com-
plex conjugate pole pair. A faster rise time for PP and LQR was seen during the
step response, which is the probable cause of greater reference tracking for the wide-
frequency reference. The closed loop transfer functions in Figure 9.16 show a larger
frequency reference tracking for certain input directions for PP and LQR compared
to LQI which may explain the improved reference tracking.

The valve control e�ort is shown for the tested reference in Figure 10.4.
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Figure 10.4: Control e�ort of the valves during the reference in Figure 10.1.

The control outputs for PP and LQR are similar however LQI stands out during the
negative velocity where xvmp is close to saturating due to a low piston side pressure
caused by the already low rod side pressure reference. It should be noted that
negative xvmp connects the piston side chamber to tank, and negative xvmr connects
the rod side chamber to pump. To achieve the desired negative velocity, the valve has
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to almost open fully as the pressure drop across the orifice is low when connected to
tank which is also seen in Figure C.9 where the velocity and pressure references are
close to the saturation limit. The reason why the valves are close to saturation only
for negative velocities may be caused by the area ratio of the cylinder. Accelerating
the piston in the negative direction requires a higher pressure in the rod side chamber
as Amr < Amp. Since PP and LQR are not linearised for negative velocities, a lower
control e�ort for xvmp is observed compared to LQI.

During the wide-frequency reference it can be seen how the control outputs of LQI
generally lags the control outputs of PP and LQR which was also seen during the
response in Figure 10.3. This may be caused by the additional integrator poles which
introduce phase lag.

10.1.2 Visual Comparison of Second Test Condition

The second test condition for visual comparison is with the rod side pressure reference
shown in Figure 10.5.

Figure 10.5: Rod side pressure reference containing ramp, low frequency sinusoidal, step and

wide-frequency reference.

The pressure reference includes the same trajectories as the velocity reference. The
pressure reference covers a pressure range from 30 [bar] to 170 [bar], where ps = 200
[bar]. The velocity reference is sinusoidal with an amplitude of 0.0075 [m/s]. The
initial piston position is 50 [%] of stroke length, and no load force is applied.
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Ramp and Step References

The PP, LQR with gain scheduling, and LQI controllers are compared for ramp and
steps references in Figure 10.6.
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Figure 10.6: Velocity and rod side pressure response with the rod side pressure reference seen in

Figure 10.5 and a velocity sinusoidal reference.

The rod side pressure reference is followed well during the ramp and step references
when controlled with LQI. A constant steady state error during the ramp and zero
steady state error during the step is seen. The error during the ramp builds up
when looking at the PP response, while a constant error during steps is seen. For
the LQR response, the pressure error during the ramp reference is close to constant
and a constant steady state error is also seen during the step. Apart from the LQR
response during ramp reference, the theory regarding system types holds true as was
also seen when the reference was tested on velocity.

For the transient rod side pressure response during step references, PP and LQR
have no overshoot, while LQI has a larger overshoot. The rise time of PP and LQI
is similar and low compared to LQR which has a slow rise time. The settling time
for the three controllers is approximately equal.

The velocity is generally followed in Figure 10.6 and 10.7, where LQI shows the best
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reference tracking.

Sinusoidal and Wide-Frequency References

The PP, LQR with gain scheduling, and LQI controllers are compared for sinusoidal
and wide-frequency references in Figure 10.7.
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Figure 10.7: Velocity and rod side pressure response with the rod side pressure reference seen in

Figure 10.5 and a velocity sinusoidal reference.

The rod side pressure reference tracking for the low frequency sine wave is in general
followed well for PP and even better for LQI while LQR lags the reference signifi-
cantly.

For the wide-frequency pressure reference it can be seen that LQR does not follow the
reference well which is justified by the slow rise time seen during the step reference.
This may be explained by the closed loop frequency response of the singular values in
Figure 9.16 where the lower singular value gain decreases earlier for LQR compared
to PP and LQI indicating worse reference tracking for certain reference directions.
PP and LQI generally lag the pressure reference, however improved responses are
seen compared to LQR.
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The valve control e�ort during the tested reference in Figure 10.6 and 10.7 is seen
in Figure 10.8.
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Figure 10.8: Control e�ort of the valves during the reference in Figure 10.5.

The control e�ort for LQI has larger fluctuations than PP and LQR. When tested
on the wide-frequency reference, the control e�ort of LQR is low compared to PP
and LQI, which confirms the slow response seen in Figures 10.6 and 10.7.

Noise with a frequency up to 3100 [rad/s] was implemented on the feedback signal
for all controllers. As seen in the noise transfer functions in Figure 9.16, the LQI
controller has a significant resonance peak around 200 [rad/s] and is expected to
amplify noise. This is not seen to have any e�ect on the responses. The natural
frequency of the valve dynamics is 350 [rad/s] and frequencies above that are expected
to be filtered out. As the peak occurs at 200 [rad/s] noise at these frequencies are
not expected to be attenuated. However, the noise amplification is dependent on
the direction of the noise vector and is not amplified for all directions. Noise in a
physical system can still be a problem as other noise vector directions and higher
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frequencies or amplitudes may be present and in that case, filters should be designed
and implemented.

In conclusion, a generally better response is seen for LQI control in Figures 10.2,
10.3, 10.6, and 10.7. The system follows both negative and positive velocities, elimi-
nates steady state error during step references for pressure and velocity, and a small
constant error is seen during ramp references. The step response is damped with small
or no overshoot. A lower bandwidth for LQI is, however, seen for the wide-frequency
reference. The measurement noise does not have an impact on the responses even
though the LQI controller was expected to amplify noise. When both pressure and
velocities are to be controlled equally the LQI controller shows more promising results
compared to PP and LQR where especially LQR deviates from the pressure reference.

The controllers have now been tested in the non-linear model for piston positions
where the linear controllers were designed. In the next section, the controllers are
tested for di�erent piston positions and pressures to conclude on the controllers
ability to handle change in operating conditions.

10.1.3 Operating Conditions

The visual comparison was limited to the same piston position and control of the
rod side pressure. The performance at 10, 50, and 90 [%] of stroke length will be
numerically compared as well as the performance for di�erent pressure references for
pmr and pmp at 10, 100, and 180 [bar]. The mean absolute error, MAE, is calculated
using Equation (10.1) for each operating condition, where r is the velocity or pressure
reference, y is the simulated velocity or pressure output, and n is the number of data
points with a sampling frequency of 1 [kHz].

MAE =
q

n

i=1 |ri ≠ yi|
n

(10.1)

MAE is chosen compared to the root mean square error, RMSE, as MAE weights
large errors less. Both methods are however expected to give nearly same results.
The lower the MAE is, the lower the error between the reference and simulated
output is. During the change of operating conditions, no load force is applied and
the velocity reference contains the first 14 [s] of Figure 10.1 but with a peak of 0.014
[m/s] to make sure that the valves do not saturate. MAE is calculated from 1 ≠ 14
[s] as the controllers need to settle at the references. All the di�erent operating
conditions are shown in Table 10.1.
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xm [%] pm [bar]

10 50 90 10 100 180

Pole placement

ẋm [m/s] 10≠4· 20 19 20 36 19 -

pmp [bar] 2.1 2.1 2.1 5.4 2.1 -

ẋm [m/s] 10≠4· 14 13 13 - 13 22

pmr [bar] 5.8 5.9 5.9 - 5.9 3.5

LQR with gain scheduling

ẋm [m/s] 10≠4· 20 21 22 23 21 -

pmp [bar] 8.7 8.9 9.2 20 8.9 -

ẋm [m/s] 10≠4· 21 21 22 - 21 21

pmr [bar] 20 20 20 - 20 15

LQI

ẋm [m/s] 10≠4· 5.9 5.7 6.0 10 5.7 -

pmp [bar] 0.23 0.22 0.23 1.3 0.22 -

ẋm [m/s] 10≠4· 5.6 5.5 5.9 - 5.5 5.9

pmr [bar] 0.32 0.30 0.34 - 0.30 0.35

Table 10.1: MAE for velocity and pressures when operating conditions are changed.

