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Abstract:

Scheduling problems are one of the prob-
lems that we can model with (Priced)
Timed Automata and solve by reducing it
into the cost-optimal reachability prob-
lem. However, finding the cost-optimal
solution in such problems can be exhaus-
tive in terms of memory and computa-
tional costs, due to the huge state-space
exploration. We propose an algorithm
for finding the (cost)-optimal solutions,
UCT-PTA, an adaptation of the Monte
Carlo Tree Search variation UCT, to PTAs.
Specifically in this thesis, we investi-
gate different ways of modelling the state
space of PTAs, especially how to handle
time. We propose, investigate and exper-
iment with three variations: One which
handle time increments in a stochastic
fashion, one that explores between all the
possible time increments and one that ex-
plores in the non-lazy time increments.
We find that the former approach, namely
Non-Lazy UCT-PTA, gives the best results,
although not the cost-optimal. We then
explore some additional extensions that
turn out to improve the overall perfor-
mance of the UCT-PTA algorithm.
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1 Introduction
Real-time systems are involved in many aspects of our everyday lives such as transport,
communication networks, embedded systems etc. The correctness of these systems is
conditioned by real-time constraints as timing of events or availability of resources. One
type of models that enables the analysis of such time-dependent behaviour is that of
Timed Automata [3]. However, Timed Automata themselves does not provide any other
quantitative information than time. If one wants to optimise the performance of a sys-
tem, which is often the case, it is necessary to take into consideration some additional
information. In the case of embedded systems it could be the energy and memory con-
sumption, or a required bandwidth in the context of communication networks. In gen-
eral, such system’s attributes can be considered as a time-dependent cost of certain events
in the system or a cost of the time elapsed in a certain state. To model these additional
quantities an extension of Timed Automata, Priced Timed Automata (PTA), was formalised
[5]. One of the problems PTAs allows us to solve are the scheduling problems by reduc-
tion into the cost-optimal reachability problem. Due to often large state-spaces of PTAs,
a number of different techniques have been tried to optimize the search. In this thesis
we aim to improve the efficiency of the state-space exploration by implementing Monte
Carlo Tree Search (MCTS) algorithm into the UPPAAL model checking tool [7] and we test
its performance on a large number of Job shop scheduling problems.

In the following sections we first give the definition of the Job Shop Scheduling problem
and a way we can model it in UPPAAL. Then we present the Monte Carlo Tree search al-
gorithm, its potential in finding optimal solutions and the version of it called Upper Con-
fidence Bounds for Trees (UCT) which main objective is solving exploitation-exploration
dilemma that occurs in large state-spaces like ones of PTA. In the Chapter 5 we describe
the UCT-PTA algorithm; Firstly we argue the applicability of the UCT in the context of PTA
and necessary adaptations to the algorithm, resulting with the UCT-PTA. Then we discuss
some challenges of the UCT-PTA, the way we have solved them and the problem of han-
dling time in the context of PTA. We show why the exploration of PTA’s state-space in our
first version of UCT-PTA from our prior work [15] , Stohastic Delay UCT-PTA, could be
problematic. In this thesis, we then explore other ways of handling time. In the proposed
approaches, namely Delay Exploratory and Non-Lazy UCT-PTA, we solve the limitation
of the only one-delay as a possible delay transition. Additionally, we introduce several
extensions that also improve the UCT-PTA’s performance: pruning by "making a step"
(described thoroughly in subsection 5.4.1) and by introducing the Partial order reduction
[8] to the UCT-PTA. Lastly, we experiment with all of the presented UCT-PTA variations on
the presented job shop scheduling problems and some task graph problems and discuss
the results.
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2 Job Shop Scheduling
The Job shop scheduling problem is an optimization problem that aims to optimally
schedule a set of jobs to be processed with given resources. Concretely, we are given a
set of n jobs J0, . . . , Jn with varying processing times that require resources defined as a
set of m machines M1 . . . Mm . A duration di j ∈ R≥0, where i ∈ {1 . . .n} and j ∈ {1 . . .m},
denotes the time that job Ji needs to be processed by the machine M j . Additionally, for
each job Ji there is a preferred processing total order ≤ j on machines M j .

What we want to find is a schedule σ : {1 . . .n}× {1 . . .m} =⇒ R≥0 such that if σ(i , j ) = t
then job Ji will start being processed at time t on machine M j . Moreover the schedule σ
has to be safe which we ensure by satisfying the following constraints:

1. ∀i∀ j1, j2 : σ(i , j1) < σ(i , j2) iff j1 < j2 saying that the order of the processing ma-
chines has to be respected.

2. ∀ j∀i1,i2 :σ(i1, j ) <σ(i2, j ) =⇒ σ(i1, j )+di1, j <σ(i2, j ) where i1 6= i2 i.e machine M j

cannot process more than one job at the time.

For a safe schedule σ we define its length as span(σ) = maxi , j (σ(i , j )+di , j ). The sched-
ule σ we want to find has to be optimal, that is span(σ) ≤ span(σ∗) for any other safe
schedule σ∗.

One example of the Job shop problem is the Newspaper problem where a given number
of people have to finish reading a certain number of chapters in a newspapers in a certain
order. When we observe this problem in the context of the Job shop scheduling problem,
we say that the machines are the sections while reading all of the sections is a job. Fur-
thermore, the machine’s limited capacity is defined with the restriction that each chapter
can be read by the exactly one person at a time. The aim is to find a schedule for which
the total time required for everybody to finish reading the newspaper is minimal. Let us
present a concrete example where two persons want to read a newspaper containing four
sections.

In Figure 2.1 we observe a case where Jan and Wang are reading a newspaper consisting
of four sections: Sport, Economy, Local News and Comics. A section can be read by only
one person at a time. Each person reads the sections in the given order requiring the
annotated amount of time. Let us now consider two schedules (not the only possible
ones) as shown on Figure 2.2.
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Figure 2.1: The Newspaper problem example with two people. Sections have to be read in the
given order and within the time noted underneath each section.

Figure 2.2: Potential optimal schedules for the described instance of the Newspaper problem
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In the beginning, both Jan and Wang can start reading as each of them is reading a dif-
ferent section. In the first schedule Jan finishes his first section after six minutes and
immediately starts reading the second section: Economy. In the seventh second Wang is
also done with reading his first section, however he has to wait until Jan finishes reading
Economy section. Once he does, both can proceed with reading rest of the sections. With
this schedule it would take 35 minutes for both readers to finish reading their sections.
In the second schedule the difference is that Jan does not start reading the Economy sec-
tion immediately after finishing his first one, but waits for Wang to read it first. With this
schedule, as seen on the chart, we achieve more of the time Jan and Wang are reading
simultaneously which results in less time for both to finish reading all of the sections - 28
minutes, therefore this is the more optimal schedule of the two.

Scheduling problems often have a defined cost which has to be taken into consideration.

The goal in that case, is to find the cost-optimal schedule which minimizes the accumu-
lated cost. To illustrate this we define a waiting cost within the Newspaper scheduling
problem: whenever a person has to wait, that cost a certain rate per time unit. For ex-
ample, we define the cost of Jan’s waiting time to be five per minute and the cost of Wang
waiting to be two per minute. If we now analyze the schedules from Figure 2.4 they result
with accumulated cost as shown on Figure 2.3.

Figure 2.3: Accumulated cost in schedules from Figure 2.2

We see that once the cost is taken into consideration, the first schedule is the optimal one
as it results in lower total accumulated cost.

We can imagine how, by adding a new person into the problem, complexity of finding
the optimal schedule increases greatly. Therefore a need for an efficient algorithms arises
as more and more people are added. In this thesis we use the instances of Newspaper
problem with two, four, six, eight, ten and twelve people involved to test our UCT-PTA
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algorithm. In general, the complexity of the Job shop scheduling has been shown to be a
NP-hard problem [16].

This type of the problem can be modelled with a priced timed automata which will allow

us to find its cost-optimal schedule. To do so we perform the cost-optimal reachability
verification of the priced timed automata which will explore its state-space in order to
find the state that satisfies such a condition. In the following section we give a detailed
description of the corresponding PTA model.

2.1 The Newspaper Problem in UPPAAL

A priced timed automata model representing the stated Job Shop scheduling problem
can be made in a model checking tool like UPPAAL Cora. We create a template as shown
in Figure 2.4 which models a set of consecutive jobs (reading sections) to be read by one
person. Depending on the number of people defined in the Newspaper problem, we ini-
tialize the same number of these templates to model the processes i.e people reading
tasks with the defined constraints.

Figure 2.4: Template used in a Job shop scheduling problem: modeling a reading tasks preformed
by one person

The template contains the initial location InitState representing a state where a per-
son, process of the system, waits for reading of the first section, which is conditioned
by its availability (no other person should be reading it). In the model itself this restric-
tion is ensured with the condition !sec1 being a part of a guard of the following edge; It
has to evaluate to true (thus the flag sec1 has to be false) for the transition to be enabled.
Once it is, the person can change its state by moving onto the next location and start read-
ing the section. Similar "waiting" locations WaitingSec2, WaitingSec3, WaitingSec4

represent the states in which a person waits for reading the second, third or fourth sec-
tion respectively. All of them are annotated with the invariant cost’ == c simulating the
cost increase in the system whenever a person has to wait for reading a following section.
Therefore, in such a state the cost increases by the rate c, defined differently for each per-
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son.
Locations SEC1, SEC2, SEC3, SEC4 represents the states in which a person is reading
a given section. While being in these locations, the cost should not increase thus its rate
is defined with cost’ == 0. As our problem defines the exact reading duration of each
section per person, this time restriction of the system’s behaviour has to be formulated.
We model it by defining x>=tx as the following edge’s guard condition and with x<=tx as
an invariant of the reading location - these are in fact lower and upper limit of the sojourn
in the reading location. By having the stated guard we ensure that the process can leave
the reading location only when the clock x reaches tx i.e. tx time units have to pass, while
with the invariant condition we ensure that the process cannot stay in the same location
for more than that time. If the problem would have been defined in a way that the reading
activity is not deterministic in terms of the time duration but within a time range, these
conditions make it easy for us to modify the model accordingly.
When a person finishes reading all four sections, the person goes to the final location
Done.

