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Summary

This thesis addresses the lack of supporting tools and libraries in the C#/.NET ecosystem when
it comes to implementing integrations and leveraging the Kubernetes system as an engine for
automatic state reconciliation, including but not limited to infrastructure automation purposes.

Chapter 1 (Introduction) established the initial motivation for this thesis. After reflecting on the
nature of modern infrastructure practices, the concept of state reconciliation was introduced as
the pattern of synchronizing a representation of a desired state with the actual, existing state of a
system.

Afterwards, the benefits of using Kubernetes as a core engine for applying the pattern were
presented, followed by pointing out the limited accessibility as well as the potential value of writing
such implementations using C#/.NET. An initial problem statement was then formulated, related
to exploring how these implementation may be made more accessible for C#/.NET developers.

An overview existing projects related to this problematic was given in chapter 2, followed by
the first part of the report which aimed to provide the background and knowledge for the concepts
explored in the thesis.

In chapter 3, the properties and challenges of modern infrastructures were expanded upon
and chapter 4 dived into a specific, popular practice - Infrastructure-as-Code. Then, the definition
and details of the state reconciliation pattern were given in chapter 5, followed by a deep dive
into the Kubernetes system and the details regarding how it embraces, as well as enables state
reconciliation.

In chapter 7, after presenting the background, several possibilities of addressing the initial
problem statement were discussed and considered. Based on the discussions, a solution and a
specific problem statement were proposed, making the main purpose of the thesis to design an
implement a software development kit in C#, for implementing custom state reconciliation in form
of Kubernetes controllers. Furthermore, the attempted solution was titled KubeSharper and the
functional and non-functional requirements were described.
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Next, Chapter 8 provided a design of the solution and its components, inspired by and party
based on the design and concepts from an comparable solution - the Controller Runtime library
written in Go. Then, based on the design an implementation of the solution was written and
significant areas of the components and their code were discussed and presented in-detail.

Furthermore, the implemented solution was tested and evaluated in chapter 10, where it was
applied to several representative use-cases. A qualitative review showed that the solution overall
met the defined requirements by providing the necessary functionality, level of abstraction and
developer experience. Several points were also made regarding shortcomings and areas of im-
provement of the solution.

The qualitative review was then additionally supported by a quantitative analysis of the code
written for the evaluated use-cases. There, the number of lines of code not relating to the main
use-case were contrasted with the lines of code needed to configure KubeSharper and Kuber-
netes integration. The relatively low amount of KubeSharper code further demonstrated the no-
ticeably level of abstraction provided by the SDK.

Finally, the overall outcome of the thesis was concluded in chapter 11, deeming the attempted
solution mostly successful, but at the same time expressing the need for and proposing potential
areas of future work.
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CHAPTER 1

Introduction

In the last decade, we have seen a radical shift in how software and IT systems are being devel-
oped, hosted, delivered and scaled. The ever increasing need to be able to support web-scale
usage of applications, rapidly adapt to fluctuations in user traffic and minimize the cost of manag-
ing IT infrastructure has paved the way for widespread adoption of cloud technologies.

As exemplified by internet-scale tech companies like Netflix or Zalando, software development
approaches and methodologies have transformed from plan-driven deliveries of large monolithic
applications happening a few times a year to systems of hundreds of single-purpose services,
each independently and continuously deployed, often several times a day.[30][10]

However, despite the inherent flexibility of cloud computing, the increased complexity of ap-
plication stacks and platforms still warrants innovation of the underlying application infrastructure
and the processes involved. Application and infrastructure operators and teams are facing chal-
lenges in managing the infrastructures that are supposed to support hundreds, even thousands,
of applications at once. In such scenarios, traditional approaches to automation, such as using
purpose-built, imperative scripts, are proving to be hard to manage and scale.

Rise of Infrastructure-as-Code and state reconciliation

Instead, automation tools that have recently been gaining popularity aim to follow the
Infrastructure-as-Code (IaC) principle. According to this principle, the overall configuration
and shape of the infrastructure and core services is to be defined using (typically declarative)
code. Then, using clever tools, this code, representing the defined image of a desired state,
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2 Chapter 1. Introduction

can be automatically converted into the right instructions and API calls, resulting in provisioned
resources that perfectly match the desired state.

This process of synchronizing a definition of the desired state with the actual state is called
state reconciliation and several modern infrastructure and cloud automation tools embrace it,
some of the most popular being Terraform1 and the container-based platform Kubernetes2.

Potential in Kubernetes

Kubernetes specifically, has started being favoured for infrastructure automation and state recon-
ciliation use-cases. This technology, which is currently the most widely used platform for manag-
ing container-based applications, has been designed around the concept of state reconciliation
from day one.

The entire architecture can be thought of as a system of small and specific reconciliation loops
coordinating via a shared state store. Additionally, extensibility is a core aspect in the design of
Kubernetes.

By combining these two features, Kubernetes is also being used as a generic state recon-
ciliation engine, capable of reconciling custom, application-specific resources and states, which
can even be external to Kubernetes itself, such as cloud provider resources or virtual data-center
appliances.

Limited accessibility

In order to leverage these features, applications need to handle the often non-trivial details of
communicating and integrating with the Kubernetes API correctly and efficiently. Furthermore,
with Kubernetes being still a relatively young project, only a limited number of libraries attempting
to address this complexity seems to be available.

Since Kubernetes itself, similarly to many other container and cloud-native technologies, is
written in the Go language, so are the most mature integration and extension libraries. These can
certainly and often significantly improve the development experience, that is to say, as long as the
code in question can be written in Go.

While that may be a possibility for a decent portion of developers and/or companies, the fact
still remains that there are also many who would benefit from more advanced Kubernetes ab-
straction libraries without having to sacrifice established standards and tools. In fact, according to
most major programming language popularity rankings, despite an admirable adoption rate given
the age of the language, Go’s market share is only around 1.3% [44][2].

1https://terraform.io
2https://kubernetes.io



1.1. Initial problem statement 3

The case for C#/.NET

The C# language and the .NET platform are a good example of an ecosystem whose popularity
exceeds that of Go. Yet, its accessibility story around Kubernetes integration is lacking. According
to the rankings, the market share of C# is between 4-7%, which amounts to roughly 3 to 5 times
the market share of Go [44][2].

This can be attributed to multiple factors. Historically, the then closed-source, single-platform
.NET framework, has for a long time served as the main development platform of companies
embracing the Windows operating-system and Microsoft technologies which remain prevalent in
many enterprises.

Nowadays, the modernized, open-source and cross-platform .NET Core (soon to be named
just .NET) provides a level of efficiency that is on-par with other popular platforms, while at the
same time allowing teams and companies to benefit from the access to a large pool of .NET talent
and pre-existing software.

Furthermore, C# includes several established, state-of-the-art language features such as a
generic type system which many (especially enterprise) companies have grown to rely on and
which are unfortunately as of now not present in the Go language. With Kubernetes starting to
see adoption in the enterprise, there is therefore a valid case for improving the experience and
ease of integration from C#/.NET.

1.1 Initial problem statement

Given the motivation presented above, the initial question that this thesis will explore is the follow-
ing:

How can Kubernetes as a platform for implementing custom state reconciliation be
made more accessible to teams and companies that rely on and/or want to leverage
the C# language and the .NET platform?



CHAPTER 2

Related work

This chapter introduces some of the existing projects in the Kubernetes ecosystem which have
been researched for this thesis and have served as a basic and/or inspiration for design and
implementation.

2.1 Kubernetes Go Client

The Kubernetes Go Client, also known as client-go i(based on the name of the open-source
repository on GitHub), is the official Kubernetes client for the Kubernetes-native Go language.

The Go client represents the oldest and most mature Kubernetes client library, due to the
fact that it is being used internally in the components of Kubernetes itself, which also means it is
well-tested and reliable. [16]

The library encapsulates several abstractions and smaller packages that facilitate implemen-
tation of Kubernetes integrations and communication with the Kubernetes API. There are three
packages that are relevant for basic Kubernetes API communication [16]:

• The kubernetes package, which provides static (and statically typed) client that can be used
for performing operations against the Kubernetes API that involve native Kubernetes re-
source types

• The dynamic package, which provides a dynamic client capable of performing operations

4



2.2. Kubernetes Controller Runtime 5

generically against any resource types (native and custom)

• The transport package, which helps with low-level transport details when communicating
with Kubernetes such as establishing a connection using valid authentication, etc

Additionally, since the client is being used throughout the Kubernetes codebase, including
complicated scenarios, it also comes with additional tools, utilities, objects and abstractions for
simplifying Kubernetes integration.

Given the subject of this thesis, which relates to state reconciliation and custom Kubernetes
controllers, the most notable functionality of the client are implementations of the Informer pattern.
[43]

Informers are abstractions over the real-time (watch) functionality of the Kubernetes API where
the API can notify consumers with any change events regarding any object in the cluster. They
provide an interface which allows developers to efficiently establish the mentioned change stream
connections for a particular Kubernetes resource type.[43]

This represents crucial functionality for implementing custom controllers, which are based on
constantly observing and reacting to resource-related changes.

2.2 Kubernetes Controller Runtime

As discussed in the previous section, the client-go library provides many abstractions which
can simplify implementation of Kubernetes controllers and state reconciliation. Nevertheless, the
library is meant to be a general client and it does not directly address this use-case.

Other projects, such as the Operator SDK1 and Kubebuilder2, provide an even higher level
of abstraction. They are targeted specifically towards Kubernetes API extension developers and
designed with custom controllers in mind.

While the two projects represent two fully-featured, opinionated frameworks/toolkits, they are
both built on top of a common, core codebase, known as the Controller Runtime [13]. It is a
set of libraries which together represent a common model for extending Kubernetes with custom
reconciliation logic.[3][13]

The runtime builds on top of the client-go packages (section 2.1), extending it with the useful
concepts and APIs for building controllers, which among others include[13]:

• A high-level Client for reading and writing Kubernetes objects

1https://github.com/operator-framework/operator-sdk
2https://kubebuilder.io/
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• The Cache for efficient fetching of Kubernetes objects

• The Manager for sharing dependencies and starting controllers

• The Controller, which represents the core abstraction of listening and responding to Ku-
bernetes API events in order to reconcile state based on declarative definitions stored in
Kubernetes objects

• The Webhook for extending the object-admission process of the Kubernetes API

• The Reconciler representing the reconciliation function to execute based on events

• The Source, meant to facilitate and encapsulate Kubernetes events streams

The fundamental abstractions and concepts introduced by the Controller Runtime library have
been a significant inspiration and basis for parts of the design and implementation of Kube-
Sharper, which will be present further in the report.

2.3 Kubernetes C# Client

As mentioned in the Introduction and also illustrated by the previous two sections, writing custom
controllers for Kubernetes is widely supported by multiple libraries in the Go language ecosystem.

When it comes to other languages, the state of libraries varies, but the support is generally
more limited. Apart from Go, the Kubernetes project provides official client libraries for five other
languages. In all five cases, the provided libraries are automatically generated based on the
OpenAPI specifications [42] of the Kubernetes API. [23]

The client library provided for the C# language, which this thesis focuses on, is hosted in the
kubernetes-client/csharp3 repository on GitHub. According to the classification defined by the
Kubernetes community [14], its level of capabilities is rated as Silver.

This means that the client support basic (bronze) capabilities, such as loading Kubernetes
configuration files and performing basic authentication and HTTP communication, as well as the
more advanced (silver) support for using the Kubernetes API WATCH.

2.3.1 Limitations

While the C# client provides useful APIs for basic integration with the Kubernetes API, including
creating, fetching and modifying objects and even utilizing the watch functionality, it comes with
several limitations.

3https://github.com/kubernetes-client/csharp
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Low-level watch API

First of all, the watch functionality is implemented as a quite low-level abstraction. While the API
facilitates establishing a watch connection with the Kubernetes API, many additional aspects must
be managed by the developer.

For example, the watch API does not implement any mechanism for automatically re-
establishing the connection in case it is dropped or closed. This has to be addressed and handled
by the developer with custom code.

Lack of a generic client

The second and most significant shortcoming of the C# client is the lack of generic API. Generic
types, i.e. higher-level types which accept type parameters, are a widely used language feature,
first introduced with the version 2.0 of the language in 2006. They allow developers to implement
data structures and services that can be reused with values of different types while still maintaining
type-safety.

Due to the automatically generated nature, the C# client does not utilize generic types. To
illustrate this, consider client APIs for retrieving two resource objects, one of type Pod and one of
type Service from the Kubernetes API.

In a generic API, a method could be expose on the client such as Get<T>(string name) which
could then be used in both cases, i.e. Read<Pod>(...) and Read<Service>(...).

In the C# client’s non-generic API, on the other hand, two separate methods must be used:
ReadPod(...) and ReadService(...). Given that Kubernetes supports hundreds of object types,
this significantly impairs the development experience. Since a separate method must be used
for each combination of operation and object type, more branching is required and therefore
complexity is increased.

Despite these limitations, the C# client provides the basic transport logic, and therefore repre-
sents a valuable base library for C# Kubernetes integrations, which is why it is going to be revisited
further in this project.



CHAPTER 3

Dynamic infrastructure

Since its inception, the IT industry and its related practices have undergone rapid and radical
evolution. In the past, most software services used to be highly coupled to its infrastructure which
was composed of a set of physical hardware devices, such as bare-metal server machines with
dedicated hard-drives and network interfaces and appliances.

To initially provision, as well as operate such an infrastructure involved extensive planning and
manual work which entailed careful and individual installation and configuration of each device
and appliance. It was typical for such configuration to be highly custom, tailored specifically to the
software workload that it had been planned to host. The custom, catered nature of such a system
meant that the only feasible way to scale it was to add additional resources (to scale up).[34]

In other words, using the popular analogy originally used by Bill Baker, Distinguished Engineer
at Microsoft [1], servers and infrastructure components have in the past been treated as pets -
unique, indispensable, manually "raised" and individually cared for.

Nowadays, the underlying physical hardware tends to be more decoupled from applications
and workloads, with multiple layers of abstraction in between. The infrastructures, platforms and
services behind modern applications are highly dynamic and automated. Software is often de-
ployed several times a day to a selection of virtualized compute resources, such as virtual ma-
chines or containers. These resources are homogeneous and generic. [34]

Provisioning and maintenance is handled automatically instead of requiring hands-on involve-
ment from an administrator. When a server is faulty, there are no attempts to repair it. Rather, the
faulty server is destroyed and a fresh, identical server is spun-up. Instead of adding resources to

8
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the dedicated server(s) (scaling up), the homogeneity allows applications to be scaled by adding
more server instances (scale out).[34]

In Bill Baker’s analogy, the IT systems of today are considered cattle - managed as a group,
for all intents and purposes identical to each other and easily replaceable. In this thesis, we will
refer to this kind of infrastructure using the term dynamic infrastructure as used by Kief Morris in
the book Infrastructure as Code.[34]

3.1 Characteristics

The concept of dynamic infrastructure can be further defined by providing a set of characteristics
that should be consistent across many if not all dynamic infrastructure providers and systems.

3.1.1 Cloud computing

First of all, when talking about dynamic infrastructure, it is essential to describe the concept of
cloud computing. Although dynamic infrastructure is a slightly broader concept, cloud computing
providers and platforms represent the majority of instances of dynamic infrastructure.

Cloud computing represents one of the technologies that allowed businesses and teams to
move into the paradigm of treating infrastructure components as dynamic, replaceable "cattle" in-
stead of static, unique "pets". As described by Barrie Sosinsky, cloud computing represents a real
paradigm shift in the way in which systems are deployed and makes the long-held dream of utility
computing possible with a pay-as-you-go, infinitely scalable, universally available system.[40]

Furthermore, National Institute of Standards and Technology (NIST) of the United States De-
partment of Commerce provides the following five essential characteristics of a cloud[31]:

• On-demand self service. A customer has access to request infrastructure resources to be
provisioned immediately, without requiring human interaction.

• Broad network access. The service provided by the cloud is accessible over the network
and via standard protocols and mechanisms, enabling access from a multitude of computer
clients.

• Resource pooling. The cloud provider or platform uses resources that are pooled together
and can be reassigned or relocated dynamically without the user’s knowledge or involve-
ment. The cloud provider’s system has to feature multi-tenant capabilities in order for re-
sources to be provided securely and reliably.

• Rapid elasticity. Provided resources are elastic, can be manually or automatically added,
removed or resized within a short time-frame and appear limitless to the customer.
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• Measured service. The customer’s usage of resources is precisely monitored, often at an
hourly or lower granularity. This data is reported to the customer and used for billing pur-
poses.

3.1.2 Dynamic infrastructure platforms

As already alluded to, the term dynamic infrastructure aims to further generalize cloud-like plat-
forms. According to Morris, while clouds are naturally designed as dynamic infrastructure plat-
forms, there can be other types of environments which do not strictly follow the characteristics
of a cloud. Simpler virtualization or hardware based platform can still exhibit similar dynamic
properties, but do not necessarily need to use, for example, service metering, or sometimes even
resource pooling. Morris therefore defines an alternative, more general, yet similar set of charac-
teristics, stating that a dynamic infrastructure platform which has to be programmable, on-demand
and self-service. [34]

Programmable

A dynamic infrastructure platform needs to be programmable, meaning it needs to enable head-
less software and scripts to programmatically interact with it using a remote API with an (optional)
accompanying set of one or more software libraries or development kits.[34]

This requirement is similar to the broad network access characteristic of cloud computing
(section 3.1.1), which further emphasizes the use of standard protocols to implement such APIs.

On-demand

Contrarily to NIST’s cloud computing characteristics, Morris recognizes more nuance in the on-
demand and self-service aspects and separates them.

The on-demand requirement, similarly to NIST’s definition, expresses the need for a dynamic
infrastructure platform to allow resources to be created and destroyed immediately without resort-
ing to costly and lengthy processes such as service tickets. [34]

Self-service

Finally, the self-service requirement serves as an extension to on-demand and emphasizes the
need for resources to be highly customizable by the users of the platform, on top of being easy to
create and destroy. Users should be able to use the platform to fully tailor relevant resources to
their specific use-case. [34]
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Both the characteristics of cloud computing provided by NIST, as well as the requirements of
dynamic infrastructure platforms from Morris illustrate the nature of modern infrastructures, highly
influenced by the cloud computing. For the purpose of this thesis, Morris’ three requirements pro-
vide a more suitable framework for talking about dynamic infrastructure in relation to automation
and management from the perspective of the users (or teams).

