
Electronics and IT
Aalborg University
http://www.aau.dk

Title:
Palamut - An Expansion of the Bonito basecaller using
language models

Theme:
MI-Bio

Project Period:
Spring Semester 2020

Project Group:
MI104F20

Participant(s):
Andreas Christian Meyer Larsen
Christian Aae Knudsen
Magnus Nørhave Hansen

Supervisor(s):
Katja Hose
Thomas Dyhre Nielsen

Copies: 1

Page Numbers: 17

Date of Completion:
June 11, 2020

Abstract:

In this paper we discuss methods used in modern
basecallers and the end-to-end ASR architecture adopted
by the Bonito basecaller to increase accuracy. We
investigate the prospect of increasing accuracy by applying
common ASR approaches to basecalling.
We expand the architecture of the Bonito nanopore
basecaller, by introducing a decoder algorithm, allowing
for the use of language model probabilities, to increase
accuracy of basecalls. We train and compare n-gram and
RNN character-level language models.
Our results show that while an introduction of language
models gives a slight increase in consensus accuracy
of basecalls, our current language models decrease read
accuracy by an equal margin. We finally conclude that
the decrease in accuracy is caused by poorly optimized
hyperparameters of our decoder, and present potential
solutions to the problem.

The content of this report is freely available, but publication (with reference)

may only be pursued due to agreement with the author.

http://www.aau.dk

ACKNOWLEDGEMENTS

We would like to thank our supervisors Thomas Dyhre Nielsen and Katja Hose for their continuous support and feedback.
We would also like to thank the people at the Center for Microbial Communities at Aalborg University for spending their
time sparring with us and further our understanding of the DNA domain, namely Mads Albertsen, Rasmus Kirkegaard and
Mantas Sereika. Finally we would like to thank Chris Seymour at Oxford Nanopore Technologies for introducing us to the
idea of applying language models in basecallers.

Palamut - An Expansion of the Bonito basecaller using language models

Andreas Christian Meyer Larsen1, Christian Aae Knudsen1 and Magnus Nørhave Hansen1

Abstract— In this paper we discuss methods used in modern
basecallers and the end-to-end ASR architecture adopted by
the Bonito basecaller to increase accuracy. We investigate
the prospect of increasing accuracy by applying common
ASR approaches to basecalling. We expand the architecture
of the Bonito nanopore basecaller, by introducing a decoder
algorithm, allowing for the use of language model probabilities,
to increase accuracy of basecalls. We train and compare
n-gram and RNN character-level language models. Our results
show that while an introduction of language models gives a
slight increase in consensus accuracy of basecalls, our current
language models decrease read accuracy by an equal margin.
We finally conclude that the decrease in accuracy is caused by
poorly optimized hyperparameters of our decoder, and present
potential solutions to the problem.

1. INTRODUCTION

Since the introduction of Single Molecule Sequencing
(SMS) approaches, the accuracy of SMS, or third-generation
sequencers and basecallers have increased. During the
period from 2019 to early 2020, state-of-the-art basecallers
developed by Oxford Nanopore Technologies (ONT) [1]
have increased from a median per-base accuracy of around
88% [2] to a median accuracy of 96.5% [3]. This increase
is in part due to new algorithms being developed by ONT,
such as the Flip-flip algorithm [4] used in basecallers such
as Flappie [5] and Guppy [6], or a newer convolutional
approach [3] used in the Bonito [7] basecaller. [8] covers
our previous research into the open-source Taiyaki basecaller
also making use of the Flip-flop algorithm. While the Bonito
basecaller is currently producing promising results [3], the
basecaller has only been in development since late 2019.
This leaves an opening for potential improvements to the
basecaller. The Bonito basecaller has adapted an approach
from Automatic Speech Recognition (ASR) and makes
use of a deep convolutional network for basecalling. The
motivation for this project is to increase the accuracy of
the bonito basecaller by introducing language models in the
decoding step. This approach has seen great results in ASR
tasks [9] [10], and based on previous research on the topic
of representing DNA through a language model [11] [12]
should be applicable in the DNA-domain as well. Both
domains have an analog signal that is converted to a digital
signal. The signal represents a sequence of characters from
a fixed alphabet, and the problem is to convert the digital
signal into the correct sequence of characters. Both Recurrent
Neural Network (RNN) and Convolutional Neural Network
(CNN) models are used in state-of-the-art basecallers. We
will present a modification to the Bonito architecture, and a
method for modelling common DNA patterns and inferring

1Students at Aalborg university

new sequences. To distinguish between the original Bonito
architecture and our modified architecture we will refer to
our architecture as Palamut.

2. RELATED WORK

The bonito basecaller is based on QuartzNet [9].
QuartzNet is an end-to-end neural acoustic model used
for ASR. The goal of the QuartzNet paper was to reduce
the number of parameters normally found in CNNs used
for ASR tasks by introducing 1D time-channel separable
convolutions, significantly reducing the size of their models
compared to similar CNNs not using this technique. The
QuartzNet architecture and decoding method is further
described in Appendix I. While the Bonito basecaller
documentation is sparse and only present on the ONT Github
page [7], by reading their implementation in combination
with the QuartzNet paper [9] information can be extrapolated
regarding the workings of the basecaller itself. The Bonito
basecaller is composed of two distinct parts; the model
adopted from QuartzNet, used for translating sequences of
nanopore reads to probability distributions representing the
bases of DNA, and the decoder algorithm, used to convert
these probabilities into a final DNA sequence of bases.

[9] presents the option of including language models in
the decoding algorithm allowing for an increase in accuracy.
This approach is not explored by the current version of the
Bonito basecaller, which only decodes using the probability
scores provided by the model. The QuartzNet decoder
operates using word-level language models, however [10]
explores the option of using character-level language models
for a similar problem. It is worth noting the shift in domain,
from natural language processing in QuartzNet, to Bonitos
focus on DNA. Bonito however has been able to implement
the QuartzNet model for use in basecalling with great
results [13].

[12] shows that DNA sequences can be segmented
into ’words’ and also show that the average lengths of
these ”words” in DNA is between 12-15 characters long.
This shows that DNA could contain a natural ’language’,
and therefore a language model could prove useful for
increasing the accuracy of basecallers. While attempts have
been made to model DNA as words, we believe that
character-level modelling could potentially help increase
accuracy as well. The decoding algorithm of Bonito could be
modified to accept language model probabilities [10]. [12]
presents potential uses for DNA segmentation such as a
DNA search engine or proofreading DNA to identify mutated
genomes. While these applications have a lot of potential
they do not present an immediate solution for increasing

1

basecalling accuracy. Based on our previous documentation
of the Taiyaki basecaller [8] it is apparent that there are
two major sources of errors when basecalling. One being
random errors produced by the nanopore either halting,
skipping bases or electrical interference. These errors are
commonly removed by calculating a consensus sequence
from several basecalls. The other being systematic errors,
which can occur during sequencing but can also be caused
by the basecaller misinterpreting reads consistently. These
errors are not removed in a consensus sequence. While ONT
is currently working on producing better training sets for
their basecallers [14], modeling DNA on a character-level
could also help remove systematic errors, by enforcing
common patterns when a decoder is presented with two or
more possible bases with similar probabilities. Word-level
language models could potentially also increase accuracy.
However the nature of DNA being a continuous sequence
of bases, not containing spaces, lends itself more to a
character-level approach.

In this paper we experiment using different character-level
language models for DNA sequences, applied to the existing
bonito architecture.

In Appendix VI we have included sections from our
previous report about the Taiyaki basecaller. We refer to this
when relevant throughout the paper.

3. MODEL ARCHITECTURE

The data used in this project is nanopore sequence data.
A sequence of reads produced by running a strand of DNA
through a nanopore and measuring the current. Due to the
width of nanopores, each measurement is a representation of
five DNA bases present in the nanopore, a so-called 5-mer.
Each DNA base is on average present in 9 measurement due
to the frequency of measurements and the speed in which a
DNA strand is pulled through the nanopore. Several problems
can however occur when sequencing DNA, this includes
a base being pulled through the nanopore, getting stuck
or passing through too fast. Electric interference can also
result in a measurement not representing bases accurately.
We cover the process of sequencing DNA and errors further
in our previous work documenting the Taiyaki basecaller [8].
Appendix VI-C also contains a brief description of nanopore
basecalling from our previous work documenting basecallers.

In the Bonito basecaller and subsequently Palamut, a
sequence of nanopore reads are fed to the network producing
a list of probabilities. These probabilities are then translated
to a DNA sequence using the decoder. As mentioned
previously, nanopore data can contain errors. While some
errors such as a short random spike in current can be
suppressed by the convolutions used in the QuartzNet model,
others may persist resulting in probability distributions not
representing the actual bases of the sequence. Palamut
attempts to resolve some of these errors by introducing a
language model based on actual DNA references to enforce
a bias towards common patterns.

While DNA does not contain easily distinguishable
sentences as seen in natural languages, patterns of bases
are still shared between species. Using the software suite
blastn [15] to lookup one Escherichia reference shows that
the bacterial part shares 97% with one Salmonella reference
also present in our dataset. These common pattern can be
identified by modelling DNA using language models. By
modelling patterns in DNA we can potentially decrease
errors in basecalling by supplying the decoding algorithm
with additional language model probabilities to enforce
common behaviour when probabilities are evenly distributed
between bases.