With this defined template we can model the instance of Newspaper problem example
described in the chapter 2. The resulting model is shown on Figure 2.5.

Figure 2.5: Model for the Newspaper problem with two people reading four sections
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3 Priced Timed Automata
In this section we shall now introduce a more formal definition of the described model
and its semantics.

Let C = {x, y ...} be a set of clocks - non-negative real valued variables that all grow at the
same rate equal to one , measuring the amount of time passed since the last reset. We
define the notion of clock valuations as v : C → R≥0. Passage of t time units is annotated
with v + t which maps each clock c ∈C to the value v(c)+ t .
Clocks are used to restrict a behaviour of the model in several ways, which will be ex-
plained later in the text, after first presenting the elements of a priced timed automata.
A priced timed automata over C is an annotated directed graph with vertices represent-
ing the locations and edges representing the transitions between them. Each transition
is associated with a guard g , an action Act and a reset set r , while locations are labeled
with invariants I (l ). A reset set r contains all the clocks that needs to reset after a given
transition is taken, which is denoted with r 7→ 0. Guards and invariants are the conjunc-
tions of simple constraints c ./ k, where c is a clock in C , k is a non-negative integer value
and ./ ∈ {<,≤,=,≥,>}. The set of all clock constraints is denoted with B(C ) and allow us
to restrict a behaviour of the models with respect to the values of clocks. More precisely,
guard conditions have to be satisfied to enable a transition, while invariants define condi-
tions that have to be continuously satisfied for a system to stay in a given location. These
satisfactions of conditions we denote with ν |= g for g ∈ B(C ).

The definition given up until this point, is also the definition of a timed automata. How-
ever as we also wants to consider the costs within a system, we use the extended defini-
tion with additional annotations of costs and cost rates on the edges and the locations,
respectively. The definition of a priced timed automata, as described in [5] is given be-
low.

Definition 1 Priced Timed Automata (PTA)
A Priced Timed Automata over a set of clocks C and actions Act is a tuple (L, lo ,E , I ,P ),
where L is a set of locations, l0 is the initial location, E ⊆ L ×B(C )× Act ×2C ×L is a set of
edges where an edge, being between two locations, contains a guard, an action and a set of
clocks to be reset. I : L → B(C ) assigns invariants to the locations and price P : L ∪E → N

assigns cost rates and costs to locations and edges, respectively. In the case of (l , g , a,r , l ′) ∈
E, we write l

g,a,r−−−→ l ′ .

In PTA a state s is a pair (l , v) where l ∈ L denotes a location and v a clock valuation such
that invariant I (l ) is satisfied. We consider clock valuations of the initial state to be 0,
therefore we define v0(c) = 0 for all c ∈C .

7



The following semantics of a PTA defined as a priced transition system is as described in
[5].

Definition 2 Semantics of Priced Timed Automata
The semantics of a PT A A = (L, l0,E , I ,P ) over clocks C and actions Act is given by a priced
transition system T = (S, s0,Σ,→), where S = {(l , v) ∈ L ×RC

≥0 : |v |= I (l )} is the set of states
where each state consists of a location l and a clock valuation v such that the invariant
of l evaluates to true, s0 = (l0, v0) is the initial state, Σ = Act ∪R≥0 is the set of labels and
→: (S ×Σ×R≥0 ×S) are the transitions labeled either with an action or a delay and with a
cost p.

The cost p equals to the cost rate P (l ) per time unit of staying in the location l , in the case
of a delay, either to the P (e) which is the cost of the edge in a case of action transition .
With respect to its label we differ between two types of transitions:

Discrete transitions, defined as

– (l , v)
a−→p (l ′, v ′) iff ∃e : e = (l , a, g ,r , l ′) ∈ E , v ∈ g , v ′ = v[r 7→ 0], and p = P (e)

Delay transition, defined as

– (l , v)
d−→p (l , v +d) iff ∀0 ≤ d ′ ≤ d : v +d ′ ∈ I (l ) and p = d ·P (l )

where for d ∈ R≥0, v +d denotes an increase of v by delay d for each clock c in C and
v[r 7→ 0] denotes a reset of clocks in the reset set r and agrees with v over C\ r .

An example of PTA from Definition 1 is shown on Figure 3.1.

Figure 3.1: An example of Priced Timed Automata

Some of the possible traces of this PTA defined as a transition system T (A) are follow-
ing:

· (l0, x = 0) −→0 (l1, x = 0)
d=1−−−→3 (l1, x = 1) −→0 (l2, x = 1)

· (l0, x = 0) −→0 (l1, x = 0)
d=2−−−→3 (l1, x = 2) −→0 (l2, x = 2)

· (l0, x = 0)
d=1−−−→1 (l0, x = 1) −→0 (l1, x = 0)

d=1−−−→3 (l1, x = 1) −→0 (l2, x = 1)

8



4 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) has shown to be a good method for finding an optimal
solutions in domains such as planning problems, which can be represented as a tree of
sequential decisions. In this section we will provide a brief description of the basic MCTS
algorithm, its advantages and disadvantages as well as its popular version called Upper
Confidence Bounds for Trees (UCT). The information we present about MCTS are the
ones relevant for understanding our UCT-PTA algorithm and the rest of the paper, how-
ever for a more interested reader we recommend the thorough Survey on MCTS research
provided in [9].

Figure 4.1: The four different steps of the MCTS main loop. A rendition of a similar figure from [9]

4.1 The Basic Algorithm

In this section we will first give the formal definition of the MCTS tree structure and then
we explain the steps of the search algorithm, itself.

Definition 3 MCTS Tree Structure
Let δ = (S,→) be a transition system with state set S and transition relation →⊆ S × S.
An MCTS tree over δ is a tuple T = (N ,E ,S, i ,Q,P ,Y ,YU ,YE ) where N is a set of nodes,
E ⊆ N ×N are the edges, the set of states is s : N → S and we assign for each node n ∈ N a
state s(n) ∈ S. Specifically, with s0 we define the start state of δ and with n0 we define the
root node of T .
Each node then has a defined number of visits i : N →N where given n ∈ N : i (n) ∈N, ac-
cumulated award Q : N → R where given a n ∈ N : q(n) ∈ Q, and a parent node P : N →
N such that (p(n),n) ∈ E for all n ∈ N . Also, for each node we define children nodes being
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Y : N → P (N ) such that Y (n) = {m | (n,m) ∈ E ∧ n = p(m)}, for all n ∈ N . Additionally we
define subsets of unvisited children as YU ⊆ C and explored children as YE ⊆ C , whereas
YU ∩YE 6= 0 and YU ∪YE = Y .

Finally we require the following correspondence between the transition relation → of δ and
the edges E of T :

• ∀m ∈ Y (n) : s(n) → s(m)

• ∀t ∈ S : s(n) → t =⇒ ∃m ∈ N : (n,m) ∈ E ∧ s(m) = t

and we define set of children states Y (S) where ∀m ∈ Y (n)∧ s(n) → s(m) =⇒ s(m) ∈ Y (S).

MCTS, being a tree search algorithm, builds a tree as one from the Definition 3 incremen-
tally and asymmetrically, in the direction of the nodes leading to the promising scores.
Each node in the tree represents a state s(n) of the underlying domain that MCTS is ap-
plied to. Therefore, child nodes from a given node are in fact reachable states from the
given node’s state and choosing a child corresponds to taking an action that would lead
to that child state. Additionally, node n consists of a state s(n) with an assigned score
Q(n) being the accumulated reward during the search and a visit count i (n) in the form
of a non-negative integer, noting the frequency of visits of a given state i.e node. Further-
more, given a state s all the child states of s(n) are contained in the corresponding child
nodes Y (s).

Build of the tree is achieved in an iterative fashion consisting of four sub-steps in each
iteration, as described at Figure 4.1:

1. Selection:
The first step consists of selecting a node to expand. In this step a child node is be-
ing selected from the root node, recursively down the tree until the unexpanded node
is encountered. Unexpanded node is defined as a non-terminal node with previously
unvisited children. Once such node is reached the Expansion step follows. While de-
scending down the tree, a policy is being used to select the "best" of the child nodes,
leading towards promising scores.

2. Expansion:
From the node chosen by the selection step, one of the unvisited child nodes is ran-
domly chosen and expanded.

3. Simulation:
From the newly expanded node, a simulation is run. The simulation provides some
approximation of the value of the expanded node. This usually happens by continually
taking actions according to some simulation policy, usually called a Default policy,
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until a terminal state has been reached or a condition is met. The simulation should
provide a score (reward), for the given expanded node.

4. Backpropagation:
The score returned from the simulation is backed-up through the tree. It updates all
the nodes that were selected during the selection step with the score.

Step 1 and 2 are usually grouped into a so called Tree policy. The simulation step is also
often called playout or rollout (of the Default policy). From the algorithms side, the it-
eration has no predefined stopping condition, however in practice it usually continues
until a given computational budget has been reached or some domain specific condi-
tions have been met. When the search terminates, a child node is chosen from the root
node, which corresponds to taking the action that leads to the state the child node rep-
resents. The selected node is usually chosen in the same manner as in the selection step
of MCTS, by performing the BestChild function. However it can also be chosen according
to the other mechanisms, some of them mentioned in the Survey [9]. There, four selec-
tion mechanisms are outlined as possible choices for selecting the best action: Max Child
which chooses the child with highest reward; Robust Child chooses the most visited child;
Max-Robust Child chooses both max reward and number of visits visits and continues the
search until one exists and Secure Child which chooses the child that maximises a lower
confidence bound. In general, if the domain requires it, it is possible to call the BestChild
multiple times on the final search tree, which will effectively "unroll" the best path found
so far. The pseudocode of the algorithm is given in algorithm 1.

