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Preface

This project is written in the ninth and tenth semester mathematics at Aalborg
University during the spring semester of 2019 and autumn semester of 2020. The
theme of this project is harmonic analysis with focus on the theory of wavelets frames
and the discrete wavelet frame and orthonormal wavelet transformation. The pre-
requisite knowledge required to read this project is mathematical knowledge cor-
responding to having completed a bachelor in mathematics and understand the
concept of orthonormal wavelets and its construction. References are denoted by
numbers (e.g. [1]) corresponding to numbers in the bibliography. Definitions, theo-
rems, propositions, corollaries, and lemmas are numbered consecutively according
to the corresponding chapter, section and subsection.

Aalborg University, June 2, 2020

Peter Løfqvist Henriksen
<plhe15@student.aau.dk>
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Chapter 1

Introduction

The orthonormal wavelet transformation is a tool used in applicable harmonic
analysis to create decompositions of signals, such as sound or images. In contrast
to the Fourier transformation, the orthonormal wavelet transformation is effec-
tive in finding localized transient phenomena. Constructing such wavelets can be
quite troublesome and taxing, thus a less troublesome and taxing method for de-
composing will be researched in this project and compared to the orthonormal
wavelet transformation. This method is called the wavelet frame transformation,
or framelet transformation, and is based on a generalisation of basis called frames.
This project is a continuation of the project Wavelets [6] which explore the design
of compactly supported wavelets and how to construct them. First some impor-
tant information from Wavelets will be stated, followed by the definition of Frames.
Frames are then used to construct wavelets frames and from these constructions,
the respectively discrete transformation will be defined. A discussion then fol-
lows to determine the pros, cons and performance at noise reduction between the
orthonormal wavelet transformation and wavelet frame transformation.
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Chapter 2

Wavelets With Compact Support

In this chapter, orthonormal wavelets with compact support will be summarized
from Wavelets [6].

Orthonormal wavelets are generally constructed from a multiresolution analysis
(MRA). An MRA is defined as follows:

Definition 2.1 (Multiresolution analysis)
A multiresolution analysis (MRA) is a sequence of closed subspaces Vj ⊂ L2 (R)
for j ∈ Z satisfying

(i) Vj ⊂ Vj+1 for all j ∈ Z,

(ii) f ∈ Vj, if and only if, f (2 (·)) ∈ Vj+1 for all j ∈ Z,

(iii)
⋂

j∈Z Vj = {0},

(iv)
⋃

j∈Z Vj = L2 (R),

(v) There exist a function ϕ ∈ V0 such that {ϕ (· − k) | k ∈ Z} is an ortho-
normal basis for V0.

The function ϕ in Definition 2.1 (v) is called a scaling function of the given MRA. It is
possible, using the structure of the MRA, to construct a set of disjointed orthogonal
closed subspaces of L2 (R), Wj for j ∈ Z, such that

L2 (R) =⊕∞

j=−∞
Wj

where Wj is the orthogonal complement of Vj in Vj+1. If there exist a function
ψ ∈W0 such that {ψ (· − k) | k ∈ Z} is an orthonormal basis for W0, then ψ is called

3



4 Chapter 2. Wavelets With Compact Support

an orthonormal wavelet and {2
j
2 ψ
(
2j (·)− k

)
| j, k ∈ Z} forms an orthonormal

basis for L2 (R). It has been shown, in [6], that any ψ ∈ W0 is an orthonormal
wavelet for L2 (R), if and only if,

ψ̂ (2ω) = eiων (2ω)m0 (ω + π)ϕ̂ (ω)

for almost every ω ∈ R and some 2π-periodic measurable function ν such that

|ν (ω) | = 1

almost everywere on (−π, π). The function m0 is defined as

m0 (ω) = ∑
k∈Z

ake−ikω (2.1)

where ak = 1
2

〈
ϕ
( 1

2 x
)

, ϕ (x− k)
〉

and ϕ is a scaling function of the corresponding
MRA. Since W0 ⊆ V1, ψ ∈ W0 can be described as a countable linear combination
of translates of ϕ (2x) such that

ψ (x) = 2 ∑
k∈Z

(−1)k a−k ϕ (2x− (k− 1)) . (2.2)

This means that the wavelet ψ have compact support if the corresponding scaling
function ϕ has compact support. If it is possible to construct a scaling function with
compact support, then it is possible to directly construct wavelets with compact
support. By assuming that m0 is a trigonometric polynomial satisfying

m0 ∈ C1 (−π, π) is a 2π-periodic function,

|m0 (ω) |2 + |m0 (ω + π) |2 = 1,

|m0 (0) | = 1.

(2.3)

and

m0 (ω) 6= 0 for ω ∈
[
−1

2
π,

1
2

π

]
, (2.4)

ϕ is constructed by letting

ϕ̂ (ω) =
∞

∏
j=1

m0

(
2−jω

)
. (2.5)

Then ϕ is a scaling function with compact support for a MRA. The question is now,
does there exist such a m0 function? The answer is yes and can be constructed by
finding a function g such that g (ω) = |m0 (ω) |2. This function must be a non-
negative trigonometric polynomial satisfying

(i) g(ω) + g(ω + π) = 1 for all ω ∈ (−π, π) ,

(ii) g(0) = 1,

(iii) g(ω) > 0 for ω ∈
[
−1

2
π,

1
2

π

]
.

(2.6)
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A function satisfying this is

gk (ω) = 1− ck

∫ ω

0
(sin (t))2k+1 dt

where

ck =
∫ π

0
(sin (t))2k+1 dt.

The Haar wavelet, Example 3.4 from [6], can be constructed from this function by
letting k = 0 such that g0 (ω) = 1

2 (1 + cos ω) and thus

1
2

(
1 + eiω

) 1
2

(
1 + e−iω

)
=

1
2
(1 + cos (ω)) .

This gives m0 = 1
2

(
1 + eiω)which constructs the scaling function ϕ (x) = 1[−1,0) (x)

and thus constructs the Haar wavelet

ψ (x) = ϕ (2x + 1)− ϕ (2x)

= 1[−1,− 1
2 )
− 1[− 1

2 ,0).





Chapter 3

Frames

In this chapter, the theory of frames will be described such that construction of
wavelet frames is possible. This chapter is based on [3].

For this chapter, H denotes a separable Hilbert space such that H 6= {0}. Ev-
ery element f ∈ H can be described as a linear combination of elements fk and
unique coefficients ck ( f ) such that

f =
∞

∑
k=1

ck ( f ) fk, (3.1)

where { fk}∞
k=1 is a basis for H. Frames have a similar structure as the basis for H.

A frame is also a sequence of elements { fk}∞
k=1 in H such that every f ∈ H can be

described as in Equation (3.1), but the coefficients ck ( f ) are not necessarily unique.

Definition 3.1 (Frame)
A sequence { fk}∞

k=1 in H is a frame for H if there exist constants A, B > 0 such
that

A ‖ f ‖2
H ≤

∞

∑
k=1
|〈 f , fk〉|2 ≤ B ‖ f ‖2

H , ∀ f ∈ H. (3.2)

The constants A and B are called frame bounds. It is trivial to see that the frame
bounds are not unique, but there exist thus so-called optimal frame bounds. These
are called the optimal upper frame bound and optimal lower frame bound and are, re-
spectively, the infimum over all upper frame bounds and the supremum over all
lower frame bounds. When these optimal frame bounds coincide, the frame is
called a tight frame.

7



8 Chapter 3. Frames

Definition 3.2
A sequence { fk}∞

k=1 in H is a tight frame if there exists a constant A > 0 such
that

∞

∑
k=1
|〈 f , fk〉|2 = A ‖ f ‖2

H , ∀ f ∈ H. (3.3)

The constant A is called the frame bound.

Testing if a sequence is a frame can be taxing, since Equation (3.2) needs to be
satisfied for all f ∈ H. The following lemma states that it is only necessary to
check Equation 3.2 over a dense subset of H instead of all of H.

Lemma 3.3
Let { fk}∞

k=1 be a sequence of elements in H and let A, B > 0 exist such that

A ‖ f ‖2
H ≤

∞

∑
k=1
|〈 f , fk〉|2 ≤ B ‖ f ‖2

H , ∀ f ∈ V (3.4)

where V is a dense subset of H. Then { fk}∞
k=1 is a frame for H with frame

bounds A, B.

Proof
Since V is a dense subset ofH, for every f ∈ H, there exists a sequence of functions
fn ∈ V where

∃N ∈ Z∀n ≥ N : ‖ fn − f ‖H <
1
n

.

This gives that { fn}∞
n=1 converges to f . Using this fact, Fatou’s lemma and Equation

(3.4)

A ‖ f ‖2
H = lim

n→∞

(
A ‖ fn‖2

H

)
≤ lim

n→∞

∞

∑
k=1
|〈 fn, fk〉|2

≤
∞

∑
k=1

lim
n→∞
|〈 fn, fk〉|2

=
∞

∑
k=1
|〈 f , fk〉|2.
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The same arguments can be used to achieve

∞

∑
k=1
|〈 f , fk〉|2 ≤ B ‖ f ‖2

H .

�

A sequence { fk}∞
k=1 is called a complete sequence if span{ fk}∞

k=1 = H. This implies
that a frame { fk}∞

k=1 is complete. Sequences { fk}∞
k=1 that are not complete inH can,

therefore, not form frames for H, but it is still possible that it forms a frame for the
closed linear span of { fk}∞

k=1. This gives a general definition for every sequence.

Definition 3.4
Let { fk}∞

k=1 be a sequence of elements in H. Then { fk}∞
k=1 is called a frame

sequence if it is a frame for span{ fk}∞
k=1.

Let us examine what happens with span{ fk}∞
k=1 if { fk}∞

k=1 is a frame for H. In that
case,

span{ fk}∞
k=1 = H.

This is due to the fact that H can be split into a direct sum of orthogonal spaces

H = U ⊕U⊥.

Now we define U = span{ fk}∞
k=1. If f ∈ H is chosen to be orthogonal to all fk,

k ∈N, then

0 =
∞

∑
k=1
|〈 f , fk〉|2 ≥ A ‖ f ‖2 ≥ 0

which implies that f = 0. This gives that U⊥ = {0} which gives the wished
result. It is then trivial that every frame of H is also a frame sequence of H.
From Definition 3.1, it is clear that a frame { fk}∞

k=1 is a bessel sequence, defined in
Definition 3.1.2 from [3], with a Bessel bound equal to the upper frame bound of
{ fk}∞

k=1. The operator

T : `2 (N)→ H

defined as

T ({ck}∞
k=1) =

∞

∑
k=1

ck fk (3.5)
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is then a bounded operator by Theorem 3.1.3 from [3]. Corollary 3.1.5 from [3]
states that for all {ck}∞

k=1 ∈ `2 (N), ∑∞
k=1 ck fk converges unconditionally. This

means that the order of elements in the sum does not matter. Using Lemma 3.1.1
from [3], the adjoint operator of T

T∗ : H → `2 (N)

is given by

T∗ ( f ) = {〈 f , fk〉}∞
k=1. (3.6)

The operator T is called the pre-frame operator or the synthesis operator, and the
adjoint operator T∗ is called the analysis operator. These operators are used to prove
that every f ∈ H is actually able to be described be a infinite linear combination
of elements in a frame of H. Composing T and its adjoint operator T∗, the frame
operator is obtained

S : H → H,

described by

S ( f ) = TT∗ ( f )

=
∞

∑
k=1
〈 f , fk〉 fk.

(3.7)

Since { fk}∞
k=1 is a Bessel sequence inH, ∑∞

k=1〈 f , fk〉 fk will converge unconditionally
for all {ck}∞

k=1 ∈ `2 (N). Some important properties of S will now be stated.

Lemma 3.5
Let { fk}∞

k=1 be a frame of H with frame operator S and frame bounds A, B. Then
the following statements are true:

(i) S is bounded, invertible, self-adjoint, and positive.

(ii) {S−1 fk}∞
k=1 is a frame with frame operator S−1 and frame bounds B−1, A−1.

(iii) if A, B are optimal frame bounds for { fk}∞
k=1, then the bounds B−1, A−1 are

optimal for {S−1 fk}∞
k=1.

Proof
(i): Since T and T∗ are bounded linear operators and S = TT∗

‖S‖H = ‖TT∗‖H
≤ ‖T‖H ‖T

∗‖H
= ‖T‖2

H ≤ B
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and thus makes S bounded. It is trivial that S is Self-adjoint since

S∗ = (TT∗)∗ = TT∗ = S.

Equation (3.2) can be rewritten as

A〈 f , f 〉 ≤ 〈S( f ), f 〉 ≤ B〈 f , f 〉, ∀ f ∈ H. (3.8)

This can further be rewritten as

0 ≤ B〈 f , f 〉 − 〈S( f ), f 〉 ≤ B〈 f , f 〉 − A〈 f , f 〉

0 ≤
〈(

I − B−1S
)

f , f
〉
≤
〈

B− A
B

f , f
〉

.

Theorem 2.2.3 from [3] states that if S is bounded and ‖I − S‖H < 1, then S is
invertible. Since ∥∥∥I − B−1S

∥∥∥ = sup
‖ f ‖H=1

∣∣∣〈(I − B−1S
)

f , f
〉∣∣∣

≤ sup
‖ f ‖H=1

∣∣∣∣〈B− A
B

f , f
〉∣∣∣∣

=
B− A

B
< 1,

it is concluded that S is invertible. This also shows that S is positive since

0 ≤ A ‖ f ‖2
H ≤ 〈S( f ), f 〉

for all f ∈ H. (ii): Since the operator S is self-adjoint, S−1 is also self-adjoint. This
means that for all f ∈ H,

∞

∑
k=1

∣∣∣〈 f , S−1 fk

〉∣∣∣2 =
∞

∑
k=1

∣∣∣〈S−1 f , fk

〉∣∣∣2
≤ B

∥∥∥S−1 f
∥∥∥2

H

≤ B
∥∥∥S−1

∥∥∥2

H
‖ f ‖2

H ,

since { fk}∞
k=1 is a Bessel sequence. Furthermore follows that {S−1 fk}∞

k=1 is a Bessel
sequence. The frame operator can be found by following the logic of Equation (3.7)
as

∞

∑
k=1

〈
f , S−1 fk

〉
S−1 fk = S−1

∞

∑
k=1

〈
S−1 f , fk

〉
fk

= S−1SS−1 f = S−1 f .
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This makes S−1 the frame operator for {S−1 fk}∞
k=1. It is trivial that S−1 commutes

with S and I. Using Theorem 2.4.2 from [3], which states that if this is the case,
then IS−1 ≤ SS−1 and SS−1 ≤ IS−1 in the sense of positive definite operators.
Using this fact on Equation (3.8) results in

A
〈

S−1 f , f
〉
≤
〈

SS−1 f , f
〉
≤ B

〈
S−1 f , f

〉
A
〈

S−1 f , f
〉
≤ ‖ f ‖2

H ≤ B
〈

S−1 f , f
〉

.

This gives

B−1 ‖ f ‖2
H ≤

〈
S−1 f , f

〉
≤ A−1 ‖ f ‖2

H , ∀ f ∈ H.

By inserting S−1 f = ∑∞
k=1
〈

f , S−1 fk
〉

S−1 fk, the following is obtained:

B−1 ‖ f ‖2
H ≤

∞

∑
k=1

∣∣∣〈 f , S−1 fk

〉∣∣∣2 ≤ A−1 ‖ f ‖2
H , ∀ f ∈ H. (3.9)

This makes B−1 and A−1 frame bounds of {S−1 fk}∞
k=1. (iii): Let A be the optimal

lower bound for { fk}∞
k=1 and assume that C < A−1 is the optimal upper bound for

{S−1 fk}∞
k=1. Then {

(
S−1)−1 S−1 fk}∞

k=1 = { fk}∞
k=1, the lower bound C−1 > A. This

is a contradiction since A is the optimal lower bound. Thus C = A−1 which makes
A−1 the optimal upper bound for {S−1 fk}∞

k=1. Similar arguments can be made for
B and B−1 be optimal bounds.