The Palamut architecture revolves around replacing the
decoder algorithm of Bonito with an algorithm allowing
for the use of language models when basecalling sequenced
DNA. The output of the QuartzNet model used in Bonito is
the Connectionist Temporal Classification (CTC)-probability
distributions for a DNA sequence, which is decoded to
produce a basecall. CTC is described in subsection VI-B.
Based on related work we have implemented two different
types of language models for use in the decoder step. The
changes to the existing Bonito architecture is illustrated
in Figure 1. In both the original Bonito architecture and
our updated Palamut architecture, the QuartzNet model is
used for translating nanopore sequence data into probability
distributions used for CTC-decoding. Palamut implements
the language model as a shallow fusion. This method, uses
a pre-trained language model at inference time only. This
type of integration can be modeled with the following
optimization problem:

y* = argmax
y

P (y|x) · Plm(y)α (1)

where α > 0, x is the input sequence, y is a possible
predicted output sequences, and y* is the best fitting output
sequence. α is a parameter which controls the influence from
the language model probabilities.

A. Connectionist Temporal Classification

This description of CTC is derived from our previous
report [8] and [16]. QuartzNet models are trained
with a CTC loss function. CTC is used to derive
an objective function, and subsequent loss function, in
sequence-to-sequence models, where the input is longer than
the output, and where the alignment between the input and
output is unknown [17].

For an input sequence X of length T the output of
the QuartzNet model is a set of probabilities p(c|xt), t =
1, ...T where c is a character. CTC assumes these outputs
are conditionally independent. CTC further assumes the
ground truth DNA sequence W has length τ where τ ≤
T , therefore a function is required to construct possible
shorter output sequences. The collapsing function is used
for this purpose. It introduces a blank character, denoted
by ”-”. W consists of characters in Σ, where Σ =
{A,C, T,G}. The model however needs to reason over
the extended alphabet which is denoted as Σ′ = Σ ∪ −.

2

Nanopore
sequence

QuartzNet
5X5 Model

CTC-probability
distributions

Beam Search
Decoder

Basecalls

Bonito Architecture

Nanopore
sequence

QuartzNet
5X5 Model

CTC-probability
distributions

Prefix beam
search

decoder
Language

model

Basecalls

Palamut Architecture

Fig. 1: Original Bonito architecture and our attempted updates

The collapsing function works by collapsing the characters
generated by a sequence π, by removing all blank characters
and repeated characters. The collapsing function is denoted
by cf(π), where π is a sequence that can contain ”-”.
For example the set of all sequences of length T = 3
that generates the sequence AC after being collapsed are:
{AAC,ACC,−AC,A−C,AC−}. cf−1(·, T) is the inverse
of the collapsing function for length T , i.e. it generates all
uncollapsed sequences of length T that collapses sequence. T
is required in our definition of the inverse collapsing function
because ”-” and repeated characters otherwise can occur an
infinite number of times, resulting in an infinite number of
uncollapsed sequences.

The CTC loss function LCTC(X,W) is the probability of
the correct sequence W given X . This is the probability of
all sequences of length T over the Σ′ which when collapsed
generates W ;

P (W |X) =
∑

π∈cf−1(W,T)

P (π|X) (2)

The probability of each sequence π is can be calculated
as product:

P (π|X) =

T∏
t=1

P (πt|xt) (3)

Notice that each element of the product in Equation 3 are
the probabilities we expect the model to output, completing
our description of the CTC objective function.

Applying the objective function by calculating the
probability of each π can however take a long time, as
the number of possible π grow by |Σ′|T . Using a dynamic
programming algorithm, called the forward-backward
algorithm, it is possible to efficiently compute the loss
function as well as gradients. In Appendix VI-B.1 we
describe this algorithm.

B. Decoding

CTC decoding is how the QuartzNet model is used during
inference to estimate a character sequence W ∗ given an
input sequence X . As established in subsection VI-B the
QuartzNet model outputs a set of probabilities p(c|xt), t =
1, ...T when given an input sequence X of length T . The
simplest decoder simply chooses the character with highest
probability at each timestep t, and applies the collapsing
function:

W ∗ = cf(argmax
c

T∏
t=1

P (c|xt)) (4)

This is however a greedy approximation and ideally we
would compute the CTC objective function for every possible
transcription W ∗ of length ≤ T and use the W ∗ assigned the
highest score. This is however not feasible given the number
of unique possible W ∗. One CTC decoder which is better
than the greedy approach is CTC beam search. Where the
greedy approach only considers one sequence π, CTC beam
search considers k · T sequences where k is referred as the
beam size or beam width Another property of CTC beam
search is that a language model can easily be integrated as
proposed in [16, 18]. We refer to CTC beam search with
a language model as prefix beam search in this paper. In
algorithm 1 prefix beam search is defined.

The input consists of the CTC probabilities Pctc(c|xt) and
a character-level language model Plm(c|s).

For each timestep t = 1, ..., T the algorithm iteratively
computes the k most probable sequences s at each timestep
t. The probability of a sequence s is split into two
probabilities; Pb(s|x1:t) and Pnb(s|x1:t) referred to as the
blank probability and non-blank probability. The blank
probability is a probability of sequences πb that when
collapsed generate sequence s and end with ”-”. The
non-blank probability is a probability of sequences πnb that
when collapsed generate sequence s and end with any
c ∈ Σ, i.e. any non-blank character. The sum of the two
probabilities is the total probability of s; Ptot(s|x1:t) =
Pb(s|x1:t) + Pnb(s|x1:t).

For each timestep the current k most probable sequences
s are considered. Each sequence s is extended by each
character in Σ except for the last character of s denoted
s−1. Since s is a collapsed sequence, repeated characters and
”-” are not added to s, this way the collapsing function is
applied implicitly. The probabilities of extending by ”-” and
repeating characters are however maintained, for potential
use in the next timestep. The probabilities of extending
by other characters are likewise calculated. Notice that the
language model is applied when extending by non-blank
characters, and that hyperparameter α is used to control the
influence of the language model.

The reason for the separation of the total probability is
to allow the algorithm to handle the extension of πb and
πnb separately. An example of this is when a sequence s is
extended by the last character s−1 in line 12. This equation
will result in zero when the last term Pb(s|x1:t−1) is zero.
Pb(s|x1:t−1) > 0 is only true if the current s was extended

3

Algorithm 1: Prefix Beam Search: The pseudo code is derived from [16]
Input: CTC probabilities Pctc(c|xt), character-level language model Plm(c|s)
Parameters: language model weight α, insertion bonus β, beam width k
Initialize: Bprev ← {Ø}, Pb(Ø|x1 : 0)← 1, Pnb(Ø|x1:0)← 0

1 for t = 1, ..., T do
2 Bnext ← {};
3 for s ∈ Bprev do
4 Pb(s|x1:t)← Pctc(−|xt)Ptot(s|x1:t−1); . Handle blanks
5 Pnb(s|x1:t)← Pctc(c|xt)Pnb(s|x1:t−1); . Handle repeat character collapsing
6 Add s to Bnext;
7 for c ∈ Σ do
8 s+ ← concatenate s and c;
9 if c 6= s−1 then . s−1 is the last character in s

10 Pnb(s
+|x1:t)← Pctc(c|xt)Plm(c|s)αPtot(s|x1:t−1);

11 else
12 Pnb(s

+|x1:t)← Pctc(c|xt)Plm(c|s)αPb(s|x1:t−1) ; . Repeat characters that have ”-” between
13 end
14 Add s+ to Bnext;
15 end
16 end
17 Bprev ← k most probable s by Ptot(s|x1:t)|s|β in Bnext;
18 end
19 return argmaxs∈Bprev

Ptot(s|x1:T)|s|β ;

by ”-” in the last timestep. Note that in line 4 and in the
initialization are the only places the blank probability is set
otherwise it is assumed to be zero.

After each iteration the candidate sequences in Bnext
are scored and sorted by Ptot(s|x1:t)|s|β in 17, where
hyperparameter and β is a compensation term.

Without the compensation term extending by blank will
be more favored by the scoring, because extending by
non-blank requires the application of the language model
which lowers score. The compensation term, or insertion
bonus |b|β , compensates by contributing higher score to
longer candidate sequences in Bnext.

The pseudocode of algorithm 1 can be modified to not
include a language model, i.e. normal CTC beam search, by
removing the terms Plm(c|s)α and |s|β .

Integrating a language model can alleviate the poor
assumption of CTC models, which is that the outputs are
conditional independent. The language model can directly
model dependencies from DNA sequences.

C. Language Model

A language model is a probability distribution over each
entry in some type of language. This type of model is useful
for prediction-type problems, where context in the text can
be utilized to infer the correct prediction. We have compared
two classes of language models, a statistical- and a neural
model. Statistical models have a fixed amount of context, an
example of such a model would be n-gram language models.
Neural models make use of neural networks for the language
model. These types of models can use a inputs of varied
sizes.

A character-level language model can be used to
give context when building sequences from characters. A
sequence of characters more commonly seen in the training
set will out-weight unknown or less occurring sequences.
If a character-level language model was trained using a
programming tutorial text, the character sequence hello world
would most likely have been seen more often than hello
worlx. When attempting to identify the next character in the
sequence: hello worl, such a language model would produce
a higher probability for the addition of the character d as
opposed to the character x.

One way to evaluate a language model is with perplexity.
It is a measure for how well a language model can predict a
testset, provided that the testset is completely unseen for the
language model. The intuition behind perplexity is, that it can
be used as an early indication of a language model and how
much it struggles with unseen data. A language model for
DNA predicting each of the four bases with equal probability
will result in a perplexity of 4. With increased accuracy
of predictions the perplexity of the model decreased. A
language model with a perplexity of 1 has predicted the
testset at 100% accuracy. Equations and a more thorough
description of perplexity can be found in Appendix IV.

D. n-gram Language Model

n-gram models use a history of n− 1 previous characters
to determine the next characters P (c|hi) for some predicted
character c given a history hi. The probability for a character
ci in a sequence can be calculated using the previous
character, as shown in Equation 5.