Algorithm 1: Basic MCTS Algorithm

1 Function MCTSSearch(s0)
2 from s0 create root node n0

3 while stopping condition not met do
4 n′ = TreePolicy(n0)
5 reward = DefaultPolicy(n′)
6 BackUp(reward, n′)
7 end
8 return BestChild(n0)

4.2 Characteristics of MCTS

MCTS has a number of characteristics which makes it an attractive choice for its applica-
tion in diverse domains. We list a short description of the most important ones:

Anytime: After each MCTS iteration the complete search tree is up-to-date with all the
knowledge gained so far. This means that if one would like to take an action based on
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the search, it is always possible to stop the iteration and evaluate which child is the (cur-
rently known) best choice. However, the performance generally improves with more
iterations.

Aheuristic: MCTS, and a lot of its extensions, does not need any information of the un-
derlying domain. This makes MCTS easily usable in any problem that can be structured
as a tree search. With that being said, extending MCTS policies with domain-knowledge
often leads to improved performance in that domain.

Asymmetric search: MCTS explores the search tree in an asymmetric fashion. It focuses
on promising directions of exploration while still looking at less promising directions
every now and then.

Easily Extendable: The four different steps of MCTS: selection, expansion, simulation
and back-up, are easy to change and extend to alter the behaviour of the algorithm to
match a domain, which can improve the performance of the algorithm.

4.3 Upper Confidence Bound for Trees

The basic MCTS algorithm has a exploitation-exploration dilemma during the Tree policy
step, when considering which child nodes should be selected. In [4] they propose a solu-
tion to this dilemma, by addressing it as a multi-armed bandit problem and using UCB1
as the Tree policy. UCB1 is a great choice for it, as it is guaranteed to be within a constant
factor of the best bound for regret, which makes it an ideal solution to the exploitation-
exploration dilemma. Furthermore, it is quite simple and computationally inexpensive,
which is a necessity, since the Tree policy will be computed at each step during the de-
scension of the search tree.
UCB1 chooses the maximum arm computed by:

UC B1 = X j +
√

2lnn

n j
(4.1)

In the Algorithm 2 is the pseudo-code implementation of UCT in a slightly changed ver-
sion of the one presented in [9]. The main takeway is the UCB1 implementation in the
BestChild function where X j is the average reward of arm j , n is the total number of plays
and n j is the total number of plays of arm j . In the context of UCT-PTA which will be
introduced in the section 5.2, the arm is equivalent to the action being taken. The first
term expresses the exploitation weight while the second term expresses the exploration
one. The UCB1 implementation, being a part of the Tree policy is seen in the BestChild
function at line 15, with the MCTS notation integrated. Note that an additional value Cp

has been added to the exploration term, as to be able to deactivate and/or control how
much exploration the algorithm should do.
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Kocis and Szepesvári [4] proved that, when running UCT, as the number of searches grows
towards infinity, the chance of selecting a sub-optimal child at the root node converges
towards zero at a polynomial rate. This effectively means that UCT converges to the min-
imax tree if run for enough time.

Algorithm 2: UCT - slightly changed rendition of Algorithm 2 in [9]

1 Function UCT-TreePolicy(n)
2 while n is non-terminal do
3 if YU (n) is non-empty then
4 return Expand(n)
5 else
6 n = BestChild(n, Cp )
7 end

8 end
9 return n

10 Function UCT-Expand(n)
11 choose s′ ∈ YU (s) uniformly at random
12 create n′ such that s(n′) = s′, i (n′) = 0, q(n′) = 0, p(n′) = n, YE (n′) =; and

YU (n′) = Y (n′)
13 add n′ to YE (n)
14 return n′

15 Function UCT-BestChild(n,Cp)

16 return arg max
n′∈Y (n)

Q(n′)
i (n′)

+Cp

√
2ln i (n)

i (n′)

17 Function UCT-DefaultPolicy(s)
18 while s is non-terminal do
19 choose s′ ∈ S(s) uniformly at random
20 s = s′

21 end
22 return reward for s

23 Function UCT-BackUp(n,r ew ar d)
24 while n is not null do
25 i (n) = i (n)+1
26 Q(n) += Q(n)+r ew ar d
27 n = p(n)

28 end
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5 UCT-PTA

5.1 Applying MCTS to PTAs

MCTS is an aheuristic algorithm, and as such it generally does not care about the un-
derlying domain. This also applies to using PTAs as the domain upon which an MCTS
algorithm can act. However, while the MCTS algorithm may not necessarily differ be-
tween domains, it is still very important how the underlying domain is translated into the
MCTS search tree. This is true for the correctness of the algorithm, but also for optimizing
the performance. In this section we define the representation of PTAs in the MCTS tree
structure. We call the resulting tree structure the UCT-PTA Tree Structure, since it is a part
of the final UCT-PTA algorithm.

Considering the definitions of a state s from both Definition 3 and Definition 2 of the
semantics of PTAs we can precisily define UCT-PTA Tree structure.

Definition 4 UCT-PTA Tree Structure
UCT-PTA tree TA for Priced Timed Automata A is an MCTS tree from Definition 3 where
the state set is defined as S = {(l , v) | l ∈ L and v : C → R} and the transition relation → is
restricted to unit delays: →⊆ S × (Act ∪ {1})×S.

Furthermore, to fully enable the functionality of MCTS, we define a set of functions avail-
able to the MCTS algorithm. We call these functions the Environment interface, as it pro-
vides the necessary information from the PTA’s environment for MCTS to function.

Definition 5 Environment Interface

• GetSt ar tSt ate returns the initial state s0.

• I sTer mi nal takes a state s as input, and returns a boolean value that represents
wether the state is terminal or not.

• GetV al i dC hi l dSt ates takes a state s and returns all the possible successor states,
described as Y (s) in Definion 4.

• EvaluateRew ar dFuncti on takes a state s and returns the underlying reward value
of that state.

Changing and/or extending these definitions can drastically affect the tree structure, as
will changes to the UCT-PTA algorithm in general. Later, we will explore different vari-
ations of UCT-PTA which end up with different tree structures, which again affects the
searching in various manners. In Figure 5.1 a small PTA toy example is illustrated along
with the fully expanded UCT-PTA search tree. Note again, that UCT-PTA does not use all
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of the information presented in Figure 5.1b, but rather only the information it retrieves
from the Environment interface, also presented in the figure where it is relevant. The fully
expanded search tree represents the entire state space. However, in practice UCT-PTA will
almost always explore only a small fraction of the search tree.

(a) A PTA toy example.

(b) The fully expanded search tree structure of the PTA toy example. Location, clock
valuations, cost (annotated with C) and terminality are annotated for each node. Delay
transitions are annotated (d=1) for the relevant edges.

Figure 5.1: An example of a PTA (5.1a) and the MCTS tree counterpart (5.1b). Note that this search
tree construction is specific to the Stochastic Delay UCT-PTA, described in subsection 5.2.2.
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5.2 UCT-PTA

In this section we introduce the UCT-PTA algorithm which is our implementation of MCTS
for PTAs. We choose the UCT variation of MCTS since it has a lot of valuable properties,
as seen in section 4.3, thus it is well known and widely used.

The search-tree structure defined in Definition 4, the Environment interface from Defini-
tion 5 and the original UCT algorithm in Algorithm 2 combined with the changes in Al-
gorithm 3, explained in this section, makes up the first version of the UCT-PTA algorithm
which we call Stohastic Delay UCT-PTA. Later, we will also look into the other variations
of UCT-PTA.

5.2.1 General Challenges

The following section is a reiteration of a section in [15], with only minor changes.
As an aheuristic algorithm, UCT should in theory be applicable to any domain that can
be represented as a tree-search. However the PTA domain with cost-optimal reachabil-
ity do have a few properties that make a pure UCT implementation, the one showed in
Algorithm 2, impractical if not directly non-functional. This section will describe those
problems, and what changes was made to UCT to counteract them.

Infinite Transitions

MCTS and UCT have mostly been developed for game playing [9], and most games do
not continue indefinitely. However, it is easy to imagine a (priced) timed automata with
infinite transition sequences for instance the one shown in Figure 5.2.
In UCT the problem arises in the Default policy, where transitions are unrolled until a ter-
minal state is encountered, potentially running forever. Our solution is to cap the maxi-
mum amount of rollouts to a predefined number as shown on line 15 in Algorithm 3. The
number of rollouts itself we implemented as one of the tunable parameters. This how-
ever, introduces another problem, the need for being able to evaluate the reward/cost
of a non-terminal state. Luckily this is easy for PTAs and UPPAAL, since the PTA model
contains all the information necessary to evaluate the current cost of any state.
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Figure 5.2: A simple example of a TA with infinite transitions. The transitions will keep looping
between the Initial and place1 without ever getting to the terminal Goal state.

Non-Terminal No-Transition States

UCT is not equipped to deal with states that are not terminal, but have no possible tran-
sitions either. In a lot of domains, especially games, a state with no possible transitions
is also a terminal state. However, in (priced) timed automatas, a model can easily have
non-terminal being at the same time a no-transition state. A classic example of this is a
deadlock.

In UCT this problem is encountered in two places, in the Default policy and in the Tree
policy. The former is an easy fix. Here, encountering such a state is added as a reason for
terminating the rollout, while afterwards everything happens as usual.
The fix for the latter is more involved. The standard behaviour of the UCT’s Tree policy
is to return the node representing the non-terminal no-transition state and continue the
loop as usual. However, the fact that the Tree policy choose this node, implies that the
current best known transition trace ends in this state, and since the node does not provide
any new information for updating the scores, it will continually be chosen by the Tree
policy until the exploration term kicks in. This might take a lot of search loops, and the
node will still be encountered frequently after. The fix is to prune such nodes the first time
they are encountered as the output of the Tree policy, which is seen at line 8 in Algorithm
3.

