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Abstract:

The purpose of this project is to find
a solution to reduce or remove the un-
wanted vibrations obtained when turning
the steering wheel leftwards for an asym-
metrical steering unit. In order to find
the solution, a mathematical model of
the system has been obtained and vali-
dated. With this mathematical model, a
state space model has been formulated and
solved for different key pressure points.
With these linearized models a sensitiv-
ity analysis has been conducted in order to
find the influence of each one of the compo-
nents in the overall stability and response
of the system. The findings provided by
this sensitivity analysis have been imple-
mented in an improved model, which does
not present the unwanted vibrations.
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Preface

The report has been composed by one student through the course of the third and fourth semester
of the Master’s program in Electro-Mechanical System Design at Aalborg University. The models,
calculations and graphs in the report are made in either MATLAB, SIMULINK, Microsoft Excel
or Origin.

Reading guide

Prerequisites for reading the report are some knowledge of hydraulic and mechanics, as well other
engineering contexts and terminology. The report can be read independently of appendices that
serve as additional material for reference. Appendices are named and sorted chronologically the
order in which they are referred. Figures and tables are numbered according to chapter, i.e. the
first figure and table in chapter 1 has number 1.1, the second, number 1.2, etc. The explanatory
text for figures and tables is found under the given figures and tables. Unless otherwise noted, all
values are given in SI-units. Sources are all to be found in a list at the end of the report, where
books are given by author, title, edition and publisher, while web pages are given by author,
title and URL-address. When referring to the sources, the Harvard method is used (referenced
in the text with [Surname, Year]).
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Nomenclature

Greek

Symbol Description Unit

αGS Angular displacement of the Gear Set rad

αSW Angular displacement of the Steering Wheel rad

ωGS Angular velocity of the Gear Set rad/s

ωSW Angular velocity of the Steering Wheel rad/s

ρlocal Local Mass Density kg/m3

Latin

Symbol Description Unit

ACF Area of the Control Flow Orifice m2

AEF Equivalent area of the Excess Flow Orifices m2

PB Steering Cylinder pressure Pa

PCF Control Flow Pressure Pa

PDYN Dynamic Orifice Pressure Pa

PEF Excess Flow Pressure Pa

PGS Gear Set Pressure Pa

PLS′ Pressure after the Load Sensor Orifice Pa

PLS Load Sensor Pressure Pa

PPP Pilot Pressure Pa

PP Pump Pressure Pa

Psut Steering Unit to tank pressure Pa

PT Tank Pressure Pa

QA1,A2R,A2L... Flow through Orifice A1,A2R,A2L,A3R,A3L m3/s

QCF Control Flow m3/s

QDYN Dynamic orifice Flow m3/s

QEF Excess Flow m3/s

QLS Load Sensor Flow m3/s

vii
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QPP Pilot Pressure Flow m3/s

QT Flow through Orifice A10 to tank m3/s

TGS Gear Set Torque N m

TSW Steering Wheel Torque N m
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7.5.3 Effect of A2R and Ȧ2R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.6 Effect of V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Improved Model 59
8.1 Improved linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Improved nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Conclusions and future work 65

Bibliography 67

A Data Sheet OLS 40/80 69

B Linearized parameters 73

C More sensitivity analysis 75

x



1 | Introduction

In this section, an introduction to the company Danfoss will be given, followed by a description
of both the priority valve and steering unit used in the project and a brief presentation of the
assignment.

1.1 Danfoss Group

Although the company was funded in 1931 (originally called Dansk Køleautomatik og
Apparatfabrik), their intrusion in the hydraulic market was in 1961. Since then, Danfoss has
become one of the largest manufacturers in the world of steering components for hydrostatic
steering systems on off-road vehicles. Danfoss steering components are used in vehicles where
the driver has to control high steering forces, reliably, comfortably and with maximum safety.
The steering unit described in this project is the OSPB ON (due to its simplicity), and the
priority valve is the OLS 40. Also, a complex steering system is presented (OSPF LS) as an
example of how a symmetric steering system works and its differences with an asymmetric one.
Finally, the asymmetric system that is going to be analyzed in the project, the OSPS LS speed
steering system, is presented.

1.2 Steering Unit

Regardless of brand and model, all steering units are essentially designed with the same task in
mind: metering oil from the supply to the steering cylinder in proportion to the angle of the
steering wheel. The operation of Danfoss steering units OSP- is hydrostatic. That is to say, there
is no mechanical connection between the steering column and the steered wheels. Instead there
are hydraulic pipes and hoses between steering unit and steering cylinder. When the steering
wheel is turned, the steering unit meters in an oil volume proportional to the rate of rotation
of the steering wheel. This volume is directed to the appropriate side of the steering cylinder,
while simultaneously the displaced oil is directed to tank, [Danfoss, 2017].

1.2.1 OSPB ON

OSP is how Danfoss name their steering units, and OSPB is specifically is for steering units
with no valve functions. This steering unit will be described as it is the most simple one, and
thus better for understanding the steering process.

The specification ON is an abbreviation for Open-center Non-reaction. Open-center steering
units have open connections between pump and tank in the neutral position. With Non-reaction
steering units, no external forces acting on the steered wheels will result in any corresponding
movement of the steering wheel when the driver is not steering the vehicle, [Sauer-Danfoss, 2002].

Since in ON steering units the center spool is overlapping both output ports, thus creating a
sort of dead-band, this creates good stability properties. However, it may cause the steering to
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feel somewhat insensitive and delayed when the steering wheel is only slightly turned. If the
steering unit was OR (Open center Reacting), this would be solved, since it introduces small
gaps between the input and output ports, so the pressure is at all times regulated by continuous
throttling. Unfortunately, this also causes stability issues due to the nature of the cross coupling
between the chambers, and it decreases in the system efficiency due to continuous throttling.
All these problems are attempted to be solved by implementing a priority valve (OLS 40) on the
steering unit.

Sauer-Danfoss diagram CETOP diagram

3

4

5

6

7/8

10

11

Figure 1.1: Diagram of the OSPB ON steering unit. On the left is the Sauer-Danfoss schematic
representation and on the right the CETOP one [Sauer-Danfoss, 2002]. In the right diagram, numbers

correlating the diagram to some of the pieces showed in Fig.1.2 can be seen.

The steering unit (Fig.1.1) works with the following principle: When the driver needs to steer the
vehicle, the steering column is rotated by the steering wheel. The column rotates the spool and
the neutral position spring package is deflected. The relative position, spool to sleeve changes.
The maximum difference in angle between the spool and sleeve for the OSPB is 15°. Because
of this, oil is lead from P-port across the spool/sleeve set to the gear set. Then, from the other
side of the gear set, back across spool/sleeve set and the oil will be metered into the correct
side of the steering cylinder so that the vehicle wheels move in the corresponding direction to
which the steered wheel is rotated. In the same sequence, return oil from the opposite port of
the steering cylinder is metered out across the spool/sleeve set to the tank. The gear wheel,
cardan shaft, cross pin and sleeve rotates synchronously. The amount of oil metered into the
cylinder per revolution is determined by the displacement of the gear set. The steering torque is
determined by the force of the spring package, [Danfoss, 2015]. The gear wheel, which is part of
the rotary meter, operates as a motor when steering normally, but can operate as a pump when
in emergency steering. The emergency steering is activated when the oil flow from the steering
system pump is too small or fails, although it requires a manual force of maximum 120 Nm to
be able to turn the steering wheel, [Carsten Lund, 2002]. The actual look of all these pieces can
be seen in Fig.1.2.
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1.2. Steering Unit Aalborg University

1. Housing

2. End cover

3. Check valve for emergency steering

4. Sleeve

5. Spool

6. Cardan shaft

7. Gear wheel

8. Gear rim

9. Distributor plate 

10.Neutral position spring package

11.Cross pin

4

8

6
7

5

10

11

Figure 1.2: Drawing of the different parts of a typical steering unit, with the names of the different
parts included.

1.2.2 OSPS

The steering unit used in this project is the Speed Steering Unit. An ISO/CETOP representation
of this steering unit can be seen in Fig.1.3.

Figure 1.3: ISO/CETOP hydraulic design of the Speed steering unit used in this project with the
different control valves that it contains.

The shock valves protect the steering unit, limit the maximum external forces on the steering
cylinder and limit the maximum pressure drop form L/R to tank (T). The suction valves ensure
oil suction to avoid cavitation (space without oil) in the steering cylinder. The check valve
protects the driver against steering wheel jerks, by preventing oil from flowing backwards into
the pump line when steering against a high pressure on the cylinder side. The check valve is
built into the steering unit P connection. When steering against end stroke, the steering pressure
will be limited by the pilot pressure relief valve: pressure in LS line will be limited and so the
priority valve will lead the pump flow to EF port of the priority valve and on to tank. When
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pump flow becomes insufficient, the emergency steering check valve will open and oil will be
led to the gear set from the return side of cylinder, additional flow will be sucked from tank as
needed, [Sauer-Danfoss, 2002].

The main difference between the OSPB steering unit and the OSPS is that the gear set is
placed on the right output port on the OSPS, allowing it to serve as a flow separator between
the two chambers when no steering is being done. The new structure permits all bleeds to be
partially open under neutral steering conditions, thus transforming the system from ON to OR
by definition. This will theoretically improve the transient steering response without sacrificing
any straight line stability, if the gear set is considered to be ideal, [Nielsen, 2018]. A comparison
between a symmetrical and an asymmetrical steering unit is done later in the chapter.

1.3 OLS 40

The OLS 40 is the name of the priority valve implemented in the steering unit. A priority
valve ensures that steering always has first priority. When the steering wheel is turned, the oil
flow is distributed in the priority valve in such a way that the oil flow necessary for steering is
led to the steering unit through the CF (controlled flow) connection. The remaining oil flow is
available for the working hydraulics through the EF (excess flow) connection. The distribution
is controlled by the LS signal from the steering unit, so that the oil flow to the steering unit is
always determined by the actual steering rate, [Danfoss, 2017].

The OLS 40 is a load sensing (LS) priority valve, which means that the flow going to the steering
unit changes depending on the momentary demands. It can be either a static or a dynamic
priority valve. Static means that there is no oil flow in the LS connection when the steering unit
is in neutral position, while dynamic means that there is constant oil flow in the LS connection
from the priority valve to the steering unit even when the steering unit is in neutral position. A
CETOP diagram of both can be seen in Fig.1.4.

a) b)

Figure 1.4: a) Static LS priority valve b) Dynamic LS priority valve [Danfoss, 2017]

The priority valve used in this project is the OLS 40 dynamic one (the 40 refers to the maximum
flow capacity, which is 40 l/min). It has been chosen to use the OLS as it is installed inline, and
it is therefore easy to measure pressure and flow between the priority valve and the steering unit.
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1.4. Example of symmetric steering system: OSPF Aalborg University

1.4 Example of symmetric steering system: OSPF

As an example of how the classical symmetric steering unit works, the OSPF LS steering unit is
shown. This steering unit uses the priority valve OLS 80, which has the same internal mechanism
than the OLS 40 but has larger dimensions (Appendix.A), since it supports an oil flow of 80 l/min.
It is called symmetric due to the fact that the path the oil takes to go from the pump to the
steering cylinder is the same one regardless if the input is a leftward or rightward steering. A
schematic representation of the OSPF LS steering system and the steering cylinder can be seen in
Fig.1.5, where the flow to tank is represented in blue and the flow from the pump is represented
in pink. A black line means that there is no flow going through that route.

WHEngine

a) Left steering b) Neutral c) Right steering

Ad

A4R

A5RA5L

A4L

Steering cylincer Steering cylincer Steering cylincer

steering
wheel

A3L

A2L

A3R

A2R

LS

WHEngine

Ad

A4R

A5RA5L

A4L

steering
wheel

A3L

A2L

A3R

A2R

LS

WHEngine

Ad

A4R

A5RA5L

A4L

steering
wheel

A3L

A2L

A3R

A2R

LS

Figure 1.5: Representation of the directions of the flow for Leftward, Neutral and Rightward steering.

The inner workings of the OSPF steering system is explained as follows:

• Neutral steering: when the wheel is in neutral position, orifices 2, 3, 4, 5 are fully closed
and orifice Ad is fully open. Since it is fully open the oil will flow freely through LS and its
pressure will be low. Also since orifices 2-5 are closed, the flow from CF goes to the pilot
pressure chamber, then through the dynamic orifice and finally to tank. The rest of the
flow goes to the working hydraulics through the EF port.

• Leftward or Rightward steering: When the wheel is being steered, orifices 2 and 5 will
open and orifice Ad will start to close (it will close more or less depending on the changes
in velocity of the steering). Since Ad starts to close, the PLS starts to rise which will lead
to the displacement of the spool in order to provide more flow through the CF port (ACF
will increase).

As said before, one of the drawbacks and a reason of why an asymmetric steering unit is being
studied, is that for the OSPF (and for all symmetric steering units) the areas of the orifices
A2, A3, A4, A5 do not remain partially open, and so they do not allow leakage. Also, the orifice
area of Ad open and close inversely proportional to the angular lag between the spool and sleeve
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of the steering unit. That is, when the steering unit is being turned, Ad will start closing, which
will lead to an increase of the LS pressure. In summary, when the the steering unit turns, flow
will be supplied to the LS port, increasing the pressure; when the turning stops, the flow will
stop and the pressure will decrease.

