
Recommendations over Knowledge Graph Entities in
Cold-Start Interviews

Anders Brams
abrams14@student.aau.dk

Department of Computer
Science, Aalborg University

Aalborg, Denmark

Anders Jakobsen
alja15@student.aau.dk

Department of Computer
Science, Aalborg University

Aalborg, Denmark

Theis Jendal
tjenda15@student.aau.dk

Department of Computer
Science, Aalborg University

Aalborg, Denmark

SUMMARY
This work investigates the informational value of asking to-
wards descriptive entities in cold-start user interviews. Rec-
ommender systems are used in a large variety of services
and platforms and are responsible for providing users with
recommendations, e.g., what products to buy in e-commerce
services or people to connect with on social media platforms.
For recommendations to be effective, some level of personal-
isation is typically necessary. This requires knowledge about
the user’s preferences, for instance in the form of previously
observed interactions such as ratings or purchases. A cold-
start user, however, is a user that the system has no knowl-
edge of, and thus no such previous interactions are observed.
To elicit the user’s preferences, a typical approach is to con-
duct a brief interview, asking towards the most informative
entities in the system. The key challenges in making cold-
start recommendations are two-fold: first is the problem of
determining what questions to ask in order to most effec-
tively elicit a user’s preferences without losing their inter-
est. Second is the problem of utilising the user’s answers
effectively to generate high-quality recommendations.

Approaches to cold-start user interviews have received
much attention in prior research, and have considered ap-
proaches ranging between fixed sets of questions as well as
interviews that adapt to the user dynamically depending on
their answers throughout the interview. Yet, we notice an
apparent gap in this research in that the questions posed
have been limited to the recommendable entities in the sys-
tem (e.g., movies) rather than descriptive entities (e.g., gen-
res and directors of movies). This contrasts the general con-
sensus in the literature that users express their preferences
more naturally through such descriptive entities. From an
interviewing standpoint, it makes sense intuitively to ask
broad questions such as “do you like horror movies?” rather
than immediately asking towards entities the user may not
be familiar with, for instance “do you like Hush?”.

This observed gap in prior research can largely be at-
tributed to the lack of available and appropriate datasets
allowing for the evaluation of systems asking towards such
descriptive entities. In our prior work we built MindReader,
a recommendation and data collection platform designed to
address this lack of datasets specifically. In total, the Min-
dReader users built a dataset of ∼ 102, 000 ratings from
1, 174 real users on recommendable- and descriptive enti-
ties within the movie domain. We further find that jointly
graph-based and collaborative recommendation models can
significantly outperform the more standard collaborative fil-

tering models (e.g., matrix factorisation) upon which the
majority of the proposed interview approaches are based on.

In addition to our primary objective, we describe how
we have extended MindReader to remain performant under
heavy traffic, improved the recommendation quality, and in-
creased the diversity of entities for which data is collected,
extending the MindReader dataset to contain 174, 872 rat-
ings from 1, 736 real users in the process.

We conduct a comprehensive study of how different in-
terviewing strategies and recommender paradigms can af-
fect each other when conducting user cold-start interviews
and generating recommendations in what, to the best of
our knowledge, is the first such study. Our interviewing
strategies range from both fixed and adaptive interviewing
approaches to question selection policies powered by deep re-
inforcement learning. We combine such interviewing strate-
gies with recommender models from different paradigms of
recommendation, and present a new model of recommenda-
tion, PPR-LINEAR, based on a linear combination of per-
sonalised PageRanks over different graphs learned through
descending the gradient of a ranking-based loss function.
We compare all our combined models against a set of state-
of-the-art baselines in interviews restricted to descriptive-
and recommendable entities separately to assert the infor-
mational value afforded by descriptive entities.

We find that, with few exceptions, all models are able to
improve the quality of recommendations made when con-
ducting interviews with descriptive rather than recommend-
able entities. Furthermore, we find that when interviewers
are allowed to ask towards descriptive entities, the inter-
view can be shortened by ∼ 4 questions while still obtain-
ing the same recommendation quality as obtained with in-
terviews on recommendable entities. We demonstrate how
fixed- and adaptive interviewing strategies generally incur
a trade-off between accuracy and diversity, both of which
are important qualities of recommender systems. We show
that our PPR-LINEAR recommender can make effective use
of the descriptive entity interview answers, outperforming
every baseline considered in terms of ranking quality, di-
versity, and serendipity of recommendations made. Finally,
we find that graph-based models of recommendation, espe-
cially when navigating a knowledge graph, can significantly
increase the diversity and serendipity of recommendations
while maintaining ranking quality. This greatly motivates
future research in utilising the expressive power of knowl-
edge graphs in making recommendations, and we provide
concrete suggestions for possible directions of such research.

This page intentionally left blank.

ABSTRACT
A key challenge in recommender systems is how to provide
recommendations for cold-start users about which the sys-
tem has no prior knowledge. A common approach to this
problem is to conduct a brief interview with the user to
elicit their preferences on a number of informative entities.
While most proposed approaches have focused on eliciting
item-specific preferences from users, users may be able to
better opine on broader and more descriptive properties of
items, denoted as descriptive entities. While this focus on
items, denoted recommendable entities, can be attributed
largely to the lack of available and appropriate datasets, the
recently published MindReader dataset alleviates this issue.
In this work, we perform a comprehensive study of inter-
viewing strategies and models of recommendation including
state-of-the-art methods, and evaluate the effectiveness of
allowing interviewing systems to ask towards descriptive en-
tities in the MindReader dataset, which we further extend
to 1, 736 users and 174, 872 ratings. In order to construct
optimal interviews, we propose a novel, adaptive interview
learning approach, as well as approaches based on deep rein-
forcement learning. For making recommendations from user
answers, we further propose a linear combination of Person-
alised PageRank which learns the importance of knowledge-
and collaborative graphs through a pairwise ranking loss.
Our findings show that almost all models can improve per-
formance with broader questions, allowing the interview to
be shortened by ∼ 4 questions when asking towards de-
scriptive rather than recommendable entities. Our findings
show that especially knowledge-aware approaches can ben-
efit greatly from descriptive entity preferences in cold-start
interviews and outperform state-of-the-art methods in both
recommendation quality and diversity.

1. INTRODUCTION
Recommender systems have been widely employed in IT

systems in the industry, be they systems for entertainment,
service provision, or social media, to name a few [1]. The
overall purpose of recommender systems is to increase user
loyalty, satisfaction, and retention within the given system [2].
While the specific approaches used in recommender systems
can be grouped into those of Collaborative Filtering (CF),
Content-Based Filtering (CBF), and hybrid approaches [3],
the specific objective of any recommender system is to deter-
mine the match between a user and an item the user might
be interested in as accurately as possible. In warm-start
recommender systems, the system has access to explicit ob-
servations regarding users’ preferences towards items in the
domain [4]. Conversely, in cold-start recommender systems,
the system must generate recommendations for a user of
which the system is initially unaware [4, 5, 6, 7].

In order to overcome the inherent sparsity of information
in the cold-start setting, auxiliary information such as item-
specific attributes and metadata has been incorporated in
learning, CF-based models [8, 9]. Another strategy is to
conduct an interview with a cold-start user, eliciting the
user’s preferences towards specific items of interest in order
to build an initial profile from which high-quality recommen-
dations can be generated [5, 6, 7]. Existing models learn
from Matrix Factorisation (MF)-based objectives yielding
excellent capturing of the CF effect, but makes the inclu-
sion of auxiliary data in the training process a non-trivial

task. Additionally, MF-based models are effective in rating
prediction tasks, but usually poorly performing in top-K rec-
ommendation tasks [10], although top-K recommendations
have received the most attention in the industry [11].

In addition, such interviewing systems have primarily fo-
cused on questions regarding Recommendable Entities (REs)
(e.g., movies) rather than broader, Descriptive Entities (DEs)
in the domain (e.g., genres and actors), although DEs are
deemed richer sources of information in preference elicita-
tion problems [4, 6, 12, 13]. Some approaches work under
the assumption that a user liking a movie tagged as comedy
and action indicates that the user is likely interested in both
of those genres [12]. However, we argue that this assumption
can lead to a pitfall. For example, say a user likes “Batman:
The Dark Knight” and “Man of Steel”. While both movies
are action movies, they also share a number of other DEs
with other movies that the user might not like. For instance,
the movie “Deadpool” shares the action and superhero DEs
with the aforementioned movies, but is also a comedy movie.
We might assume that the user likes all superhero movies,
though we may find that the user dislikes comedy movies,
rendering this assumption fallacious. Furthermore, it may
be the case that the user does not like the two aforemen-
tioned movies because of their relation to superhero movies,
but rather because they like dark, dystopian dramas or sim-
ply because they like Christopher Nolan as a screenwriter.
Knowing the user’s explicit preferences towards these DEs
can yield a more comprehensive profile of the user’s prefer-
ences.

In [4], we collected a dataset of explicit user ratings on
REs as well as DEs, and found that a user is significantly
more likely to provide useful feedback (i.e., like or dislike)
when asked about genres and subjects rather than specific
movies. We further found that in the warm-start setting,
models explicitly modelling the relations between descrip-
tive and recommendable entities (e.g., a movie is related to
its actors, genres, etc.) can outperform both MF and trans-
lational distance embedding-based models in the warm-start
recommendation task.

In a cold-start interview, it is important to keep the in-
terview as short and rich in information as possible as to
keep the experience enjoyable for the end-user [5, 6, 7, 13].
Furthermore, in [14, 15, 16] they find that users are willing
to engage in an initial survey if it increases the accuracy of
recommendations. As mentioned, users are more likely to be
able to opine on DEs. In observing that models can main-
tain or increase performance with RE ratings replaced by
DE ratings [4], this makes DEs potential means of reducing
the interview length. However, while previous interview-
ing cold-start models have not asked towards DEs in their
experiments, this is a limitation pertaining to the at-the-
time available datasets rather than the models themselves.
Given access to observations on DE ratings, an MF-based
interviewing model would be able to query for opinions on
DEs, although the MF-based objectives presented in pre-
vious works [5, 6, 7] do not facilitate explicit modelling of
entity inter-relations, which may serve as important infor-
mation in selecting appropriate interview questions.

In this work, we assert whether different interviewing mod-
els for cold-start recommendation can conduct shorter and/or
more effective interviews when allowed to ask questions to-
wards both REs and DEs. We further investigate how ex-
plicitly modelling the relations between REs and DEs can be

1

utilised in improving the quality of recommendations made.
Specifically, we pose the following research questions:

1. How can different question selection strategies affect
the quality of cold-start recommendations following an
interview?

2. How can descriptive entity ratings affect the quality of
recommendations in interview-based cold-start recom-
mender systems?

3. How can descriptive entity ratings affect the required
interview length in generating recommendations of suf-
ficient quality?

4. How can the explicit modelling of a knowledge graph
over the entities affect the quality of recommendations
made?

The contributions of this work are four-fold. First, we
show how the MindReader data collection platform can be
improved and collect an extended version of the dataset,
which we employ in the evaluation of this work. Second, we
propose a novel decision tree-based interviewer which, unlike
our considered baselines, is recommender- and metric agnos-
tic. Third, we present a novel, hybrid recommender for gen-
erating high-quality recommendations by means of learned
weights between rankings scores from different graphs. Fi-
nally, we perform a comprehensive study of cold-start inter-
views to show the relative effectiveness of DE-based inter-
views on the recommendation task across a variety of in-
terviewers and recommenders, including State-Of-The-Art
(SOTA) approaches.

2. COLD-START INTERVIEWS
We define the overall problem of cold-start recommenda-

tions as the problem of providing recommendations for new
users. We first define E as the set of all entities in the do-
main. We further define I ⊂ E as the set of REs, i.e.,
the entities we are interested in recommending to a user
(e.g., movies). These are complemented by the set of DEs
E ′ = E \ I, i.e., the set of entities we are not interested in
recommending to a user (e.g., genres and actors). These
entities are interrelated. We model the relations between
entities ∈ E by means of a Knowledge Graph (KG).

Definition 2.1 (Knowledge Graph). A KG is defined as
a triple 〈E ,R,L〉 describing a directed labelled multi-graph,
where the nodes are represented with entities E , the edges R
capture the relationships among them, and the labels L are
the names for the entities and relationships. Given a finite
set of relations we can define the edges as R ⊆ E × L′ × E ,
where L′⊆L captures the relationship types. Thus, we have
a mapping to labels Φ : E∪R7→L. An example edge 〈h, l, t〉 ∈
R is 〈Deadpool,Has Genre,Action〉.

Let U be the set of all users. All users have ratings for
entities ∈ E as defined by R. Let R : U × E → C be the
rating function where C = {Like,Dislike,Don’t know} is the
set of possible ratings from a user to an entity. With ratings,
users also have a set of specific preferences. Users express
their preferences as preferring some entities over others. We
follow a similar definition of preference as proposed in [4]:

Definition 2.2 (Preference). Given a user u ∈ U , their
preferences are given by the weak, non-strict ordering of

entities (E ,6u) s.t. for any e, d ∈ E , we have that e 6u d,
that is u prefers d over e, if either

1. R(u, d) = Like ∧R(u, e) ∈ {Don’t know,Dislike}, or

2. R(u, d) = Don’t know ∧R(u, e) = Dislike

There are two main classes of cold-start problems for rec-
ommender systems, namely the new user and new item (i.e.,
RE) problems [17]. The former is the primary focus of this
work and is the more difficult problem of the two, as meta-
data is often available for new REs.

Conducting interviews is just one approach to solving the
new user cold-start problem [17, 18]. Other approaches in-
clude using external information, e.g., social media and de-
mographic data, referred to as an implicit approach [17],
where interviews are referred to as explicit approaches to the
problem. A major difference between the two approaches is
the user effort required. For implicit methods, little effort is
usually required [19]. Interviews require the user to interact
with the system which can discourage users from complet-
ing the interviews [17], though [14, 15, 16] suggest that this
initial effort does not matter for users.. However, methods
generally incur a trade-off in the quality of information, as
the information acquired through an interview is highly rele-
vant, where external data is typically varying in quality and
availability.

In summary, implicit methods attempt to understand a
new user by obtaining a large amount of information that
can be manipulated and filtered for further use, while ex-
plicit methods aim to collect enough information to make
recommendations without overwhelming the user. We will
be focusing on explicit methods, specifically by means of
user interviews.

In interview-based cold-start recommendation, we are in-
terested in eliciting the preferences of the user through a
number of interview questions. For each such question, the
interviewing system is allowed to ask a user for their rating
on a chosen entity, thereby observing part of their prefer-
ences. The system is limited in the allowed number of ques-
tions before recommendations must be made. The challenge
then becomes to determine how to conduct the interview to
best approximate the full preferences of the user.

Problem 2.1 (Cold-start interviews). Given a cold-start
user u, the system is allowed to ask u for their ratings on at
most m entities in E. The interview process can be written
as

I(u) = q1
R(u,e1)−−−−−→ q2

R(u,e2)−−−−−→ . . .
R(u,em−1)−−−−−−−→ qm

R(u,em)−−−−−→ Ou
s.t. the interview, when conducted with u, results in the

set of elicited observations I(u) → Ou = {(u, ei, R(u, ei))
∣∣

i ∈ {1, . . . , m}} where ei is an entity selected by the recom-
mender system at question qi for all i ∈ {1, . . . , m}.