Note that it is not possible to encounter such a state in the Job shop scheduling problem,
since it consists of a finite amount of jobs that does not depend on each other, takes a
finite amount of time to complete and have infinite time available to do so.

Unknown Reward/Cost Range

In [14] Kocsis and Szepesvári found that the ideal Cp value, used in BestChild function in
the Tree Policy (see Algorithm 2 line 15) for rewards in range [0,1] was Cp = 1/

p
2. How-

ever, Priced timed automata not only have ranges outside of [0,1], they also vary a lot
depending on the underlying model. Furthermore, models can have infinite number of
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possible rewards , obtained by analyzing the specific PTA itself, thus upper and lower
bounds of the reward range are not strictly defined. This poses a significant problem for
UCT, where Cp has to be predefined. Cp controls how the balance between exploration
and exploitation happens during the search. Having a value not tuned to the reward range
will often result in a nonfunctional search. Instead of figuring a Cp value for each model,
we decided to normalise the true reward range into [0,1] and use Cp = 1/

p
2. To this we

also refer as bootstrapping. We normalise a given reward r ew ar d with the normalisation
function shown here:

nor m_r ew ar d = r ew ar d −mi n_r ew ar d

max_r ew ar d −mi n_r ew ar d
(5.1)

Where mi n_r ew ar d is the smallest reward encountered and max_r ew ar d is the largest.
To find the reward range, before the main search loop, we started each run with a hundred
calls to Default Policy, and kept the minimum and maximum reward found, to use for the
normalisation. Then in the main loop, any encountered reward outside the range was
added as a new range bound. Changing the range over time introduces some undefined
behaviour which was not accounted for. However, empirically it did not affect the algo-
rithm throughout the experiments, so no time was spent finding a more elegant solution
for now.

Algorithm 3: UCT-PTA: The parts of the UCT that has been changed to accom-
modate Priced Timed Automata. The other functions has not changed from the
UCT as seen in Algorithm 2.

1 Function UCT-PTA-Search(s0)
2 from s0 create root node n0

3 while stopping condition not met do
4 n′ = TreePolicy(n0)
5 reward = DefaultPolicy(n′)
6 norm_reward = normalize(reward)
7 BackUp(norm_reward, n′)
8 if n′ is non-terminal & n′ has no children then
9 prune n′ from search tree

10 end

11 end
12 return BestChild(n0)

13 Function UCT-PTA-DefaultPolicy(s, r ol l out_l i mi t)
14 int i = 0;
15 while s is non-terminal & s has child states & i < r ol lout_l i mi t do
16 choose s′ ∈ S(s) uniformly at random
17 s = s′

18 i ++
19 end
20 return reward for s
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5.2.2 Handling of Time

Another major problem that arises when accommodating UCT to PTAs is how time will be
represented in the tree structure. Time is naturally a crucial part of PTAs, and the repre-
sentation of it will necessarily have a lot of influence on the exploration of the PTA.

For our initial version of UCT-PTA, Stochastic Delay UCT-PTA, the handling of time is
defined as in Definition 4 and introduced in the Section 5.1. We will later look at differ-
ent variations/extensions of this definition and Definition 5, which results in handling
time differently. For now, we investigate potential problems with the time handling of the
Stochastic Delay UCT-PTA.

Having a state set as in Definition 4, and a set of child states Y (S) from Definition 3, the
only child state that is available with a delay transaction is the one-second delayed state

(l , v)
d=1−−−→ (l , v+1). What is important to note here is that a state often has several possible

delay values, while with this stochastic approach only a delay of one clock rate is allowed
in the current state. The idea here is then, that choosing the delay action then leads to a
successor state (l , v+1), which has the next one-delay action allowed that leads to (l , v+2)
and so on.
This approach does provide a correct implementation, that leads to a search-tree struc-
ture that can represent the whole state space. However, it also introduces some unwanted
side-effects.

The main negative consequence of handling time in this fashion, is that it increases the
amount of so called trap states that will occur in the tree. Ramanujan et al. [17] define a
trap state as following:

Definition 6 Trap State
In a two-player game G, the current player p at state s is said to be at risk if there exists a
move m from state s such that after executing m, the opponent of p has a k-move winning
strategy. The state of the game after executing m is referred to as a level-k search trap for p.

In gameplaying a trap state is something to be avoided since it can result in a early loss.
However, in UCT-PTA the problem manifest in another fashion. The trap states in UCT-
PTA are not really traps, rather they are promising states that leads to a good or even
optimal trace for a PTA, which exists within an otherwise poor performing subtree. The
poor performing subtree will potentially make UCT-PTA shy away from it, making it miss
the promising trap state. The common ground is the "rarity" of the trap state, and the
fact that the algorithm should detect the trap state and take it into account when making
move m, in Ramanujan et al. to avoid it, but in UCT-PTA to exploit it.
Ramanujan et al. continues to show, that UCT has a very hard time finding traps deeper
than level-3 search traps, which is a negative property that UCT-PTA unfortunately in-
herits. This is a general problem for UCT-PTA and may possibly hinder the discovery of
optimal traces. However, it is an even larger problem for the Stochastic Delay UCT-PTA.
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When delay actions are structured in a stochastic fashion like the one described for Stochas-
tic Delay UCT-PTA, an uneven distribution of considered delay and action transitions is
introduced. If a state has some action transitions that are only valid after a certain amount
of time has passed, then those action transitions can have a decreasingly low probability
of being explored during the Tree policy and Simulation steps. This occurs because at
each node, child nodes are randomly chosen during the Simulation step, so to choose a
path that leads to a delay of for instance ten clock rates of a state is very unlikely as every
new node that represents a single clock increase has siblings being action nodes. A visu-
alisation of this problem is illustrated in Figure 5.3.

Figure 5.3: An illustration of the exponentially decreasing probability problem during the Default
policy in the version where one-delay transition is alongside action ones. In this instance, the
possibility of reaching the node that leads to good rewards is 0.25×0.25×0.25 = 0.0156 = 1.56%

Ultimately, this is exactly an introduction of additional trap states, since the promising
state will be a part of a sub-tree that may overall consist of worse choices. This is es-
pecially true for problems where incremented time results in incremented cost. In such
problems, the promising trap state is almost ensured to exists within a poor performing
sub-tree, since the sibling-actions will have worse cost in the sub-tree compared to the
sibling-actions of the first delay action not within the sub-tree.
This distribution of delays might in some instances be a good choice for the underlying
domain. However, it is more likely to cripple the effectiveness of the Tree policy and the
Default policy by greatly increasing the likelihood, that the promising trap states will not
be encountered simply due to chance. Note that Stochastic Delay UCT-PTA might not
be the only reason for trap states to occur, but rather it unnecessarily increases the total
amount of such states.
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5.3 UCT-PTA Variations

Besides our first implementation, Stochastic Delay UCT-PTA, we present two more varia-
tions in this section which we call Delay Exploratory UCT-PTA and Non-Lazy UCT-PTA.
The primary concern of both variations is to experiment with different ways of handling
time. As we saw in the subsection 5.2.2, the approach in handling time can have sig-
nificant consequences for the final algorithm. Because of this we decided to focus on
this aspect of the algorithm, since it is a more fundamental part of the application of
UCT to PTAs, contrary to other promising enhancements which are more auxiliary in na-
ture.

5.3.1 Delay Exploratory UCT-PTA

In the Stochastic Delay UCT-PTA we had an uneven distribution of delays, which in the
worst case scenario, lead to an increased amount of promising paths, so-called trap states,
being inaccessible during the tree search, simply due to low chance of encountering them.
This raises the question of how to change the handling of time, which lead to the imple-
mentation of the variation we named Delay Exploratory UCT-PTA.

In simplicity, Delay Exploratory UCT-PTA aims to handle all possible delays of a single
state, as being equally likely to be chosen during the Default policy and being on the same.

This is achieved by distinguishing between child states produced by delay transitions s
d−→

s′ and child states produced by action transitions s
a−→ s′ and handling them separately

both in the Tree policy and Default policy. In the tree structure this results in nodes having
either child nodes produced only by delay transitions or child nodes produced only by
action transitions. Furthermore the nodes are arranged in such way, that the tree will
alternate between the two node versions. In the nodes with only delay transitions, all
possible delays for that state are able to be chosen as the successor node, likewise, nodes
with only action transitions has all possible actions from that state to choose from. This
means we need functionality to distinguish between node types. We make an extension
to Defitinion 3 and 4:

Definition 7 Delay Exploratory Tree Structure Extension
Recall the definition of N from Definition 3. We add a set of boolean flags T to N such
that t : N → {0,1}, t ∈ T where n ∈ N and (t (n) =⇒ Y (s) = {s′ |s → s′,→ : S × Act ×S} )∧
(¬t (n) =⇒ Y (s) = {s′ |s → s′,→ : S ×d ×S} ).

However, this requires additional information/functionality from the PTA environment.
Namely we want to split GetC hi l dSt ates from Definition 5 into two variations, one for
action transitions and one for delay transitions. This extended definition is shown in
Definition 8.

21



Definition 8 Delay Exploratory Environment Interface Extensions

• GetDel ayC hi ldSt ates takes a state s and returns all the possible successor states
that are produced by delay transitions.

• Get Acti onC hi l dSt ates takes a state s and returns all the possible successor states
that are produced by action transitions.

With this configuration, choosing a successor state uniformly at random gives an equal
opportunity for all successor states of a single state to be chosen. The resulting tree struc-
ture is illustrated in Figure 5.4.

(a) A PTA toy example

(b) The tree structure for the Delay Exploratory UCT-PTA.

Figure 5.4: An example of a search tree structure for Delay Exploratory UCT-PTA (5.4b), on the
same PTA toy example as in Figure 5.1 (5.4a)
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Algorithm 4: Delay Exploratory UCT-PTA: The parts of UCT-PTA that has been
changed for Delay Exploratory UCT-PTA.