The left column describes whether ẋm and pmp or ẋm and pmr are controlled. The
top row describes the initial piston position and pressure reference. The pressure
reference is 100 [bar] when changing the initial piston position between 10, 50, and
90 [%]. The initial piston position is at 50 [%] of stroke length when changing the
pressure reference between 10, 100 and 180 [bar]. The value inside each cell of the
table is the calculated MAE. When the pmp reference is 180 [bar] it requires the rod
side pressure to be higher than the supply pressure as pmr ¥ pmp/–. The cells are
therefore referred to as ’-’. When the pmr reference is 10 [bar] it requires the piston
side pressure to be pmp ¥ pmr – ¥ 5.9 [bar]. The pressure levels become even lower
during pressure tracking. This operating condition will, therefore, test the limit of
possible pressure and velocity references rather than comparing the performance of
the controllers. As an example, this is seen in Figure C.9 for case 4 where the negative
velocity reference is limited by the low pmr,ref with no load force. These cells are,
therefore, also referred to as ’-’.



126 Chapter 10. Results and Discussion

The errors are very similar at all piston positions. This was as expected for LQR as
the gains were updated as a function of the piston position. The same tendency is
however seen for PP and LQI, and the necessity of gain scheduling can therefore be
questioned. The steady state error for LQR and PP at di�erent piston positions is
later compared, where this is further discussed.

From the continuity equations, when the volume decreases in the piston side chamber
for xm = 10 [%], the piston side pressure gradient gain increases. Likewise, the rod
side pressure gradient gain increases for xm = 90 [%]. This could result in pressure
oscillations, however, it did not have any e�ect on the error.

At 10 [bar] pressure reference, the oil sti�ness, —, is low. According to the continuity
equation, the pressure gradient gain is therefore lower and the system is expected
to becomes slower. This is generally seen from Table 10.1 where the pressures of
100 and 180 [bar] result in a more sti� oil and thereby also a lower error with the
exception of pmp when tested with LQR.

The linearisation point chosen when controllers were designed, was based on a worst-
case condition to guarantee system stability when operating conditions change. While
the MAE di�ers in Table 10.1 when operating conditions were changed it can be
concluded that stability was still maintained.

10.1.4 Parameter Variations and Disturbance Rejection

In this section, it is analysed whether the controllers are robust towards disturbances
and parameter variations. The parameters used during control design are based on
the same parameters used in the simulation model. As errors between the physical
test setup and simulation model were seen during validation, the controllers are tested
when parameters are varied to determine how the controller performance di�ers when
tested in a di�erent environment.

The varied parameters are the ones which contribute the most to the uncertainty; vis-
cous friction, B, Coulomb friction, ·c, the oil bulk modulus, —0, and the air content in
the fluid, –, and have been increased and decreased from the validated values. They
are individually changed according to the estimated uncertainty of each parameter.
Changing the inertia will furthermore generalise the results, it is, however, omitted.
The robustness against the load force Fl is analysed by changing it from 0% to 25%
and 75% of max allowed load force which is defined in Figure C.10.

The mean absolute error is calculated before and after the parameter variation.
The di�erence in the mean absolute error, �MAE, before and after the parameter
variation is calculated using Equation (10.2).

�MAE = MAEafter ≠ MAEbefore (10.2)
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�MAE will only show how much the error is changed, and not the relative change
before and after the parameter variation. To determine whether the controllers are
robust towards parameter variation, �MAE must be seen in relation to MAEbefore.
As LQI has a lower MAE than PP and LQR as seen in Table 10.1, �MAE must
equally be lower for LQI to have the same relative change in error, compared to PP
and LQR.

The same reference is used for all comparisons: the initial piston position xm,i = 50
[%] of stroke length, the velocity reference contains the first 14 [s] of Figure 10.1,
pmr,ref = 50 [bar], and the load force Fl = 0 [N]. The load force is however changed
in the last column. MAE is calculated from 1 ≠ 14 [s] as the outputs need to settle
at the references.

B ·c —0 – Fl

≠25% 25% ≠100% 100% ≠25% 25% ≠50% 50% 25% 75%

Pole placement

ẋm [m/s] 10≠5· -3.8 3.7 -2.3 2.6 -1.1 -0.85 -0.34 -0.17 34 510

pmr [bar] 10≠2· 4.9 -3.2 -0.25 0.29 0.66 0.51 0.65 0.92 580 3300

LQR with gain scheduling

ẋm [m/s] 10≠5· 1.8 -1.3 -0.029 0.21 0.56 -0.48 -0.43 0.47 -170 -82

pmr [bar] 10≠2· 7.0 -7.2 1.9 -2.2 13 -8.3 -4.4 4.1 -1700 340

LQI

ẋm [m/s] 10≠5· -2.4 2.4 -0.71 0.85 0.15 -0.084 -0.23 0.29 -7.6 0.23

pmr [bar] 10≠2· -3.2 3.2 -1.4 1.2 1.7 -0.9 -0.12 1.4 -18 -1.1

Table 10.2: �MAE when system parameters are varied.

In Table 10.2, the �MAE values when changing parameters are shown. It should be
noted that all values for velocity are multiplied by 10≠5 and all values for pressure are
multiplied by 10≠2. It is seen in the table that the change in MAE is small and in the
same range for all controllers when changing B, ·C , —0, and –. Furthermore, �MAE
is small and a mix of positive and negative values which indicates that the changes
are caused by other uncertainties as well, e.g. improved operating conditions. As
LQI has a lower MAE compared to PP and LQR and �MAE is equal for the three
controllers, the relative change in error for LQI is higher than PP and LQR.

In Table 10.2 it is seen that the LQI controller is robust towards the change in
load force, Fl, due to the small �MAE whereas the �MAE’s for PP and LQR are
significantly larger. This was also seen in the frequency response of the sensitivity
function in Figure 9.16 where the low frequency gain is significantly smaller for LQI.

The robustness towards the change in load force is shown by stepping the load force
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for a visual comparison. The settling time of the load steps is 0.04 [s] and the initial
piston position is 50 [%] of the stroke length. The velocity and pressure references
are shown in Figure 10.9 together with the comparison of the controllers.
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Figure 10.9: Velocity and pressure references and outputs for all controller when stepping the load

force.

In Figure 10.9 the same tendency is seen where LQI follows the reference for both
velocity and pressure with a small error. During the steps where higher frequencies
are present, the PP, LQR and LQI controllers result in velocity spikes which can be
related to the frequency response of the sensitivity functions in Figure 9.16 where
the gains are equal for higher frequencies and spike around 200 [rad/s]. The PP and
LQR controllers follow the velocity with a slightly larger error and the pressure with
a significantly larger error compared to LQI. The control signals, xvmp and xvmr,
are not plotted but did not saturate and it was observed that LQI results in slightly
more aggressive control signals. This is due to the integrators acting on the tracking
error between reference and output for LQI which is not the case for PP and LQR.
In conclusion, all controllers are fairly insensitive to parameter variations, and LQI
is robust towards changes in the load force.
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10.1.5 Steady State Error

By designing LQR with gain scheduling it is expected that the steady state error
will decrease compared to PP control since the pre-compensator gain is updated as a
function of the piston position. The steady state errors for these two controllers are
compared for velocity reference steps from 0 [m/s] to ±0.03 [m/s] and for pressure
reference steps from 100 [bar] to 150 [bar]. This is done for an initial stroke length
of 10, 50, and 90 [%]. The comparison is seen in Table 10.3 and LQI is not shown
due to zero steady state error for all tests.

+0.03 [m/s] ≠0.03 [m/s] +50 [bar]

xm [%] Reference Pole placement

ẋm [m/s] 10≠4· 4.3 83 7.7
10

pmr [bar] 0.22 15 7.7

ẋm [m/s] 10≠4· 5.1 81 8.0
50

pmr [bar] 0.93 15 7.7

ẋm [m/s] 10≠4· 7.9 78 7.9
90

pmr [bar] 0.59 7.2 7.8

LQR with gain scheduling

ẋm [m/s] 10≠4· 22 77 14
10

pmr [bar] 40 7.7 21

ẋm [m/s] 10≠4· 22 77 14
50

pmr [bar] 40 7.2 21

ẋm [m/s] 10≠4· 54 83 15
90

pmr [bar] 42 15 21

Table 10.3: Steady state error when PP and LQR are tested for a step reference on velocity and

pressure.

The values in each cell are the absolute value of the steady state error. It is expected
that the LQR with gain scheduling would have a lower steady state error at 10
and 90 [%] of stroke length compared to PP since the linearisation point for pole
placement, PP, is xm = 50 [%]. When stepping the linear model with LQR with gain
scheduling at 10, 50 and 90 [%] of stroke length in Figure 9.9, the steady state error
was eliminated, but by doing the same for PP in Figure 9.5, the steady state error
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was constant at 10 and 90 [%] of stroke length. The steady state error is, however, in
general lower for PP at 10, 50 and 90 [%] of stroke length in Table 10.3. As the error
of PP does not change depending on the piston position LQR with gain scheduling
proved unnecessary in regards to steady state error.