4

P (c1, . . . , cn) =

n∏
i=1

P (ci|ci−1) (5)

However, to avoid underflow the probabilities should
be calculated in log space, changing the equation to
summarizing over the probabilities instead, as shown in
Equation 6

log(P (c1, . . . , cn)) =

n∑
i=1

log(P (ci|ci−1) (6)

The n-gram language models in Palamut are implemented
on a character level representing n previous bases in a DNA
sequence. [12] shows that the perplexity of DNA n-gram
models reduce with the increase of n-gram size until a
certain point. We base our n-gram-size on these findings.

This type of language model does have some
short-comings. Character-level prediction models needs
a long history-window, to accurately predict the next
character [10]. For the n-gram model, the history window
is n − 1 long, meaning that the language model captures
the context of the n last characters. The bigger n gets,
the more context the language model can use. However
as the n increases, the number of possible n-grams
increases by the size of the alphabet |Σ|n. This makes the
training data sparser, and will require more data to cover
possible n-grams, resulting in an increase in the size of the
model. Sparsity in data was counteracted by using Laplace
smoothing [19]. This results in low-occurrence but non-zero
n-grams having less impact on the probabilities.

This provided the best perplexity of the n-gram models
in informal tests.

Based on the findings of [12] we attempt to find an
appropriate balance between context and available data.
Removing all occurrences in an n-gram model with the
most common probability can help reduce the size of the
model. Removing all n-grams with a probability of 25% in
an n-gram model created from a small dataset can greatly
reduce the size of the model as all occurrences of n−1-grams
not seen are removed. n-gram models created from larger
dataset can however not be decreased in size as much due
to the occurrence of more unique n-grams.

E. RNN Language Model

Because of the context limitations of the n-gram model,
we chose to also implement an neural language model.
Both a feed-forward network as well as an RNN can
be used to build a neural language model, however a
feed-forward neural network can only take a fixed number
of inputs, meaning the history size will be fixed. For this
reason, we chose to implement an RNN language model,
since this model can take a variably sized number of
inputs. Common recurrent architectures make use of Long
Short-Term Memorys (LSTMs) or Gated Recurrent Units
(GRUs) units, since they address the problem of learning

long-term dependencies of sequences introduced by recurrent
neural networks. We chose to use a GRU over an LSTM
because of the fewer operations required at inference time.
This is important because the language models needs to
be applied T × k × |Σ| times, where T is the number of
time-steps, and k is the beam width meaning how many
beams are expanded each timestep.

With any character-level language model we are interested
in p(c, t|hi), that is the probability of character c at time t
given a history hi. Our GRU network works by recursively
computing a hidden state ht using the previous hidden
state ht−1 for each one-hot encoded character xt in the
input DNA sequence x. The first hidden state vector h0 is
initialized to zero in each position. Each hidden state ht is
a vector larger than the one-hot encoded inputs xt, which
allows it to encode long sequences. A linear feed-forward
layer is used to downscale each hidden vector to |Σ|
outputs. This process is defined in Equation 7. After that, a
softmax activation function is applied to compute the output
probability distribution ŷt, which contains the conditional
probability of each c that we are interested in at a given
timestep t.

ht = gru(ht−1, xt)

ŷt = S(ff(ht))
(7)

where ff is the feed-forward network and S is the
softmax function. A detailed description of GRU is given in
Appendix VI-A.2. The softmax activation function is defined
as:

S(yi) =
exp(yi)∑
j

exp(yj)
(8)

where yi is a single character, and the output of the
softmax is a probability distribution over all characters.

Since the model is a multi-class classification model, and
outputs probabilities we used cross entropy loss. With y as
the ground truth label, it is defined as:

CrossEntropyLoss(ŷt, y) = −log (ŷt(y)) (9)

Cross entropy loss takes the probability of the correct label
ŷt(y) and applies the log function and negation. This results
in a much higher loss on wrong predictions compared to
correct predictions.

4. DATA

The two main sets used in this paper are the trainingset
for ONT basecallers and a dataset provided by Center for
Microbial Communities (CMC) at Aalborg University. The
two main differences between the datasets are the number of
unique species and the amount of data.

5

A. Oxford Nanopore Technologies Dataset

The dataset provided by ONT can be downloaded through
the Bonito basecaller Github repository [7], and will be
referred to as the ONT-dataset. The dataset is comprised
of 66149 reads, with mapped references ranging from
800-80000 bases, sequenced from full genomes. While the
dataset is made public by ONT the specific species of DNA
contained in the dataset has not been made public. However
we have calculated an approximate list of references using
the Kraken2 taxonomic classification system developed by
the Center for Computational Biology at Johns Hopkins
University [20] resulting in 496 unique taxonomic ids.
Training and basecalling on full genomes is the method used
by ONT basecallers. The ONT-dataset is used to train all
ONT basecallers [14].

B. Center for Microbial Communities Dataset

The dataset provided by the CMC at Aalborg University
contains 480605 reads ranging from 4000-5000 bases [21],
and will be referred to as the CMC-dataset. These reads are
produced using a method called DNA-fingerprinting [22].
This method produces a short 4000-5000 base DNA
string uniquely representing a specific genome. The dataset
provides 8 different species with some species being
represented by several DNA fingerprints (based on their
position on the genome) resulting in 48 unique reference
sequences in total. Individual reference sequences from the
same bacteria are referred to as parts and denoted with a
number such as Listeria 1. In this paper we are using this
dataset due to the shorter length of reads and the availability
of full references making mapping and consensus accuracy
much easier to calculate.

5. IMPLEMENTATION DETAILS

Our implementation is based on the open source
Bonito basecaller [7], and an open source CTC decoding
library [23], both of which are developed and published by
ONT.

The Palamut architecture consists of three main parts;
a QuartzNet model, a language model and the prefix
beam search decoder which combines the two models. The
QuartzNet model accepts nanopore sequences and output
CTC-probabilities. It has not been altered from the original
Bonito implementation of a QuartzNet model. As we have
made no changes to the architecture of the signal model,
details regarding training a signal model has been included
in Appendix II. Language models are implented in Python.
The prefix beam search decoder is a fork of the original CTC
decoding library [23], modified to accept language model
probabilities based on our documentation in subsection 3-B.
Across all prefix beam search implementations, a threshold
value was used to prune beams. If the CTC network
probability of character c at a timestep is under the threshold
the beam will not be extended by that character. In all our
tests we used a threshold of 0.001.

A. n-gram language model

The statistical n-gram language model is implemented
in Python, and is represented with a Python dictionary
where each key is an n-gram, and the value is the n-gram
conditional probability. We implemented two versions of the
prefix beam search decoder for n-gram language models.
The first version was implemented in Python as a single
function, and the Bonito basecaller was modified to accept
a parameter which switches to use our prefix beam search
with language model. The second version is a modification
of the existing beam search decoder [23] used by the
Bonito basecaller. This version is implemented in Rust and
wrapped with PyO3 [24] such that it is callable from the
Python code. The Rust beam search decoder was modified
to additionally, accept the language model as well as the
α and β values as documented in subsection 3-B. This
implementation came with an increase in speed as Rust
is inherently faster than Python, because it is a compiled
and statically typed programming language which allows
for the compiler to optimize code further, than interpreted
programming languages like Python are able to. Due to the
more acceptable run-time of the Rust implementation, we
did not use the Python implementation for tests.

B. RNN language model

We used PyTorch to train our RNN language model.
Our implementation was based on an implementation of a
character-level LSTM [25].

To implement prefix beam search with our RNN
language models, we again modified the Rust beam
search implementation since we suspected better run-times
compared to a Python implementation. The run-time was
4-16 times slower than tests performed using prefix
beam search with an n-gram language model, which was
acceptable given that the overall complexity is higher for
with the RNN language model.

In both Rust implementations, we implemented the
application of language model functions in Python and
used PyO3 to call Python code from Rust. That means
our language models are first loaded in Python, passed to
Rust as an object, and every time the language model is
applied, a Python function is called from Rust. We chose this
approach as none of the authors had experience with Rust,
so the more complex code could be handled in Python. We
suspect both run-time and memory usage could be reduced,
if the language models were exclusively loaded and applied
in Rust. For the RNN language model we made some
optimizations to reduce the number of calls from Rust to
Python.

We first optimized by only computing the hidden state and
output once for every beam. Extending a beam requires an
application of the language model. For the RNN language
models, computing a language model probability always
results in a probability distribution over each possible
character extension. The distribution is therefore saved
temporarily and reused. This saves up to three GRU
computations for each beam.

6

Secondly we observed after filtering by the k best beams
after each time-step, the same beams often persisted over
a few time-steps. We optimized our code by reusing the
language model probabilities if the beams did not change
over time-steps, which reduced number of Rust to Python
calls. Another way we tried optimize run-time was by
batching the hidden state and output computations of the
k active beams, but this worsened the run-time.

6. EXPERIMENTS

This section covers experiments conducted in the paper.
Read- and consensus accuracy are used to measure results
of the tests. Read- and consensus accuracy are further
described in Appendix V. Each test results in a fasta
file containing basecalls produced from the testset. To
calculate read accuracy, we firstly remove all basecalls
obviously containing errors, this mainly includes removing
all basecalls having not having lengths between 4000-5000
bases, a common approach when basecalling on DNA
with an already known approximate length. This approach
only filters <1% of basecalls and the same filters are
applied to each test. Remaining basecalls are then mapped
to their respective reference using Minimap2 [26]. These
mappings are analysed using the read length identity.py code
produced by Ryan Wick [27] resulting in an individual read
accuracy for each basecall. These values are averaged over
each genome present in the test set. Consensus accuracy
is produced by separating basecalls by their respective
DNA reference. Each list of basecalls is clustered using
usearch11 [28] to produce a seed for future use. Each
basecall is then mapped to this seed using Minimap2, and
polished using Racon and the resulting mapping [29]. This
Minimap2-Racon procedure is in total done three times per
basecall list. The output of the final Racon procedure is used
as the final seed for the Medaka software [30] to produce a
final consensus sequence from each list of basecalls. Finally
the consensus sequence is compared to the reference using
blastn [15], producing a consensus accuracy along with a
list of errors in the consensus sequence. The approach for
reaching a consensus sequences is taken from a demonstation
provided by CMC. The original demonstation file is present
in our code hand-in. The read accuracy is denoted as Read
id. and the consensus accuracy is denoted as Cons. id. in the
test results tables.