Determine the optimal m-length interview I such that,
when provided with the results of the interview and the KG,
the difference between u’s preferences and those predicted by
an arbitrary recommender system S is minimised, that is,
determine

arg min
I∈I

D(6̂u ,6u)

where 6̂u is given by S(G, I(u)∪Ow), I is the space from
which I is selected, D is a given ordering difference function,
and Ow are observed interactions from warm-start users.

2

3. THEORETICAL OVERVIEW
Before proceeding, we make a clear distinction between in-

terviewers, recommenders, and interviewing recommenders.
In the remainder of this work, we refer to interviewers as
models responsible only for selecting questions, and recom-
menders as models responsible only for making recommen-
dations. As such, we define interviewers and recommenders
as functionally independent components that can be com-
bined arbitrarily. We will also discuss some models that op-
timise the interview and recommendations in tandem, which
we refer to as interviewing recommenders.

In this section, we provide a theoretical overview of the
state of knowledge within the area of cold-start interviews.
Specifically, the goal of this section is not to provide highly
specific details on different models, but instead to cover the
core principles of different interviewing strategies, their po-
tential weaknesses, and why some might be preferred over
others. An overview of these interview strategies is provided
in subsection 3.1. Furthermore, since interviewers cannot
provide recommendations on their own, we briefly describe
different recommender paradigms in subsection 3.2 with a
focus on their ability to accommodate new users. In later
sections of this work, we cover how each strategy can be im-
plemented in detail, in addition to implementation details
on recommenders.

Notation. Throughout this work, we use a set of notation
conventions shown in Table 1.

3.1 Interviewing strategies
An interview, in its most basic form, is an iterative process

of posing questions to an interviewee and receiving answers
for the questions. As such, we are situated in a feedback-
loop between the interviewer and the interviewee, with each
answer providing additional feedback to the interviewer.

An optimal interview should be kept brief and rich in in-
formation [5, 6, 13]. Therefore, it is important for the in-
terviewer to choose questions that ensure that the system
will receive the most amount of useful information in as lit-
tle time as possible. For example, if a user has stated that
they do not like horror movies, asking for their opinion on a
specific horror movie will likely not lead to additional use-
ful feedback. Conversely, if the user enjoys horror movies,
asking for their opinion on a specific horror movie could al-
low the system to hone in on the specific qualities of horror
movies the user enjoys. It is therefore reasonable to expect
an optimal question selection process to be predicated by
the answers the interviewer has received so far.

3.1.1 Fixed-question interviews
Analogous to naive recommenders which always provide

the same recommendations, an approach to interviewing is
to ask all interviewees the same questions, referred to as
popularity-based, fixed-question, and static interviews in the
literature [14, 20, 21, 22, 23]. As seen in Figure 1, the ques-
tion selection is not predicated on the user’s answers, thus
the questions are fixed for all users.

In the remainder of this subsection, we will cover differ-
ent approaches for question selection in fixed-question inter-
views.

Popularity. A common approach to fixed-question inter-
views is to ask the user about the most popular entities,
thereby reducing the risk of the user being unfamiliar with
the entities asked about. As shown in our previous work [4],

q1 q2

R(u, qn)

qn...

a1 a2 an...

R(u, q2)R(u, q1)

Figure 1: Representation of a fixed-question interview. A
question q is not dependent on the answer a received previ-
ously.

both MindReader and MovieLens [24] follow long-tail dis-
tributions which fit well with a popularity-based approach.
While popular entities can lead to higher user similarity for
CF-based models, evidence on popular entities does not nec-
essarily equate to high informativeness [14, 21, 23]. For ex-
ample, if some entity has been liked by all users, there is
little benefit in asking about it during an interview despite
it being popular.

Contentiousness. To avoid the issue of asking mainly
about well-liked entities, which can be the result of con-
ducting a popularity-based fixed-question interview, it is
favourable to ask about more contended entities [23]. The
contentiousness of an entity can be quantified with the vari-
ance or entropy of its ratings, e.g., the entities can be se-
lected in decreasing order of variance as to ask about more
controversial entities first. However, ordering on this cri-
terion alone is unwise, since controversial entities tend to
receive fewer ratings, while popular entities tend to be well-
liked [23, 25]. More specifically, the findings of [23] suggest
that any selection criterion should be used in combination
with popularity.

Informativeness. More generally, we wish to ask about
entities with the highest informativeness at each step dur-
ing an interview. Popularity and contentiousness are both
heuristics for such informativeness, but as previously men-
tioned they both have shortcomings. To find entities of
high informativeness, the authors of [23] propose treating
the question selection problem as the optimisation problem

QE = arg min
QE⊂E,|QE |=m

F (S(QE)) (1)

where QE is the set of questions to ask about, m is the
number of questions to ask, F is a performance scoring func-
tion, and S is a recommender function. In their work, they
evaluate on a MF-based recommender to minimise Root
Mean Square Error (RMSE), but the approach is applicable
to any metric that can be computed efficiently. To select
entities, they iteratively extend QE with the next e ∈ E that
would increase performance the most, i.e.:

e = arg min
e∈E\QE

F (S(QE ∪ e)) (2)

While research has moved in the direction of adaptive
methods [5, 26, 27], it might be worthwhile to revisit a fixed-
question greedy approach for several reasons. First, works
on adaptive methods have focused on the prediction task,
and as a result, the existing methods are mainly designed

3

Concept Notation Description
Sets A,B, C Sets denoted with calligraphic font
Functions A,B,C Functions denoted with italic font
Matrices A,B,C Matrices denoted with uppercase letters, bold font
Vectors a,b, c Vectors denoted with lowercase letters, bold font
Variables and elements a, b, c Variables and set/vector elements denoted with lowercase letters, italic font

Table 1: Notation conventions used throughout this work unless explicitly stated otherwise.

to minimise rating prediction RMSE which does not neces-
sarily equate to high-quality rankings under the top-K rec-
ommendation problem [10]. Second, the greedy approach
is untested on newer recommender approaches, and espe-
cially knowledge-aware recommenders such as Personalised
PageRank (PPR) over a KG could be useful given the spar-
sity of ratings in a cold-start setting.

Meta-learning. A recent fixed-question approach proposed
by [21] suggests another measure of question informativeness
leveraged by their model, Meta-Learned User Preference Es-
timator (MeLU), which uses meta-learning to adapt to new
users using as little data as possible and is able to identify
the most informative entities from learned features rather
than empirical measures as proposed by [23]. The MeLU
model uses user-entity specific gradients resulting from a
differentiable loss to select the entities with the largest gra-
dients for all users, as this is indicative of large gains in
information [21]. Following [23], the gradients are scaled by
popularity.

3.1.2 Adaptive interviews
Fixed-question interviews provide a solid baseline, yet suf-

fer some rather obvious limitations. A fixed-question inter-
view can be modelled as a sequence of up to m = |QE | ques-
tions, i.e., I(u) = Q1

E → · · · → QnE where QiE corresponds
to the ith entity ordered by some criterion, e.g., popularity,
contentiousness, or informativeness. As a result, regardless
of how two separate users answer question QiE , they will al-
ways be asked about Qi+1

E as the next question. As argued
and exemplified previously, it is reasonable to expect an op-
timal interview process to be adaptive as to avoid redundant
questions and thus save time.

In adaptive interviews, the question selection is predicated
on the answers received throughout the interview, as illus-
trated in Figure 2. We now explore several strategies for
implementing adaptive interviewers.

a1

q1 q2

R(u, qn)

qn...

a1 a2 an...

R(u, q2)R(u, q1)

a1, a2
... a1, a2, ..., an-1

Figure 2: Representation of an adaptive interview. The se-
lection of question qn is predicated on the answers received
on the prior questions {a1, a2, . . . an−1}.

Greedy adaptation. In order to generate adaptive inter-
views, [5, 27] propose to model the interview as decision tree

constructed by the models Functional Matrix Factorisation
(fMF) and Local Representative-based Matrix Factorisation
(LRMF), respectively. In the decision tree, each node repre-
sents an entity to ask about, and the interview branches to
a sub-tree of the interview depending on the user’s answer
to a node entity. In this way, the interview is able to adapt
to the user’s answers as the interview progresses.

While fMF and LRMF are both capable of constructing
the interview, they are also capable of making recommenda-
tions. This makes both models interviewing recommenders
where both the interview and recommendation objectives
are optimised in tandem. As each node of the tree, ques-
tions are selected greedily, choosing the question that best
optimises the given objective at that node.

Exploratory adaptation. While greedy adaptation can
be an effective strategy, we may be able to generate a more
effective interview if we allow the interviewer to explore more
freely in the questions selected [6]. Additionally, both fMF
and LRMF learn the interview, and generate recommenda-
tions, by minimising the difference between predicted and
observed ratings.

While this can be an effective strategy for some ranking
tasks, we may be interested in learning an approximation
of a non-differentiable function, e.g., those defined by more
complex serendipity- or diversity-based metrics [28], which
is not trivially possible through an MF objective.

Instead, we can leverage reinforcement learning, specifi-
cally deep Q-learning [29, 30, 31], to learn how to conduct
interviews such that we reinforce any positive outcome in-
cluding such non-differentiable metrics. The works of [29,
30, 31] propose a set of reinforcement learning strategies for
a variety of problematic settings. While general purpose,
we can utilise these strategies to construct a learning inter-
viewer that reinforces any positive outcome of our choos-
ing. The models learn by partly exploiting the action space,
choosing the question with the highest predicted reward, or
exploring it randomly, enabling the discovery of optimal in-
terview sequences.

3.2 Recommenders
In this work, an important distinction between recom-

menders is their ability to accommodate new users. The
authors of [23] recognise this distinction to some extent and
refer to the accommodating recommenders as being incre-
mental, in the sense that ratings can be incrementally added
without a training phase. Yet, to the best of our knowledge,
no existing work has studied the effects of diversifying rec-
ommenders in cold-start interviews. Given the high variance
in performance when DE ratings are provided as observed
in [4], we wish to diversify not only interviewers but the
underlying recommenders as well.

While a deeper theoretical analysis of different paradigms
has already been covered in [4], we briefly brush up the

4

different recommender paradigms that we consider, and the
problems these paradigms may face in the cold-start setting.
Furthermore, we consider how the different paradigms have
been applied in existing cold-start interview approaches.

3.2.1 Embedding-based
We consider embedding-based recommenders as those op-

erating by means of learned, latent user- and entity repre-
sentations that encode the high-level features necessary for
predicting user preference, e.g., MF [32]. While effective
especially in the warm-start setting, MF is a collaborative
filtering model. For a cold-start user, the collaborative fil-
tering effect is difficult to capture for obvious reasons, hence
why MF-based models are not considered incremental. Yet,
existing works on cold-start interviews have mainly focused
on embedding-based recommenders as the underlying rec-
ommender [5, 21, 22, 27].

3.2.2 Neighbourhood-based
We consider neighbourhood-based recommenders as those

operating on a notion of a user-entity neighbourhood. Typ-
ical implementations of such recommenders are user- and
item k-Nearest Neighbour (k-NN) models that determine
the k nearest neighbours to a user or RE, respectively [33].
Unlike embedding-based recommenders, k-NN-based recom-
menders do not operate with learned embeddings of users
and entities, and are incremental models well fit for cold-
start recommendations since a user’s embedding is repre-
sented as an explicit ratings vector that can be extended
freely.

3.2.3 Graph-based
We consider graph-based recommenders as those operat-

ing by explicitly modelling a graph of entities and/or users,
e.g., PPR, for ranking entities [34, 35]. Similarly to k-NN-
based models, PPR has no notion of learned user or entity
embeddings. As in k-NN, a user is represented explicitly by
their ratings, though in PPR the ratings are used as source
nodes for computing the PPR of entities across the graph.
Such source nodes, as representative of a user, can be added
freely, and thus PPR is another incremental model well fit for
cold-start recommendations. To the best of our knowledge,
despite the ability to easily integrate auxiliary knowledge,
no existing works on cold-start interviews have considered
graph-based models as the underlying recommender.

4. MODEL IMPLEMENTATIONS
In order to determine the best overall strategy for con-

ducting cold-start user interviews with the goal of gener-
ating high-quality top-K recommendations, we now cover
how each interviewing strategy can be implemented in mod-
els ranging from simple, naive question selection algorithms
to more complex deep learning models. Furthermore, we
cover the implementation of specific recommenders that can
be arbitrarily coupled with interviewers, and how these are
adapted to the cold-start setting. In Appendix B, we cover
the implementation of additional models for which testing
remained preliminary due to time constraints.

4.1 Fixed-question interviews
As described in subsubsection 3.1.1, one way to conduct

interviews is to select a fixed set of questions that are posed

to the user in no particular order. We explore the following
implementations of this strategy.

4.1.1 Naive interviewers
As the simplest form of interviewer, we can create a naive

interviewer that simply selects a fixed set of m questions
from entities that are the most popular and/or contentious
among users. This form of interview is naive as the ques-
tion selection process does not adapt to a user throughout
the interview and does not depend on an underlying rec-
ommender. In this work, we consider a popularity-based
naive interviewer, where m questions are selected from the
m most popular entities. Due to space constraints we do
not consider contentiousness and its combination with pop-
ularity in this work, though a preliminary study indicated
that the performance is similar to or worse than a purely
popularity-based approach on our dataset.

4.1.2 Greedy interviewers
While asking towards popular and contentious entities

is intuitively a reasonable approach, there is no guaran-
tee that these metrics allow an arbitrary recommender to
correctly infer user preferences. Instead, questions can be
selected from the performance afforded by a recommender
when given users’ answers to the questions.

A greedy interviewer exhaustively tests all candidate ques-
tions according to the information they afford. Specifically,
by providing the user answers to an underlying recommender,
the interviewer records the ranking performance of the rec-
ommender given the information and greedily chooses the
top-m entities that afford the best performance.

While more computationally complex, this strategy can
adapt to the recommender employed by the recommenda-
tion system, a feature not present in naive interviewers. Ad-
ditionally, a greedy interviewer ensures that the questions
chosen optimises the desired performance metric, regardless
of the recommender. Much like how questions are selected
in fMF and LRMF when building the tree, the informative-
ness of a candidate question is evaluated in the context of
the previously selected candidates, though a fixed-question
greedy interviewer is not adaptive.

While optimally all combinations of questions should be
considered, this becomes intractable even for short inter-
views if the candidate question set E ′ is large, and thus the
greedy selection strategy is warranted. At every step, the en-
tity e ∈ E ′ selected for questioning by a greedy interviewer
is the one maximising informativeness w.r.t. an arbitrary
recommender system (see Equation 1) in the context of the
previous questions selected in the same manner.