10.1.6 Final Remarks

The validation was only conducted for piston positions between 70 and 85 [%] of
the piston stroke length. The model must in addition be validated in other piston
position and velocities. The controller performance is therefore not guaranteed in
practice due to possible model deviations.

The controllers were designed based on a worst-case linearisation point. The point
was chosen as a compromise between low natural frequency, low damping ratio and
largest coupling of the system. It is assumed that the controllers will ensure system
stability in the whole operating domain as this is the most conservative case. As none
of the controlled systems became unstable the chosen strategy proved successful.
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Conclusion

The focus of this thesis is Investigation of Separate Meter-In Separate Meter-Out
Control Strategies. The second part contains an analysis and control of a specific
hydraulic SMISMO system and the following question has been answered during Part
II:

• How can controllers be designed for the system to reduce reference tracking
error?

To answer the question, a dynamic model was derived, validated, and analysed. The
system was linearised in a worst-case linearisation point which considers the natural
frequency, damping ratio and system couplings. As the system proved to be ill-
conditioned and large couplings occur, MIMO controllers were designed. The linear
controllers were tested under several conditions to conclude on reference tracking.

Three controllers were designed: Pole Placement, PP, Linear Quadratic Regulator,
LQR, with gain scheduling, and Linear Quadratic Integral, LQI. The controllers were
designed to minimise tracking error where velocity and pressure reference tracking
were weighted equally.

In regards to steady state error, for stepped and ramped velocity and pressure refer-
ences, LQI was superior compared to PP and LQR with gain scheduling. The integral
action on the reference error of the LQI controller eliminated the steady state error
during step references and with a constant error during ramped references. Both
PP and LQR with gain scheduling had a constant steady state error and increasing
error during ramped references. Even though the feedback gain matrix and pre-
compensator for LQR with gain scheduling were updated as a function of the piston
position, the steady state error was higher compared to PP.
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For the transient response during stepped velocity references, the rise time of PP and
LQR was lower compared to LQI. When stepping the pressure reference, the rise time
of PP and LQI was lower compared to LQR. The settling time when stepping the
velocity was twice as low for PP and LQR compared to LQI. When stepping the
pressure the settling time were equal for PP, LQR, and LQI. During the settling
time of stepped references, PP had a lower tracking error compared to LQR and
LQI. The lower rise time of PP did not result in a large overshoot and the tracking
error was kept lower.

The responses for the wide-frequency velocity reference when controlled with PP
and LQR showed a larger bandwidth compared to LQI. However, when pressure was
controlled, LQR showed a lower bandwidth compared to PP and LQI. The LQI was
lagging the reference for higher frequencies due to the introduced phase lag caused
by the additional integrator poles. When parameters were varied, LQI showed the
greatest relative change in tracking error. The absolute change in error was however
similar for PP, LQR and LQI. Finally, the disturbance rejection of LQI showed better
results for both velocity and pressure control compared to PP and LQR due to the
low gain of the sensitivity function at lower frequencies. Furthermore, the integrators
act on the tracking error between reference and output for LQI which was not the
case for PP and LQR.

LQI generally lowered reference tracking error when all references are weighted
equally. The noise amplification should, however, be considered if implemented in a
physical test setup.



Chapter 12

Future Works

This chapter will present relevant future work in continuation of the work conducted
throughout this thesis.

Piston Velocity Gain Scheduling

In Part II, the system was linearised in a positive piston velocity and it was seen that
the PP and LQR controllers were poor at tracking negative velocities possibly due to
the piston area ratio. An extension to the control method could be gain scheduling
where the gains are calculated as a function of piston velocities. In that way, the
controller would account for the piston area ratio and possibly improve the tracking
for negative piston velocities.

Piston Velocity Estimation

For the controllers to be implemented in the given test setup in Part II, the piston
velocity should be estimated. That would require an estimator to be designed which
estimates the velocity based on the available measurements. The poles for the esti-
mator should be placed, such that the velocity estimation is updated faster than the
controller acts. The estimator could be extended to a Kalman filter which finds the
optimal estimator gain matrix[Skogestad and Postlethwaite, 2005, p. 346].
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Switching Control

It was found that the pressure in the non-load carrying chamber should be con-
trolled meaning the control outputs must change depending on the direction of the
load force. Throughout the thesis, the controllers have not been tested for changes
in the load force direction. To be able to implement the controllers in a physical
environment where the direction of the load force may change, changing between
controllers should be considered. For full state feedback control, the switching be-
tween controllers would require the feedback gain matrix and pre-compensator to
change. The switching should be made such that high frequencies do not a�ect the
dynamics. This could be done by interpolation between the values to get a continuous
signal such that a smooth transition is achieved.

Weight of Control Variables

The characteristics of the tested controllers were evaluated equally for velocity and
pressure control. This decision was possible as an application was not considered. If
a specific application is chosen, the importance of one control variable may not be
as important as the other. Instead, one of the control variables may be designed to
improve the response of the other. As an example, if pressure control was weighted
less than the velocity in this thesis, the velocity tracking may be improved.
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Appendices
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Appendix A

Transfer Functions

Piston Position

xp(s)
Qp(s) = gxpQp(s) = Ap —p Vr

(Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp) s
(A.1)

xp(s)
Qr(s) = gxpQr (s) = Ar —r Vp

(Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp) s
(A.2)

xp(s)
xvp(s) = gxpxvp(s) = a1 s + a0

(b3 s3 + b2 s2 + b1 s + b0) s
(A.3)

where:

a1 = Ap —p kQpxvp Vr

a0 = Ap —p —r kQpxvp kQppr

b3 = Vp Vr M

b2 = ≠—p kQppp Vr M + —r kQrpr Vp M

b1 = ≠—p —r kQppp kQrpr M + A
2
p —p Vr + A

2
r —r Vp

b0 = A
2
p —p —r kQrpr ≠ A

2
r —p —r kQppp (A.4)
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xp(s)
xvr(s) = gxpxvr (s) = a3 s + a2

(b3 s3 + b2 s2 + b1 s + b0) s
(A.5)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a3 = Ar —r kQrxvr Vp

a2 = ≠Ar —p —r kQrxvr kQppp (A.6)

Piston Velocity

ẋp(s)
Qp(s) = gẋpQp(s) = Ap —p Vr

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(A.7)

ẋp(s)
Qr(s) = gẋpQr (s) = Ar —r Vp

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(A.8)

ẋp(s)
xvp(s) = gẋpxvp(s) = a1 s + a0

b3 s3 + b2 s2 + b1 s + b0
(A.9)

where a1, a0, b3, b2, b1, and b0 are expressed in Equation (A.4).

ẋp(s)
xvr(s) = gẋpxvr (s) = a3 s + a2

b3 s3 + b2 s2 + b1 s + b0
(A.10)

where a3 and a2 are expressed in Equation (A.6), and b3, b2, b1, and b0 are expressed
in Equation (A.4).

Piston Acceleration

ẍp(s)
Qp(s) = gẍpQp(s) = Ap —p Vr s

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(A.11)

ẍp(s)
Qr(s) = gẍpQr (s) = Ar —r Vp s

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(A.12)

ẍp(s)
xvp(s) = gẍpxvp(s) = (a1 s + a0) s

b3 s3 + b2 s2 + b1 s + b0
(A.13)
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where a1, a0, b3, b2, b1, and b0 are expressed in Equation (A.4).

ẍp(s)
xvr(s) = gẍpxvr (s) = (a3 s + a2) s

b3 s3 + b2 s2 + b1 s + b0
(A.14)

where a3 and a2 are expressed in Equation (A.6), and b3, b2, b1, and b0 are expressed
in Equation (A.4).