�

The frame {S−1 fk}∞
k=1 is called the canonical dual frame of { fk}∞

k=1. The following
theorem contains the most important frame result. It states that if { fk}∞

k=1 is a frame
for H, then every element of H can be described as an infinite linear combination
of { fk}∞

k=1. This theorem is why frames can be seen as a kind of generalized basis.

Theorem 3.6
Let { fk}∞

k=1 be a frame with frame operator S. Then

f =
∞

∑
k=1
〈 f , S−1 fk〉 fk, ∀ f ∈ H (3.10)

and

f =
∞

∑
k=1
〈 f , fk〉S−1 fk, ∀ f ∈ H. (3.11)

Both series converge unconditionally for all f ∈ H.
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Proof
Let f ∈ H, and let { fk}∞

k=1 be a frame with frame operator S. Using the properties
from Lemma 3.5,

f = SS−1 f

=
∞

∑
k=1

〈
S−1 f , fk

〉
fk

=
∞

∑
k=1

〈
f , S−1 fk

〉
fk.

This sum converges unconditionally, since { fk}∞
k=1 is a Bessel sequence and {

〈
f , S−1 fk

〉
}∞

k=1 ∈
`2 (N), hence Corollary 3.1.4 from [3]. The expantion

f =
∞

∑
k=1
〈 f , fk〉S−1 fk

is obtained by the same arguments but using f = S−1S f .
�

The constants 〈 f , S−1 fk〉 are called frame coefficients, and the above theorem states
that all the information of a function f ∈ H can be described by the sequence
{〈 f , S−1 fk〉}∞

k=1. Also this describes one of the main challenges in frame theory.
To be able to find the frame coefficients, it is necessary to know the inverse frame
operator for the frame or at least the canonical dual frame. One way to get around
this problem is to only consider tight frames.

Corollary 3.7
If { fk}∞

k=1 is a tight frame with frame bound A, then the canonical dual frame is
{A−1 fk}∞

k=1 and

f =
1
A

∞

∑
k=1
〈 f , fk〉 fk, ∀ f ∈ H. (3.12)

Proof
Since { fk}∞

k=1 is a tight frame,

〈S f , f 〉 =
∞

∑
k=1
|〈 f , fk〉|2

= A ‖ f ‖2
H = 〈A f , f 〉 , ∀ f ∈ H,

which gives that

〈(S− AI) f , f 〉 = 0, ∀ f ∈ H.
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Lemma 2.4.3 from [3] states that if S− AI is a self-adjoint operator. Then S− AI =
0, and thus S = AI, which gives that S−1 acts by multiplication of A−1. Theorem
3.6 then states that

f =
∞

∑
k=1
〈 f , S−1 fk〉 fk

=
1
A

∞

∑
k=1
〈 f , fk〉 fk, ∀ f ∈ H.

�

By scaling the elements { fk}∞
k=1 in a tight frame, it is possible to obtain frame bound

A = 1. Equation (3.12) thus have the same representation as an orthonormal basis.
Another advantage for tight frames is that the structure of the canonical dual frame
is the same as the frame itself, since fk = 1

A fk for all k ∈ N. For example, if the
frame has wavelet structure, the canonical dual frame will have wavelet structure
as well. In contrast, for non-tight frames, the canonical dual frame of a wavelet
frame might not have wavelet structure. For non-tight frames, it is necessary to
find another way to avoid the problem of inverting the frame operator. In fact, for
a frame { fk}∞

k=1 that is not also a basis, it will be proven that there exist another
frame {gk}∞

k=1 such that

f =
∞

∑
k=1
〈 f , gk〉 fk, ∀ f ∈ H. (3.13)

These frames {gk}∞
k=1 are called the dual frame of { fk}∞

k=1. Since the canonical dual
frame of { fk}∞

k=1 can be difficult to find, there will exist other dual frames that can
be much easier to find. Before showing this is the case, the similarity between the
canonical dual frame and the dual Riesz basis will be stated.

Theorem 3.8
Let { fk}∞

k=1 be a Riesz basis for H. Then { fk}∞
k=1 is a frame for H with frame

bounds equal to the Riesz basis bounds. The dual Riesz basis is in this case equal
to the canonical dual frame {S−1 fk}∞

k=1.

Proof
This proof is similar to the proof of Theorem 5.2.1 on page 106 [3].

�



15

Frames { fk}∞
k=1 that are not a Riesz basis are said to be overcomplete and called

a redundant frame. This is the case, since for such a frame, there exist {ck}∞
k=1 ∈

`2 (N) \ {0} such that
∞

∑
k=1

ck fk = 0. (3.14)

This means that there exist some dependency between the frame elements.

Theorem 3.9
Let { fk}∞

k=1 be a frame in H. The the following statements are equivalent:

(i) { fk}∞
k=1 is a Riesz basis for H.

(ii) If ∑∞
k=1 ck fk = 0 for some {ck}∞

k=1 ∈ `2 (N), then ck = 0 for all k ∈N.

Proof
Let { fk}∞

k=1 be a frame forH. Assume first (i) and that ∑∞
k=1 ck fk = 0 for a sequence

{ck}∞
k=1 ∈ `2 (N). Since { fk}∞

k=1 is a Riesz basis, there will exist a bounded bijective
operator U and a orthonormal basis, {ek}∞

k=1, such that { fk}∞
k=1 = {Uek}∞

k=1. This
gives that

U
∞

∑
k=1

ckek = 0

which implies that
∞

∑
k=1

ckek = 0.

Since U is injective and {ek}∞
k=1 is an orthonormal basis, we have ck = 0 for all

k ∈ N. Assume now (ii) and choose {ck}∞
k=1 to be the canonical orthonormal basis

for `2 (N). Then the assumtion in (ii) makes the pre-frame operator, T, associated
with the frame { fk}∞

k=1 to be injective. T is surjective, since { fk}∞
k=1 is a frame.

Definition 3.3.1 in [3] thus gives that { fk}∞
k=1 is a Riesz basis since Tck = fk for all

k ∈N.
�

For overcomplete frames, it is easy to see that f ∈ H has many representations in
terms of the frame elements in a given frame { fk}∞

k=1 for H. This is the result of
the following equality:

f =
∞

∑
k=1
〈 f , S−1 fk〉 fk (3.15)

=
∞

∑
k=1

(
〈 f , S−1 fk〉+ ck

)
fk (3.16)
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for any {ck}∞
k=1 ∈ `2 (N) \ {0} satisfying Equation (3.14). The question becomes,

does there exist a frame {gk}∞
k=1 such that 〈 f , S−1 fk〉+ ck = 〈 f , gk〉 for all k ∈ N?

This question is answerd as a result of the following theorem.

Theorem 3.10
Let { fk}∞

k=1 be an overcomplete frame. Then there exist frames {gk}∞
k=1 such that

{gk}∞
k=1 6= {S−1 fk}∞

k=1 and

f =
∞

∑
k=1
〈 f , gk〉 fk (3.17)

for all f ∈ H.

Proof
Assume first for some ` ∈ N that f` = 0, which makes S−1 f` = 0. Construct
{gk}∞

k=1 by letting gk = S−1 fk for all k ∈ N where k 6= ` and choose g` to be
an arbitrary non-zero element in H. This gives that {gk}∞

k=1 6= {S−1 fk}∞
k=1, since

g` 6= S−1 f` and, from the frame decomposition, it follows that

f =
∞

∑
k=1
〈 f , S−1 fk〉 fk

=
∞

∑
k=1
〈 f , gk〉 fk.

This is given using 〈 f , g`〉 f` = 〈 f , S−1 f`〉 f` = 0. Assume now that fk 6= 0 for all
k ∈ N. Since { fk}∞

k=1 is an overcomplete frame, Theorem 3.9 states that there exist
a sequence {ck}∞

k=1 ∈ `2 (N) \ {0} such that

∞

∑
k=1

ck fk = 0.

This means that there exist an ` ∈N such that c` 6= 0 which we can write as

f` =
−1
c`

∑
k 6=`

ck fk.

By proving that { fk}k 6=` is a frame for H, its canonical dual frame can be defined to
be {gk}k 6=` and, by letting g` = 0, a frame can be found for which Equation (3.17) is
true. {gk}∞

k=1 is different from {S−1 fk}∞
k=1, since S−1 f` 6= 0. Given { fk}k 6=`, which is

a Bessel sequence, it is only necessary to prove that the lower frame bound exists.
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Let f ∈ H, then using Cauchy-Schwarz inequality gives

|〈 f , f`〉|2 =

∣∣∣∣∣
〈

f ,
−1
c`

∑
k 6=`

ck fk

〉∣∣∣∣∣
2

≤ 1
|c`|2 ∑

k 6=`

|ck|2 ∑
k 6=`

|〈 f , fk〉|2

= C ∑
k 6=`

|〈 f , fk〉|2

where C = 1
|c`|2 ∑k 6=` |ck|2. Letting A denote the lower frame bound for { fk}∞

k∗=1,

A ‖ f ‖2 ≤
∞

∑
k=1
|〈 f , fk〉|2

= ∑
k 6=`

|〈 f , fk〉|2 + |〈 f , f`〉|2

≤ (1 + C) ∑
k 6=`

|〈 f , fk〉|2 .

Thus the lower bound for { fk}k 6=` is A
1+C .

�

Since { fk}∞
k=1 and {gk}∞

k=1 are dual frames,

f =
∞

∑
k=1
〈 f , fk〉gk.

The following lemma proves this claim:

Lemma 3.11
Let { fk}∞

k=1 and {gk}∞
k=1 be Bessel sequences inH. Then the following statements

are equivalent:

(i) f = ∑∞
k=1〈 f , gk〉 fk, ∀ f ∈ H

(ii) f = ∑∞
k=1〈 f , fk〉gk, ∀ f ∈ H

(iii) 〈 f , g〉 = ∑∞
k=1〈 f , fk〉〈g, gk〉, ∀ f , g ∈ H.

In the case one of the conditions are satisfied, { fk}∞
k=1 and {gk}∞

k=1 are dual
frames for H. If B denotes the upper frame bound for { fk}∞

k=1, then B−1 is a
lower frame bound for {gk}∞

k=1.
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Proof
The pre-frame operators for the sequences { fk}∞

k=1 and {gk}∞
k=1 defined, respec-

tively, as T and U. Then (i) can be written as

f = I( f ) = TU∗( f ).

Since I is an self-adjoint operator, this will be equivalent to

f = I( f ) = UT∗( f )

which is the statement in (ii). It is clear that (ii) implies (iii), but the other way
around, a little more arguments is needed. Assume (iii) and fix f ∈ H. Then
∑∞

k=1〈 f , fk〉gk will be a well defined element in H, since { fk}∞
k=1 and {gk}∞

k=1 are
Bessel sequences. This makes {〈 f , fk〉}∞

k=1 ∈ `2 (N), and thus ∑∞
k=1〈 f , fk〉 fk conver-

gent. Consider now the following:〈
f −

∞

∑
k=1
〈 f , fk〉gk, g

〉
= 〈 f , g〉 −

〈
∞

∑
k=1
〈 f , fk〉gk, g

〉

= 〈 f , g〉 −
∞

∑
k=1
〈 f , fk〉 〈gk, g〉 = 0, ∀g ∈ H.

This shows (iii) implies (ii). In the case where the equivalent conditions are satis-
fied, we can write

‖ f ‖2
H = 〈 f , f 〉 =

∞

∑
k=1
〈 f , gk〉 〈 fk, f 〉 , ∀ f ∈ H.

Assuming that one of the families {gk}∞
k=1 or { fk}∞

k=1 are Bessel sequences, the
other family will satisfy the lower frame condition with a lower frame bound equal
to the Bessel bound of the first family. Since ‖ f ‖ > 0, Cauchy-Schwarz inequality
can be used such that∣∣∣∣∣ ∞

∑
k=1
〈 f , gk〉 〈 fk, f 〉

∣∣∣∣∣ ≤
(

∞

∑
k=1
|〈 f , gk〉|2

) 1
2
(

∞

∑
k=1
|〈 fk, f 〉|2

) 1
2

.

Assuming that { fk}∞
k=1 is a Bessel sequence,(

∞

∑
k=1
|〈 f , gk〉|2

) 1
2
(

∞

∑
k=1
|〈 fk, f 〉|2

) 1
2

≤
(

∞

∑
k=1
|〈 f , gk〉|2

) 1
2

‖ f ‖H B
1
2 .

This gives

1
B
‖ f ‖H ≤

∞

∑
k=1
|〈 f , gk〉|2

which concludes this proof.
�



Chapter 4

Wavelet frames

In this chapter the construction of wavelet frames will be discussed. This chapter
is based upon [3], unless other is specified.

As seen in Chapter 2, the base wavelet ψ is a function in W0, a closed subspace of
L2 (R), where {2

j
2 ψ
(
2j (·)− k

)
| j, k ∈ Z} forms an orthonormal basis for L2 (R).

But constructing such a function can be troublesome, since Equation (2.2) is a
potential infinite sum which is impossible to calculate exact in practice. We are
interested in creating a frame with the same wavelet structure from a more simple
function then the wavelet function ψ. Some notation will be defined to simplify
equations in this chapter.

Tk : L2 (R)→ L2 (R) ; Tb ( f ) (x) = f (x− k) (4.1)

Dj : L2 (R)→ L2 (R) ; Dj ( f ) (x) = 2
j
2 f
(

2jx
)

(4.2)

Definition 4.1
Let ψ ∈ L2 (R). A frame of the form {DjTkψ}j,k∈Z in L2 (R) is called a dyadic
wavelet frame.

Choosing ψ ∈ L2 (R) to be the wavelet constructed from Chapter 2, the series of
functions {DjTkψ}j,k∈Z is exactly the orthonormal wavelet basis for L2 (R). It then
make sense to define wavelet frames this way. The associated frame operator to
the frame {DjTkψ}j,k∈Z is given by

S : L2 (R)→ L2 (R) ; S ( f ) = ∑
j,k∈Z

〈
f , DjTkψ

〉
DjTkψ. (4.3)

19
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From Theorem 3.6, the frame decomposition will then be

f = ∑
j,k∈Z

〈
f , S−1DjTkψ

〉
DjTkψ, ∀ f ∈ L2 (R) . (4.4)

The frame decomposition coefficients
〈

f , S−1DjTkψ
〉

can be very inconvenient to
calculate since it is nessesary to calculate the action of the inverse frame operator
on DjTkψ for all j, k ∈ Z. Thus a more simple way to calculate frame decompo-
sition coefficients is needed. As stated in Chapter 3 there are two ways to avoid
the canonical dual frame, by looking at tight frames or overcomplete frames and
look for dual frames that are easier to calculate. For this to work the frame and
dual frame must have wavelet structure. Since we want the frame to have wavelet
structure it is only natural to assume some of the same things for the generator of
the frame as is assumed for the generator of an orthonormal wavelet. Doing this
leads to a very convenient algorithmic structure. A specific assumption comes in
the form the generating wavelet function takes, as stated in Equation (2.2) and can
be rewritten as

ψ (x) = ∑
k∈Z

ckDTk ϕ (x) (4.5)

where ϕ is the scaling function satisfying an equation of the form

ϕ̂ (2ω) = H0 (ω) ϕ̂ (ω)

for some 2π-periodic function H0 ∈ L2 (−π, π). This structure should not only
be desirable for a single wavelet frame, but also for its dual wavelet frames. This
means that the generator, for these dual wavelet frames, is wised to be of the form
of Equation (4.5). For practical use it is desirable that the sum in Equation (4.5)
is a finite sum, thus the choice of ϕ becomes a lot more restrictive to functions
with compact support. An obvious candidate for the function ϕ in this case is the
B-spline functions Bm. B-spline functions are piecewise polynomials supported on
compact subintervals of the positive real axis. B-splines are defined inductively.
The first order of B-spline is defined as

B1 (x) = 1[0,1] (x) .