4.1.3 Meta-Learned User Preference Estimator
As briefly described in subsubsection 3.1.1, MeLU [21]

proposes to use meta-learning to determine the informative-
ness of candidate questions. The model takes a user-entity
pair as input represented by their content, as shown in Fig-
ure 3. In the model, an entity is represented by its related
content, e.g., genres and actors, while a user is described
using demographic data, e.g., age, geographical location,
and gender. Since the MindReader dataset does not con-
tain user metadata, we replace the user embedding with the
average embedding of the entities rated by the user. The
entity and user embeddings are concatenated and passed to
a Fully Connected (FC) Neural Network (NN), which uses

5

0 1 0 1 0 1
Genres Actors

1 1 0
Entity indices

Embedding
vector

Embedding
vector

Embedding
vector

Entity "User"

Concatenation

FC layer 1

FC layer 2

FC layer 3

Input
Layer

Embedding
layer

Concatenate
Layer

Decision
Making
Layer

Output
Layer

Figure 3: The MeLUN network where the user embedding
is replaced with rated entities.

non-linear activation functions. The training data is parti-
tioned into a support and query set. The support set is used
for local, temporary updates of the decision-making layers,
while the query set is used for global, permanent updates of
the model1. For a user-entity pair, (u, e, o) in the support
set, we only insert the index of e into our entity vectors,
while for the query set we input all entities seen in our sup-
port set. The local updates match each user s.t. the model
becomes better at predicting entity ratings in the query set.
Since MindReader has fewer ratings per user as opposed the
dataset used in [21], we determine the number of ratings n
assigned to the support set as:

n =

{
10 if r >= 13
br/2c (3)

where r is the number of ratings for a user. Our ver-
sion of MeLU is referred to as MeLU Non-User (MeLUN) to
highlight the absence of user content. In [21], they further
use the average l2 norm of a user’s gradient on the support
set. This gradient is normalised and added to the normalised
popularity of each entity, resulting in a score that represents
the information gain if a user’s preference towards the entity
was learned and the probability that users are familiar with
the entity. The questions asked by MeLUN are optimised
for the model itself, and are not applicable to any arbitrary
recommender. As such, MeLUN is another instance of an
interviewing recommender.

4.2 Adaptive interviews
As previously argued, it might be beneficial to have selec-

tion strategy predicated by the answers received throughout
the interview in a more dynamic fashion. A popular rep-
resentation of adaptive interviews is by means of decision
trees, and we will discuss different implementations of such
interviews using greedy question selection, including the ap-
proaches proposed by [5] and LRMF [27]. We further discuss
how question exploration can be leveraged in order to im-
prove over greedy selection.

1We refer the reader to [21] for an in-depth description of
these updates.

4.2.1 Functional Matrix Factorisation
The fMF model is based on standard matrix factorisation,

modelling users and entities as latent feature vectors. These
vectors are constructed as to minimising the RMSE between
predicted and actual ratings from users to entities, where
ratings are predicted as the inner products between the em-
bedding vectors of the users and entities. The fMF model
constructs a decision tree where nodes represent questions
and edges represent answers. When answering a question,
a user is routed to the appropriate sub-tree in order to con-
tinue the interview.

At each level of the decision tree, we select the question
that allows the model to optimally split the users into groups
according to their answers. Specifically, we select the ques-
tion p as

p← arg min
p

∑
u∈RL(p)

∑
(u,e,r)∈O

(r − u>Le)2

+
∑

u∈RD(p)

∑
(u,e,r)∈O

(r − u>De)2

+
∑

u∈RU (p)

∑
(u,e,r)∈O

(r − u>Ue)2

(4)

where u ∈ RL(p), RD(p), and RU (p) is a user who has an-
swered that they like, dislike, or do not know p, respectively,
(u, e, r) ∈ Ow is an observation from u on e with rating r,
and u{L,D,U}, e ∈ Rk are the user and entity embeddings,
respectively. The user embedding uL is the embedding that
optimally represents all users in RL(p), that is

uL ← arg min
u

∑
u∈RL(p)

∑
(u,e,r)∈O

(r − u · e)2 (5)

As such, every node in the decision tree is associated with
an optimal user embedding u{L,D,U}. When the interview
terminates and the user arrives as a leaf node, the optimal
embedding at this node is assigned to the user. We denote
this post-interview embedding of user u as T(u).

In our experiments, we add λu‖u−up‖2 as a hierarchical
regularisation term to the user embedding objective in order
to reduce overfitting as the tree grows [5], where up is the
user embedding assigned to the parent node. At the root
node, we simply set this term as ‖u‖2.

With T(u), we can predict ratings for u on entity e with
the inner product between the vectors, that is T(u)·e. After
constructing the decision tree, we can infer the optimal en-
tity embeddings in a similar fashion, minimising the squared
error between predicted and observed ratings, regularised by
the l2-norm of the entity embeddings:

e← arg min
e

∑
(u,e,r)∈O

(r −T(u) · e)2 + λe‖e‖2 (6)

The influence of the user- and entity embedding regulari-
sation terms are controlled by the hyperparameters λu and
λe, respectively. We determine λu and λe parameters using
grid search, searching for configurations in {0.01, 0.03, 0.06}.
During training, the user- and entity embeddings are up-
dated by means of Alternating Least Squares (ALS) updates.

6

4.2.2 Local Representative-based Matrix Factorisa-
tion

LRMF leverages Representative-based Matrix Factorisa-
tion (RBMF) in order to both construct the interview and
predict ratings [27]. In RBMF, a user is represented not by
a latent feature vector as is the case in fMF, but by a vector
of the user’s ratings on a set of representative entities.

In LRMF, we have a notion of l1 global and l2 local ques-
tions, resulting in a l1 + l2-length interview. The global
questions are questions posed to all users and are used to
distribute the users across the nodes of the decision tree as
in fMF. When the global interview terminates and the user
has been assigned to a leaf user group by the decision tree,
l2 local, fixed questions are posed to the user.

A group of users Ug ⊂ U with group index g is represented

by the matrix Ug =
[
U

(1)
g ; U

(2)
g ; 1

]
∈ Rng×l1+l2+1 where

U
(1)
g and U

(2)
g are the vector representations of the users’

∈ Ug ratings for the l1 and l2 global and local questions,
respectively, 1 ∈ Rng denotes a column vector of ones as to
capture group-level bias, and ng is the number of users in
Ug. When the interview is done, the user is represented by
the vector u = [1 ;R(u, e)|e ∈ Q] ∈ Rl1+l2+1 where Q is the
set of global and local questions.

As in fMF, entities are represented as latent feature vec-
tors. The entity embeddings are represented by the matrix

V ∈ Rk
′×m where k′ is the number of latent features and

m is the number of entities. In order to predict ratings,
the features and dimensionality between the user and en-
tity embeddings are mapped by means of a group-specific

transformation matrix Tg ∈ Rk×k
′

where k = l1 + l2 + 1.
The complete objective of the LRMF model is presented in
Equation 7 [27]2.

min
G,Tg,U

(1)
g ,U

(2)
g ,V∑

g∈G

‖Rg −
[
U(1)
g ; U(2)

g ; 1
]
TgV‖2F + α‖Tg‖2F + β‖V‖2F

s.t.

∪g∈G Rg = R and Rg ∩Rg′ = ∅,
Rg ∈ Rng×m and Rg ⊂ng,m R,

U(1)
g ∈ Rng×l1 and U(1)

g ⊂ng,l1 R,

U(2)
g ∈ Rng×l2 and U(2)

g ⊂ng,l2 R,

V ∈ Rk
′×m,Tg ∈ Rk×k

′

(7)

where G denotes a group division and g ∈ G a group in-
dex, R ∈ Rn×m is the ratings matrix, n and m are the num-
ber of users and entities, respectively, and α and β are hy-
perparameters for controlling the influence of regularisation
terms of the entity embedding and transformation matrices,
respectively.

While the l1 global questions are selected in similar fash-
ion to that of fMF, i.e., by greedily selecting questions that
minimise rating prediction error, the l2 fixed local questions
are selected by means of the Maxvol algorithm as proposed
by [36]. While the details remain unclear3, it seems that the

2We refer the reader to the original paper [27] for a detailed
description of how the objective can be optimised.
3We have contacted the authors of [27] but have yet to re-
ceive a satisfactory explanation for this issue.

l2 local questions are selected by using Maxvol to find the
maximal-volume l2 × l2 submatrix of the entity embeddings
matrix V where the columns represent the l2 local question
entities. However, in order to find an l2 × l2 submatrix, the
original matrix must be of shape n × l2 for some n > l2
according to the specification of the Maxvol algorithm [36].
This forces the dimensionality of the entity embeddings k′

to be exactly l2, though this is not the case in the original
paper [27]. As we cannot work around this issue trivially,
we set the entity embedding dimensionality k′ to l2 in our
experiments.

4.2.3 Greedy adaptive interviewers
Both fMF and LRMF choose questions using a greedy

selection algorithm, selecting the questions that optimally
minimise the objective at a given node in the decision tree.
While the greedy selection strategy carries with it problems
regarding optimality, the introduction of a decision tree is a
simple and sound implementation of a dynamically adapting
interviewer. We can apply the same principles in the afore-
mentioned greedy interviewer, splitting users into groups ac-
cording to their answers and building a decision tree, select-
ing the nodes that optimise an arbitrary performance metric
over the rankings produced by an arbitrary recommender.
An example decision tree generated by this approach is seen
in Figure 4.

Drama
Film

Marvel
Studios

Science
Fiction

Film

Crime
Film

Action
Comedy

Film
20th

Century
Fox

Adventure
Film

Walt
Disney

Pictures
Time

Travel

Warner
Bros.

Musical
Film

Marvel
Studios

Movies of
the 1990s

Action
Film

Movies of
the 1990s

Figure 4: A 4-length interview generated by a greedy adap-
tive interviewer.

While simple in nature, we expect this approach to per-
form better than fMF and LRMF as we ensure that the
questions selected optimise ranking performance rather than
rating prediction which relate to separate tasks within rec-
ommendation. Furthermore, we impose no restriction on the
underlying interviewer, allowing for cold-start interviews us-
ing recommenders that might perform better than MF-based
models designed for rating prediction.

We formalise the greedy adaptation algorithm, Adaptive-
Greedy (AG), for building an interview decision tree in Al-
gorithm 1. When splitting users on a question, we follow the
strategy of [27] and merge users disliking and not knowing
the question. We also opt to select a set of fixed questions
for the remainder of the interview if the set of users at a
node becomes too small to warrant further splitting, which
are determined through Equation 1 for the subset of users at
that particular node. In a similar vein, for large datasets we
can again follow the example of [27] and stop the adaptive
constructing at a certain depth, using fixed questions for the
remainder of the interview. In our experiments, we set the
minimum number of users to 10 and set no maximum depth
on the adaptive construction of the tree.

7

Algorithm 1: The AG algorithm.

input : A set of users U , question candidates E ′ ⊆ E, a
recommender S and a ranking quality function
F .

output: A decision tree.

1 OU := {} # Initially empty answer set
2

3 return BuildTree(U , E ′, OU , F, S)

4 Function BuildTree(U ′, E ′, OU′ , F, S):
5 scores := QuestionScores(U ′, E ′, OU′ , F, S)

6 if U ′ is too small or at max adaptive depth then
7 n := number of remaining interview questions
8 questions := {qi|(qi, s) ∈ sorted(scores)} for i ≤ n
9 return fixed-questions node

10 q := arg max
q
{s|(q, s) ∈ scores}

11 if at max depth then
12 return node with q as the question

13 E ′ := E ′ \ {q}
14 U ′L,U

′
D := split users liking/disliking q

15 OU′
L
,OU′

D
:= add users’ ratings of q

16 L := Branch likes to BuildTree(U ′L, E ′, OU′
L
, F, S)

17 D := Branch dislikes to BuildTree(U ′D, E ′, OU′
D
, F, S)

18 return node with L and D as child nodes

19 Function QuestionScores(U ′, E ′, OU′ , F, S):
20 scores = {}
21 foreach q ∈ E ′ do
22 OU′ = OU′∪ the answers of U ′ on q

23 score :=
1

|U ′|
∑
u∈U′

F (S(OU′ , u))

24 scores := scores ∪ {(q, score)}
25 return scores

As previously mentioned, the informativeness of a ques-
tion is evaluated in context of the previously selected ques-
tions, as testing all possible combinations quickly becomes
computationally intractable. Even so, greedily constructing
a decision tree easily becomes a very complex procedure, as
the computational complexity is exponential in the height
of the tree. The algorithm must exhaust all question candi-
dates at every node of the tree, and with a three-way node
splitting procedure as in fMF, the number of nodes to ex-
haust with an interview length (i.e., tree height) of m is

1 + 31 + 32 + . . . 3m =
3m+1 − 1

3− 1
(8)

Depending on the complexity of exhausting the candidate
questions, long interviews will render this approach practi-
cally infeasible, which is explained in detail in Appendix D.
As such, we deem it worth considering interview construc-
tion strategies that do not suffer under similar limitations.

4.2.4 Exploratory adaptive interviewers
Instead of selection questions greedily, we may be able

to generate a more effective interview if we allow the in-
terviewer to explore more freely in the questions it selects.
Additionally, both fMF and LRMF learn the interview, and
generate recommendations, by minimising the difference be-
tween predicted and observed ratings. While this can be
an effective strategy for some ranking tasks, we may be
interested in producing rankings that optimise more com-

plex measures such serendipity- or diversity-based metrics as
those proposed by [28]. However, seeing as such metrics are
not always directly differentiable, we cannot trivially con-
struct a matrix factorisation objective that optimises these
through gradient descent. We can, however, leverage re-
inforcement learning, specifically deep Q-learning [29, 30],
to learn how to conduct interviews such that we reinforce
any positive outcome including non-differentiable metrics.
Finally, this form of deep learning should alleviate the prob-
lem of exponential computational complexity, as the struc-
ture and size of the models can be kept static regardless of
the interview length.

Deep Q-Networks (DQNs). In deep Q-learning, the goal
is to learn a Q function with domain Q : S × A → R for
predicting the reward r ∈ R for taking an action a ∈ A from
state s ∈ S. A DQN is a deep neural network that is trained
to approximate Q.

In order to approximate Q through gradient descent, we
need to define an objective for the DQN that is directly
differentiable, regardless of the nature of the reward. To
support this, [29] observes that every Q function respects
the Bellman equation

Qπ(s, a) = r + γQ(s′, π(s′)) (9)

where s ∈ S, a ∈ A, r ∈ R is the reward of taking action
a in state s resulting in the new state s′, γ ∈ [0, 1] discounts
the accumulative reward, and π is the learned policy for
selecting an action given some state ∈ S. In essence, the
Bellman equation states that the utility (in our case the
reward) of taking an action a in a state s is the accumulative
utility of taking the per-policy correct actions in all following
states as discounted by γ. Note that when the interview is
over, no future decisions exist, and thus γ is set to 0.

As Q must respect the Bellman equation, we can define
the DQN objective as to minimise the DQN loss function:

LDQN = Es,a∼p(·)
[
(y −Q(s, a))2

]
(10)

where y = Es′∈E
[
r + γmax

a′
Q(s′, a′)|s, a

]
is the target

reward of taking action a from state s, p(s, a) is a proba-
bility distribution over state-action transition pairs, and E
is an emulating environment providing states as altered by
actions [29].

We descend the gradient of Equation 10 w.r.t. the pa-
rameters of Q as to minimise the difference between the
predicted reward of taking action a in state s, Q(s, a), and
the discounted sum of the actual reward observed and the
highest possible reward the policy could obtain as predicted
from the following state, γmax

a′
Q(s′, a′). When LDQN is

minimised, the Q function represented by the DQN opti-
mally respects the Bellman equation.

It is exactly the accumulative reward prediction that al-
lows DQNs to overcome the optimality problems faced in
greedy selection strategies as used in fMF, LRMF, and AG.
The question selected at a given point in the interview does
not have to be the most informative in isolation - instead,
questions can now be selected if the network discovers that
they afford much higher rewards when combined with other
questions later on.