Piston Side Pressure

pp(s)
Qp(s) = gppQp(s) = —p Vr M s

2 + A
2
r —p —r

(Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp) s
(A.15)

pp(s)
Qr(s) = gppQr (s) = ≠ Ap Ar —p —r

(Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp) s
(A.16)

pp(s)
xvp(s) = gppxvp(s) = a6 s

2 + a5 s + a4
b3 s3 + b2 s2 + b1 s + b0

(A.17)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a6 = —p kQpxvp Vr M

a5 = —p —r kQpxvp kQrpr M

a4 = A
2
r —p —r kQpxvp (A.18)

pp(s)
xvr(s) = gppxvr (s) = a7

b3 s3 + b2 s2 + b1 s + b0
(A.19)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a7 = ≠Ap Ar —p —r kQrxvr (A.20)
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Rod Side Pressure

pr(s)
Qp(s) = gprQp(s) = Ap Ar —p —r

(Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp) s
(A.21)

pr(s)
Qr(s) = gprQr (s) = ≠

—r Vp M s
2 + A

2
p —p —r

(Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp) s
(A.22)

pr(s)
Xvp(s) = gprxvp(s) = a8

b3 s3 + b2 s2 + b1 s + b0
(A.23)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a8 = Ap Ar —p —r kQpxvp (A.24)

pr(s)
xvr(s) = gprxvr (s) = a11 s

2 + a10 s + a9
b3 s3 + b2 s2 + b1 s + b0

(A.25)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a11 = ≠—r kQrxvr Vp M

a10 = —p —r kQrxvr kQppp M

a4 = ≠A
2
p —p —r kQrxvr (A.26)

Piston Side Flow

Qp(s)
xvp(s) = gQpxvp(s) = a13 s + a12

b3 s3 + b2 s2 + b1 s + b0
(A.27)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a13 = A
2
p —p kQpxvp Vr

a12 = A
2
p —p —r kQpxvp kQrpr (A.28)

Qp(s)
xvr(s) = gQpxvr (s) = a15 s + a14

b3 s3 + b2 s2 + b1 s + b0
(A.29)
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where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a15 = ≠Ap Ar —r kQrxvr Vp

a14 = Ap Ar —p —r kQrxvr kQppp (A.30)

Rod Side Flow

Qr(s)
xvp(s) = gQrxvp(s) = a17 s + a16

b3 s3 + b2 s2 + b1 s + b0
(A.31)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a17 = Ap Ar —p kQpxvp Vr

a16 = Ap Ar —p —r kQpxvp kQrpr (A.32)

Qr(s)
xvr(s) = gQrxvr (s) = a19 s + a18

b3 s3 + b2 s2 + b1 s + b0
(A.33)

where b3, b2, b1, and b0 are expressed in Equation (A.4) and:

a19 = A
2
r —r kQrxvr Vp

a18 = ≠A
2
r —p —r kQrxvr kQppp (A.34)
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Appendix B

Relative Gain Array

B.1 Piston Side Pressure with Flows as Input

The transfer function matrix where y1 = pp and y2 = xp is shown in Equation (B.1).

C
pp(s)
xp(s)

D

=
C
gppQp(s) gppQr (s)
gxpQp(s) gxpQr (s)

D C
Qp(s)
Qr(s)

D

(B.1)

The relative gain, ⁄
d

p,f
, is derived in Equations (B.2) to (B.5).
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⁄
d

p,f = 1
1 ≠ gppQr (s) gxpQp (s)

gppQp (s) gxpQr (s)

(B.2)

Ì

= 1

1 ≠
≠ Ap Ar —p —r

(Vp Vr M s2+A2
p —p Vr+A2

r —r Vp) s

Ap —p Vr

(Vp Vr M s2+A2
p —p Vr+A2

r —r Vp) s

—p Vr M s2+A2
r —p —r

(Vp Vr M s2+A2
p —p Vr+A2

r —r Vp) s

Ar —r Vp

(Vp Vr M s2+A2
p —p Vr+A2

r —r Vp) s

(B.3)

Ì

= 1
1 ≠ ≠A2

p Ar —2
p —r Vr

Ar —r Vp —p Vr M s2+A3
r —2

r Vp —p

= 1
1 + A2

p —p Vr

Vp Vr M s2+A2
r —r Vp

(B.4)

Ì

= Vp Vr M s
2 + A

2
r —r Vp

Vp Vr M s2 + A2
r —r Vp + A2

p —p Vr

(B.5)

The denominators of the transfer functions in Equation (B.3) are equal and cancel
out in Equation (B.4).

B.1.1 Derivation of Frequencies Piston Side Pressure

Êw =
Û

Ar —r

M (L ≠ xp) (B.6)

Ên =
Û

A2
p —p Vr + A2

r —r Vp

M Vp Vr

=
Û

A2
p —p Ar (L ≠ xp) + A2

r —r Ap xp

M Ap xp Ar (L ≠ xp)

=
Û

Ap —p (L ≠ xp) + Ar —r xp

M xp (L ≠ xp) =
Û

Ap —p

M xp

+ Ar —r

M (L ≠ xp) (B.7)

Êc1 =
Û

A2
r —r Vp ≠ A2

p —p Vr

Vp Vr M
=

Û
A2

r —r Ap xp ≠ A2
p —p Ar (L ≠ xp)

Ap xp Ar (L ≠ xp) M

=
Û

Ar —r xp ≠ Ap —p (L ≠ xp)
xp (L ≠ xp) M

=
Û

Ar —r

(L ≠ xp) M
≠ Ap —p

xp M
(B.8)

Êc2 =
Û

A2
p —p Vr + 3 A2

r —r Vp

3 Vp Vr M
=

Û
A2

p —p Ar (L ≠ xp) + 3 A2
r —r Ap xp

3 Ap xp Ar (L ≠ xp) M

=
Û

Ap —p (L ≠ xp) + 3 Ar —r xp

3 xp (L ≠ xp) M
=

Û
1
3

Ap —p

xp M
+ Ar —r

(L ≠ xp) M
(B.9)
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Êp =
Û

A2
p —p Vr + A2

r —r Vp

Vp Vr M
=

Û
Ap —p

M xp

+ Ar —r

M (L ≠ xp) = Ên (B.10)

⁄
o

p,f =
A

2
p —p Vr

Vp Vr M s2 + A2
r —r Vp + A2

p —p Vr

= 1
1 + Vp Vr M s2+A2

r —r Vp

A2
p —p Vr

Vp Vr M s
2 + A

2
r —r Vp

A2
p —p Vr

= ≠1 æ
≠Vp Vr M Ê

2
p + A

2
r —r Vp

A2
p —p Vr

= ≠1

Vp Vr M Ê
2
p ≠ A

2
r —r Vp = A

2
p —p Vr æ Êp =

Û
A2

p —p Vr + A2
r —r Vp

VpVrM
(B.11)
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B.2 Rod Side Pressure with Flows as Inputs

The relative gain, ⁄
d

r,f
, is expressed in Equation (B.12) when pairing the diagonal.

⁄
d

r,f = A
2
r —r Vp

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(B.12)

The relative gain, ⁄
o

r,f
, when pairing the o�-diagonal is expressed in Equation (B.13).

⁄
o

r,f =
Vp Vr M s

2 + A
2
p —p Vr

Vp Vr M s2 + A2
p —p Vr + A2

r —r Vp

(B.13)

Equation (B.14) should be satisfied to get ⁄
d

r,f
as close to 1 as possible.

|A2
r —r Vp| ∫ |Vp Vr M s

2 + A
2
p —p Vr|

Ì

|A2
r —r| ∫

-----Vr M s
2 + A

2
p —p

Vr

Vp

----- (B.14)

The volumes, Vp = xp Ap and Vr = (L≠ xp) Ar, are substituted into Equation (B.14)
where the dead volumes, Vp0 and Vr0, are neglected.

⁄
d

r,f ¥ 1 : 1 ∫
-----
(L ≠ xp) M

Ar —r

s
2 + —p

—r

Ap

Ar

L ≠ xp

xp

----- (B.15)

The inequality is opposite when pairing the o�-diagonal:

⁄
o

r,f ¥ 1 : 1 π
-----
(L ≠ xp) M

Ar —r

s
2 + —p

—r

Ap

Ar

L ≠ xp

xp

----- (B.16)

B.2.1 Low Frequency Range

The relative gains are evaluated in the low frequency range by letting s æ 0. The
simplified expressions are shown in Equations (B.17) and (B.18), where “ = —r/—p,
– = Ar/Ap, and ‘ = xp/(L ≠ xp).
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⁄
d

r,f ¥ 1 : 1 ∫
-----
—p

—r

Ap

Ar

L ≠ xp

xp

----- ∆ 1 π
-----
—r

—p

Ar

Ap

xp

L ≠ xp

----- = |“ – ‘| (B.17)

⁄
o

r,f ¥ 1 : 1 π
-----
—p

—r

Ap

Ar

L ≠ xp

xp

----- ∆ 1 ∫
-----
—r

—p

Ar

Ap

xp

L ≠ xp

----- = |“ – ‘| (B.18)

It should be noted that Equations (B.17) and (B.18) are equal to Equations (5.21)
and (5.22), respectively. That means the conclusion for ⁄

d

r,f
is the same as for ⁄

d

p,f
,

and the conclusion for ⁄
o

r,f
is the same as for ⁄

o

p,f
at low frequencies.