1.5 The assembled OSPS LS

A more complete representation of the OLS 40 priority valve can be seen in Fig.1.6, where the
different areas and flows are also represented.

EF

PP

P

CF
LS

Spool Spring

ALS
ADYN

AEF1 AEF2 AEF3 ACFAPP

QCF

QP

QLS

QEF

QPP QDYN

x

AEF

Figure 1.6: Representation of the OLS40 priority valve, where the areas and the directions of the
different flows are indicated.

The priority valve consists of a pilot assisted spool-spring system, generating the flow sharing
between the steering unit and the other working hydraulics. The CF (Control Flow) directs the
flow to the steering unit, the PP is the Pilot Pressure port, the P (Pump) port connects to the
pump, the EF (Excess Flow) directs the flow to the other working hydraulics and the LS (Load
Sensing) port gives feedback pressure from the steering unit. The excess flow consists in three
orifices in order to reduce noise in the OLS when flow is going to the working hydraulics.

The percentage of flow that goes to the CF or EF ports is generated by the position of the spool.
This position depends on the pilot pressure, the spring and the pressure buildup in the spring
chamber. So in the end, the quantity of flow that goes through CF/EF is controlled by the
CF and LS pressures. When the steering unit is not being used, there will be flow going from
the pump to the EF port, since the LS pressure will be low. When the steering wheel starts to
turn, the LS pressure will increase and together with the spring move the spool inside the valve.
Because of this, flow will start going through the CF port and then the flow going through the
EF port will be reduced or even stopped. The spring in the LS line is used to make sure that
there is always a standby pressure available for the steering unit, such that the steering process
can start immediately instead of having a dead-band while the pump builds up pressure.

The PP is connected to the CF and serves to dampen the oscillations of the spool such that it
does not move back and forth with the pressure pulsations.

6



1.5. The assembled OSPS LS Aalborg University

Dynamic steering units require a dynamic flow QDYN which is normally provided from the
priority valve. The amount of flow needed depends on the type of steering unit used, and is
adjusted by using the correct dynamic orifice.

The complete system, including the OSPS LS and the steering cylinder can be seen in Fig.1.7,
where the different steering directions are represented and where the flow from the pump is
colored pink and the flow to the tank is colored blue.

WHEngine

b) Right steering

A1

A2R

A3RA3L

A2L

Steering cylincer

steering
wheel

ALS

WHEngine

a) Neutral

A1

A2R

A3RA3L

A2L

Steering cylincer

steering
wheel

ALS

ADYN ADYN

WHEngine

a) Left steering

A1

A2R

A3RA3L

A2L

Steering cylincer

steering
wheel

ADYN

Figure 1.7: Representation of the directions of the flow for the two possible steering directions
(Left/Right) and for when the wheel is not being steered (Neutral).

Now follows a description of what happens in each of the positions:

• Neutral: The priority valve is positioned so the main flow coming from the pump goes
to the Working Hydraulics. The LS signal is taken out of the steering unit straight after
A1. The small quantity of flow in the steering unit gets separated; one part crosses A2L

and goes directly to the left side of the steering cylinder while the other part goes through
A2R, the steering wheel and to the right side. Finally, the standby flow coming from the
pump across A1, A2 and A3 joins after A3R/A3L and goes to tank through the emergency
steering valve.

• Right steering: When the steering wheel starts to rotate to the right A2R and A3L begin
to enlarge, while A2L and A3R start to close. The LS pressure rises which makes the spool
inside the priority valve move, widening the opening to the CF port and closing the one
to the EF port. From the A2R orifice the oil goes through the steering wheel (gear set) to
the right chamber of the steering cylinder.

• Left steering: When the steering wheel rotates to the left, the flow goes through the A2L

orifice instead, and from there directly to the left side chamber of the steering cylinder.
The oil in the right side of the SC is pushed through the gear set and dumped in tank.
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1.6 The Problem

Although it is explained in more detail in the following chapter, the main problem with the
steering unit, which this project tries to tackle, is the asymmetric behavior occurring when
the steering wheel is turned left and right. It performs correctly when the wheel is in neutral
position and when it is turned in the rightward direction, but produces vibrations when the
wheel is turned in the leftward direction.

To define the problem to be solved in the project, it is presented in one sentence, the initiating
problem:

Can the reason for the unsatisfactory response described by Danfoss be found and is it possible
to change the designed parameters of the model to improve this response?

8



2 | Problem Description

In this chapter the assignment, set by Danfoss, is described. In short terms, the assignment is
an analysis of the unsatisfactory response, which appears under some working conditions.

As the OSPS steering unit is still in development, Danfoss is investigating the actual system
behavior in an experimental setup. The results obtained in this setup show promising results,
although some stability issues have arisen, which are believed to come from the asymmetrical
configuration of the system (due to the steering wheel being placed on the right side of the system
instead of the center). The OSPS LS system performs correctly in the neutral position and when
it is being steered to the right, but some instability vibrations appear when it is steered to the
left, as it can be seen in Fig.2.1. This behavior may produce discomfort while driving the vehicle
and may even compromise the safety of the driver.

Figure 2.1: Pressure oscillations across the steering cylinder both with leftward and rightward steering.

The goals for this project, aimed to solve this issue, are defined from conversations with Danfoss:

• Can a mathematical model of the components (priority valve and steering unit) be made
to be used for an analysis of the real system?

• Can a sensitivity analysis of the system give the reason and thereby lead to the solution of
the instability problem?

• Can stability be obtained by changing the design parameters of the steering system?

In the following chapter, a description of the procedure followed to reach each of the goals is
described.

9





3 | Methodology

This chapter presents a short description of the procedure followed throughout the report, and
a brief description of what each chapter comprises. Each of the chapters contain a part of the
process to find the solution for the problem presented in Chapter 2 (Problem description). This
is done to justify each of the chapters and their order in the report, which is the same one
followed in reality. In Fig.3.1 a flow chart of the project, with the different paths taken to solve
the problem, is presented.

Mathematical 
modeling of the

components

Validation of the 
nonlinear model

Linearization of
the model

Validated  
model

Sensitivity analisys
of the parameters

Analysis & changes
of the design

Implementation
in experimental

system

Conclusion

Improvement of the model Analysis of the model with new parameters

Model
OK

Instability
solved

Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Chapter 9

Figure 3.1: Flow chart representing the working procedure.

The composition of the remaining report is shown below:

• Chapter 4: Mathematical description of each of the components which, once assembled,
gives the complete simulation model.

• Chapter 5: Verification of the model by analyzing its behavior and comparing it to
theoretical and experience knowledge.

• Chapter 6: Simplification and linearization of the simulated model.
• Chapter 7: Sensitivity analysis of the different soft parameters.
• Chapter 8: Creation of improved model by changes on the design.
• Chapter 9: Conclusion of the experiment

Chapter 4: Mathematical Model

The mathematical model is based in a previous Simulink model provided by Danfoss. The
components described are the OLS 40 priority valve, OSPS steering unit, the gear set and the
safety pressure valves.

The types of components modeled are considered to be mechanical translational, mechanical
rotational or hydraulic. The procedure for modeling the system is to set up the mathematical
equations taken from the laws of physics (Newton’s 2nd law, orifice equation, pressure
equation,...) and the necessary constants for the components, which are provided by Danfoss.

Once all the equations for the different components are obtained, a full mathematical model of
the system can be set. To simplify, the steering cylinder that would turn the wheels have been
simplified with an orifice which will be slowly draining the flow back to the tank.
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The aim of this full mathematical model is to obtain a system that behaves exactly as the real
one does when the same input is applied. This verification is done in the following chapter.

Chapter 5: Validation of the nonlinear model

The validation with the real system was not possible, so a theoretical validation is done instead.
The flow and pressure responses for different inputs have been recorded and analyzed to verify
that the system responds correctly when compared to the responses obtained theoretically. Also,
an analysis of the influence on the output by the input is done, in order to find the necessary
input for the desired outputs used in the linearization.

Chapter 6: Linearization of the model

A linearized model of the nonlinear system is obtained for three key points of the model. From
the linear model, a State Space model is created. This model will be used in the next chapters
for the sensitivity analysis and will be the basis for the improved model.

Chapter 7: Sensitivity analysis

Since the validation with the real system was not possible to conduct, a sensitivity analysis of the
soft parameters (discharge coefficient, damping coefficient) has been conducted instead. Also,
the influence of changing the different areas and volumes of the steering unit on the position of
poles and zeros, and thus in the stability and response of the system, have been analyzed.

This analysis has been performed on a linearization point placed on the range of pressures where
the unwanted vibrations have been found, that is, at 50 bar.

Chapter 8: Creation of improved model

An improved model has been created, choosing new parameters that would improve the stability
and response curve of the system. The new model has been designed following the premise that
the parameters can only be adjusted and not completely changed, since radical changes could
work in the simulation but have no sense physically. For example, theoretically an orifice area
could be increased by 100 times, but that area would not physically fit in the volume to which
it is attached, and this the simulation would not be able to know.

Also, the new values of the discharge coefficients and damping coefficient have been chosen by
researching its value in other similar models.

Both a linear and a nonlinear version of the improved model are created.
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4 | Mathematical model

In this chapter, the mathematical model of the system is extracted from the Simulink model.
Throughout the chapter, there are drawings representing how the different equations look like in
Simulink blocks form, and how these equations are being calculated by Simulink. The steering
cylinder has been simplified to look like an orifice, and the flow going through the Excess Flow
orifices, instead of going to the Working Hydraulics (other parts of the vehicle that also use oil,
like an hydraulic crane) is bleeding directly to tank. In order to simplify the model even further,
it is assumed that the hydraulic flow is supplied by a fixed displacement pump rotating at a
constant speed, since this allows the pump flow to be used as the model’s input.

The mathematical model uses two basic hydraulic equations:

Pressure equation

The pressure equation is used to calculate the pressure build-up in a volume. In a lumped
volume the flow rate is integrated with respect to time to calculate the pressure. The describing
differential equation is

Ṗ =
β

V
· (Qin −Qout) (4.1)

where β is the bulk modulus, Qin is the flow coming into the volume, Qout is the flow coming out
of the volume and V is the volume. The bulk modulus accounts for the stiffness of the fluid-air
mixture, as this parameter influences the compressibility of the oil.

Orifice equation

Control valves rely on variable orifices to regulate certain parameters within a hydraulic system.
As the orifice has a flow area smaller than the rest of the pipe/tube, the flow velocity will, due
to continuity, increase and be higher in the orifice. This change in flow velocity will induce a
pressure drop. Taking into account Bernoulli’s equation for incompressible fluids the following
equation is obtained:

Q = Cd ·A ·
√

2

ρ
· sign (Pin − Pout) ·

√
|Pin − Pout| (4.2)

Where Q is the flow going through the orifice, Cd is the discharge coefficient of the orifice, A is
the area of the orifice, ρ is the atmospheric mass density, and Pin/Pout are the pressures at both
sides of the orifice. This version of the orifice equation accounts for the flow direction; that is
why a sign convention has to be established beforehand. For a variable orifice, the area will be
dependent of time or position.

For the mechanical translational and rotational parts (so the forces acting in the different
spool/sleeves):

Newton’s Second Law

The second law states that the acceleration of an object is dependent upon two variables: the
net force acting upon the object and the mass of the object.∑

F = Mẍp (4.3)

Where ẍ is the acceleration of the piston (or α̈ when talking about the the rotational acceleration
of the steering unit)and M is the mass of the piston.
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4.1 Pump

The pump is modeled as a constant flow pump, with a flow of QP = 40 l/min. The pump
chamber has a volume of VP = 1 l, where the pressure PP is built up.

ṖP =
β

VP
· (QP −QCF −QEF ) (4.4)

4.2 OSP 40 Flow Equations

The flow/pressure equations for the priority valve have to be obtained. To do this, the Simulink
model given by Danfoss is analyzed. An explanatory drawing of how the different flows behave
and where the different pressures are located is given in Fig.4.1. Also, a miniature of Fig.1.6 is
shown in the top left corner, as a reminder of how it looks in real life.