1 Function Delay Exploratory Expand(n)
2 if t (n) then
3 choose s′ uniformly at random from s(YU (n))
4 else

5 if s′ = s
M ax(d)−−−−−→ s′ ∈ YU (n) then

6 s′ = s
M ax(d)−−−−−→ s′

7 else if s′ = Mi n(d)−−−−−→ s′ ∈ YU (n) then

8 s′ = s
Mi n(d)−−−−−→ s′

9 else
10 choose s′ uniformly at random from YU (s)

11 end
12 create a new node n′ = () such that s(n′) = s′, i (n′) = 0, q(n′) = 0, p(n′) = n,

YE (n′) =;, YU (n′) = Y (n′) and t (n′) =¬t (n)
13 return n′

14 Function Delay Exploratory Tree Policy(n, E xpl or ePer cent ag e)
15 while n is non-terminal do
16 if si ze(YE (n)) < Si ze(Y (n))×E xpl or ePer cent ag e then
17 return Expand(n)
18 else
19 n = BestChild(n, Cp )
20 end

21 end
22 return n

Unfortunately a new problem arises with this way of handling time. In PTA’s a state can
often have a large number of delays available to choose from and in fact, may theoreti-
cally be infinite. In practice though it rarely is. However, it is still possible to encounter
large enough numbers, that the branching factor makes the state space explode. It then
becomes infeasible to try all possible delays of each state, as the original UCT algorithm
demands.
We addressed this issue by limiting the exploration to a preset percentage of the possible
delay actions to explore. Furthermore, we ensured to always explore the delay transition
with the smallest possible delay and the one with the biggest delay first, and then ran-
domly exploring the delays in between. This way, the state space explosion is limited,
however, it comes at the cost of a final trace with possibly worse cost. The limitation on
the exploration of in-between delays has been implemented as a percentage parameter
that can be tuned, as different variations of models could work well with different explo-
ration percentages. In the models we have used for the experiments, discussed in Chapter
6, 30% exploration limit seemed to be a good choice, after examining some of our prelim-
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inary results as in the Appendix A.
Different variations of random distributions were tested for the random exploration namely:

• Uniformly distributed exploration - uniform random was a default choice, since it
handles all the delays equally, making it a good choice for general PTA exploration.

• Exponentially distributed exploration - The smaller delays were given the higher
probabilities with exponential reduction towards the higher delays.

The different variations may suit to different problems, and exponential distribution was
tested as a distribution to fit the Job shop scheduling more closely, where shorter delays
generally lead to better results.
Another approach that could be promising for future research, is proposed by Carpentier
et al. in [10]. The problem of a single node having to choose the best node between a
computationally infeasible amount of possible child nodes, can be rephrased into the in-
finitely many armed bandit problem. Carpentier et al. proposes a method that minimize
the simple regret of an infinitely many armed bandit. Their proposal requires knowledge
of the underlying β−di str i buti on for the domain, however, they also propose a boot-
strapping technique to find the β−di str i buti on from domains where it is not known.
This technique is a promising solution to the problem. Firstly, it eliminates the need for
experimenting with different percentages and/or random distribution parameters for dif-
ferent PTA models, by automatically fitting to the PTA at hand. Secondly, the bootstrap-
ping phase requires some sampling from the domain, which we already have a boot-
strapping phase that does, albeit for the purpose of determining the reward range. It
is not far-fetched to think that these bootstrapping techniques easily could be merged
together.

5.3.2 Non-Lazy UCT-PTA

By doing preliminary experiments and analyzing the results with the Delay Exploratory
UCT-PTA, we had noticed that both scores and the performance of solving the Job shop
scheduling problems were not as good as ones obtained from the Stochastic Delay UCT-
PTA. We assume the reason for that could be the exploration of insignificant delays that
are in between the given lower and upper delay bounds which lead to larger state-space
exploration and sometimes could end up with worse scores. Therefore, we try modifying
our algorithm in such a way that it behaves as a Non-lazy Scheduler [1].
A non-lazy scheduler, as opposed to a lazy one, ensures that if the relevant resource is
available, it will be either immediately used by the job i to start a task j or the system will
be delayed until a certain point in time where some other job will start using that some
resources. That is, a process will always take over an available resource unless the other
process can also benefit from it, then the wait i.e delay first process taking a resource
is possible. Concretely, if we look at the schedules from Figure 2.4 in the Chapter 2: at
sixth second, when Jan stops reading the Sports section there will be two possible delays:
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either it will be zero, which will be in the case of the first schedule where Jan immediately
starts reading the Economy section, or it will be delayed by one to a state where Wang
starts reading the Sport section. In case of this example, the delaying by one will give the
optimal schedule therefore result with better score.

For the purpose of defining a lazy schedule we first define, as in [2], a used resource by a
job i doing a task j with µi ( j ) = m. Furthermore, we define a Task progress function with
β(i , t ) = m stating which machine is used by a job j at a given time t .
Now we give the definition of Lazy schedule as in [2].

Definition 9 Lazy Schedules
Let S be a schedule, let i be a job and j a task with µi ( j ) = m that starts at time t . We say
that S exhibits laziness at (i , j ) if there is a time r < t such that for every t ′ ∈ [r , t ),β(i , t ′) =⊥
and for every i ′ 6= i , β(i ′, t ′) 6= m. A schedule is non-lazy if it exhibits no laziness.

It has been proven by Abdedda et al. [2] that non-lazy schedulers give the optimal sched-
ule for Job shop and Task graph scheduling problems. To implement this the environ-
ment interface of Delay Exploratory UCT-PTA has to be altered slightly, this is shown in
Definition 10. Note that GetDel ayC hi ldSt ates now only returns two child states, and
we know one of these is the optimal child. This drastically reduce the state space rep-
resentation, and effectively solves our state-space explosion problem we had in Delay
Exploratory UCT-PTA.
Besides the changes to the environment interface, the algorithm is generally equivalent to
that of Delay Exploratory UCT-PTA, except that the tree-policy is reset to that of standard
UCT, now that we don’t need to only explore a certain percentage of the children.

Definition 10 Non-Lazy UCT-PTA Environment Interface Extension

• GetDel ayC hi ldSt ates takes a state s and returns the 0 delayed successor state,
which is equal to s, and the non-lazy delayed successor state.

5.4 UCT-PTA Extensions

5.4.1 Tree Pruning with Steps

Another way to extend our UCT-PTA algorithm that can improve the efficiency of the
search is by descending through the tree throughout the search. After a certain number
of iterations of the main search loop, see algorithm 1, we "make a step", that is, we call the
BestChild function from algorithm 2 in line 15, on the root node and set the returned best
child node as the new root. We proceed moving down the tree until the terminal node is
found or the time limit has exceeded.
This is actually the default behaviour of MCTS/UCT, since the algorithms mainly have
been used for game playing, in which a player only has a set amount of time/resource
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before having to make a move. However, since we focus on exploration of PTAs in a non-
live environment, this is not a necessity for the UCT-PTA algorithm, which is why this is
introduced as an extension.
With this approach the tree is continually pruned thereby reducing the Tree policy explo-
ration in the early stages where it is less necessary, and force it to do exploration further
from the original root node, where it will be more beneficial. This comes at the cost of a
decreased correctness of the final tree, since the step may possibly be suboptimal.
This gives a new tuneable parameter the step size, which denotes the number of iterations
to be conducted before the step is made and a new root node is assigned.
In the scope of this project we variate and experiment between different fixed step sizes.
However, another promising approach, would be to make the step as soon as it becomes
clear, that no other child node will become more visited, eg. enough information has
been gained to ensure the best move from that node. This way of pruning in the UCT Al-
gorithm is called Absolute Pruning and was proposed by Huang et al. in [12]. They show
that Absolute Pruning preserve the correctness of UCB, that is, preserve the perfect bal-
ance of exploration and exploitation as to minimize the cumulative regret, and they also
found it to increase the wining rate of Go [12]. Preserving the correctness of UCB, means
that no suboptimal moves will be made, also no parameters would need to be tuned, both
making this version purely beneficial. Lastly, stepping could naturally be modified to be
used for realtime applications of PTAs, just like the original MCTS/UCT algorithm intend
to.
Implementing Absolute Pruning, was not within the scope of this project, however, we
believe it would be a great addition in future research.

5.4.2 Partial Order Reduction in UCT-PTA

Another approach with which we try to improve UCT-PTA by reducing the state-space
is by introducing the Partial order reduction [8]. As a part of Partial order reduction we
finish any process whose task is about to finish within zero clock units, before any other
process can start. If there are multiple tasks to finish, the order in which it happens is
predefined and it does not matter.
This does not prevent the finding of the best trace in terms of cost, but should reduce the
complexity for the UCT-PTA algorithm, by not making it accidently assign jobs to other
resources, than the actual optimal one.
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6 Experiments
In this chapter we present the results of the experiments on UCT-PTA and compare it
to already established methods. Different variations and extensions of UCT-PTA were
tested for performance on different Job shop problems, previously described in Chapter
2. Each version of UCT-PTA was ran thousand times on several Job shop models of various
complexities, differing in the number of jobs being scheduled. We compare the different
UCT-PTA variations against two other algorithms, namely Best-RDFS and Uppaal Cora
[6].

• Best-RDFS - a Random Depth First Search that always explores the best state as the
next state, in terms of cost. If several states ties in the best cost, a state is chosen at
random. It reports the cost of the first trace that ends in a terminal node it encoun-
ters.

• Cora - an algorithm that finds and proves the trace with lowest possible cost of a
given PTA model. This is a slightly different goal than UCT-PTA, but still interesting
to compare against.

The results reported consists of the best and worst cost found, the mean cost found and
the standard deviation of the costs found. These numbers should give an insight on the
consistency of the performance of the different variations. Alongside the cost, the com-
putational performance of the algorithms are reported in the form of number of states
explored and runtime. The implementation of UCT-PTA have not focused on code opti-
mization, and as such the runtime can possibly be improved by a better implementation.
Therefore, we suggest to ignore the runtime when comparing different variations of UCT-
PTA. However, since the Best-RDFS and Cora handle and count states differently and also
have slightly different goals than UCT-PTA, we have kept the runtimes in the result tables,
to get a better overall picture of the comparison between these and UCT-PTA.