B.2.2 Transition Frequency Range

The frequency dependent inequalities are repeated in Equations (B.19) and (B.20)
where s is substituted by j Ê.

⁄
d

r,f ¥ 1 : 1 ∫
-----≠

(L ≠ xp) M

Ar —r

Ê
2 + —p

—r

Ap

Ar

L ≠ xp

xp

----- (B.19)

⁄
o

r,f ¥ 1 : 1 π
-----≠

(L ≠ xp) M

Ar —r

Ê
2 + —p

—r

Ap

Ar

L ≠ xp

xp

----- (B.20)

The frequency, Êw, at which the right hand sides of Equations (B.19) and (B.20)
equal 0 is expressed in Equation (B.21).

≠(L ≠ xp) M

Ar —r

Ê
2
w + —p

—r

Ap

Ar

L ≠ xp

xp

= 0 (B.21)

For the frequency, Êw, ⁄
d

r,f
= 1, and couplings are less significant when pairing the

diagonal. The frequency, Êw, is isolated in Equation (B.22).

Êw =
Û

—p

—r

Ap

Ar

L ≠ xp

xp

Ar —r

(L ≠ xp) M
=

Û
Ap —p

M xp

(B.22)
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The natural frequency is expressed in Equation (B.23).

Ên =
Û

Ap —p

M xp

+ Ar —r

M (L ≠ xp) =
Û

Ê2
w + Ar —r

M (L ≠ xp) (B.23)

The frequency Êw is expressed as a function of Ên in Equation (B.24).

Êw =
Û

Ê2
n ≠ Ar —r

M (L ≠ xp) (B.24)

It is seen from Equation (B.24) that as —p and Ap increase, both frequencies increase,
and as —r and Ar increase, Ên increases whereas Êw is una�ected. It is concluded
that ⁄

d

r,f
= 1 at the frequency Êw which is lower than the natural frequency.

B.2.3 Coupled Frequencies and High Frequencies

The frequency, Êc, at which ⁄
d

r,f
and ⁄

o

r,f
cross and the cross couplings become

significant is found by letting ⁄
d

r,f
= 0.5.

⁄
d

r,f = A
2
r —r Vp

≠Vp Vr M Ê2
c + A2

p —p Vr + A2
r —r Vp

= K

Ì

Êc =
Û

K A2
p —p Vr + (K ≠ 1) A2

r —r Vp

K Vp Vr M
(B.25)

K is then substituted by 0.5 resulting in Êc in Equation (B.30).

Êc =
Û

0.5 A2
p —p Vr ≠ 0.5 A2

r —r Vp

0.5 Vp Vr M
=

Û
Ap —p

xp M
≠ Ar —r

(L ≠ xp) M
(B.26)

There is a positive and a negative fraction in Equation (B.30), which means Êc is
only real if the following is satisfied:

Ar —r

(L ≠ xp) M
Æ Ap —p

xp M
∆ 1 Ø –“‘ (B.27)
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That means Êc is real if the inequality in Equation (5.35) is satisfied.

The relative gain is reformulated in Equation (B.28), to find the frequency, Êp at
which ⁄

d

r,f
peaks.

⁄
d

r,f = 1
1 + ≠Vp Vr M Ê2

p+A2
p —p Vr

A2
r —r Vp

(B.28)

The positive frequency, Êp, at which ⁄
d

r,f
æ Œ happens is found in Equation (B.2.3).

Êp =
Û

A2
p —p Vr + A2

r —r Vp

Vp Vr M
=

Û
Ap —p

M xp

+ Ar —r

M (L ≠ xp) = Ên (B.29)

It is seen from Equation that the frequency Êp is equal to the frequency Ên. The
same is valid for the peak of ⁄

o

r,f
.

It is concluded that ⁄
d

r,f
and ⁄

o

r,f
cross in the frequency Êc expressed in Equation

(B.30) if the inequality in Equation (B.27) is satisfied. Furthermore, ⁄
d

r,f
peaks at

the natural frequency Ên. Finally, the high frequency range when s æ Œ, couplings
for the pairing Xp/Qp and Pr/Qr are less significant as ⁄

o

r,f
æ 1.

B.2.4 Derivation of Frequencies Rod Side Pressure

Êc1 =
Û

0.5 A2
p —p Vr ≠ 0.5 A2

r —r Vp

0.5 Vp Vr M
=

Û
A2

p —p Vr ≠ A2
r —r Vp

Vp Vr M

=
Û

A2
p —p Ar (L ≠ xp) ≠ A2

r —r Ap xp

Ap xp Ar (L ≠ xp) M
=

Û
Ap —p (L ≠ xp) ≠ Ar —r xp

xp (L ≠ xp) M

=
Û

Ap —p

xp M
≠ Ar —r

(L ≠ xp) M
(B.30)

Êc2 =
Û

≠0.5 A2
p —p Vr ≠ 1.5 A2

r —r Vp

≠0.5 Vp Vr M
=

Û
A2

p —p Vr + 3 A2
r —r Vp

Vp Vr M

=
Û

A2
p —p Ar (L ≠ xp) + 3 A2

r —r Ap xp

Ap xp Ar (L ≠ xp) M
=

Û
Ap —p (L ≠ xp) + 3 Ar —r xp

xp (L ≠ xp) M

=
Û

Ap —p

xp M
+ 3 Ar —r

(L ≠ xp) M
(B.31)
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B.3 Piston Side Pressure with Valve Openings as Inputs

The transfer function matrix where y1 = Qp and y2 = pp is shown in Equation (B.32).

C
pp(s)
Qp(s)

D

=
C

gppxvp(s) gppxvr (s)
gQpxvp(s) gQpxvr (s)

D C
xvp(s)
xvr(s)

D

(B.32)

The relative gain, ⁄
d
p,v, is derived in Equations (B.33) to (B.36).

⁄
d

p,v = 1
1 ≠ gQpxvp (s) gppxvr (s)

gQpxvr (s) gppxvp (s)

(B.33)

Ì

= 1

1 ≠
a13 s+a12

b3 s3+b2 s2+b1 s+b0
a7

b3 s3+b2 s2+b1 s+b0
a15 s+a14

b3 s3+b2 s2+b1 s+b0
a6 s2+a5 s+a4

b3 s3+b2 s2+b1 s+b0

= 1
1 ≠ (a13 s+a12) a7

(a15 s+a14) (a6 s2+a5 s+a4)
(B.34)

Ì

= 1
1 ≠ a7 a13 s+a7 a12

a6 a15s3+(a5 a15+a6 a14) s2+(a4 a15+a5 a14) s+a4 a14

(B.35)

Ì

= a6 a15s
3 + (a5 a15 + a6 a14) s

2 + (a4 a15 + a5 a14) s + a4 a14
a6 a15s3 + (a5 a15 + a6 a14) s2 + (a4 a15 + a5 a14) s + a4 a14 ≠ a7 a13 s + a7 a12

(B.36)

The coe�cients are substituted and it is found that:

⁄
d

p,v = ≠
!
—pkQp,pp ≠ Vps

" 1
—rMkQr ,pr s + MVrs

2 + —rAr
2
2

Ap
2
—p (—rkQr ,pr + Vrs) ≠

!
—pkQp,pp ≠ Vps

" 1
—rMkQr ,pr s + MVrs2 + —rAr

2
2

(B.37)

The rest of the relative gains are derived in the same way.

B.3.1 Low Frequency Range

The black contours in Figure B.1 are identical to Figure 5.8 but the load force is
defined as Equation (B.38) where the supply pressure is overdimensioned compared
to the load force.
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Fl,neg = 0.1 ps Ap ≠ 0.5 ps Ar

Fl,pos = 0.5 ps Ap ≠ 0.1 ps Ar (B.38)

Assuming the maximum pressure to be supply pressure, the system can reach steady
state for larger load forces, than the system is designed for.