A. Baseline Tests and Models

To increase our knowledge on the impact of language
models and diversity in training data, several QuartzNet
models were trained and analysed without the use of
language models. The data used for training the models is
provided by CMC at Aalborg University, further described
in subsection 4-B. As it is unfeasible to train basecallers
on all known bacteria, general-purpose basecallers have to
succeed in producing high-accuracy basecalls from nanopore
data from species not included in the trainingset. While a
basecaller-model can be trained to produce high-accuracy
reads for a single bacteria, general-purpose basecallers such

Test Avg. Read id. Avg. Consensus id.

CMC-models 87.88% 96.19%
Standard Bonito 93.51% 99.98%
Standard Taiyaki 92.97% 99.98%

TABLE I: Results of baseline tests

as the models provided by ONT are able to work on a broader
array of data without needing further training.

To emulate this we used a k-fold cross-validation approach
where 8 models were trained using the bonito architecture,
and 5% of reads from 7 different bacteria was used as the
trainingset. 5% of reads from an 8th bacteria was used as a
testset, resulting in 8 models each with one of the 8 bacteria
in the CMC-dataset removed.
Training 8 models this way helped identify potential
problems, e.g. if the DNA sequence of a bacteria was
too distinctive to identify without prior knowledge of
that bacteria. These models were trained with the default
hyperparameters in the Bonito code. The hyperparameters
and overall training process is described in Appendix II.
Models used in tests were selected by choosing the
checkpoint with the lowest validation loss during training.
Models trained using the data from CMC will be referred to
as CMC-models, and are always tested on bacteria unknown
to the models (e.g. when a CMC-model is described as
being tested on the Bacillus bacteria, or as the Bacillus
CMC-model. The CMC-model in question refers to the
bonito model trained using 7 of the 8 bacteria present
in the CMC-dataset, Bacillus being the one left out). In
addition to the 8 models, we also used the pre-trained models
provided by the Bonito and Taiyaki basecallers. In this paper
we will refer to these as the standard Bonito model and
standard Taiyaki model, both are trained on the ONT-dataset
containing nanopore data from a broader array of bacteria
described in our previous data section. These two models are
included as they are the standard models provided with the
individual basecaller software. The Taiyaki model is included
as a comparison of state-of-the-art basecallers, to show the
strength of the Bonito basecaller.

The CMC-models were tested using the bacteria not
known to the model individually, while the standard Taiyaki
and Bonito models were applied to the entirety of the testset.
The 8 CMC-models along with the model will be used in
future tests.

1) Baseline Results: The results of the baseline tests can
be seen in Table I. For ease of reading results from the
CMC-models have been combined in one row. A full list of
baseline test results can be seen in Table IV. By examining
the individual results of the baseline tests some relevant
information can be extracted. When basecalling using the
CMC-models, bacteria such as Salmonella and Escherichia
receive a higher read accuracy. Using the blastn software
suite [15], we can compare references for the two bacteria
showing that they share 97% of their bases, resulting
in a cross-validation performing better. Bacteria such as
Pseudomonas and Lactobacillus receive lower accuracy due

7

to their DNA sequences sharing at best 88% of bases with
other bacteria. Trainingsets for both the Standard Bonito
Model and Standard Taiyaki model contain a larger amount
of unique DNA sequences resulting in more uniform results
for each individual Bacteria. While the Standard Bonito and
Taiyaki models produce better accuracies, our CMC-model
tests can be used to show the impact of a language model
with a smaller sequence model. The standard Bonito model
will be used to test the impact of language models on a
state-of-the-art basecaller.

B. Language Model Tests

The results of the baseline tests were originally intended
for future comparison. However, to ensure that the baseline
results were not based on outlier data, the volume of the
final testset was increased to 10% of all reads from each
bacteria in the CMC-dataset. This was used to replicate the
baseline tests and test the effect of using language models
when basecalling.

1) n-gram model experiments: To test our n-gram
language model, several informal tests were conducted to
find the most appropriate n-gram size. Based on the findings
in [12] we produced an n-gram language model for each
4 ≤ n ≤ 18 using all reference parts from 7 of the 8
bacteria in the CMC-dataset. We then used the final bacteria
references to calculate perplexity as a measurement to find
potential sizes of n. While an n-gram size of 8 showed the
lowest perplexity of ∼3.2, when used for basecalling a small
subset containing 30 reads for the final bacteria, the 12-gram
language model performed the best with a perplexity of∼3.4.
This is most likely due to the reduction in context when only
having a history window of 7 in the 8-gram model as opposed
to 11 in the 12-gram model.

8 12-gram models were created using the same
leave-one-out approach as with the CMC-models. Each
model was created using the 48 unique references from the
dataset except for references for one bacteria. This was to
ensure tests where neither the trained CMC-model nor the
language model had prior knowledge of the testset. Laplace
smoothing was applied to each language model and all
entries in the language model having a probability of 25%
were removed to reduce the size of the language model.
Informal tests were also conducted using the ONT-dataset
to create 12-gram language model. As the ONT-dataset does
not include full references, a 12-gram language model was
created from the individually mapped references included
in the training set. This meant that the n-gram model
could potentially have been biased towards bacteria more
prominent in the test set. The large 12-gram model produced
from the ONT-dataset did not perform well when testing
perplexity and had increasing basecalling times due to its
size. The increase in size of the ONT-n-gram model was
due to more unique 12-grams present in the dataset. As
a result no further testing was conducted using n-gram
models produced from larger datasets. The α and β
values used in the prefix beam search algorithm described
in subsection 3-B were then tuned using hyperOpt [31]

library with a uniform search space ranging from 0-2 for
both the α and β values. The values were tuned for 25
epochs using the HyperOpt.tpe.suggest search algorithm. The
Staphylococcus CMC-model and testset used in the original
baseline tests were used as a validation set for the tuner.
The resulting α and β were 0.22765541627585756 and
1.9958819811331983 respectively. Finally the models were
tested using the CMC-models from our base tests on the
testset containing 10% of reads. Results can be seen in
Table II.

2) RNN model experiments: As an RNN language model
does not increase in size, we opted to train our RNN
language model on the ONT-dataset due to the broader
array of bacterial references present in the dataset. This
ensured that the RNN model represents a larger corpus
and takes advantage of the fixed size of an RNN. The
ONT-dataset was passed through the Kraken2 [20] software
to identify taxonomi ids for each read. All unidentified reads
were removed along with all reads mapping to Listeria or
Staphylococcus. The removal of Listeria and Staphylococcus
was to ensure that at least two of our test references had
never been seen by the language model. Instead of using
one instance of each full references as used in the statistical
n-gram models, each mapped reference was extracted from
the filtered dataset and fed to the RNN language model for
training.

The ONT RNN model was trained for 1100 epochs with
a batch size of 2048 and a sequence length of 150 bases.
The learning rate was started at 0.001 and optimized using
the Adam optimizer [32]. The language model training
was stopped at 1100 epochs as the validation loss did not
decrease further. The perplexity of the ONT language model
was calculated to be 2.6 when attempting to predict all
Listeria references from the CMC-dataset. The α and β
values used in the prefix beam search decoder were then
tuned using the model and testset from the baseline tests for
the Staphylococcus bacteria. HyperOpt was used with the
same search space as in our n-gram tests. The resulting α
and β were 0.3669682468345905 and 1.302195478016107
respectively. Finally the RNN language model was tested
using both the standard Bonito sequence model and our
trained CMC-models from the baseline tests. The testset
itself is the same as the one used for testing n-gram models
containing 10% of reads from each bacteria part. Results
from all tests can be seen in Table II.

C. Results Summary

As can be seen on both our RNN and n-gram language
model experiment, applying our language models does
not improve read accuracy of the bonito basecaller. Both
language models resulted in a decrease in read accuracy
when used in conjunction with a basecaller. These result
could potentially be caused by the α and β values not having
been tuned properly or the language models not modeling the
domain properly. The RNN language model could potentially
have been trained on fingerprint data as opposed to the full
genome data provided by ONT. This was not explored further

8

Seq. Model Test Bacteria No LM Read id. n-gram Read id. RNN Read id. No LM Cons. id. n-gram Consensus id. RNN Cons. id.