QEF =
PP − PEF

((PP − PEF )2 + P 2
trans)

1/4
· Cd1AEF (x) ·

√
2

ρlocal
(4.5)

QCF =
PP − PCF

((PP − PCF )2 + P 2
trans)

1/4
· Cd1ACF (x) ·

√
2

ρlocal
(4.6)

QPP =
PCF − PPP

((PCF − PPP )2 + P 2
trans)

1/4
· Cd2APP ·

√
2

ρlocal
(4.7)

QDYN =
PCF − PSpC

((PCF − PSpC)2 + P 2
trans)

1/4
· Cd2ADYN ·

√
2

ρlocal
(4.8)

QLS =
PSpC − PLS

((PSpC − PLS)2 + P 2
trans)

1/4
· Cd2ALS ·

√
2

ρlocal
(4.9)

WH

AEF1 AEF2 AEF3

ACF

APP

ADYN

ALS

PEF

PP

PCF
PDYN

PLSPPP

PTPT

QEF

QP

QCF

QDYN

QPP QLS
EF

PP

P

CF
LS

ALSADYNAEF1 AEF2 AEF3 ACFAPP

QCF

QP

QLS

QEF
x

AEF

AEF

QPP QDYN

Figure 4.1: Schematic representation of the OPS 40 priority valve with the different orifices modeled
(whose areas are named An). The WH represents the working hydraulics, and the direction of the
different flows are represented by the Q. The pressures are Pn. In the top left there is a reminder of how

the OLS 40 looks taken from Fig1.6.
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4.2. OSP 40 Flow Equations Aalborg University

The look up tables for the Excess Flow and Control Flow orifice areas are obtained experimentally
from the setup in Danfoss and look like Fig.4.2.
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Figure 4.2: Graph representation of the opening of the EF and CF orifices depending on the position
of the spool

The pressure buildup for both the Control Flow and Load Sensing chambers are obtained through
the equations (4.10) and (4.11), respectively.

ṖCF =
β

VCF
· (QCF −QDyn −QPP −QA1) (4.10)

ṖLS =
β

VLS
· (QLS −QLS′) (4.11)

Where the volumes are given in Table 4.1.

The pressure in the Spool Chamber (PSpC) and the Pilot Pressure (PPP ) are obtained with the
pressure buildup equation for chambers with variable volumes in equations. (4.12) and (4.13),
respectively.

ṖSpC =
VSpCi
β
·∆QSpC (4.12)

ṖPP =
VPPi
β
·∆Qpp (4.13)

Where VSpCi and VPPi are the initial volumes of the chamber and are defined in Table 4.1, β is
the bulk modulus and ∆QSpC and ∆QPP are the change in flow in the respective chambers.

This change in flow depends both of the flow that comes from the orifices and the one created
by the movement of the spool (Eq.4.14 and Eq.4.15).

∆QSpC = Asp · ẋ+QDyn +QLS (4.14)

∆QPP = Asp · ẋ+QPP (4.15)

Where the Spool Area Asp of the Priority Valve is defined in Table 4.3.
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Kenia Labata Lezaun 4. Mathematical model

Symbol Description Value Unit

VCF Volume of Control Flow chamber 0.005 l
VLS Volume Load Sensing chamber 0.001 l
VPPi Initial volume Pilot Pressure chamber 0.005 l
VSpCi Initial volume Spool chamber 0.00712 l

Table 4.1: The table defines the constant values for the different volumes of the OLS 40.

These Pilot Pressure and Spool Chamber pressure are used later to obtain the displacement x
of the spool.

4.3 Steering unit Flow Equations

The same procedure used for the priority valve is again followed for obtaining the OSPS flow
equations. An explanatory drawing of the flow system on the steering unit can be seen in Fig.4.3.
In this figure the different orifices are represented in black, the flow directions in red and pressures
in blue.
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PLS'

PLS

PCF

QA3L

QA2L
QA2R

QA3R

QSC
QBQT

QA1

QLS

Gear
set

Steering cylincer

PSC

Figure 4.3: Schematic representation of the flows and pressures on the OSPS steering unit.

QLS′ =
PLS − PLS′

((PLS − PLS′)2 + P 2
trans)

1/4
· Cd2ALS ·

√
2

ρlocal
(4.16)

QA1 =
PCF − PLS′

((PCF − PLS′)2 + P 2
trans)

1/4
· Cd2A1(α) ·

√
2

ρlocal
(4.17)
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QA2R =
PLS′ − PGS

((PLS′ − PGS)2 + P 2
trans)

1/4
· Cd2A2R(α) ·

√
2

ρlocal
(4.18)

QA2L =
PLS′ − PSC

((PLS′ − PSC)2 + P 2
trans)

1/4
· Cd2A2L(α) ·

√
2

ρlocal
(4.19)

QA3L =
PSC − Psut

((PSC − Psut)2 + P 2
trans)

1/4
· Cd2A3L(α) ·

√
2

ρlocal
(4.20)

QA3R =
PGS − Psut

((PGS − Psut)2 + P 2
trans)

1/4
· Cd2A3R(α) ·

√
2

ρlocal
(4.21)

QT =
Psut − PT

((Psut − PT )2 + P 2
trans)

1/4
· Cd2A10(α) ·

√
2

ρlocal
(4.22)

As for the priority valve, for the different orifices areas, a look-up table obtained through Danfoss
experiments is used (Fig.4.4). As it has already been mentioned, for a neutral position of the
spool (so in the center of the graph), all the valves are partially open.
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Figure 4.4: Graphical representation of the OSPS orifice opening areas in relation of the rotation of the
spool.

Symbol Description Value Unit

Ptrans Transition Pressure 12 Pa
Cd2 Orifice constant 0.7 −−
φLS Diameter of the Load Sensor Orifice 2.5 mm

Table 4.2: The table defines the hydraulic constant values for the OLS 40.

The pressure buildup for the LS′ and and steering unit to tank (sut) chambers are obtained
with (4.23) and (4.24) respectively.

ṖLS′ =
β

VLS′
· (QA1 −QLS′ −QA2R −QA2L) (4.23)

Ṗsut =
β

Vsut
· (QA3L +QA3R −QT ) (4.24)
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Where the volumes are VLS′ = 0.001 l and Vsut = 0.005 l. Also, the pressure PSC which is the
pressure in the left side of the steering cylinder is obtained with (4.25).

ṖSC =
β

VL
· (QSC −QB) (4.25)

Where VL = 0.005 l is the volume on the left side of the steering cylinder andQSC = QA2L+QA3L.

4.4 Displacement of the spool in the priority valve

To obtain the displacement of the spool, Newton’s 2nd Law is used. This displacement is used
to extrapolate from a look-up table the opening areas of the EF and CF variable orifice valves
(Fig.4.2). The equation obtained is:

mspẍ = PPP ASP − PSpC ASP + (FCF − FEF )− bolsẋ− kspring x (4.26)

As it can be seen in Fig.4.5 to obtain the displacement of the spool the following steps are done:

• In (1) the difference (FCF−FEF ) obtained in the linear endstop and FPP (which is PPP ·Asp)
are added.

• In (2) the spring constant is multiplied by the displacement of the spool (−kspring ·∆x)
• In (3) the damping force, which takes into account both Coulomb and Stribeck frictions,

is obtained (−bols · ẋ)
• (4) adds both (2) and (3)
• (5) adds (4) with the negative force from the Spool Chamber, −FSpC (negative since the

Pilot Pressure one is positive, PSpC ·Asp )
• In (6) both F1 and F2 are added and divided by the mass of the spool (msp), and this ẍ

obtained is internally integrated to get the velocity (ẋ). This velocity is integrated again
outside to get the displacement of the spool.

The friction coefficient (bols) used in (3) is obtained with the following equation:

bols · ẋ =
√

2e(Fbrk − FC) · e−(
ẋ
vst

)2 · ẋ
vst

+ FC · tanh
ẋ

vC
+ b · ẋ (4.27)

m

s
1

F1

F2

(FCF - FEF)

-FSpC
FPP

Spring

Friction

(1)
(2)

(3)

(4)(5)(6)

Figure 4.5: Simulink model to obtain the displacement of the spool on the priority valve.
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Symbol Description Value Unit

Cd1 Orifice constant 0.645 −−
Cd2 Orifice constant 0.700 −−
φPP Diameter of Pilot Pressure Orifice 0.8 mm
φDYN Diameter of Dynamic Orifice 0.9 mm
φLS Diameter of Load Sensor Orifice 1.2 mm
Ptrans Transition pressure 12 Pa
Tfl Global Fluid temperature 70 °C
msp Priority Valve Spool mass 0.06 kg
Asp Priority Valve Spool area 200.8609 mm2

kspring Priority Valve Spring stiffness 16,700 N/m
sinit Spring pre-compression 10.1 mm
Fpre Priority Valve Spring precharge 170 N
b Viscous friction coefficient 20 N/(m/s)
FC Coulomb friction 0.5 N
Fbrk Breakaway friction 1.0 N
vbrk Breakaway velocity 0.001 m/s

vst Stribeck velocity threshold vbrk ·
√

2 m/s
vC Coulomb velocity threshold vbrk/10 m/s

Table 4.3: The table defines the constant values for hydraulic part of the OSPS and the mechanical
part of the OLS 40.

4.5 Angular displacement of the steering unit

The α (the lag) that is used in the different variable orifice valves is obtained by subtracting the
rotation of the Gear Set from the one of the Steering Wheel (ωSW − ωGS). This difference in
velocities is integrated to obtain the lag in displacement. The angular velocity of the steering
wheel, which is the one that moves the spool, is produced manually by turning the steering wheel.
The angular velocity of the gear set moves the sleeve, and is calculated using the Newton’s second
law in the Gear Set, expressed by equation (4.28).

Jsl · α̈ = Mnps + Tsss + ωGS · bGS + (PR − PGS) · V0 · 10−6

2π
(4.28)

Where Jsl is the moment of inertia of the sleeve, gear wheel and cardan shaft,Mnps is the moment
of forces obtained from the neutral position spring (which depends on the lag between angles,
as seen in Fig.4.6), Tsss is torque obtained in the spool sleeve set, PR and PGS are the pressures
in the right side of the steering cylinder and Gear set respectively, V0 is the displacement per
revolution and bGS is the damping coefficient in the Gear set.

This Tsss takes different forms depending on whether the lag (∆α) is inside the limits [−15°,+15°]
or outside (4.29)

Tsss =

{
0 if − 15° < ∆α < +15°

2 ·∆α · ksp + α̇D, if − 15° ≤ ∆α or 15° ≥ ∆α
(4.29)

Where ksp is the stiffness spring constant and D is a damping coefficient (as seen in Table 4.4).
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PGS is the pressure buildup between the spool-sleeve set and the gear set, and is obtained through
Eq.(4.30)

ṖGS =
β

VSS−GS
· (QGS−R −QGS′) (4.30)

Where VSS−GS = 0.005 l, QGS−R = QA2R +QA3R and QGS′ is described in the next section.

Symbol Description Value Unit

bGS Damping coefficient 0.1 Nm s/rad
Jsl Inertia of sleeve 6.17 · 10−5 kg ·m2

ksp Spring constant 105 N ·m/ deg
D Damping coefficient 1000 N ·m · s/ deg
V0 Displacement per revolution 135 ccm/rev

Table 4.4: The table defines the stiffness and damping constants for the spool-sleeve set torque.
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Figure 4.6: Look-up table of the constants for the spool-sleeve set.

4.6 Flows in the Gear Set

In the Gear set, the pressure from the right side of the of the Steering cylinder (PR) and the
pressure in the gear set chamber (PGS) are used together with ωGS and the leakage coefficient
(kleak) to obtain both QGS′ (which is the flow going to the steering unit)(4.31) and QGS−R which
is the flow going from the gear set towards the right side of the steering cylinder(4.32)

QGS′ = −PGS ·
kleak

60 · 103 105
− V0 · 10−6

2π
· ωGS (4.31)

QGS−R = −PR ·
kleak

60 · 103 105
+
V0 · 10−6

2π
· ωGS (4.32)

Where kleak has a value of 10−4 lpm/bar

The pressure on the right side of the steering cylinder is obtained through Eq.(4.33)

ṖR =
β

VR
· (QB −QGS−R) (4.33)

Where the volume on the right chamber is VR = 0.005 l
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4.7 Steering Cylinder

To simplify the model, the steering cylinder allowing the wheels to turn is instead modeled by
an orifice with PSC as the input pressure, described in the Steering unit section, and as output
the PR pressure described in the Gear set section. The flow going through this orifice is:

QB =
PSC − PR

((PSC − PR)2 + P 2
trans)

1/4
· Cd3 ·AL/R ·

√
2

ρlocal
(4.34)

Symbol Description Value Unit

Ptrans Transition Pressure 12 Pa
Cd3 Orifice Constant 0.72 −−
φL/R Diameter of the orifice 1.5 mm

Table 4.5: The table defines the constant values for the Steering Cylinder.

4.8 Bulk modulus

The formula used to obtain the bulk modulus used in this system is shown in Eq.4.35:

βeff =
1 + Vfr · ( Pa

Pa+P
)1/κ

1 +
( Pa
Pa+P

)1/κ·Vfr·
EL
κ

Pa+P

· EL (4.35)

Where, EL is the pure liquid bulk modulus, Vfr is the relative gas content at atmospheric pressure
(VG/VL), Pa is the atmospheric pressure, P is the gauge pressure of the fluid in the chamber and
κ is a gas-specific heat ratio.

Symbol Description Value Unit

Vfr Content of free air 0.01 −−
κ Polytropic exponent 1 −−
Pa Atmospheric pressure 105 Pa

Table 4.6: The table defines the constant values for Bulk modulus.

The look-up table for the pure liquid bulk modulus depending on the gauge pressure (which is
the input pressure) can be seen in Fig.4.7.
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Figure 4.7: Look-up table relating the input pressure with the bulk modulus of the liquid.

4.9 Equation Summary

The compilation of the equations that are subsequently linearized are the following.