This function is also known as the Haar scaling function. The n-th order B-spline
is defined as, assuming the n− 1 order B-spline has been defined,

Bn (x) = Bn−1 ∗ B1 (x)

=
∫ 1

0
Bn−1 (x− t) dt.

Using B-splines as ϕ, the sum in Equation (4.5) will become finite. It is not possible
to obtain a construction that gives a pair of finite dual wavelet frames using B-
splines this way.
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Figure 4.1: 1a

Figure 4.2: 1b

Figure 4.3: Plots of B-splines of different orders. 1a is of degree two and 1.b is of order three.
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Theorem 4.2
Let Bm denote the m-th order B-spline for some m > 1. Then there does not exist
pairs of dual wavelet frames {DjTkψ}j,k∈Z and {DjTkψ̃}j,k∈Z for which ψ and ψ̃

are finite linear combinations of functions DjTkBm where j, k ∈ Z.

Proof
This theory is proven by [1] and [2]. �

A solution to this problem does exist. By considering wavelet frames generated by
a sequence of functions of the wavelet type, extra freedom is gained.

Definition 4.3
For two sequences of functions

ψ1, ψ2, . . . , ψn ∈ L2 (R) and ψ̃1, ψ̃2, . . . , ψ̃n ∈ L2 (R) .

the sequences {DjTkψ`}j,k∈Z,`=1,...,n and {DjTkψ̃`}j,k∈Z,`=1,...,n are called a pair of
dual multiwavelet frames if they both are Bessel sequences and

f =
n

∑
`=1

∑
j,k∈Z

〈
f , DjTkψ`

〉
DjTkψ̃`, ∀ f ∈ L2 (R) . (4.6)

From Lemma 3.11 it follows that the Bessel sequences {DjTkψ`}j,k∈Z,`=1,...,n and
{DjTkψ̃`}j,k∈Z,`=1,...,n form a pair of dual frames. A pair of dual multiwavelet
frames is called sibling frames or bi-frames. The frame {DjTkψ`}j,k∈Z,`=1,...,n itself
is called a multiwavelet frame.

4.1 The Unitary extension principle

In this section the unitary extension principle will be proven. This principle en-
ables us to construct tight frames for L2 (R) of the form {DjTkψ`}j,k∈Z,`=1,...,n. The
sequence ψ1, ψ2, . . . , ψn ∈ L2 (R) will be constructed on the basis of a function that
satisfy an equation similar to Equation (3.2) from [6]. This function will play the
same role as the scaling function does for orthonormal wavelets. Denote this func-
tion as ψ0. The general setup will now explain what conditions that falls upon ψ0.

General setup: Let ψ0 ∈ L2 (R), T = (−π, π) and assume that

(i) there exist a function H0 ∈ L∞ (T) such that

ψ̂0 (2ω) = H0 (ω) ψ̂0 (ω) . (4.7)
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(ii) limω→0 ψ̂0 (ω) = 1.

Let now H1, . . . , Hn ∈ L∞ (T) and define ψ1, ψ2, . . . , ψn ∈ L2 (R) by

ψ̂` (2ω) = H` (ω) ψ̂0 (ω) , ` = 0, . . . , n. (4.8)

Last, let H be the (n + 1)× 2 matrix-valued function defined by

H (ω) =



H0 (ω) Tπ H0 (ω)

H1 (ω) Tπ H1 (ω)
...

...

Hn (ω) Tπ Hn (ω)


, ω ∈ R. (4.9)

With this setup in mind the purpose is to find the conditions on H1, . . . , Hn such
that ψ1, ψ2, . . . , ψn defined by Equation (4.8) generates a multiwavelet frame for
L2 (R). Note that if H` is known then ψ` can be explicit expressed. Expanding H` in
a Fourier series, H` (ω) = ∑k∈Z ck,`e−ikω. Using the inverse Fourier transformation
on Equation (4.8), we obtain

1
2

ψ`

( x
2

)
= ∑

k∈Z

ck,`ψ0 (x− k)

which can be rewritten as

ψ` (x) = 2 ∑
k∈Z

ck,`ψ0 (2x− k) . (4.10)

Since we want the same wavelet structure as an orthonormal wavelet with compact
support, it is prefered that H` are trigonometric polynomials. This implies that ψ`

have compact support if ψ0 has compact support and the sum in Equation (4.10)
is finite. Note that setting up in this way preserves the algorithmic structure of a
multiresolution. This is shown in Theorem 3.6.6 form [3] by defining

Vj = span{DjTkψ0}, j ∈ Z.

The theorem states that if ψ0 ∈ L2 (R), |ψ̂0| > 0 in a neighberhood of 0 and there
exist a bounded 2π-periodic function H0 such that Equation (4.7) is true, then all
the conditions for a multiresolution analysis in Definition 2.1 except for condition
(v) is satisfied. Also since ψ` is constructed from Equation (4.10) then ψ` ∈ V1 for
` = 1, . . . n.
Now that the general setup is complete, a few lemmas will be stated before the
unitary extension principle can be proven. One of the main tools used is the peri-
odization of a function formally defined by

P f (ω) = ∑
n∈Z

f (ω + 2πn) , ω ∈ R where f : R→ C.
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This definition will now be shown to be well defined for f ∈ L1 (R).

Lemma 4.4
If f ∈ L1 (R), then ∑n∈Z f (ω + 2πn) converges absolutely for almost every ω ∈
R and P f ∈ L1 (T). Furthermore,∫ ∞

∞
f (ω) dω =

∫ π

−π
P f (ω) dω. (4.11)

Proof
Assume f ∈ L1 (R), then using a special case of Tonelli’s theorem∫ π

−π
∑

n∈Z

| f (ω + 2πn)| dω = ∑
n∈Z

∫ π

−π
| f (ω + 2πn)| dω

=
∫ ∞

−∞
| f (ω)| dω < ∞.

This shows that ∑n∈Z f (ω + 2πn) is absolutly convergent for almost every ω ∈ R

and thus P f ∈ L1 (T) since

|P f (ω)| ≤ ∑
n∈Z

| f (ω + 2πn)| , a.e. ω ∈ R.

Equation (4.11) now follows from Lebesgue’s dominated convergence theorem.
�

Periodization is used in the following lemmas.

Lemma 4.5
let g, ψ0 ∈ L2 (R) and assume that P

(
gψ̂0

)
∈ L2 (T), then

P
(

gψ̂0

)
= ∑

k∈Z

1
2π

〈
g, ψ̂0eikω

〉
eikω (4.12)

and ∫ π

−π

∣∣∣P (gψ̂0

)∣∣∣2 = ∑
k∈Z

∣∣∣∣ 1
2π

〈
g, ψ̂0eikω

〉∣∣∣∣2 . (4.13)

Proof
Since g, ψ0 ∈ L2 (R) we have gψ̂0 ∈ L1 (R). From Lemma 4.4 the function

P
(

gψ̂0

)
(ω) = ∑

n∈Z

g (ω + 2πn) ψ̂0 (ω + 2πn)
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is well defined. Using Equation (4.11)〈
g, ψ̂0eik·

〉
=
∫ ∞

−∞
g (ω) ψ̂0 (ω)e−ikωdω

=
∫ π

−π
∑

n∈Z

(
g (ω + 2πn) ψ̂0 (ω + 2πn)e−ik(ω+2πn)

)
dω

=
∫ π

−π
∑

n∈Z

(
g (ω + 2πn) ψ̂0 (ω + 2πn)

)
e−ikωdω.

This makes 1
2π

〈
g, ψ̂0eik·〉 the k-th Fourier coefficient for the 2π-periodic function

P
(

gψ̂0

)
(ω). Since P

(
gψ̂0

)
(ω) ∈ L2 (T) by assumption, the lemma follows:

Equation (4.12) is the Fourier expansion of P
(

gψ̂0

)
in a Fourier series, and Equa-

tion (4.13) comes from Parseval’s equation.
�

Because of Lemma 3.4, it is enough to prove the unitary extension principle on
a dense subspace of L2 (R). The dense subspace that will be used is the set of
functions, f , for which the Fourier transform, f̂ , is continuous and has compact
support. Denote this space

D =
{

f ∈ L2 (R) | f̂ ∈ Cc (R)
}

. (4.14)

In the following lemmas this dense subspace will be used.

Lemma 4.6
Let ψ0 ∈ L2 (R), f ∈ D and assume that limω→0 ψ̂0 (ω) = 1. Then for any ε > 0
there exists J ∈ Z such that

(1− ε) 2π ‖ f ‖2
2 ≤ ∑

k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ (1 + ε) 2π ‖ f ‖2
2 , for all j ≥ J.

Proof
Let j ∈ Z and f ∈ D. The product function

(
Dj f̂

)
ψ̂0 belongs to L1 (R). Lemma 4.4

states that P
((

Dj f̂
)

ψ̂0

)
is well defined. First it must be proven that P

((
Dj f̂

)
ψ̂0

)
∈

L2 (T). Since f ∈ D, Dj f̂ will have compact support, say, in the interval [−N, N].
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Then for ω ∈ T,∣∣∣P ((Dj f̂
)

ψ̂0

)∣∣∣ = ∣∣∣∣∣∑n∈Z

(
Dj f̂

)
(ω + 2πn) ψ̂0 (ω + 2πn)

∣∣∣∣∣
=

∣∣∣∣∣ N

∑
n=−N

(
Dj f̂

)
(ω + 2πn) ψ̂0 (ω + 2πn)

∣∣∣∣∣
≤
∥∥∥Dj f̂

∥∥∥
∞

N

∑
n=−N

∣∣∣ψ̂0 (ω + n)
∣∣∣ .

Since ∑N
n=−N

∣∣∣ψ̂0 (ω + n)
∣∣∣ is a finite linear combination of translates of a function in

L2 (R), P
((

Dj f̂
)

ψ̂0

)
∈ L2 (T). Using Plancherel’s theorem and that

〈
f , Djg

〉
=〈

D−j f , g
〉

we have 〈
f , DjTkψ0

〉
=

1
2π

〈
Dj f̂ , ψ̂0e−ik·

〉
.

Consider

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 = ∑
k∈Z

∣∣∣∣ 1
2π

〈
Dj f̂ , ψ̂0e−ik·

〉∣∣∣∣2 .

Since Dj f̂ have compact support, ∑k∈Z

∣∣∣ 1
2π

〈
Dj f̂ , ψ̂0e−ik·

〉∣∣∣2 converges uncondition-
ally. Using this and Lemma 4.5

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 = ∑
k∈Z

∣∣∣∣ 1
2π

〈
Dj f̂ , ψ̂0eik·

〉∣∣∣∣2
=
∫ π

−π

∣∣∣P ((Dj f̂
)

ψ̂0

)∣∣∣2 dω

=
∫ π

−π

∣∣∣∣∣∑n∈Z

(
Dj f̂

)
(ω + 2πn) ψ̂0 (ω + 2πn)

∣∣∣∣∣
2

dω.

Let ε > 0 be given. By assumption limω→0 ψ̂0 = 1, we can choose b ∈]0, π[ such
that 1− ε ≤

∣∣ψ̂0 (ω)
∣∣2 ≤ 1 + ε whenever |ω| ≤ b. Choosing J ∈ Z such that Dj f̂

have support in [−b, b] for j > J,

∫ π

−π

∣∣∣∣∣∑n∈Z

(
Dj f̂

)
(ω + 2πn) ψ̂0 (ω + 2πn)

∣∣∣∣∣
2

dω =
∫ π

−π

∣∣∣(Dj f̂
)
(ω) ψ̂0 (ω)

∣∣∣2 dω

for all j > J. This implies

(1− ε)
∥∥∥Dj f̂

∥∥∥2

2
≤ ∑

k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ (1 + ε)
∥∥∥Dj f̂

∥∥∥2

2
.
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Since Dj is a unitary operator, and using Plancherel’s theorem, we obtain

(1− ε) 2π ‖ f ‖2
2 ≤ ∑

k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ (1 + ε) 2π ‖ f ‖2
2 .

Thus the lemma follows from this.
�

Since ψ` ∈ L2 (R) for every ` = 1, . . . , n the same calculations as in the proof of
Lemma 4.6 can be modified such that

∑
k∈Z

∣∣∣〈 f , DjTkψ`

〉∣∣∣2 =
∫ π

−π

∣∣∣∣∣∑n∈Z

(
Dj f̂

)
(ω + 2πn) ψ̂` (ω + 2πn)

∣∣∣∣∣
2

dω.

Since
(

Dj f̂
)
(ω + 2πn) ψ̂` (ω + 2πn) ∈ L1 (R),

∑
n∈Z

(
Dj f̂

)
(ω + 2πn) ψ̂` (ω + 2πn) ∈ L1 (T)

will converge absolutely, hence Lemma 4.4. This implies that

∑
k∈Z

∣∣∣〈 f , DjTkψ`

〉∣∣∣2 < ∞

which further implies that {〈
f , DjTkψ`

〉}
k∈Z
∈ `2 (Z) (4.15)

for all j ∈ Z and all ` = 1, . . . , n. A family of functions Fj,` ∈ L2 (T) can then be
defined by the Fourier series

Fj,` (ω) = ∑
k∈Z

〈
f , DjTkψ`

〉
e−ikω. (4.16)

The definition of Fj,` is defined in terms of ψ`, which is defined by ψ0 and H`. It
is natural to assume that there exist an expression for Fj,` in terms of Fj,0 and H`.
This expression is proven in the following lemma.

Lemma 4.7
Let {ψ`, H`}n

`=0 be as in the general setup. Then for all j ∈ Z, ` = 0, 1, . . . , n,

Fj−1,` (ω) = 2−
1
2

(
H`

(ω

2

)
Fj,0

(ω

2

)
+ Tπ H`

(ω

2

)
Tπ Fj,0

(ω

2

))
for almost every ω ∈ R.
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Proof
Using the properties of D and Plancherel’s theorem〈

f , Dj−1Tkψ`

〉
=
〈

D−j f , D−1Tkψ`

〉
=
〈

D−j f , T2kD−1ψ`

〉
=

1
2π

〈
Dj f̂ , e−i2k·Dψ̂`

〉
.

Equation (4.8) and Lemma 4.4 then gives〈
f , Dj−1Tkψ`

〉
=

1
2π

〈
Dj f̂ , e−i2k·√2H`ψ̂0

〉
=

1√
2π

∫ ∞

−∞

(
Dj f̂

)
(ω) H` (ω) ψ̂0 (ω)ei2kωdω

=
1√
2π

∫ π

−π
P
((

Dj f̂
)
(ω) H` (ω) ψ̂0 (ω)

)
ei2kωdω

=
1√
2π

( ∫ π

0
P
((

Dj f̂
)
(ω) H` (ω) ψ̂0 (ω)

)
ei2kωdω+∫ π

0
TπP

((
Dj f̂

)
(ω) H` (ω) ψ̂0 (ω)

)
ei2kωdω

)
=

1√
2π

∫ π

0

(
P
((

Dj f̂
)
(ω) H` (ω) ψ̂0 (ω)

)
+

TπP
((

Dj f̂
)
(ω) H` (ω) ψ̂0 (ω)

) )
ei2kωdω.

This makes
√

2
〈

f , Dj−1Tkψ`

〉
the (−k)-th coefficient in the Fourier series expansion

for the π-periodic function

P
((

Dj f̂
)
(ω) H` (ω) ψ̂0 (ω)

)
+ TπP

((
Dj f̂

)
(ω) H` (ω) ψ̂0 (ω)

)
with respect to the orthonormal basis {ei2k·}k∈Z for L2 (0, π). Using Fj−1,` from
Equation (4.16), and

e−ikω =
1√
2

√
2e−i2k ω

2 ,

it follows that

Fj−1,` = ∑
k∈Z

〈
f , DjTkψ`

〉
e−ikω

=
1√
2

∑
k∈Z

√
2
〈

f , DjTkψ`

〉
e−i2k ω

2

= 2−
1
2

(
P
((

Dj f̂
) (ω

2

)
H`

(ω

2

)
ψ̂0

(ω

2

))
+ TπP

((
Dj f̂

) (ω

2

)
H`

(ω

2

)
ψ̂0

(ω

2

)))
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From H` being a 2π-periodic function we get

P
((

Dj f̂
) (ω

2

)
H`

(ω

2

)
ψ̂0

(ω

2

))
= H`

(ω

2

)
P
((

Dj f̂
) (ω

2

)
ψ̂0

(ω

2

))
.