Std. Bonito All 93.55% - 93.16% 99.979% - 99.996%
CMC model Bacillus 89.7% 89.44% 89.5% 97.37% 97.4% 97.51%
CMC model Enterococcus 89.4% 89.20% 89.36% 96.61% 96.55% 96.72%
CMC model Escherichia 89.90% 89.63% 89.66% 98.42% 98.48% 98.45%
CMC model Lactobacillus 85.14% 84.85% 84.79% 95.05% 94.94% 95.12%
CMC model Listeria 88.62% 88.32% 88.39% 96.48% 96.35% 96.68%
CMC model Pseudomonas 82.39% 82.14% 82.05% 92.99% 92.91% 93.44%
CMC model Salmonella 90.97% 90.73% 90.73% 98.33% 98.37% 98.50%
CMC model Staphylococcus 87.08% 86.90% 87.01% 93.48% 93.82% 94.40%

TABLE II: Results from both n-gram and RNN language model tests. The CMC models used in tests are trained using all bacterial
references except for the test bacteria. Tests denoted will All as test bacteria are tested on the entirety of the testset.

in this paper, as a larger training set was available through
the ONT-dataset proving in our base tests to be capable
of producing accurate basecalls of the CMC-dataset reads.
Several more tests could have been conducted to further test
the decrease in read accuracy, mainly using α and β values
tuned further and training individual models for each bacteria
used during the baseline tests. Due to the ONT-dataset
producing high perplexity n-gram models with increased
basecall times further tests were not conducted on n-gram
models either. The higher perplexity and slower basecalling
times makes n-gram models less optimal when created from
datasets containing a broad spectrum of bacterial references.
While the read accuracy decrease with the addition of
language models, the consensus accuracy did increase by
a small margin. Consensus accuracy is commonly used to
check for systematic errors in basecallers and an increase
in the consensus, by applying a language model we enforce
common behaviour in the basecalled DNA sequences that
could potentially decrease systematic errors. As show in
Table II n-gram language models, trained on a relatively
small set of references, can help increase consensus accuracy
in some cases, without much increase in basecalling times.
An RNN trained on a larger corpus produces similar results,
with a slightly higher consensus accuracy. Extracting the
result of using the blastn suite to map a consensus sequence
to our references shows that without using a language model
each consensus sequence contains between 40-100 errors.
Applying a language model decreases errors in consensus
sequences by 1-10 on average. It should be noted that a
small number of consensus sequences contain more errors
than its non-LM counterpart. However as can be seen in
Table II consensus accuracy is increased overall. Inspecting
the output from blastn also shows that consensus sequences
both with and without the addition of language models
share a majority of their errors. This shows that language
models overall do not introduce new systematic errors, but
are currently not able to resolve the majority of existing
ones. Comparing individual basecalls from the Bacillus 1
part show that the average length of basecalls are closer to
the reference length by a margin of 40-90 bases when using
language models. Using this knowledge we assume that the
β values used to induce a length bias, is not the main cause
of decreasing read accuracies.

7. CONCLUSION

Our experiments show that attempting to identify patterns
in DNA sequences using language models, can help improve
consensus accuracy of the Bonito basecaller in some cases.
In our experiments, using the pre-trained bonito basecaller
model in combination with a trained RNN, we increased
the consensus accuracy from 99.979% to 99.996%, the
read accuracy however decreased from 93.55% to 93.16%.
The current version of our implementation also increases
basecalling time substantially. Decoding using our n-gram
model doubles the basecalling time due to each beam
containing the added operation of looking up language model
probabilities.

The RNN model increases basecalling time by between
4-16 times due to the additional complexity. We however
suspect these increases to be because of a significant run-time
overhead in our prefix beam search implementation from
using a combination of Python and Rust. An implementation
exclusively in Rust or other high-performance compiled
programming language should remove this overhead.

Comparing results to basecalls produced using no
language model shows that the β value is most likely not
the cause of decreased accuracies, as each basecall produced
using language models are closer in length to the reference
than those produced without. As the consensus accuracy is
increased by introducing language models, we can determine
that the decrease in accuracy is not caused by introducing
new systematic errors, but rather random ones. These errors
are most likely caused by the addition of language model
probabilities and the α-value controlling the language model
influence. Further tuning of the α value could potentially
reduce errors introduced by the language model. As the main
purpose of the language model is to only have an effect
on the output when the Quartznet model outputs similar
probabilities, modifying α to have less impact could reduce
random errors, but potentially also reintroduce systematic
errors alleviated by the current α-value.

Training an RNN language model using a wider array of
species along with performing hyperparameter tuning could
potentially resolve this problem. Especially the sequence
lengths used for training the RNN could be increased
to include more contextual knowledge. Using a sliding
window for choosing the training samples instead of
simple segmentation could also be used, in order to learn

9

dependencies between all adjacent samples. During informal
testing it was discovered that 12-gram language models
produced from a corpus containing many different species
would results in much higher perplexity and increased
basecalling times. Clustering similar genome references
and training language models on individual clusters could
potentially alleviate this problem, when used for basecalling
a genome similar to the respected cluster. This approach
would either require a nanopore sequence to be basecalled
multiple times using different language models, or attempting
to identify which language model to use before basecalling.
This approach would however introduce additional overhead
and increase basecalling times substantially.

APPENDIX I
QUARTZNET

QuartzNet is an end-to-end neural acoustic model for
automatic speech recognition [9]. The authors claim the
network has a near state-of-the-art accuracy, while having
fewer parameters than competing models. It is composed of
1D convolutional layers, most of which are 1D time-channel
separable convolutional layers, batch-normalization and
ReLU activation functions. An overview of the QuartzNet
model can be seen in Figure 9. For a 1D convolutional
layer with kernel size K, cin input channels, and cout output
channels. A 1D convolution has K × cin × cout parameters,
where K is the kernel size, cin is the input channels, and cout
is output channels. A time-channel separable convolution has
K×cin+cin×cout parameters split into K×cin parameters
for a depthwise layer and cin × cout for a pointwise layer.
The depthwise layer works on one channel at a time and
across K time frames, and a pointwise layer works on
all channels for each independent time frame. Figure 2
illustrates the operations of a normal convolution and a
time-channel seperable convolution.

The QuartzNet 5x5 model consists a sequence of blocks.
With the exception of the last block C4 all blocks start
either a normal convolutional or a time-channel separable
convolution layer, followed by a batch normalization layer
and ReLU activation function. The model starts block C1

with a 1D convolutional layer, followed by 5 blocks B1,
B2, B3, B4, B5. Each block Bi consists of 5 sub-blocks
all of which has the same kernel size and output channels.
The input of a B block is residually connected to the last
sub-block. The B blocks are followed by 3 blocks C2, C3
and C4 which. The parameters of the 5x5 model can be seen
on Table III.

The Bonito architecture is similar to the QuartzNet
architecture, but has a small distinction in that Bonito use
a stride of 3 in block C1 while QuartzNet use a stride of 2.
QuartzNet also use a dilation rate of 2 in block C4 where
Bonito don’t use dilation (i.e. dilation rate of 1).

APPENDIX II
BONITO TRAINING

Bonito models are not trained on full sequences, but
splits each reference sequence into smaller variably sized

Fig. 2: The top illustration show a normal convolutional layer
that operates across K time-steps and all channels. The bottom
illustration shows a 1D time-channel separable convolution which
splits the operations into two steps. First a 1D depthwise
convolution operates across K time-steps. Second a pointwise
convolution operates across each time frame independently but
across all channels.

Block R K C Convolution
C1 1 33 256 Conv
B1 5 33 256 TCS
B2 5 39 256 TCS
B3 5 51 512 TCS
B4 5 63 512 TCS
B5 5 75 512 TCS
C2 1 87 512 TCS
C3 1 1 1024 Conv
C4 1 1 ||Σ|| Pointwise

TABLE III: QuartzNet architecture

chunks of size 200-400. In order to split the references into
chunks a mapping is required, which shows which parts of
the nanopore sequence matches with the reference chunks.
The mapping is created between each base in the reference
and each measurement in the nanopore sequence using
preprocessing functions in the ONT Taiyaki basecaller [33].
We described how these function work in [8].

Nanopore sequences are split into chunks, using the
mapping produced by Taiyaki. To allow for batching of
training samples all nanopore chunks are padded with zeros,
such that all chunks are 400 ·maxmpb long where maxmpb
denotes the maximum measurements per DNA base.

The bonito models all have 6.7M model parameters,

10

which is defined by the layer sizes in table III, and overall
QuartzNet architecture seen on Figure 1. The models are
trained with CTC loss, for 400 epochs, with batch size of
32, learning rate 0.003. 1% of each training dataset was used
as a validationset. The model parameters are saved after each
epoch, and lowest validation loss epoch is used for testing
afterwards.

APPENDIX III
TEST RESULTS

Table IV shows each individual bacteria basecalled during
the baseline tests. Read-id and Consensus-ids are calculated
from the average of reads relating to that bacteria. Individual
bacterial parts such as Bacillus 1 and Bacillus 5 might have
different average values, but for ease of reading they have
been collected into their respective bacteria in the table.

Test Test Bacteria Read-id Consensus-id

Standard Taiyaki Bacillus 92.67% 99.99%
Standard Taiyaki Enterococcus 94.09% 99.98%
Standard Taiyaki Escherichia 92.94% 99.99%
Standard Taiyaki Lactobacillus 92.82% 99.95%
Standard Taiyaki Listeria 92.76% 100%
Standard Taiyaki Pseudomonas 93.02% 100%
Standard Taiyaki Salmonella 92.99% 99.96%
Standard Taiyaki Staphylococcus 93.48% 99.97%
Standard Bonito Bacillus 93.29% 99.97%
Standard Bonito Enterococcus 93.78% 100%
Standard Bonito Escherichia 93.81% 99.97%
Standard Bonito Lactobacillus 93.50% 100%
Standard Bonito Listeria 93.45% 99.98%
Standard Bonito Pseudomonas 93.67% 99.98%
Standard Bonito Salmonella 93.80% 99.97%
Standard Bonito Staphylococcus 93.51% 99.99%
CMC-model Bacillus 89.68% 97.50%
CMC-model Enterococcus 89.77% 96.76%
CMC-model Escherichia 89.77% 98.40%
CMC-model Lactobacillus 85.05% 95.06%
CMC-model Listeria 88.59% 96.47%
CMC-model Pseudomonas 82.38% 93.06%
CMC-model Salmonella 90.97% 98.40%
CMC-model Staphylococcus 87.88% 93.85%

TABLE IV: Individual results from baseline tests

APPENDIX IV
PERPLEXITY

In Natural Language Processing (NLP), perplexity is one
way to measure a how well a language model predicts the
test data. The intuition behind perplexity is how perplexed
the model is when presented with sequences it has never
seen before [34]. To calculate perplexity for a language
model, a testset of m sequences, s1, s2, s3, . . . , sm is used.
The joint probability of all sequences is

∏m
i=1 p(si). In a

character-level language model the probability of sequence
si with n characters is

∏n
j=1 p(cj |h), where cj is the jth

character, and h is the history window which is previous
characters to cj . Particularly in n-gram models the history
window size is n− 1.