3.2 Challenges

Dynamic infrastructures are a necessary evolution in management of IT systems. The approach
is powerful and makes it possible to build infrastructures for applications at a scale that would
not be possible to manage using traditional, manual strategies. However, the dynamic nature of
this approach combined with its reliance on safe and efficient automation inherently comes with
added complexity and therefore new challenges for IT engineers.

Morris recognizes the following six closely-related challenges and problems that teams often
encounter when starting with dynamic infrastructure and the automation involved [34]:

• Server Sprawl. Dynamic infrastructure providers and systems often strive to make it sim-
ple, often trivial, to provision new resources on demand. While this significantly improves
provisioning, it can result in servers and resources being created at a pace that is too fast,
making slower activities like resource organization, maintenance, patching, upgrades, etc.
challenging.

• Configuration drift. As a result of server sprawl, servers and resources tend to end up in
inconsistent states. For example, server packages may be manually and reactively updated
on a specific server as a result of an incident without rolling out the update consistently on
all servers.

• Snowflake servers. Gradually, if not addressed, configuration drift may build up on a server
(or other resource), resulting in a similar situation as illustrated in the beginning of this chap-
ter - a component which is unique ("pet") and hard to reproduce.

• Fragile infrastructure. As the snowflake server problem spreads throughout the majority of
the inventory of servers and resources, different instances in the infrastructure start requiring
individual knowledge and treatment. This makes managing the infrastructure exceedingly
difficult and introduces risk in performing management activities.

• Automation fear. As the level of fragility of the infrastructure increases, the confidence and
ability of the operating team to use automation tools decreases. This is due to the fact that
automating common tasks on servers requiring specific and individual instructions increases
the branching factor and therefore the overall complexity of the automation logic.

• Erosion. This term, also known by other names like bit rot or simply software entropy refers
to the fact that even without intervention (as illustrated in the case of configuration drift), the
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states of different servers will still inevitably drift apart due to common entropic forces like
software failures, maintenance and upgrades.

Ultimately, the challenges described by Morris revolve around the dichotomy between the so-
called "Day 1" and "Day 2" operations on this type of platforms. Dynamic infrastructure and cloud
computing enable modern environments and use-cases by abstracting away and simplifying the
"Day 1" operations, i.e. the provisioning of resources and therefore allowing for elasticity and
scalability. On the other hand, "Day 2" operations, i.e. the remaining activities in the lifecycle of
an infrastructure component, are often only facilitated and automated by the platform to a limited
extent, which can be detrimental to teams and environment without adequate processes, practices
and tools in place.

To conclude this chapter, it is clear that the adoption of cloud computing and dynamic and
comes with many benefits due to the provided potential and capabilities and can even be neces-
sary for many use-case. However, the added complexity of these platforms introduces challenges.
Strategic and efficient use of automation capabilities is therefore necessary in order to correctly
utilize them. The following chapters will describe and explore some of such approaches.



CHAPTER 4

Infrastructure-as-Code

Having described the properties and inherent challenges of dynamic infrastructures in the previ-
ous chapter, this chapter will introduce the practice called infrastructure-as-code (IaC). The prac-
tice represents a viable and popular approach for efficiently utilizing the potential of dynamic
infrastructure as well as tackling its complexity and challenges.

4.1 Definition

Infrastructure-as-Code stems from the realization that the lifecycles of modern infrastructures are
becoming increasingly similar to software applications. Components of modern infrastructures are
more abstract. It is possible to provision and change them on-demand and immediately, which
means the rate of iteration and changes is increased as well.

Morris defines IaC as an approach to infrastructure automation based on practices from soft-
ware development, focusing on consistent, repeatable routines for provisioning and changing sys-
tems and their configuration. [34]

Using IaC, every aspect of infrastructure is defined in one or more files using some form
of code. With that rule in place, processes can be devised which leverage automation tools in
order to automatically provision resources or apply changes to the infrastructure based on the
specification defined in the code file(s).

In a typical infrastructure-as-code workflow, as depicted in fig. 4.1, in order to make a change,

13
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Figure 4.1: Illustration of infrastructure development workflow using IaC [7]

an infrastructure engineer would express the changes in a file containing the infrastructure code.
Similar to application code, the code can then be committed to a repository in a version control
system (VCS). Afterwards, the code is either pushed to or pulled by the automation system, which
subsequently uses the file together with platform-specific integration functionality in order to apply
the described changes in the infrastructure. [7]

4.2 Core practices

The infrastructure-as-Code approach encapsulates several practices inspired by software devel-
opment. This section will introduce the three practices that are in this thesis considered as funda-
mental: definition files, self-documentation and version control and discuss their benefits.

4.2.1 Definition files

Using definition files to describe infrastructure is at the very core of infrastructure-as-code. Follow-
ing more traditional approaches infrastructure resources are usually defined using an automation
system’s graphical interface and stored in its database or are not strictly defined at all and are
simply documented in diagrams and specification documents. Following infrastructure-as-code,
all aspects and resources of an infrastructure are defined as code, that is, as text files. [34]

There are several benefits gained by using definition files. First of all, they allow for describ-
ing the infrastructure resources precisely and in great level of detail. Moreover, changes to the
definition can be done using a text editor of choice, which is often faster and simpler than using
a graphical interface. Finally, definition files can help make the infrastructures more consistent
and reusable, as the textual definitions can be copied with minimal adjustments to fit the new
use-case. Alternatively, depending on the IaC tool and language used, higher-level programming
constructs such as templates and functions can be used to simplify such process even further.
[34] [7]

The usage of definition files directly enables the remaining two practices.
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4.2.2 Self-documentation

Self-documentation can be considered as both a practice as well as a direct benefit of using
infrastructure-as-code and definition files.

In traditional approaches, change implementation and documentation are two separate pro-
cesses. This often results in outdated or non-existent documentation, as it starts proving challeng-
ing to keep the documentation up to date with frequent changes. By defining the infrastructure in
a definition file using precise and detailed code, the code and files automatically act and can be
used as documentation for the infrastructure. [34][7]

4.2.3 Version control

Finally, describing infrastructure using code and files enables one of the most widespread prac-
tices used in software engineering, namely, version control to be used for infrastructure.

Using a version control system (VCS) like Git, a codebase can be organized and versioned in
a code repository. Every change made to the code has to be committed into the version control
system which in return keeps track of the history of all the changes and supports operations for
viewing different states (snapshots) of the codebase, at different points in the history. Thus, the
code repository also serves as the source-of-truth for the code.

This ultimately provides several benefits to any codebase, including infrastructure code. First
of all, having a single source-of-truth for all infrastructure definitions improves collaboration and
general visibility of changes, as the history log can act an easy-to-use time-ordered overview of
changes made. Furthermore, this also allows for traceability and auditability, as every change
can be traced to a commit in the VCS, which usually holds information about the person making
the change and also a description or justification for the change. Lastly, the history log and the
operations of a VCS can also help in a rollback scenario where infrastructure needs to be reverted
to some tested, safe state.

4.3 Tools and paradigms

In order to correctly and efficiently manage actual infrastructure according to definition files, au-
tomation tools or systems are required. This section presents and overview of infrastructure-as-
code tools and discusses the two main programming paradigms used.
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4.3.1 Types of tools

While the currently landscape of IaC and related tools is quite vast, we can can group them into
the following four categories [7].

Scripting tools

Using common operating-system scripting tools and languages such as Bash, Powershell,
Python, Perl, etc. represents the simplest approach for managing infrastructure using code.
While they are often sufficient for simple tasks, these tools generally do not scale well in more
complex scenarios. These tools inherently use an imperative approach.[7]

Configuration management systems

These represent a more fully-featured set of systems such as Chef1, Puppet2 or Ansible3, which
are usually used to manage servers in a generic way. These tools tend to directly communicate
with servers using standard or specialized remote connection protocols and agents in order to in-
stall and configure software. In general, such tools tend to use specific concepts and terminology
and tools with both imperative and declarative can be found.[7]

Provisioning tools

This type of tools usually provide a higher level of abstraction and allow users to create, modify
and delete resources of dynamic infrastructure platforms. The most well-know examples of these
are AWS CloudFormation4 and Terraform5. Both embrace a declarative approach, with Cloud-
Formation using JSON and Terraform using a custom, domain-specific configuration language
(DSL) for their definition files. While CloudFormation is specific to the AWS platform, Terraform,
on the other hand, can be used on numerous different platforms, as it can be extended with
custom providers for virtually any platform that meets the dynamic infrastructure requirements
(section 3.1.2). Alternatively, most dynamic platform also provide imperative-style provisioning
tools in form of command-line tools or software libraries such as the AWS6 or Google7 SDKs.[7]

1https://www.chef.io/
2https://puppet.com/
3https://www.ansible.com/
4https://aws.amazon.com/cloudformation/
5https://www.terraform.io/
6https://aws.amazon.com/tools/
7https://cloud.google.com/sdk

https://www.chef.io/
https://puppet.com/
https://www.ansible.com/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/
https://aws.amazon.com/tools/
https://cloud.google.com/sdk
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Container-based systems and orchestrators

These are typically full dynamic infrastructure platforms designed with IaC principles in mind.
Examples of these are Docker8, Kubernetes9, Nomad10 and others. The core is to provide an
infrastructure-level abstractions, like compute, storage and networking. However, the intrinsic
features of containers enable IaC. Containers encapsulate the entirety of the a single application’s
environment, which can be defined using code (e.g. Dockerfile) and packaged into an immutable
image. Furthermore, container orchestration systems (e.g. Kubernetes, Nomad) further embrace
IaC by allowing for all resources in the system to be defined declaratively.[7]

4.3.2 Imperative vs. Declarative

As alluded to in the previous sub-section, there are two main programming paradigms generally
used by IaC tools and systems: imperative and declarative.

Using the imperative paradigm (e.g. scripting or Chef), the code in the definition file is es-
sentially a set of instructions to be executed in a specific order to achieve the desired state of
infrastructure. In other words, imperative users require the user to describe not only the desired
infrastructure resources but also, at least to a certain extent, how and in which order should the
configuration be applied.

With the declarative approach, the code is meant to be simpler and specialized for defining a
structure of resource objects, list and hierarchies. In this case, users are not required to know
how resources should be provisioned on a particular platform and often not even in which order.
Those concerns are abstracted away and delegated to the IaC tool itself.

Both styles come with advantages and disadvantages. To to the emphasis on the individual in-
structions to be performed, the imperative paradigm can be considered a more powerful approach
that can support even the most complex, special configurations. The declarative approach, on the
other hand, is less powerful and usually limited by the capabilities of the IaC system used. How-
ever, from the user-perspective, files written declaratively provide a simpler reading and writing
experience by not requiring the user to have deep knowledge about how changes to the infrastruc-
ture should be performed. Furthermore, they also allow for differences between different states of
infrastructure (files) to be spotted and analyzed faster and with less effort.

As described in section 3.2, having many specialized and inconsistent configurations is more
akin to treating infrastructure as pets instead of cattle, making management more challenging
and less scalable, and should generally be avoided if possible. This makes the value proposition
of imperative tools far less appealing when compared with declarative tools which welcome the
"cattle approach" and facilitate standardization, consistency and reusability.

8https://www.docker.com/
9https://kubernetes.io/

10https://www.nomadproject.io/

https://www.docker.com/
https://kubernetes.io/
https://www.nomadproject.io/
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4.4 Example: Definition of an AWS network using Terraform

To illustrate using a declarative infrastructure-as-code tool, this section describes how to define
a simple network configuration on AWS using Terraform. The network configuration that will be
provisioned can be seen in fig. 4.2 and consists of an AWS VPC (virtual private cloud - a virtual
network) with a set of three subnets located in different availability zones to ensure high availability.

Figure 4.2: Sample AWS VPC configuration with three subnets located in three availability zones

In Terraform the network from fig. 4.2 can be defined using HCL, the HashiCorp Configuration
Language, a declarative language built with configuration purposes in mind, similar in syntax to
JSON (JavaScript Object Notation) but with additional declarative and functional features.

The relevant HCL/Terraform code may be seen in listing 1 on page 20. There, on lines 1-3,
the AWS provider for Terraform is specified, which allows provisioning of AWS-specific resources
such as, in this case, an AWS VPC (the aws_vpc resource) and an AWS subnet (the aws_subnet re-
source). Each resource instance is defined as a block that starts with the resource <resource_type
> <resource_identifier> syntax, as seen on lines 10,15,21 and 27, where <resource_type> must
be provided by one of the configured providers (in this case, only the aws provider is configured).
Inside each resource block are assignments of resource attributes (specific to a given resource
type).

The order of all the resources and other code blocks is purely for the purpose of readability and
organization within the code and does not influence the actual order in which the resources will be
created/updated. Terraform will automatically analyze the definition, build a directed acyclic graph
of resource dependencies, as seen in fig. 4.3. In this case, each aws_subnet resource depends on
the aws_vpc resource, due to the reference to its ID (lines 16,22 and 28).

The Terraform configuration may be applied to the infrastructure (an AWS account) using a
terraform apply command. The implementation details of the AWS provider will inspect the ex-
isting infrastructure on the AWS account and ensure that the correct (imperative) AWS API oper-
ations are performed so that the desired infrastructure state, as defined in listing 1 on page 20,
will be achieved.

As argued in section 4.3.2, the abstract and declarative approach of Terraform allows the user
to simply define the set of resources and their attribute as required for the use-case, without
having to be concerned about the intricacies and details of AWS tools and APIs.
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aws_vpc.sales

aws_subnet.sales-1a aws_subnet.sales-1b aws_subnet.sales-1c

Figure 4.3: Terraform dependency graph for the code included in listing 1 on page 20

4.5 Summary

In this chapter, the concept of Infrastructure-as-Code (IaC) has been presented and described
together with the involved practices and benefits. Different types of tools that support the practices
were introduced and the imperative and declarative programming paradigms were discussed in
the context of IaC, arriving at the conclusion that the declarative paradigm represents a more
suitable approach for tackling dynamic infrastructure challenges. Finally, to illustrate declarative
IaC and its benefit even further, a simple, yet practical example of using the Terraform tool in an
AWS cloud environment was provided.
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1 provider "aws" {

2 region = "eu-central-1"

3 }

4 locals {

5 tags = {

6 "owned-by-team" = "sales"

7 }

8 }

9 resource "aws_vpc" "sales" {

10 cidr_block = "10.0.0.0/16"

11 enable_dns_support = true
12 enable_dns_hostnames = true
13 tags = local.tags

14 }

15 resource "aws_subnet" "sales-a" {

16 vpc_id = aws_vpc.sales.id

17 cidr_block = "10.0.0.0/18"

18 availability_zone = "eu-central-1a"

19 tags = local.tags

20 }

21 resource "aws_subnet" "sales-b" {

22 vpc_id = aws_vpc.sales.id

23 cidr_block = "10.0.64.0/18"

24 availability_zone = "eu-central-1b"

25 tags = local.tags

26 }

27 resource "aws_subnet" "sales-b" {

28 vpc_id = aws_vpc.sales.id

29 cidr_block = "10.0.128.0/18"

30 availability_zone = "eu-central-1c"

31 tags = local.tags

32 }

Listing 1: Terraform (HCL) code definition for the network configuration from fig. 4.2
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State Reconciliation

In this chapter, we will explore a pattern that is common across most declarative infrastructure-
as-code tools and systems and discuss its variations and uses from a general perspective. The
pattern in question will be referred to as state reconciliation throughout this report.

5.1 From desired state to actual state

As was illustrated in the previous chapter, especially with the Terraform example in section 4.4,
one of the essential features of declarative infrastructure as code tools is the ability to take a
description of the desired state (e.g. particular set of infrastructure resources) and automatically
modify the actual state (e.g. configured objects/services in an AWS account) so that it would
reflect the desired state.

Figure 5.1: State reconciliation

This pattern is in fact state reconciliation, which in general terms can be defined as a the pro-
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cess of making a target state consistent with a source state. For the purposes of this thesis, state
reconciliation will be considered mostly in the context of management of software applications
and infrastructure, and therefore, in most cases the source state will be regarded as the desired,
user-defined state, as per IaC, and the target state will be regarded as the state of the platform,
infrastructure or application that is being managed.

The concept can be further explained with some example scenarios of different instances of
desired and actual state being reconciled. Scenarios using servers as example resources may be
seen in fig. 5.2 below.

(a) Initial states. 3 servers configured, 1 provisioned.

(b) First reconciliation. Missing servers B and C. Server A untouched.

(c) Second reconciliation. No modifications needed. Actual state already consistent

(d) Third reconciliation. Server C removed due to change in desired state.

Figure 5.2: Example scenarios of state reconciliation

First of all, fig. 5.2a shows the initial states: three servers (A,B,C) have been defined in the
desired state, while only server A exists in the actual infrastructure. Figure 5.2b illustrates the
reconciliation process for the initial states. To make the actual state consistent with the desired
one, the reconciliation process recognizes that server A already exists but servers B and C are
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missing and need to be created. After the discovered actions are performed (e.g. using the given
platform’s API) the actual state becomes consistent with the desired state.

Furthermore, fig. 5.2c illustrates the scenario where reconciliation is attempted again, while
the states are still consistent. In this case, the reconciliation process recognizes full consistency
and therefore no modifications are needed.

Finally, in the scenario from fig. 5.2d, server C has become redundant and has therefore been
removed from the desired state. This constitutes an inconsistency, making the reconciliation pro-
cess recognize that server C should not longer exist, resulting in only servers A and B remaining
in the infrastructure.

5.2 Continuous state reconciliation

So far, the mentioned examples of state reconciliation such as the Terraform example from sec-
tion 4.4 or the general one from the previous section have illustrated a particular flavour of state
reconciliation. In these cases, the reconciliation process is triggered on-demand (e.g. manually
by a user, or automatically as a result of a new change in infrastructure code) and performed once
until completion. Many infrastructure-as-code tools, including Terraform, use this approach.

However, this has a shortcoming in that the achieved consistency of the two states (desired
and actual) is only ever really true right after the reconciliation process finishes. At any point,
certain events, such as manual changes in the infrastructure which bypass IaC, might lead to
inconsistency and drift between the two states. With this one-off approach, the resulted inconsis-
tency is not addressed until the next time the reconciliation process is triggered, which might not
happen until the next time a change is made.