Using this, it suffices to show that

Fj,0 (ω) = P
((

Dj f̂
)
(ω) ψ̂0 (ω)

)
and the proof is done. Earlier in the proof, it was shown that〈

f , DjTkψ0

〉
=

1
2π

〈
Dj f̂ , e−ik·ψ̂0

〉
.

Using this, Lemma 4.5 and Equation (4.16) we get

Fj,0 (ω) = ∑
k∈Z

〈
f , DjTkψ0

〉
e−ikω

= ∑
k∈Z

1
2π

〈
Dj f̂ , e−ik·ψ̂0

〉
e−ikω

= P
((

Dj f̂
)
(ω) ψ̂0 (ω)

)
.

It can now be concluded that

Fj−1,` (ω) = 2−
1
2

(
H`

(ω

2

)
Fj,0

(ω

2

)
+ Tπ H`

(ω

2

)
Tπ Fj,0

(ω

2

))
.

�

By using the matrix H from Equation (4.9), the result from Lemma 4.7 shows that
for almost every ω ∈ R

Fj−1,0 (ω)

Fj−1,1 (ω)
...

Fj−1,n (ω)


= 2−

1
2



H0
(

ω
2

)
Fj,0
(

ω
2

)
+ Tπ H0

(
ω
2

)
Tπ Fj,0

(
ω
2

)
H1
(

ω
2

)
Fj,0
(

ω
2

)
+ Tπ H1

(
ω
2

)
Tπ Fj,0

(
ω
2

)
...

Hn
(

ω
2

)
Fj,0
(

ω
2

)
+ Tπ Hn

(
ω
2

)
Tπ Fj,0

(
ω
2

)



= 2−
1
2



H0 (ω) Tπ H0 (ω)

H1 (ω) Tπ H1 (ω)
...

...

Hn (ω) Tπ Hn (ω)


 Fj,0

(
ω
2

)
Tπ Fj,0

(
ω
2

)


= 2−
1
2 H
(ω

2

) Fj,0
(

ω
2

)
Tπ Fj,0

(
ω
2

)
 .
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This means that

n

∑
`=0

∣∣Fj−1,` (ω)
∣∣2 = 2−1

∥∥∥∥∥∥H
(ω

2

) Fj,0
(

ω
2

)
Tπ Fj,0

(
ω
2

)
∥∥∥∥∥∥

2

Cn+1

. (4.17)

The following lemmas as well as the unitary extension principle will be based on
the assumption that the matrix H (ω) satisfies

H (ω)∗ H (ω) = I, a.e. ω ∈ T. (4.18)

It turns out that equation (4.18) is an essential assumption and, given the general
setup, the only condition we need for the unitary extension principle.

Lemma 4.8
Let {ψ`, H`}n

`=0 be as defined in the general setup and assume that
H (ω)∗ H (ω) = I for almost every ω ∈ T. Then, for all j ∈ Z and for all
f ∈ D,

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 =
n

∑
`=0

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ`

〉∣∣∣2 .

Proof
Using Parseval’s identity and Equation (4.16),

n

∑
`=0

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ`

〉∣∣∣2 =
1

2π

n

∑
`=0

∫ π

−π

∣∣Fj−1,` (ω)
∣∣ dω. (4.19)

The matrix H (ω) can be considered as an isometry from C2 to Cn+1 for almost
every ω ∈ T because of the assumption H (ω)∗ H (ω) = I. Using Equation (4.17)
and Tonelli’s theorem on Equation (4.19), it follows that

n

∑
`=0

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ`

〉∣∣∣2 =
2−1

2π

∫ π

−π

∥∥∥∥∥∥H
(ω

2

) Fj,0
(

ω
2

)
Tπ Fj,0

(
ω
2

)
∥∥∥∥∥∥

2

Cn+1

dω

=
2−1

2π

∫ π

−π

∥∥∥∥∥∥
 Fj,0

(
ω
2

)
Tπ Fj,0

(
ω
2

)
∥∥∥∥∥∥

2

C2

dω

=
2−1

2π

∫ π

−π

(∣∣∣Fj,0

(ω

2

)∣∣∣2 + ∣∣∣Tπ Fj,0

(ω

2

)∣∣∣2) dω

=
1

2π

(∫ π
2

− π
2

∣∣Fj,0 (ω)
∣∣2 dω +

∫ − π
2

− 3π
2

∣∣Fj,0 (ω)
∣∣2 dω

)
=

1
2π

∫ π
2

− 3π
2

∣∣Fj,0 (ω)
∣∣2 dω



4.1. The Unitary extension principle 31

Using the 2π-periodic nature of the function Fj,0 and Parseval’s identity, we con-
clude that

n

∑
`=0

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ`

〉∣∣∣2 =
1

2π

∫ π

−π

∣∣Fj,0 (ω)
∣∣2 dω

= ∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 .

�

Lemma 4.9
Let {ψ`, H`}n

`=0 be as defined in the general setup and assume that
H (ω)∗ H (ω) = I for almost every ω ∈ T. Then the following hold.

(i) {Tkψ0}k∈Z is a Bessel sequence with bound 2π.

(ii) If f ∈ L2 (R), then

lim
j→−∞

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 = 0.

Proof
Let f ∈ D. A consequence of Lemma 4.8 is that for any j ∈ Z

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ0

〉∣∣∣2 ≤ ∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 . (4.20)

Let ε > 0 be given, Lemma 4.6 then states that we can find j > 0 such that

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ (1 + ε) 2π ‖ f ‖2 .

Using Equation (4.20) j times implies

∑
k∈Z

|〈 f , Tkψ0〉|2 ≤ ∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ (1 + ε) 2π ‖ f ‖2

and since ε > 0 was arbitrary, it follows that

∑
k∈Z

|〈 f , Tkψ0〉|2 ≤ 2π ‖ f ‖2 .

Because of Lemma 3.3, this holds true for all f ∈ L2 (R) and thus makes {Tkψ0}k∈Z

a Bessel sequence with Bessel bound 2π. To prove (ii), assume f ∈ L2 (R). (i) and
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the fact that Dj is an unitary operator implies that {DjTkψ0}k∈Z is a Bessel sequence
with Bessel bound 2π for all j ∈ Z. Let (a, b) ∈ R be any bounded interval and
write

f = f 1(a,b) + f
(

1− 1(a,b)

)
.

Using the inequality |x + y|2 ≤ 2
(
|x|2 + |b|2

)
, x, y ∈ C, we obtain∣∣∣〈 f , DjTkψ0

〉∣∣∣2 =
∣∣∣〈 f 1(a,b) + f

(
1− 1(a,b)

)
, DjTkψ0

〉∣∣∣2
=
∣∣∣〈 f 1(a,b), DjTkψ0

〉
+
〈

f
(

1− 1(a,b)

)
, DjTkψ0

〉∣∣∣2
≤ 2

(∣∣∣〈 f 1(a,b), DjTkψ0

〉∣∣∣2 + ∣∣∣〈 f
(

1− 1(a,b)

)
, DjTkψ0

〉∣∣∣2) .

This implies that

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ 2 ∑
k∈Z

∣∣∣〈 f 1(a,b), DjTkψ0

〉∣∣∣2 + 2 ∑
k∈Z

∣∣∣〈 f
(

1− 1(a,b)

)
, DjTkψ0

〉∣∣∣2
≤ 2 ∑

k∈Z

∣∣∣〈 f 1(a,b), DjTkψ0

〉∣∣∣2 + 2
∥∥∥ f
(

1− 1(a,b)

)∥∥∥2

2
.

Choosing (a, b) to be a sufficiently large set,
∥∥∥ f
(

1− 1(a,b)

)∥∥∥2

2
becomes arbitrarily

small. It is then enough to show that

∑
k∈Z

∣∣∣〈 f 1(a,b), DjTkψ0

〉∣∣∣2 → 0 as j→ −∞. (4.21)

This is shown by

∑
k∈Z

∣∣∣〈 f 1(a,b), DjTkψ0

〉∣∣∣2 = 2j ∑
k∈Z

∣∣∣∣∫ b

a
f (x)ψ0

(
2jx− k

)
dx
∣∣∣∣2

≤ ‖ f ‖2
2 2j ∑

k∈Z

∫ b

a

∣∣∣ψ0

(
2jx− k

)∣∣∣2 dx

= ‖ f ‖2
2 ∑

k∈Z

∫ 2jb−k

2ja−k
|ψ0 (x)|2 dx.

Using Lebesgue’s dominated convergence theorem, Equation (4.21) is obtained,
which concludes the proof.

�

Now the unitary extension principle is ready to be stated and proven.
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Theorem 4.10 (The unitary extension principle)
Let {ψ`, H`}n

`=0 be as defined in the general setup and assume that
H (ω)∗ H (ω) = I for almost every ω ∈ T. The multiwavelet system
{DjTkψ`}j,k∈Z,`=1,...,n then constitutes a tight frame for L2 (R) with frame bound
equal to 2π, and

f =
1

2π

n

∑
`=1

∑
j∈Z

∑
k∈Z

〈
f , DjTkψ`

〉
DjTkψ`, ∀ f ∈ L2 (R) . (4.22)

Proof
Let ε > 0 be given, and consider a function f ∈ D. Lemma 4.6 states that one can
choose J > 0 such that for all j > J,

(1− ε) 2π ‖ f ‖2
2 ≤ ∑

k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 ≤ (1 + ε) 2π ‖ f ‖2
2 .

Then for any j ∈ Z, Lemma 4.8 shows that

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 =
n

∑
`=0

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ`

〉∣∣∣2
= ∑

k∈Z

∣∣∣〈 f , Dj−1Tkψ0

〉∣∣∣2 + n

∑
`=1

∑
k∈Z

∣∣∣〈 f , Dj−1Tkψ`

〉∣∣∣2 .

Using this argument iterative on ∑k∈Z

∣∣〈 f , Dj−1Tkψ0
〉∣∣2, it follows that for all m < j,

∑
k∈Z

∣∣∣〈 f , DjTkψ0

〉∣∣∣2 = ∑
k∈Z

|〈 f , DmTkψ0〉|2 +
n

∑
`=1

j−1

∑
p=m

∑
k∈Z

|〈 f , DpTkψ`〉|2 .

Thus it can be deduced that for all j > J and m < j

(1− ε) 2π ‖ f ‖2
2 ≤ ∑

k∈Z

|〈 f , DmTkψ0〉|2 +
n

∑
`=1

j−1

∑
p=m

∑
k∈Z

|〈 f , DpTkψ`〉|2 ≤ (1 + ε) 2π ‖ f ‖2
2 .

By Lemma 4.9(ii)

lim
m→−∞ ∑

k∈Z

|〈 f , DmTkψ0〉|2 = 0

and thus, by letting m→ −∞,

(1− ε) 2π ‖ f ‖2
2 ≤

n

∑
`=1

j−1

∑
p=−∞

∑
k∈Z

|〈 f , DpTkψ`〉|2 ≤ (1 + ε) 2π ‖ f ‖2
2 .
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Letting j→ ∞

(1− ε) 2π ‖ f ‖2
2 ≤

n

∑
`=1

∑
p∈Z

∑
k∈Z

|〈 f , DpTkψ`〉|2 ≤ (1 + ε) 2π ‖ f ‖2
2 .

Because ε > 0 was arbitrary chosen, it can be concluded that

n

∑
`=1

∑
p∈Z

∑
k∈Z

|〈 f , DpTkψ`〉|2 = 2π ‖ f ‖2
2

for all f ∈ D. By Lemma 3.3 it holds for all f ∈ L2 (R) and Equation (4.22) is a
consequences of Corollary 3.7.

�

Since the main assumption of Theorem 4.10 is

H (ω)∗ H (ω) = I, a.e. ω ∈ T,

and H (ω)∗ H (ω) is an unitary matrix, it is possible to satisfy the main assumption
by finding H (ω) such that it satisfies two equations. This is stated in the following
corollary.

Corollary 4.11
Let {ψ`, H`}n

`=0 be defined as in the general setup and assume that ∑n
`=0 |H` (ω)|2 = 1

∑n
`=0 H` (ω)Tπ H` (ω) = 0

(4.23)

for almost every ω ∈ T. Then all assumptions in theorem 4.10 are satisfied and
the multiwavelet system {DjTkψ`}j,k∈Z,`=1,...,n constitutes a tight frame for L2 (R)
with frame bound equal to 2π.

Proof
It have to be proven that H (ω)∗ H (ω) = I for almost every ω ∈ T. This follows
directly from the assumptions. �

Using Corollary 4.11, it is possible to construct compactly supported tight mul-
tiwavelet frames based on B-splines. Remember from Theorem 4.2 that this was
not possible with a single generator, but the following example shows it is with
multiple generators.



4.1. The Unitary extension principle 35

Example 4.12 (Unitary extension principle on B-spline)
Consider the B-spline

ψ0 = B2m

of order 2m for any m ∈ Z+. Then, from known proporties of B-splines we
obtain

ψ̂0 (ω) = e−imω

(
sin
(

ω
2

)
ω
2

)2m

.

It is clear that limω→0 ψ̂0 (ω) = 1 by L’Hôpital’s rule. Furthermore, by using the
trigonometric identity sin (2ω) = 2 cos ω sin ω, it follows that

ψ̂0 (2ω) = e−imω cos2m
(ω

2

)
ψ̂0 (ω) .

Thus ψ0 satisfy the conditions of the general setup with

H0 (ω) = e−imω cos2m
(ω

2

)
∈ L∞ (T)

being a 2π-periodic function. Defining

H` (ω) =

√(
2m
`

)
i`e−imω sin`

(ω

2

)
cos2m−`

(ω

2

)

and using the binomial formula

(x + y)2m =
2m

∑
`=0

(
2m
`

)
x`y2m−`
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it will be shown that the conditions for Corollary 4.11 are satisfied.

2m

∑
`=0
|H` (ω)|2 =

2m

∑
`=0

(
2m
`

) ∣∣∣i`∣∣∣2 ∣∣∣e−i2mω
∣∣∣2 sin2`

(ω

2

)
cos2(2m−`)

(ω

2

)
=

2m

∑
`=0

(
2m
`

)(
sin2

(ω

2

))` (
cos2

(ω

2

))2m−`

=
(

sin2
(ω

2

)
+ cos2

(ω

2

))2m
= 1, ω ∈ T.

2m

∑
`=0

H` (ω)Tπ H` (ω) =
2m

∑
`=0

(
2m
`

)
(−i)` eimω sin`

(ω

2

)
cos2m−`

(ω

2

)
·

i2m−`e−imω cos`
(ω

2

)
sin2m−`

(ω

2

)
=

2m

∑
`=0

(
2m
`

)
(−i)` i2m−` sin2m+`−`

(ω

2

)
cos2m−`+`

(ω

2

)
= sin2m

(ω

2

)
cos2m

(ω

2

) 2m

∑
`=0

(
2m
`

)
(−i)` i2m−`

= sin2m
(ω

2

)
cos2m

(ω

2

)
((−i) + i)2m = 0.

Corollary 4.11 now states that the multiwavelet {DjTkψ`}j,k∈Z,`=1,...,2m where ψ`

for ` = 1, . . . , 2m defined by

ψ̂` (ω) = H`

(ω

2

)
ψ̂0

(ω

2

)
=

√(
2m
`

)
i`e−imω sin2m+`

(
ω
4

)
cos2m−` (ω

4

)(
ω
4

)2m

constitutes a tight frame with compact support for L2 (R) with frame bound
equal to 2π.

4.2 The oblique extension principle

This section is also based on the general setup in Section 4.1. The purpose of
this section is to prove a more flexible version of the unitary extension principle.
The reason to do this is, it is desirable that a multiwavelet frame is generated by
functions {ψ`}n

`=1 that have a large number of vanishing moments. For N ∈ N it
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is said that a function f have N vanishing moments if∫
R

xm f (x) dx = 0

for 0 ≤ m ≤ N. The reason that it is desirable that a multiwavelet frame {ψ`}n
`=1

have a high number of vanishing moments is because〈
f , DjTkψ

〉
→ 0 for j→ ∞

converges faster for larger N. This is quantified in the following theorem.