6.1 Experiments results and discussion

In this section we present and discuss the experiments for the UCT-PTA variations of dif-
ferently handled delays: Stochastic Delay and Delay Exploratory UCT-PTA alongside with
Non-Lazy UCT-PTA. In addition, as previously mentioned, we compare them to the Best-
RDFS and Cora.

6.1.1 Job Shop Models Comparison

Our initial experiments were run on the Newspaper instance of the Jobshop problem,
described in the section 2.1. Different complexities in terms of alternating numbers of
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jobs were tested for the algorithms.

Table 6.1: Results of 1000 runs of all UCT-PTA variations on Job shop problems of different com-
plexities in terms of number of jobs. Grey colored rows indicate the results with the best minimum
cost found. Cases where in more than 20% of runs the result was not found within the given run-
time are noted with * .

Stohastic Delay UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0 1,722

4 65 69 65.06 0.5 3.09 37,868

6 153 157 153.23 0.94 3.32 26,860

8 474 573 476.04 13.97 24.49 159,158

10 954 1,178 1,033.02 21.61 117.71 559,153

12 1,212 1,573 1,466.14 90.67 243.36 961,882

Delay Exploratory UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0 2,014

4 65 114 68.97 2.50 3.27 24,496

6 175 209 192.14 8.05 28.49 120,962

8 470 673 506.24 32.74 121.55 299,728

10 1,003 1,301 1,154.50 79.06 605.77 1,231,493

12 1,189 1,991 1,458.93 159.95 1,646.01 2,545,025

Non-Lazy UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0 1,290

4 37 79 43.55 11.91 11.82 208,414

6 153 178 154.26 3.69 6.94 72,775

8* 424 609 544.31 27.50 138.34 985,882

10 947 1,182 1,036.75 58.59 219.19 1,505,776

12 1,256 1,660 1,416.35 54.20 689.67 4,540,552

Best-RDFS
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 12 12 12 0 0 29

4 110 162 135.63 25.38 0 74

6 153 576 402.87 93.09 0 128

8 516 1,280 954.87 128.67 0.01 191

10 1,126 2,481 1,837.27 200.46 0.01 254

12 2,062 4,267 3,001.10 336.70 0.02 328

Cora
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 12 - - - 0.03 55

4 36 - - - 0.07 1,702

6 149 - - - 92 292,273

8 358 - - - 10,768 10,878,116

10 failed - - - failed failed

12 failed - - - failed failed

Looking at Best-RDFS and Cora relative to all versions of UCT-PTA, a general picture
forms. Best-RDFS is unmatched in terms of computation time, but falls significantly be-
hind in cost compared to the UCT-PTA variations, especially when the models start to
increase in size. On the other end, Cora naturally has the best performance in terms of
cost, since it finds and proves the best cost. However, the runtime and amount of states
explored explodes very quickly as the complexity of the models increase. In fact it was
unable to run for ten and twelve people Job shop models, terminating due to a lack of
memory caused by the fact that Cora is a 32-bit program.
Looking at how the variations of UCT-PTA perform among themselves, we observe that
Non-Lazy UCT-PTA and Stochastic Delay UCT-PTA seem to be on par in terms of the cost,
with Non-Lazy UCT-PTA being slightly better in terms of the best costs found, but also
slightly worse in terms of the worst cost found. However, looking at the states explored
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Non-Lazy UCT-PTA is significantly worse, and in some cases even worse than Delay Ex-
ploratory UCT-PTA, which is generally the poorest performing variation of UCT-PTA. This
runs counter to our theoretical intuition of how the different variations should be per-
forming, were Non-Lazy should be the best performer followed by Delay Exploratory
UCT-PTA and lastly Stochastic Delay UCT-PTA.

(a) The best cost found by different algorithms
(b) An average state exploration by different algo-
rithms

Figure 6.1: Visualization of the results presented in Table 6.1

We theorize that the reason for the unreasonable effectiveness of Stochastic Delay UCT-
PTA is because of the specific instances of models the algorithms were tested on. Stochas-
tic Delay UCT-PTA and Delay Exploratory UCT-PTA should be disadvantaged compared
to Non-Lazy UCT-PTA in problems with states that have a wide range of delay transi-
tions available. However, the specific models tested here, while being normal Job shop
scheduling problems, actually had very short running jobs, typically low one-digit num-
bers, making it a likely explanation for the skewed performance compared to the expected
performance.

Increased Time Job Shop Models

To test our hypothesis about the expected vs. actual performance, we modify all of the job
shop models to have longer task times. Concretely, all the task durations are multiplied
by five compared to their original counterpart. This results in states generally having
a broader range of possible delays. To reiterate our hypothesis, as different versions of
UCT-PTA have different approaches in handling/exploring delays, we assume this mod-
ification will have an impact on their relative performances. In Table 6.2 we present the
results of the experiments on these time increased models.
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Table 6.2: Comparison of the results after multiplying Job shop problem model’s task durations
by five. Cases where the result was not found in more than 40% of runs within a given runtime are
denoted with **. Cases where the results was not found in 20% of runs were noted with *.

Stohastic Delay UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 60 66 60.05 0.42 3.68 28,297

4** 185 185 185 0 320.29 1,749,626

6** 765 822 781.40 11.54 420.26 2,045,388

8 - - - - 1200 5,088,224

10 - - - - 2400 9,132,099

12 - - - - 2400 8,262,686

Delay Exploratory UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 60 63 60.02 0.23 1.13 21,736

4 345 561 349.16 10.44 72.89 495,461

6 855 1,251 999.52 77.30 265.60 1,220,444

8* 2,130 3,537 2,802.18 174.51 868.94 2,848,072

10* 4,864 6,686 6,064.48 295.70 2,172.37 3,886,699

12 - - - - 2400 -

Non-Lazy UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 60 60 60 0 0 1,633

4 185 355 280.61 66.92 11.14 195,008

6 765 806 773.70 12.24 6.97 73,154

8** 2,120 3,020 2716.46 145.05 133.43 930,699

10 4,740 5,965 5162.46 270.44 219.19 1,496,161

12 5,910 8,378 7,074.72 266.27 677.33 4,430,536

Best-RDFS
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 60 60 60 0 0 29

4 550 810 674.58 126.84 0 75

6 785 2,880 1,996.50 479.81 0.01 128

8 2,810 6,380 4,737.91 614.50 0.01 191

10 6,400 11,785 9,228.31 953.01 0.01 254

12 9,680 19,475 15,094.53 1,624.46 0.02 329

Cora
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 60 - - - 0 54

4 180 - - - 0.06 1,658

6 745 - - - 113 273,741

8 1790 - - - 12,801 10,197,507

10 failed - - - failed failed

12 failed - - - failed failed

(a) The best cost found by different algorithms (b) Average state exploration by different algorithms

Figure 6.2: Visualization of the results presented in Table 6.2

Looking at Table 6.2, it looks like our hypothesis is correct. Non-Lazy UCT-PTA is now
clearly the best performing algorithm in terms of both cost and states explored among
the UCT-PTA variations. Furthermore, as expected Delay Exploratory UCT-PTA outper-
forms Stochastic Delay UCT-PTA, which generally really struggle with the models, not
even being able to find a single result for the eight people job shop problem and larger in
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the computation time given. This likely stems from the fact, that Stochastic Delay UCT-
PTA introduces more trap states and generally produces a large tree representation.
Delay Exploratory UCT-PTA is generally better than Stochastic Delay UCT-PTA, but still
suffers from the larger ranges of delays. In fact, we initially started with models with ten
times increased time for tasks but unfortunately, Stochastic Delay UCT-PTA and Delay
Exploratory UCT-PTA were unable to find results for any of the models, so we settled on
multiplying by five instead, since we could then get a better comparison between the two.
Best-RDFS and Cora performs somewhat the same relative to the UCT-PTA algorithms, as
they did in the original models. Cora especially hardly changes, having almost equivalent
runtimes and amount of states explored for the increased time models as it did for the
original models.

6.1.2 UCT-PTA extensions

In this section, we choose the best performing variation of the UCT-PTA algorithm, which
has shown to be the Non-lazy UCT-PTA, and apply the Partial Order reduction and Step-
ping extensions to it and show how those modifications affect its performance.

Partial Order Reduction

Partial Order Reduction was applied to Non-Lazy UCT-PTA and compared against Non-
Lazy UCT-PTA without Partial Order Reduction. The results can be seen here in Table 6.3:

Table 6.3: The results of Non-Lazy UCT-PTA before and after introducing Partial Order Reduction
Extension. Cases where the result was not found in more than 40% of runs within a given runtime
are denoted with **. Cases where the results was not found in 20% of runs were noted with *. The
rows colored in gray are ones with the best cost found.

Non-Lazy UCT-PTA
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0 1,290

4 37 79 43.55 11.91 11.82 208,414

6 153 178 154.26 3.69 6.94 72,775

8** 424 626 540.30 27.35 86.88 549,821

10* 947 1182 1036.75 58.59 219.19 1,505,776

12 1256 1660 1416.35 54.20 689.67 4,540,552

Non-Lazy with POR
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 12 12 12 0 0 849

4 37 75 55.55 13.4 1.57 35,412

6 153 174 153.67 3.62 4.12 43,749

8 424 645 485.91 32.70 47.42 346,136

10 849 1,150 1,000.99 60.23 154.42 917,189

12 1,150 1,744 1,462.81 146.98 461.11 2,080,246

The Partial Order Reduction is a straightforward improvement. The states explored is
generally reduced by 30-50%, while the cost found stays almost the same. The standard
deviation increases a bit for some of the larger models, but it is likely due to the fact that
it finds better minimum cost, which increases the range of results.
The four-people problem has been causing some problems for Non-Lazy UCT-PTA and
Stochastic Delay UCT-PTA evidenced by the fact that the six-people problem has bet-
ter performance in terms of states explored for both models in Table 6.1, but also in the
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increased time models Table 6.2. However, it seems like the Partial Order Reduction re-
duced some of the complexity that caused the problems. Non-Lazy UCT-PTA with Partial
Order Reduction performs significantly better compared to without on the four people
problem. With that being said, it could possibly be beneficial to analyze the four-people
problem model more closely, to figure exactly what happens, and why it does not seem to
be a problem for Delay Exploratory UCT-PTA.