To avoid underflow the log sequence probability can be
computed as:

log

m∏
i=1

p(si) =

m∑
i=1

logp(si) (10)

The perplexity of the language model is calculated as
Perplexity = 2−l where l is calculated using Equation 11

l =
1

M

m∑
i=1

logp(si) (11)

M is the total number of characters across all sequences,
which normalizes the log probabilities by the total number
of characters.

This measure is an indication of, how well a language
model can predict sequences in a testset. In our case
perplexity was used for evaluating language models before
they were combined with a bonito model.

APPENDIX V
BASECALLING ACCURACY

In this domain, there are 2 types of target accuracy; read-
and consensus accuracy. Read-accuracy refers to the accuracy
of the basecall, for a single read in regards to the reference.
Meaning, that a single read is basecalled, and then mapped
to the reference sequence. When the mapping algorithm has
found the most probable mapping, the basecall is matched
against the reference and the accuracy is calculated. Here,
there are two types of errors that can influence the accuracy
of a read, being random errors and systematic errors. Random
errors can come from e.g. noise in the nanopore, a DNA
strand that got stuck in the pore.

Consensus accuracy is then the average sequence of the
reads. Meaning, that if more than half of the reads for a given
sequence reads an ”A” at a given position and some of the
reads has a ”G” at that position, then the consensus sequence
will contain an ”A” at that position. The consensus accuracy
is then how accurate the consensus sequence matches the
reference. The consensus sequence should have eliminated
any random errors from the reads, and the errors that persists
are systematic errors.

APPENDIX VI
PREVIOUS WORK

This appendix contains sections first presented in our first
report [8]. These are sections used to define and describe key
aspects of the domain, both from a computer science aspect
as well as biology aspect. The sections have been modified
to correct spelling, and inter-report references have been
changed to correctly cite our previous work, along with the
referenced section, table and such. These have been marked
with ”**”.

A. Recurrent Neural Network

RNN is a type of neural network that uses a node structure
like a directed graph, divided into steps on a temporal line.
So at each timestep, the input is fed to the internal hidden
state of the model, along with the previous hidden state,
which gives the model the recurring ability. So each time

11

�� ℎ� ��

��ℎ

�ℎℎ

�ℎ�

Fig. 3: A simple RNN [8].

�0 ℎ0 �0

��ℎ �ℎ�

ℎ1�1 �1

ℎ2�2 �2

��ℎ

��ℎ

�ℎ�

�ℎ�

�ℎℎ

�ℎℎ

Fig. 4: A simple RNN undfolded [8].

the model reads an input, the hidden state is updated and
at some point an output is calculated. A simple version of
an RNN is depicted in Figure 3. A better intuition of the
temporal properties of an RNN is shown in Figure 4.

Here, it is clear to see that at each timestep, the input is
fed to the hidden state, along with the previous hidden state
to produce some output. Then, the updated hidden state is
passed as input to the next timestep. Note that it is entirely
possible to have input, output or both be of variable lengths,
which shows the versatility of an RNN model.

1) LSTM: An approach to solving the vanishing gradient
problem is the LSTM method. An illustration of an LSTM
unit is shown in Figure 5. LSTM introduces an internal
memory cell and has three gates which control how much
information is used from the three inputs; Ct−1 the memory
cell from last step, ht−1 the last hidden state and xt the
next input sample. Each LSTM unit computes a candidate
memory cell (C̃). The new memory cell (Ct) is made
by combining the previous memory cell (Ct−1) and the
candidate memory cell. The forget gate (ft) and input gate
(it) controls how much information the previous memory cell
and candidate cell respectively should influences the creation
of the new cell. The output gate (ot) controls how much of
the memory cell is passed to the next hidden state (ht). All
LSTM equations are shown in Equation 12.

ft = σ(Whfht−1 + Wxfxt + bf)

it = σ(Whiht−1 + Wxixt + bi)

C̃t = tanh(WhCht−1 + WxCxt + bC)

Ct = ftCt−1 + itC̃t

ot = σ(Whoht−1 + Wxoxt + bo)

ht = ottanh(Ct)

(12)

��

ℎ�−1

ℎ�

ℎ�

� � Tanh �

��−1 ��×

×

×

+

Tanh

Fig. 5: An LSTM unit

2) Gated Recurrent Unit: GRU is a simpler version of
LSTM and can be seen in Figure 6. It only has two gates
and no memory cell. The update gate (zt) behaves similarly
to the forget and input gate of an LSTM. It decides what
information to forget from the previous hidden state, and
what new information to add from the input, and puts this
info into a new candidate hidden state h̃t. The reset gate (rt)
decides how much information of ht−1 should be kept and
how much should be replaced h̃t. All GRU equations are
shown in Equation 13.

zt = σ(Whzht−1 + Wxzxt)

rt = σ(Whrht−1 + Wxrxt)

h̃t = tanh(Wrhrt + Wxhxt)

ht = (1− zt)ht−1 + zth̃t

(13)

��

ℎ�−1

ℎ�

ℎ�

� �

×

+

-1

×

Tanh

×

Fig. 6: A GRU unit

B. Connectionist Temporal Classification

CTC is used to derive an objective function in
sequence-to-sequence models, where the input is shorter than
the output, and where an alignment between the input and
output has to be inferred [17]. It is often used in speech

12

recognition because the amount of samples in audio is higher
than the amount of words or phonemes to be recognized. In
conjunction with a many-to-many RNN, it can be seen as
an alternative to a encoder-decoder model (see **[8, sec.
4.2.1]). It is used in the nanopore basecallers Albacore and
Chiron(see **[8, Appendix. A]).

The CTC layer is the top layer, in nanopore CTC models.
To train a CTC model the CTC layer accepts a sequence

of probability distributions Y = (y1 . . .yT) over the
alphabet L′ = L ∪ {−}, where L = {A,C, T,G} in the
context of nanopore sequencing, and a corresponding target
sequence z = (z1, z2, ..., zU) [35]. In nanopore sequencing z
is the reference base sequence. The probability distributions
Y can be generated by an RNN with a softmax function,
that accepts the input sequence x. Figure 7 shows an
illustration of probability distributions derived from an RNN
with a softmax function.

A

G

C

A

G

C

A

G

C

T T T

A

G

A

G

ℎ0 ℎ1

�3

ℎ2

C

T

C

T

�5

ℎ4

A

G

C

T

�6

ℎ5

A

G

C

T

�7

ℎ6

A

G

�4

ℎ3

C

T

�9

ℎ9

Softmax Softmax Softmax Softmax Softmax Softmax Softmax Softmax

- - -- - - --

�2�1

Fig. 7: An illustration of outputs of a RNN with softmax function.
The letters -,A,C,T,G represents a probability distribution where
the most probable letter is marked. The arrows describe the most
probable path. Note only some timesteps are shown.

The rest of this section use notation and equations derived
from Graves et al. [35]. The probability generated by each
activated output unit k at time t is denoted as ytk. The number
of output units correspond to the size of L′, in this case
K = |L′| = 5. The activation of the unit to −, called the
blank character, is the stay state. The stay state is used when
multiple adjacent measures of x correlate the same base zu.

It can also be explained as the probability of the current
being measure over the middle of two bases of the same type.
In practice this is hard to distinguish, which we will go in
depth with in **[8, sec. 4.7]. The conditional probability of
an arbitrary path π through the generated CTC network is:

p(π|x) =

T∏
t=1

ytπt
(14)

Note that all paths has to start on a state in t1, and go
through exactly one state for each time-step, in sequential
order, and end in a tT state. We can use this to define a
distribution over the set of all possible paths generated from

x of length T sequences over the alphabet L′:

p(π|x) =

T∏
t=1

ytπt
,∀π ∈ L′T (15)

Next we can define a many-to-one map B : L′T 7→ L≤T ,
where L≤T is the set of possible labels over the original
alphabet L, with length less or equal to T . This is done by
collapsing the characters generated by a path, by removing
all blank characters and repeated characters. For example
(TT − C −AA−A−A−−)→ (TCAAA).
B is used to define the conditional probability of a

labelling sequence l ∈ L≤T as the sum of all the probabilities
of all the path that generate the labelling l:

p(l|x) =
∑

π∈B−1(l)

p(π|x) (16)

The output of the classifier should be the most probable
labelling sequence:

h(x) = argmax
l∈L≤T

p(l|x)

However to find the most probable labelling sequence one
needs to compute the probability of every possible labelling
sequence, which the number of is exponential to the input
sequence length; |L′|T . The length of a nanopore read
is up to 50kbp, which makes it infeasible to compute
the probability of each labelling sequencing. Therefore a
heuristic is used instead. The simplest heuristic is to use
the most likely path. The probability of most the likely path
πmax is trivial to compute, as it is the product of the highest
probability at each timestep:

p(πmax|x) =

T∏
t=1

max(yt) (17)

An illustration of selecting the most probable path is
shown on Figure 7.

Chiron use beam-search as its heuristic function, which
requires it to maintain a list of the W most probable
sequences over L up to timestep i [36]. To find the next
base, W is used to compute a distribution over transitions
from timestep ti to ti + 1, and selects each base from the
transition with highest probability.

The dataset used by Graves et. al. [35] consisted of
speech data, and their model could label audio frames with
silence(blank characters) with high probability. They used
this as their heuristic to split the audio samples, making
their maximum input length (e.i. variable T) shorter, in
turn making calculating the most probable labelling viable.
To calculate the most probable labelling effectively they
proposed using a modified forward-backward algorithm [35].
For nanopore data sequencing there does not exist a heuristic
that can be used to split the signals into smaller sequences.
Therefore the forward-backward algorithm is not viable to
produce prediction on nanopore data.

Although it isn’t practical to produce predictions with the
forward-backward algorithm, when the length of input x is

13

large, it can still be used effectively during training. In the
next section we will explain the forward-backward algorithm.