Theorem 4.13
Given N ∈N, assume that the function f ∈ CN (R) and f (N) ∈ L∞ (R). Assume
that the function ψ (x) has compact support,∫

R
xmψ (x) dx = 0

for 0 ≤ m ≤ N − 1, and
∫

R

∣∣DjTkψ (x)
∣∣ dx = 1 for all j, k ∈ Z. Then there exist a

constant C > 0 depending only on N and f such that for every j, k ∈ Z∣∣∣〈 f , DjTkψ
〉∣∣∣ ≤ C2−jN2−

j
2 .

Proof
This proof follows the proof of theorem 9.5 in [8].

�

This theorem shows that the elements
〈

f , DjTkψ
〉

only can fluctuate in the interval[
−C2−jN2−

j
2 , C2−jN2−

j
2

]
. The following result shows that the elements

〈
f , DjTkψ

〉
also goes towards zero for k→ ±∞.

Theorem 4.14
Let f , g ∈ L2 (R) and assume that

| f (x) | ≤ 1

(1 + |x|)N and |g (x) | ≤ 1

(1 + |x|)N . (4.24)

Then ∣∣∣〈 f , DjTkg
〉∣∣∣ ≤ C2−

j
2

1(
1 +

∣∣2−jk
∣∣)N

where C > 0 and does not depend on j, k ∈ Z.
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Proof
Consider ∣∣∣〈 f , DjTkg

〉∣∣∣ ≤ ∫
R
| f (x)|

∣∣∣∣2 j
2 g
(
2jx− k

)∣∣∣∣ dx

= 2−
j
2

∫
R
| f (x)|

∣∣∣g (x− 2−jk
)∣∣∣ dx

Using the assumption of f and g in Equation (4.24)∣∣∣〈 f , DjTkg
〉∣∣∣ ≤ ∫

R

1

(1 + |x|)N
1(

1 +
∣∣x− 2−jk

∣∣)N dx.

The following equality from Appendix B.1 from [4]∫
Rn

2µn

(1 + 2µ|x− a|)M
2ηn

(1 + 2η |x− b|)N dx ≤ C0
2min(µ,η)n(

1 + 2min(µ,η)|x− b|
)min(M,N)

where a, b ∈ Rn, µ, η ∈ R, M, N > n and C0 don’t depend on a, b, µ or η is then
used, such that ∣∣∣〈 f , DjTkg

〉∣∣∣ ≤ C02−
j
2

1(
1 +

∣∣2−jk
∣∣)N .

�

Using These two theorems will

∣∣∣〈 f , DjTkψ
〉∣∣∣ ≤ (C2−jN2−

j
2

) 1
2

(
C2−

j
2

1(
1 +

∣∣2−jk
∣∣)N

) 1
2

. (4.25)

Thus, by having a multiwavelet frame generated by functions {ψ`}n
`=1 that have

a large number of vanishing moments, the elements
〈

f , DjTkψ
〉

will naturally be
sparse and, for a high enough j, negligible. If a series of functions {ψ`}n

`=1 is
generated by the unitary extensions theorem, Theorem 4.10, it can then be shown
that the number of vanishing moments for the function ψ` is equal to the order
of zero for H` (ω) at ω = 0. This puts a natural restriction on the number of
vanishing moments one can obtain via the unitary extension principle. A solution
to this problem is called the oblique extension principle, and results in constructions
with a potential higher number of vanishing moments.

Theorem 4.15 (The oblique extension principle)
Let {ψ`, H`}n

`=0 be as defined in the general setup and assume there exist a
strictly positive function θ ∈ L∞ (T) for which

lim
ω→0

θ (ω) = 1 (4.26)
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and such that for almost every ω ∈ T,

H0 (ω) H0 (ω + ν)θ (2ω) +
n

∑
`=1

H` (ω) H` (ω + ν) =

{
θ (ω) if ν = 0

0 if ν = π.
(4.27)

The function {DjTkψ`}j,k∈Z,`=1,...,n then constitute a tight frame for L2 (R) with
frame bound equal to 2π.

Proof
With the assumptions in Theorem 4.15, define the function ψ̃0 ∈ L2 (R) by

ˆ̃ψ0 (ω) =
√

θ (ω)ψ̂0 (ω) . (4.28)

Define the 2π-periodic function H̃0, . . . , H̃n by

H̃0 (ω) =

√
θ (2ω)

θ (ω)
H0 (ω) , H̃` (ω) =

√
1

θ (ω)
H` (ω) , ` = 1, . . . , n. (4.29)

We want to show that the unitary extension theorem can be applied to ψ̃0, H̃0, . . . , H̃n

and thereby obtain a tight frame {DjTkψ̃`}j,k∈Z,`=1,...,n. At last it is shows that
ψ̃` = ψ` for ` = 1, . . . , n. First we prove that ψ̃0, H̃0, . . . , H̃n satisfy the conditions in
the general setup. We havễψ0 (2ω) =

√
θ (2ω)ψ̂0 (2ω)

=
√

θ (2ω)H0 (ω) ψ̂0 (ω)

=

√
θ (2ω)

θ (ω)
H0 (ω) ̂̃ψ0 (ω) = H̃0 (ω) ̂̃ψ0 (ω)

and,

lim
ω→0

̂̃ψ0 (ω) = lim
ω→0

(√
θ (ω)ψ̂0 (ω)

)
= 1.

This shows the general setup is satisfied. Define ψ̃` as

ˆ̃ψ` (2ω) = H̃` (ω) ˆ̃ψ` (ω) , ` = 1, . . . , n. (4.30)

Now it is enough to prove the assumptions in Corollary 4.11. Using Equation (4.27)
and (4.29) with ν = 0,

n

∑
`=0

∣∣∣H̃` (ω)
∣∣∣2 =

θ (2ω)

θ (ω)
|H0 (ω)|2 +

n

∑
`=1

|H` (ω)|2

θ (ω)

=
1

θ (ω)

(
θ (2ω) |H0 (ω)|2 +

n

∑
`=1
|H` (ω)|2

)
= 1, a.e. ω ∈ T.
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Now, using that θ (2 (ω + π)) = θ (2ω) and the same equations as before but with
ν = π, we obtain

n

∑
`=0

H̃` (ω) H̃` (ω + π) =
θ (2ω)√

θ (ω) θ (ω + π)
H0 (ω) H̃0 (ω + π)+

1√
θ (ω) θ (ω + π)

n

∑
`=1

H` (ω) H̃` (ω + π)

= 0, a.e. ω ∈ T.

It then follows from Corollary 4.11 that the functions {DjTkψ`}j,k∈Z,`=1,...,n consti-
tute a tight frame for L2 (R) with frame bound equal to 2π. Then by observing

ψ̂` (2ω) = H` (ω) ψ̂0 (ω) =
√

θ (ω)H̃` (ω)
1√

θ (ω)
̂̃ψ0 (ω) = ̂̃ψ` (2ω)

it is shown that ψ̃` = ψ` for ` = 1, . . . , n.
�

Choosing θ = 1 in Theorem 4.15, we obtain Theorem 4.10 the unitary extension
principle. The extra freedom from the choice of θ makes the oblique extension
principle more flexible than the unitary extension principle even though they both
are able to construct the same amount of multiwavelet frames. In practice the
construction of multiwavelets frames are more natural in the oblique extension
principle.

Example 4.16 (unitary extension principle problem)
Let ψ0 be a compactly supported function satisfying the general setup for some
function H0 ∈ L∞ (T), and assume that θ and H` for ` = 1, . . . , n are trigono-
metric polynomials satisfying Theorem 4.15. Then the generated functions ψ`

for the frame {DjTkψ`}j,k∈Z,`=1,...,n have compact support. Now, in the proof for
Theorem 4.15, it is shown that the same frame can be constructed from Theo-
rem 4.10 by defining ψ̃0 ∈ L2 (R) by Equation (4.28). The functions ψ̃` defined
from Equation (4.29) and (4.30) satisfy the conditions in the unitary extension
principle , and ψ̃` = ψ` for all ` = 1, . . . , n. However, even though the frame
{DjTkψ̃`}j,k∈Z,`=1,...,n is generated by compactly supported functions, the func-
tion ψ̃0 is not in general a compactly supported function. So, the construction
of the unitary extension principle resulting in compactly supported functions is
unpredictable.

In order to use the oblique extension principle, one need to choose the function θ

and H1, . . . , Hn simultaneously such that Equation (4.26) and (4.27) is satisfied. No
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general way have yet been shown how to do that, but an extra condition on the
choice of θ will make it easier to construct frames.

Corollary 4.17
Let ψ0 and H0 be as in the general setup. Let θ ∈ L∞ (T) be a strictly positive
function for which limω→0 θ (ω) = 1, chosen such that the function

η (ω) = θ (ω)− θ (2ω)
(
|H0 (ω)|2 + |H0 (ω + π)|2

)
(4.31)

is positive. Fix n ≥ 2 and let {G`}n
`=2 be 2π-periodic trigonometric polynomials

for which

n

∑
`=2
|G` (ω)|2 = 1, and

n

∑
`=2

G` (ω) G` (ω + π) = 0, ω ∈ R. (4.32)

Let ρ, σ be 2π-periodic functions such that

|ρ (ω)|2 = θ (ω) , |σ (ω)|2 = η (ω) .

Define then the 2π-periodic function {H`}n
`=1 by

H1 (ω) = eiωρ (2ω) H0 (ω + π), H` (ω) = G` (ω) σ (ω) , ` = 2, . . . , n.

The functions {ψ`}n
`=1 given by equation (4.8) then generate a tight frame

{DjTkψ`}j,k∈Z,`=1,...,n for L2 (R).

Proof
It needs to be shown that the function θ and H` for ` = 0, 1, . . . , n satisfies Equation
(4.27). First for ν = 0,

|H0 (ω)|2 θ (2ω) +
∞

∑
`=1
|H0 (ω)|2

= |H0 (ω)|2 θ (2ω) + |H1 (ω + π)|2 |ρ (2ω)|2 + |σ (ω)|2
n

∑
`=2
|G` (ω)|

= |H0 (ω)|2 θ (2ω) + |H1 (ω + π)|2 θ (2ω) + µ (ω) = θ (ω) .
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Similary for ν = π,

H0 (ω) H0 (ω + π)θ (2ω) +
n

∑
`=1

Hn
`=1H` (ω) H` (ω + π)

= H0 (ω) H0 (ω + π)θ (2ω) + ρ (2ω) ρ (2 (ω + π))eiωe−i(ω+π)H0 (ω) H0 (ω + π)+

σ (ω) σ (ω + π) ∑
`=2

G` (ω) G` (ω + π)

= H0 (ω) H0 (ω + π)θ (2ω)− θ (2ω) H0 (ω) H0 (ω + π) = 0

�

The oblique extension principle is very useful to construct multiwavelet frames
based on B-splines.

Theorem 4.18
Let B2m denote the B-spline of order 2m with two-scale symbol H0 (ω) =

e−imω cos2m (ω
2

)
. Then for each positive integer M ≤ 2m, there exist a trigono-

metric polynomial θ of the form

θ (ω) = 1 +
M−1

∑
j=1

cj sin2j
(ω

2

)
, (4.33)

for which the following hold.

(i) cj ≥ 0 for all j = 1, . . . , M− 1, i.e., θ (ω) > 0 for all ω ∈ R.

(ii) The functions η in Equation (4.31) is positive.

(iii) The generators in the tight multiwavelet frames constructed via the oblique
extension principle and its corollaries have M vanishing moments.

The coefficients cj, j = 1, . . . , M− 1 can be determined via the requirement that(
1 +

∞

∑
j=1

(2j− 1)!
(2j)! (2j + 1)

yj

)4m

= 1 +
M−1

∑
j=1

cjyj + O
(
|y|M

)
as y→ 0.

Proof
This proof can be found in [2]. �

Constructing tight multiwavelet frames using B-splines by Theorem 4.18, the amount
of vanishing moments of ψ` is not bounded by the amount of zeroes of H` (ω) at
ω = 0 but by M.
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Wavelet Transformation

Now that frames, more specifically wavelet frames, have been introduced, as well
as the oblique extension principle, it is time to figure out how to use them in prac-
tise. One way is by discrete wavelet transformation. This transformation creates
a decomposition of a discrete signal. Since this is a discrete transformation the
theory must be converted to a discrete format. This will first be explained by con-
sidering the orthonormal wavelets setup and then, later on, generalized to wavelet
frames. Recall that functions f ∈ VL can be represented by the scaling function
basis

{
2

L
2 ϕ
(
2Lx− k

)}
k∈Z

such that

f (x) = ∑
k∈Z

b[k]ϕ
(

2Lx− k
)

for some sequence of coefficients b[k] ∈ `2 (R). In the case where
{

2
L
2 ϕ
(
2Lx− k

)}
k∈Z

is an orthonormal basis for VL, we have

b[n] = 2
L
2

〈
f , 2

L
2 ϕ
(

2Lx− n
)〉

=
∫ ∞

−∞
f (x)2L ϕ (2Lx− n)dx.

Using that
∫

R
ϕ (x) dx = 1, we have 2−

L
2 =

∫ ∞
−∞ 2

L
2 ϕ (2Lx− n)dx such that

b[n] =

∫ ∞
−∞ f (x)2

L
2 ϕ (2Lx− n)dx∫ ∞

−∞ 2
L
2 ϕ (2Lx− n)dx

.

This is similar to calculate a weighted average for the function f (x). By defining
2L = N−1 and letting Ω be a neighborhood of Nn over a domain proportional to
N such that ∫

Ω f (x)2
L
2 ϕ (2Lx− n)dx∫

Ω 2
L
2 ϕ (2Lx− n)dx

= f (Nn) .

43
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This means that the sampled function value f (Nn) is an approximation of b[n].
Thus when handling signals such as f ∈ VL, it is enough to work with the sampled
version f (Nn) as a replacement for b[n]. Before explaining how the decomposition
of the sampled signal f ∈ VL works, some definitions must be made and some
information given.

Definition 5.1
Let f ∈ L2 (R). Define

aj[n] =
〈

f , 2
j
2 ϕ
(

2jx− n
)〉

and dj[n] =
〈

f , 2
j
2 ψ
(

2jx− n
)〉

where j, n ∈ Z.

Let 2L = N−1, then

b[n] = N−
1
2 aL[n] ≈ f (Nn) .

From [6], it is known, by a scaling of
√

2, that

a0 [k] =
1√
2

〈
ϕ

(
1
2
·
)

, ϕ (· − k)
〉

(5.1)

= h[k] (5.2)

which is the low-pass filter coefficients with respective high-pass filter coefficients
noted as g[k]. The idea is now to create a decomposition of the approximated
sampled signal, aL[n], of f ∈ VL. Since VL = VL−1

⊕
WL−1, the function f can be

written as

f (x) = ∑
k∈Z

aL−1[k]ϕL−1,k (x) + ∑
k∈Z

dL−1[k]ψL−1,k (x) (5.3)

where

∑
k∈Z

aL−1[k]ϕL−1,k (x) ∈ VL−1 and ∑
k∈Z

dL−1[k]ψL−1,k (x) ∈WL−1.

The challenge now is to figure out how to calculate aL−1[k] and dL−1[k] by only
knowing aL[k]. Before showing how to calculate those quantities, a lemma must be
considered.
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Lemma 5.2
Let ϕ be the scaling function for an MRA that generates an orthogonal wavelet
{ψj,k}j,k∈Z. Then〈

ϕj−1,p, ϕj,k
〉
= h[k− 2p] and

〈
ψj−1,p, ψj,k

〉
= g[k− 2p] (5.4)

for k, p ∈ Z.

Proof
Consider

〈
ϕj−1,p, ϕj,k

〉
=
∫

R
2

j−1
2 ϕ

(
2j−1t− p

)
2

j
2 ϕ
(
2jt− k

)
dt.

Using substitution, with t = 2−j (u + 2p), we obtain〈
ϕj−1,p, ϕj,k

〉
=
∫

R
2−

1
2 ϕ
(

2−1(u + 2p)− p
)

ϕ (u− k + 2p) du

=
∫

R
2−

1
2 ϕ
(u

2

)
ϕ (u− (k− 2p)) du = h[k− 2p].

A similar calculation yields 〈
ψj−1,p, ψj,k

〉
= g[k− 2p].