More advanced systems, such as the reconciliation features in Kubernetes (more on that in
chapter 6), are able to continuously attempt to ensure consistency by constantly observing and
reacting to the states in a reconciliation loop. This approach will be referred to in this thesis as
continuous state replication.

5.2.1 Techniques

A basic technique is to simply execute a new one-off reconciliation process periodically, on each
tick of a timer. While naive, this solution might be suitable, especially in environments with a lower
rate of changes. However, the more frequent changes are in an environment, the shorter the
reconciliation interval would need to be in order to react to changes in a timely manner. This may
have load and performance implications at very tight intervals.

An improvement would be to execute the reconciliation process in an event-based manner, as
a reaction to events indicating a change has happened. An event on the desired state side could
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be for example a new change in version control, if an IaC workflow such as the one from fig. 4.1 is
being used. Moreover, the reconciliation system also needs to receive and react to events about
resource changes in the infrastructure (the actual state). By reconciling as a reaction to events
from both sides (the desired and actual state), the reconciliation process only runs when it is
needed which can significantly improve performance and decrease load on APIs.

Whether the event-based approach can be implemented depends on the platform behind the
actual state, which must support producing events about changes to its resources. The Kuber-
netes system supports this natively (see chapter 6), which is one of its main selling points.

5.3 GitOps

GitOps is a trending example of both continuous state reconciliation and infrastructure-as-code.
Similar to some of the use-cases described earlier, it is an approach that uses the Git version
control system as the source-of-truth. State reconciliation is used for quickly and continuously
deploying applications, as well as infrastructure resources.

The Git repository in this case represents the desired state. In order to deploy changes to
applications and infrastructure based on the resources in Git, a controller component is running,
continuously watching definition files (section 4.2.1) in the repository and applying them to the
platform (actual state). [8] [37]

5.4 Beyond infrastructure

While infrastructure management represents the main, original use-case for infrastructure-as-
code tools and the state reconciliation mechanism, the application of these practices can be
extended to management of other types of resources that are not normally thought of as IT infras-
tructure. The requirements of dynamic infrastructure platforms from section 3.1.2 are considered
as both pre-requisites and enablers for IaC and state reconciliation. As long as these require-
ments are be met, other platforms can benefit from state reconciliation.

For example, continuous state reconciliation could be used for home automation, where states
of different devices and appliances (e.g. light bulb color, room temperature) could be described
in the desired state. The actual state of devices and appliances could then be read during the
reconciliation process, as long as the home automation system provides exposes such information
and control functionality via its APIs.
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5.5 Summary

In this chapter, one of the core mechanisms used in infrastructure-as-code has been identified,
generalized and described as state reconciliation. Additionally, continuous state reconciliation
was introduced as a more powerful variation of state reconciliation and different techniques of
implementation were discussed.



CHAPTER 6

Kubernetes

As hinted in the previous chapter, Kubernetes represents a system and a platform which heavily
utilizes the pattern defined as state reconciliation in the previous chapter (chapter 5). This chap-
ter introduces and further dives into Kubernetes, describing it’s architecture, its usage of state
reconciliation and, most importantly, the API extensibility features which enable and facilitates im-
plementation of continuous state reconciliation loops for custom use-cases, which constitute part
of the topic of this thesis.

6.1 Overview and architecture

This section is inspired by and partially based on a chapter from previous work in [36, section 4.3].

As stated in the documentation of Kubernetes, it is meant to be a portable, extensible, open-
source platform for managing containerized workloads and services. It is also states that the
platform facilitates declarative configuration and automation [22]. On a high level, Kubernetes
acts as an open-source, vendor-agnostic platform for hosting applications and workloads in form
of containers that are dynamically scheduled on a pool of nodes. To fully facilitate this use-case,
it provides abstractions for networking, storage and other infrastructure-level concerns, as well
as integration for provisioning external resources such as load-balancers or block storage in the
cloud (or similar dynamic infrastructure platform).

The architecture of consists of a set of relatively small services which cooperate and commu-
nicate mostly by reading and writing data to a common metadata database. In a typical cluster,

26
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there are two sets of nodes (servers): the master nodes, which establish the control plane cluster
and the worker nodes where actual applications are running.

Based on that, services can be further separated into two groups: the control plane compo-
nents and the node components. In most configurations, the control plan components only reside
on the master nodes, while node components are general and reside on all nodes. control plane,
and the worker components running on worker nodes. An overview of the overall architecture may
be seen in fig. 6.1. [18]

Figure 6.1: Architecture of Kubernetes

6.1.1 Control plane

As seen in fig. 6.1, the control plane consists of several services or components, namely etcd,
controller manager, cloud controller manager, scheduler and the API Server.

etcd (metadata store)

As per the home page of etcd1, it is a strongly consistent, distributed key-value store that pro-
vides a reliable way to store data that needs to be accessed by a distributed system or cluster
of machines [6]. In Kubernetes, etcd is used as the backing store which holds all the metadata

1https://etcd.io/
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of a Kubernetes cluster[18]. Examples of cluster metadata include definitions and statuses of
node membership, container deployments, internal and external IP addresses and hostnames of
applications, and many other infrastructure resources.

The design and capabilities of etcd help ensure consistency and reliability of the cluster meta-
data, which is critical for healthy operation of a Kubernetes cluster. This is mainly achieved by
running a separate instance of etcd on each of the master nodes. The metadata is kept replicated
among a the quorum of all etcd instances using the raft [35] algorithm.

Additionally, some features of etcd are also heavily leveraged in Kubernetes, such as the
real-time API functionality for asynchronously receiving change events about the contents of the
database (a.k.a the "watch" functionality, also touched on in section 5.2.1) [5].

API Server

While etcd is responsible for reliable storage of all the metadata, components do not manipulate
this data directly.It is instead facilitated by the API Server. This component acts as a layer on top
of etcd, hosting the Kubernetes API, which exposes operations for all Kubernetes resources and
other domain logic of Kubernetes.[18]

The Kubernetes API is at the very core of all Kubernetes functionality and integration, due to
the fact that it is used by both the internal components (as described in this section and in fig. 6.1)
as well as external integrations for communication and orchestration purposes. The API design
revolves around storage of domain-specific resources, following a model that is referred to as the
Kubernetes Resource Model, which will be described in more detail in chapter 6.

Controllers and controller managers

In Kubernetes, a vast majority of the functionality is implemented by individual services which
asynchronously collaborate via API Server and (indirectly) etcd. These services are generally
referred to as controllers. Each controller is designed for and manages a narrow set of resource
types via the API server. [18][41]

The controller manager and cloud controller manager are processes that package the core
controllers of Kubernetes. Examples of controllers packaged in kube controller manager include
the node controller, which manages server membership using Node resources, or the replication
controller focused on ensuring that desired number of instances (replicas) of different applications
and workflows are running.[18]

The cloud controller manager is only included if the cluster is running using a cloud provider
and houses controllers that handle cloud-provider-specific logic, such as provisioning and manag-
ing load-balancer instances in the cloud, which are usually configured using the Service resource
types.[18]
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Scheduler

The scheduler (or kube-scheduler) is a component that effectively manages the resource pool-
ing aspect of Kubernetes by handling the allocation of Pods to nodes, a Pod being the unit of
deployment in Kubernetes (essentially a set of one or more container instances.

The scheduler watches the Pod resource type in the database. Whenever it encounters a pod
which does not have a node assigned to it, the scheduler uses Kubernetes-specific scheduling
algorithm to determine a suitable node for the new pod and assigns it to that node. The algorithm
analyzes a variety of factors to make such decision related to, among others, the available hard-
ware resources on each node as well as different constraints and policies, including user-specified
ones.[20])

6.1.2 Nodes

There are three fundamental components that run on all Kubernetes nodes, whose role is to run
and supervise containers as well as to support service discovery and network communication:
kubelet, container runtime and kube-proxy.[18]

Container runtime

The container runtime (or container engine) is the component that runs and supervises container-
ized environments, typically Linux containers based on the LXC [29] technology but Windows
nodes and containers are also supported [17]. Similarly to etcd, it is not a component developed
as part of Kubernetes, but rather an existing container engine. Since Kubernetes uses a stan-
dardized interface called Container Runtime Interface (CRI), any runtime that supports it can be
used. Examples include Docker2, containerd3 and CRI-O4.[18]

kubelet

Kubelet can essentially be thought of as a Kubernetes agent. Each instance of the kubelet service
is aware of the identity of the node it is running on and its role is to watch for Pods in Kubernetes
that have been assigned this specific node. For each such pod, kubelet ensures that all the
specified containers are started and running, by communicating with the container runtime using
CRI.[18][11]

2https://www.docker.com/products/container-runtime
3https://containerd.io/
4https://cri-o.io/
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kube-proxy

In Kubernetes, Services are virtual load-balancers that are assigned their own virtual IP address
within the cluster which can be used to route and load-balance traffic to a multiple Pod instances.
The kube-proxy component, on each node, ensures that the traffic from pods trying to communi-
cate to these virtual services is routed correctly by maintaining a set of routing rules on the node.
These rules are based on the IP addresses and endpoints specified by the resources of Service in
etcd and are typically applied using operating-system-level capabilities such as iptables or IPVS
(IP Virtual Server) on Linux, or similar. [18][21]

6.2 Kubernetes Resource Model

This section focuses on the Kubernetes API and the design decisions, that went into it in order
to make the platform scalable and extensible and is based on a presentation done Daniel Smith,
a software engineer working on the Kubernetes project, titled Kubernetes-style APIs of the Fu-
ture[39].

The concept discussed here should lay the foundations for an in-depth understanding of the
design of Kubernetes, how it embraces state reconciliation (further described in section 6.3) and
how Kubernetes can be extended to custom use-cases (subject of section 6.4).

Kubernetes as a platform tries to provide abstractions for and facilitate many aspects of host-
ing applications managing infrastructure all the while enabling its users to adopt high levels of
automation. This makes the the design of the Kubernetes API crucial to the success and adop-
tion of Kubernetes. As time goes on and the platform matures, new functionality and abstraction
need to be added, which constantly and inevitably increases the complexity of the system.

For example, according to a report from 2018, the number of exported API endpoints in the
codebase of Kubernetes has increased from around 4000 in version 1 released in 2015 to around
16000 in version 1.12 released in 2019[9].

6.2.1 Complexity of APIs

Generally, the functionality an API consists of exposing different actions that can be performed in
different contexts and on different entities. As illustrated in fig. 6.2, given the number of actions
N and number of entities M, this means that the overall number of operations exposed by the
API equals to N ×M. As the API matures and expands, both N and M may increase, resulting in
polynomial growth of the overall number of operations.
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Figure 6.2: General case API operations complexity.[39]

REST APIs

There are approaches for API design that aim to reduce this complexity. For example, a popular
approach is to design remote, HTTP-based APIs according to Representational State Transfer
(REST). This architectural style introduces some constraints for how the functionality of an API
should be exposed.[38]

One of those constraint is to regard the functional entities of the API as web resources whose
types and attributes must be encoded as part of the URL address used for API requests, similarly
to how websites and HTML documents are exposed. The action to be performed on a given
resource is then inferred from the HTTP verb used for a request for a resource.[38]

As there are only five generally used HTTP verbs, GET, POST, PUT, PATCH and DELETE, the number
of actions (N) in a RESTful API are technically reduced. However, in terms of usability and the
perspective of a consumer/user of the API, this might not always be the case.

While REST enforces the interface of the API (combination of HTTP verb and a resource
identifier), it does not restrict the actual implementation details of the actions, nor the shape of the
entities. As a result, the usage details of issuing, for example, a GET request for a resource A might
be significantly different from issuing a GET request for a resource B. Similarly, the structure and
data of the returned response might differ as well. [39]

From a scalability perspective, even a RESTful API may pose maintenance challenges, due to,
for instance, manual documentation being required for many operations in order to ensure correct
usage and ergonomic experience on the side of the consumers.[39]
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6.2.2 The Model

In the case of the Kubernetes API and the overall codebase of Kubernetes, a new approach was
adopted that is generally referred to as the Kubernetes Resource Model (KRM).This approach,
similarly to REST, uses the combination of entities (resources) and a few possible actions (verbs)
to model operations and API functionality. However, unlike REST, KRM adds further restrictions
and standardization to limit complexity. [39]

Figure 6.3: A standardized resource in Kubernetes.

Standard verbs

Currently, there are six possible actions (verbs) supported by the Kubernetes API: POST, PUT, PATCH
GET, LIST, WATCH, DELETE and DELETECOLLECTION. While they appear to be a superset of the standard
HTTP/REST verbs, these verbs constitute the Kubernetes API verbs, which are distinct and not
to be confused with HTTP verbs. [28]

That being said, the semantic usage of most verbs is analogous to REST and HTTP, with the
exception of the extra verbs. LIST is meant for retrieving collections of a given resource type, while
DELETECOLLECTION is meant to delete one. WATCH is characteristic of Kubernetes (see section 6.3)
and is used for subscribing to a change event stream (usually for a collection of a given resource
type). [28]

On the transmission level, the Kubernetes API does make use of the HTTP protocol and its
verbs. For example, a Kubernetes GET is performed using an HTTP GET request, but this does not
necessarily imply a one-to-one mapping, as the same (HTTP GET) applies for Kubernetes LIST
and WATCH.[28]

Additionally, contrarily to REST, all of Kubernetes verbs are generally required to be imple-
mented for each resource.[39]

Standard data structure

Furthermore, resources in Kubernetes must all follow a standardized schema.



6.2. Kubernetes Resource Model 33

First of all, each Kubernetes object5 must provide the apiVersion and kind fields, where
apiVersion is a string composed of an API group identifier (logical grouping of API functionality)
and a version (e.g. v1, v1beta1, etc) and kind is the group-unique name of the specific resource
type.[12][27].

Moreover, each object must also have a valid metadata field. The metadata object itself has
required values such as the namespace, which indicates membership of resource instance in
a particular Kubernetes namespace (logical grouping for the purposes of separation and multi-
tenancy) as well as a namespace-unique name and a globally unique uid. [12][27].

Finally, the required spec and optional status fields are meant to contain resource-type specific
data and schema. This is where most resource types vary in structure.[12][27]

Standard resources

As depicted in fig. 6.3, the combination of the restrictions on verbs and the structure is how
resources (entities) are standardized in Kubernetes. As a standard resource conforms to one
standard structure used across all mandatorily supported standard verbs, the API consumption
challenges described in section 6.2.1 are mitigated.

As represented in fig. 6.4, in practical terms, from the perspective of the API user/consumer,
the general case of complexity described in section 6.2.1 and fig. 6.2 no longer holds. Instead,
the KRM restrictions help ensure exactly N = 8 verbs per resource, i.e. linear . In addition to
that, each resource type conforming to a common structure means that a user’s knowledge (or a
programmatic consumers existing implementation) of a resource type A is more likely to translate
to the usage of a resource type B.

Additionally, the Kubernetes also provides apply functionality. What this allows is that a declar-
atively defined Kubernetes resource (typically in form of a YAML-formatted file) can simply be
applied to to cluster, meaning the apply logic will determine the correct course of action to take
in order to maintain the declared values of the object. This further reduces the complexity from
the usability point-of-view, since users (and programmatic integrations) do not need to determine
whether the resources exists and need to be updated, or just needs to be created, or which
properties specifically need to be patched.

5In the context of Kubernetes, this thesis will use the terms resource and object interchangeably.
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Figure 6.4: API operations complexity of the Kubernetes API (in accordance with Kubernetes Resource Model)
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6.3 State reconciliation

As hinted previously, the majority of components and functionality in Kubernetes is implemented
using small applications of the continuous, event-based state reconciliation pattern described in
chapter 5. This section elaborates on this usage and illustrates the concept with an example
which uses core Kubernetes resource types and components.

6.3.1 The Controller pattern

In Kubernetes, state reconciliation usages are contained in services referred to as controllers,
named based on the idea of a control loop from control theory, which is a non-terminating loop
that regulates the state of a system. [24]

Figure 6.5: A controller in Kubernetes

As shown in fig. 8.3, a controller constantly watches some set of objects in the Kubernetes
state for changes via the Kubernetes API. The watched objects, specifically their spec attribute,
describe some desired state which the controller will attempt to reach in the relevant parts of the
existing environment (actual state). [24]

In other words, the controller hosts the reconciliation loop that performs continuous state rec-
onciliation, as defined in section 5.2. Figure 8.3 represents the general definition of a controller,
illustrating that a controller may, as a result of an event, update some resource(s) in etcd, or update
some external environment (e.g. cloud provider resource), or both. Therefore, the delimitation of
the desired and actual state, as defined in chapter 5, varies between different implementations of
controllers and the problems they have been designed to solve. fig. 8.3

The following subsection provides an example of this pattern by describing, on a high-level,
the processes behind how Kubernetes ensures that containers run according to declared specifi-
cations.

6.3.2 Example: Pods, Scheduler and Kubelet

In Kubernetes, Pods are object used to deploy applications as containers. They are the smallest
unit of deployment and provide a shared environment (e.g. network, IP, port-space, storage etc)
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to one or more encapsulated container. An interaction between the Kubernetes API, the kube-
scheduler, as well as the Kubelet and the container engine ensures that any declared pod ends
up running on one of the worker nodes. [20][18]

Figure 6.6: Interaction between the Kubernetes API and the kube-scheduler components

First, whenever a new Pod is created, the nodeName attribute of its spec is not defined. As illus-
trated in the diagram in fig. 6.6, the scheduler uses the watch functionality to receive events about
Pods without a node assigned. Then, on each such event, the scheduler invokes its scheduling
algorithm, which takes into account several factors (e.g. networking, storage dependencies, user-
defined node preferences, etc) to determine a suitable node for the pod. The pod object is then
updated, with the name of the selected node assigned (best-node, in this case).

Meanwhile, as shown in fig. 6.7, the kubelet component on the node named best-node also
listens to events about pods, except in this case, only pods assigned to its own node (best-node).
On any such pod event (e.g. when the scheduler assigns the node), kubelet will communicate
with the container runtime on the node to start the container(s) as per the spec declared in the
pod. Finally, it will then update the pod with status information about the containers.

In fact, kubelet does not only update the statuses after it react to a pod event. It periodically
checks the statuses and health of containers and updates the information in Kubernetes. This
detail has been omitted from fig. 6.7 for brevity and simplicity.