Stepping

Here we present the results for Non-Lazy UCT-PTA with the stepping implementation.
Experiments for different stepping sizes were tested, and shown here side-by-side in Ta-
ble 6.4. All of the stepping implementations also used Partial Order Reduction, and as
such, should be compared against Non-Lazy UCT-PTA with Partial Order Reduction in
Table 6.3.

Table 6.4: Results of running Non-Lazy UCT-PTA with different step sizes.

Non-Lazy UCT-PTA with Stepping

Step size: 10
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0 165

4 55 124 82.12 18.75 0.03 499

6 157 418 202.63 39.76 0.08 824

8 410 813 599.63 75.28 0.16 1,166

10 890 1,775 1,268.05 151.00 0.29 1,483

12 1,393 2,923 2,040.61 249.89 0.46 1,798

Step size: 50
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0.01 418

4 53 79 72.08 4.84 0.09 1,889

6 153 227 166.91 17.33 0.31 3,557

8 370 711 542.09 65.22 0.69 5,378

10 746 1,429 1,048.17 108.78 1.28 6,968

12 1,219 2,211 1,601.43 176.01 2.06 8,611

Step size: 100
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0.02 0 513

4 43 79 69.37 8.0 0.19 3,358

6 153 232 162.91 16.30 0.56 6,644

8 390 677 541.59 64.08 1.30 10,376

10 746 1,323 1004.54 100.28 2.44 13,514

12 1,131 2,023 1507.45 168.02 4 16,863

Step size: 500
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0.02 796

4 37 79 45.24 6.69 0.64 10,844

6 153 183 154.46 5.29 2.09 24,862

8 402 741 548.66 86.53 5.74 46,013

10 746 1152 907.34 94.63 11.29 63,033

12 1,113 1,784 1,452.73 166.68 18.96 79,440

Step size: 1,000
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0.03 0 850

4 43 75 58.76 10.60 0.98 17,792

6 153 174 153.88 4.17 2.97 32,573

8 402 691 533.03 62.68 10.45 81,515

10 746 1,126 909.64 78.94 21.73 122,096

12 1,122 1,773 1,324.20 147.15 4 37.07 155,782

Step size: 5,000
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0.3 848

4 37 75 64.18 5.76 1.6 29,985

6 153 174 153.55 3.31 4.36 43,434

8 424 649 502 46.87 27.49 203,781

10 849 1,274 1008.51 62.28 85.34 538,864

12 1,121 1,697 1,233.47 135.27 162.25 664,618

Looking at Table 6.4 it is easy to see, that the stepping implementation for Non-Lazy UCT-
PTA provides a significant boost in performance.
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Intuitively one could tend to think, that with stepping enabled, the cost would suffer over
an improvement in speed, due to the fact that making a step may hinder the algorithm
from reaching promising branches. However, as is evident, this is not the case. In fact
several of the experiments show even better cost than Non-Lazy UCT-PTA without step-
ping. The reason is to do with the fact that [12] presented a pruning technique absolute
pruning, that was shown to preserve the correctness of UCB. This was also discussed in
subsection 5.4.1. Stepping does not preserve correctness of UCB in itself, however, given
a large enough stepping size, it will very likely make the same move, as a UCB correct
implementation would. Furthermore, the computational resources that would have oth-
erwise been wasted on exploring suboptimal branches, if the move had not been made,
can now be allocated to areas of the search-tree where the information gain, will have a
much higher pay-off. So in short, the stepping implementation forces the algorithm to
avoid exploring in areas where it is unnecessary to do so.
For our experiments, the overall best step size is 50. However, it is slightly ambiguous as
step size 500 outperforms 50 in some models. From this we can quickly conclude that
a fixed step size is not the best choice as different models require different step sizes to
perform best. In fact, it is possible, that even within a single model, different states may
require different amount of visits by the Tree policy before BestChild will be able to choose
the best move. As such, Absolute pruning seems to be the obvious choice to benefit from
this improvement.
Lastly, something very noteworthy is the significant reduction in states explored, which
is even easier to see in Figure 6.3b, where the grey line represents the Non-Lazy UCT-
PTA without stepping. The best performing step-sizes have reduced the states explored
by 1-2 orders of magnitude, compared to Non-Lazy UCT-PTA without stepping, with the
exception of the two people problem.

(a) The best found cost by Non-Lazy UCT-PTA
with different step sizes noted by different colors.

(b) An average state exploration by Non-Lazy UCT-
PTA with different step sizes noted by different colors.

Figure 6.3: Visualization of the results presented in Table 6.4
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6.1.3 Final Comparison charts

For the final comparison charts, the best version of Non-Lazy UCT-PTA is compared against
Best-RDFS and Cora on the Job shop scheduling problem, as well as on some additional
Task Graph Scheduling models.

Job shop scheduling

In Table 6.5 the Job shop scheduling are re-shown, this time for the best version of UCT-
PTA, namely Non-Lazy UCT-PTA with stepping and Partial Order Reduction. It is com-
pared against Cora and Best-RDFS. All of the tables have already been shown in previous
sections, but are here gathered for a final assessment.

Table 6.5: Job shop scheduling results for the Best-RDFS, Cora and the best performing version of
UCT-PTA. All of the algorithms ran 1000 times on each model.

Job shop scheduling

Best-RDFS
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 12 12 12 0 0 29

4 110 162 135.63 25.38 0 74

6 153 576 402.87 93.09 0 128

8 516 1,280 954.87 128.67 0.01 191

10 1,126 2,481 1,837.27 200.46 0.01 254

12 2,062 4,267 3,001.10 336.70 0.02 328

Cora
Cost

n-jobs Min Max Mean Stdev
Runtime
(seconds)

States
Explored

2 12 - - - 0.03 55

4 36 - - - 0.07 1,702

6 149 - - - 92 292,273

8 358 - - - 10,768 10,878,116

10 failed - - - failed failed

12 failed - - - failed failed

Non-Lazy UCT-PTA (step size: 50)
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max Mean Stdev
2 12 12 12 0 0.01 418

4 53 79 72.08 4.84 0.09 1,889

6 153 227 166.91 17.33 0.31 3,557

8 370 711 542.09 65.22 0.69 5,378

10 746 1,429 1,048.17 108.78 1.28 6,968

12 1,219 2,211 1,601.43 176.01 2.06 8,611

The final best version of UCT-PTA compares well against Best-RDFS and Cora. We ob-
serve a runtime/state space exploration that is nearing Best-RDFS albeit still an order
of magnitude from it. At the same time, the cost found is significantly better than Best-
RDFS, especially as the models increase in size, making the trade-off worthwhile.
Compared to Cora, it is evident that Non-Lazy UCT-PTA has a much better scaling in
terms of runtime/state space exploration than Cora. Cora failed at ten and twelve peo-
ple, due to memory constraints of the 32-bit program, which is not entirely of fault to
the algorithm, however, already at the eight people model the runtime/state space ex-
ploration explodes. This naturally ensures the optimal cost but would quickly become
infeasible to compute as the complexity further increases, even if the program was to be
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re-implemented to 64-bit.
Cost wise, Non-Lazy UCT-PTA leaves a bit to be desired when comparing against Cora.
The best costs found are within 10% difference to the optimal for the models we know
the optimal trace for (for four people, step size 500 found a minimum cost of 37), but
the algorithm is volatile and the mean and especially worst costs, are often far from the
minimum. The exact reasons for this, requires a thorough investigation of the models,
along with the decision making of the algorithm to properly assess. However, a likely
hindrance to the algorithm are the promising states that lies in otherwise unpromising
sub-trees, the so-called trap states, which we already concluded was a big obstacle for the
Stochastic Delay UCT-PTA variation in subsubsection 6.1.1. Research into how to better
detect/reduce these states will likely be very beneficial to the algorithm.
Likewise, we saw a notable performance improvement when reducing the state space
representation between Delay Exploratory UCT-PTA and Non-Lazy UCT-PTA. Further re-
search into this area may very likely prove beneficial to the algorithm.

Task-Graph Models

In this section we test the Non-Lazy UCT-PTA algorithm on the Task-Graph Scheduling
problem [13] and compare against Best-RDFS. We obtained the task graph UPPAAL mod-
els from Ejsing et al. in [11] who in turn made their task graph uppaal models from prob-
lems obtained from a standard task graph set of Kasahara et al. [13]. The models comes in
two variations: preemptive tasks and non-preemptive tasks. We had to modify the mod-
els to make them work with UCT-PTA, but we unfortunately introduced a breaking bug to
the preemptive versions, that we were unable to fix. Consequently we only report results
for the non-preemptive tasks. The models comes in sizes of 50-1000 tasks and 2-11, 16
machines.
We experimented on all of the non-preemptive tasks. We used Non-Lazy UCT-PTA with
Partial Order Reduction and stepping, with step sizes of 50 and rollout limit 50. They ran
for 10 minutes and the reported results are the first terminal node found, along with the
amount of time it took to find it. The 10 minutes proved to not be enough time to find any
results for models larger than 300 tasks. All of these were removed from the result table,
to be able to more easily gain an overview of the results for the models, that results were
found for. The results are shown in Table 6.6
Cora was unable to find results for any of the models and has been left out of the ta-
ble.
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Table 6.6: This table shows the performance of Non-Lazy UCT-PTA, relative to Best-RDFS, for the
non-preemptive task-graph scheduling problems. The 5 best, 5 mean and 5 worst models, in
terms of Non-Lazy UCT-PTA performance relative to Best-RDFS, are shown. Tasks denote num-
ber of tasks, Machines number of machines and Version denotes a unique task graph problem,
although different versions may have same number of tasks and machine. The cost is presented
as percentage deviation of Non-Lazy UCT-PTA relative to Best-RDFS, negative scores meaning
Non-Lazy UCT-PTA performs better than Best-RDFS and positive scores being worse. Min is the
minimum found by the algorithms and Max is the maximum. Q1, Q2 and Q3 are the best, middle
and worst quartile respectively.