�

Proposition 5.3
Let ϕ be the scaling function for an MRA that generates an orthogonal wavelet
basis {ψj,k}j,k∈Z and let aj[n] and dj[n] be defined as in Definition 5.1. Then

aj−1[p] = ∑
n∈Z

h[n− 2p]aj[n] and dj−1[p] = ∑
n∈Z

g[n− 2p]aj[n].

Proof
Consider

aj−1[p] =
〈

f , ϕj−1,p
〉

=
∫

R
f (x) ϕj−1,p (x)dx

=
∫

R
∑

n∈Z

aj[n]ϕj,n (x) ϕj−1,p (x)dx.
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Then using Fubini’s theorem

aj−1[p] = ∑
n∈Z

aj[n]
∫

R
ϕj,n (x) ϕj−1,p (x)dx

= ∑
n∈Z

aj[n]
〈

ϕj−1,p, ϕj,n
〉
= ∑

n∈Z

aj[n]h[n− 2p].

A similar calculation can be made to obtain

dj−1[p] = ∑
n∈Z

aj[n]g[n− 2p].

�

Example 5.4 (Haar wavelet transform)
The discrete transformation will be demonstrated by doing a wavelet transforma-
tion with the Haar wavelet. The Haar wavelet is constructed from the low-pass
filter

m0 (ω) =
1
2
+

1
2

eiω.

The low-pass filter coefficients, from this low-pass filter, is h =
( 1

2 , 1
2

)
. applying

this filter, by convolution, to a sampled signal x, a new signal, y, is constructed

y[n] =
1
2

x[n] +
1
2

x[n + 1].

This can be described as a matrix vector product, y = Hlowx, where

Hlow =



. . .

· · · 0 1
2

1
2 0 0 0 0 · · ·

· · · 0 0 1
2

1
2 0 0 0 · · ·

· · · 0 0 0 1
2

1
2 0 0 · · ·

· · · 0 0 0 0 1
2

1
2 0 · · ·

. . .


.

The same can be done for the high-pass filter from the Haar wavelet, such that
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z = Hhighx, where

Hhigh =



. . .

· · · 0 − 1
2

1
2 0 0 0 0 · · ·

· · · 0 0 − 1
2

1
2 0 0 0 · · ·

· · · 0 0 0 − 1
2

1
2 0 0 · · ·

· · · 0 0 0 0 − 1
2

1
2 0 · · ·

. . .


.

This matrix vector products can be represented as convolutions such that

y[p] =
∞

∑
m=−∞

x[m]h[m− p] and z[p] =
∞

∑
m=−∞

x[m]g[m− p] (5.5)

where h =
[
· · · 0 1

2
1
2 0 . . .

]
and g =

[
· · · 0 − 1

2
1
2 0 . . .

]
. By defining

H =

Hlow

Hhigh

 (5.6)

Then 

...

y−1

y0

y1
...

z−1

z0

z1
...



= H



...

x−2

x−1

x0

x1

x2
...



.

The vector y and z is respectively the low-pass and high-pass decomposition of
the signal x and it is possible to reconstruct the signal x by only knowing the
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vectors y and z. In terms of x, y and z

...

y1 − z1 =
x1 + x0

2
− x1 − x0

2
= x0

y1 + z1 =
x1 + x0

2
+

x1 − x0

2
= x1

y2 − z2 =
x2 + x1

2
− x2 − x1

2
= x1

y2 + z2 =
x2 + x1

2
+

x2 − x1

2
= x2

y3 − z3 =
x3 + x2

2
− x3 − x2

2
= x2

y3 + z3 =
x3 + x2

2
+

x3 − x2

2
= x3

...

As observed, it is only necessary to have the odd entries of the vectors y and z
to reconstruct the signal x. Using this knowledge on Equation (5.5), it is only
necessary to calculate

y[p] =
∞

∑
m=−∞

x[m]h[m− 2p] and z[p] =
∞

∑
m=−∞

x[m]g[m− 2p] (5.7)

such that every even row in H is skipped. This is called downsampling and more
specifically, downsampling by a factor of 2, in this case.

Using Equation (5.3) and Proposition 5.3, it is possible for the samplet signal b[n]
to be decomposed into aj−1[p] and dj−1[p]. This is done by convolving the sampled
signal with the low-pass and high-pass coefficients and downsampling it by a fac-
tor of 2. After decomposition of aj to aj−1 and dj−1, it is possible to reconstruct aj
by convolution.

Proposition 5.5
With the same assumptions as in Proposition 5.3. Then

aj[p] = ∑
n∈Z

h[p− 2n]aj−1[n] + ∑
n∈Z

g[p− 2n]dj−1[n]. (5.8)
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Proof
Since Vj = Vj−1

⊕
Wj−1, the union of the bases {ψj−1,n}n∈Z and {ϕj−1,n}n∈Z will

be an orthonormal basis of Vj. This means that

ϕj,p = ∑
n∈Z

〈
ϕj,p, ϕj−1,n

〉
ϕj−1,n + ∑

n∈Z

〈
ϕj,p, ψj−1,n

〉
ψj−1,n.

And thus, by using Lemma 5.2

aj [p] =
〈

f , ϕj,p
〉

=

〈
f , ∑

n∈Z

〈
ϕj,p, ϕj−1,n

〉
ϕj−1,n + ∑

n∈Z

〈
ϕj,p, ψj−1,n

〉
ψj−1,n

〉
= ∑

n∈Z

〈
ϕj,p, ϕj−1,n

〉 〈
f , ϕj−1,n

〉
+ ∑

n∈Z

〈
ϕj,p, ψj−1,n

〉 〈
f , ψj−1,n

〉
= ∑

n∈Z

h[p− 2n]aj−1[n] + ∑
n∈Z

g[p− 2n]dj−1[n]

�

5.1 Wavelet Transformation Algorithm

The algorithm of the transformation will be explained, now that the deconstruc-
tion and reconstruction of signals b[n] have been explained. To easier explain the
algorithm the following notation is necessary.

xzeros[n] =

x
[ n

2

]
for n = 0 mod 2

0 for n = 1 mod 2
(5.9)

The notation xzeros interleave x with zeros.

Figure 5.1: Decomposition

Figure 5.2: Reconstruction
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Algorithm 1: Wavelet Deconstruction

Result:
(
aj−k,

[
dj, dj−1, . . . , dj−k

])
b[n] = sampled signal;
h[n] = low-pass coefficients;
g[n] = high-pass coefficients;
highPassList = [ ];
k = deconstruct amount;
aj+1[n] = b[n];
i = 0;
while i ≤ k do

Convolution between aj+1−i[n] and h[n];
ãj−i[n] =

(
aj+1−i ∗ h

)
[n];

Downsampling ãj−i by a factor 2;
aj−i[p] = ãj−i[2p];
Repeat with g instead of h;
d̃j−i[n] =

(
aj+1−i ∗ g

)
[n];

dj−i[p] = d̃j−i[2p];
Insert dj−i[p] into highPassList;
i = i + 1;

end

Algorithm 2: Wavelet Reconstruction
Result: aj+1

aj[n] = the j’th deconstructed low-pass coefficients;
dj[n] = the j’th deconstructed high-pass coefficients;
h[n] = low-pass coefficients;
g[n] = high-pass coefficients;
Upsampling aj and dj by a factor 2 as in equation (5.9)

aj+1[n] =
(
azeros,j ∗ h

)
[n] +

(
dzeros,j ∗ g

)
[n];

As seen in Figure 5.1, Algorithm 1 have been used on b[n] with k = 2. Figure
5.2 shows that Algorithm 2 have been used twice, first on the pair

(
aj−1, dj−1

)
to

reconstruct aj and then on the pair
(
aj, dj

)
to finally reconstruct b[n]. An important

thing to consider is, at what frequency intervals the wavelet transformation filters
the signal. This can be considered by considering the Nyquist frequency.

Definition 5.6 (Nyquist frequency)
Let xa (x) be an analog signal. Then the sequence of samples x [n] is obtained
from the analog signal according the the relation

x [n] = xa (nT) .
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T is called the sampling period and its reciprocal fT = 1
T is called the Nyquist

frequency[7].

Every instance of the orthonormal wavelet decomposition splits the frequency in-
terval of the signal in half with respect to the Nyquist frequency, fT. For example,
the first instance of the wavelet decomposition splits the frequency interval [0, fT]

up in the intervals
[
0, fT

2

]
and

[
fT
2 , fT

]
. The second instance splits the frequency

interval
[
0, fT

2

]
into the intervals

[
0, fT

4

]
and

[
fT
4 , fT

2

]
. Thus every instance of the

decomposition splits the low-frequency interval into two.
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5.2 Wavelet Frame Transformation

The deconstruction and reconstruction for the wavelet transformation have been
explained, but as it have been stated in Chapter 4 Wavelet Frames, constructing an
orthonormal wavelet basis can be troublesome. But like wavelet frames is similar
to orthonormal wavelets, a similar transformation can be made, called the discrete
wavelet frame transformation. biggest differences from the orthonormal wavelet
transformation and wavelet frame transformation is, the orthonormal wavelet is
generated by an orthonormal basis and is generated from only one ψ. The wavelet
frame basis is not necessary orthonormal and is generated by multiple different
ψ`. This section is based on [5]. It can be assumed that the wavelet frame scaling
function ψ0 generates an orthonormal basis for L2 (R), thus b [n] can be used to rep-
resent the sampled function f ∈ VL as in the orthonormal wavelet transformation.
From the general setup in Section 4.1, it is known that

1√
2

ψ`

( x
2

)
= ∑

n∈Z

a0,` [n]ψ0 (x− n)

where

a0,` =
1√
2

〈
ψ`

( x
2

)
, ψ0 (x− n)

〉
.

Thus instead of Definition 5.1, a corresponding definition for wavelet frames is

Definition 5.7
Let f ∈ L2 (R). Define

aj[n] =
〈

f , 2
j
2 ψ0

(
2jx− n

)〉
and dj,`[n] =

〈
f , 2

j
2 ψ`

(
2jx− n

)〉
where j, n ∈ Z.

Since the scaling function ψ0 has been assumed to be orthonormal, aj [n] from
Definition 5.1 is equal in structure to aj [n] in Definition 5.7.

Proposition 5.8
Let ψ0 be defined by Equation (4.7). Let aj[n] and dj,`[n] be defined as in Defini-
tion 5.7. Then

aj−1[p] = ∑
n∈Z

a0,0[n− 2p]aj[n] and dj−1,`[p] = ∑
n∈Z

a0,`[n− 2p]aj[n].
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Proof
Consider

dj−1,` [p] =
∫

R
f (x) 2

j−1
2 ψ`

(
2j−1x− p

)
dx

=
∫

R
f (x) 2

j−1
2 2

1
2 ∑

n∈Z

a0,` [n]ψ0

(
2
(

2j−1x− p
)
− n

)
dx

=
∫

R
f (x) 2

j
2 ∑

n∈Z

a0,` [n]ψ0

(
2jx− 2p− n

)
dx.

Using Fubini’s theorem

dj−1,` [p] = ∑
n∈Z

a0,` [n]
∫

R
f (x) 2

j
2 ψ0

(
2jx− (2p + n)

)
= ∑

n∈Z

a0,` [n]
〈

f (x) , 2
j
2 ψ0

(
2jx− (2p + n)

)〉
= ∑

n∈Z

a0,` [n] aj [2p + n]

= ∑
n∈Z

a0,` [n− 2p] aj [n] .

�

The reconstruction with wavelet frames is a bit more complicated then for or-
thonormal wavelets since the wavelet frames does not have an orthonormal struc-
ture. To explain this reconstruction more easily some notation is needed. Define
for suitable sequences u, ν

[Suν] [n] = ∑
k∈Z

ν [k] u [n− 2k] (5.10)

[Tuν] [n] = 2 ∑
k∈Z

ν [k] u [k− 2n] (5.11)

with corresponding Fourier series

[Suν]
∧

(ω) = ∑
n∈Z

∑
k∈Z

ν [k] u [n− 2k] e−inω

= ∑
p∈Z

∑
k∈Z

ν [k] u [p] e−i(p+2k)ω

= ∑
p∈Z

u [p] e−ipω ∑
k∈Z

ν [k] e−ik2ω

= û (ω) ν̂ (2ω)

(5.12)
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[Tuν]
∧

(ω) = 2 ∑
n∈Z

∑
k∈Z

ν [k] u [k− 2n]e−inω

= 2 ∑
p∈Z

∑
k∈Z

ν [k] u [p]e−i 1
2 (k−p)ω

= 2 ∑
p∈Z

u [p]eix ω
2 ∑

k∈Z

ν [k] e−ik ω
2

= ∑
p∈Z

u [p] e−ip ω
2 ∑

k∈Z

ν [k] e−ik ω
2 +

∑
p∈Z

u [p] e−ip( ω
2 +π) ∑

k∈Z

ν [k] e−ik( ω
2 +π)

= û
(ω

2

)
ν̂
(ω

2

)
+ û

(ω

2
+ π

)
ν̂
(ω

2
+ π

)
.

(5.13)

Now the perfect reconstruction can be stated for wavelet frames.

Proposition 5.9
With the same assumption as in Proposition 5.8. Then

aj[p] = 2

(
∑

n∈Z

a0,0[p− 2n]aj−1[n] +
n

∑
`=1

∑
n∈Z

a0,`[p− 2n]dj−1,`[n]

)
. (5.14)

Proof
Consider

ãj [p] = 2

(
∑

n∈Z

a0,0[p− 2n]aj−1[n] +
n

∑
`=1

∑
n∈Z

a0,`[p− 2n]dj−1,`[n]

)
.

By choosing u = a0,`, the definitions in Equation (5.10) and (5.11), give[
Sa0,`

[
Ta0,`ν

]]
[p] = 2 ∑

n∈Z

a0,`[p− 2n] ∑
i∈Z

ν[p]a0,` [i− 2n]

for ` = 0, . . . , n. By choosing ν = aj and using Proposition 5.8, we have

ãj [p] =
[
Sa0,0

[
Ta0,0 aj

]]
[p] +

n

∑
`=1

[
Sa0,`

[
Ta0,`aj

]]
[p] . (5.15)

Taking the Fourier series on both sides of Equation (5.15), using Equation (5.12)
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and (5.13), gives

ˆ̃aj (ω) = H0 (ω)
(

H0 (ω)âj (ω) + H0 (ω + π)âj (ω + π)
)
+

n

∑
`=1

H` (ω)
(

H` (ω)âj (ω) + H` (ω + π)âj (ω + π)
)

= âj (ω)

(
H0 (ω) H0 (ω) +

n

∑
`=1

H` (ω) H` (ω)

)
+

âj (ω + π)

(
H0 (ω) H0 (ω + π) +

n

∑
`=1

H` (ω) H` (ω + π)

)
.

Since H0 and H` for ` = 1, . . . , n is constructed from Theorem 4.15, we have

H0 (ω) H0 (ω) +
n

∑
`=1

H` (ω) H` (ω) = 1 and

H0 (ω) H0 (ω + π) +
n

∑
`=1

H` (ω) H` (ω + π) = 0

and thus

ˆ̃aj (ω) = âj (ω) . (5.16)

From the injectivity of the Fourier series, we conclude that

ãj [n] = aj [n] .