Desired and actual states

In the case of kube-scheduler (fig. 6.6), the Kubernetes state, in fact the individual Pod objects
themselves, represent both the desired and the actual state. Another way to look at it would be to
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Figure 6.7: Interaction between the Kubernetes API, the kubelet and the container runtime

consider the .spec.nodeName part of the pod specification to be the actual (target) state, while the
rest of the specification (and the existence of the Pod object itself) represents the desired (source)
state.

In the case of kubelet (fig. 6.7), the Pod objects act as the desired state, while the the actual
state in this case corresponds to the state of the container runtime, i.e. the state of the containers.

6.4 Custom state reconciliation

As discussed in this chapter, state reconciliation is at the core of Kubernetes and naturally, many
aspects and capabilities of Kubernetes and its API facilitate the implementation of reconciliation
loops and controllers.

However, it can be argued that the reconciliation-based continuous control approach repre-
sents a general pattern that can be useful for implementing use-cases beyond core Kubernetes
functionality, including Kubernetes-specific automation/extensions, but also fully custom appli-
cations. This is why Kubernetes ships with extensibility features that enable implementation of
reconciliation loops with custom logic. This section talks about and illustrates those features.
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6.4.1 Custom Resource Definitions

In order to implement custom reconciliation, the possibility to define new and custom re-
sources with individual custom schemas is necessary. In Kubernetes, this can be done using
Custom resource definitions, or CRDs, which are a special resource type in Kubernetes
(CustomResourceDefinition). [25]

The structure of a resource of type CustomResourceDefinition provides fields for specifying a
custom resource that should be added to the Kubernetes API. Once a valid CRD is submitted, the
Kubernetes API will be automatically extended with new endpoints, the URL structure of which
depends on some of the fields. Similarly, the resource will also become available to query and
manipulate in the kubectl Kubernetes command line client. The resource, via the API or kubectl
will automatically support all the Kubernetes API verbs (section 6.2.2). [26]

1 apiVersion: apiextensions.k8s.io/v1

2 kind: CustomResourceDefinition

3 metadata:

4 name: lightbulbs.myhome.net

5 spec:

6 group: myhome.net

7 versions:

8 - name: v1

9 served: true

10 storage: true

11 schema:

12 openAPIV3Schema:

13 type: object

14 properties:

15 spec:

16 type: object

17 properties:

18 on:

19 type: boolean

20 color:

21 type: string

22 scope: Namespaced

23 names:

24 plural: lightbulbs

25 singular: lightbulb

26 kind: LightBulb

27 shortNames:

28 - lb

Listing 2: Sample CustomResoureDefinition YAML manifest

Listing 2 contains a CustomResourceDefinition, which specifies a custom resource called
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LightBulb, illustrating a possible use of custom reconciliation for home automation purposes.

API Group

Another attribute that needs to be specified for a new custom resource is the API Group name,
as seen on line 6 in listing 2. The concept of an API group is used for the majority of Kubernetes
resources (except the core ones like Pod) to group related resource types together and create a
logical "partition" of the Kubernetes API.

The group becomes part of the URL of the API endpoints as well as part of the custom re-
source metadata and can also be used for permission control. It is common to name API groups
using domain names to indicate ownership/authorship. [26]

Since CustomResourceDefintion is also itself a Kubernetes resource, we can see a reference
to the API group it belongs to in listing 2 (line 1), namely apiextensions.k8s.io

Versions

The spec of a CRD further needs to specify at least one version for the new resource.

A version specifies the schema of the new resource structure, using the OpenAPI6 schema
specification format. For instance, the resource in listing 2 specifies that each LightBulb object
should have a spec (lines 15-16) property, which should in turn be an object holding a boolean
on property (lines 18-19), meant to indicate the state of the light bulb) and a string color property
(lines 20-21, meant to indicate the color of a smart bulb).

Each version can be enabled or disabled (served attribute on line 9) and exactly one of the
versions must be configured as the storage version (line 10). The storage version represents the
structure that is actually going to be stored in etcd, while other version will simply be converted to
the storage version. [26]

Versions are conventionally called for example v1, v2, etc. for stable versions, and for example
v1alpha1 or v1beta2 for alpha/beta versions.

Names

To declare a new Kubernetes API resource, it is required to specify several forms of its name.
The plural name (lightbulbs on line 24 in listing 2) is going to be used in the URL structure of
the Kubernetes API endpoint for the resource, i.e. /apis/myhome.net/v1/lightbulbs. The singular
name (line 25) is typically used in kubectl CLI commands (e.g. kubectl get lightbulb. It is

6https://swagger.io/specification
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also possible to define shorter aliases for kubectl (e.g. kubectl get lb), as seen on lines 27-28.
Finally, the last name that must be specified is the kind, which is essentially analogous to the
name of the resource type and used in YAML manifests. [26]

Scope

The CRD must also specify how will the new resource be scoped. Generally in Kubernetes,
a given resource type can either be namespace-scoped, meaning each object must belong to
some namespace, or cluster-scoped, meaning each object is global. In a CRD, this is specified
using the scope parameters, such as on line 22 in listing 2.

6.4.2 Custom controllers

Once the new custom resource definition is registered, respective custom resource objects with
their specifications can be applied to Kubernetes. While that allows declaring and storing the
desired state, a custom controller is required to be in place in order for the specifications to be
applied to the real state/environment.

Figure 6.8: Possible custom controller for LightBulb custom resources

Continuing with the LightBulb example from listing 2, the diagram in fig. 6.8 illustrates a po-
tential implementation of a custom controller for managing resources. As seen in the diagram, a
lighting controller would be developed, which would use the watch API to listen for events regard-
ing LightBulb custom objects, similarly to internal Kubernetes controllers.

Afterwards, on each event, such as when a new LightBulb is created, the custom controller
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can use the data included in the spec of the object in order to perform the necessary operations
to reach the specified state. In this example, we assume there is a home automation API allowing
to imperatively set the state (on/off) and color (e.g. "red") on a light bulb.

In this case, the controller is custom and does not ship as part of Kubernetes. Instead, the
controller service needs to be installed into the cluster. Since all logic and dependencies are
contained in the controller code, the installation can be done by simply deploying the controller in
a container, using the same methods as for any other application, such as by adding a new Pod
or a Deployment (set of replicated pods) object to etcd.

The Operator pattern

The approach that was just described is often referred to as the operator pattern. The term is used
to essentially refer to the application of the controller pattern (section 6.3.1) to a some custom,
domain-specific use-case. Services following this pattern are called operators and are paired
with one or more custom resource definitions for custom resources whose specifications they are
implemented to manage. [4]

The awesome-operators[15] GitHub repository lists hundreds of open-source operators cre-
ated by the Kubernetes community. These are applied to use-cases which include, for example,
managing infrastructure systems such as Cassandra database instances, configuring monitoring
dashboards, or adding serverless (Functions-as-a-Service) capabilities to Kubernetes.

6.5 Summary

This chapter has delved into the details of the Kubernetes platform. First, a general overview of
the system and its architecture has been provided, followed by an explanation of the Kubernetes
Resource Model, which is used in the Kubernetes API to manage the complexity that comes with
scaling and extending this vast platform.

Moreover, we have described how Kubernetes embraces declarative code and the pattern
defined as continuous state reconciliation in section 5.2 in form of reconciling services dubbed as
controllers.

Finally, this chapter also showed how Kubernetes provides first-class, API-level capabilities to
easily extend its own API in order to leverage the platforms state reconciliation facilities, as well
as how can these capabilities be used to implement custom reconciliation loops.

The background information provided in this chapter should have sufficiently illustrated and
motivated the potential value and usefulness of implementing custom state-reconciliation-based
applications and use-cases on the Kubernetes platform.
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Problem definition

In the beginning of the thesis, we have introduced the value of implementing custom state rec-
onciliation by leveraging existing facilities provided by the Kubernetes platform, which was further
investigated and reinforced in the background chapters (chapters 3 to 6).

As mentioned in chapter 1 and also illustrated further by chapter 2, while there is decent
support for such implementations in the Kubernetes-native Golang ecosystem, that is not the
case for many other languages, where integration with Kubernetes API can cost additional effort.

Moreover, this thesis recognizes the popularity and wide-spread adoption of the C# language
and .NET platform, which is why, as per the initial question from chapter 1, the overall objective
of this thesis is to explore how these state reconciliation implementations on Kubernetes can be
made more accessible for use-cases where the C#/.NET platform is desired and/or required.

In this section, we will discuss and introduce the solution that will be attempted in this thesis
and describe its requirements and scope.

7.1 Possible approaches

There are several potential approaches for improving the accessibility of mentioned implementa-
tions in the C#/.NET ecosystem.

42
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Provide documentation

First of all, a descriptive documentation-driven approach could be chosen. In this case, the re-
quired details, example code and steps could be extensively described and documented.

While this approach would likely reduce the efforts of implementation to some extent, a signif-
icant amount of effort would need to be spent to replicate the documented process. Additionally,
this would not enable code reuse in the community and hence potentially impair future evolution
and maintenance of implemented projects.

For these reasons, a better approach would be to provide a general and reusable software
development kit (SDK) including relevant tools and a code component (library) with a high-level
interface for developing custom controllers and operators.

SDK from scratch

A potential approach for providing the SDK would be to implement it from scratch. This would
first involve implementing low level functionality for communicating and interacting with the Ku-
bernetes API in a reliable, secure and efficient manner, followed by implementing the necessary
abstractions for custom state reconciliation.

The advantage of this approach is that the SDK could be tailored to this specific use-case. On
the other hand, interaction with the Kubernetes API comes with significant amount of complexity
due to, for instance, HTTP transport details such as handling certificate-based authentication, or
handling real-time streaming for the watch functionality.

SDK based on C# client

Finally, to reduce the effort and scope of developing and maintaining the SDK, it could be based
on the existing C# client mentioned in section 2.3. While, as already discussed, the client has
limited functionality, it could be reused for basic operations against the API, including low-level
watch functionality.

The state reconciliation SDK would be built on top of the basic functionality provided by the
C# client and if appropriate, some of its functionality could eventually be accepted into the client
project itself, further streamlining maintenance and future work.
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7.2 Problem statement

Based on the presented overview of possible approaches, it is believed that building a Software
Development Kit on top of the existing C# client provides a good balance of feasibility, quality and
delivery in the context of the main goal of this thesis and has therefore been selected.

The specific problem of this thesis is therefore to investigate, design and implement a Software
Development Kit, based on the C# Kubernetes client, for developing Kubernetes-based custom
state reconciliation use-cases with the aim of making such use-cases more accessible to C#
developers.

This proposed solution will be called and throughout the report referred to as KubeSharper
SDK, or simply KubeSharper SDK. Functional and non-functional requirements will be further
defined in the next section, while details regarding the design and implementation of the solution
will follow later in the report.

To evaluate the SDK solution and the extent to which it solves the described problem, it will be
used to build several representative applications, after which the functionality and the experience
of the process will be reviewed against the stated requirements and the overall aim of the thesis.

7.3 Requirements

Based on the previous section, this thesis will attempt to answer the research question mentioned
earlier, by implementing a Software Development Kit for implementing custom controllers and
state-reconciliation-based applications on the Kubernetes platform and using the C# language.

The proposed software development kit, which throughout the report referred to as Kube-
Sharper, should mainly consist of a library that can be imported in C# projects and contains useful
and general abstractions for implementing discussed use-cases. Alongside the library, additional
developer tools could be provided if relevant.

The upcoming subsections represent a list of requirements for KubeSharper.

7.3.1 Event configuration

First of all, the KubeSharper library should facilitate concise configuration of the event sources
based on which reconciliation should be triggered. As discussed in section 6.4, the main approach
for implementing custom reconciliation on Kubernetes is to encapsulate domain-specific desired
state in one or more custom resources that a custom controller will watch.
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For this reason, the watch configuration capabilities of KubeSharper should allow users of
the library to initialize this resource observation process. To minimize boilerplate library code,
the configuration interface should be minimal, only requiring the application-specific necessary
arguments, such as information about the (custom) resource to be observed.

For example, a developer buidling the LightBulb use-case from fig. 6.8 on page 40 should be
able to simply indicate that events about all resources with kind LightBulb should be watched.

7.3.2 Reconciliation interface

The reconciliation logic represents the core part and value of implementing the discussed custom
reconciliation use-cases on Kubernetes. This is why, apart from being able to configure watched
resources, users should also be able to easily provide a use-case-focused, custom reconciliation
function.

When it comes to the reconciliation function, the developer should be able to focus on the
custom business logic, while minimizing the amount of low-level, Kubernetes or KubeSharper
specific logic that needs to be written and understood.

Thus, KubeSharper should provide a programming interface for accepting a custom reconcil-
iation function that will be automatically wired the together with the provided event configuration.
Furthermore, in order to better inform efficient reconciliation decisions in the user code, Kube-
Sharper should expose context information, such as event metadata, to the custom code. Finally,
the user-provided code should also be able to signal further actions based on the result of recon-
ciliation.

7.3.3 Native custom resource representation

Working with custom resource definitions and object constitutes a central element in these imple-
mentations. C# is an object-oriented, and provides language-level features for defining and using
custom, composable structures using classes and objects.

For KubeSharper to be idiomatic, letting developers to use established language features, it
should be possible to define, pass and manipulate Kubernetes custom resources using native C#
objects and classes.

To illustrate this again in the context of the LightBulb example from fig. 6.8 on page 40, the
developer should be able to work with LightBulb Kubernetes objects in form of native C# objects,
based on a custom class, such as in listing 3, with fields and properties representing the same
structure as seen in listing 2 (LightBulb CRD).
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1 public class LightBulb
2 {

3 public LightBulbSpec Spec { get; set; }
4 }

5 public class LightBulbSpec
6 {

7 public bool On { get; set; }
8 public string Color { get; set; }
9 }

Listing 3: Possible C# class equivalent of the LightBulb custom resource from listing 2 on page 38

7.3.4 CustomResourceDefinition installation

Being able to use native C# representations for custom resource objects can enable quicker de-
velopment and debugging. However, whenever structural details such as the schema of a custom
resource is changed in the C# representation, this change needs to be reflected in the respective
Kubernetes CustomResourceDefinition database object.

KubeSharper should therefore also ship with relevant tooling that would allow developers to
use the native class representations in order to install and/or generate equivalent Kubernetes-
native CustomResourceDefintion objects.

7.3.5 Controller co-hosting

When developing more advanced use-cases, it may be desired to bundle and deploy multiple
custom controller services together in a single process, similarly to the kube-controller-manager
and cloud-controller-manager Kubernetes components introduced in section 6.1.1.

For example, the familiar LightBulb use-case and the relevant light-operator (fig. 6.8,
page 40) could be expanded into a more fully featured home automation service which would
involve other custom resources, such as a Thermostat or a SmartOutlet. In such a case, it would
likely be beneficial to maintain separation of concerns and reconcile the different resources and
devices using separate controllers with different configurations. Overall, however, the collection
of controllers still forms a cohesive home automation service, and could also share some
dependencies and Kubernetes-specific configuration such as authentication etc.

Therefore, another requirement of KubeSharper is to support such a configuration and allow
multiple controllers to be defined and registered, while sharing some common concerns and de-
pendencies such as Kubernetes integration code.
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7.3.6 .NET dependency injection support

It is a common practice in C#/.NET projects to utilize the dependency injection technique through-
out the codebase. Dependency injection allows to decouple code components and classes by
relieving developers from having to directly create new objects hierarchically. Instead, a depen-
dency injection container can be used to register instances and interface implementations in a flat
structure. The container can then be used to automatically resolve any desired type together with
its dependent objects, which are usually passed in through class constructors. [32]

This pattern is supported by the .NET platform libraries that can be used in the setup boil-
erplate code of projects. It is also often used to facilitate the hosting of background services in
long-running applications using the IHosteService interface. Any background code can be made
to conform to this interface and registered into the dependency injection container in order to have
it automatically hosted and managed by the runtime. [33]

As part of the effort to make KubeSharper feel native and idiomatic and hence also more ac-
cessible within the C#/.NET ecosystem, it should also integrate with the above mentioned platform
features, allowing developers to use standard patterns to host custom controller services.



CHAPTER 8

Design

Based on the problem definition and requirements described in the previous chapter, this chapter
will present the overall design for the KubeSharper solution that will be developed as part of this
thesis. First, an overall, high-level overview of the system and its components will be provided,
followed by more detailed overviews of the individual components.

8.1 Overview of components

The proposed solution design, illustrated by fig. 8.1 below, overall consists of six major compo-
nents. As illustrated by the regions in fig. 8.1, these components can be separated into three
categories.

Firstly, the KubeSharper components represent the internal abstractions and mechanisms of
the KubeSharper library, as well as the CRD Generator tool provided together with KubeSharper.
Furthermore, the Reconciler component represents Application domain and the custom reconcili-
ation logic, that should be provided by the user and used by KubeSharper. Finally, the Kubernetes
API component represents the external dependency on the Kubernetes platform and the point of
integration via its API.

As illustrated by fig. 8.1, the user-provided reconciliation logic is meant to be integrated with
the Controller component and invoked based on events gathered by the controller from the Ku-
bernetes API via the Event Sources. The Manager component serves as the host and entry point
for initializing and running one or more controllers.

48



8.2. Event Sources 49

Figure 8.1: KubeSharper components overview

Additionally, the CRD Generator represents a tool for the users which allows generating Cus-
tomResourceDefinition object manifests (in YAML) based on definitions included in their own
code.

This design has been influenced and inspired by the Controller Runtime library discussed in
section 2.2 and reuses some of the concepts and terminology used there.

8.2 Event Sources

Event Sources are a lower-level part of KubeSharper which is meant to contain and encapsulate
the integration with the Kubernetes API and the propagation of Kubernetes resource events which
eventually result in the invocation of the user-defined custom reconciliation logic.

Figure 8.2: Overview of an Event Source in Kubesharper

Depicted by fig. 8.2, a single event source corresponds to a resource type in Kubernetes. The
main purpose of an event source is to use the watch functionality of the Kubernetes API to listen
to events regarding the respective resource type. For instance an Event Source for the resource
type LightBulb would observe events related to any object of kind LightBulb.

Moreover, the event source has been designed so that it would also have the role of propa-
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gating these events to other components of KubeSharper. This is done by allowing a subscriber,
representing an entity in the system that needs to directly receive and react to some events, to
subscribe to a given event source by providing code to be invoked on each event, also referred to
as a handler.