In training a DQN, we have two primary interacting com-
ponents: an agent and an environment [29]. The agent,
represented by the DQN, takes in a state representation and

8

outputs an action in A to take. The environment maintains
this state representation, and enacts the actions chosen by
the agent, providing the agent with the new state as al-
tered by the action taken. The flow of interaction between
the agent and the environment is illustrated in Figure 5.
In cold-start interviews, a state s ∈ S is simply a set of
question-answer pairs.

The agent receives a state s ∈ S and outputs the next
question q to ask in the interview as selected by a DQN with
epsilon-greedy exploration. The environment receives q and
retrieves the user’s rating for the entity asked for. The envi-
ronment adds q and the user’s answers to s, resulting in the
new state s′. If the interview is over, the environment uses
an arbitrary recommender system S to rank all entities and
computes a ranking quality metric, e.g., NDCG@k, as the
reward for the interview. Otherwise, the reward is simply
set to 0. From this interaction, we define a state transition
tuple (s, q, s′, r, t) with s being the original state, q being the
question selected by the agent, s′ being the state resulting
from asking the question, r being the reward received, and
t being a Boolean indicator of whether the interview is over
or not. This tuple is stored in a replay memory M.

Agent Userq

Select question
Recommender

Fetch user's answer
to q, update s to s'

s'

Update state

Reward
function

Generate entity ranking

ranking
s'

r

Compute reward r from the
ranking, return to agent

Store (s, q, s', r, t) in
memory

Environment

Return updated state
and reward

Figure 5: Flow of interaction between the agent and envi-
ronment in deep Q learning.

In order to eliminate temporal dependencies between train-
ing samples, we randomly sample mini-batches from M as
proposed by [29] to decrease the likelihood of policy diver-
gence. We define the learning algorithm formally in Algo-
rithm 2. In the algorithm, εdec denotes the decay rate of
the exploration probability ε. In our experiments, we set
εdec = 0.999.

We implement the DQN as a 3-layer Multi-Layer Percep-
tron (MLP) with 512 hidden units. The interview state is

represented as a vector s ∈ R|E
′|·2 where E ′ is the set of can-

didate interview questions, si·2 = 1 if the interviewer has
asked for Ei, and s1+i·2 is 1, −1, or 0 if the user answered
like, dislike, or don’t know to the question. Given a state,
the DQN produces a vector of Q-values q ∈ R|A| with a
predicted cumulative for all actions a ∈ A. Formally, the
predicted Q-values are defined as:

DQN(s) = L3(L2(L1(s))) (11)

where Li(v) denotes the forward propagation of a vector
v through the i’th layer of the DQN MLP s.t. Li(v) =
σ(vWi+bi) where Wi and bi are the weights and biases of

Algorithm 2: DQN training algorithm.

input : A set of users U , a recommender system S, a
reward function F , interview length k ∈ N,
εdec ∈ [0, 1] and α ∈ R+

output: A trained DQN model

1 return TrainDQN(U , 1, F, εdec)
2 Function TrainDQN(U , ε, F, εdec):
3 Q := DQN with random parameters θ
4 M := {}
5 while not converged do
6 foreach u ∈ U do
7 s := empty state
8 foreach k′ ∈ {0, . . . , k} do
9 q := SelectQuestion(Q, θ, s, ε)

10 a := get u’s answer to q
11 s′ := update s with q and a
12 t := k′ = k
13 if t then
14 l := use S to rank E given s′

15 r := determine quality of l using F

16 else
17 r := 0
18 M := M∪ {(s, q, r, s′, t)}
19 (sb, qb, rb, s

′
b, tb) := sample mini-batch in M

20 target :=

{
rb, if tb
rb + γmax

a∈A
Q(s′b, a|θ), otherwise

21 θ := θ − α · ∇θLDQN given
(target−Q(sb, ab|θ)) as described by
Equation 10

22 ε := ε · εdec
23 return Q

24 Function SelectQuestion(Q, θ, s, ε):
25 r := random([0, 1])
26 if r < ε then
27 return arg max

a∈A
(Q(s, a|θ))

28 else
29 return random(A)

Li, and σ is a non-linear activation function set to Rectified
Linear Unit (ReLU) in our experiments.

Deep Deterministic Policy Gradient (DDPG). Gener-
ally, deep Reinforcement Learning (RL) is presented with a
host of difficult-to-solve problems that lead to unstable and
unreliable training sessions. While some of these can be al-
leviated by introducing target networks and replay memory
buffers [29], resulting in a more stable learning process, the
setting of cold-start interviews specifically introduces more
problems. In DQN, questions are selected from A which, in
theory, can be all the entities in the system. This is a very
large action space, and since DQN chooses discrete actions
from this space in order to build memories, a large amount of
exploration is required for the model to properly construct
effective interviews. Because of this, DQNs are generally
not capable of handling high-dimensional action spaces [30].
To solve this, [30] introduces a generic, off-policy learning
algorithm, DDPG, which in short facilitates the handling of
high-dimensional action spaces in deep RL.

In DDPG, the agent maintains the interaction between an
actor and a critic. The actor, A : S → A where A = Rk for
some k takes a state and produces an action representation,
for example as represented by a latent feature vector. The
critic, Q : S×A → R takes a state and an action as produced
by the actor, and outputs the predicted reward of taking that

9

action in that state. While we will not cover the algorithm
in detail, we will briefly describe the learning objectives of
each component. Given a transition tuple (s, q, s′, r′t), the
critic’s objective is to minimise the difference between the
predicted reward and the reward observed for taking action
a in state s, that is

min(r −Q(s, a) + γ ·Q(s′, A(s′))) (12)

Under the assumption that the critic is able to learn how
to predict rewards accurately, the objective of the actor is
naturally to produce actions that lead to high rewards. By
descending the gradient of the sampled policy gradient [30],
the objective of the agent is essentially to maximise the re-
wards predicted by Q, that is

max(Q(s, a)) (13)

In [31], the DDPG algorithm is applied to facilitate effec-
tive action selection over large, discrete action spaces. In
short, actions are represented as a collection of pre-defined
information about the actions, for example, a feature vector
∈ Rn of n action-specific features. When the agent pro-
duces a proto-action vector ∈ Rn, we first find the k-nearest
action vectors A′ ⊂ A using a k-NN-like approach. With
this reduced set of actions, we can choose the action with
the highest predicted reward, that is arg max

a∈A
(Q(s, a)). In

our implementation, we represent actions by means of MF-
embeddings using 5 latent features, though any type of em-
bedding can be used as long as the actions are represented
within the same feature space.

We implement both the actor and critic as 3-layer MLPs
with 512 hidden units. The interview state is represented
as in DQN. The actor takes a state vector s and returns a
proto-action vector a ∈ Rk where k is the number of latent
action features. Given a state vector s and proto-action
vector a, the critic passes s through the first layer of the
MLP, concatenates the processed state- and action vectors,
and propagates the concatenated vector through the rest of
the network to produce a predicted reward r ∈ R. Formally,
the predicted reward from the critic is defined as:

Q(s,a) = L3(L2([L1(s); a])) (14)

where Li(v) denotes the forward propagation of a vector v
through the i’th layer of the critic MLP Li(v) = σ(vWi+bi)
where Wi and bi are the weights and biases of the i’th layer,
and σ is a non-linear activation function set to ReLU in our
experiments.

4.3 Recommenders
As described in subsection 3.2, we consider three sep-

arate paradigms of recommenders in this work, with one
not lending to incremental models, i.e., an embedding-based
recommender such as MF. In the following, we consider
how embedding-based, warm-start recommenders can sup-
port cold-start recommendations and the iterative addition
of user ratings. We also outline some simple additions to
PPR. Finally, we detail how cold-start recommendations can
be provided using neighbourhood-based recommenders.

4.3.1 Cold-start user embeddings
In embedding-based recommenders (e.g., MF-based rec-

ommenders), a feature vector is learned for every individual
user u and entity e. These embeddings are learned to fa-
cilitate that the dot product of the vectors u · e ∼ R(u, e).

Consequently, this also means that a cold-start user arriving
at the system will not have a feature vector associated with
them. In the following, we explore a strategy for handling
this issue.

The rating from a user u and an entity e is predicted as
u·e. This product inherently encodes the similarity between
the vectors, and the larger the distance between the vectors,
the lower the predicted rating will be.

Following this, we want the user’s embedding to be as
similar as possible to the entities the user will like. Similar
to the initial approach of [6], the user can instead by rep-
resented as the average embedding of the entities they have
liked:

u =
1

|E+u |
·
∑
e∈E+u

e (15)

where E+u are the entities that u has liked. For a completely
new user with no observed ratings, the embedding can be
expressed simply as the average entity embedding, that is

u =
1

|E|
∑
e∈E

e (16)

4.3.2 Personalised PageRank
As opposed to MF, PPR is a good fit for cold-start recom-

mendations as it does not depend on a predefined or learned
representation of a user. Since all users are represented by
their ratings that serve as source nodes in calculating the
PPR of entities, we can use PPR to generate cold-start rec-
ommendations just as easily as with warm-start users.

In our warm-start experiments with MindReader, we found
that using PPR with a KG as the underlying graph per-
formed well, particularly on the long-tail entities [4]. Yet,
our hyperparameter tuning of PPR was limited to determin-
ing an optimal damping factor. As such, we here describe
different approaches to improving PPR for top-K recommen-
dations.

Graph variants. As in [4], we create three different PPR
models utilising different graphs: PPR-KG, which uses the
MindReader KG, PPR-COLLAB which uses a graph of all
user-entity rating edges, and PPR-JOINT which uses a com-
bination of the two. This division of graph variant is similar
to those in [37, 38].

Non-uniform probabilities. In [4], we considered only
the likes of users in our PPR implementation, using a uni-
form probability distribution for all liked entities in the tele-
portation probability vector, i.e., the random walk is only
allowed to reset at a user’s liked entities. Yet, previous
work [38] showed that it is possible to modify the distri-
bution of probabilities for increased performance on sparse
datasets. In this work, we divide a user u’s rating as their
liked set E+u , a disliked set E−u , and the rest as Eru = E \
(E+u ∪ E−u). Then, the random walk can reset as both a
user’s likes, dislikes, and non-rated entities, with a weight
for each category determined through grid search.

Linear combination. In [39], they use a linear combi-
nation of PageRank scores in order to generate more ac-
curate query results. Specifically, they compute PageRank
scores for each topic to generate more context specific rank-
ing scores for the documents to retrieve, thus ensuring that
the query matches the retrieved documents better. Simi-
larly, we propose a linear combination of PPR rankings on

10

different underlying graphs in order to optimally combine
ratings of different sentiments. Different from the approach
of [39], we combine PPR scores from several different graphs,
each personalised towards a user’s answers. As such, we aim
to learn a static combination of dynamic PPR scores, while
that of [39] conducts a dynamic combination (weights deter-
mined dynamically as query similarity) of static PPR scores.
A graph is created for each rating type, i.e., a “Like”, “Dis-
like”, and “Don’t know” graph. Only nodes that have the
same rating as the rating types graph are set as source nodes,
resulting in PPR scores directly representing the importance
for that rating type. We refer to the collection of graphs as
GC and compute the combined PPR as:

PPRC(u) =
∑
Gc∈GC

wc · PPR(Gc, Rc(u)) (17)

where PPR is a function that, given a graph and source
nodes as per the ratings of u, obtains a vector of weights
for each node, representing their PPR score of all entities.
Furthermore, wc is the weight assigned to rating type c, and
Rc is the nodes with rating c from user u, where c ∈ C.
The weight indicates the effect different rating types have
on the prediction score. Empirically, we observe that the
“Like” graph is given a positive weight, “Dislike” a negative,
and “Don’t know” a weight between the two, which is in
compliance with our intuition. Furthermore, we observe that
“Don’t know” ratings often have a small negative weight,
indicating that these ratings may carry a slightly negative
sentiment.

Just as ratings can be combined, so can PPR rankings
over different graph variants. As stated previously, PPR-
JOINT combines the graphs from PPR-COLLAB and PPR-
KG. This forces the joint model to navigate both graphs, but
one graph might provide more useful information than the
other. We therefore consider a linear combination of PPR-
KG and PPR-COLLAB defined as:

PPRL(u) = PPRKG
C (u) + PPRCOLLAB

C (u) (18)

where PPRKG
C is PPRC using the KG as graph, and COL-

LAB is the collaborative graph. Intuitively, the model learns
to weigh each rating type for the two graphs, as illustrated
in Figure 6, with separate weights for each graph variant.
Computing the combined PPR ranking is of course more
complex than computing the PPR ranking from a single
graph, though the increase in complexity is linear in the
number of graphs.

Learning combination weights. While we can determine
the optimal weights by means of grid search, this has com-
plexity O(nm) where n is the number of weights to test and
m is the number of graph variants, thus rendering this ap-
proach intractable if the weights are selected from a continu-
ous space. However, if we restrict the weights to a small set
of discrete configurations, we run the risk of not including
the optimal combinations in the restricted set. Instead, we
can observe that Equation 17 describes a polynomial param-
eterised by the weight vector w where each weight wc ∈ w
is associated with a PPR-based ranking function.

In [40], they present a number of differentiable loss func-
tions that allow us to measure how well a model is perform-
ing in the ranking task when provided with two samples for
which the correct ranking is known. Formally, the generic

Likes DislikesLikes Dislikes

Knowledge Graph Collaborative Graph

Figure 6: Illustration of PPRL, using a user’s likes and dis-
likes as separate source nodes. Blue nodes represent users,
while other colours represent a user’s ratings, and white
nodes represent entities.

loss function is defined as

Lp(θ, f, u, x, y) = σ(f(u|θ)x − f(u|θ)y) (19)

where, f is a ranking function (e.g., PPR) parameterised
by θ, σ is an arbitrary function defining the ranking error
based on the difference between the scores of x and y as
predicted by f given a user u, and x and y are two sample
entity indices for the PPR scores, where x > y is the ground
truth ranking [40].

Thus, given two sample entities e, d ∈ E and a user u ∈
U , we can approximate the optimal configuration of w by
iteratively descending the gradient of L, that is

w← w − α∇wL(w, PPRL, u, e, d) (20)

where PPRL(u) in this case is a function PPRL : U →
R|E| that returns the ranking score of all entities as defined
in Equation 18, α is the learning rate, and ∇wL defines the
vector of partial derivatives w.r.t. each weight wc ∈ w.

As for the σ function, there are several to consider. As an
example, one could consider a pairwise ranking loss function
such as a margin loss [40]:

σ(z) = [γ − z]+ (21)

where z is the difference between the scores of the sample
entities and γ is the desired default margin between entities
of different ranks. By descending the gradient of L using
a margin loss, we ensure that the difference between the
provided samples is maximised. Intuitively this enforces a
margin between the positive and negative sample s.t.

f(u|θ)x + γ < f(u|θ)y (22)

During training, we see a tendency for the weights to ex-
plode as the model learns that larger weights result in better
separation. The lack of convergence may be due to uniform
sampling of negative items, and may require many iterations
in order to converge [41]. We therefore utilise a sampling
strategy such that the most informative semi-hard sample is
chosen, similar to the online approach in [42]. A semi-hard
sample simply means a sample that violates Equation 22
while being ranked correctly compared to the positive sam-
ple. For each mini-batch we sample pairs that violate Equa-
tion 22. For each positive sample x, we find the semi-hard
negative sample y that maximises the distance to x as it

11

should be the easiest of the violating samples to solve. If
no such sample exist, we choose the sample closest to the
positive sample analogous to the approach in [43]. We see
in practice that our sampling approach converges faster and
achieves better results, though further testing and experi-
menting is needed for more stable results.