A perfect reconstruction have thus been achieved.
�

The algorithm for wavelet frame deconstruction and reconstruction is very similar
to the algorithms for orthonormal wavelets. There are only more repetition and a
scaling for the reconstruction as can be seen in Algorithm 3 and 4.
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Algorithm 3: Wavelet Frame Deconstruction

Result:
(
aj−k,

[(
dj,1, . . . , dj,n

)
,
(
dj−1,1, . . . , dj−1,n

)
, . . . ,

(
dj−k,1, . . . , dj−k,n

)])
b[n] = sampled signal;
h[n] = low-pass coefficients;
g`[n] = the `’th high-pass coefficients;
highPassList` = [ ];
k = deconstruct amount;
aj+1[n] = b[n];
i = 0;
while i ≤ k do

Convolution between aj+1−i[n] and h[n];
ãj−i[n] =

(
aj+1−i ∗ h

)
[n];

Downsampling ãj−i by a factor 2;
aj−i[p] = ãj−i[2p];
` = 1;
while ` ≤ n do

Repeat with g` instead of h;
d̃j−i,`[n] =

(
aj+1−i ∗ g`

)
[n];

dj−i,`[p] = d̃j−i,`[2p];
Insert dj−i,`[p] into highPassList`;
` = `+ 1

end
i = i + 1;

end

Algorithm 4: Wavelet Frame Reconstruction
Result: aj+1

aj[n] = the j’th deconstructed low-pass coefficients;
dj,`[n] = the `’th element of the j’th deconstructed high-pass coefficients list;
h[n] = low-pass coefficients;
g`[n] = the `’th high-pass coefficients;
Upsampling aj and dj,` by a factor 2 as in equation (5.9)

aj+1[n] = 2
((

azeros,j ∗ h
)
[n] + ∑n

`=1
(
dzeros,j,` ∗ g`

)
[n]
)
;

As known from wavelets frames, the corresponding filter coefficients can be very
inconvenient to calculate. By using B-splines to construct a wavelet frame struc-
ture, the filter coefficients is very convenient to calculate. The calculation of these
coefficients is shown in Example 5.10.
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Example 5.10 (Wavelet frames high-pass and low-pass filter coefficients from B-splines)
From Example 4.12, it is known that the B-spline

ψ0 = B2m

has the corresponding low-pass filter

H0 (ω) = e−imω cos2m
(ω

2

)
∈ L∞ (T)

=
1

22m e−imω
2m

∑
k=0

(
2m
k

)
ei ω

2 ke−i ω
2 (2m−k)

=
2m

∑
k=0

1
22m

(
2m
k

)
e−iω(2m−k)

and corresponding high-pass filters

H` (ω) =

√(
2m
`

)
i`e−imω sin`

(ω

2

)
cos2m−`

(ω

2

)
=

√(
2m
`

)
1

22m e−imω
`

∑
k=0

(−1)`−k
(
`

k

)
eiωke−i ω

2 (`)
2m−`
∑
j=0

(
2m− `

j

)
eiωje−i ω

2 (2m−`)

=

√(
2m
`

)
1

22m e−i2mωe−iω`
`

∑
k=0

2m−`
∑
j=0

(−1)`−k
(
`

k

)(
2m− `

j

)
eiω(k+j)

=

√(
2m
`

)
1

22m

`

∑
k=0

2m−`
∑
j=0

(−1)`−k
(
`

k

)(
2m− `

j

)
e−iω((2m+`)−(k+j)).

This gives a very explicit expression for the low-pass and high-pass filter coeffi-
cients.





Chapter 6

Discussion

In Chapter 5, the discrete orthonormal wavelet and wavelet frame transformation
were explained. In this chapter, the two discrete transformations will be compared
based on examples of its application. This discussion starts with a quick overview
over the two transformations, followed by a demonstration of noise reduction on
multiple signals.

6.1 Overview

As a reminder, some important information of the orthonormal wavelet transfor-
mation and wavelet frame transformation will be stated.

6.1.1 Orthonormal Wavelet

The orthonormal wavelet transformation is based on orthonormal wavelets with
compact support. These wavelets are constructed from a MRA which is a series
of subspaces {Vj}j∈Z defined in Definition 2.1. A signal f ∈ Vj is sampled to the
sequence b [n] as stated in the beginning of Chapter 5. When the wavelet trans-
formation is applied, the sequence b is decomposed into two signals, aj−1 and
dj−1. The subspaces Vj−1 and Wj−1, where aj−1 ∈ Vj−1 and dj−1 ∈ Wj−1, only have
{0} in common, meaning Vj = Vj−1

⊕
Wj−1. Because of this the decomposition is

very predictable. One consequence of this is the predictable split in the frequency
interval of the signal when decomposed from the orthonormal wavelet transfor-
mation. Every sequential use of the orthonormal wavelet transformation splits the
frequency interval in half.

6.1.2 Wavelet Frames

Just like orthonormal wavelets, wavelet frames are based on a MRA except that
the scaling function for the MRA only generates a Riesz basis, not an orthogonal

59
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basis. Thus, for the wavelet frame to create an surjective transformation it must, in
general, be overdetermined. This makes the wavelet frame a multiwavelet system
with multiple generator functions ψ`. The predictability of the decomposition thus
becomes more complicated. Since the transformation is not injective the decom-
position can be different for the same signal and thus Wj cannot be defined, other
than ⋃

j∈Z

Wj = L2 (R) .

6.2 Accessibility

The construction of an orthonormal wavelet and a wavelet frame are different. In
this section it will be summarized how they are constructed and how they are
different.

6.2.1 Orthonormal Wavelet

To construct an orthonormal wavelets with compact support, a 2π-periodic low-
pass filter function m0 ∈ L2 (−π, π) must be found that satisfies the following:

(i) m0 must be a trigonometric polynomial,

(ii) m0 ∈ C1 (−π, π) is a 2π-periodic function,

(iii) |m0 (ω) |2 + |m0 (ω + π) |2 = 1,

(iv) |m0 (0) | = 1,

(v) m0 (ω) 6= 0 for ω ∈
[
− 1

2 π, 1
2 π
]
.

This means that

m0 (ω) =
N

∑
k=−N

ake−ikω,

and thus, a finite amount of coefficients ak must be found such that m0 satisfy the
right conditions. These coefficients are the low-pass filter coefficients used in the
discrete orthonormal wavelet transformation algorithm.

6.2.2 Wavelet Frames

The construction of a multiwavelet system can be deduced directly from the scaling
function ψ0 and the multiple high-pass filters H1, . . . , H` from the following relation

ψ̂` (2ω) = H` (ω) ψ̂0 (ω) .

The requirements for H0, . . . , H` is



6.3. Comparison 61

(i) H` ∈ L∞ (T) is a 2π-periodic tr for ` = 0, . . . , n,

(ii) ψ̂0 (2ω) = H0 (ω) ψ̂0 (ω)

(iii)

 ∑n
`=0 |H` (ω)|2 = 1

∑n
`=0 H` (ω)Tπ H` (ω) = 0

.

These conditions enables the use of the unitary extension principle. By using more
advanced, but not more strict, conditions the oblique extension principle can be
used in place of the unitary extension principle. Since

H` (ω) = ∑
k∈Z

ck,`e−ikω

the low-pass and high-pass filter coefficients are defined as {ck,`}∈̨Z, low-pass for
` = 0 and high-pass for ` = 1, . . . n.

6.3 Comparison

The algorithm used for applying the orthonormal wavelets and wavelet frame
transformation are very similar. The only difference is the number of high-pass
filter repetitions in the decompositions and reconstruction algorithm and the re-
construction equation. Thus the wavelet frame transformation algorithm tends to
take longer than the orthonormal wavelet transformation.
The construction criteria for the orthonormal wavelet transformation is stricter than
the construction criteria for the wavelet frame transformation. This means wavelet
frames are easier to construct, but the wavelet frame transformation is non-injective
unlike the orthonormal wavelet transformation. This trade off is relatively impor-
tant depending what kind of study one wishes to do with the decomposition.
Since the wavelet frame transformation decomposes into multiple high-pass de-
compositions, the redundancy of the wavelet frame transformation is higher than
the orthonormal wavelet transformation. This increase in redundancy makes the
wavelet frame transformation very effective for noise reduction, as we will see, but
very ineffective for compression. The increase in redundancy creates more coef-
ficients with overlapping information. Since the information is overlapping, the
change of individual coefficient will affect the original signal less compared to the
one to one transformation the orthonormal wavelet transformation results in. Thus
setting coefficients to zero in the high-pass filter decompositions becomes more
effective at reducing noise for the wavelet frame transformation than the orthonor-
mal wavelet transformation. At the same time, since the increase in coefficients
from the increased redundancy makes the resulting transformation larger for the
wavelet frame transformation, it supports the idea that compression is ineffective.
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In the case of noise reduction, it is possible to be more flexible with the study on
the high-pass decompositions. The trait off for this flexibility is the lack of pre-
diction of information in the multiple high-pass decompositions. In contrast, the
orthonormal wavelet transformation is very predictable because of the orthogonal
nature of the transformation. Thus, if one searches for a clear structure in a known
frequency interval this predictability can be very useful.
In the following section, Section 6.4, some examples will be shown such that this
comparison becomes more apparent.

6.4 Examples of Algorithm

In this section some examples of the wavelet frame transformation and orthonor-
mal wavelet transformation will be presented. In order to ensure consistency the
filters will stay the same for the two transformations respectively.
For the orthonormal wavelet the low-pass and high-pass filters will be Daubechie
wavelets of degree 4, such that the amount of filter coefficients are 8 coefficients
per filter. The wavelet frame filter coefficients are calculated by the use of Example
5.10. Selecting m = 4 gives the resulting filter coefficients:

- a0,0 =
[ 1

256 , 1
32 , 7

64 , 7
32 , 35

128 , 7
32 , 7

64 , 1
32 , 1

256

]
,

- a0,1 =
[√

2
128 , 3

√
2

64 , 7
√

2
64 , 7

√
2

64 , 0,− 7
√

2
64 ,− 7

√
2

64 ,− 3
√

2
64 ,−

√
2

128

]
,

- a0,2 =
[√

7
128 ,

√
7

32 ,
√

7
32 ,−

√
7

32 ,− 5
√

7
64 ,−

√
7

32 ,
√

7
32 ,
√

7
32 ,

√
7

128

]
,

- a0,3 =
[√

14
128 ,

√
14

64 ,−
√

14
64 ,− 3

√
14

64 , 0, 3
√

14
64 ,

√
14

64 ,−
√

14
64 ,−

√
14

128

]
,

- a0,4 =
[√

70
256 , 0,−

√
70

64 , 0, 3
√

70
128 , 0,−

√
70

64 , 0,
√

70
256

]
,

- a0,5 =
[√

14
128 ,−

√
14

64 ,−
√

14
64 , 3

√
14

64 , 0,− 3
√

14
64 ,

√
14

64 ,
√

14
64 ,−

√
14

128

]
,

- a0,6 =
[√

7
128 ,−

√
7

32 ,
√

7
32 ,
√

7
32 ,− 5

√
7

64 ,
√

7
32 ,
√

7
32 ,−

√
7

32 ,
√

7
128

]
,

- a0,7 =
[√

2
128 ,− 3

√
2

64 , 7
√

2
64 ,− 7

√
2

64 , 0, 7
√

2
64 ,− 7

√
2

64 , 3
√

2
64 ,−

√
2

128

]
, 4

- a0,8 =
[ 1

256 ,− 1
32 , 7

64 ,− 7
32 , 35

128 ,− 7
32 , 7

64 ,− 1
32 , 1

256

]
.

6.4.1 Noise Reduction

The performance of the wavelet frame transformation and orthonormal wavelet
transformation will be compared when reducing noise from multiple audio signals
in this subsection. This is done by presenting the signals and ending with an
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overall discussion comparing the two transformations based on the results. All the
different signals will be numerated, Signal1, Signal2, and so on.
Every one of these signals have different versions such as an original signal version,
a noisy signal version and so on. These versions will be presented when the signal
is introduced. Every signal have an audio file connected to it though the repre-
sented URL seen in each respective figures. The noise reduction program, every
plot and audio file for every signal can also be found within the folder accessed by
the URL https://bit.ly/3cSQKIg.
The comparison for the signal analysis will be done by calculating the energy, peak
signal-to-noise ratio, PSNR, and listening to the resulting noise reduced audio files.
The energy of a signal can be calculated by the L2-norm and the PSNR is defined
as

PSNR(S1, S2) = 20 log10 (MAX)− 10 log10 (MSE(S1, S2)) (6.1)

where S1, S2 are two signals to be compared, MSE(S1, S2) is the mean square error
between S1 and S2 and MAX is the maximum possible value of the signal. Every
signal is sampled with a resolution of 32 bit, thus

MAX = 232 − 1.

The higher the PSNR, the more the two signals are alike, coefficient to coefficient,
since the mean square error tends to zero if the signals are alike. For a controlled
study of the noise reduction, Gaussian noise will be added to the original signal
and result in a noisy signal version of the original signal.
The procedure for noise reduction on the noisy signal will be done by bounding the
coefficients by an absolute bound, Babs. This bound is set upon chosen high-pass
filter decompositions. If a high-pass filter decomposition coefficient, dj[n], have
absolute value lower then the absolute bound then it is set to zero. This generates
a new decomposition, d̃j[n], defined as

d̃j[n] =

dj[n] for
∣∣dj[n]

∣∣ ≥ Babs

0 for
∣∣dj[n]

∣∣ < Babs

which is used in place of dj in the reconstruction. When this new decomposition
is used in the orthonormal wavelet transformation and wavelet frame transforma-
tion algorithm shown in Algorithm 2 and 4 respectively, we call it the orthonormal
wavelet reconstruction and wavelet frame reconstruction. The choice of Babs and which
high-pass filter decompositions Babs is used upon will be represented by a table for
each of the signals. Table 6.1 is one of such tables.
Ten different audio signal will now be introduced. Each introduction is followed
by the same procedure of having Gaussian noise added and then noise reduced.

https://bit.ly/3cSQKIg
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Plots of the noisy signal and the noise reduced signals will be presentes with URL
links to there audio files. When all the signals have been presented, two tables
with energy and PSNR calculations will be presented. To better understand this
procedure, lets go though the first signal.

Signal1 - Voice

Signal1 is an audio signal of a voice recording with intervals of pauses in between
sentences. This signal can be seen in Figure 6.1.

Figure 6.1: The original signal of Signal1, https://bit.ly/2X54byi, with energy
∥∥∥S1,original

∥∥∥
2
=

9.09.

The noise reduction values can be seen in Table 6.1. The absolute bound and choice
of high-pass filter decompositions the bound is used on can be different between
the orthonormal wavelet transformation and wavelet frame transformation. In the
case of Signal1 only the absolute bound is different as shown in Table 6.1.

https://bit.ly/2X54byi
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Signal1 Noise reduction values

Gaussion noise standard deviation = 0.006

Absolute bound (Orthonormal wavelet) 0.0085

Chosen high-pass filters decompositions First 4

Absolute bound (Wavelet frame) 0.008

Chosen high-pass filters decompositions First 4

Table 6.1: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal1

As known, the wavelet frame transformation results in multiple high-pass filter
decompositions for every iteration in the wavelet frame reconstruction. Thus when
reading Chosen high-pass filters decompositions in Table 6.1, it says First 4. This
should be read as every high-pass decomposition for the first 4 chosen iteration of
the wavelet frame reconstruction. The standard deviation is chosen such that the
difference of energy of the noisy signal and the original signal isn’t very big. If the
energy is too large, effective noise reduction can’t be expected. The noisy signal
can be seen compared to the original signal in Figure 6.2.

Figure 6.2: The original signal of Signal1, https://bit.ly/2X54byi, compared side to side with its
noisy signal, https://bit.ly/2T8cjgi.

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.3 and 6.4 respectively.

https://bit.ly/2X54byi
https://bit.ly/2T8cjgi
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Figure 6.3: the noisy signal of Signal1, https://bit.ly/2T8cjgi, compared with its orthonormal
wavelet reconstruction, https://bit.ly/3bBQ1tz.

Figure 6.4: the noisy signal of Signal1, https://bit.ly/2T8cjgi, compared with its wavelet frame
reconstruction, https://bit.ly/3buRWQt.

The rest of the signals will now be introduced and the results of the study will be
discussed at the end.

https://bit.ly/2T8cjgi
https://bit.ly/3bBQ1tz
https://bit.ly/2T8cjgi
https://bit.ly/3buRWQt
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Signal2 - Acoustic Guitar

Signal2 is an audio signal of an acoustic guitar playing a chord progression. Since
chords have a combination of notes of different frequencies, Signal2 becomes more
complicated then Signal1. Signal2 can be seen in Figure 6.5.

Figure 6.5: The original signal of Signal2, https://bit.ly/2Z8YS3g, with energy
∥∥∥S2,original

∥∥∥
2
=

23.28.

The noise reduction values for Signal2 can be seen in Table 6.2.