An Event Source then propagates events by being able to accept a subscriber’s handler and
invoke it on each event. This provides a generic interface for receiving and handling Kubernetes
events in KubeSharper. Since all the Kubernetes integration is contained here, other parts of the
system can be implemented in terms of resources and events instead of Kubernetes API details
and idioms.

Additionally, by allowing any event handler to be passed in from outside the Event Source, the
Kubernetes event stream is decoupled from its consumer, allowing the Event Source abstraction
to be used in different parts of the system if necessary, using different approaches on how to react
to events.

8.3 Controller

As mentioned earlier, the Controller represents a central part of the system, covering multiple
use-cases. It represents an abstraction provided by KubeSharper for implementing the controller
pattern (section 6.3.1) with custom reconciliation logic.

Figure 8.3: Overview of Controller component

As illustrated in fig. 8.3, Controller is responsible for initializing and managing event source
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subscriptions based on configuration provided by the application, allowing the developer to indi-
cate details about which resource types are relevant and should be observed and reacted to for
the particular use-case. This aspect of the Controller is meant to address the event configuration
requirement described in section 7.3.1.

In the Controller, each observed event results in a reconciliation request. This request repre-
sents the intent to perform reconciliation of a particular object that has been created, modified or
deleted.

As seen in the diagram (fig. 8.3), the Controller, using the event source subscription model
described in the previous section, ensures that on each event a request is put into a queue (Work
Queue in fig. 8.3). Since multiple events may be received from multiple event sources at any given
time, putting requests into a queue ensures first-in first-out (FIFO) processing (reconciliation) of
events.

The reconciliation loop is meant to consume requests from the queue during the entire lifetime
of a Controller (and/or the application). Within the loop, each consumed request is propagated
into the application layer and used to invoke the reconciliation function, which eventually indicates
a reconciliation result to the loop. The result can be used by the application as a signal to Kube-
Sharper (Controller) that the reconciliation failed and (optionally) that the request should be retried
(requeued).

Apart from ensuring FIFO processing, incorporating a FIFO queue into the design of Controller
enables centralized control of the request processing. For example, the queue could be imple-
mented to limit the rate at which requests are enqueued. The Controller Runtime (section 2.2)
library adopts a similar approach.

8.4 Reconciler

In a reconciliation application that uses KubeSharper, Reconciler represents the application-
specific reconciliation code, which integrates with the Controller. It corresponds to the recon-
ciliation function in the Controller design (fig. 8.3).

From the perspective of the KubeSharper library, the Reconciler is an interface according
to which the custom reconciliation logic is provided by the application developer in order to be
integrated with the event processing mechanisms facilitated by Event Sources and Controller.

Figure 8.4 contains a visual description of the Reconciler interface. Designed to be simple,
the Reconciler needs to support a single Reconcile operation that takes a reconciliation request
(as defined in the Controller design), together with a reconciliation context as input. The context
input holds additional useful data and objects (see section 9.2.3) provided to the application by
Controller.
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Figure 8.4: Reconciler interface inputs and outputs

This possibility of providing arbitrary reconciliation logic to be triggered by the controller us-
ing the Reconciler interface addresses the Reconciler interface requirement described in sec-
tion 7.3.2.

8.5 Manager

So far, the previous components have been presented in terms of a single Controller scenario.
However, as defined in the requirement from section 7.3.5, it should also be possible to co-host
multiple Controllers, and therefore multiple reconciliation functions, in the same application.

The Manager component addresses this requirement and is based on an equivalent concept
from the Controller Runtime (section 2.2) library. It acts as an container service for multiple Con-
trollers, allowing a given set of Controllers to be managed (e.g. started and stopped) as a single
unit.

Furthermore, by containing all Controllers, Manager can also serve as a repository for de-
pendencies that can be shared and reused among controllers, such as user-provided Kubernetes
credentials and configuration. This aspect will be further explored in the Implementation chapter
(section 9.3).

8.6 CRD Generator

The CRD Generator component is an executable tool that is meant to address the Custom-
ResourceDefinition installation requirement from section 7.3.4. As depicted in fig. 8.5, given
a set of C# CRD representations within the application code (as per the requirement in sec-
tion 7.3.3), the CRD Generator, when executed, will generate an equivalent set of Kubernetes
CustomResourceDefinition object manifests (in YAML).
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Figure 8.5: Overview of the CRD Generator tool

The tool was designed to provide a pragmatic and flexible way of facilitating the installation of
CRDs to a cluster. While only generating the manifest files, instead of directly installing them to a
given cluster, does not fully automate the process, it provides additional flexibility.

Firstly, the generated files are text files, which means they are subject to the Infrastructure-as-
Code practices (and related benefits) described in chapter 4. For example, the files are human-
readable and can also be easily compared with common tools like diff etc. The files can also be
committed to a version-control repository and support practices like GitOps (section 5.3).

Furthermore, the generated files are standard Kubernetes manifests, which means that the
tool does not impose any KubeSharper-specific practices. In other words, the tool allows devel-
opers to maintain familiarity with Kubernetes standards.

8.7 Summary

This chapter presented the design of KubeSharper and its following main components:

• the Event Sources which encapsulated real-time Kubernetes communication

• the Controller, a central component that processes resource events in order to efficiently
trigger the reconciliation process when necessary

• the Reconciler component, which together with Controller enables users of KubeSharper to
inject their custom reconciliation logic into the event processing flow

• the Manager component meant to facilitate composition and co-hosting of multiple Con-
trollers
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• and finally, the CRD Generator tool, which provides an executable tool for developers that
should simplify installation of CRDs

Moreover, this design covers most of the requirements from section 7.3. The remaining Native
custom resource representation (section 7.3.3) and .NET dependency injection support (sec-
tion 7.3.6) are more related to providing developers with better, more idiomatic experience and
usability when using the KubeSharper library. For this reason, these requirements will be covered
directly by the implementation details of the KubeSharper library which will be the subject of the
next section.



CHAPTER 9

Implementation

In this chapter, the details of the KubeSharper SDK implementation written as part of this thesis
will be revealed. Implementation details will be presented for each of the components introduced
in chapter 8 (Design) earlier, as well as additional aspects and features of KubeSharper that
overall cover its purpose and requirements.

Throughout this chapter, the implementations will be mainly illustrated using C# code listings
containing important parts of KubeSharper code. In order to improve readability and reduce
verbosity, some non-essential code (such as logging, exception handling, etc) will be omitted from
these listings.

9.1 Event Sources

Starting from the lowest layer of KubeSharper, this section will describe how the Event Sources
(section 8.2) component was implemented and how Kubernetes API integration was handled.

As discussed in section 7.1, implementing Kubernetes API integration from scratch comes with
significant complexity and effort required. It was therefore decided to build the Kubesharper SDK
on top of the official C# client for Kubernetes. Despite the limitations of the client (as described
in section 2.3), reusing its lower-level API reduces the overall scope of this project, allowing for
focus to be put on state reconciliation utilities.

55
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9.1.1 Providing a generic API

As explained in section 2.3, the main drawback of using the C# Kubernetes client stems from its
mostly auto-generated code which does not provide a generic API for operations.

To provide good developer experience, KubeSharper itself needs to expose a generic API to
developers. Consequently, the Event Sources component, which is directly tied to the C# client,
needs to somehow provide a generic API as well.

While the ideal solution would be to improve the client and contribute those capabilities to it, a
quicker solution was developed for this thesis. The solution involves creating the Event Sources
API using code generation and reflection based on the C# client methods.

1 private EventSource<V1Deployment> V1Deployment(
2 IKubernetes operations, string @namespace, CancellationToken ct)
3 {

4 Watcher<V1Deployment> WatchMaker(

5 EventSourceHandler onEvent, Action<Exception> onError, Action onClosed)

6 {

7 var list = operations
8 .ListNamespacedDeploymentWithHttpMessagesAsync(@namespace, watch: true);
9 return list.Watch(async (WatchEventType et, V1Deployment obj) =>
10 {

11 var metaObj = new KubernetesV1MetaObject
12 {

13 ApiVersion = obj.ApiVersion,

14 Kind = obj.Kind,

15 Metadata = obj.Metadata

16 };

17 await onEvent(et.ToInternal(), metaObj);
18 }, onError, onClosed);

19 }

20 async Task<IList<V1Deployment>> Lister()
21 {

22 var list = await operations.ListNamespacedDeploymentAsync(@namespace);
23 return list.Items;
24 }

25 return new EventSource<V1Deployment>(WatchMaker, Lister, ct: ct);
26 }

Listing 4: Example of a Event Source factory method for the V1Deployment type (generated/EventSources.cs)

The code included in listing 4 represents a factory method that creates an EventSource
(details in section 9.1.2) object for the type V1Deployment. In order to end up with a generic
EventSource<V1Deployment> (line 25), the non-generic methods of the C# client (lines 8 and 22)
are wrapped in generic functions that are passed to EventSource.
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WatchMaker

To establish a Kubernetes watch using the client, a list operation must first be initialized with the
watch parameter enabled (lines 7-8). Afterwards, the Watch extension method can be called on
the result of the initial operation to establish a watch with a custom callback on every event (lines
9-18). This method returns a handle object (Watcher<T>, line 4) for the watch, which is generic.

Since the EventSource is not meant to have a watch running on initialization, it is given the
WatchMaker function instead, which can be stored and invoked later to start a watch.

The WatchMaker function configures the Kubernetes watch so that each incoming event and
associated Kubernetes object is first mapped to more fitting internal objects and then a callback
(onEvent on line 17) is invoked on those. The callback is a variable, allowing it to defined in the
EventSource object calling the WatchMaker function.

Lister

Furthermore, for purposes that will be discussed later, it is useful for an EventSource to be able
to perform a one-time list of all objects. As this operation is also non-generic in the C# client, the
operation is wrapped in a generic Lister function (lines 20-24) which returns all objects for the
given resource type (in this case V1Deployment when called. The Lister, same as WatchMaker
is passed to EventSource to be stored and invoked when relevant.

Code generation

The factory method for the V1Deployment presented only represents a single resource type. Since
creating these factory methods manually would require a lot of time effort and complicate mainte-
nance, a code-generation approach has been chosen instead.

A utility tool for populating the EventSources class with factory methods such as that from
listing 4 has been created. The tool uses a templating library (Scriban1) to generate a partial
definition of the EventSources class based on a textual template.

Looking at listing 4, the variable parts are: all the mentions of the V1Deployment type (lines
1,4,9,20,25) and the two calls to Kubernetes client operations (lines 9 and 22). To generate all
factory methods, the template (with variables defined for the relevant parts) can be rendered given
a list of all LIST operations in the C# client and the associated return (resource) types.

The developed code-generation utility determines this list by performing C# code reflection on
the C# client assembly, listing all methods on the IKubernetes interface and filtering them accord-
ing to the convention used in their naming (e.g. ListNamespaced*WithHttpMessagesAsync). The

1https://github.com/lunet-io/scriban
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resource type (e.g. V1Deployment) is then derived from the return type of each of those methods.

As part of the code-generation process, a public and generic GetNamespacedFor<T> method
on the EventSources class is populated as well, which internally makes sure to invoke the correct
generated private factory method based on the type parameter T.

As mentioned earlier, a more elegant approach would be to extend the client with generic
operations. Nevertheless, this code generation approach provides the required functionality. Ad-
ditionally, because the code generation tool is based on reflection and methods in the C# client,
the generated EventSources can be easily updated whenever anything changes upstream in the
C# client.

9.1.2 IEventSource and EventSource<T>

The EventSource<T> objects mentioned previously conform to the interface included in listing 5.
Its main functionality is represented by the Start method on line 5, which can be invoked to start
the event source, meaning it will establish a Kubernetes watch and start propagating events.

1 public interface IEventSource : IDisposable
2 {

3 string ObjectType { get; }
4 bool IsRunning { get; }
5 void Start(EventSourceHandler handler);
6 Task<IList<KubernetesV1MetaObject>> ListMetaObjects();

7 }

Listing 5: IEventSource<T> interface (EventSource.cs)

As explained in section 8.2, the event propagation is facilitated by a subscriber providing a
handler. This is represented in fig. 8.2 by the Start method requiring a EventSourceHandler
delegate, whose signature dictates that any such handler must accept the event type and the
object metadata related to the event being propagated. The signature can be seen in listing 6
below.

1 public delegate Task EventSourceHandler(EventType et, KubernetesV1MetaObject obj);

Listing 6: Signature of EventSourceHandler delegate (EventSource.cs)

The IEventSource is non generic, as resource type information is not necessary since in this
implementation events only hold metadata of objects (such as name, namespace etc, as per
section 6.2.2). This allows for even more general operations with event sources, such as putting
them into a single collection and starting them all at once.

The generic API for creating new sources, contained in the EventSources (plural) class and
described in previous section creates objects of class EventSource<T>. This class implements
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IEventSource and provides additional functionality for event propagation on top of the Watcher<T>
objects from the C# client.

1 public void Start(EventSourceHandler handler) {
2 InitWatcher(handler);

3 }

4 private void InitWatcher(EventSourceHandler handler)
5 {

6 void OnError(Exception _) { InitWatcher(handler); }

7 void OnClosed() { InitWatcher(handler); }

8 if (!IsRunning)
9 {

10 _watcher = _watchMaker(handler.Invoke, OnError, OnClosed);

11 }

12 }

Listing 7: Implementation of Start(EventSourceHandler handler) in EventSource<T> (EventSource.cs)

The main functionality contained in the Start method of any EventSource<T> object is the
initialization and management of Kubernetes watch. This is achieved using a helper method
InitWatcher, seen in listing 7. There, the _watchMaker function (passed and stored as
WatchMaker in the generated factory methods from section 9.1.1) is used to create a Watcher<T>
object. To create it, the handler provided in Start is passed as the main event callback (line 10).

The _watchMaker function also accepts a callback for when an unrecoverable error happens
or when the watch is closed. For those callbacks, functions defined on lines 6 and 7 are provided,
which essentially attempt to restart the watch by re-creating using a recursive call to InitWatcher.

9.1.3 ISharedEventSource and SharedEventSource<T>

During the implementation process, it was discovered that it would be more efficient to minimize
the amount of event sources (and therefore Kubernetes watches) created. In order to be able to
reuse a single EventSource<T> (or IEventSource), it needed to be possible to fan-out events to
multiple subscribers.

For this purpose, a new interface and class have been built, namely ISharedEventSource
and SharedEventSource<T> respectively. As shown in listing 8, the interface is similar to
IEventSource from listing 5.

The main difference is in the Start method not requiring any parameters. Instead, the
EventSourceHandler is to be passed to the Subscribe method (line 5) by each subscriber.

The Subscribe method is implemented in the SharedEventSource<T> class, which is a wrap-
per for EventSource<T>. As seen in listing 9, each Subscribe assigns a unique id and stores the
passed handler (lines 3-4).
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1 public interface ISharedEventSource : IDisposable
2 {

3 string ObjectType { get; }
4 bool IsRunning { get; }
5 IDisposable Subscribe(EventSourceHandler handler);

6 void Start();
7 Task<IList<KubernetesV1MetaObject>> ListMetaObjects();

8 }

Listing 8: ISharedEventSource interface (SharedEventSource.cs)

It returns a wrapper object which implements the IDisposable interface. This allows sub-
scribers to cancel their subscription if necessary by calling .Dispose() on the returned object,
which will result in the handler being removed from the SharedEventsource<T>.

In Listing 9 the Startmethod is implemented by calling the Start(EventSourceHandler handler)
method on the underlying EventSource<T>, passing in a special handler (line 7). This handler
(PropagateEvent) is responsible for invoking all the stored handlers (i.e. subscribers) in parallel
on each event (lines 10-15).

1 public IDisposable Subscribe(EventSourceHandler handler)
2 {

3 var id = Guid.NewGuid();
4 AddHandler(id, handler);

5 return new SharedEventSourceSubscription(() => RemoveHandler(id));
6 }

7 public void Start() { _source.Start(PropagateEvent); }
8 private async Task PropagateEvent(EventType et, KubernetesV1MetaObject obj)
9 {

10 var tasks = new List<Task>();
11 foreach(var handler in _handlers.Values)
12 {

13 tasks.Add(handler(et, obj));

14 }

15 await Task.WhenAll(tasks);
16 }

Listing 9: Subscribe, Start, and PropagateEvent methods of SharedEventSource<T> (SharedEventSource.cs)

9.2 Controller

Having presented the Event Sources component and related code, this section will describe the
implementation of the most central component, the Controller. This will include details of the work
queue implementation, the controller configuration, and the reconciliation loop. These details will
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also cover how the Reconciler interface (section 8.4) is used within Controllers.

9.2.1 WorkQueue

The particular queue implementation used in Controllers was based on and inspired by a similar
queue implementation from the Go Kubernetes client (section 2.1), which is also used in the
Controller Runtime (section 2.2). A custom queue implementation was needed due to properties
and semantics that are specifically use-full when processing events in Controllers.

Firstly, because the queue is meant to be used for triggering reconciliation logic based on
changed/added/deleted Kubernetes objects, it can be made to only hold unique objects. The
reconciliation process is designed to be only triggered using object metadata, not the actual object
data, i.e. the reconciliation function is only notified about which object needs to be reconciled, not
how.

This implies that the reconciliation function must on its own fetch the current state of the
changed object and reconcile it in an idempotent process (applying it multiple times should give
the same results). For these reasons, it is wasteful for reconciliation to be requested for the same
object multiple times.

Secondly, because the reconciliation function usually performs side-effects, the same object
should never be in the process of being reconciled by more than one instances of the reconciliation
function. This means that the queue needs to keep track of items being processed and not
enqueue identical items until the processing has finished.

Therefore, the queue is defined by three main operations, Add, Take, and MarkProcessed, as
well as supporting internal datastructures.

ValueSet

The ValueSet class was created as a set implementation that is based on object value comparison
(as opposed to e.g. a hash-based set). The implementation is confined to the WorkQueue class
and uses a C# dictionary under the hood and can be seen in listing 10. The ValueSet enforces
uniquenes by tracking items as dictionary keys with arbitrary values (a single byte flag, line 3) and
is used for the _items and _processing fields in WorkQueue.