Figure B.1: Contour plot showing the value of the right hand side, RHS, of Equation 5.48.

For steady state to be reached, only the pressure combinations between the green
and blue contours are viable. As seen from the figure, an over-dimensioned supply
pressure will reduce the pressure working area compared to Figure 5.8.
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Appendix C

Dynamic Modelling and

Implementation

C.1 Valve Dynamics

The valve dynamics of the experimental test setup are estimated in this appendix.
The purpose is to model the relation between a valve reference and the actual valve
opening. The actuation limit is taken into account during controller design and
implemented in the non-linear simulation model. The approximations are based on
the closed loop frequency response for the valve spool following references of ±10% of
max stroke length. It is assumed that a second order transfer function can su�ciently
capture the dynamics. The frequency response is limited for a larger change in stroke
length by including slew rate limitations in the model.

C.1.1 Main Cylinder Valves

The valves connected to the main cylinder are manufactured by Moog and will be
referred to as Moog[Moog, 2020]. The approximated bode diagram is shown in Figure
C.1.
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Figure C.1: Bode diagram comparison of datasheet and approximated valve transfer function. The

bandwidth is approximately 350 [rad/s].

It is seen how the magnitudes are very similar until the bandwidth frequency. The
phase lag is generally approximately 10 [degrees] larger for the approximation than
the datasheet. As the resemblance is considered su�cient, and the approximation
is more conservative than the datasheet, the approximation is deemed valid. The
transfer function, GMoog(s), natural frequency, Ên,Moog, and damping ratio, ’Moog,
are shown in Equation (C.1).

GMoog(s) = xv,Moog

x
ú
v,Moog

= 122.5 103

s2 + 495 s + 122.5 103
Ên,Moog = 350 [rad/s]
’Moog = 0.707

(C.1)

In Equation (C.1), x
ú
v,Moog

is the valve opening reference and xv,Moog is the actual
valve opening. The slew rate limitation is found by looking at the step response of
the valve opening in the datasheet which is shown in Figure C.2 and the estimation
is shown in Figure C.3.
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Figure C.2: Step response for MOOG D633

valve[Moog, 2020].

Figure C.3: Estimated step response for

MOOG D633 valve.

The slope of the response in Figure C.2 is found to be ẋv,Moog,lim = 8 [%/ms]. The
valve dynamics are implemented as shown in Figure C.4.

+ +
- -

Figure C.4: Implementation of valve dynamics for Moog valves.

C.1.2 Load Cylinder Valve

The valve connected to the load cylinder is manufactured by Bosch Rexroth and will
be referred to as Rexroth[Rexroth, 2020]. The estimated bode diagram is shown in
Figure C.5.
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Figure C.5: Bode diagram comparison of datasheet and approximated valve transfer function. The

bandwidth is approximately 225 [rad/s].

It can be seen how both the magnitude and phase of the approximation is captured
for the relevant frequencies until the bandwidth of the valve. The frequency response
is therefore deemed valid and the transfer function is shown in Equation (C.2), where
GRexroth(s) is the transfer function, Ên,Rexroth is the natural frequency, and ’Rexroth

is the damping ratio.

GRexroth(s) = xv,Rexroth

x
ú
v,Rexroth

= 122.5 103

s2 + 700 s + 122.5 103
Ên,Rexroth = 350 [rad/s]
’Rexroth = 1

(C.2)

In Equation (C.2), x
ú
v,Rexroth

is the valve opening reference and xv,Rexroth is the actual
valve opening. The slew rate limitation is found by looking at the step response of
the valve opening in the datasheet as for the Moog valve. The slew rate limitation
is found to be ẋv,Rexrooth,lim = 3.5 [%/ms]. The valve dynamics are implemented as
shown in Figure C.6.
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Figure C.6: Implementation of valve dynamics for Rexrooth valve.
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C.2 Discrete Implementation

The discrete implementation is presented in this section to represent the physical
test setup. The sampling frequency for discrete calculations in the simulations is
set to the frequency of the microcontroller by adding a zero-order hold block to the
output signal of the controller before the plant which is the valve reference signal.
This limits the execution time of the controller.

Noise, n, is added to the measurement signals during feedback and the implementa-
tion can be seen in Figure C.7 for signal x.

�
�

Figure C.7: Noise generation for feedback signals.

The noise amplitude is based on the amplitude of the measured experimental signals.
The pressure noise is based on a four-second pressure measurement with a mean value
of zero. The velocity noise is based on a four-second position measurement with a
mean value of zero. The position measurement is multiplied by a gain to decrease
the magnitude as the units di�er. The noise of the signals is then looped and added
to the simulated signal as seen in Figure C.7.
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C.3 Mechanical Model

The pitch acceleration, ◊̈, is expressed as a function of the main piston position. The
pitch angle, ◊, is related to the main cylinder pitch angle, ◊m, by Equation (C.3).
The coe�cient c is constant which implies that ◊̇m = ◊̇ and ◊̈m = ◊̈.

◊m = ◊ + c (C.3)

The pitch acceleration can thereby be found by deriving ◊m. The law of cosines
is used to relate the angles to the piston positions from Figure 7.4 as expressed in
Equation (C.4).

◊m = cos
≠1

A
r

2
m + H

2
m ≠ S

2
m

2rmHm

B

, Sm = Sm,min + xm (C.4)

The angle is di�erentiated with respect to time once and twice to get angular velocity
and acceleration in Equation (C.5) and (C.6), respectively.

◊̇m = ˆ◊m

ˆxm¸ ˚˙ ˝
Gm

ˆxm

ˆt
= Gm ẋm (C.5)

◊̈m = Ġm ẋm + Gm ẍm, Ġm = ˆGm

ˆxm¸ ˚˙ ˝
Gn

ˆxm

ˆt
= Gn ẋm (C.6)

Finally, the pitch acceleration is expressed as a function of the main piston position
and velocity in Equation (C.7).

◊̈ = Gn ẋ
2
m + Gm ẍm (C.7)

The angles Âm and Âl from Equation (7.10) are expressed as a function of the main
piston position using the law of cosines in Equations (C.8) and (C.9).

Âm = cos
≠1

A
r

2
m + (Sm,min + xm)2 ≠ H

2
m

2 rm (Sm,min + xm)

B

(C.8)
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Âl = cos
≠1

A
r

2
l

+ S
2
l

≠ H
2
l

2 rl Sl

B

(C.9)

Sl =
Ò

r
2
l

+ H
2
l

≠ 2 rl Hl cos(◊l) (C.10)

◊l = ◊tot ≠ cos
≠1

3
r

2
m + H

2
m ≠ (Sm,min + xm)2

2 rl (Sm,min + xm)

4
(C.11)

where ◊tot = ◊m + ◊l which is constant, is evaluated at ◊tot = ◊m,max + ◊l,min. The
angle, Âl, is expressed as a function of xm by substituting ◊l from Equation (C.11)
into Equation (C.10) which is further substituted into Equation (C.9).

The pitch acceleration, ◊̈, and the angles, Âm and Âl, are substituted into Newton’s
Second Law from Equation (7.12) to express the mechanical model in actuator space.
The mechanical model is expressed in actuator space in Equation (C.12).

ẍm = 1
Ieq Gm

3
Fm Gm1 ≠ (B Gm + Ieq Gn ẋm) ẋm ≠ tanh(ẋm c) ·C ≠ Fl Gl1

4

(C.12)

Gm, Gn, Gm1, and Gl1 are expressed in Equation (C.13).

Gm = Sm

Hm rm

Ú
1 ≠ (H2

m≠S2
m+r2

m)2

4 H2
m r2

m

Gn = 1

Hm rm

Ú
1 ≠ (H2

m≠S2
m+r2

m)2

4 H2
m r2

m

≠ S
2
m(H2

m ≠ S
2
m + r

2
m)

2 H3
m r3

m

3
1 ≠ (H2

m≠S2
m+r2

m)2

4 H2
m r2

m

4 3
2

Gm1 = rm

2

Û

4 ≠ (H2
m ≠ S2

m + r2
m)2

H2
m r2

m

Gl1 = rl

ı̂ıııııÙ

sin

3
◊tot ≠ cos≠1

3
H2

m≠S2
m+r2

m
2 Hm rm

442
H

2
l

H
2
l

≠ 2 Hl cos

3
◊tot ≠ cos≠1

3
H2

m≠S2
m+r2

m
2 Hm rm

44
rl + r

2
l

(C.13)

It should be noted that Gm, Gn, Gm1, and Gl1 are all functions of the main piston
position, xm, as Sm = Sm,min + xm.
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C.4 Load Force

In this section the maximum load force is determined. The maximum allowed load
force is derived from Newton’s Second Law in actuator space shown in Equation
(C.14) in steady state.