Signal2 Noise reduction values

Gaussion noise standard deviation = 0.002

Absolute bound (Orthonormal wavelet) 0.00075

Chosen high-pass filters decompositions First 8

Absolute bound (Wavelet frame) 0.00075

Chosen high-pass filters decompositions First 8

Table 6.2: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal2

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.6 and 6.7 respectively.

https://bit.ly/2Z8YS3g
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Figure 6.6: the noisy signal of Signal2, https://bit.ly/2y5qfjD, compared with its orthonormal
wavelet reconstruction, https://bit.ly/363PTSE.

Figure 6.7: the noisy signal of Signal2, https://bit.ly/2y5qfjD, compared with its wavelet frame
reconstruction, https://bit.ly/2T8bB2C.

Every signal from now on is samples of music from different genres.

https://bit.ly/2y5qfjD
https://bit.ly/363PTSE
https://bit.ly/2y5qfjD
https://bit.ly/2T8bB2C
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Signal3 - Electronic Dance

Signal3 is an audio signal of electronic dance music. This signal have different
combinations of amplitudes and frequencies. High frequencies with relatively low
amplitude are more susceptible to be filtered out with the noise when noise re-
ducing and thus make the orthonormal wavelet reconstruction and wavelet frame
reconstruction less effective. Signal3 can be seen in Figure 6.8

Figure 6.8: The original signal of Signal3, https://bit.ly/2T57292, with energy
∥∥∥S3,original

∥∥∥
2
=

23.28.

The noise reduction values for Signal3 can be seen in Table 6.3.

Signal3 Noise reduction values

Gaussion noise standard deviation = 0.004

Absolute bound (Orthonormal wavelet) 0.004

Chosen high-pass filters decompositions First 4

Absolute bound (Wavelet frame) 0.004

Chosen high-pass filters decompositions First 4

Table 6.3: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal3

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be

https://bit.ly/2T57292


70 Chapter 6. Discussion

seen compared to the noisy signal in Figure 6.9 and 6.10 respectively.

Figure 6.9: the noisy signal of Signal3, https://bit.ly/3614ttU, compared with its orthonormal
wavelet reconstruction, https://bit.ly/3dMHGEU.

Figure 6.10: the noisy signal of Signal3, https://bit.ly/3614ttU, compared with its wavelet frame
reconstruction, https://bit.ly/2Z59Jv1.

https://bit.ly/3614ttU
https://bit.ly/3dMHGEU
https://bit.ly/3614ttU
https://bit.ly/2Z59Jv1
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Signal4 - Funk

Signal4 is an audio signal of funk music. This signal have a very distorted opening.
This signal is used to test whether or not the orthonormal wavelet reconstruction
and wavelet frame reconstruction can differentiate between noise and part of the
signal that look like noise, but is in fact a part of the original signal. Signal4 can be
seen in Figure 6.11.

Figure 6.11: The original signal of Signal4, https://bit.ly/2T57292, with energy
∥∥∥S4,original

∥∥∥
2
=

21.92.

The noise reduction values for Signal4 can be seen in Table 6.4.

Signal4 Noise reduction values

Gaussion noise standard deviation = 0.004

Absolute bound (Orthonormal wavelet) 0.0025

Chosen high-pass filters decompositions First 3

Absolute bound (Wavelet frame) 0.0025

Chosen high-pass filters decompositions First 2

Table 6.4: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal4

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be

https://bit.ly/2T57292
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seen compared to the noisy signal in Figure 6.12 and 6.13 respectively.

Figure 6.12: the noisy signal of Signal4, https://bit.ly/3cMkF4Y, compared with its orthonormal
wavelet reconstruction, https://bit.ly/2Zoz2Zc.

Figure 6.13: the noisy signal of Signal4, https://bit.ly/3cMkF4Y, compared with its wavelet frame
reconstruction, https://bit.ly/2WNLAI4.

https://bit.ly/3cMkF4Y
https://bit.ly/2Zoz2Zc
https://bit.ly/3cMkF4Y
https://bit.ly/2WNLAI4
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Signal5 - Soul

Signal5 is an audio signal of soul music. This piece of music includes brass and
Woodwind instruments and can be seen in Figure 6.14.

Figure 6.14: The original signal of Signal5, https://bit.ly/2T57292, with energy
∥∥∥S5,original

∥∥∥
2
=

34.48.

The noise reduction values for Signal5 can be seen in Table 6.5.

Signal5 Noise reduction values

Gaussion noise standard deviation = 0.005

Absolute bound (Orthonormal wavelet) 0.00225

Chosen high-pass filters decompositions First 3

Absolute bound (Wavelet frame) 0.002

Chosen high-pass filters decompositions First 3

Table 6.5: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal5

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.15 and 6.16 respectively.

https://bit.ly/2T57292
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Figure 6.15: the noisy signal of Signal5, https://bit.ly/2LGaEKy, compared with its orthonormal
wavelet reconstruction, https://bit.ly/2Zn6FLa.

Figure 6.16: the noisy signal of Signal5, https://bit.ly/2LGaEKy, compared with its wavelet frame
reconstruction, https://bit.ly/3gdukDR.

Signal6 - Disco

Signal6 is an audio signal of disco music and can be seen in Figure 6.17.

https://bit.ly/2LGaEKy
https://bit.ly/2Zn6FLa
https://bit.ly/2LGaEKy
https://bit.ly/3gdukDR
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Figure 6.17: The original signal of Signal6, https://bit.ly/2WMtTs5, with energy
∥∥∥S6,original

∥∥∥
2
=

24.62.

The noise reduction values for Signal6 can be seen in Table 6.6.

Signal6 Noise reduction values

Gaussion noise standard deviation = 0.005

Absolute bound (Orthonormal wavelet) 0.0025

Chosen high-pass filters decompositions First 4

Absolute bound (Wavelet frame) 0.0025

Chosen high-pass filters decompositions First 3

Table 6.6: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal6

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.18 and 6.19 respectively.

https://bit.ly/2WMtTs5
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Figure 6.18: the noisy signal of Signal6, https://bit.ly/3e7X4Ml, compared with its orthonormal
wavelet reconstruction, https://bit.ly/3bNjVuU.

Figure 6.19: the noisy signal of Signal6, https://bit.ly/3e7X4Ml, compared with its wavelet frame
reconstruction, https://bit.ly/36fHbRb.

Signal7 - Classical Piano

Signal7 is an audio signal of classical piano. The audio is a lot more simple since
there only is a melody and bass chords. The signal can be seen in Figure 6.20

https://bit.ly/3e7X4Ml
https://bit.ly/3bNjVuU
https://bit.ly/3e7X4Ml
https://bit.ly/36fHbRb
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Figure 6.20: The original signal of Signal7, https://bit.ly/3bMW3Yy, with energy
∥∥∥S7,original

∥∥∥
2
=

29.92.

The noise reduction values for Signal7 can be seen in Table 6.7.

Signal7 Noise reduction values

Gaussion noise standard deviation = 0.005

Absolute bound (Orthonormal wavelet) 0.0045

Chosen high-pass filters decompositions First 4

Absolute bound (Wavelet frame) 0.003

Chosen high-pass filters decompositions First 2

Table 6.7: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal7

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.21 and 6.22 respectively.

https://bit.ly/3bMW3Yy
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Figure 6.21: the noisy signal of Signal7, https://bit.ly/2AMb3ch, compared with its orthonormal
wavelet reconstruction, https://bit.ly/3e2cmC7.

Figure 6.22: the noisy signal of Signal7, https://bit.ly/2AMb3ch, compared with its wavelet frame
reconstruction, https://bit.ly/2Tlu8Iw.

Signal8 - Electronic Korean Pop

Signal8 is an audio signal of electronic Korean pop music. It resembles Signal3, but
the style and tempo is different. This signal can be seen in Figure 6.23.

https://bit.ly/2AMb3ch
https://bit.ly/3e2cmC7
https://bit.ly/2AMb3ch
https://bit.ly/2Tlu8Iw
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Figure 6.23: The original signal of Signal8, https://bit.ly/36hB9zw, with energy
∥∥∥S8,original

∥∥∥
2
=

44.31.

The noise reduction values for Signal8 can be seen in Table 6.8.

Signal8 Noise reduction values

Gaussion noise standard deviation = 0.008

Absolute bound (Orthonormal wavelet) 0.003

Chosen high-pass filters decompositions First 4

Absolute bound (Wavelet frame) 0.001

Chosen high-pass filters decompositions First 6

Table 6.8: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal8

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.24 and 6.25 respectively.

https://bit.ly/36hB9zw
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Figure 6.24: the noisy signal of Signal8, https://bit.ly/3e1JhGR, compared with its orthonormal
wavelet reconstruction, https://bit.ly/2WMaMhQ.

Figure 6.25: the noisy signal of Signal8, https://bit.ly/3e1JhGR, compared with its wavelet frame
reconstruction, https://bit.ly/2WL4dfI.

Signal9 - Electronic Pop

Signal9 is another audio signal of electronic pop music, but the pace of this song is
a lot slower then the other. This signal can be seen in Figure 6.26.

https://bit.ly/3e1JhGR
https://bit.ly/2WMaMhQ
https://bit.ly/3e1JhGR
https://bit.ly/2WL4dfI
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Figure 6.26: The original signal of Signal9, https://bit.ly/3bNl3i8, with energy
∥∥∥S9,original

∥∥∥
2
=

31.58.

The noise reduction values for Signal9 can be seen in Table 6.9.

Signal9 Noise reduction values

Gaussion noise standard deviation = 0.005

Absolute bound (Orthonormal wavelet) 0.002

Chosen high-pass filters decompositions First 4

Absolute bound (Wavelet frame) 0.001

Chosen high-pass filters decompositions First 6

Table 6.9: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal9

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.27 and 6.28 respectively.

https://bit.ly/3bNl3i8
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Figure 6.27: the noisy signal of Signal9, https://bit.ly/3bKvZNH, compared with its orthonormal
wavelet reconstruction, https://bit.ly/3cPpQB4.

Figure 6.28: the noisy signal of Signal9, https://bit.ly/3bKvZNH, compared with its wavelet frame
reconstruction, https://bit.ly/3efDBJN.

Signal10 - Metal

Signal10 is an audio signal of metal music. This signal have very low frequency
high amplitude sound from the electric guitar, bass and drums. This signal can be

https://bit.ly/3bKvZNH
https://bit.ly/3cPpQB4
https://bit.ly/3bKvZNH
https://bit.ly/3efDBJN
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seen in Figure 6.29.

Figure 6.29: The original signal of Signal10, https://bit.ly/2TpH2Fz, with energy
∥∥∥S10,original

∥∥∥
2
=

25.38.

The noise reduction values for Signal10 can be seen in Table 6.10.

Signal10 Noise reduction values

Gaussion noise standard deviation = 0.005

Absolute bound (Orthonormal wavelet) 0.002

Chosen high-pass filters decompositions First 6

Absolute bound (Wavelet frame) 0.0015

Chosen high-pass filters decompositions First 6

Table 6.10: The noise reduction values for both the orthonormal wavelet reconstruction and wavelet
frame reconstruction used on Signal10

The orthonormal wavelet reconstruction and wavelet frame reconstruction can be
seen compared to the noisy signal in Figure 6.30 and 6.31 respectively.

https://bit.ly/2TpH2Fz
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Figure 6.30: the noisy signal of Signal10, https://bit.ly/3e0ZrAq, compared with its orthonormal
wavelet reconstruction, https://bit.ly/2zQk9Eu.

Figure 6.31: the noisy signal of Signal10, https://bit.ly/3e0ZrAq, compared with its wavelet frame
reconstruction, https://bit.ly/3cPKyAG.

6.4.2 Results

The energy and PSNR results can be seen in Table 6.11 and 6.12 respectively

https://bit.ly/3e0ZrAq
https://bit.ly/2zQk9Eu
https://bit.ly/3e0ZrAq
https://bit.ly/3cPKyAG
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L2 norm L2 norm L2 norm L2 norm

Original Signal Noisy Signal Orthonormal Wavelet

wavelet frame

reconstruction reconstruction

Signal1 9.09 10.08 9.06 8.53

Signal2 23.28 23.63 23.43 23.01

Signal3 12.55 13.20 12.16 10.47

Signal4 21.92 23.40 21.54 19.21

Signal5 34.48 35.97 33.89 31.31

Signal6 24.62 26.67 24.11 21.85

Signal7 29.92 31.62 29.94 28.60

Signal8 44.31 47.25 40.00 41.56

Signal9 31.58 33.19 30.63 30.45

Signal10 25.38 27.37 24.07 21.91

Table 6.11: L2 norm calculations for every signal

The idea of these calculations is to see how close the orthonormal wavelet recon-
struction and wavelet frame reconstruction is to the original signal. The PSNR
compares signals coefficient to coefficient. The problem with this is that the ampli-
tude of a signal can decrease throughout the reconstruction algorithm. This means
the PSNR won’t be as high as we might expect, but it will still be better then the
PSNR between the noisy signal and the original signal. This is why the energy is
important to consider as well. Lower energy implies less noise, but to low energy
is bad, since it implies more then necessary information have been removed with
the noise. If the energy of the reconstructions is lower then the noisy signal but
not much lower than the original signal, then one can expect a reduction in noise.
If the energy and the PSNR happens to be favorable, then one is able to conclude
that the noise reduction was a success.

As can be seen in Table 6.11, the wavelet frame reconstruction yields in a lower
energy then the orthonormal wavelet reconstruction. Both have lower energy then
the noisy signal.
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PSNR PSNR PSNR

Noisy signal Orthonormal wavelet

wavelet frame

reconstruction reconstruction

Signal1 237.10 244.07 243.53

Signal2 246.64 247.64 248.45

Signal3 240.62 240.85 239.31

Signal4 240.61 242.79 241.71

Signal5 238.68 239.73 239.12

Signal6 238.68 241.19 240.79

Signal7 238.69 247.73 247.69

Signal8 234.60 232.52 235.77

Signal9 240.62 240.85 239.31

Signal10 238.68 238.46 239.36

Table 6.12: The PSNR calculation between all the signals versions and there respectively original
signal version

The PSNR results, seen in Table 6.12, shows a tendency for the orthonormal wavelet
transformation to have the highest PSNR comparison value to the original signal.
Signal2, Signal8 and Signal10 shows the wavelet frame reconstruction to have high-
est PSNR. In the general case both transformations will result in a reconstruction
whose PSNR are higher and energy that are lower than that of the noisy signal.
This makes both successful for noise reduction. But which transformation is better?
To answer this the audio must be taken into consideration.
Listening to the audio of the reconstructions, it is clear that the wavelet frame
reconstruction results in a better noise reduction then the orhtonormal wavelet
reconstruction. The orthonormal wavelet reconstruction does result in a cleaner
reconstruction when relatively high frequencies are involved, but this is at the cost
of noise reduction. The difference in how clean the reconstruction becomes is not
large enough, compared to the difference in noise reduction, to conclude that the
orthonormal wavelet transformation is superior to the wavelet frame transforma-
tion. With the extra flexibility the wavelet frame transformation gives, it is clear
that this transformation results in the superior transformation for noise reduction.
If more time was available for this project, repeated examples could be made where
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more advanced handling of the wavelet frame transformation decomposition could
be done to see the effect it have on the reconstruction. This could be for every cho-
sen iteration of the wavelet frame reconstruction, only some of the decompositions
will have the absolute bound set upon it. And different absolute bounds could be
set for different decompositions depending on the iteration.





Chapter 7

Conclusion

In this project, a new method for decomposing a signal that contains the wavelet
structure, but are less troublesome and taxing to construct then orthonormal wavelets,
have been found. This new method is called wavelet frames. It have been proven
that the wavelet frame transformation results in a perfect reconstruction of a de-
composed signal. The wavelet frame transformation was applied in the discrete
wavelet frame transformation algorithm, Algorithm 3 and 4, and compared to the
discrete orthonormal wavelet transformation algorithm, Algorithm 1 and 2. The
comparison was done by noise reducing a set of audio signals by using the wavelet
frame reconstruction and orthonormal wavelet reconstruction. The result of the
comparison states that the wavelet frame transformation is more effective at noise
reduction, but the orthonormal wavelet transformation give, in general, a more
stable but less effective noise reduction.

89
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