Although we utilise PPR to calculate the score for each
graph variant and rating type, we could instead use node
embeddings generated by node2vec and calculate the simi-
larity from an unrated item to all rated for a user as in [37].
They divide their KG into sub-graphs containing specific re-
lationship types extended with liked ratings of users. They
further experiment with a listwise learning algorithm, Lamb-
daMart, for combining similarity scores from different sub-
graphs, but find that simple aggregate functions outperform
this when utilising collaborative rating in the sub-graphs.
We opt to use PPR over node2vec, as it took multiple hours
to create node2vec embeddings for a single graph and they
propose 270 different parameter combinations, making it im-
practical to find an optimal embedding. Furthermore, as we
want to utilise the negative ratings available in our dataset,
we cannot use an aggregate function and instead use a pair-
wise loss function.

4.3.3 Neighbourhood-based recommenders
We found neighbourhood-based models to perform very

well in the warm-start setting in [4]. In particular the user-
k-NN model utilised the DEs especially well, and as such we
modify our existing implementation to handle new users in
a cold-start setting. A new user u is represented as a vector
vu, where |vu| = |E|, s.t. the vector is defined as:

vui =

{
R(u, ei) if (u, ei, R(u, ei)) ∈ Ou,
0 otherwise

(23)

for all ei ∈ E . With a user vector representation, we can em-
ploy standard user k-NN similarity measures for recommen-
dation, e.g., cosine similarity and Pearson correlation [33].

5. DATA COLLECTION
In our previous work we designed and implemented Min-

dReader, a platform for data collection within the movie
domain, in order to elicit both RE and DE ratings from real
users [4]. In total, we collected 102, 160 ratings from 1, 174
users on 10, 030 KG entities. Furthermore, we showed how
the collection approach balances coverage and co-occurrence
of ratings. However, as already pointed out in the previous
work, there are several issues with the data collection ap-
proach. In the remainder of this section we will outline these
issues and how we have addressed them in a new version of
MindReader. Finally, we present rudimentary statistics on
the latest version of the dataset, which will be used in the
evaluation of this work.

5.1 Quality of recommendations
While providing high quality recommendations was not

and still is not the primary concern of MindReader, provid-
ing such recommendations can be beneficial for the collection
of data. With a perceived low quality of recommendations,
we risk that many users will go through no more than one
iteration of the interview. Contrary to this, a perceived high
quality of recommendations may encourage users to not only
complete more iterations, but to use the application on a

101 102 103

Number of particles

0.1

0.2

0.3

0.4

0.5

HR
@

10

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
(s

)

Particle filtering performance

Figure 7: HR and running time in seconds relative to number
of particles.

regular basis as a means of getting recommendations. This
is beneficial not only in terms of the overall number of rat-
ings, but also for CF models that rely on co-rated entities
between user pairs for finding similar users.

In our initial approach, recommendations were provided
by sampling REs adjacent to the user’s entity preference
based on global PageRank. The approach was chosen over
the SOTA approach of PPR due to its much lower compu-
tational complexity, with precision of recommendations and
limitation to 1-hop neighbours as a compromise. However,
a recent work suggests that computing the PPR values of a
KG can be approximated with a Particle Filtering (PF) ap-
proach, thereby reducing running time while ensuring high
quality of ranking [34]. As such, we consider whether PF
can serve as an adequate replacement for PPR in our use
case.

5.1.1 Particle filtering
Before implementing PF in MindReader, we experimented

with different numbers of particles, comparing the quality
of the ranking and running time. We used the Neo4j4 im-
plementation of PF provided in [34] and computed the Hit
Ratio (HR) and average running time. For each user, we
rank a positive sample (i.e., an entity liked by them) and
100 negative samples (i.e., entities they have not interacted
with) and compute the HR@10 following Equation 25.

From Figure 7 we observe that both HR and running time
increase with an increasing number of particles. Specifically
we observe an increase in HR from 9.86% at 10 particles to
52.08% at 100 particles, while execution time increases from
0.14 seconds to 0.35 seconds, respectively. Following 100
particles, the increase in HR is relatively small compared to
the increase in execution time. For reference, the Neo4j im-
plementation of PPR yielded a HR of 32.63% and average
running time of 1.04 seconds with α = 0.85. As such, using
PF with 100 particles should ensure high-quality recommen-
dations within reasonable runtime.

4https://neo4j.com/

12

https://neo4j.com/

Samuel
Jackson

Quentin
Tarantino

Pulp
Fiction

Django
Unchained

Jackie
Brown

Crime
Film

Figure 8: Limitations of 1-hop exploration.

5.2 Related entities
In our initial approach to finding related entities during

the exploration phase, we used a 1-hop approach as when
retrieving recommendations. The difference between the two
approaches is that when exploring we sample from additional
entity types (e.g., genres and actors).

An issue with this approach is that it tends to result in
highly localised exploration of the graph. For example, con-
sider a scenario as in Figure 8 where the user has provided
feedback for the director Quentin Tarantino. Under 1-hop
exploration, the next sequence of related entities would be
limited to his directed movies, marked as green in the ex-
ample. To further ask about entities related to Quentin
Tarantino, we would require further feedback on one of the
movies that are 1-hop connected to these entities, which
may not be possible due to the constrained duration of the
interview.

In the previous version of MindReader, localised explo-
ration was mitigated by including random entities during
the exploration phase. To better address this issue and to
show more related entities, we use PF as in the new rec-
ommendation approach, sampling from the different entity
types as before. Following this approach we avoid issues
such as in Figure 8 since the related entities will not be con-
strained to 1-hop connected entities. Despite this change to
the exploration phase, we will continue to include random
entities in order to increase diversification of the exploration.

5.3 Scaling question frequency
In [4] we observed that the sampling approach during

the exploration phase tended to result in high coverage for
smaller entity groups (e.g., decades) and low coverage for
larger entity groups (e.g., actors and directors). This is the
result of following a round-robin approach, where we shuffle
the entity groups Eg where g ∈ {Movie, Person,Decade,
Company,Category} and iteratively pick an element from
each group. To ask more questions about larger groups of
entities, we propose to sample each group with a probability
based on the size of the entity groups, such that questions
on larger groups are more frequent. With this approach, we
sample an entity from entity group g with probability

P (g) =
log |g|∑
g∈Eg log |g| (24)

Measure Old KG New KG
nodes 18,707
edges 198,452 199,802
Minimum degree 4
Median degree 10
Average degree 21
Maximum degree 4,454
connected components 1

Table 2: Comparison between the new and old MindReader
KG.

where |g| denotes the number of entities in group g. We
use the log frequency to avoid small groups (e.g., decade)
being underrepresented during sampling. Furthermore, we
impose no hard restrictions on the number of times a specific
group can be sampled from.

5.4 Statistics
In Table 3 we compare rudimentary statistics for the new

version of the MindReader dataset, called MR-170K, to the
previous MR-100K version. As in [4], we follow the conven-
tion of appending ALL to the versions with all rating types,
and BIN to the subset with only binary ratings (i.e., like and
dislike), and for all cases we consider only users with a full
completion of the interview.

In total, we collected an additional 85, 330 ratings from
782 new users. When comparing the variants with all rat-
ings, the number of covered entities has increased by 44.09%
for DEs and 2.97% for REs. As a result of the increased
coverage, the density of ratings on DEs has decreased by
24.17%, while the density of ratings on REs is rather stable.
We posit that the decrease in density of DE ratings can be
attributed to the new exploration approach of MindReader,
in addition to scaling questions with entity group sizes which
results in more questions on the long-tail entities for larger
groups.

In addition to extending the MindReader dataset, we up-
dated the MindReader KG with “sequel” relations, allowing
for triples such as 〈Deadpool 2, Sequel To,Deadpool〉. The
updated statistics for the KG are shown in Table 2.

6. EVALUATION
For our overall evaluation strategy we follow an approach

similar to what has been used in existing works [5, 22, 27].
First, we split the users of our dataset into two disjoint sets
for training and testing, containing 75% and 25% of users,
respectively. For the training dataset, all ratings associ-
ated with the users are assumed fully available and used
for learning each model, effectively constructing the inter-
view process. Conversely, the ratings for test users are only
available when provided during the interview process. To
cover all users in the dataset as test users, we perform 4-
fold cross-validation and report the average results. In all
experiments, we produce a ranking of REs for all test users
following the interview. However, the entities to rank dif-
fer amongst our experiments as we consider performance on
both the recommendation and separation task.

Recommendation task. To measure how well the models
recommend REs, we employ a Leave-One-Out (LOO) eval-
uation approach where a random positive sample, i.e., liked
RE, is left out and ranked against 100 negative samples, i.e.,

13

Datasets #Users
#Ratings #Entities (coverage %) Density
DE RE DE RE DE RE

MR-170K-ALL 1,736 79,577 95,295 6,581 (47.80%) 4,879 (98.76%) 0.69% 1.12%
MR-170K-BIN 1,736 44,410 40,145 3,104 (22.54%) 3,648 (73.84%) 0.82% 0.63%
MR-100K-ALL 954 39,592 49,950 4,567 (33.17%) 4,737 (95.89%) 0.91% 1.11%
MR-100K-BIN 954 22,827 18,106 1,997 (14,50%) 3,022 (61.17%) 1.20% 0.63%

Table 3: Rudimentary statistics comparing the new and old version of the MindReader dataset.

REs that the user has not interacted with. We employ the
LOO approach specifically to avoid removing too many RE
ratings, which would otherwise favour DE questions during
interviews. To quantify the quality of the recommendation,
we evaluate according to the presence and position of the
left out entity in the predicted ranking. Furthermore, we
employ various methods for negative sampling as explained
in subsection 6.4.

Separation task. To measure how well the models separate
REs rated by the user, we rank three entities: an entity liked
by the user, an entity disliked by the user, and an entity to
which the user explicitly answered “don’t know”. To quan-
tify the quality of the ranking, we compare the predicted
ranking against the true ranking as defined in Definition 2.2.

6.1 Dataset
We evaluate on the MR-170K dataset whose statistics are

presented in subsection 5.4. As in [4], we include only users
with a full completion of all MindReader phases. To pre-
serve as many ratings as possible, we perform limited pre-
processing for the two tasks. For the recommendation task,
all users must have at least one positive rating, while for the
separation task, all users must have at least one positive,
one negative and one neutral (i.e., “don’t know”) rating.

6.2 Reproducibility
To support full reproducibility of our evaluation, the ex-

perimental setup and cold-start framework is fully container-
ised with Docker5. As part of our cold-start framework, we
provide a pipeline to facilitate downloading and partition-
ing of data, as well as conducting experiments from a single
script. While the details of the framework are beyond the
scope of the main body of this work, we refer the reader to
Appendix A for further details and instructions on accessing
the framework.

6.3 Metrics
As covered by the recommendation and separation tasks,

we employ a holistic evaluation strategy in that we evaluate
the quality of the recommendations made directly, as well as
the models’ ability to correctly separate entities of varying
sentiments.

Recommendation task metrics. As per the problem def-
inition, we are interested in model performance in the top-K
recommendation task. Similarly to [4], we evaluate the qual-
ity of recommendations made using measures HR@K and
NDCG@K as proposed by [44, 45]:

HR@K =
#Hits@K

#Users
(25)

5https://docker.com

In HR@K, we consider a recommendation a hit in the
LOO setting if the left-out entity appears in the top-K list.
Since this is a coarse measure of quality that doesn’t con-
sider the position of the left-out entity in the list, we further
consider NDCG@K:

NDCG@K =

K∑
i=1

2rel(i) − 1

log2(i+ 1)
(26)

where rel(i) = 1 if the ith entity in the top-K list is rele-
vant to the user (i.e., is the left-out entity), otherwise 0.

Besides HR@K and NDCG@K, we consider a serendipity
measure proposed by [28] in order to gain deeper insights
into a recommender systems ability to avoid “obvious” rec-
ommendations and instead generate surprising and useful
recommendations, which is an important quality pertaining
to recommender systems [46, 47]

We follow the definition of [28] and define PM as the
set of entities recommended by a primitive model, e.g., one
that simply recommends the most popular entities. We con-
versely define RS as the set of entities recommended by a
non-trivial recommender system. The non-obvious or un-
expected set of entities is then UX = RS \ PM. We now
define the serendipity measure SER@K:

SER@K =

∑
i∈UX rel(i)

|UX | (27)

where rel(i) = 1 if the entity i is relevant to the user,
otherwise 0, and |RS| = |PM| = K.

Finally, we consider a diversity-based metric for evaluat-
ing the performance of the recommending models, as pro-
posed by [28]. Continuing in the vein of non-trivial recom-
mendations, we seek to determine whether a model simply
recommends the same entities to every user, or if it is capa-
ble of recommending a wide variety of different entities to
different users. We consider the aggregate diversity of en-
tities given the entities recommended to every user u ∈ U .
Let I denote all REs, and let Iu denote the entities recom-
mended by a recommender system to user u ∈ U . Following
the definition of [48], we define the aggregate diversity met-
ric DIV@K as

DIV@K =
|
⋃
u∈U Iu|
|I| (28)

where |Iu| = K. Intuitively, a naive recommender such as
a popularity-based one will always provide the same rank-
ing of REs and therefore score lowly, while a random rec-
ommender will score highly. As such, the diversity metric
can be interpreted as a level of personalisation provided by
each model. Some works refer to this measure as catalogue
coverage, since it reflects how many REs were covered in the
top-K lists [28].

14

https://docker.com

Separation task metrics. For the separation task, we
consider Kendall’s Tau [49] to measure the agreement be-
tween the predicted and true rankings of liked, unknown,
and disliked entities. While separating unknown and dis-
liked entities may be of little importance in making recom-
mendations, it is still interesting to see how well models can
separate entities based on explicit user preferences. Given a
predicted ranking A and the true ranking B, we define the
Kendall’s Tau metric τ as

τ =
Num. concordant pairs−Num. discordant pairs

Num. concordant pairs + Num. discordant pairs
(29)

such that a pair of observations (ai, bi), (aj , bj) where we
have that i > j and a ∈ A and b ∈ B are concordant if
ai > aj and bi > bj , otherwise they are discordant. For every
user, we rank one liked, unknown, and disliked entity for the
user, where the ground truth ranking B is defined by our
definition of preference (see Definition 2.2). A recommender
will reach the maximum τ score of 1 if it always ranks liked
entities over unknown entities, and unknown entities over
disliked entities.

6.4 Negative sampling
Many works have observed that popularity based recom-

menders perform similarly to SOTA methods on the rec-
ommendation task [4, 10, 50, 51]. In general, the relative
performance between models is drastically affected by the
rating distribution over entities. In [51], they further find
that the number of positive ratings on an entity in the test
set is proportionate to the number of ratings on that en-
tity in the training set. Consequently, if a dataset is biased
towards popularity, a model that satisfies the majority of
the user population would perform well using metrics that
average over all users’ satisfaction. Such metrics might con-
tradict the personalisation while still describing a model’s
ability to satisfy the majority of the user population, but
may fail for the minorities. In [10], they attempted to alle-
viate this bias by removing the most popular entities from
the test set (i.e., testing on the long-tail), but this only re-
duces the problem [51] as the proportional relationship re-
mains. As an alternative, [51] proposes two methods for
sampling data: percentile-based partition and uniform test
entity profile. The former method partitions entities into m
bins according to their popularity such that the entities in
each bin have similar popularity. Consequently, the num-
ber of test entities that can be selected for a user per bin is
limited to |I|/m, which for a sparse dataset can have great
effect as the long-tail percentiles have few users. The latter
method uses a subset of entities that can be uniformly sam-
pled from, i.e., each entity is sampled an equal amount of
times. As a result, popular entities are not sampled more
frequently, yet the method limits the possible test ratings
to a fraction of the dataset. To alleviate these issues, we
propose using two sampling strategies for sampling negative
samples in LOO evaluation: random sampling and equal-
popularity sampling.