4.9.1 Priority valve

First, the hydraulic part of the priority valve can be separated in three different types of
equations. The flow equations in the priority valve are:

QEF =
PP − PEF

((PP − PEF )2 + P 2
trans)

1/4
· Cd1AEF (x) ·

√
2

ρlocal
(4.36)

QCF =
PP − PCF

((PP − PCF )2 + P 2
trans)

1/4
· Cd1ACF (x) ·

√
2

ρlocal
(4.37)

QPP =
PCF − PPP

((PCF − PPP )2 + P 2
trans)

1/4
· Cd2APP ·

√
2

ρlocal
(4.38)

QDYN =
PCF − PSpC

((PCF − PSpC)2 + P 2
trans)

1/4
· Cd2ADYN ·

√
2

ρlocal
(4.39)

QLS =
PSpC − PLS

((PSpC − PLS)2 + P 2
trans)

1/4
· Cd2ALS ·

√
2

ρlocal
(4.40)

The flow created by the movement of the spool is modeled with the equations:

∆QSpC = Asp · ẋ+QDyn +QLS (4.41)

∆QPP ′ = Asp · ẋ+QPP (4.42)

The pressure build-up equations for fixed volume chambers in the pump and priority valve are:

ṖP =
β

VP
· (QP −QEF −QCF ) (4.43)

ṖCF =
β

VCF
· (QCF −QDyn −QPP −QA1) (4.44)
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ṖLS =
β

VLS
· (QLS −QLS′) (4.45)

Finally, the pressure build-up equations for variable volume chambers are:

ṖSpC =
VSpCi
β
·∆QSpC (4.46)

ṖPP =
VPPi
β
·∆QPP ′ (4.47)

Second, the movement equations are obtained through Newton’s second law:

ẍ =
PPP ASP − PSpC ASP + (FCF − FEF )− bolsẋ− kspring x

msp
(4.48)

4.9.2 Steering unit

Following the same framework as for the priority valve, the flow equations in the steering unit
are:

QLS′ =
PLS − PLS′

((PLS − PLS′)2 + P 2
trans)

1/4
· Cd2ALS ·

√
2

ρlocal
(4.49)

QA1 =
PCF − PLS′

((PCF − PLS′)2 + P 2
trans)

1/4
· Cd2A1(α) ·

√
2

ρlocal
(4.50)

QA2R =
PLS′ − PGS

((PLS′ − PGS)2 + P 2
trans)

1/4
· Cd2A2R(α) ·

√
2

ρlocal
(4.51)

QA2L =
PLS′ − PSC

((PLS′ − PSC)2 + P 2
trans)

1/4
· Cd2A2L(α) ·

√
2

ρlocal
(4.52)

QA3L =
PSC − Psut

((PSC − Psut)2 + P 2
trans)

1/4
· Cd2A3L(α) ·

√
2

ρlocal
(4.53)

QA3R =
PGS − Psut

((PGS − Psut)2 + P 2
trans)

1/4
· Cd2A3R(α) ·

√
2

ρlocal
(4.54)

QT =
Psut − PT

((Psut − PT )2 + P 2
trans)

1/4
· Cd2A10(α) ·

√
2

ρlocal
(4.55)

The pressure build-up equations for fixed volumes in the steering unit are:

ṖLS′ =
β

VLS′
· (QA1 −QLS′ −QA2R −QA2L) (4.56)

Ṗsut =
β

Vsut
· (QA3L +QA3R −QT ) (4.57)

ṖSC =
β

VL
· (QSC −QB) (4.58)

The pressure buildup for the spool displacement is modelled with:

ṖGS =
β

VSS−GS
· (QGS−R −QGS′) (4.59)

The movement equation for the steering unit also follows Newton’s second law:

α̈ =
Mnps + Tsss + ωGS · bGS + (PR − PGS) · V0·10−6

2π

Jsl
(4.60)
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4.9.3 Gear set

The flow equations through the gear set are:

QGS′ = −PGS ·
kleak

60 · 103 105
− V0 · 10−6

2π
· ωGS (4.61)

QGS−R = −PR ·
kleak

60 · 103 105
+
V0 · 10−6

2π
· ωGS (4.62)

4.9.4 Steering cylinder

The pressure on the right side of the cylinder (on the left one is PSC) is:

ṖR =
β

VR
· (QB −QGS−R) (4.63)

The flow through the steering cylinder orifice is:

QB =
PSC − PR

((PSC − PR)2 + P 2
trans)

1/4
· Cd3 ·AL/R ·

√
2

ρlocal
(4.64)
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5 | Validation of the model

Once the model of the system is complete, it is time to validate it. Due to unforeseen events it
was not possible to validate the model with the real setup located in the company, so instead a
theoretical validation is going to be performed. Also, several tests are executed in order to find
some missing or provisional parameters.

To do so, three test are going to be carried out, one with neutral steering, one with leftward
steering and one with rightward, and all the pressures and flows found in the previous chapter
are going to be measured for each of them. These pressures and flows are going to be analyzed
theoretically to prove that they behave in the predicted way.

Afterwards, since the actual steering input used to obtain the unwanted vibrations is unknown,
an analysis of how the output (∆P ) changes when the input is changed is performed. Since
the input, output and displacement per revolution of the gear set are all linked, a third analysis
of how the output changes by leaving the input untouched but varying the displacement per
revolution is also carried out.

With this analysis, a provisional displacement per revolution is obtained. Also, three inputs used
to obtain the required pressure differences in three key parts of the output, are acquired.

A final analysis comparing the unwanted oscillations obtained with a step and a ramp input is
performed in order to see the effect of abrupt or progressive changes of the input in the output.

5.1 Theoretical validation

5.1.1 Neutral steering

For the neutral steering, a velocity of 0 rad/s and a QP = 40 l/min are used as input. Next, four
graphs showing the pressure and flow in both the priority valve and the steering unit are shown.

In Fig.5.1, the pressures in the priority valve are shown. Since there is no steering, there is no
pressure build-up either. The pressure in the Excess Port remains constantly at zero since it is
directly attached to the tank. Since there is no change in flow, the pressure in both the Pilot
Pressure and the Control Flow chambers is the same.

In Fig.5.2, the flows through the priority valve are shown. As said before, the flow from the
Pump can be seen as 40 l/min. Since there is no steering the pressure in the load sensing will
be low and thus the priority valve directs most of the flow towards the Excess Port, and since it
is a dynamic orifice there is some throttle towards the control port (QP = QEF + QCF ). Also,
since there is no steering the the flow through the Pressure Port is zero (QPP = QDyn +QLS).
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Figure 5.1: Graph showing the main pressures in the priority valve when performing neutral steering.
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Figure 5.2: Graph showing the main flows in the priority valve when performing neutral steering.

In Fig.5.3 the pressures on the different chambers of the steering unit are shown. As for the
priority valve, since there is no steering there is no change in flow and thus no difference in
pressure. The highest pressures are located after the A1 and ALS′ orifices, which makes sense
since they are the ones directly joined to the the priority valve and therefore receiving the most
flow. The middle pressures are P2L, P2R, PGS , PSC , which are all interconnected through the
steering cylinder, and since it is not moving, the pressures don’t change. The lowest pressures
are the ones in A3R and A3L.

In Fig.5.4 the flows going through the steering unit are shown. Both QGS and QSC are zero
because both depend on the movement of the steering cylinder. QLS′ is greater than zero since
there is always some standby flow to not have a lag between the steering of the wheel and the
response. The flows through A2L, A2R, A3L and A3R are equal because since there is no flow
going towards the steering cylinder, all the flow that goes through the A2s goes directly through
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the A3s and from there to tank.
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Figure 5.3: Plot showing the pressures at different points of the steering unit when the steering wheel
is in neutral.
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Figure 5.4: Graph showing the different flows going through the steering unit when the steering wheel
is in neutral.

5.1.2 Rightward steering

For the rightward steering, a step input is used. This step input will increase the velocity from
1 rad/s to 1.5 rad/s, 5 seconds into the simulation. The graphs for the changes in pressure and
flow for the priority valve and steering unit are shown below. In all the graphics some unwanted
vibrations can be observed after the step, until the new flow is stabilized, due to the sudden
increase in velocity. This behavior will be analyzed in subsequent sections.

In Fig.5.5, the PEF is not represented in order to show with more clarity the remaining pressures,
but it remains constant at 0 Bar. All the pressures increase in value with the increase in velocity,
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and since the increase in velocity is translated into more flow into the steering unit, the build-
up pressure for PCF , PDyn, PLS and PPP is greater than the pressure build-up for the pump
chamber.
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Figure 5.5: Graph showing the pressures in the priority valve when performing a rightward step steering.

In Fig.5.6 it can be seen that, when the velocity increases, the priority valve conducts more flow
towards the Control Flow and the flow in the Excess Port decreases. As said in the introduction,
the pilot pressure is used to dampen the oscillations, and so the QCF is less oscillatory than QP
or QEF .

0 1 2 3 4 5 6 7 8 9 10
Time (s) 

-10

0

10

20

30

40

50

F
lo

w
 (

l/
m

in
) 

Flow vs time with right step for priority valve

QCF

QDyn

QEF
QLS OLS

QPP

QP

Figure 5.6: Graph showing the main flows in the priority valve when performing a rightward step
steering.

For the steering unit, the pressures and the flows are measured as shown in Fig.5.7. That means
that P2L and PSC are the same pressure; the same happens with P3L and P3R, P2R and PGS and
with PA1 and PLS . Although somewhat redundant information, it is chosen to present it like
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this so as to show the same signals as in the flow graph, and so be able to follow the information
and changes more easily.
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Figure 5.7: Representation on where the pressures and flows are being measured in the steering unit.

In Fig.5.8 it can be seen that the pressure for PA1 increase, since the flow going into the steering
unit has also increased. The pressure in the Gear set chamber also increases since the turning
is to the right and the gear set is on the right. That pressure increases due to more flow going
to the right, meaning that less flow will go through the the A3R orifice (not proportionally since
the flow overall is increasing) and so the pressure there will decrease (P3L). The pressure on the
left remains constant.
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Figure 5.8: Graph showing the pressures in the steering unit when performing a rightward step steering.

In Fig.5.9 the flows going through the different orifices of the steering unit with a right step input
is shown. QA1 is the flow coming from the priority valve, and so following the explanation given
before, it increases as expected. It can be seen that Q2R and QGS increase since they are both
in the path to the right side of the steering cylinder. On the other hand Q3R, which is the flow
that drives the exceeding oil in the right part to tank, decreases. The flow QSC also increases
its absolute value, since the oil on the left chamber is being pushed by the spool in the steering
cylinder and is moving towards Q3L and from there to tank.
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Figure 5.9: Graph showing the main flows in the steering unit when performing a rightward step
steering.

5.1.3 Leftward steering

For the leftward steering a step input is used. The step goes from −1 rad/s to −1.5 rad/s, 5

seconds into the simulation. The flow from the pump is assumed as constant with a value of
40 l/min as before. The pressures and flows through the priority valve remain the same as the
ones obtained with a right step (Fig.5.5 and Fig.5.6 respectively). This is because the priority
valve only intervenes in the amount of flow that goes to the steering unit, which depends on the
amount of movement in the steering unit, not the direction of the movement.
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Figure 5.10: Graph showing the different pressures in the steering unit when performing a leftward
step steering.

In Fig.5.10 the pressures in the different chambers of the steering unit can be seen. Similar to
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the rightward steering pressures (Fig.5.8), the PA1 increases due to the increment in flow going
to the steering unit. But unlike it, for the leftward steering the P2L is the one that increase,
while P3L decreases.
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Figure 5.11: Graph showing the main flows in the steering unit when performing a leftward step
steering.

In Fig.5.11 the flows going through the steering unit are shown. This figure opposites Fig.5.9,
since the flow now goes through QA1, then Q2L and finally QSC , thus increasing these. As
happened before with QSC , now the absolute value of QGS also increases, with the flow going
from the right chamber, through Q3R and from there to tank. Q3L decreases since most of
the flow goes now towards QSC . QLS does not change, since it only changes while there is an
increment in velocity, not when the steady state has been reached (It can be seen changing when
the input is a ramp and not a step).

5.2 Finding the input

In this section, an analysis is going to be performed in order to find the input used by the
company when the unwanted vibrations where found. Looking at Fig.5.12 it can be extrapolated
that the steering wheel input, assuming that the flow from the pump is constant, is an step
input, with the initial velocity being 0 for the first 10 s and then a step increment that makes
the pressure on the steering cylinder increase until around 210 bar.

Manually in the test facility it is difficult to obtain a real step. This can be seen in the figure,
where the pressure increases gradually for some seconds before following the step. To solve this,
a ramp is going to be modeled to mimic the input created physically.
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Figure 5.12: Reminder of how the output pressure in the steering cylinder looks like in the real system,
when the steering wheel turns leftward (red) and rightward (orange).

The input flow on the steering unit is proportional to the velocity of the steering wheel multiplied
by the displacement of the gear set. Since the model has the priority valve in between the steering
unit and the pump, it is not possible to know exactly what percentage of the flow provided by the
pump ends up going to the steering unit, rather than to the excess port. Also, the amount of flow
going into the steering unit depends on the pressure created by the load sensing, making it more
difficult to predict the quantity of flow going into the steering unit. Due to these inconveniences,
a trial and error test has been conducted to find the most accurate input.