Queue

The BufferBlock2 from the System.Threading.Tasks.Dataflow .NET library has been selected
to implement the FIFO queueing mechanism of items. This particular data structure has chosen

2https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.dataflow.bufferblock-1?view=netcore-3.1
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1 class ValueSet<T>
2 {

3 private const byte FLAG = 1;
4 private Dictionary<T, byte> _dict = new Dictionary<T, byte>();
5 public int Count => _dict.Count;
6 public bool Has(T key) => _dict.ContainsKey(key);
7 public bool Add(T key) => _dict.TryAdd(key, FLAG);
8 public bool Delete(T key) => _dict.Remove(key);
9 }

Listing 10: ValueSet implementation (WorkQueue.cs)

due to its better support for asynchronous operations compared to the standard Queue<T> in .NET.
In WorkQueue, it is represented as the _queue field.

TryAdd

The method for adding items to the queue can be seen in listing 11. Uniqueness is enforced on
line 5, where a check is made against the _items set. If the item already exists in the set, it will not
be added to the queue. If not already added, the item is always added to the _items set (line 6),
however, it is only put into the queue if it’s not already being processed by some queue consumer
(exists in the _processing set).

1 public async Task<bool> TryAdd(T item)
2 {

3 using(await _mutex.Use())
4 {

5 if (_items.Has(item)) return false;
6 _items.Add(item);

7 if(!_processing.Has(item)) _queue.Post(item);
8 return true;
9 }

10 }

Listing 11: TryAdd method of WorkQueue (WorkQueue.cs)

TryTake

The TryTakemethod can be used by consumers to dequeue items asynchronously. Additionally, it
is designed to block (in the sense the consumer waits) until an item is available in the queue. This
provides an easier and less error-prone way for writing consumers, as queue polling is already
handled.
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To wait for an item, the ReceiveAsync method of the _queue block is used (line 6). Once
execution is resumed, the item is considered consumed and is then added to the _processing
set and removed from the _items set, marking it as being processed and allowing an identical
item to be submitted to the queue again (lines 9-10).

1 public async Task<(bool,T)> TryTake(CancellationToken ct = default)
2 {

3 var item = default(T);
4 try
5 {

6 item = await _queue.ReceiveAsync(ct);
7 using(await _mutex.Use())
8 {

9 _processing.Add(item);

10 _items.Delete(item);

11 }

12 return (true, item)
13 }

14 // Thrown when _queue empty and completed

15 catch (InvalidOperationException) { }
16 return (false, item);
17 }

Listing 12: TryTake method of WorkQueue (WorkQueue.cs)

MarkProcessed

Once a consumer finishes processing an item, it must signalize it to the queue, by calling the
MarkProcessed method from listing 13. This removes the item from the _processing set (line 5).
If the item is present in the items, it means it must have been added during processing and since
processing is finished, it can be processed again and can therefore be added to _queue (line 7).

1 public async Task<bool> MarkProcessed(T item)
2 {

3 using(await _mutex.Use())
4 {

5 var success = _processing.Delete(item);
6 // Requeue if the item was re-added while processing

7 if(_items.Has(item)) _queue.Post(item);
8 return success;
9 }

10 }

Listing 13: MarkProcessed method of WorkQueue (WorkQueue.cs)
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Concurrency

As may be seen throughout listings 11 to 13, a mutual exclusion object (mutex) in the _mutex field
is used to ensure that the different data structure are never accessed concurrently by multiple
threads.

The _mutex field is implemented as a semaphore object (using .NET SemaphoreSlim3) with
the thread limit set to 1. The .Use() method is a convenience extension method, which facilitates
acquiring the mutex and returning an IDisposable wrapper so that mutex usage can be written
using a C# using block. The IDisposable returned implements the Dispose method by calling
the Release method on the SemaphoreSlim object (_mutex field).

9.2.2 Controller configuration

The configuration and initialization of a controller is split into two functions. Firstly, the application-
provided implementation of IReconciler (section 8.4) can be provided to a Controller object’s
constructor. Furthermore, resources that should be watched can be configured via a series of
one or more calls of the AddWatch method, shown in listing 14.

1 public void AddWatch<T>(string @namespace, EnqueueingHandler handler)
2 {

3 var source = Cache.GetNamespacedFor<T>(@namespace);
4 _watches.Add(new WatchInfo(source, @namespace, handler));
5 }

Listing 14: AddWatch method of Controller (Controller.cs)

As seen in listing 14, watch configurations are tracked in a collection of WatchInfo (defined
as private class in Controller) objects. As shown in listing 15, these contain an instance of
ISharedEventSource (from section 9.1.3) as well as an EnqueueingHandler.

The ISharedEventSource instance is obtained on line 3 of listing 14. Based on the Kubernetes
resource type provided in form of the type parameter T, the instance is fetched using a reference
to a cache. Details about the cache used will be presented later in section 9.3.

EnqueueingHandler

The mentioned EnqueueingHandler is a delegate that is used to influence how reconciliation re-
quests are enqueued based on a triggering event. As per the signature from listing 16, it supports
functions which accept an event type, metadata about a Kubernetes object, and a work queue of
items of type ReconcileRequest.

3https://docs.microsoft.com/en-us/dotnet/api/system.threading.semaphoreslim?view=netcore-3.1



9.2. Controller 65

1 class WatchInfo
2 {

3 public ISharedEventSource Source { get; }
4 public string Namespace { get; }
5 public EnqueueingHandler Handler { get; }
6 public WatchInfo(ISharedEventSource source, string @namespace, EnqueueingHandler handler)
7 {

8 Source = source; Namespace = @namespace; Handler = handler;

9 }

10 }

Listing 15: WatchInfo class definition in Controller (Controller.cs)

1 public delegate Task EnqueueingHandler(
2 EventType et, KubernetesV1MetaObject obj, IWorkQueue<ReconcileRequest> queue);

Listing 16: Signature of EnqueueingHandler delegate (Handlers.cs)

By allowing to pass an EnqueueingHandler to AddWatch, users may control how requests are
added to the queue. However, most users are expected to simply want the request to be put on
the queue without additional logic.

Alternatively, another common use-case might be to react to an event of object A by reconciling
its parent (owner) object OA. In that case, the handler should add a reconciliation request for
object OA instead.

For users who do not wish to specify a custom EnqueueingHandler, default handlers sup-
porting two mentioned use-cases are available to be constructed with helper methods on the
Handlers static class. These methods may be seen in listing 17.

Handlers.EnqueueForObject() returns a handler which simply constructs a ReconcileRequest
object based on the event’s object metadata (line 5) and adds it to the queue (line 6). On the other
hand, Handlers.EnqueueForOwner checks the event object’s metadata for owner references (line
15). If the object is owned by one or more different objects, a ReconcileRequest is created and
added to the queue for each of those (lines 17-24).

AddWatch usage

To configure the controller to watch events for a specific resource, the AddWatch function can be
called as illustrated in listing 18. There, a use-case is considered in which a resource represented
by the LightBulb type is an owner of a resource represented by the LightBulbColor type. This
could, for instance, mean that the reconciler watches LightBulb objects and in the process cre-
ates (children) objects of type LightBulbColor. In that case, LightBulbColor object changes
should trigger reconciliation of the parent object to ensure the states have not drifted.
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1 public static EnqueueingHandler EnqueueForObject()
2 {

3 return async (et, obj, q) =>
4 {

5 var r = MakeRequest(obj);
6 await q.TryAdd(r);
7 });

8 }

9 public static EnqueueingHandler EnqueueForOwner(bool isController)
10 {

11 return async (et, obj, q) =>
12 {

13 var ownerReferences = obj.Metadata.OwnerReferences;
14 if (ownerReferences == null || ownerReferences.Count == 0) return;
15 var requests = isController switch
16 {

17 true => ownerReferences
18 .Where(r => r.Controller.HasValue && r.Controller == true)
19 .Select(r => MakeRequest(obj, r)),

20 false => ownerReferences.Select(r => MakeRequest(obj, r))
21 };

22 foreach (var r in requests) await q.TryAdd(r);
23 });

24 }

Listing 17: Default EnqueueingHandler factories EnqueueForObject and EnqueueForOwner (Handlers.cs)

1 controller.AddWatch<LightBulb>("default", Handlers.EnqueueForObject());

2 controller.AddWatch<LightBulbColor>("default", Handlers.EnqueueForOwner(true));

Listing 18: Example usage of the AddWatch configuration method in Controller (Controller.cs)

9.2.3 Reconciliation

Once created and configured, a Controller can be started using the Start method shown in
listing 19. First, all the configurations applied using AddWatch (tracked in _watches) are initialized
by subscribing the provided EnqueueingHandler on the ISharedEventSource (lines 7-8).

Note that Subscribe in ISharedEventSource (listing 8, page 60) takes an EventSourceHandler
(listing 6, page 58), while the handler provided in AddWatch and stored in WatchInfo is an
EnqueueingHandler (listing 16, page 65). The call to ToEventSourceHandler (line 8) creates a
compatible closure using the EnqueueingHandler and a reference to the queue.

Afterwards, one or more (depending on the value of Concurrency configured when creating
the Controller) reconciliation loops are started (lines 9-11), followed by the initialization of an
additional resynchronization loop on line 13. A description of both types of loops will follow later
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in this section.

1 public Task Start(CancellationToken ct = default)
2 {

3 _cts = (ct == CancellationToken.None) ? new CancellationTokenSource()
4 : CancellationTokenSource.CreateLinkedTokenSource(ct);

5

6 foreach (var w in _watches) // Setup subscriptions
7 w.Source.Subscribe(w.Handler.ToEventSourceHandler(Queue));

8

9 _reconcileLoops = new List<Task>();
10 for(int i = 0; i < Concurrency; i++) // Start reconcile loop(s)
11 _reconcileLoops.Add(ReconcileLoop(_cts.Token));

12

13 _resyncLoop = ResyncLoop(_cts.Token); // Start resync loop

14 return Task.CompletedTask;
15 }

Listing 19: The Start method in Controller (Controller.cs)

ReconcileLoop

The mentioned reconciliation loop (ReconcileLoop method) is what consumes from the work
queue and where reconciliation requests are passed outside of the library into the application
code (via the IReconciler interface).

The code for the loop may be seen in listing 20. The loop essentially runs during the entire
lifetime of a Controller once started (line 4) and waits for reconciliation requests to be available in
the work queue in line 6 using TryTake (listing 12, page 63).

Once a request is available, it is passed to the application-provided IReconciler instance
(line 8) together with a reconciliation context (line 3, currently only contains the configured C#
Kubernetes client instance).

As shown in line 9 of listing 20, the result (ReconcileResult) returned by the application’s
IReconciler is then inspected. In case a request for a retry has been indicated, an asynchronous
action is spawned to requeue the request after the indicated time (can also be immediately).

Finally, once the reconcilliation processing is done, the work queue is notified using the
MarkProcessed operation (listing 13 on page 63), allowing requests for the same object to be
added to the queue in case they have been submitted during processing.
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1 private async Task ReconcileLoop(CancellationToken ct)
2 {

3 var ctx = new ReconcileContext(Client);
4 while (!ct.IsCancellationRequested)
5 {

6 var (success, req) = await Queue.TryTake(ct);
7 if (!success) continue;
8 var result = await Reconciler.Reconcile(ctx, req);
9 if(result.Requeue) Requeue(req, result.RequeueAfter, ct);
10 await Queue.MarkProcessed(req);
11 }

12 }

Listing 20: The ReconcileLoop method in Controller (Controller.cs)

IReconciler, ReconcileRequest and ReconcileResult

As was just described, the controller (reconciliation loop) passes ReconcileRequest objects to the
Reconcile method of the IReconciler which returns a ReconcileResult object. The interface
and the two classes are shown in listing 21.

As shown in the listing, the ReconcileRequest passed to Reconcile uniquely identifies a
to-be-reconciled Kubernetes object using its metadata (as introduced in section 6.2.2). The
ReconcileResult must be created and returned by the application’s IReconciler implementa-
tion, where it can be indicated whether the request should be requeued (i.e. retried). Optionally a
time delay before the retry can also be specified.

1 public interface IReconciler
2 {

3 Task<ReconcileResult> Reconcile(ReconcileContext context, ReconcileRequest request);

4 }

5 public class ReconcileRequest
6 {

7 public string ApiVersion { get; set; }
8 public string Kind { get; set; }
9 public string Namespace { get; set; }
10 public string Name { get; set; }
11 }

12 public class ReconcileResult
13 {

14 public bool Requeue { get; set;}
15 public TimeSpan RequeueAfter { get; set;}
16 }

Listing 21: IReconciler, ReconcileRequest and ReconcileResponse (IReconciler.cs, ReconcileRequest.cs, Rec-
oncileResponse.cs)
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Resynchronization

The resynchronization loop, first shown in line 13 of the controller’s Start method (listing 19,
page 67, periodically uses the one-time LIST operations implemented in event sources to get all
the Kubernetes objects that are configured to be watched and, for each object, it enqueues a
request for reconciliation.

Without this feature, reconciliation would only be triggered based on Kubernetes-side events.
This would mean that out-of-band (not reflected in Kubernetes resources) changes to the actual
state (e.g. platform configuration/APIs) would not be corrected until a change of the Kubernetes
object triggers reconciliation.

With the resynchronization loop, on the other hand, this kind of state drift is corrected, as all
relevant (watched) Kubernetes resource objects are pro-actively and periodically reconciled. For
brevity, the relevant code will not be shown here, but may be seen in appendix A.1.

9.3 Manager

In this section, we will present the implementation details of the Manager component, which en-
ables co-hosting of multiple KubeSharper controllers, as per the design described in section 8.5.

The manager acts as a host/container for controllers which allows them to be started/stopped
together. Additionally, the manager allows certain dependencies and connections to be shared
among controllers, which is meant to simplify the usage of KubeSharper while also making Ku-
bernetes communication more efficient.

9.3.1 EventSourceCache

One of the main dependencies the Manager shares among controllers is a cache for
SharedEventSource objects. As demonstrated by the AddWatch controller configuration
method (listing 14, page 64), controllers use the cache whenever a watch for a new resource type
or namespace is initialized.

Because a shared cache is used, then if two or more controllers require an event source for
the same resource type and namespace, a single event source (and therefore a single Kuber-
netes connection) may be reused. This is also facilitated by the propagation of events to multiple
subscribers in the SharedEventSource (section 9.1.3).

The EventSourceCache and IEventSourceCache interface (listing 22) expose the method
GetNamespacedFor<T>, which is used in AddWatch. Whenever an event source for a given re-
source type and namespace pair is requested via the method for the first time, EventSourceCache
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1 public interface IEventSourceCache : IDisposable
2 {

3 ISharedEventSource GetNamespacedFor<T>(string @namespace);
4 void StartAll();
5 }

Listing 22: IEventSourceCache interface (EventSourceCache.cs)

initializes the respective SharedEventSource instance using the EventSources class (sec-
tion 9.1.1). Additionally, it stores a reference to the instance in a dictionary, under a key
composed of the type T and the namespace.

Then, on any subsequent call to GetNamespacedFor<T> for the same T and namespace, the
stored instance is reused by retrieving it from the dictionary instead of initializing it.

9.3.2 Kubernetes client configuration

Apart from the event sources and Kubernetes API connections, the Manager also shares an in-
stance of the Kubernetes client with controllers. A path to the user-specific Kubernetes config-
uration file (kubeconfig) can be passed to the Manager when it’s being created using the static
Manager.Create method, shown in listing 23. The file is parsed and client created using the
Kubernete C# library classes in lines 4 and 5.

1 public static async Task<Manager> Create(string kubeConfigPath)
2 {

3 var fi = new FileInfo(kubeConfigPath);
4 var config = await KubernetesClientConfiguration.BuildConfigFromConfigFileAsync(fi);
5 var client = new Kubernetes(config);
6 var sources = new EventSources.EventSources();
7 var cache = new EventSourceCache(sources, client);
8 return new Manager(client, cache);
9 }

Listing 23: Static method Manager.Create (Manager.cs)

9.3.3 Controller relationship via IStartable

To share the Kubernetes client and EventSourceCache instances, each controller must have a
reference to and be added to a Manager. The manager maintains a collection of objects that satisfy
the IStartable interface, which requires an implementation of a Start method and therefore is
satisfied by Controller (via its Start method from listing 19, page 67).



9.3. Manager 71

1 public Controller(Manager manager, ControllerOptions opts)
2 {

3 Client = manager.Client;

4 Cache = manager.Cache;

5 Reconciler = opts.Reconciler;

6 ResyncPeriod = opts.ResyncPeriod;

7 Concurrency = opts.Concurrency;

8 Queue = new WorkQueue<ReconcileRequest>();
9 manager.Add(this);
10 }

Listing 24: Controller constructor (Controller.cs

The Manager class exposes an Add method for this collection, which is used in the constructor
Controller, as shown in line 9 of listing 24.

9.3.4 Starting controllers

Once one or more controllers have been created (constructor from listing 24) and configured
(AddWatch, listing 14, page 64) and therefore added to a Manager object, its Start method can be
used.

1 public async Task Start(CancellationToken ct = default)
2 {

3 _cts = (ct == CancellationToken.None) ? new CancellationTokenSource(),
4 : CancellationTokenSource.CreateLinkedTokenSource(ct);

5 // Start all controllers

6 var tasks = _startables.Select(s => s.Start(_cts.Token));
7 await Task.WhenAll(tasks);
8 // Start all initialized event sources

9 Cache.StartAll();

10 }

Listing 25: The Start method of Manager (Manager.cs)

As seen listing 25, Manager.Start starts all owned controllers (line via Controller.Start
from listing 19 on page 67, which is followed by initializing all the configured event sources and
Kubenretes connections via the cache (line 9).

The manager thus allows developers to have the entire KubeSharper layer of their application
contained and controller via a single object, which is meant to improve the experience of using
the library.
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9.4 Custom resources

In order to keep the implementation idiomatic and provide a pleasant developer experience in the
C#/.NET, effort has been put throughout this chapter to make sure that the KubeSharper library
APIs are generic, allowing for configuration based on C# types and type system. While the C#
Kubernetes client provides C# classes for native Kubernetes resource types, it handles custom
resources dynamically.

In KubeSharper, custom resources can be instead handled in a type-safe manner, by allowing
developers to extend the CustomResource class, whose details may be seen in listing 26. Per the
listing, the class can be extended to create a domain-specific custom resource in the application
by providing classes for the common Spec and Status properties of custom Kubernetes objects
(section 6.2.2)).