Random sampling. As described in [51], the number of
randomly sampled positive ratings for an entity correlates
with the number of ratings for that entity in the training
set. As such, the distribution of positive sampled entities for
LOO evaluation will approximate the training ratings distri-
bution while the negative samples create a uniform distri-

bution over all entities. The negative samples ratings distri-
bution and that of the training set are therefore dissimilar.
Following this sampling strategy, we can determine model
performance on the majority of the users.

Equal-popularity sampling. To reduce the popularity
bias of positive samples, we propose an equal-popularity
sampling strategy which does not limit the number of enti-
ties that can be sampled. Our method performs sampling of
negative samples with popularity similar to that of the sam-
pled positive entities Epos. Using this sampling approach,
the performance of popularity based recommenders is dras-
tically reduced. We define the number of ratings in the
training set for an entity e as R(e). We then compute the
weight w(i) of a negative sample i given the positive samples
as

w(i) =

∣∣∣∣R(i)− 1

|Epos|
∑

e∈Epos

R(e)

∣∣∣∣+ 1

−α (30)

where α ≥ 0 is a parameter that describes how frequently en-
tities with dissimilar rating count should be sampled. Higher
values of α gives lower weights to negative samples with
greater difference in ratings to the positive samples. If the
popularity bias is completely removed, popularity based rec-
ommenders will have worse or similar performance to a ran-
dom recommender [51]. As such, we increase α until our
popularity-based recommender reaches random performance.
For the MR-170K dataset, we find that α = 10 fits this cri-
terion, but the value will depend on the distribution of the
dataset.

Effect of sampling. To understand the effect of sampling
we plot the cumulative distribution of ratings in Figure 9.
The random sampling strategy is a straight line, indicating
a uniform sampling of entities where each entity is sampled
an equal number of times. As α increases using the equal-
popularity method, the ratings distribution of the negative
samples becomes increasingly popularity biased and thereby
closer to the training sample curve. However, as there are
few very popular entities due to the long-tail distribution, it
is impossible to sample 100 very popular negative samples,
hence the equal-popularity sampling strategy never becomes
as steep as the training samples.

6.5 Experiments
As we have established in the problem definition and re-

search questions, the primary objective of this work is to
evaluate the performance of cold-start interviews where the
user is queried about DEs rather than REs. Besides the
main experiment, we show the results of some additional
experiments in Appendix C, such as the effect of limiting
interviews to specific entity types.

We conduct a single experiment including all considered
models where we restrict the interview questions to that of
DEs and REs separately. Both settings use the same train-
ing and validation data, and differ only in what the inter-
viewer is allowed to ask about. We measure the performance
when ranking positive and negative samples sampled with
both random and equal-popularity sampling, as well as the
models’ ability to correctly rank a positive, neutral, and neg-
ative sample as per the separation task. We measure model
performances in the ranking and separation tasks when con-
ducting interviews of lengths m ∈ {1, 2, . . . , 10}.

15

0 500 1000 1500 2000 2500
Entities by popularity rank

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
ra

tio
 o

f r
at

in
gs

Train samples
Negative samples, equal, =1.0
Negative samples, equal, =2.0
Negative samples, equal, =5.0
Negative samples, equal, =10.0
Negative samples, random

Figure 9: Cumulative ratio of total number of ratings from
different negative sampling approaches compared to the
training sample distribution. Entities are ordered by popu-
larity rank in descending order.

6.6 Model selection
Since this work is the first to consider the user of DEs in

cold-start interviews, we diversify both interviewing strate-
gies and recommenders. Specifically, we consider the follow-
ing interviewers for m-question interviews.

• FixedPop (FP), selects the m most popular entities
as questions.

• FixedGreedy (FG), selects the m most informative
entities by Equation 1.

• AdaptiveGreedy (AG), constructs an m-height de-
cision tree by Algorithm 1.

• DQN, a Deep Q-Network (DQN) that generates dis-
crete actions from the action space (see Algorithm 2).

• DDPG, a DQN trained with Deep Deterministic Pol-
icy Gradient (DDPG) that generates continuously val-
ued action vectors (see subsubsection 4.2.4).

Furthermore, we consider the following recommenders to
be arbitrarily combined with the previously mentioned in-
terviewers.

• MF, a Matrix Factorisation (MF) recommender which
represents a user by the average embedding of their
liked entity embeddings (see subsubsection 4.3.1).

• KNN, a user k-NN model which finds similar users
based on the user vector representation.

• PPR-KG, a PPR model navigating the MindReader
KG.

• PPR-COLLAB, a PPR model navigating a collabo-
rative graph where each user has edges to their liked
entities.

• PPR-JOINT, a PPR model navigating a combina-
tion of the MindReader KG and collaborative graph.

• PPR-LINEAR, a linear combination of PPR on dif-
ferent graph variants (see subsubsection 4.3.2).

Finally, we evaluate and compare against the following
SOTA interviewing recommenders.

• fMF, a decision tree, MF-based interviewing recom-
mender (see subsubsection 4.2.1).

• LRMF, a decision tree, RBMF-based interviewing rec-
ommender (see subsubsection 4.2.2).

• MeLUN, a deep meta-learning interviewing recom-
mender (see subsubsection 4.1.3).

For all interviewers except MeLUN and FP, questions are
selected from a candidate set of the top-100 most popular
entities, following the approach of existing works [5, 27].
Furthermore, all models are validated on a left-out RE using
NDCG@10.

6.7 Results
We now present the results of our experiments. Due to the

large number of models and highly multi-faceted nature of
our results, we focus on a subset of these which should aptly
answer the research questions posed in section 1. Nonethe-
less, all results concerning this work are publicly available
online6.

6.7.1 Impact of interviewing strategies
In figures 10-13 we plot the differences in model perfor-

mance for all interviewers and all recommenders on 5-length
interviews. We observe that the same interviewers vary
greatly in performance across different recommenders, which
is indeed why we have diversified the selection of recom-
menders. As for differences between interviewers, the most
notable differences are those between the FG and AG in-
terviewers. For all PPR-based recommenders, the FG inter-
viewer leads to the highest NDCG, while AG leads to higher
diversity in the recommendations.

Furthermore, with the exception of k-NN and MF, FG
outperforms FP in terms of NDCG. This is largely to be
expected, as popularity is a less reliant metric for informa-
tiveness while recommender performance is more robust in
this regard.

We observe that in the experiments using random sam-
pling, the ranking quality produced by different interview-
ers on the same recommender is similar across interviewers,
as opposed to experiments conducted with equal-popularity
sampling. This is seemingly caused by the ranking quality
being heavily related to popularity, hence why PPR-KG per-
forms much worse than other models. However, on random
sampling the interviewer does seem to have an effect on the
diversity of recommendations.

Finally, we observe that DQN and DDPG performs badly
regardless of the underlying recommender. Note that we
have only included the RL interviewers with the k-NN, PPR-
JOINT and MF recommenders due to time constraints.

6.7.2 Performance of RE and DE interviews
We present the performance results of all AG-based mod-

els (similar tendencies are observed for FP and FG) where
the interview questions have been restricted to REs and
DEs, respectively, in figures 14 through 17. In all figures,
stars indicate statistical significance between RE and DE
performance (α = 0.05). As before, we limit the scope

6https://mindreader.tech/dataset/results

16

https://mindreader.tech/dataset/results

KNN MF PPR-COLLAB PPR-JOINT PPR-KG PPR-LINEAR
0.00

0.02

0.04

0.06

0.08

0.10

0.12

ND
CG

@
10

Ranking quality for 5-length interviews
AdaptiveGreedy
FixedGreedy
FixedPop

DQN
DDPG

Figure 10: Ranking quality (NDCG@10) of interviewers with DEs- and REs-based interviews on
equal-popularity sampling.

KNN MF PPR-COLLAB PPR-JOINT PPR-KG PPR-LINEAR
0.00

0.05

0.10

0.15

0.20

0.25

0.30

DI
V@

10

Ranking quality for 5-length interviews
AdaptiveGreedy
FixedGreedy
FixedPop

DQN
DDPG

Figure 11: Recommendation diversity of interviewers with DEs- and REs-based interviews on equal-
popularity sampling.

KNN MF PPR-COLLAB PPR-JOINT PPR-KG PPR-LINEAR
0.0

0.1

0.2

0.3

0.4

0.5

ND
CG

@
10

Ranking quality for 5-length interviews
AdaptiveGreedy
FixedGreedy
FixedPop

DQN
DDPG

Figure 12: Ranking quality (NDCG@10) of interviewers with DEs- and REs-based interviews on
random sampling.

KNN MF PPR-COLLAB PPR-JOINT PPR-KG PPR-LINEAR
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

DI
V@

10

Ranking quality for 5-length interviews
AdaptiveGreedy
FixedGreedy
FixedPop

DQN
DDPG

Figure 13: Recommendation diversity of interviewers with DEs- and REs-based interviews on random
sampling.

Performance of the discussed interviewing strategies. Solid and striped bars denote performance in DE and RE interviews,
respectively.

to 5-length interviews while interviews of different lengths
are covered in the following section. This specific length is
chosen as existing works focus on interview lengths in this
range [5, 21, 22, 27].

In Figure 14 and Figure 15 we compare DE and RE inter-
views on equal-popularity sampling as to assert the infor-
mational gain afforded by allowing interviewers to ask to-
wards DEs rather than REs. We observe that an AG inter-
viewer using PPR-COLLAB, PPR-KG, PPR-JOINT, and
k-NN recommenders is able to increase the ranking qual-
ity with statistical significance when asking towards DEs.
Generally, the KG-based recommenders seem to make good
use of the information provided by DE ratings, which fol-
lows observations made in our previous work where we saw
similar results in the warm-start setting when replacing RE
ratings with DE ratings [4]. The exception here is the k-NN
recommender which does not model the KG, yet still sees
a significant improvement in ranking quality, however this
is also in line with our prior observations in the warm-start
setting.

Under equal-popularity sampling, nearly all models are
able to obtain higher recommendation diversity when pro-
vided with DE interview answers, with MeLUN and fMF
being the only exceptions. Differing from our prior observa-
tions, MF is the only recommender that performs best on
RE-based interviews, though we cannot show any statistical
significance for this difference. In the same vein, the other
MF-based model LRMF, performs better with DE ratings
than RE ratings, though again this difference is not statis-
tically significant.

Conversely, under random sampling, PPR-COLLAB, PPR-
JOINT, PPR-KG, and fMF increase in diversity with DEs,
while k-NN and PPR-LINEAR increase with REs, and MF,
LRMF, and MeLUN achieve similar results with both. Ad-
ditionally, k-NN scores very highly in diversity for RE inter-
views, which is a product of having few co-raters which we
will cover further in the discussion.

Finally, we observe that most of our proposed recom-
menders outperform the two baselines MeLUN and fMF in
terms of NDCG, and that MF and all collaborative PPR-
based recommenders are able to outperform LRMF when
provided with DE ratings.

In summary, an AG interviewer using the PPR-LINEAR
recommender outperforms the best performing SOTA model,
LRMF, in terms of NDCG and DIV when interviewing with
RE and DE questions under equal-popularity sampling. Un-
der random sampling, the two models are tied in NDCG,
though PPR-LINEAR achieves significantly higher diversity.

6.7.3 Improvement over longer interviews
In Figure 18 and Figure 19 we show the performance of

the baselines and the AG interviewer on all recommender
models over increasing interview lengths m ∈ {1, 2, . . . 10}.
Furthermore, we show the results on longer interview lengths
in the appendix (subsection C.2).

We observe that nearly all models are able to achieve con-
sistently higher NDCG when interviewing on DEs rather
than REs with MF, fMF, and MeLUN as the only excep-
tions under equal-popularity sampling. We further observe
that the greatest differences in performance are achieved by
the PPR-JOINT and PPR-KG models, which again is in
line with our prior observations in the warm-start setting
that knowledge-aware recommenders make good use of the

information afforded by DEs [4].
Although PPR-LINEAR performs the best in terms of

NDCG, PPR-JOINT achieves similar ranking quality with
much higher diversity. Generally, the graph-based recom-
menders reach the highest diversity and improve the most
with increasing interview lengths. While all graph-based
recommenders achieve better performance with DEs, PPR-
COLLAB reaches its best NDCG at 10-length interviews on
RE questions.

MeLUN remains static in NDCG and DIV with increasing
interview lengths. We expand further in why this is in the
discussion, but also note that the authors of MeLU show
similar results with little or no improvement over longer in-
terviews.

We observe that LRMF is among the best performing
models in terms of NDCG under random sampling, espe-
cially for short interview lengths, but is among the least
diverse models. Contrarily, PPR-LINEAR obtains similar
ranking quality to LRMF, but is able to increase diver-
sity significantly with longer interviews. Contrary to equal-
popularity sampling, the embedding-based models including
MF, LRMF, and MeLUN generally perform well in this set-
ting.

Finally, while mostly consistent under equal-popularity
sampling, we see a consistent decrease in diversity for the k-
NN model under random sampling when interviewing with
DEs.

6.7.4 Serendipity of recommendations
As argued in subsection 6.3, an important quality of rec-

ommender systems is the ability to generate “non-obvious”
recommendations, as measured by how serendipitous (sur-
prising and useful) the recommendations are. To measure
this ability, we compute the SER@10 score for all recom-
menders in the top-K recommendation task. We present
the results in Figure 20 for equal-popularity sampling. The
results for random sampling are not shown as the change in
performance in this setting simply corresponds to HR de-
creased by a constant factor.

We observe that the knowledge-aware models, specifically
PPR-JOINT, PPR-KG, and PPR-LINEAR, perform well
in generating serendipitous recommendations, with PPR-
LINEAR being the best performing model on all interview
lengths. We further observe that the embedding-based mod-
els MF and fMF also perform well in this task, though
LRMF ranks below both at shorter interview lengths and
increases with longer interviews, while MF and fMF remain
relatively static. Finally, PPR-COLLAB performs the worst
in this setting, but consistently improves as the interviews
increase in length.

Generally, we observe that the graph- and neighbourhood
based models are able to generate more serendipitous rec-
ommendations with DEs compared to REs, with the largest
differences in performance being observed for the knowledge-
aware models. Finally, all models perform better than a
non-personalised, popularity-based recommender (denoted
TopPop), which is in line with our expectations.

6.7.5 Separation task
We present the performance results of all AG-based mod-

els and baselines on the separation task in Figure 21. Gener-
ally, we observe that all models perform similarly or better
in the separation task when conducting DE interviews as

18

FMF
KNN* MF

PPR-COLLAB*

PPR-JOINT*
PPR-KG*

PPR-LINEAR
LRMF

MeLUN
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

ND
CG

@
10

5-length interview
DE interview
RE interview

Figure 14: NDCG between RE and DE interviews on
equal-popularity sampling.