1) Training with the CTC Forward-Backward Algorithm:
The cost function of a CTC network can be defined as:

J(W) = −
∑

(x,z)∈S

ln(p(z|x)) (18)

where S consists of all training pairs (x, z). This cost
function is a Negative Log-Likelihood (NLL) function,
which is derived from the principle of maximum likelihood
estimation. This is also called maximum likelihood
training; “The aim of maximum likelihood training is to
simultaneously maximise the log probabilities of all the
correct classifications in the training set”(Graves et al.
2006) [35]

During training CTC places some restrictions on the paths.
First it removes letters that are not in the target alphabet. On
Figure 8 the letter G has been removed because it is not in the
target sequence TCAA. Secondly it restricts the order of the
sequence according to target sequence, as also can be seen
on Figure 8. Finally blank characters are added between each
character of the target sequence, and as the first and last state.
The arrows show the available paths through graph defined
by the restrictions. The sum of all paths defined by this
network describe the probability of Equation 16. Any path
described in Figure 8 will always go through the characters
in the reference sequence in the correct order. Three other
rules are needed to handle the blank character:

1) The first state can either be the first blank or the first
base.

2) The last state can either be the last blank or the last
base.

3) Blanks can be skipped if the from state and to state
types are not equal.

-

-

T

-

-

T

-

-

T

-

-

T

�1 �2 �3 �8

C

A

-

C

A

-

C

A

-

C

A

-

-

-

A

-

-

A

-

-

A

-

-

-

-

T

�9

C

A

-

-

-

A

-

-

T

�7

C

A

-

-

-

A

-

-

T

�6

C

A

-

-

-

A A

Fig. 8: A CTC..., with reference sequence TCAA.

On Figure 8 it is possible to transition directly from T to
C and from C to A, and it is not possible to go directly
from the first A to the second A, as is required by the third
rule.

With the possible paths defined, the forward-backward
algorithm can effectively calculate Equation 16.

For a target labelling sequence l, let us define the forward
variable αt(s) to be the sum of all sub-paths that start at
time 1 and end on character s at time t. At timestep 1 the
sub-path is allowed to start on a blank or the first character
of l. Formally the α1(s) is:

α1(1) = y1b

α1(2) = y1l1
α1(s) = 0,∀s > 2

At all timesteps t > 1 αt(s) is:

αt(s) =

{
ᾱt(s)y

t
l′s

if l′s = b or l′s−2 = l′s

(ᾱt(s) + αt−1(s− 2))ytl′s otherwise
(19)

where
ᾱt(s) := αt−1(s) + αt−1(s− 1) (20)

From this definition we can see that αt(s) is recursively
defined for all t > 1. The backward variable βt(s) is defined
similarly:

βT (|l′|) = yTb

βT (|l′| − 1) = yTl|l|

βT (s) = 0,∀s < |l′| − 1

βt(s) =

{
β̄t(s)y

t
l′s

if l′s = b or l′s+2 = l′s

(β̄t(s) + βt+1(s+ 2))ytl′s otherwise
(21)

where
βt(s) := βt+1(s) + βt+1(s+ 1) (22)

The product of the forward and backward variables at a
given character s and time t is the probability of all paths
that go through character s at time t. Due to this for any t
we can sum over characters s to get all paths:

p(l|x) =

|l′|∑
s=1

αt(s)βt(s)

ytl′s
(23)

We can use Equation 23 in the cost function in Equation 18
to get an efficient way of computing the cost function.

C. Nanopore Basecalling

Basecalling is a sequence-to-sequence mapping
problem [2, p.44]. Nanopore basecalling can either be
performed on raw signal data, or on event-based data,
where sections of reads referering to the same k-mers are
split into ”events” each representing a potential k-mer.
As described in **[8, sec. 2.1] strands containing bases
are pulled through the nanopore to obtain reads, however
reads are not always accurate. A DNA strand can get
stuck in the nanopore resulting in too many measurements
of the same k-mer. A single base can also be skipped
due to the DNA strand moving too quickly through the

14

nanopore. Finally an interference in the electrical current
running through the nanopore can result in the measured
current not properly representing the k-mer. All of these
errors are categorized as random errors as they occur at
random when sequencing DNA. These error can result
in a incorrect base label when basecalling, however they
can usually be eliminated by making use of the consensus
sequence. The consensus sequence is a sequence of the
most probable base at each position, obtained by comparing
several basecalled sequences. The quality of a basecaller
is measured by looking at its read id and assembly id.
Read id is the basecall of a single read compared against
a reference, whereas the assembly id is the quality of a
consensus sequence measured against a reference.

There are currently a lot of different basecallers being
used in the industry. Some of them, such as Chiron[36]
or Scrappie[37], have an open licence while others such as
Metrichor[38] are proprietary software. Basecallers usually
make use of RNNs, **[8, app. A] taken from Mahdieh
Abbaszadegan’s master thesis on ”An Encoder-Decoder
Based basecaller for nanopore sequencing” [2, p.48-49].
The table has been modified to not include the library
and language for each basecaller, since this was not
deemed necessary for this analysis. Additionally information
regarding the Guppy architecture has been updated based on
our research in this report (see **[8, Ch. 5]). As can be
seen in the table, the median read id is relatively low for all
basecallers, with none of them being above 90% this is partly
due to the occurrence of errors when sequencing. However
systematic errors can also occur. These are errors not usually
mitigated by the consensus. These errors can occur when a
basecaller is not properly trained to identify a given set of
bases in a sequence, or if the architecture does not properly
model data. Seeing as the assembly ids are all above the
99% mark, an interesting area to be explored more, could be
raising the median read id.

REFERENCES

[1] Oxford Nanopore Technologies, “Oxford nanopore technologies
website.” https://nanoporetech.com/, 2020. Accessed:
2020-09-03.

[2] M. Abbaszadegan, An Encoder-Decoder Based Basecaller for
Nanopore DNA Sequencing. YorkSpace, York University Torronto,
Ontario, 2019. https://yorkspace.library.yorku.ca/
xmlui/handle/10315/36268.

[3] Oxford Nanopore Technologies, “March 2020 accuracy update
from r&d.” https://community.nanoporetech.
com/posts/march-2020-accuracy-update?
fbclid=IwAR2rjN_i8Jtf4BG0utVJ2ZJkWAMtm_G9_1_
exkygQUkI5g1Bk6lQTYqVn2U, 2020. Requires Login, Accessed:
2020-09-03.

[4] C. Brown and R. Dokos, “Accuracy update.” https:
//community.nanoporetech.com/posts/
accuracy-update, 2019. Requires Login, Accessed: 2020-09-03.

[5] Oxford Nanopore Technologies, “Flappie - flip-flop basecaller
for oxford nanopore reads.” https://github.com/
nanoporetech/flappie, 2020. Accessed: 2020-09-03.

[6] Oxford Nanopore Technologies, “Analysis solutions for
nanopore sequencing data.” https://nanoporetech.com/
nanopore-sequencing-data-analysis, 2020. Accessed:
2020-09-03.

[7] Oxford Nanopore Technologies, “Bonito - convolution basecaller
for oxford nanopore reads.” https://github.com/
nanoporetech/bonito, 2020. Accessed: 2020-09-03.

[8] A. C. M. Larsen, C. A. Knudsen, and M. N. Hansen, An analysis of
the flip-flop architecture and Taiyaki training tool. Aalborg University,
january 2020.

[9] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev,
V. Lavrukhin, R. Leary, J. Li, and Y. Zhang, “Quartznet: Deep
automatic speech recognition with 1d time-channel separable
convolutions,” ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May
2020. http://dx.doi.org/10.1109/icassp40776.2020.
9053889.

[10] K. Hwang and W. Sung, “Character-level incremental
speech recognition with recurrent neural networks,” CoRR,
vol. abs/1601.06581, 2016. http://arxiv.org/abs/1601.
06581.

[11] S. Srivastava and M. S. Baptista, “Markovian language model of the
dna and its information content,” Royal Society Open Science, vol. 3,
p. 150527, Jan 2016. https://arxiv.org/abs/1510.02375.

[12] W. Liang, “Segmenting dna sequence into ‘words’,” 2012. https:
//arxiv.org/abs/1202.2518.

[13] C. Seymour, “Bonito accuracy update on twitter.”
https://twitter.com/iiseymour/status/
1230086141166211073, 2020. Accessed: 2020-21-04.

[14] C. Brown, “Clive Brown CTO update | NCM 2019.” https://
youtu.be/fFceCr4O284?t=1533, 2019. Accessed: 2020-09-03.

[15] National Center for Biotechnology Information, U.S. National Library
of Medicine, “Blast: Basic local alignment search tool.” https:
//blast.ncbi.nlm.nih.gov/Blast.cgi, 2020. Accessed:
2020-09-03.

[16] A. Maas, Z. Xie, D. Jurafsky, and A. Ng, “Lexicon-free conversational
speech recognition with neural networks,” in Proceedings of the 2015
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, (Denver,
Colorado), pp. 345–354, Association for Computational Linguistics,
May–June 2015. https://www.aclweb.org/anthology/
N15-1038.

[17] B. Raj, “S18 lecture 14: Connectionist temporal classification (ctc).”
https://www.youtube.com/watch?v=c86gfVGcvh4.

[18] A. Y. Hannun, A. L. Maas, D. Jurafsky, and A. Y. Ng, “First-pass
large vocabulary continuous speech recognition using bi-directional
recurrent dnns,” 2014. https://arxiv.org/abs/1408.2873.

[19] D. Jurafsky and J. H. Martin, “Speech and language processing -
chapter 3 n-gram language models.” https://web.stanford.
edu/˜jurafsky/slp3/3.pdf, 2019. Accessed: 2020-09-05.