1 public abstract class CustomResource<TSpec, TStatus> : KubernetesObject
2 where TSpec : class, new()
3 where TStatus : class, new()
4 {

5 public V1ObjectMeta Metadata { get; set; }
6 public TSpec Spec { get; set; }
7 public TStatus Status { get; set; }
8 }

Listing 26: Base CustomResource class for defining custom resource objects in KubeSharper (CustomResource.cs)

Additionally, KubeSharper (and Kubernetes in general) requires some knowledge about the
corresponding custom resource definition in order to be able to handle a custom resource object.
In KubeSharper, this data can be easily expressed in the custom resource class by the application
developer using a KubeSharper-provided CustomResourceDefinition class attribute.

1 [CustomResourceDefinition("databases.io", "v1", "databases", "database")]

2 public class Database : CustomResource<DatabaseSpec, DatabaseStatus> {}
3 public class DatabaseSpec
4 {

5 public string Name { get; set; }
6 public string InstanceSize { get; set; }
7 }

8 public class DatabaseStatus
9 {

10 public string ConnectionString { get; set; }
11 public bool IsReady { get; set; }
12 }

Listing 27: Example Database custom resource and CRD, defined using KubeSharper

Listing 27 contains a simple example of a possible Database custom resource, which could for
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example be used to implement a custom controller that manages internal database instances in
a company via state reconciliation, Kubernetes and KubeSharper.

There, the class Database is created by extending CustomResource. DatabaseSpec and
DatabaseStatus classes are defined and provided as the spec and status type parameters of
CustomResource. Additionally, the CustomResourceDefintion is used in line 1 to define the API
group, version, plural name and singular name attributes (section 6.4.1) of the custom resource
respectively.

9.5 CRD Generator

The CRD Generator, described in section 8.3 is meant to serve as an executable tool for develop-
ers, which can be used to automatically generate Kubernetes manifests (in YAML) based on the
type information of custom resources defined in the application code using C#.

In the current implementation, the tool accepts two arguments: path to the DLL file containing
compiled .NET assembly of the application and an output path where YAML manifest files should
be written.

1 static void Main(string[] args)
2 {

3 var (assemblyPath, outputPath) = (args[1], args[2])
4 var typeCrds = Assembly.LoadFrom(assemblyPath).GetTypes()
5 .Select(t => (Type: t, Crd: CustomResourceDefinition.For(t)))

6 .Where(tuple => tuple.Crd != null);
7 foreach(var (type, crd) in typeCrds)
8 {

9 var spec = type.GetProperty("Spec");
10 var specSchema = GetSchemaFor(spec.PropertyType).ToObjectGraph();
11

12 var status = type.GetProperty("Status");
13 var statusSchema = GetSchemaFor(status.PropertyType).ToObjectGraph();
14

15 var crdObj = MakeCrdObj(crd, type.Name, specSchema, statusSchema);
16 var serializer = new SerializerBuilder()
17 .ConfigureDefaultValuesHandling(DefaultValuesHandling.OmitNull)

18 .WithNamingConvention(CamelCaseNamingConvention.Instance)

19 .Build();

20 var yaml = serializer.Serialize(crdObj);
21 File.WriteAllText(Path.Join(outputPath, $"{crd.Singular}.yaml"), yaml);

22 }

23 }

Listing 28: CRD Generator code (Program.cs)
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As seen in listing 28, the DLL is first loaded (line 4) and scanned for all objects annotated
using the CustomResourceDefinition attribute shown in listing 27 in the previous section. For
each such type, the attribute data is extracted and a schema object is built for the Spec and Status
properties based on the structure of their types.

To get the schema, a helper method GetSchemaFor(Type) is used (lines 10 and 13) which
internally uses the Newtonsoft Json .NET Schema4 library to build a schema objects based on
.NET types.

Using the MakeCrdObj helper method (line 15), we build a C# representation of the
CustomResourceDefinition Kubernetes YAML structure, based on the KubeSharper
CustomResourceDefinition attribute data, as well as the schemas and the name of the
type.

Finally, the combined and returned object is serialized into a YAML file using the YamlDotNet5

library and the file is then written to the specified location.

9.6 Dependecy Injection and KubeSharper usage

As discussed in section 7.3, supporting the common pattern of using dependency injection to
configure applications and dependencies in C#/.NET could make using KubeSharper more fa-
miliar in the ecosystem, and thus further improving the accessibility of custom reconciliation on
Kubernetes.

To address this, KubeSharper provides helper extension methods on the IServiceCollection
.NET dependency injection interface. As seen in the example in listing 29, these extensions
enable configuration of the manager, as well as the controller and its watches, to be done using
standard .NET dependency injection.

In listing 29, a simple controller is configured, which watches LightBulb (custom) resource
objects (line 17) in the default namespace and reconciles them using the LightBulbReconciler
(lines 10, 14).

Furthermore, the extension methods are implemented so that the configured Manager is reg-
istered in the IServiceCollection as an implementation of the IHostedService6 interface. This
delegates the management of services to the .NET platform, meaning the application developer
only needs to use the dependency injection integration and the configured KubeSharper compo-
nents will be embedded and started automatically with the application.

4https://www.newtonsoft.com/jsonschema
5https://github.com/aaubry/YamlDotNet
6https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostedservice?view=dotnet-plat-ext-

3.1
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1 public static void Main(string[] args)
2 {

3 CreateHostBuilder(args).Build().Run();

4 }

5 public static IHostBuilder CreateHostBuilder(string[] args) =>
6 Host.CreateDefaultBuilder(args) .ConfigureServices((hostContext, services) =>

7 {

8 services.AddSingleton<LightBulbReconciler>();

9 services.KubeSharperManager(@"C:\Users\vao\kubeconfig.yaml")

10 .WithController((sp, ctrl) =>

11 {

12 ctrl.Options.Reconciler = sp.GetRequiredService<LightBublReconciler>();

13 ctrl.Options.ResyncPeriod = TimeSpan.FromMinutes(60);

14 ctrl.Options.Concurrency = 1;

15 ctrl.AddWatch<LightBulb>("default", Handlers.EnqueueForObject());

16 }).Add();

17 });

Listing 29: Example configuration custom resource and CRD, defined using KubeSharper

The full implementation of the extension methods and the IHostedService .NET hosting inte-
gration has been included in appendix A.2.

9.7 Implementation Summary

This chapter presented the details of how the different components and aspects of KubeSharper
design have been implemented using the C# language and .NET platform.

First and foremost, the implementation covered the main functional requirements, such
as allowing developers to configure one or more custom controllers and integrate them with
application-provided reconciliation functions and custom resource structures.

Furthermore, emphasis has also been put on developer experience and smooth integration
with established .NET patterns. This included providing a fully generic API for configuring both
native and custom Kubernetes resources, as well enabling KubeSharper dependencies to be
injected as part of standard .NET application setup.

Overall, the implementation of KubeSharper developed as part of this thesis should provide
the necessary abstractions to significantly improve the accessibility of custom reconciliation im-
plementations on Kubernetes for C# use-cases. The next chapter will evaluate this in detail by
building and reviewing two fully-contained use-cases.
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Evaluation

In this chapter, the KubeSharper SDK, whose implementation details was just presented in chap-
ter 9, will be evaluated by implementing several representative state reconciliation use-cases.

Accessibility and ease-of-implementation is central to the problem of this thesis, which is why
the method of evaluation will be mainly qualitative. Each of the built use-cases, including the
development process and experience will be reviewed against the goals and requirements defined
in chapter 7.

10.1 Use-case #1: Cloud Redis Operator

In the first example, the application uses a custom Kubernetes resource to define a Redis1 in-
memory key-value store instance using the Memorystore for Redis2 service offered by the Google
Cloud Platform.

10.1.1 Overview

The overview of the solution is depicted in fig. 10.1. The application extends Kubernetes with
a custom resource type CloudRedis which holds the definition of a Redis instance in GCP. Fur-

1https://redis.io/
2https://cloud.google.com/memorystore
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thermore, the application uses the KubeSharper SDK to configure a controller which, first of all,
watches all CloudRedis objects in Kubernetes, and secondly, executes custom reconciliation logic
via the CloudRedisReconciler (an implementation of IReconciler).

Figure 10.1: Cloud Redis Operator overview

10.1.2 Custom resource representation

The C# class used defined, with the help of KubeSharper SDK, to work with CloudRedis custom
objects may be seen in listing 30 below.

1 [CustomResourceDefinition("operator.cloudredis.io", "v1", "cloudredises", "cloudredis")]

2 public class CloudRedis : CustomResource<CloudRedisSpec, CloudRedisStatus> {}
3 public class CloudRedisSpec
4 {

5 public string Name { get; set; }
6 public int MemorySizeGb { get; set; }
7 public Tier Tier { get; set; }
8 }

9 public class CloudRedisStatus
10 {

11 public string Id { get; set; }
12 public string State { get; set; }
13 public DateTime CreatedAt { get; set; }
14 public string Location { get; set; }
15 public string Host { get; set; }
16 public int Port { get; set; }
17 }

Listing 30: CloudRedis class definition (CloudRedis.cs)
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The CodeRedis class inherits from KubeSharper’s CustomResource and provides the
CloudRedisSpec and CloudRedisStatus types as the required spec and status types respec-
tively. The spec type provides a basic set of attributes to define an instance in GCP (lines 5-7).
While many more attributes can be specified, this keeps the example concise and does not affect
evaluation.

The status class defines six properties (lines 11-16). These mainly hold information known
after the real GCP instance is created and these information also represent what is generally
needed to use and connect to the instance.

The KubeSharper CustomResourceDefintion attribute is used in line 1 to express the Kuber-
netes CRD metadata (API group, version, plural name and singular name).

Installation

To install the CRD into a cluster, a YAML manifest of kind CustomResourceDefinition corre-
sponding to CloudRedis from listing 30 should be defined, including a schema definition for the
entire structure of the custom resource objects (spec, status, etc) and applied via Kubernetes API.
The full YAML definition has been included in appendix B.1.

Using the CRD Generator (section 9.5), the manifest may be generated given the applica-
tion assembly to get a YAML file which can subsequently be applied using e.g. the Kubernetes
command-line client, as shown in section 7.3.4.

> ./kubesharper-generate ./bin/Release/netcoreapp3.1/CloudRedisOperator.dll ./yaml/

> kubectl apply -f ./yaml/cloudredis.yaml

Listing 31: Generating and installing YAML manifest for CloudRedis using KubeSharper CRD generator and kubectl

10.1.3 Configuration

The application has been configured using the .NET dependency injection and hosting extensions
described in section 9.6, seen in listing 32. First, application-specific implementations are regis-
tered such as the Google Cloud Redis client library (line 1), the reconciler itself (line 3) and a
helper class (line 2).

The KubeSharper configuration can be seen in lines 4-11, where a manager is initialized with
a kubeconfig file, and a single controller is created. The controller is setup to watch CloudRedis
objects (line 7) and use the CloudRedisReconciler (line 8), with additional settings in lines 9-10.
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1 services.AddTransient(_ => CloudRedisClient.Create());

2 services.AddTransient<RedisInstanceManager>();

3 services.AddSingleton<CloudRedisReconciler>();

4 services.KubeSharperManager(Configuration["kubeconfigPath"])

5 .WithController((sp, cfg) =>

6 {

7 cfg.Watch<CloudRedis>("default", Handlers.EnqueueForObject());

8 cfg.Options.Reconciler = sp.GetRequiredService<CloudRedisReconciler>();

9 cfg.Options.Concurrency = 2;

10 cfg.Options.ResyncPeriod = TimeSpan.FromHours(1);

11 }).Add();

Listing 32: Configuration of KubeSharper in the Cloud Redis Operator using dependency injection (Program.cs)

10.1.4 Reconciler implementation

The mentioned CloudRedisReconciler implementation can be seen in listing 33. The listing
includes the top-level IReconciler.Reconcile method. There, first of all, the object to be recon-
ciled is fetched according to the request (lines 3-5, 8).

Then, a helper class in the application (_cloudRedis) is used to either create a new Redis
instance or modify and existing one according to the CloudRedis object fetched (line 20). Once
the GCP SDK operations are finished, a helper method is used to update the CloudRedis object
in Kubernetes so that its status reflects the instance data (line 21).

Finalizers

To handle cleanup whenever CloudRedis Kubernetes objects are removed, the concept of final-
izers in Kubernetes is used. All CloudRedis are always updated to have a finalizer key in their
metadata (ensured in lines 9-12). Whenever an object in Kubernetes is requested to be deleted,
it will instead by only marked for deletion (by setting the DeletionTimestamp in metadata). Once
the finalizer key is removed, the object will be removed automatically.

The reconciler implementation uses this mechanism and checks the deletion timestamp (line
13). If set, the reconciler destroys the Google Cloud (line 15) and removes the finalizer key using
a local helper method (line 17). In case deletion fails, a delayed retry will be scheduled using
KubeSharper’s ReconcileResult (line 16).
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1 public async Task<ReconcileResult> Reconcile(ReconcileContext ctx, ReconcileRequest r)
2 {

3 var crd = CustomResourceDefinition.For<CloudRedis>();
4 var response = await ctx.Client.GetNamespacedCustomObjectWithHttpMessagesAsync(
5 crd.Group, crd.Version, r.Namespace, crd.Plural, r.Name);

6 if(response.Response.StatusCode == HttpStatusCode.NotFound)
7 return new ReconcileResult();
8 var obj = ((JObject)response.Body).ToObject<CloudRedis>();
9 if(!obj.Metadata.Finalizers?.Contains(FINALIZER) ?? true)
10 {

11 await PatchAddFinalizer(ctx.Client, obj);
12 }

13 else if(obj.Metadata.DeletionTimestamp.HasValue)
14 {

15 var deleted = await _cloudRedis.Delete(obj);
16 if(!deleted) return ReconcileResult(TimeSpan.FromMinutes(1));
17 await PatchRemoveFinalizer(ctx.Client, obj);
18 return new ReconcileResult();
19 }

20 var instance = await _cloudRedis.CreateOrUpdate(obj);
21 await PatchStatus(ctx.Client, obj, instance);
22 return new ReconcileResult();
23 }

Listing 33: CloudRedisReconciler implementation (CloudRedisReconciler.cs)

10.2 Use-case #2: ACME Workload Operator

This second example is meant to illustrate a slightly difference reconciliation scenario that
KubeSharper enables. This application represents a potential way to automate and enforce
company-specific microservice deployment standards using reconciliation, Kubernetes and
custom resources. The name uses a placeholder (ACME) for the company name, as this is
meant to be a generic, yet realistic example.

10.2.1 Overview

When using Kubernetes as an internal platform for hosting applications and microservices, multi-
ple Kuberetes resources often need to be created in order to deploy and host a single deployable
unit (a microservice).

In order to automate the process and be able to influence the default or enforced values of
such resources, the ACME Workload Operator enables defining a microservice using a single
company-specific custom resource object, the AcmeService. As seen in fig. 10.2, the reconcilia-
tion process in this case is to the Kubernetes object necessary to deploy an application based on
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a single, company-standardized definition in form of the AcmeService custom object.

To keep this example concise, we consider a microservice to expose it’s functionality over
HTTP and the necessary Kubernetes resources to be Deployment[19], which facilitates hosting
the running a set of application instances and Service[21], which enables those instances to be
communicated with using a single, load-balanced endpoint.

In a different scenario, additional resources like ConfigMap, Secret, HorizontalPodAutoscaler,
Ingress and event custom resources like a microservice-specific CloudRedis instance from
use-case #1 (section 10.1) could be considered.

Figure 10.2: ACME Workload Operator overview

This means that, as illustrated by fig. 10.2, both the desired state and the actual state is
contained within the Kubernetes cluster, similar to how native Kubernetes processes work (sec-
tion 6.3). The AcmeReconciler observes custom AcmeService objects using KubeSharper SDK
and then uses the Kubernetes client to create child Deployment and Service objects based on
the desired definition.

The Deployment and Service objects are considered managed and owned by the parent
AcmeService object and its respective controller (the ACME Workload Operator application).

10.2.2 Custom resource

The definition of the C# custom resource is similar to that of CloudRedis (listing 30, sec-
tion 10.1.2). In this case, the class AcmeService inherits from CustomResource and provides its
spec and status as the types AcmeServiceSpec and AcmeServiceStatus respectively.
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The properties in the spec define several company-standard attributes necessary to deploy the
service, such as the container image reference, number of replicas, exposed port, environment
variables, labels, and others. The status type, similarly to the status from use-case #1, exposes
the IP address and hostname of the service needed to connect to the service and known only
after reconciliation.

For brevity, the full custom resource class as well as the corresponding YAML definition will
not be presented here and are instead included in appendix B.2.

10.2.3 Configuration

The KubeSharper configuration for this use-case may be seen in listing 34. The main difference
here, is that KubeSharper is configured to also watch Deployment and Service resources (line
6-7) apart from the custom AcmeService (line 5).

As per the usage of the EnqueueForOwner handler preset in lines 6-7, those additional re-
sources are watched as children resources of AcmeService. This means that event when trig-
gered by a Deployment or Service related event, the request propagated to the reconciler will be
for the owning AcmeService.

1 services.AddSingleton<AcmeReconciler>();

2 services.KubeSharperManager(Configuration["kubeconfigPath"])

3 .WithController((sp, cfg) =>

4 {

5 cfg.Watch<AcmeService>("default", Handlers.EnqueueForObject());

6 cfg.Watch<V1Deployment>("default", Handlers.EnqueueForOwner(true));
7 cfg.Watch<V1Service>("default", Handlers.EnqueueForOwner(true));
8 cfg.Options.Reconciler = sp.GetRequiredService<AcmeReconciler>();

9 }).Add();

Listing 34: Configuration of KubeSharper in the ACME Workload Operator using dependency injection (Program.cs)

10.2.4 Reconciler implementation

For this use-case, as shown in listing 35 the reconciler performs a similar initial retrieval of the
AcmeService object, based on the reconciliation request data (lines 3-4). As mentioned in the
previous subsection, this request is always for a AcmeService, even when triggered by a change
in a dependent Deployment or Service object.
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Deployment and Service creation

The fetched AcmeService object holds data that influences the Deployment and Service object
that will be created. To create the two dependent objects, helper classes DeploymentManager
and ServiceManager were implemented as an abstraction over the Kubernetes C# client instance
injected by KubeSharper into the reconciler (ctx.Client).