With the original model provided by Danfoss, it was not possible to reach the maximum ∆P

obtained in the graph (210 bar), before instability vibrations appeared, as seen in Fig.5.13. Due
to this, some trials have been performed in order to find the correct value of V0 (displacement
per revolution) and of velocity so as to achieve said pressure.
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Figure 5.13: Graph showing the increase in pressure with the original V0 when the velocity of the
steering wheel is increased.
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For the first trial, the same input for all the runs is used, which is a ramp input that starts at 5 s

and grows linearly until it reaches 2.5 rad/s at 10 s and remains constant there until 12 s where
the velocity drops again to zero. This is done to try and mimic the response obtained in the
experimental setup. Seven tests are done, each one with a different value of displacement per
revolution of the gear set. The difference in pressure between the chambers (∆P = PL − PR) is
measured, and the results of the trial can be seen in Fig.5.14.

As seen in the figure, when the displacement per revolution of the gear set increases, the absolute
pressure build-up of the steering cylinder also increases. This is proved by the theory, since with
a bigger displacement per revolution more oil will be displaced, so more flow created, when the
wheel is turned.

In the trial, first the pressure build-up of the system with the current displacement per revolution
(V0) is measured. As it can be seen, it is too low, since the goal is to obtain a pressure build-up of
around 210 bar. But if the V0 is increased too much in order to obtain the desired pressure (as in
the case of V0 = 700 ccm/rev) unwanted vibrations appear (which are different to the vibrations
causing problems in the real system). It can also be seen that the response is completely
symmetrical when turning both to the left and to the right side. Since that is the case, the
following test is done only in one direction.
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Figure 5.14: Graph showing the differences in the measured pressure for the leftward (top) and rightward
(bottom) displacement per revolution of the gear set is changed.

Taking this into account, the next step is using a V0 of 400 - 500 ccm/rev. This number is chosen
as it is fairly large, but not too much so as to create vibrations. It is then attempted to increase
the velocity until a pressure of 210 bar is obtained. The V0 used is 450 ccm/rev. The results of
this step can be seen in Fig.5.15, where the velocities used are 2.5 rad/s (the one used in the
previous step), 3 rad/s, 3.5 rad/s and 3.7 rad/s.
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Figure 5.15: Graph showing the differences in the measured pressure in the rightward direction when
the displacement per revolution of the gear set remains constant but the velocity changes.

Looking at Fig.5.15 it can be seen that increasing the velocity also creates the unwanted
vibrations, and so when the velocity needed to reach a pressure of 210 bar is used (3.7 rad/s) the
vibrations appear.

Analyzing both trials it can be concluded that the pressure vibrations are more sensitive to
changes in the velocity. With this in mind, a third analysis is done where the desired pressure is
tried to be obtained with the lower value of V0.

A summary of this analysis can be observed in Table 5.1 where the velocity needed to obtain
210 bar and its corresponding V0 are recorded. For smaller values of V0 or larger velocities than
the ones shown in the table the pressure either became unstable or larger than 210 bar.

Velocity(rad/s) Displacement(ccm/rev) Stability at 210 bar

1.7 1000 Stable
1.88 900 Stable
2 850 Stable
2.15 800 Stable
2.3 750 Stable
2.45 700 Stable
2.6 650 Stable
2.82 600 Increased vibrations
3.1 550 Increased vibrations
3.44 500 Unstable

Table 5.1: Contains the velocity and its corresponding displacement necessary to obtain pressure of
210 bar. The stability of the pressure is also noted.

Taking this information into account, three step inputs are going to be used to obtain three
∆P corresponding to three key points in Fig. 5.12: The first one is for pressures around the
beginning of the slope (more exactly for a pressure of 12 bar), which is obtained with an input
of 0.5 rad/s. The second one is for pressures in the middle of the slope, where the unwanted
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vibrations are located (∆P = 50 bar), which is obtained with an input of 1.02 rad/s. Lastly, the
third one is to obtain a pressure of 210 bar, which is achieved with a velocity of 2.06 rad/s. All
these inputs are paired with a displacement per revolution of 850 ccm/rev, since it gives some
instabilities but only at the beginning of the top part of the step, similar to the small peak at
Fig.5.12.

Before moving to the next chapter, an extra comparison is going to be performed. This
comparison is going to be of the response obtained between a ramp input and a step input.
For this past analysis a ramp input was used, since the real input was trying to be replicated,
but for the sensitivity analysis performed in Chapter 7 a step input is used. Thus, it is important
to see how the output differs for each of the two.

In the analysis the step input is done 2 s into the analysis and the ramp input starts increasing
at 0.5 s and arrives to the desired velocity at 2 s. Six different end velocities have been used for
the input: 1.02 rad/s, 1.1 rad/s, 1.2 rad/s, 1.3 rad/s, 1.4 rad/s and 1.5 rad/s. The outputs are
paired in colors, and for each color the dashed line represents the ramp input and the solid line
the step input. The result of the analysis can be seen in Fig.5.16.
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Figure 5.16: Comparison of the responses obtained with a ramp and a step input.

It can be seen how, since with a ramp input the change in velocity is less abrupt, the system
becomes less unstable, being able to reach larger outputs before starting to show any vibrations.

Having looked at this graph, the option of choosing 850 ccm/rev is corroborated, since there are
not vibrations neither with the step nor with the ramp inputs.
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Once the mathematical model has been created and validated it is time to linearize it. The
linearization is done to analyze the stability of the system and to find new parameters that,
when applied in the stable system, remove the unwanted vibrations. Linearization is the process
of taking the gradient of a nonlinear function with respect to its variable(s) and creating a linear
representation at that point.

Once the model is linearized, a state space model of the whole system can be constructed.

6.1 Linearization

The seven main equations in the steering unit model are:

• Flow equation with fixed orifice
• Flow equation with variable orifice
• Flow from spool movement
• Pressure build-up with fixed volume
• Pressure build-up with variable volume
• Flow in the gear set
• Newton’s second law

A formulaic linearization of each of them will be performed, in where the actual constant
parameters can be substituted later.

6.1.1 Flow equation with fixed orifice

Since the area of the orifice does not change over time, the only variable is the pressure change
(∆P = Pin − Pout). Using the orifice equation (6.1):

Q = CdA

√
2 ·∆P
ρ

(6.1)

and differentiating it with respect to pressure (6.2):

q =
∂Q

∂∆P

∣∣∣∣
i

·∆p ⇔ q(s) = kqp ·∆p(s) (6.2)

where the sub-index i refers to the different equations with fixed orifices. kqp is the linearization
constant (6.3), which will change for every equation:

kqp =
Cd ·A ·

√
2
ρ

2 ·
√

∆Pi
(6.3)
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6.1.2 Flow equation with variable orifice

The linearized equation for the flow with variable orifice is similar to the one with fixed orifice
but with a second variable, the area of the orifice A(x). The flow equation used now is then
(6.4):

Q = CdA(x)

√
2 ·∆P
ρ

(6.4)

and the differentiation of the equation looks like (6.5):

q =
∂Q

∂X

∣∣∣∣
i

· x +
∂Q

∂∆P

∣∣∣∣
i

·∆p ⇒ q(s) = kqx · x(s) + kqp ·∆p(s) (6.5)

where kqx and kqp are (6.6):

kqx = Cd ·
√

2

ρ
·∆Pi ·

∂A (Xi)

∂X
, kqp =

Cd ·A (Xi) ·
√

2
ρ

2 ·
√

∆Pi
(6.6)

6.1.3 Flow from spool movement

The linearized form for the flow created by the spool movement follows the structure of (6.7):

q(s) = A · x(s) · s+ ∆q(s) (6.7)

6.1.4 Pressure build-up in fixed volume chamber

The pressure build-up equation is already linear, and looks like (6.8):

p(s) =
β

V · s
· (qin(s)− qout(s)) (6.8)

6.1.5 Pressure build-up in variable volume chamber

This pressure build-up equation is also already linearized, and follows the form of (6.9):

p(s) =
Vinitial
β · s

· (qin(s)− qout(s)− v(s) · s) (6.9)

6.1.6 Flow in gear set

The general linearized equation for the flow going through the gear set has the form of (6.10):

q(s) =
−kleak
60 · 108

· p(s) +
−V0 · 10−6

2π
· α(s) · s (6.10)

6.1.7 Newton’s second law

The standard Newton’s second law used looks like (6.11):

m · Ẍ = (P1 − P2) · A− b · Ẋ − k · X (6.11)
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This equation is already linear, and can be solved for x, as shown in (6.12):

x(s) =
(P1(s)− P2(s)) · A
m · s2 + b · s+ k

(6.12)

6.2 Summary of the linearized equations

Once the structure of the different types of linear equations needed have been obtained, a
summary of all the equations used in the model (mirroring the previous summary with the
nonlinear equations) is shown below. The kqp and kqx are not solved and are left in this index
form since their actual value depends on the chosen linearization point.

6.2.1 Priority valve

First, the flow equations (variable orifice, fixed orifice, and created by the spool) are presented.
Then it is turn for the pressures for both fixed volume chambers and variable volume chambers
and finally the Newton Second Law.

The flow equations are:

qEF (s) = kqxEF · x(s) + kqpEF ·∆pP−EF (s) (6.13)

qCF (s) = kqxCF · x(s) + kqpCF ·∆pP−CF (s) (6.14)

qPP (s) = kqpPP ·∆pCF−PP (s) (6.15)

qDYN (s) = kqpDY N ·∆pCF−SpC(s) (6.16)

qLS(s) = kqpLS ·∆pSpC−LS(s) (6.17)

qSpC(s) = Asp · x(s) · s+ qDYN (s) + qLS(s) (6.18)

qPP ′(s) = Asp · x(s) · s+ qPP (s) (6.19)

The linearized pressure equations in the priority valve and pump chambers are:

pP (s) =
β

VP · s
· (qP (s)− qCF (s)− qEF (s)) (6.20)

pCF (s) =
β

VCF · s
· (qCF (s)− qDYN (s)− qPP (s)− qA1(s)) (6.21)

pLS(s) =
β

VLS · s
· (qLS(s)− qLS′(s)) (6.22)

pSpC(s) =
VSpCi
β · s

· qSpC(s) (6.23)

pPP ′(s) =
VPPi
β · s

· qPP ′(s) (6.24)

Finally, the movement of the spool is modelled with equation:

x(s) =
(PPP (s)− PSpC(s)) · ASP
msp · s2 + bols · s+ kspring

(6.25)
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6.2.2 Steering unit

Imitating the order in which the equations were written in the previous summary, for the
linearized equations it is also going to be first the flow equations, then the pressure equations
and finally Newtons Second Law.

The linearized flow equations for the steering unit are:

qLS′(s) = kqpLS′ ·∆pLS−LS′(s) (6.26)

qA1(s) = kqxA1 · x(s) + kqpA1 ·∆pCF−LS′(s) (6.27)

qA2R(s) = kqxA2R · x(s) + kqpA2R ·∆pLS′−GS(s) (6.28)

qA2L(s) = kqxA2L · x(s) + kqpA2L ·∆pLS′−SC(s) (6.29)

qA3L(s) = kqxA3L · x(s) + kqpA3L ·∆pSC−sut(s) (6.30)

qA3R(s) = kqxA3R · x(s) + kqpA3R ·∆pGS−sut(s) (6.31)

qT (s) = kqxT · x(s) + kqpT ·∆psut−T (s) (6.32)

The linearized pressure build-up equations for fixed volumes are:

pLS′(s) =
β

VLS′ · s
· (qA1(s) + qLS′(s)− qA2R(s)− qA2L(s)) (6.33)

psut(s) =
β

Vsut · s
· (qA3L(s) + qA3R(s)− qT (s)) (6.34)

pSC(s) =
β

VSC · s
· (qSC(s)− qB(s)) (6.35)

pGS(s) =
β

VSS−GS · s
· (qA2R(s)− qA3R(s)− qGS(s)) (6.36)

Where qSC(s) = qA2L(s)− qA3L(s). Finally the displacement of the spool-sleeve in the steering
unit looks similar to the one in the priority valve but with angular displacement instead of linear:

αsl(s) =
(PR(s)− PGS(s)) · V0·10−6

2π + bGS · α · s+ δTsss(αi) · α
Jsl · s2

(6.37)

Where αsl is the angular displacement of the sleeve and α is the angular lag between the spool
and the sleeve.