0 = Fm Gm1 ≠ (B Gm + Ieq Gn ẋm) ẋm ≠ tanh(ẋm c) ·C ≠ Fl Gl1 (C.14)

By rearranging Equation (C.14) and neglecting the Coulomb and viscous friction
terms, the maximum positive and negative load force, Fl,pos and Fl,neg, are defined
from the maximum positive and negative piston force, Fm,pos and Fm,neg, in Equa-
tions (C.15) and (C.16).

Fl,pos = Fm,pos

Gm1
Gl1

, Fm,pos = psAmp ≠ ptAmr (C.15)

Fl,neg = Fm,neg

Gm1
Gl1

, Fm,neg = ptAmp ≠ psAmr (C.16)

It should be noted that as Gm1 and Gl1 depend on the piston position, Fl,pos and
Fl,neg will also depend on the piston position. By the defined maximum positive and
negative load force, the piston force is guaranteed to be equal to or larger than the
load force, if the load carrying chamber is supply pressure and the non-load carrying
chamber is tank pressure. It is decided to further reduce the load force which allow
the control of the pressures for any given load force. This is analysed in the following
section along with the maximum velocity and pressure references depending on the
load force.

C.4.1 Limitations of References

In this section, the maximum allowed velocity and pressure references are determined.
For simplicity, these limitations are found in steady state. For a constant velocity,
Equation (C.17) must equal Equation (C.18), when both xvmp and xvmr are positive
or both negative.

ẋm =

Y
]

[

1
Amp

kvm xvmp

Ò
|ps ≠ pmp| , xvmp Ø 0

1
Amp

kvm |xvmp|
Ò

|pt ≠ pmp| , xvmp < 0
(C.17)
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ẋm =
I 1

Amr
kvm xvmr


|pmr ≠ pt| , xvmr Ø 0

1
Amr

kvm |xvmr|


|pmr ≠ ps| , xvmr < 0 (C.18)

Furthermore, pmp and pmr are determined from Newton’s Second Law in steady state
from Equation (C.14) and by neglecting the Coulomb and viscous friction terms, the
load force term is isolated as Equation (C.19), where Gm1 and Gl1 are position
dependent.

Fl Gl1 = (pmp Amp ≠ pmr Amr ) Gm1 (C.19)

Choosing the load forces, Fl, and piston positions, xm, the possible pressure combi-
nations of pmp and pmr are determined from Equation (C.19).

By inserting the pressure combinations into Equations (C.17) and (C.18), and having
xvmp = 100 [%] and xvmr = 100 [%], the maximum positive steady state velocity is
found as a function of pmp, pmr, Fl, and xm. The maximum steady state velocity
is, however, limited by lowest velocity of Equation (C.17) and (C.18) where either
xvmp or xvmr is reduced from fully opened to guarantee both equations result in the
same steady state velocity. This is shown in Figure C.8 for positive velocity where
both xvmp and xvmr are fully opened. The steady state velocity is found where the
graphs intersect.
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0
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Piston side velocity
Rod side velocity

Xvmr decreasing

Xvmp decreasing

Figure C.8: The positive piston side velocity from Equation (C.17) and rod side velocity from

Equation (C.18) for xm = 50 [%] of stroke length and no load force.

Since the velocity found from the piston side in Equation (C.17) must equal Equation
(C.18) describing the velocity found from the rod side, xvmr must be reduced if
pressure references above approximately 60 [bar] are desired. Below 60 [bar] xvmp

must be reduced. The maximum negative steady state velocity depending on the
pressure reference is similarly found where xvmp and xvmr are negative. The available
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velocity reference dependent on the pressure reference is shown in Figure C.9 for the
four cases used for the control combination analysis shown in Figure 3.2.

Figure C.9: The limitations of the pressure and velocity references for positive and negative load

force, where ps = 200 [bar].

The load force is varied to observe how it a�ects the pressure and velocity reference.
Figure C.9 is only shown for xm = 50 [%] of stroke length. It must be noticed, that
the limits of the velocity and pressure references are partly on top of each other
when the load force changes. For case 2 and 3, when the load force increases, the
available pressure and velocity references are more limited. When Fl,pos = 100 [%] in
case 2 and Fl,neg = 100 [%] in case 3, only one pressure combination results in zero
acceleration and the velocity becomes 0 [m/s]. The purple line is therefore not seen.
For case 1 and 4, when the load force increases, the available pressure and velocity
references are increased. For case 1 the load forces for Fl,neg = 33 [%], 66 [%] and
100 [%] are on top of each other and showed as the red line in the plot. The velocity
and pressure references are therefore equally limited at Fl,neg = 33, 66 and 100 [%]
for case 1.
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To ensure a wide range of pressure and velocity references for the four cases, it is
chosen to limit the load force Fl to maximum 66 [%] of Fl,pos and Fl,neg.

As Gl1 is position dependent, the load force term Fl Gl1 will not be 66 [%] of the
maximum piston force for all piston positions if Fl is constant for all piston positions.
It is therefore chosen to have three di�erent values of Fl which ensure, that Fl Gl1 =
0.66 ·Fm,pos Gm1 for xm = 10, 50 and 90 [%]. This is illustrated in Figure C.10, where
the maximum allowed load force will change between the yellow, purple, and green
load force depending on the piston position. The same applies for the negative load
force.
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Figure C.10: The load force change between the yellow, purple, and green load force depending

on the piston position.
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C.5 Linear Model Validation

The linear model is validated by comparing step responses of the linear models with
the non-linear model for several arbitrarily chosen linearisation points, hence com-
paring each linear model with the non-linear model. The validation is conducted to
verify if the linear model correctly depicts the system dynamics and can be used as
a representation for system analysis and control purposes.

The models are stepped from the linearised operating points and the step size is
small to validate the linear model in the vicinity of the operating point. The hydraulic
model of the load side cylinder is omitted, and the load force is set to zero. To linearise
the non-linear model, six dependent operating points must be found; piston position,
x

ú
m, piston velocity, ẋ

ú
m, piston side pressure, p

ú
mp, rod side pressure, p

ú
mr, piston side

valve opening, x
ú
vmp and rod side valve opening, x

ú
vmr. The three dynamic equations

for the system are solved in steady state; Newtons second law from Equation (7.14)
and two continuity equations from Equation (7.6) i.e. where ẍm = 0, ṗmp = 0, and
ṗmr = 0. Three operating points should, therefore, be chosen and the remaining
three are calculated using the steady state equations. Figures C.11, C.12 and C.13
show the step response of the velocity and piston side pressure of the non-linear and
linear models when linearised in three di�erent piston positions.
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Figure C.11: Linearisation points: xú
m = 10 [%], ẋú

m = 0 [m/s], pú
mp = 100 [bar], pú

mr = 170 [bar],

xú
vmp = 0 [%], xú

vmr = 0 [%].
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Figure C.12: Linearisation points: xú
m = 50 [%], ẋú

m = 0 [m/s], pú
mp = 100 [bar], pú

mr = 170 [bar],

xú
vmp = 0 [%], xú

vmr = 0 [%].
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Figure C.13: Linearisation points: xú
m = 90 [%], ẋú

m = 0 [m/s], pú
mp = 100 [bar], pú

mr = 170 [bar],

xú
vmp = 0 [%], xú

vmr = 0 [%].

Figure C.14 shows the velocity and rod side pressure.
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Figure C.14: Linearisation points: xú
m = 50 [%], ẋú

m = 0 [m/s], pú
mp = 59 [bar], pú

mr = 100 [bar],

xú
vmp = 0 [%], xú

vmr = 0 [%].

Figure C.15 shows the velocity and piston side pressure when both valves are stepped.
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Figure C.15: Linearisation points: xú
m = 50 [%], ẋú

m = 0 [m/s], pú
mp = 100 [bar], pú

mr = 170 [bar],

xú
vmp = 0 [%], xú

vmr = 0 [%].