[20] D. Wood, J. Lu, and B. Langmead, “Improved metagenomic
analysis with kraken 2.” https://doi.org/10.1186/
s13059-019-1891-0, 2019. Accessed: 2020-09-03.

[21] S. M. Karst, R. M. Ziels, R. H. Kirkegaard, and M. Albertsen,
“Enabling high-accuracy long-read amplicon sequences using
unique molecular identifiers and nanopore sequencing,” bioRxiv,
2019. https://www.biorxiv.org/content/early/2019/
05/28/645903.

[22] yourgenome.org, “What is a dna fingerprint?.” https://www.
yourgenome.org/facts/what-is-a-dna-fingerprint,
2016. Accessed: 2020-09-03.

[23] Oxford Nanopore Technologies, “Blitzing fast ctc beam
search decoder.” https://github.com/nanoporetech/
fast-ctc-decode, 2020. Accessed: 2020-09-03.

[24] Open-Source, “Pyo3—rust bindings for python.” https://pyo3.
rs/v0.10.1/, 2020. Accessed: 2020-09-03.

[25] F. Paulin, “Character-level lstm in pytorch.”
https://www.kaggle.com/francescapaulin/
character-level-lstm-in-pytorch, 2019. Accessed:
2020-06-07.

[26] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”
Bioinformatics, vol. 34, pp. 3094–3100, 05 2018. https://doi.
org/10.1093/bioinformatics/bty191.

[27] R. wick, “Basecalling-comparison analysis scripts.” https:
//github.com/rrwick/Basecalling-comparison/
tree/master/analysis_script, 2019. Accessed: 2020-09-03.

[28] R. C. Edgar, “Search and clustering orders of magnitude faster than
BLAST,” Bioinformatics, vol. 26, pp. 2460–2461, 08 2010. https:
//doi.org/10.1093/bioinformatics/btq461.

15

https://nanoporetech.com/
https://yorkspace.library.yorku.ca/xmlui/handle/10315/36268
https://yorkspace.library.yorku.ca/xmlui/handle/10315/36268
https://community.nanoporetech.com/posts/march-2020-accuracy-update?fbclid=IwAR2rjN_i8Jtf4BG0utVJ2ZJkWAMtm_G9_1_exkygQUkI5g1Bk6lQTYqVn2U
https://community.nanoporetech.com/posts/march-2020-accuracy-update?fbclid=IwAR2rjN_i8Jtf4BG0utVJ2ZJkWAMtm_G9_1_exkygQUkI5g1Bk6lQTYqVn2U
https://community.nanoporetech.com/posts/march-2020-accuracy-update?fbclid=IwAR2rjN_i8Jtf4BG0utVJ2ZJkWAMtm_G9_1_exkygQUkI5g1Bk6lQTYqVn2U
https://community.nanoporetech.com/posts/march-2020-accuracy-update?fbclid=IwAR2rjN_i8Jtf4BG0utVJ2ZJkWAMtm_G9_1_exkygQUkI5g1Bk6lQTYqVn2U
https://community.nanoporetech.com/posts/accuracy-update
https://community.nanoporetech.com/posts/accuracy-update
https://community.nanoporetech.com/posts/accuracy-update
https://github.com/nanoporetech/flappie
https://github.com/nanoporetech/flappie
https://nanoporetech.com/nanopore-sequencing-data-analysis
https://nanoporetech.com/nanopore-sequencing-data-analysis
https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
http://dx.doi.org/10.1109/icassp40776.2020.9053889
http://dx.doi.org/10.1109/icassp40776.2020.9053889
http://arxiv.org/abs/1601.06581
http://arxiv.org/abs/1601.06581
https://arxiv.org/abs/1510.02375
https://arxiv.org/abs/1202.2518
https://arxiv.org/abs/1202.2518
https://twitter.com/iiseymour/status/1230086141166211073
https://twitter.com/iiseymour/status/1230086141166211073
https://youtu.be/fFceCr4O284?t=1533
https://youtu.be/fFceCr4O284?t=1533
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.aclweb.org/anthology/N15-1038
https://www.aclweb.org/anthology/N15-1038
https://www.youtube.com/watch?v=c86gfVGcvh4
https://arxiv.org/abs/1408.2873
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1186/s13059-019-1891-0
https://www.biorxiv.org/content/early/2019/05/28/645903
https://www.biorxiv.org/content/early/2019/05/28/645903
https://www.yourgenome.org/facts/what-is-a-dna-fingerprint
https://www.yourgenome.org/facts/what-is-a-dna-fingerprint
https://github.com/nanoporetech/fast-ctc-decode
https://github.com/nanoporetech/fast-ctc-decode
https://pyo3.rs/v0.10.1/
https://pyo3.rs/v0.10.1/
https://www.kaggle.com/francescapaulin/character-level-lstm-in-pytorch
https://www.kaggle.com/francescapaulin/character-level-lstm-in-pytorch
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://github.com/rrwick/Basecalling-comparison/tree/master/analysis_script
https://github.com/rrwick/Basecalling-comparison/tree/master/analysis_script
https://github.com/rrwick/Basecalling-comparison/tree/master/analysis_script
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461

[29] R. Vaser, I. Sovic, N. Nagarajan, and M. Sikic, “Fast and accurate
de novo genome assembly from long uncorrected reads,” Genome
Research, 2017. http://genome.cshlp.org/content/
early/2017/01/18/gr.214270.116.abstract.

[30] Oxford Nanopore Technologies, “Medaka.” https://
nanoporetech.github.io/medaka/, 2019. Accessed:
2020-09-03.

[31] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of
model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures,” in Proceedings of the 30th International
Conference on International Conference on Machine Learning -
Volume 28, ICML’13, p. I–115–I–123, JMLR.org, 2013. https:
//dl.acm.org/doi/10.5555/3042817.3042832.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization.” https://arxiv.org/abs/1412.6980, 2014.

[33] Oxford Nanopore Technologies, “Taiyaki.” https://github.
com/nanoporetech/taiyaki, 2020. Accessed: 2020-09-03.

[34] D. Jurafsky, “Language modelling - introduction to n-grams.”
https://web.stanford.edu/class/cs124/lec/
languagemodeling2015.pdf, 2015. Accessed: 2020-06-07.

[35] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks,” in Proceedings of the
23rd International Conference on Machine Learning, ICML ’06, (New
York, NY, USA), p. 369–376, Association for Computing Machinery,
2006. https://doi.org/10.1145/1143844.1143891.

[36] H. Teng, M. D. Cao, M. B. Hall, T. Duarte, S. Wang, and L. J. M.
Coin, “Chiron: translating nanopore raw signal directly into nucleotide
sequence using deep learning,” GigaScience, vol. 7, 04 2018. https:
//doi.org/10.1093/gigascience/giy037.

[37] Oxford Nanopore Technologies, “Scrappie.” https://github.
com/nanoporetech/scrappie, 2020.

[38] Oxford Nanopore Technologies, “Metrichor.” https:
//metrichor.com/, 2020.

GLOSSARY

ASR Automatic Speech Recognition. 1

CMC Center for Microbial Communities. 5–9, 11
CNN Convolutional Neural Network. 1
CTC Connectionist Temporal Classification. 2–4, 6,

12–14

GRU Gated Recurrent Unit. 5, 6, 12

LSTM Long Short-Term Memory. 5, 6, 12

NLL Negative Log-Likelihood. 14
NLP Natural Language Processing. 11

ONT Oxford Nanopore Technologies. 1, 2, 5–10

RNN Recurrent Neural Network. 1, 5, 6, 8, 9, 11–13, 15

SMS Single Molecule Sequencing. 1

16

http://genome.cshlp.org/content/early/2017/01/18/gr.214270.116.abstract
http://genome.cshlp.org/content/early/2017/01/18/gr.214270.116.abstract
https://nanoporetech.github.io/medaka/
https://nanoporetech.github.io/medaka/
https://dl.acm.org/doi/10.5555/3042817.3042832
https://dl.acm.org/doi/10.5555/3042817.3042832
https://arxiv.org/abs/1412.6980
https://github.com/nanoporetech/taiyaki
https://github.com/nanoporetech/taiyaki
https://web.stanford.edu/class/cs124/lec/languagemodeling2015.pdf
https://web.stanford.edu/class/cs124/lec/languagemodeling2015.pdf
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1093/gigascience/giy037
https://doi.org/10.1093/gigascience/giy037
https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/scrappie
https://metrichor.com/
https://metrichor.com/

input

Repeat
B

Times

Conv-BN-ReLU

TSCConv-BN-ReLU

xR

TSCConv-BN-ReLU

xR

Conv-BN-ReLU

Conv-BN-ReLU

Pointwise Conv

CTC

1D Depthwise Conv

Pointwise Conv

Batch Norm

ReLu

Repeat R
Times

ReLu

Batch Norm

Pointwise Conv

1D Depthwise Conv

+

Pointwise Conv

Batch Norm

Time-
channel

Separable
Conv

Fig. 9: The QuartzNet Architecture [9]

17

	English title page
	Introduction
	Related Work
	Model Architecture
	Connectionist Temporal Classification
	Decoding
	Language Model
	n-gram Language Model
	RNN Language Model

	Data
	Oxford Nanopore Technologies Dataset
	Center for Microbial Communities Dataset

	Implementation Details
	n-gram language model
	RNN language model

	Experiments
	Baseline Tests and Models
	Baseline Results

	Language Model Tests
	n-gram model experiments
	RNN model experiments

	Results Summary

	Conclusion
	Appendix I: QuartzNet
	Appendix II: Bonito training
	Appendix III: Test results
	Appendix IV: Perplexity
	Appendix V: Basecalling Accuracy
	Appendix VI: Previous Work
	Recurrent Neural Network
	LSTM
	Gated Recurrent Unit

	Connectionist Temporal Classification
	Training with the CTC Forward-Backward Algorithm

	Nanopore Basecalling

	References