6.2.3 Gear Set

In the Gear Set, the flows are modelled, which linearized look like:

qGS(s) =
−kleak
60 · 108

· pGS(s) +
−V0 · 10−6

2π
· α(s) · s (6.38)

qGS−R(s) =
−kleak
60 · 108

· pR(s) +
V0 · 10−6

2π
· α(s) · s (6.39)
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6.2.4 Steering Cylinder

Finally, the flow through the orifice that does the part of the steering cylinder and the pressure-
buildup in the right chamber (the pressure in the left chamber is pSC(s)) are:

qB(s) = kqpB ·∆pR−SC(s) (6.40)

pR(s) =
β

VR · s
· (qGS−R(s)− qB(s)) (6.41)

6.3 State space Model

Once the parametric linear equations are obtained they can be used to set up a state space
model of the whole system (priority valve, steering unit and steering cylinder). For the state
space model, both the pressure, the velocities and the positions (x and α) are used as states,
which creates a 14x14 state matrix. The inputs are the pump flow (which is considered constant
and with a value of 40 l/min), the tank pressure (which is considered to be 0 bar) and the speed
of steering with the steering wheel (which is going to be modeled as a step input). The output is
∆P = PSC − PR, which is the difference in pressure between both sides of the steering cylinder.

The state space matrices and vectors can be seen in Pag. 42. Here, x are the state vector (and
ẋ the derivative over time of the state vector), A is the state matrix, B is the input matrix, C
is the output matrix and u and y the input and output vectors, respectively.

The fully developed linearization parameters kqx and kqp can be seen in Appendix B.
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7 | Sensitivity Analysis

With the state space model obtained in Chapter 6 and the three inputs decided at the end of
Chapter 5, a sensitivity analysis can be performed.

The sensitivity analysis is carried out as follows: while leaving the rest of the soft parameters
constant, each of them will be analyzed with an array of values. Then, the outputs for the
pressure in the steering cylinder will be compared to each other, to see for which value the
output is the most similar to the one obtained in the real system. Besides that, the root locus
plot will be analyzed where the changing position of the poles and zeros will be studied. This is
done in order to find the value in which the stability of the system is optimum.

The parameters that are going to be analyzed are thus the discharge coefficient of the orifices, the
damping coefficient of the different mechanical parts, the dimensions of the different volumes and
areas of the steering unit and the displacement per revolution of the gear set. The bulk modulus,
although another soft parameter, is going to remain unchanged, since in the mathematical model
it has already been modeled taking into account the changes caused by temperature, pressure
and content of air in the oil.

Before all this, the specific value of the linearization parameters for each of the inputs has to be
found. To simplify things, the input chosen to analyze, is the one with ωsp = 1.02 rad/s, since it
is the one that gives the pressure with the unwanted vibrations.

7.1 Specific state space model

To obtain the state space model specific to the desired input, the values for the linearization
parameters have to be found. This means that the initial pressures for all the states and the
initial position for both the priority valve spool and the steering unit sleeve need to be obtained.

This is done by using the input on the nonlinear model and, once the system has reached a
steady state, the values of the pressures and positions can be extracted.

The last thing needed is the δA
δx/α and δMnps

δα , which are modeled as the slope created by the
different area openings/spring stiffness between two positions around the linearization position.
An example of the Simulink model used to obtain the linearization areas and slopes for the
priority valve can be seen in Fig.7.1.
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Figure 7.1: Simulink model for the obtaining of the areas and slopes for the priority valve.

7.2 Analyzing the original linearized model

Once the state space model is obtained, it can be used to obtain a transfer function model of the
system. A transfer function representation is useful since it shows the value of the different poles
and zeros of the system. The transfer function of the linearized model for the input of 1.02 rad/s

given in the form of gain-zero-pole is:

Tf =
N

D



N =− 3.30e10 s2 (s+ 2.44e14) (s+ 1.70e6) (s+ 2.16e5) (s+ 1.71e5) (s+ 2.44e4) · · ·
· · · (s+ 6373) (s+ 381.2) (s2 + 333.3 s+ 2.81e5) (s2 − 1.06e4 s+ 2.46e8)

D =s2 (s+ 2.44e14) (s+ 1.70e6) (s+ 2.15e5) (s+ 1.59e5) (s+ 7641) (s+ 5840) · · ·
· · · (s+ 381.2) (s+ 22.03) (s2 + 333.3 s+ 2.81e5) (s2 + 2.01e4 s+ 1.43e11)

(7.1)
In a transfer function, poles refer to the values of s for which the denominator (D) is equal to
zero; Zeros refer to the values of s for which the nominator (N) is equal to zero. As it can be
seen in Eq.7.1 the system is comprised of 14 poles and 13 zeros. It can also be seen that some
poles and zeros have a really negative value (s = -2.44× 1014 s−1) which, if represented in a root
locus plot, would be placed on the far left of the plane. These zeros and poles are non-dominant
and so they will have almost no influence in the control and stability of the system.

To reduce the order of the transfer function and thus simplify the analysis, a comparison of the
responses obtained while poles and zeros from the far left are neglected have been done. This
comparison can be seen in Fig.7.2. The order of the transfer function has been reduced but
only neglecting poles and zeros that are purely real, since the elimination of complex poles/zeros
translated into largely different responses. The transfer function obtained is the purple one (11th
order), since the green one (10th order) already gives noticeable differences in the position of the
steady state response.
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#106 Changes in response when reducing the transfer function order 
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Figure 7.2: Plot showing how the response changes when the number of poles and zeros are reduced.
The blue, orange, yellow and purple lines are overlapping.

Tfred =
Nred

Dred



Nred =− 3.30e10 s2 (s+ 1.71e5) (s+ 2.44e4) (s+ 6373) (s+ 381.2) · · ·
· · · (s2 + 333.3 s+ 2.81e5) (s2 − 1.06e4 s+ 2.46e8)

Dred =s2 (s+ 1.59e5) (s+ 7641) (s+ 5840) (s+ 381.2) (s+ 22.03) · · ·
· · · (s2 + 333.3 s+ 2.81e5) (s2 + 2.01e4 s+ 1.43e11)

(7.2)

Thus, the Tfred (7.2) is the transfer function used for the sensitivity analysis. A close-up of the
root locus plot for this transfer function can be seen in Fig.7.3.
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#105 Pole and Zero position for the reduced transfer function

Figure 7.3: Plot showing the poles and zeros for the reduced transfer function. The poles are represented
by blue X and the zeros as red circles.

In Fig.7.3 the dominant poles and zeros of the system are shown. Ideally all the poles and zeros
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should be on the left side of the plot and with a large margin between them and the origin, so
the system would remain stable for a wider range of inputs. It can be seen that all the poles
(blue Xs) are on the negative side of the real axis, which is the stable part, but there are two
complex zeros (red circles) on the right side of the plot, which may increase the instability of
the system and affect the response. Besides that, there are several poles and zeros at the origin,
which are marginally stable now but can become unstable at some inputs.

The change of position of the marginally stable poles and zeros and the position of the RHS (right
hand side) zeros is what is going to be analyzed and optimized by adjusting the soft parameters.

7.3 Analyzing the effect of the discharge coefficients

As it was said in the introduction of the chapter, the analysis is performed by creating an array
with different values of the Cd and obtaining the transfer function for each of systems with
the different discharge coefficients. Afterwards, a comparison of the root locus plots for all the
transfer functions is performed, in order to see the trend of how the position of the poles and
zeros change.

The discharge coefficient is an indicator of the energy loss on an orifice due to the constriction
of the fluid and the resistance that the orifice pieces imposes upon the flow. The discharge
coefficient thus varies from 0 (which would indicate complete loss) to 1 (no loss). It cannot have
a value greater than 1 because that would violate the conservation of energy laws. So in the
analysis the value of Cd2 is going to vary from 0.1 to 1 with an increment of 0.1 each time.
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Figure 7.4: Root locus plot showing the movement tendency of the poles while increasing the Cd2.

In Fig.7.4 the change in position of the dominant poles is shown and in Fig.7.5 the change in the
zeros is shown. As it can be seen in both figures, for the poles and zeros on the left side plane
an increment in the value of Cd2 translate into an increment in stability, while an increment of
Cd2 for the zeros on the right hand side it translates into an increment in magnitude both in its
real and complex values.
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Figure 7.5: Root locus plot showing the movement tendency of the zeros while increasing the Cd2.

7.4 Analyzing the effect of the damping coefficient

Next, the effect on the stability for changes in the damping coefficient of the gear set (bGS) and
the priority valve (bols) are going to be analyzed. The damping coefficient can have a wide range
of values, so the analysis for the bols is done from 1 to 50,000 Ns/m and the bGS from 0.01 to
150 Ns/rad.
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Figure 7.6: Plot of the changing position of the poles of the system when the bols is increased

In Fig.7.6 the changing positions of the poles while increasing the the bols are shown. It can
be seen that the poles follow a tendency of stability until reaching 100 Ns/m. At 500 Ns/m

the complexity of the poles disappear and from then on their stability start to decrease. This
means than an increment of the damping will, at first, dampen the oscillatory behavior of the
poles (which is a good thing), but too much damping will start to affect negatively the stability.
Although in the figure only a closeup of some of the poles is shown, all the ones affected follow
this same path.
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Figure 7.7: Plot of the changing position of the zeros of the system when the bols is increased.

As seen in Fig.7.7 the left hand side of the zeros follow the same trajectory as the poles, but the
RHS zeros do not change positions noticeably.

Now the effect of bGS is going to be analyzed. In Fig.7.8 it is seen again that there is a point
where the complex poles become purely real and then start to loose stability, while the poles
next to the origin become complex.
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Figure 7.8: Plot of the changing position of the poles of the system when the bGS is increased.

In Fig.7.9 it can be seen that, both the less dominant zeros on the LHS (left hand side) and the
complex zeros on the RHS move towards the origin when the damping coefficient increases. The
zeros closer to the origin are not affected by changes in the bGS .
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Figure 7.9: Plot of the changing position of the zeros of the system when the bGS is increased.
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7.5 Analyzing the effect of Areas and Volumes

Another cause of the instabilities can be the dimensions of the volumes and areas. Although
the unwanted vibrations could be caused by the priority valve, in this project it is going to
be assumed that the priority valve works correctly, and only the volumes and the areas in the
steering unit (SU) are going to be changed. This is also due to the believe that it would be easier
for the company to fix their new steering unit rather than to create a brand new priority valve
just to fit the new SU design.

In the SU there are three volumes (VLS′ , Vsut and VGS) and seven areas (A1, ALS′ , A2R, A2L,
A3R, A3L and Asut). These areas can be either static, like the one from the orifice connecting
the load sensing channel from the priority valve to the SU, ALS′ , or dynamic like A1. If the area
belongs to a static orifice, a change in its dimension is what is going to be analyzed. However
if it belongs to a dynamic orifice, both the dimension of the orifice and the slope of the area’s
opening curve are going to be analyzed.

Two different analyses are going to be performed in order to demonstrate the influence of the
different parameters on the stability and the response of the system. For the stability the position
of the zeros and poles is going to be plotted, and for the response the different responses when
the parameters are changed are going to be compared.

Now, an example of each of these types is going to be shown, with a final table summarizing the
effect of all the parameters at the end of the chapter.

7.5.1 Effect of the VLS′

As example of the effect of changing the volumetric capacity of the chambers, the VLS′ analysis
is shown now. The analysis have been done by reducing and increasing the value of the volume.
The decrease reaches up to 50% less of volume and the increment is of at most 100% of the
original (so twice the volume). This is done since it is assumed that the goal is to tweak the
parameters in order to gain stability, not completely change them. By altering the parameters
in a unrealistic manner, they would start affecting each other, and thus a more in deep analysis
should be done, maybe adding or subtracting elements.

In Fig.7.10 the position of the poles when the value of the volume is changed, is shown. The
red square represent the original value of the volume, which is 10−6 m3. When the volume is
increased the complex poles lose complexity and gain stability, but the purely real poles become
more unstable (although all of them remain in the left hand plane). When the volume is decreased
the opposite is true. The poles that are closer to the origin, hence the most dominant poles, are
not affected by the changing volumes.
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Figure 7.10: Pole location when changing the value of VLS′ .

The position of the zeros can be seen in Fig.7.11. It is seen that the LHS zeros increase in
magnitude when the volume is decreased, and the RHS zeros, although they do not cross the 0
axis, they move towards the origin, albeit increasing in complexity. On the other hand, when
the volume is increased the zeros on the LHS move towards the origin and the zeros on the RHS
decrease in complexity but increase their real magnitude.
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Figure 7.11: Zero location when changing the value of VLS′ .

In Fig.7.12 the effect on the response for the different values of VLS′ can be seen. Although in the
figure the different paths cannot be discerned, the scale has been picked to be of these dimensions
in order to be consistent for all the plots, hence making them more easily comparable visually.
To counter the poor visibility, arrows showing the trends when the parameter is increased or
decreased are added. Although it is marked that the system becomes faster when the volume is
increased and slower when it is decreased, it can be seen that changes in the dimensions of this
volume have minimal effect on the response.
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Figure 7.12: Changes and trends of change of the response when the value of VLS′ is changed. The
original value is represented with a red line.

The plots for the position of zeros and poles for the other two volumes (VGS and Vsut) and the
change in the response can be seen in Appendix.C.

7.5.2 Effect of the ALS′

Following the same premise as in the previous subsection, the dimensions of the ALS′ are
also going to varied in a scope of [0.5 ·ALS′ − 2 ·ALS′ ], with the original value being ALS′ =

4.91× 10−6 m2.

In Fig.7.13 the changing positions of the poles are shown. Over all, the system becomes more
stable when the dimensions of ALS′ are increased.
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Figure 7.13: Position of the poles for different values of ALS′ . The original position is marked with a
red square.