Non-Preemptive Task-Graph Scheduling Problems Results

Non-Lazy UCT-PTA / Best-RDFS
Non-Lazy
UCT-PTA

Best-RDFS

Cost
Tasks

Ver-
sion

Mach-
ines Min Q1 Q2 Q3 Max

Runtime
(seconds)

States
explored

Runtime
(seconds)

States
explored

50 2 3 -6.828 -10.055 -12.801 -15.466 -18.519 6.18 10786 0.047 371
50 2 4 -7.792 -9.746 -11.715 -12.077 -11.236 6.18 10656 0.046 376
50 0 5 -3,508 -6.825 -10.587 -15.700 -20.27 6.74 11205 0.064 505
50 0 4 -4.347 -6.395 -10.327 -14.330 -17.441 7.6 11275 0.08 519

Best

50 0 6 0 -2.655 -6.536 -11.447 -14.93 6.8 11306 0.065 494

100 1 8 -1.135 -0.653 -0.459 -2.094 -3.061 27.26 22145 0.153 1038
300 2 8 -1.515 -0.723 -0.762 -1.311 -3.202 509 67259 1.899 2670
100 1 10 0 -0.804 -0.497 -1.235 -1.123 27.3 22107 0.150 974
50 0 2 0.763 -0.063 -0.201 -1.337 -3.521 6.9 11644 0.0634 492

Mean

100 2 2 1.034 0.113 -0.795 -0.899 0 38.5 21959 0.127 651

300 0 9 1.181 1.237 1.156 1.266 1.873 536.08 67260 1.9002 2625
300 2 10 1.593 1.819 2.124 2.736 2.713 557.3 67259 1.85 2591
300 2 16 0.796 1.315 2.321 3.466 3.984 584.3 67228 1.85 2547
300 2 11 0.398 1.267 2.543 3.627 4.72 572.8 67195 1.829 2567

Worst

100 0 16 1.063 1.063 2.250 4.521 5.319 41.08 21987 0.168 904

Table 6.6, gives mixed results for Non-Lazy UCT-PTA, where a general picture appears
that is not much in favor of UCT-PTA. In terms of task size, Non-Lazy UCT-PTA is by far
best in the problems with fewest tasks eg. the 50 tasks problem. The fact that four out of
five mean models are 100 tasks models, and four out of five worst models are 300 tasks
models, may indicate that the state spaces of the larger models, simply have not been
sufficiently explored in the time given to report better costs. Also, the models that had
more than 300 tasks also failed, is another supporting indicator of this. To properly assess
this, it would be necessary to run the models for much longer and allow them to report
multiple traces, to see if UCT-PTA would find any better results.
Another interesting observation to make, is that the amount of machines increases as the
performance relative to Best-RDFS worsens. A plausible explanation would be, that less
amount of machines requires more long-term planning to achieve the best cost. More
machines mean resources are generally more readily available, and consequently it may
be less beneficial to plan ahead. This directly plays into Best-RDFS, which only looks
shortly ahead. At the same time Non-Lazy UCT-PTA have an increased state space to
keep track of, and may "waste" computation resources relative to Best-RDFS.
Shifting gaze to runtimes/state space exploration, makes the case worse for Non-Lazy
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UCT-PTA. The states explored rises more or less linearly with the amount of tasks, how-
ever the runtime grows much faster. This may possibly be partly due to unoptimized
code, but that likely does not explain the whole reason.
Generally the trade-off between Non-Lazy UCT-PTA compared to Best-RDFS, is better
cost by sacrificing speed. However, while it was a promising trade-off in the Job shop
scheduling problems, where the cost was significantly better and the speed only marginally
slower, the Task graph scheduling problems are more mixed. Here, running Non-Lazy
UCT-PTA does not necessarily guarantee a better cost than Best-RDFS and comes at a
cost of greatly reduced speed.
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7 Conclusion
We proposed an algorithm, UCT-PTA, that is an adaptation of the Monte Carlo Tree Search
variant UCT to Priced Timed Automata. Furthermore, we proposed three variations namely,
Stochastic Delay UCT-PTA, Delay Exploratory UCT-PTA and Non-Lazy UCT-PTA, that han-
dles time in different fashion. Stochastic Delay UCT-PTA only have one-delay transitions
for each state with possible delays. We found that this variation was problematic, since it
introduced very low chances for long delay transitions. Delay Exploratory UCT-PTA has,
for each state, the entire range of possible delay transitions available. We found this re-
duced the problem that Stochastic Delay UCT-PTA had. However, it introduced a new
problem in the form of an exploding state-space due to the large branching factor. Fi-
nally, we introduced Non-Lazy UCT-PTA, which only had the non-lazy delay transitions
available, but otherwise functioning as Delay Exploratory UCT-PTA. This greatly reduced
the state-space and consequently turned out to be the best performing variation of the
three.
We also proposed some additional extensions to the Non-Lazy UCT-PTA algorithm. First
we introduce Partial Order Reduction, which forces tasks that finishes in zero time-increments
to free up their resources before any other action is taken. We find that it improves per-
formance. Next we introduce stepping, which was actually a part of the original UCT, but
was initially discarded due to the fact, that it is mostly used for live game-playing. We
introduce it as a pruning technique, and we find it further boosts performance greatly.
Finally we test the best variation of Non-Lazy UCT-PTA on the Job shop scheduling prob-
lem and the Task graph scheduling problem, and compare it against Best-RDFS and Cora.
We find that on the Job shop scheduling problem, Non-Lazy UCT-PTA gives good results
and especially scales greatly in performance with increasing model complexity, com-
pared to the other two algorithms. On the task graph scheduling problem, we find that the
results are more mixed. On models with smallest amount of tasks, Non-Lazy UCT-PTA has
a significant advantage over Best-RDFS. However as the amount of tasks increases, Best-
RDFS overtakes Non-Lazy UCT-PTA. We conclude that Non-Lazy UCT-PTA may perform
better, in terms of cost, with increased time to finish searching the models, but that it is
generally notable slower than Best-RDFS for a relatively small performance gain.

7.1 Future Research

In this section the techniques we believe to be most promising for future research in this
area, will be quickly walked through.

• Absolute pruning [12]: Pruning of the search tree by stepping, proved to improve
performance greatly. Absolute pruning is not directly a stepping technique, but
prunes in a fashion that achieves the same, or better, results as a finely tuned step
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size. Concretely, absolute pruning prunes nodes, as soon as it becomes evident,
that the node will never be more visited than a sibling node.

• State equivalence check: When building a MCTS search-tree, it is possible for the
tree to contain multiple nodes in different places of the tree that represent the same
state. Since states posses the Markov property, multiple states that are equivalent,
would always have the same sub-tree. Identifying these equivalent states may save
computation resources by not needing to explore the same sub-tree multiple times.

• Simple regret for infinitely many-armed bandits: For systems that can not take ad-
vantage of non-lazy schedulers, the Delay Exploratory UCT-PTA may be of use with
some further development. As mentioned in subsection 5.3.1 Delay Exploratory
UCT-PTA suffers from a huge state space. Carpentier and Valko [10] proposes a
an algorithm for minimizing the simple regret of infinitely many-armed bandits. If
implemented it could help reduce state space in Delay Exploratory UCT-PTA.

• Trap states: In [17] Ramanujan et al. finds that UCT has a hard time finding trap
states, something that we also concluded was a problem for UCT-PTA. Finding
techniques to detect and/or handle trap states, could be beneficial to UCT-PTA,
but likely also to the general UCT algorithm.
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A Appendix A

Table A.1: Preliminary results of the experiments on Delay Exploratory UCT-PTA with different
percentages of uniformly explored delyas.

15% exploration
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max
2 12 12 0.1 1,321

4 65 69 2.2 16,924

6 188 205 23.8 96,479

8 490 578 109.1 273,031

10 1,048 1,252 595.6 1,219,090

12 1,438 1,642 1826 2,765,058

30% exploration
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max
2 12 12 0.1 1,889

4 69 69 3.7 28,955

6 176 205 29.4 124,872

8 490 490 113.8 278,711

10 1,048 1,252 612.7 1,246,271

12 1,255 1,759 1,584.56 2,432,163

50% exploration
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max
2 12 1759 12 0 3,131

4 69 69 4.2 30,743

6 192 205 41.5 197,455

8 490 589 160.60 420,276

10 1,186 1252 764.6 1,461,614

12 1,267 1634 1829.00 2,890,821

Table A.2: Preliminary results of the experiments on Delay Exploratory UCT-PTA with different
percentages of exponentially explored delays.

15% exploration
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max
2 12 12 0 6,728

4 65 69 9 90,823

6 183 200 29 174,089

8 474 528 106 473,681

10 1,012 1,168 566 1,857,388

12 1,240 1,587 1,072 2,591,869

30% exploration
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max
2 12 12 0 13,484

4 69 69 10 112,143

6 153 188 35 224,017

8 490 651 193 937,534

10 1,048 1,168 650 2,294,120

12 1,239 1,419 1,149 2,826,117

50% exploration
Cost Runtime

(seconds)
States

Exploredn-jobs Min Max
2 12 12 0 25,785

4 65 69 11 131,472

6 188 188 52 397,542

8 434 651 330 1,693,029

10 1019 1183 948 3,686,201

12 1239 1561 1435 3,858,951
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