The response has been examined for several other linear models were linearisation
points for piston positions, velocity magnitudes and directions, valve input mag-
nitudes and directions, and pressures were varied and the general dynamics were
captured. The linear model is therefore deemed valid for further analysis.
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Appendix D

Control

D.1 Pole Placement

A way to get all solutions of the KP P matrix is by using the method described
in [Brogan, 1991]. The eigenvalues of the closed loop system are the roots of the
expression in Equation (D.1), where ⁄i refers to the ith desired eigenvalue and i =
1, 2, 3[Brogan, 1991, p. 448].

det(⁄i I ≠ (A ≠ B KP P )) = 0 (D.1)

It is seen from Equation (D.1) that there is at least one non-zero vector, Âi, according
to Equation (D.2).

(⁄i I ≠ (A ≠ B KP P )) Âi = 0 (D.2)
Ì
(A ≠ B KP P ) Âi = ⁄i Âi (D.3)

From Equation (D.3) it is seen that Âi is an eigenvector of the closed loop system
associated with the eigenvalue ⁄i[Brogan, 1991, p. 449-451]. Equation (D.2) is
rewritten in Equation (D.4).

169
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Ë
(⁄i ≠ A) B

È C
Âi

KP P Âi

D

¸ ˚˙ ˝
›i

= 0 (D.4)

For each of the three desired eigenvalues, ⁄i, Equation (D.4) is solved for the corre-
sponding unknown ›i. It should be noted that there are r, i.e. the number of inputs,
independent solution vectors ›i for each ⁄i when solving Equation (D.4)[Brogan,
1991, p. 450]. In Equation (D.4) the n, i.e. the order of the system matrix A, top
components of each column of ›i form a closed loop eigenvector, Âi, and the remain-
ing bottom components are the matrix KP P multiplied by the same vector[Brogan,
1991, p. 449-451].

Equation (D.4) contains three linear equations and by selecting two elements of ›i,
the values of the remaining elements can be found. The three › vectors are shown in
Equation (D.5) where –i and —i are values which need to be specified and “i, ”i, and
‡i are functions of these values. “i, ”i, and ‡i are found by solving Equation (D.4).

›1 =
Ë
–1 —1 “1(–1, —1) ”1(–1, —1) ‡1(–1, —1)

È
T

›2 =
Ë
–2 —2 “2(–2, —2) ”2(–2, —2) ‡2(–2, —2)

È
T

›3 =
Ë
–3 —3 “3(–3, —3) ”3(–3, —3) ‡3(–3, —3)

È
T

(D.5)

By varying –i and —i it can be found that each of the › vectors contains two linear
independent vectors since r = 2. This is shown in Equation (D.6) for two inputs
where the matrix U is partitioned.

U(⁄i) =
C
Â1 Â2
F1 F2

D

=
C
Â(⁄i)
F(⁄i)

D

(D.6)

U(⁄1), U(⁄2), and U(⁄3) are found using Equation (D.6). Substituting Fi = KP P Âi

yields Equation (D.7).

KP P

Ë
Â(⁄1) Â(⁄2) Â(⁄3)

È

¸ ˚˙ ˝
�

=
Ë
F (⁄1) F (⁄2) F (⁄3)

È

¸ ˚˙ ˝
�

(D.7)

It should be noted that it is an overdetermined system since there is more than one
input. Since the system is controllable, n linearly independent columns from both
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sides of Equation (D.7) can be selected, i.e. one column for each ⁄i[Brogan, 1991,
p. 451]. However, as each of the › vectors in Equation (D.5) contains both vectors,
one column for each eigenvalue is automatically chosen by choosing the constants
–i and —i. The matrices �s and �s contain the selected columns from � and �,
respectively. The feedback gain matrix is solved using Equation (D.8).

KP P = �s �≠1
s (D.8)

The feedback gain matrix KP P is a function of the six parameters: –1, –2, –3, —1,
—2, and —3.

D.2 Disturbance and Noise Analysis

The transfer function matrices relating references, disturbances, and measurement
noise to the outputs are derived for all control methods in this appendix.

D.2.1 Pole Placement and LQR

The block diagram in Figure 9.14 is valid for both pole placement and LQR and
the transfer function matrices are derived based on that. The state equation, system
output equation, and system input equation are expressed in Equations (D.9), (D.10),
and (D.11), respectively.

ẋs = As xs + Bs us + d (D.9)
ys = Cs xs (D.10)
us = Fs rs ≠ Ks xs ≠ Ks n (D.11)

Equation (D.11) is the substituted into Equation (D.9) yielding Equation (D.12).

ẋs = As xs + Bs Fs rs ≠ Bs Ks xs ≠ Bs Ks n + d
Ì
(s I ≠ As + Bs Ks) xs = Bs Fs rs ≠ Bs Ks n + d (D.12)

Substituting Equation (D.10) into Equation (D.12) yields:
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(s I ≠ As + Bs Ks) C≠1
s ys = Bs Fs rs ≠ Bs Ks n + d (D.13)

By rearranging Equation (D.13), the transfer function matrices are expressed as
shown in Equation (D.14).

ys = Cs (s I ≠ As + Bs Ks)≠1 Bs Fs¸ ˚˙ ˝
Gcl

rs + Cs (s I ≠ As + Bs Ks)≠1
¸ ˚˙ ˝

S

d

≠Cs (s I ≠ As + Bs Ks)≠1 Bs Ks¸ ˚˙ ˝
T

n (D.14)

D.2.2 LQI

The block diagram in Figure 9.15 is valid for LQI and the transfer function matrices
are derived based on that. The state equations, system output equation, and sys-
tem input equation are expressed in Equations (D.15), (D.16), (D.17), and (D.18),
respectively.

ẋs = As xs + Bs us + d (D.15)
żs = rs ≠ Cs xs ≠ Cs n (D.16)
ys = Cs xs (D.17)
us = ≠KI,s zs ≠ KLQI,s xs ≠ KLQI,s n (D.18)

Substituting Equation (D.18) into Equation (D.15) yields:

ẋs = As xs ≠ Bs KI,s zs ≠ Bs KLQI,s xs ≠ Bs KLQI,s n + d
Ì
(s I ≠ As + Bs KLQI,s) xs = ≠Bs KI,s zs ≠ BsKLQI,s n + d (D.19)

Equation (D.16) is then isolated for z which is substituted into Equation (D.19)
yielding Equation (D.20).



D.3. Optimal Controller Gains 173

(s I ≠ As + Bs KLQI,s) xs = ≠ Bs KI,s

1
s

I rs + Bs KI,s

1
s

I Cs xs

+ Bs KI,s

1
s

I Cs n ≠ BsKLQI,s n + d

Ì
3

s I ≠ As + Bs KLQI,s ≠ Bs KI,s

1
s

I Cs

4
xs = ≠ Bs KI,s

1
s

I rs

+
3

Bs KI,s

1
s

I Cs ≠ BsKLQI,s

4
n + d

(D.20)

Substituting Equation (D.17) into Equation (D.20) yields:

3
s I ≠ As + Bs KLQI,s ≠ Bs KI,s

1
s

I Cs

4
C≠1

s ys = ≠ Bs KI,s

1
s

I rs

+
3

Bs KI,s

1
s

I Cs ≠ BsKLQI,s

4
n + d

(D.21)

By rearranging Equation (D.21), the transfer function matrices are expressed as
shown in Equation (D.22).

ys = ≠ Cs

3
s I ≠ As + Bs KLQI,s ≠ Bs KI,s

1
s

I Cs

4≠1
Bs KI,s

1
s

I
¸ ˚˙ ˝

Gcl

rs

+ Cs

3
s I ≠ As + Bs KLQI,s ≠ Bs KI,s

1
s

I Cs

4≠1

¸ ˚˙ ˝
S

d

+ Cs

3
s I ≠ As + Bs KLQI,s ≠ Bs KI,s

1
s

I Cs

4≠1 3
Bs KI,s

1
s

I Cs ≠ BsKLQI,s

4

¸ ˚˙ ˝
T

n

(D.22)

D.3 Optimal Controller Gains

The weight matrices Q and R for the scaled state space model are shown in Equations
(D.23) and (D.24) for LQR and LQI, respectively.
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Q =

S

WU
0.05 0 0

0 10 0
0 0 10

T

XV R =
C
100 0
0 100

D

(D.23)

Q =

S

WWWWWU

0.1 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 1 · 105 0
0 0 0 0 1 · 105

T

XXXXXV
R =

C
100 0
0 100

D

(D.24)
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