FMF KNN MF*

PPR-COLLAB*

PPR-JOINT*
PPR-KG*

PPR-LINEAR*
LRMF

MeLUN
0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

DI
V@

10

5-length interview
DE interview
RE interview

Figure 15: DIV between RE and DE interviews on equal-
popularity sampling.

FMF
KNN* MF

PPR-COLLAB
PPR-JOINT

PPR-KG*

PPR-LINEAR
LRMF

MeLUN

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ND
CG

@
10

5-length interview
DE interview
RE interview

Figure 16: NDCG between RE and DE interviews on
random sampling.

FMF
KNN* MF

PPR-COLLAB
PPR-JOINT*

PPR-KG*

PPR-LINEAR
LRMF

MeLUN
0.10

0.15

0.20

0.25

0.30

DI
V@

10

5-length interview
DE interview
RE interview

Figure 17: DIV between RE and DE interviews on ran-
dom sampling.

compared to RE interviews.
We observe that the embedding models MF, MeLUN,

LRMF and fMF outperform the graph-based models in the
separation task, with MF being the top performer across
all models. We further observe that, while initially poorly
performing, k-NN sees a significant increase in performance
as the interview length increases. Finally, we observe that
the graph-based models perform comparably or worse than
a non-personalised, popularity-based recommender on the
separation task.

7. DISCUSSION
The results gathered provide substantial grounds for dis-

cussing the research questions posed and evaluating the qual-
ity of the models considered. In discussing our results, we
firstly address each research question posed in the introduc-
tion, while we discuss more general observations and consid-
erations in the remainder.

7.1 Impact of interviewing strategies
We now address our first research question:

“How can different question selection strategies affect the
quality of cold-start recommendations following an

interview?”

As described in subsubsection 6.7.1, we observe that for
the PPR-based recommenders, the FG interviewers gener-
ally achieve a higher NDCG while the AG interviewers lead
to more diverse recommendations. This observation is in
line with that of [28], who find that diversity typically de-
creases as a function of accuracy. For the AG-based models,
we posit that this has to do with the mechanisms of adapt-
ing to user groups by means of group splitting. While we
will show later how such group splitting can quickly lead
to overfitting for fMF, we argue that selecting a question
that optimally increases the performance of an underlying
recommender for some small user group is unlikely to be
representative of most other users. In short, an interviewer
is likely to overfit to the smaller user groups, which leads to
lower NDCG. However, when measuring the difference be-
tween mean performances achieved by FG and AG, respec-
tively, we find no statistically significant difference in NDCG
for any of the interviewers over all recommenders in Fig-
ure 10. Furthermore, for the PPR-based recommenders, we
find a statistically significant increase in diversity when us-
ing AG versus FG. This is because AG adapts the questions
posed to a user depending on their answers, leading to more
personalised and diverse post-interview recommendations.
This is in spite of all model configurations being chosen as
those with the best NDCG@10 score on the validation set.

19

1 2 3 4 5 6 7 8 9 10
Interview length

0.04

0.05

0.06

0.07

0.08

0.09

0.10

ND
CG

@
10

KNN
MF
PPR-COLLAB
PPR-JOINT
PPR-KG

PPR-LINEAR
LRMF
MeLUN
FMF

1 2 3 4 5 6 7 8 9 10
Interview length

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

DI
V@

10

KNN
MF
PPR-COLLAB
PPR-JOINT
PPR-KG

PPR-LINEAR
LRMF
MeLUN
FMF

Figure 18: Recommendation quality and diversity from DE- and RE-based interviews (indicated by solid and dashed lines,
respectively) of increasing number of questions under equal-popularity sampling. For the non-SOTA models, interviews are
conducted using AG.

1 2 3 4 5 6 7 8 9 10
Interview length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ND
CG

@
10

KNN
MF
PPR-COLLAB
PPR-JOINT
PPR-KG

PPR-LINEAR
LRMF
MeLUN
FMF

1 2 3 4 5 6 7 8 9 10
Interview length

0.15

0.20

0.25

0.30

0.35

DI
V@

10

KNN
MF
PPR-COLLAB
PPR-JOINT
PPR-KG

PPR-LINEAR
LRMF
MeLUN
FMF

Figure 19: Recommendation quality and diversity from DE- and RE-based interviews (indicated by solid and dashed lines,
respectively) of increasing number of questions under random sampling. For the non-SOTA models, interviews are conducted
using AG.

20

1 2 3 4 5 6 7 8 9 10
Interview length

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
SE

R@
10

KNN
MF
PPR-COLLAB
PPR-JOINT
PPR-KG

PPR-LINEAR
LRMF
MeLUN
FMF
TopPop

Figure 20: The SER@10 score for all models over DE- and
RE-based interviews (indicated by solid and dashed lines,
respectively) of varying lengths using equal-popularity sam-
pling. The non-SOTA models conduct interviews with an
AG interviewer.

Following this, AG is the best performing interviewer when
used with PPR-based recommenders as it is able to maintain
NDCG performance similar to that of FG while significantly
increasing the diversity of recommendations made.

Still focusing on the PPR-based recommenders, the ex-
ception to this general observation is our PPR-LINEAR rec-
ommender, which achieves the highest NDCG with an AG
interviewer. Since PPR-LINEAR generates ranking scores
from a linear combination of PPR rankings computed on dif-
ferent graphs, PPR-LINEAR is able to adjust the influence
of graphs both containing and void of user ratings, allowing
the recommender to overcome the problem of generalising
over small user groups in the lower nodes of the interview
decision tree.

For k-NN specifically, AG leads to higher NDCG while
FG leads to higher diversity. While the difference is sub-
tle and the standard deviation in diversity is large under
equal-popularity sampling, the difference can be intuitively
explained by how k-NN can achieve diversity. In k-NN, if
we cannot determine any similar co-raters for a user-entity
pair, the ranking score defaults to 0.0. The ordering between
entities with the same score is arbitrary, and thus the k-NN
recommender is able to diversify its recommendations if this
occurs often.

The RL-based DQN interviewer performs badly with all
recommenders. While the DQN action selection process
could serve as an explanation, we see no improvement when
using DDPG. The purpose of introducing DDPG was to al-
leviate the issues in selecting actions discretely from a large
action space. However, we observe that the DDPG perfor-
mance is on par with DQN except when using the PPR-
JOINT recommender, in which case DDPG performs worse
than DQN. While the RL interviewers should be able to
determine the optimal interviews in theory, the RL train-

1 2 3 4 5 6 7 8 9 10
Interview length

0.05

0.00

0.05

0.10

0.15

0.20

0.25

KNN
MF
PPR-COLLAB
PPR-JOINT
PPR-KG

PPR-LINEAR
LRMF
MeLUN
FMF
TopPop

Figure 21: The models’ ability to separate entities of varying
sentiment from DE- and RE-based interviews (indicated by
solid and dashed lines, respectively) of increasing lengths.
For the non-SOTA models, interviews are conducted with
the AG interviewer.

ing process is affected greatly by chance, namely the chance
of exploring near-optimal interview traces in the initial ex-
ploratory phase where ε ∼ 1. We expand further on the
instability of RL models and how we have attempted to over-
come these issues in subsection 7.8.

In summary, our findings show that the AG interviewer
leads to significantly higher diversity, while FG leads to
higher NDCG without statistical significance. Besides these
interviewers, FP is shown to be a strong baseline for ques-
tion selection due to the well-known importance of asking
towards popular entities. The effect of AG interviewers
leading to more diverse interviews matches with our intu-
ition, and is especially evident for DE-based interviews. In-
tuitively, the AG interviewer should offer more personalisa-
tion through adaptive question selection and asking broader
questions leads to a larger set of candidate REs and thus
higher diversity.

7.2 Performance in RE and DE interviews
We now address our second research question:

“How can descriptive entity ratings affect the quality of
recommendations in interview-based cold-start

recommender systems?”

As seen in Figure 14 and Figure 15, there is a clear im-
provement in performance when recommenders are provided
with DE ratings from the interview rather than RE ratings
under equal-popularity sampling. This is the case especially
for the KG-based methods PPR-JOINT and PPR-KG. We
saw similar results in our prior work, and we reason that
the ability to make such effective use of DEs has to do with
how DEs are situated in the KG. A rudimentary statisti-
cal analysis of the MindReader KG (see Table 4) shows that
the DEs chosen as the most informative entities in the inter-

21

view have a much higher degree than their RE-based inter-
view counterparts. Being more central in the KG allows the
DE-based interviews to provide more diversified recommen-
dations while still being related to the user’s preferences,
including REs of high interest to the user that might not be
ranked similarly were the personalisation restricted to RE
nodes.

Question # RE degree DE degree
1 69 2,227
2 43 866
3 43 391
4 40 227
5 39 136
6 37 68
7 30 21
8 24 21
9 21 20
10 18 10

Table 4: Degrees of the interview questions (restricted to
REs and DEs, respectively) in the MindReader KG as se-
lected by the FG interviewer with a PPR-JOINT recom-
mender.

The performance increases afforded by DEs are not as
consistently present under the experiments conducted with
random sampling (Figure 16 and Figure 17). We observe
the same phenomenon when comparing across interviewers
(Figures 10-13). We attribute the difference in performance
under different sampling strategies to the popularity bias
that equal-popularity sampling is designed specifically to al-
leviate. When the sampling is biased towards the positive
samples as is the case with random sampling, most models
can perform well by emulating a popularity-based recom-
mender. Indeed, a non-personalised, popularity-based rec-
ommender performs best in this setting in terms of HR@10
despite disregarding the answers provided throughout the
interview. However, in order to generate recommendations
from the long-tail, which is a typically desired trait in recom-
mender systems, the recommendations must be diversified
from the most popular entities.

PPR-JOINT is unable to weigh the importance of the KG
and collaborative parts of the graph individually. We ob-
serve that PPR-LINEAR, which is designed to address this
limitation, performs the best under the AG interviewer in
terms of NDCG, and almost achieves the same NDCG as MF
when interviews are restricted to REs. While we observe no
statistically significant increase in NDCG for PPR-LINEAR
when comparing DE- and RE-based interviews, we observe
a statistically significant increase in diversity.

While KGs appear as effective sources of auxiliary infor-
mation in both DE- and RE-based interviews, we see that
the RBMF-based LRMF model outperforms all other mod-
els in terms of NDCG under random sampling in DE-based
interviews of lengths 1 − 5. Interestingly, LRMF also out-
performs the MF model in terms of diversity under the same
setting, indicating that RBMF allows for embedding models
to incur a better trade-off between accuracy and diversity in
generating recommendations.

We observe that all interviewers perform nearly identically
with MF as the recommender under random sampling. Dur-
ing experimentation, we observed that MF performed best

with a single latent factor, indicating that not modelling
user-specific features is an optimal strategy for this model.

Although we see no significant improvement in NDCG for
any of the embedding models under DE-based interviews,
this is not to say that such models are unfit for incorporat-
ing DE ratings. We also observe that LRMF increases in
NDCG with DEs despite being an embedding-based model,
though we attribute this to LRMF being based on RBMF
rather than simple MF. In RBMF, users are represented as
explicit rating vectors over a set of selected representative
entities. In our prior work, we demonstrated how DEs have
far more co-raters than REs, and thus the DEs chosen as the
representative entities are more likely to have numerous ob-
served ratings regardless of the user group. This makes the
vectors less sparse and provides better support for accurate
predictions.

7.3 Improvement over longer interviews
We now address our third research question:

“How can descriptive entity ratings affect the required
interview length in generating recommendations of

sufficient quality?”

As seen in Figure 18, models are able to improve their per-
formance with increasing interview lengths. We also note
that under random sampling (Figure 19), we do not ob-
serve a similar tendency to improve with longer interview
lengths, as the model performances remain relatively sta-
tionary across all interview lengths. In order to assert how
DEs can affect the interview lengths, we show in Table 5 the
number of questions required by a RE-based interviewer to
reach similar or better performance than its corresponding
DE-based interviewer.

Our models SOTA models
Mean Median Mean Median

Random NDCG 3.85 4.0 2.6 2.5
Random DIV 1.26 2.0 -1.16 -1.0
Equal NDCG 3.3 4.0 -1.9 -1.5
Equal DIV 3.68 4.0 -1.23 0.0

Table 5: Number of additional questions before an RE inter-
viewer performs better than or equal to its DE counterpart.

For all interview length pairs i, j ∈ {1, 2, . . . , 10}, we com-
pare the metric of the DE interview at question i to the RE
interview at question j, where i ≤ j. Given this, we can de-
termine the minimal number of additional questions to ask
before the RE interviewer performs as well as or better than
the DE interviewer. For instance, for PPR-COLLAB in Fig-
ure 18, we observe that the DE interviewer at question 1 is
outperformed by the RE interviewer at question 4, thus the
RE interviewer must ask 3 additional questions to achieve
similar performance. In Table 5, a positive value indicates
the minimal number of additional RE questions needed in
order to reach DE performance. Conversely, negative values
indicate the minimal number of additional DE questions re-
quired to reach RE performance. If the RE interview does
not perform better at question 10, we assume it will perform
better at question 11. This is, of course, a conservative esti-
mate, but allows us to include models that never converge in
performance between DE and RE interviews. We use a sim-

22

ilar approach in the converse case where the DE interview
does not perform better than RE at question 10.

As seen in Table 5, our models are able to perform better
with DEs than REs, and that the interview can generally be
shortened by ∼ 4 questions. For the SOTA models, we ob-
serve that the interview can be shortened by ∼ 2.5 questions
under random sampling when aiming for NDCG, though in
all other cases, RE interviews can be conducted at similar
or shorter lengths than DE interviews.

One of the primary objectives of cold-start interviews is
to minimise the user effort, as described in section 2. Being
able to reduce the interview length with 4 questions while
maintaining performance is therefore very desirable. Hence,
finding that DE interviews are better by multiple questions
in our models clearly demonstrates DEs allow effectiveness
for eliciting user preferences in a cold-start interview, which
is one of the primary hypotheses in our current and related
work.

The effectiveness of DEs in interviews further supported
by our observations in Table 4 where we see that, in a DE-
based interview, the interviewer will start asking towards
very broad entities that are highly connected in the KG, but
also start asking towards much more specific and less con-
nected entities sooner than the RE-based interviewer. Intu-
itively, from an interviewing standpoint, it does not make
sense to ask specific questions without a clear understand-
ing of a user’s broader preferences. Since the interviewer can
more quickly elicit a user’s broader preferences by means of
DEs, it can also shift to eliciting specific preferences sooner
that a RE-based interviewer is realistically capable of since
all REs represent largely specific preferences, and a larger
number of questions is therefore required to elicit broader
preferences. We posit that this is the reason why SOTA
models are not capable of shortening the interviews as much
as our knowledge-aware models, as they do not explicitly
model the KG and thus have no access to auxiliary informa-
tion regarding the connectivity of the entities.

Although DEs intuitively allow for broader preference elic-
itation, we observe that PPR-COLLAB reaches its highest
NDCG@10 at 10 interview questions asking towards REs.
We argue that this difference is due to the amount of infor-
mation the model is able to elicit. When only a few questions
are allowed, it makes sense to ask broad questions. However,
when an interviewer is allowed to ask 10 questions, asking to-
wards more specific preferences may be beneficial because a
user’s preferences on many REs will reflect both their broad
and specific preferences.