1 public async Task<ReconcileResult> Reconcile(ReconcileContext ctx, ReconcileRequest r)
2 {

3 var crd = CustomResourceDefinition.For<AcmeService>();
4 var response = await ctx.Client.GetNamespacedCustomObjectWithHttpMessagesAsync(
5 crd.Group, crd.Version, r.Namespace, crd.Plural, r.Name);

6 if(response.Response.StatusCode == HttpStatusCode.NotFound)
7 return new ReconcileResult();
8 var obj = ((JObject)response.Body).ToObject<AcmeService>();
9 var (name, @namespace) = (obj.Metadata.Name, obj.Metadata.NamespaceProperty);
10 var deployment = await new DeploymentManager(ctx.Client).Apply(obj);
11 var service = await new ServiceManager(ctx.Client).Apply(obj);
12 await PatchAcmeServiceStatus(ctx.Client, obj, service);
13 return new ReconcileResult();
14 }

Listing 35: AcmeReconciler implementation (AcmeReconciler.cs)

Both helper classes have an Apply method, which, given an AcmeService object, creates or
updates a corresponding Deployment or Service object, as used in lines 10 and 11 of listing 35.
Afterwards, based on the created objects, the status of the AcmeService object is updated (line
12).

To make sure that the ACME Workload Operator can supervise the created objects and correct
drifted state (e.g. incurred by manual changes), both the Deployment and Service objects are
created with an OwnerReference to the parent AcmeService in their metadata.

Combined with the configuration from listing 34, this ensures that any external changes to
Deployment or Service objects created by this reconciler a reconciliation, in which case the rec-
onciler idempotently modifies their state back to the desired state defined in the AcmeService
object.

Deletion events

In this case, since the actual/target state is purely kept within Kubernetes, no special logic is
needed in case of a deletion. Because of the OwnerReference, whenever an AcmeService is
deleted, so are the dependent objects.
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10.3 Use-case #3: Co-hosting and cooperation

To demonstrate the manager and controller co-hosting capabilities of the KubeSharper implemen-
tation, consider a use-case where both operators (Cloud Redis and ACME Workload) would be
used in the same company/environment.

In that case, it may be desired to have a single application act as both operators by co-hosting
multiple controllers under a single KubeSharper manager. Furthermore, consider the two con-
trollers should cooperate.The ACME workload operator would adopt a slightly different schema
to also provision a Redis instance by creating an additional child object, in this case of type
CloudRedis.

The configuration included in listing 36 represents this scenario. The separate configurations
from listing 32 and listing 34 were combined using a pair of chained WithController (lines 6-12
and lines 13-19) calls on the same Manager configuration (line 5).

Additionally, to enable for the cooperation described above, an additional child resource to
watch has been added for the controller with AcmeReconciler. With some adjustments in the
reconciler code, a new AcmeService object will results in a CloudRedis resource being created
as its child. Due to the configuration in line 8, this event will be propagated as a request to the
CloudRedisReconciler, which will create the Redis instance in Google Cloud.

1 // ...

2 services.KubeSharperManager(Configuration["kubeconfigPath"])

3 .WithController((sp, cfg) =>

4 {

5 cfg.Watch<CloudRedis>("default", Handlers.EnqueueForObject());

6 cfg.Options.Reconciler = sp.GetRequiredService<CloudRedisReconciler>();

7 cfg.Options.Concurrency = 2;

8 cfg.Options.ResyncPeriod = TimeSpan.FromHours(1);

9 })

10 .WithController((sp, cfg) =>

11 {

12 cfg.Watch<AcmeService>("default", Handlers.EnqueueForObject());

13 cfg.Watch<V1Deployment>("default", Handlers.EnqueueForOwner(true));
14 cfg.Watch<V1Service>("default", Handlers.EnqueueForOwner(true));
15 cfg.Watch<CloudRedis>("default", Handlers.EnqueueForOwner(true));
16 cfg.Options.Reconciler = sp.GetRequiredService<AcmeReconciler>();

17 }).Add();

Listing 36: Co-hosted configuration of KubeSharper (Program.cs)
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10.4 Review and Discussion

Having presented the use-cases implemented for the purpose of evaluation, this section will re-
view the functionality of KubeSharper as well as the development process of using it.

In section 7.3, several requirements were defined, describing the functionality and properties
of KubeSharper that are necessary in order to develop the SDK and make state reconciliation in
Kubernetes more accessible in C#ṄET environments.

10.4.1 Event configuration

First of all, as displayed in listing 32 and listing 34, the KubeSharper SDK allowed events about
relevant resources to be configured concisely, by simply providing a C# native resource type
without requiring much knowledge about Kubernetes API watch functionality or the Kubernetes
C# client.

Additionally, in the configuration of use-case #2 (listing 34), we have seen that KubeSharper
also supports more complex scenarios such as watching multiple resources as children of a main
resource that should be reconciled.

At the same time, some issues, such as unnecessary reconciliations where an object was pro-
cessed without undergoing significant changes have been observed on several occasions when
testing the evaluation use-cases. Additional investigation, testing and potential introduction of
caching mechanisms should be explored.

10.4.2 Reconciliation interface

As per the implementation described in section 9.2.3, and as seen for both use-cases in listing 33
and listing 35, it was possible to provide a custom reconciliation function to KubeSharper with
little effort, as reconciliation code could simply be wrapped in a class that implements the single-
method IReconciler interface provided by KubeSharper.

Furthermore, in the reconciler for use-case #1 (listing 33), we have also seen that the interface
also allows a request for retry to be signalized from the application code by simply returning a
relevant object to KubeSharper.

That being said, listings 33 and 35 also show room for improvement regarding this interface,
especially when it comes to the passed in context. In both cases, the reconciliation code must
handle some degree of Kubernetes integration that is not facilitated by KubeSharper (e.g. fetch-
ing/updating the custom resource object to be reconciled).
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KubeSharper does include a configured instance of the C# Kubernetes client in the recon-
ciliation context, which does simplify these operations to an extent. However, providing a more
specialized, generically-typed client with abstractions for reconciliation-specific operations such
as status patching etc could further improve the experience.

10.4.3 Controller co-hosting

As demonstrated by the third use-case and listing 36, given the current implementation of Kube-
Sharper, it was also possible to co-host and combine multiple controllers in a single C# applica-
tion/process.

As the use-case and the listing demonstrate, no special configuration or KubeSharper knowl-
edge was needed to combine the two controllers, as their existing configuration code could simply
be combined by chaining the provided .NET configuration methods.

10.4.4 CustomResourceDefinition installation

Usage of the CRD Generator tool was demonstrated in use-case #2 (listing 31). A YAML manifest
for the CRD was automatically generated based on type information contained in the application’s
assembly. The manifest could then be used together with the Kubernetes command-line client to
install the custom resource.

Additionally, this tool has proven useful several times during the implementation of these use-
cases, as it allowed iterative changes made to the C# classes to be quickly applied in the Kuber-
netes and tested.

That being said, there have been some edge cases in which case the produced YAML output
was incorrect or well formatted, which is why more extensive testing is needed.

10.4.5 Usability and Developer Experience

Overall, using KubeSharper allowed for the majority of the development of these use-cases to be
done with C# code and using C# standards, practices and language idioms.

Native C# custom resources

One contributor to this was the ability to work with custom resources as native C# classes as
mentioned in the requirements in section 7.3. This possibility allowed for easily writing custom
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helper classes and methods, which in turn enabled writing the reconciler in a more structured
manner, making it more maintainable and also more readable.

On the other hand, the C# class representation imposed by the current implementation, as
seen for example in listing 30, could be improved, as the enforced separation into spec and status
classes with the main class bearing no properties is less elegant and harder to read.

Standard .NET startup

The second contributor was KubeSharper’s integration with .NET dependency injection and con-
figuration infrastructure, which represents a canonical way of implementing startup in .NET ap-
plications. As demonstrated by listings 32, 34 and 36, the KubeSharper setup could be done
centrally, in the same place in the application where the rest of dependencies are initialized.

On top of that, the provided configuration methods have proven to be flexible enough to cover
different scenarios of initializing a controller, including configuring multi-resource and parent-
children events and even co-hosted controllers.

10.5 Lines-of-code analysis

Finally, to further demonstrate how KubeSharper facilitates the development of custom state rec-
onciliation application on Kubernetes, we will perform a lines-of-code analysis on the codebases
of the first two use-cases.

10.5.1 Methodology

The focus will be on the number of lines that can be considered as "KubeSharper boilerplate",
that is, the part of the code that is necessary for KubeSharper configuration and Kubernetes
event integration, but is not the core domain, reconciliation code which represents the business
value of the application.

The code counted as KubeSharper ("boilerplate") code will include the elements like the Kube-
Sharper configuration, code related to the reconciliation interface such as returned reconciliation
objects, as well as KubeSharper specific attributes and parts of C# class definitions.

The code counted as Use-case code will include the remainder of the codebase, except some
excluded lines such as C# namespace imports and definitions. Other Kubernetes-related code,
such as updates/patching of the custom resource, etc, is considered specific to and dependent
on the the use-case, and therefore will be included here as well.
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10.5.2 Analysis

The lines-of-code analysis results may be seen in fig. 10.3 below. In the case of the ACME
Workload use-case (#2), the KubeSharper code amounted to 19 lines versus 240 lines of use-
case-specific code, representing 7.3% of the overall codebase.

In the case of the Cloud Redis use-case (#1), KubeSharper code consisted of 17 lines com-
pared to the 274 lines of use-case-specific code, taking up 5.8% of the codebase in total.

Figure 10.3: Comparison of KubeSharper-related vs Use-case lines of code

10.6 Results and Outcome

Given the review and discussion as well as the lines-of-code analysis presented in this chapter,
the KubeSharper SDK has proven to be capable of simplifying the implementation of relevant
use-cases.

Despite the previously mentioned shortcomings, mechanisms in need of improvement and
an overall need for more testing, the SDK abstracts and automates aspects of implementing
Kubernetes controllers and thus appreciably reduces the involved complexity.
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Conclusion

Recognizing a shortage of tools and a generally low accessibility in the C#/.NET ecosystem when
it comes to implementing Kubernetes-based custom state reconciliation, this thesis explored de-
signing and implementing a Software Development Kit in C# to address the problem.

The implemented solution, KubeSharper SDK, was built based on open-source software, de-
signs and patterns from the Kubernetes community and delivers a C# library as well as an accom-
panying command-line tool in order to better enable implementation of the discussed use-cases
for C# developers and community.

The solution has been evaluated in an examination and review of the implementation process
as well as the resulting functionality of several representative applications built using the SDK. The
results indicate that KubeSharper overall delivers the earlier stipulated functionality and noticeably
reduces the complexity of developing the selected use-cases. Although, some implementation
issues, inefficiencies and areas of improvement have also been identified.

Overall, it can be concluded that the work and product of the thesis provide a usable initial set
of abstractions and tools for extending Kubernetes with C#-based custom reconciliation code. The
work could also serve as a basis for future research further exploring this subject and/or building
additional libraries and utilities within the area.
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11.1 Future Work

For future work, multiple possibilities of further reviewing or extending the implementation could
be considered.

First of all, the current implementation could undergo more extensive testing, including a per-
formance and/or scalability analysis in comparison with the existing Go libraries . Additionally,
considering parts of the evaluation results, additional focus could be put on improving the C#
developer experience and abstractions provided.

Furthermore, research could also be made in relation to the Kubernetes C# client. For exam-
ple, the foundation of the client could be extended with more utilities and abstraction for receiving
and handling events, similarly to the official Go Kubernetes client. Parts of the functionality and
code from KubeSharper could be further generalized and used as a basis for contributing similar
functionality to the C# client.
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Implementation

A.1 Resynchronization in Controller

1 private async Task ResyncLoop(CancellationToken ct)
2 {

3 while (!ct.IsCancellationRequested)
4 {

5 await Task.Delay(ResyncPeriod, ct);
6 var tasks = _watches.Select(w => ResyncWatch(w, ct, sw));
7 await Task.WhenAll(tasks);
8 }

9 }

10

11 private async Task ResyncWatch(WatchInfo watch, CancellationToken ct, Stopwatch sw)
12 {

13 const double jitterFactor = 0.1;
14 await Task.Delay(ResyncPeriod.GetJitter(jitterFactor));
15 var objects = await watch.Source.ListMetaObjects();
16 foreach (var o in objects)
17 {

18 if (ct.IsCancellationRequested) break;
19 dynamic d = o;
20 var metaObj = new KubernetesV1MetaObject
21 {

22 ApiVersion = d.ApiVersion,
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23 Kind = d.Kind,

24 Metadata = d.Metadata

25 };

26 await watch.Handler(EventType.Resync, metaObj, Queue);
27 }

28 }
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A.2 Dependency injection extensions and IHostedService im-
plementation

1 public static class HostingExtensions
2 {

3 public static ManagerConfiguration KubeSharperManager(this IServiceCollection
services, KubernetesClientConfiguration kubeConfig)↪→

4 {

5 var mgr =
Manager.Create(kubeConfig).ConfigureAwait(false).GetAwaiter().GetResult();↪→

6 return new ManagerConfiguration(mgr, services);
7 }

8 public static ManagerConfiguration KubeSharperManager(this IServiceCollection
services, string kubeConfigPath)↪→

9 {

10 var config =
KubernetesClientConfiguration.BuildConfigFromConfigFile(kubeConfigPath);↪→

11 return KubeSharperManager(services, config);
12 }

13 }

14

15 public class HostedManager : IHostedService, IDisposable
16 {

17 private readonly Manager _manager;
18 public HostedManager(Manager manager)
19 {

20 _manager = manager;

21 }

22 public Task StartAsync(CancellationToken cancellationToken) =>
_manager.Start(cancellationToken);↪→

23

24 public Task StopAsync(CancellationToken cancellationToken) => Task.CompletedTask;
25 public void Dispose() => _manager.Dispose();
26 }

27

28

29 public class ManagerConfiguration
30 {

31 private readonly Manager _mgr;
32 private readonly IServiceCollection _services;
33 private readonly List<Action<IServiceProvider, ControllerConfiguration>>

_configurators =↪→

34 new List<Action<IServiceProvider, ControllerConfiguration>>();
35 public ManagerConfiguration(Manager mgr, IServiceCollection services)
36 {

37 _mgr = mgr;
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38 _services = services;

39 }

40

41 public ManagerConfiguration WithController(Action<IServiceProvider,
ControllerConfiguration> configurator)↪→

42 {

43 _configurators.Add(configurator);

44 return this;
45 }

46

47 public IServiceCollection Add()
48 {

49 _services.AddHostedService(sp =>

50 {

51 foreach(var configurator in _configurators)
52 {

53 var config = new ControllerConfiguration(new ControllerOptions());
54 configurator(sp, config);

55

56 var controller = new Controller(_mgr, config.Options);
57 foreach (var adder in config.WatchAdders)
58 {

59 adder(controller);

60 }

61 }

62 return new HostedManager(_mgr);
63

64 });

65 return _services;
66 }

67 }

68

69 public class ControllerConfiguration
70 {

71 internal readonly IList<Action<Controller>> WatchAdders = new
List<Action<Controller>>();↪→

72 public ControllerOptions Options { get; }
73 public ControllerConfiguration(ControllerOptions opts)
74 {

75 Options = opts;

76 }

77

78 public void Watch<T>(string @namespace, EnqueueingHandler handler)
79 {

80 WatchAdders.Add(ctrl => ctrl.AddWatch<T>(@namespace, handler));

81 }

82 }
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Evaluation

B.1 CloudRedis CRD Manifest

1 apiVersion: apiextensions.k8s.io/v1

2 kind: CustomResourceDefinition

3 metadata:

4 name: cloudredises.cloud.dev

5 spec:

6 group: operator.cloudredis.io

7 names:

8 plural: cloudredises

9 singular: cloudredis

10 kind: CloudRedis

11 scope: Namespaced

12 versions:

13 - name: v1

14 served: true

15 storage: true

16 schema:

17 openAPIV3Schema:

18 type: object

19 properties:

20 spec:

21 type: object

22 properties:
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23 name:

24 type: string

25 memorySizeGb:

26 type: integer

27 tier:

28 type: integer

29 enum:

30 - 0

31 - 1

32 - 3

33 status:

34 type: object

35 properties:

36 id:

37 type: string

38 state:

39 type: string

40 createdAt:

41 type: string

42 format: date-time

43 location:

44 type: string

45 host:

46 type: string

47 port:

48 type: integer
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B.2 AcmeService custom resource

B.2.1 C# classes

1 [CustomResourceDefinition("acme.dev", "v1", "acmeservices", "acmeservice")]

2 public class AcmeService : CustomResource<AcmeServiceSpec, AcmeServiceStatus> { }
3 public class AcmeServiceSpec
4 {

5 public AcmeServiceSpec()
6 {

7 Labels = new Dictionary<string, string>();
8 Environment = new Dictionary<string, string>();
9 }

10 public string Team { get; set; }
11 public int Replicas { get; set; }
12 public string ImageName { get; set; }
13 public string ImageVersion { get; set; }
14 public int Port { get; set; }
15 public Dictionary<string, string> Labels { get; set; }
16 public Dictionary<string, string> Environment { get; set; }
17 }

18 public class AcmeServiceStatus
19 {

20 public string IP { get; set; }
21 public string Hostname { get; set; }
22 }
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B.2.2 YAML CRD manifest

1 apiVersion: apiextensions.k8s.io/v1

2 kind: CustomResourceDefinition

3 metadata:

4 name: acmeservices.acme.dev

5 spec:

6 group: acme.dev

7 names:

8 plural: acmeservices

9 singular: acmeservice

10 kind: AcmeService

11 scope: Namespaced

12 versions:

13 - name: v1

14 served: true

15 storage: true

16 schema:

17 openAPIV3Schema:

18 type: object

19 properties:

20 spec:

21 type: object

22 properties:

23 team:

24 type: string

25 replicas:

26 type: integer

27 imageName:

28 type: string

29 imageVersion:

30 type: string

31 port:

32 type: integer

33 labels:

34 type: object

35 additionalProperties:

36 type: string

37 environment:

38 type: object

39 additionalProperties:

40 type: string

41 status:

42 type: object

43 properties:

44 IP:

45 type: string
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46 Hostname:

47 type: string
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