In Fig.7.14 the changing positions of the zeros can be seen. The zeros on the RHS increase in
magnitude but their complexity remains unchanged, and the zeros that are affected on the LHS
overall move towards the origin when the area is decreased.
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Figure 7.14: Position of the zeros for different values of ALS′ . The original position is marked with a
red square.

Finally, the differences in the response when the parameter is varied is shown in Fig.7.15. When
compared to the response of the VLS′ , it can be seen that they are inversely proportional, with
the response becoming faster when the dimensions of ALS′ are reduced. But, similarly to the
response in VLS′ , the changes on the volume have omittable effect in the response.
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Figure 7.15: Changes and trends of change of the response when the value of ALS′ is changed. The
original value is represented with a red line.

7.5.3 Effect of A2R and Ȧ2R

As an example of the dynamic orifice, the area and the slope of the 2R orifice are analyzed. The
analyses are done separately: first an analysis similar to the one shown above is done, where the
area is varied from half its original size to twice its size. The second analysis is done by changing
the value of the slope, from a less steep slope to a sharper slope.

The initial value of A2R is 6.897× 10−6 m2. With this in mind, the area is going to be varied in
a scope ranging from 3.45× 10−6 m2 to 1.38× 10−5 m2. The change in the position of the poles
when the area is altered can be seen in Fig.7.16, where the poles become more stable as the area
increases and more unstable when it decreases.
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Figure 7.16: Position of the poles for a range of values of A2R. The original value is represented with
a red square.

In Fig.7.17 the zeros for the different areas are represented. As it happened with ALS′ , the zeros
on the LHS move further towards the left when the area is increased, while the zeros on the RHS
increase in magnitude, thus moving further towards the right. The opposite also occurs. It can
also be seen that the changes in A2R influence visibly more the position of the zeros than the
changes in ALS′ .
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Figure 7.17: Position of the zeros for a range of values of A2R. The original value is represented with
a red square.
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Figure 7.18: Changes and trends of change of the response when the value of A2R is changed. The
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Lastly, the variations in the response are plotted in Fig.7.18. As it can be seen, the system
becomes faster when the dimensions of A2R are increased, and slower when decreased. Although
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the velocity of the response changes, they all follow the same path. When compared to the
changes in the response obtained with VLS′ and ALS′ , it can be seen that the response is affected
more visible when A2R is changed.

While studying the influence of the slope in the position of both poles and zeros it is seen that
it influences considerably less than the areas. Taking this into account, the analysis is done with
a larger scope: from 0.1 · Ȧ2R to 100 · Ȧ2R. This is probably due to the fact that for an input of
1.02 rad/s, a lag (∆α) of around 5◦ is created. When looking at Fig.4.4, it shows that the slope
is almost flat, and so it would need great increase to become noticeable.

In Fig.7.19 the pole position change is shown. As it can be seen, for a zoom similar to the one
done in the other plots, no visible change in position is seen. No close-up plot of any region has
been done for this poles, since the changes were so small that they have been neglected.
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Figure 7.19: Position of the poles when the value of Ȧ2R is changed.

On the other hand, as seen in Fig.7.20, the position of the zeros is visibly affected by the change
of slope. Although as said before, since the original slope is so flat, a reduction of it does not
affect the position, only the increment of slope does. When the slope increases, the zeros on
the right hand side increase both in magnitude and complexity; the zeros further away from the
origin but on the left become more stable and the zeros closer to the origin become slightly more
unstable.
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Figure 7.20: Position of the zeros when the value of Ȧ2R is changed. The zeros for the original value
are represented with a red square.

For the analysis of the response, the plot in Fig.7.21 is shown. It is seen that when the slope of
aperture of A2R flattens, the system slows down, but when it becomes more of a steep curve the
system shifts to an almost ideally fast response. As said before, the difference in the magnitude
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of increment and decrease in the response is due to the fact that the slope is already considerably
flat, so flattering it more will not affect the result significantly.
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Figure 7.21: Changes and trends of change of the response when the value of Ȧ2R is changed. The
original value is represented with a red line.

The same procedure followed in this subsection is followed for the analysis of the rest of the
dynamic orifices. The plots for their poles and zero positions and for their responses can be seen
in Appendix.C.

With this analysis it has been seen that A1 and A3R have a great influence in the position of
the pole whose initial position is p = 22.03 s−1 (which is the most dominant pole before the
marginally stable ones), which in turn have a big influence in the response. This is in accordance
with the fact that A1 is the gateway for the flow, so its increase in dimension translates into
more flow going through the SU. Furthermore, the A3R dimensions are inversely proportional
to the flow going through the steering cylinder, and thus to the ∆P of the cylinder, since if the
dimensions of A3R increase more flow will go through it, hence less through A2R. All of this is
backed up with Fig.7.22 and Fig.7.23 respectively.

In Fig.7.22 it can be seen that, when the dimensions of A1 are reduced drastically, the pole
becomes complex, and thus an oscillatory behavior is introduced to the response, which creates
the overshoot in the yellow line.
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Figure 7.22: Relation between the position of the poles and the behavior of the response when A1 is
changed. The original pole and response are represented with a red square and a red line respectively.

In Fig.7.23 it is shown how when A3R is increased, the position of said pole changes visibly until
it almost reaches zero. This is translated into a much slower system response, since less flow will
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go to the steering cylinder. It can also be seen that, since the original dimensions of A3R are
considerably small, decreasing them more will just slightly affect the response.

0.2 0.4 0.6 0.8 1 1.2 1.4
Time (s)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

D
el

ta
p
re

ss
u
re

(P
a)

#106 Variation in the response while changing A
3R

A3R= 4.7e-8

A3R= 8e-8

A3R= 2e-7

A3R= 4.7e-7

A3R= 8e-7

A3R= 2e-6

A3R= 4e-6

A3R= 8e-6

A3R= 2e-5

A3R= 4.7e-5

Increasing A3R

Decreasing A3R

-20 -15 -10 -5 0
Real Axis (seconds -1)

-20

-15

-10

-5

0

5

10

15

20

25

30

Im
ag

in
ar

y 
A
xi

s 
(s

ec
o
n
d
s 

-1
)

Pole position while changing A3R

Increasing A3R

Figure 7.23: Relation between the position of the poles and the behavior of the response when A3R is
changed. The original pole and response are represented with a red square and a red line respectively.

This is also reflected in the change of the slopes Ȧ1 and Ȧ3R where the sudden change in the
response when the slope is increased also translates to a visible change in the pole from p =

22.03 s−1 to p = 38.03 s−1 when Ȧ1 is increased and in a similar way when Ȧ3R is increased.

7.6 Effect of V0

Finally, an analysis of the effect of the displacement per revolution of the gear set (V0) is
performed. Although in Chapter 5 an analysis regarding the relation between the velocity of the
gear wheel, the displacement per revolution and the ∆P response has been done, in this new
analysis the differences in value of the steady state are not going be looked into. Instead, the
influence of V0 in the stability of the system and in the velocity of the response is going to be
analyzed.
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Figure 7.24: Variation of the positions of the poles when the value of V0 is changed. A close up of the
smaller poles is shown on the right. The original position is marked with a red square.

As seen in Fig.7.24 the system becomes more stable when the value of V0 is reduced, both by
increasing the magnitude of the poles closer to the origin and by reducing the complexity of the
complex poles.

In Fig.7.25 the position of the zeros is represented. When the value of the displacement is
reduced, the position of the zeros on the right hand plane is moved more towards the origin, and
the zeros further away on the left hand plane also move towards the origin.
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Figure 7.25: Variation of the positions of the zeros when the value of V0 is changed. A close up of the
smaller poles is shown on the right. The original position is marked with a red square.

In Fig.7.26 the changes in the responses are shown. Looking past the differences in the steady
state value, it can be seen that the system gets faster as the value of V0 decreases. This correlates
with the change in position toward the far left of one of dominant pole shown in Fig.7.24.
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Figure 7.26: Changes and trends of change of the response when the value of V0 is changed. The
original value is represented with a red line.

With the analysis done, but before finding the new parameters that would enhance the stability
and response, some guidelines for these parameters are chosen. First, the minimum value of the
areas is chosen to be Amin = 0.3 mm2, since due to the density of the oil, a smaller area would
prevent the oil to pass through. Second, the maximum value an area can take is chosen to be
Amax = 7 mm2 since a bigger orifice would stop working properly since all the oil would be able
to pass freely. Finally, by looking at other SU models from the company, it has been confirmed
that the steering unit could have a reduced value of V0.

As a summary of all the analyses, Table 7.1 has been created where each parameter is analyzed
on how to change it in order to increase the overall stability and the response. Although the
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scope of the new parameters will not have much of an impact in the response, it has been decided
to increase the time it takes to reach the steady state slightly, since it is more in accordance
with the real response. An I has been written as short for Increase if the parameter has to be
increased, and a D short for Decrease if the parameters has to be decreased. If the parameter’s
value is marked with −− it means that it does not affect the result noticeably and thus it has
been neglected.

In the table, parameters such as discharge coefficient or damping coefficient have not been
written, since their values are much more fluid and will be used only for last retouches.

Stability Response Stability Response
VLS′ I – A3R D I
VGS D – A3L I I
Vsut D – Ȧ1 I D
ALS′ I – Ȧ2R – D
A1 I I Ȧ2L I D
A2R I D Ȧ3R I D
A2L I I Ȧ3L – D
V0 D D

Table 7.1: Summary of the action needed to do to the dimensions of each parameter in order to increase
the stability or improve the response.
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8 | Improved Model

8.1 Improved linear model

The first parameters that are going to be changed for the improved model are the ones that lie
outside the maximum and minimum dimensions. That is, A2L which is going to be increased
from 0.19 mm2 to 0.3 mm2 and A3L which is going to be decreased from 10 mm2 to 7 mm2, to
mach the limiting dimensions previously described. In reality, the increase in A2L will reduce
the amount of flow going through A2R and thus to the gear set. However, it will increase the
stability since, by increasing the area, the flow will be less irregular. In Fig.8.1 the new position
for the poles and zeros when these two parameters are changed can be seen. Although the less
dominant poles and zeros become more unstable, the pole in position p = −22 s−1 which, as seen
in the previous chapter, was the one with most influence in the stability and response, doubles
its value, thus increasing the stability.
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Figure 8.1: Comparison between the positions of the old and new poles and zeros. On the right a close
up of the poles closer to the origin. The green arrows mark the trend of change between old and new

models.

On the other hand, the steady state response does not change, even though the system becomes
faster (due to said pole), as seen in Fig.8.2.
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Figure 8.2: Comparison between the step response obtained with the original transfer function (red)
and the new one with the A2L and A3L parameters changed (blue).
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The next parameters that are going to be changed are: The area A1, which is going to be
decreased from 4.9 mm2 to 4 mm2 since, as seen in the previous chapter it shifts the poles closer
to zero no the left. The area A3R from 0.47 mm2 to the minimum, that is 0.3 mm2, since it
both improves the stability and also in the real model it would permit more flow to go through
the gear set, since less flow would go through it and thus to tank. The last parameter is the
displacement per revolution, which is going to be decreased from 850 ccm/rev to 500 ccm/rev.
This is done to increase the stability, and also, it will make the gear wheel turns less powerful
and thus make the changes in flux less abrupt in the real model.

A plot comparing the original model, the previous model (with only A2L and A3L changed) and
this new model can be seen in Fig.8.3. In this plot it can be seen that with this new model the
pole in p = −22 s−1 becomes even more stable, moving from around 44 s−1 to around 78 s−1, and
the zeros on the right hand side move slightly closer to the origin.
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Figure 8.3: Comparison of the pole and zero position between the original model (red), the previous
model (green) and the new model (blue). The green lines mark the direction of change between old and

new positions.

The presence of zeros on the RHS usually creates "undershoot" in the system response. That
is, for this system the response would have an initial positive slope before going negative, which
would be dangerous in real life, since the vehicle would start turning to the wrong side before
turning to the correct side. That is why it would be ideal to be able to move it to the origin or
left hand side. Since that undershoot was not visible in any of the responses and the zeros were
too far into the RHS to be able to move them to the left just by tweaking parameters, it has
been decided to not try to improve their position any more.

The discharge coefficients of the system are not going to be changed either, since the original
ones are acceptable enough when compared to other discharge coefficients from systems that
have been tested experimentally. Ideally their value would be as close as possible to 1, limiting
the energy lost from the system, but this is however difficult to obtain experimentally.

The damping coefficient for the gear set has been increased, in order to increase the time response
of the system, to the same value as the damping coefficient from the priority valve. That is,
bOLS = 20 Ns/m.

When choosing the changes in slope, it has been decided to only change Ȧ1 by increasing it, since
the other two slopes that affect the stability are Ȧ2L and Ȧ3R. Ȧ2L and Ȧ3R could improve the
stability by being less steep, but those are the slopes corresponding to the areas that are already
at its minimum value, and it would not be reasonable to reduce it more.
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Finally, although the volumes do change the position of the poles, the poles that get changed
are non-dominant poles, or at least poles whose change in position do not affect noticeably the
response. Taking this into account it has been decided not to change the value of non of the
three volumes.

Applying all these changes, the final position of the poles and zeros for the improved model looks
like Fig.8.4.
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Figure 8.4: Comparison between the improved model (blue) and the original model (red). The green
arrows signal the trend of change in position.

As can be seen in the figure, although the trend for the non-dominant poles located in the x-
axis is to move towards the origin, the complex poles have decreased their complex value and
increased their real value. This is beneficial as they will decay faster, hence they will influence
less in the response. Also, since their complex value has been reduced, the frequency of their
oscillations will be slower.

The final value of the the dominant pole located at p = −22 s−1 has increased in magnitude until
reaching the value of p = −84.6 s−1, which makes the system noticeably more stable. The final
value of the the zeros on the RHS is similar to the one obtained in the previous model.

8.2 Improved nonlinear model

With the information gathered in Chapter 7, the nonlinear model can also be improved. The
improvements in the nonlinear model are the following:

First, as in the improved linear model, the displacement per revolution of the gear set have been
reduced to 500 ccm/rev.

Second, the maximum and minimum openings for the areas have been set to 7 mm2 and 0.3 mm2

respectively, except for the openings of the A1 orifice, since it is the gateway for the rest of
orifices and thus needs to provide enough oil for all of them.

Finally, instead of reducing the areas, since for the nonlinear model an array of different
dimensions are used, the slopes are the ones that were changed. Taking into account that the
model has to perform equally great when the wheel is turned in both directions all slopes have
been smoothed out and made overall less steep, thus providing a more progressive increase in flow
when the steering wheel is turned, instead of the abrupt increase provided in the original model.
A comparison between the areas from the original model and the areas from the improved model
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can be seen in Fig.8.5. If the two plots are compared, it can be seen that the sudden changes
in slope have been removed and that the area of the A1 orifice is always greater than any of
the other areas, thus the flow in the steering unit does not decrease. Although for this first
improvement the slope of areas A2L and A3R are equal (same for A2R and A3L), in subsequent
models this could be looked into in more depth.
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Figure 8.5: Left: plot showing the improved areas for the Steering Unit. The orifice A2L follows the
same path as A3R and the orifice A2R follows the same path as A3L. Right: plot showing the original

areas for the Steering Unit.

Once the new areas are obtained, a comparison of the response (∆P ) obtained with the different
models is acquired. In this comparison the original model, the model obtained in Chapter 5 (so
with equal areas as the original but different V0) and the improved model are going to be looked
into. A plot showing these three responses can be seen in Fig.8.6.
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Figure 8.6: Comparison of the responses obtained with the original model (green), the model obtained
in the validation chapter (orange) and the improved model (blue).

It can be seen in the figure how, for the original model, the system would become completely
unstable when the required 210 bar pressure was trying to be obtained. This pressure was
obtained with a V0 = 135 ccm/rev and a steering wheel velocity of 12.1 rad/s.

With the Chapter 5 method, which has the same areas as the original model but the displacement
per revolution different, the response would have unwanted vibrations. However, instead of of
remaining constant as in the initial model, they would die out after some seconds, although some
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remnants of the oscillations would prevail. This response was obtained with a ωsp = 2.06 rad/s

and a V0 = 850 ccm/rev.

The final improved response, obtained with the new areas and a V0 = 500 ccm/rev shows no
vibration when the required pressure is obtained, although some lumps can be seen in the
curved part of the plot. The velocity required to obtain this pressure is ωsp = 3.55 rad/s,
which is considerably less than the one needed for the original model.
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9 | Conclusions and future work

The conclusions of this master thesis are:

• A mathematical model has been created from an experimental setup in order to better
understand the system.

• A linearized model has been obtained from the nonlinear model in order to analyze the
causes of the unwanted behaviour.

• A validation of the system has been performed in order to prove that the simulated system
behaves in a logic way.

• An analysis of the relation between velocity input and pressure drop in the steering cylinder
has been carried out in order to extract an initial guess of the input and displacement per
revolution of the gear set used in the experimental setup.

• A sensitivity analysis has been conducted to gain a deep understanding of how each of
the components of the real system affect the stability and response of the system. The
sensitivity analysis has been done of both the pole and zero position and the response of
the system.

• An improved model has been constructed in which, by changing the areas and displacement
per revolution of the gear set, the unwanted behaviour is corrected.

As future work, the following ideas and recommendations are provided:

• A validation of the original steering system simulation with the experimental setup.
• A comparison between the results obtained with the improved model and the ones obtained

once said changes have been implemented in the experimental setup.
• A more in depth analysis of the area openings to obtain a more realistic opening curve.
• An optimization analysis to find the best trade-off between velocity of the response and

stability of the system.
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A | Data Sheet OLS 40/80
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B | Linearized parameters

The linearized parameters for the priority valve are:

kqxCF = sgn(PPi − PCFi) · Cd1 ·

√
2 · |PPi − PCFi|

ρ
· δ ACF (B.1)

kqxEF = sgn(PPi − PEFi) · Cd1 ·

√
2 · |PPi − PEFi|

ρ
· δ AEF (B.2)

kqpCF = sgn(PPi − PCFi) ·
Cd1 ·ACFi

√
2
ρ

2 ·
√
PPi − PCFi

(B.3)

kqpEF = sgn(PPi − PEFi) ·
Cd1 ·AEFi

√
2
ρ

2 ·
√
PPi − PEFi

(B.4)

kqpLS = sgn(PDYNi − PLSi) ·
Cd2 ·ALS

√
2
ρ

2 ·
√
PDYNi − PLSi

(B.5)

kqpDY N = sgn(PCFi − PDYNi) ·
Cd2 ·ADYN

√
2
ρ

2 ·
√
PCFi − PDYNi

(B.6)

kqpPP = sgn(PCFi − PPPi) ·
Cd2 ·APP

√
2
ρ

2 ·
√
PCFi − PPPi

(B.7)

And for the steering unit and steering cylinder:

kqxA1 = sgn(PCFi − PLS′i) · Cd2 ·

√
2 · |PCFi − PLS′i|

ρ
· δ A1 (B.8)

kqxA2L = sgn(PLS′i − PSCi) · Cd2 ·

√
2 · |PLS′i − PSCi|

ρ
· δ A2L (B.9)

kqxA2R = sgn(PLS′i − PGSi) · Cd2 ·

√
2 · |PLS′i − PGSi|

ρ
· δ A2R (B.10)

kqxA3L = sgn(PSCi − Psuti) · Cd2 ·

√
2 · |PSCi − Psuti|

ρ
· δ A3L (B.11)

kqxA3R = sgn(PGSi − Psuti) · Cd2 ·

√
2 · |PGSi − Psuti|

ρ
· δ A3R (B.12)

kqxAT = sgn(Psuti − PT ) · Cd2 ·

√
2 · |Psuti − PT |

ρ
· δ A10 (B.13)

kqpA1 = sgn(PCFi − PLS′i) ·
Cd2 ·A1i

√
2
ρ

2 ·
√
PCFi − PLS′i

(B.14)
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kqpLS′ = sgn(PLS′i − PLS) ·
Cd2 ·ALS′

√
2
ρ

2 ·
√
PLS′i − PLS

(B.15)

kqpA2L = sgn(PLS′i − PSCi) ·
Cd2 ·A2Li

√
2
ρ

2 ·
√
PLS′i − PSCi

(B.16)

kqpA2R = sgn(PLS′i − PGSi) ·
Cd2 ·A2Ri

√
2
ρ

2 ·
√
PLS′i − PGSi

(B.17)

kqpA3L = sgn(PSCi − Psuti) ·
Cd2 ·A3Li

√
2
ρ

2 ·
√
PSCi − Psuti

(B.18)

kqpA3R = sgn(PGSi − Psuti) ·
Cd2 ·A3Ri

√
2
ρ

2 ·
√
PGSi − Psuti

(B.19)

kqpAT = sgn(Psuti − PT ) ·
Cd2 ·A10i

√
2
ρ

2 ·
√
Psuti − PT

(B.20)

kqpB = sgn(PRi − PSC) ·
CdB ·AB

√
2
ρ

2 ·
√
PRi − PSC

(B.21)
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C | More sensitivity analysis

The pole and zero position when the value of Vsut is changed can be seen in Fig.C.1 and Fig.C.2
respectively.
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Figure C.1: Position and trend of variation of the poles when the value of Vsut is either increased or
decreased. The original value is Vsut = 5e-6m3
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Figure C.2: Position and trend of variation of the zeros when the value of Vsut is either increased or
decreased. The original value is Vsut = 5e-6m3

The changes in the response when Vsut is varied is plotted in Fig.C.3. The trend of change is
shown with green arrows pointing the direction of the change.
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Figure C.3: Plot showing how the response of the system changes when Vsut is changed. The original
response is represented with a red line.

The pole and zero position and the response when the value of VGS is changed can be seen on
Fig.C.4, Fig.C.5 and Fig.C.6 respectively.

-2 -1.5 -1 -0.5 0
Real Axis (seconds -1) #105

-5

-4

-3

-2

-1

0

1

2

3

4

Im
ag

in
ar

y 
A
xi

s 
(s

ec
o
n
d
s 

-1
)

#105 Pole position while changing VGS

V
GS

 = 2.5e-6

V
GS

 = 3e-6

V
GS

 = 3.5e-6

V
GS

 = 4e-6

V
GS

 = 5e-6

V
GS

 = 6e-6

V
GS

 = 7e-6

V
GS

 = 8e-6

V
GS

 = 9e-6

V
GS

 = 1e-5

Decreasing VGS

Decreasing VGS

Decreasing VGS

Increasing VGS

Increasing VGS

Increasing VGS

Figure C.4: Position and trend of variation of the poles when the value of VGS is either increased or
decreased. The original value is VGS = 5e-6m3
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Figure C.5: Position and trend of variation of the zeros when the value of VGS is either increased or
decreased. The original value is VGS = 5e-6m3
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Figure C.6: Plot showing how the response of the system changes when VGS is changed. The original
response is represented with a red line.

A2L and Ȧ2L

-2.5 -2 -1.5 -1 -0.5 0
Real Axis (seconds -1) #106

-4

-3

-2

-1

0

1

2

3

Im
ag

in
ar

y
A
xi

s 
(s

ec
on

d
s 

-1
)

#105 Position of poles while changing A2L

A
2L

= 1.9e-8

A
2L

= 8e-8

A
2L

= 1.2e-7

A
2L

= 1.9e-7

A
2L

= 5e-7

A
2L

= 1e-6

A
2L

= 5e-6

A
2L

= 1e-5

A
2L

= 5e-5

A
2L

= 9e-5

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

#104

-4

-3

-2

-1

0

1

2

3

#105

Increasing A2L

Increasing A2L

Increasing A2L

Increasing

Increasing

Figure C.7: Position and trend of variation of the poles when the value of A2L is either increased or
decreased. The original value is represented with a red square.
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Figure C.8: Position and trend of variation of the zeros when the value of A2L is either increased or
decreased. The original value is represented with a red square.
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Figure C.9: Plot showing how the response of the system changes when A2L is changed. The original
response is represented with a red line.
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Figure C.10: Position and trend of variation of the poles when the value of Ȧ2L is either increased or
decreased. The original value is represented with a red square.
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Figure C.11: Position and trend of variation of the zeros when the value of Ȧ2L is either increased or
decreased. The original value is represented with a red square.
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Figure C.12: Plot showing how the response of the system changes when Ȧ2L is changed. The original
response is represented with a red line.
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Figure C.13: Position and trend of variation of the poles when the value of A3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.14: Position and trend of variation of the zeros when the value of A3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.15: Plot showing how the response of the system changes when A3L is changed. The original
response is represented with a red line.
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Figure C.16: Position and trend of variation of the poles when the value of Ȧ3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.17: Position and trend of variation of the zeros when the value of Ȧ3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.18: Plot showing how the response of the system changes when Ȧ3L is changed. The original
response is represented with a red line.
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Figure C.19: Position and trend of variation of the poles when the value of A3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.20: Position and trend of variation of the zeros when the value of A3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.21: Plot showing how the response of the system changes when A3R is changed. The original
response is represented with a red line.
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Figure C.22: Position and trend of variation of the poles when the value of Ȧ3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.23: Position and trend of variation of the zeros when the value of Ȧ3R is either increased or
decreased. The original value is represented with a red square.
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Figure C.24: Plot showing how the response of the system changes when Ȧ3R is changed. The original
response is represented with a red line.
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Figure C.25: Position and trend of variation of the poles when the value of A1 is either increased or
decreased. The original value is represented with a red square.
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Figure C.26: Position and trend of variation of the zeros when the value of A1 is either increased or
decreased. The original value is represented with a red square.
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Figure C.27: Plot showing how the response of the system changes when A1 is changed. The original
response is represented with a red line.
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Figure C.28: Position and trend of variation of the poles when the value of Ȧ1 is either increased or
decreased. The original value is represented with a red square.
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Figure C.29: Position and trend of variation of the zeros when the value of Ȧ1 is either increased or
decreased. The original value is represented with a red square.
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Figure C.30: Plot showing how the response of the system changes when Ȧ1 is changed. The original
response is represented with a red line.
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