For the k-NN model, we observe an abnormal decrease in
diversity under random sampling in Figure 19. Under ran-
dom sampling, negative samples are generally drawn from
further down the long-tail as shown in subsection 6.4. With
this, more negative samples are expected to have very few
ratings and thus the k-NN model will not be able to find co-
raters for some of these unpopular entities. Consequently,
those negative samples will score lower than the entities with
more co-raters, of which there are naturally fewer, which
leads to less diverse ranking lists as the more popular enti-
ties will comprise the majority of the top-ranked entities.

Interestingly, the best performing model under random
sampling in terms of NDCG is LRMF, though the same
model also achieves among the worst diversity scores under
the same setting. We attribute this phenomenon to LRMF
effectively approximating a slightly personalised popularity-

based recommender. While emulating a popularity-based
recommender may seem to be an effective strategy in this
setting, we also observe that PPR-LINEAR is indeed able
to generate personalised recommendations, achieving similar
NDCG to LRMF while increasing in diversity over longer
interviews.

7.4 Impact of recommenders
We now address our final research question:

“How can the explicit modelling of a knowledge graph over
the entities affect the quality of recommendations made?”

A clear disadvantage for most embedding-based recom-
menders is their inability to represent new users, which is
a problem for both MeLU and MF. For MeLU, user meta-
data is utilised to overcome this problem, which is unavail-
able for the MindReader dataset. We therefore propose al-
ternative representations of new users for both MeLU and
MF, though the effectiveness of our proposed representations
does not appear optimally expressive. Specifically, neither
MF or MeLUN are able to outperform the other models in
terms of diversity as shown in figures 14-17. In order to pro-
duce diverse and high-quality recommendations, the model
must be able to represent a cold-start user and their ob-
served interactions in a manner that allows the model to
determine how to rank entities according to that user’s pref-
erences. If users are all represented equally, the model has
no means of diversifying recommendations according to user
preferences besides random exploration of entities. While
the rankings generated by MF and MeLUN are not com-
pletely homogeneous, low diversity is an indication that the
user embeddings cannot capture diverse preferences.

We also observe that the KG-based recommenders are able
to reach higher values in both of these metrics as compared
to the otherwise purely CF-based methods. For example,
PPR-JOINT is able to score significantly higher than PPR-
COLLAB in both NDCG and DIV. PPR-JOINT navigates
a joint KG and collaborative graph in making recommen-
dations. Thus, given a user’s interview answers, the recom-
mender is able to determine the importance of entities by
virtue of their situation in the KG (i.e., not related to popu-
larity) allowing the recommendations to diversify, as well as
capturing the collaborative filtering effect for the same en-
tities, allowing the recommendations to follow the common
rating tendencies among users.

In subsection 3.2, we allude to the notion that incremen-
tal recommenders, where user-entity observations can be
added incrementally, are able to more effectively represent
cold-start users, and that the graph-based models express
this quality. Indeed, the PPR-models clearly outperform
both MF and MeLUN in DIV@10 for both sampling strate-
gies. Furthermore, we observe that PPR-JOINT and PPR-
LINEAR are the best performing models of the ones tested
with relatively high DIV, NDCG, and SER.

While PPR-LINEAR can outperform PPR-JOINT in some
cases, there is reason to discuss whether the increased com-
plexity is justified by the observed increase in performance.
We note, however, that PPR-JOINT is, in its nature, a static
model of recommendations, and that shifting the paradigm
from what graphs should be navigated to how graphs can
be combined and merged with auxiliary inputs is a worth-
while paradigm to explore. Under any circumstance, our
observations show that there is great room for improvement

23

of PPR-LINEAR, and we encourage future research to take
advantage of this.

In Figure 20, we also observe that the knowledge-aware
models PPR-KG, PPR-JOINT, and PPR-LINEAR are espe-
cially effective in generating serendipitous recommendations,
and display the largest difference in performance when com-
paring performance under DE- and RE-based interviews.
We posit that PPR-JOINT, PPR-KG, and PPR-LINEAR
are able to generate such recommendations better than the
other models due to their ability to reason about the impor-
tance of entities as situated in the KG rather than simply
popularity among users, as popular entities are not likely
to lead to surprising recommendations. This effect is espe-
cially evident for PPR-KG, which consistently outperforms
the MF model, which contrasts the results seen in Figure 18
and Figure 19 where MF clearly outperforms PPR-KG in
terms of NDCG in interviews of lengths 1 − 5. This is in
addition to the PPR-based models’ ability to accurately rep-
resent cold-start users by virtue of the models being incre-
mental recommenders. Nevertheless, collaborative filtering
remains an important property of the models in this setting,
as we see that all models significantly outperform the non-
personalised, popularity-based model in terms of serendipity
in Figure 20. Furthermore, while PPR-KG performs well, it
is outperformed by PPR-JOINT and PPR-LINEAR, both
of which incorporate users’ ratings in generating rankings.

We do, however, note that all PPR models presented do
not fully utilise the information available in our KG as they
do not take edge labels into account. As metadata can im-
prove recommendation quality as shown in prior works [8,
21, 52, 53, 54], we motivate further research into using edge
labels to further increase the model’s ability to generate rec-
ommendations of both high ranking quality, diversity, and
serendipity.

Furthermore, we note that diversity and serendipity are
not universal indicators of high-quality, useful recommen-
dations. For some systems, accurate recommendations from
the short-head may be the main priority rather than diversi-
fying along the long-tail or conducting cold-start user inter-
views as these incur the risk of losing the user’s interest. In
such cases, there is little need for incremental representation
of users, and as seen in Figure 19, MF and LRMF can es-
pecially perform well in this setting with only one observed
rating from the cold-start users.

The results presented here motivate the incorporation of
KGs in generating recommendations of high quality, diver-
sity, and serendipity in the user cold-start setting. While
more research remains to be done in most effectively select-
ing questions that optimise all desired metrics specifically,
we show that graph-based models capable of navigating both
collaborative and knowledge-based graphs, as well as repre-
senting cold-start users incrementally, can aid in generating
high quality, diverse, and serendipitous recommendations.
However, we also note that these metrics of recommenda-
tion quality are not universal, and that an embedding-based
model such as MF shows great promise in generating rec-
ommendations from the short-head and without the need
for observations from cold-start users that may be difficult
to obtain.

7.5 Impact of negative sampling strategies
In conducting our experiments, we have introduced two

different strategies for negative sampling in order to better

interpret model performances in tasks where popularity bias
is an inherent problem. We observe an increase in diversity
as the interview length increases for most models on both
equal-popularity and random sampling, indicating improved
personalisation, as seen in Figure 18. Specifically, for the
best performing models in the experiments under random
sampling, ranking quality is maintained while diversity in-
creases. We observe that there is little difference in the per-
formance of the best performing models, since these models
learn to recommend the most popular REs. However, we
expected these results given the popularity bias observed
even in the warm-start setting of MindReader [4], which
is reasonably expected to be exaggerated when we limit the
number of ratings per user to the length of the conducted in-
terviews. Yet, as the diversification of the best models is far
higher than that of the non-personalised popularity-based
recommender, we argue that the models are indeed capa-
ble of personalisation despite the apparent popularity bias.
Similarly, we observe an increase in diversity for longer inter-
views using equal-popularity sampling, though the NDCG
also increases steadily. We presume equal-popularity sam-
pling to present a harder recommendation problem, as a set
of equally-popular entities cannot be ranked trivially by pop-
ularity in generating recommendations. This presumption is
substantiated by the greatly reduced NDCG performance of
all models.

7.6 Separation performance
While the separation task is not the primary concern of

the evaluation in this work, we conducted an additional
study on the performance on a variety of models on that
task. We observe that the embedding-based models out-
perform the graph-based models, which matches our intu-
ition as embedding-based models are known to perform bet-
ter on RMSE minimisation [10], which is more similar to
the separation task than the top-K recommendation task.
Specifically, we observe that fMF performs well on this task,
whereas it was outperformed by much simpler methods on
the recommendation task. This is also in compliance with
our expectations, since fMF is designed to minimise a RMSE
objective [5]. Unlike the neighbourhood- and graph-based
models, the embedding-based models can learn how liked
and well-known entities are.

We further observe that k-NN sees a significant increase
in performance as the interview increases in length. This
is due to the k-NN model not being able to determine an
appropriately representative set of co-raters when the em-
bedding vector of the interviewee is very sparse. However,
as more rating entries are supplied to the embedding vec-
tor, the user embedding is moved towards users of greater
similarity to their preferences, and the model thus obtains
greater support for correctly ranking the entities.

We also note a potential correlation between modelling
popularity and performance in the separation task. While
performance on the separation task is not directly correlated
to entity popularity (a non-personalised, popularity-based
recommender is outperformed by embedding models on this
task), we observe that the graph-based models are ordered
according to how much influence the collaborative graph has
on the final ranking, with PPR-COLLAB being ranked over
PPR-JOINT, which is ranked over PPR-KG which does not
take user ratings into account in ranking. As observed in our
prior work, the MF objective is designed to update embed-

24

dings in favour of the most popular entities as the ratings
for these comprise the majority of the MF loss [4]. A simple
explanation for this is that less popular entities generally re-
ceive more “Don’t know” ratings than popular entities, and
are thus ranked below the popular entities more often than
not in the ground truth ranking. As such, ranking entities
exclusively by their popularity can perform appropriately
well in this task. Nevertheless, the embedding models dis-
play the ability to appropriately personalise the user- and
entity embeddings in order to outperform this trivial rank-
ing.

In optimising the training objective of PPR-LINEAR, the
predicted ranking scores of liked and disliked entities are sep-
arated. However, during preliminary testing we found that
PPR-LINEAR performs better when unknown and disliked
entities are grouped together and separated equally from
liked entities. Thus, the model does not learn how to sep-
arate unknown and disliked entities, leading to decreased
performance on the separation task.

7.7 Comparison to state-of-the-art methods
The SOTA interviewing recommenders do not perform

well when compared to combinations of simpler interviewers
and recommenders. For fMF and LRMF it may be due to
their training objective, though the lack of material for re-
producibility may have an equal impact on performance. We
also observe that MeLUN does not utilise the information
gained from an interview. As the user embedding is merely
the entities a user has rated, we posit that it simply learns
to recommend purely based on the entity embeddings as the
user embedding is too noisy. As a result the model is not
highly personalised, but recommends based on the average
user. A better representation of a user might help, but as of
now, we deem that MeLU requires user metadata in order
to perform well.

7.8 Instability of RL models
As can be observed from the results, both the DQN and

DDPG interviewers fail to perform consistently across all
recommenders. Although we have observed these interview-
ers occasionally outperforming their naive and greedy coun-
terparts in prior experiments, the ranking quality achieved
varies wildly between interview lengths, with typically no
statistical significance nor continuous increase in informa-
tion as the number of questions increase.

There are several reasons for this. First, the amount of
exploration required in order to reliably discover optimal
transition sequences increases exponentially with the inter-
view length. Although a neural network is capable of in-
ferring complex and non-linear dependencies between input
neurons, the model cannot construct an optimal interview
including questions (and answers) that have not been ob-
served before. We attempt to alleviate this by decreasing
the rate at with ε decays, but saw little change in perfor-
mance.

Second, cold-start interviews generate sparsely rewarded
transitions. This means that in most transitions describing a
state-action pair, the reward is 0. Only in transitions where
the interview finished can the model observe a reward > 0,
as the reward is given as the ranking metric of a ranking
generated by an arbitrary recommender. This can lead to
a pitfall of RL systems, as the objective of both DQN and
DDPG can be minimised trivially by predicting a reward of

0 2000 4000 6000 8000 10000 12000 14000
Num. interviews conducted

0.4

0.6

0.8

1.0

1.2

1.4

Q(
s,

a)
 -

r +
 m

ax
 Q

(s
',

a'
)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ND
CG

@
10

 (v
al

id
at

io
n)

Training loss
Validation score

Figure 22: Training losses (left) and validation scores (right)
for five different runs of the same DQN model on the same
dataset conducting 3-length interviews.

0 if most training samples reflect this situation. This issue
should be theoretically alleviated by the recursive nature
of Equation 10 where the predicted reward of an action is
the cumulative reward of all following, per-policy optimal
actions. Yet, if no such near-optimal transition sequences
are explored, there is no empirical evidence for the existence
of such high-reward interviews, and the model optimises for
a set of memories where the reward is always ∼ 0.

To alleviate this issue, we conduct a weighted sampling
of transitions from the replay memory M, sampling transi-
tions with a high reward (i.e., important memories) with a
higher probability than those with reward 0. While we wit-
nessed some increased stability in training, the performance
remained highly varying between training sessions.

Finally, in standard supervised learning, the training sam-
ples are fixed and remain unchanging throughout the train-
ing session. Conversely, in RL, the targets we are training
towards are defined by the very model currently being op-
timised. Due to this, training sessions including both DQN
and DDPG incur the problem of descending the gradient of
a constantly changing loss function. This introduces a large
amount of instability in training, though we alleviate some
by introducing both target networks and soft parameter up-
dates [29, 30]. Nevertheless, when the targets are defined
by the model itself, the overall trajectory of the training
session is dependent mostly on memories generated in the
initial exploration phase where ε ∼ 1. While we can extend
the length of the exploration period by decreasing the decay
rate of ε, the only way to guarantee consistent training is to
exhaustively explore all possible transitions, which is an in-
tractable task even for relatively short interviews. Another
issue of chasing a moving target is that, depending on the
minimum value of ε, it is possible for a model to discover new
local optima during training, making it difficult to predict
when to stop training.

We demonstrate this exact problem in Figure 22, where
one of the five trained models starts decreasing in loss af-
ter ∼ 9000 interviews, long after the model has seemingly
converged and started to overfit. This model, represented
by the orange lines, ended with a NDCG@10 of ∼ 10.3% on
interviews of length 3 on the test set under equal-popularity
sampling. While this score is unparalleled by any other

25

interviewer, this is a demonstration of both the potential
power and significant instability of RL models in a reward-
sparse setting such as cold-start interviews.

While we remain confident that RL can allow for better
question selection in cold-start interviews, it is worth dis-
cussing whether the effort required for building and training
these models is warranted given the performance of much
simpler approaches.

7.9 Group sizes and overfitting
Several of our experiments did not meet expectations due

to overfitting, particularly for the adaptive methods that
split users into groups according to their interview answers.
As determined in [4], having co-rated entities between users
is fundamental for CF methods, and this issue is further
exaggerated when users are partitioned not only by co-rated
entities, but specifically entities that they have co-liked, co-
disliked, etc. As shown in Figure 23, when users are split
according to their interview answers, the user groups become
too small for the collaborative filtering effect to be captured
effectively even after a small number of questions.

L

L
L

U

DU

LU

D

D

LU

D

U
L

L

U

D

UL
U

D

D

L U

D

L
L U

U

L

U

D
L

U

1301

903 80
35

44

1796

324
45715

27

4
22

1

334

166

74

81

11

151
17

122

12
17

2
15

64

15

3 12

45

17

28

4

1

3

Figure 23: Group sizes when splitting on the most informa-
tive entities with a PPR-JOINT recommender (AG inter-
viewer) in a 4-length interview. The decision tree branches
by like (L), dislike (D), and unknown (U) ratings.

In adaptive models such as fMF or LRMF that optimise
latent feature representations for individual user groups, this
means that the feature representations are fit for a very small
number of users that are not necessarily representative of the
general preferences of all users who would belong to that
group.

As seen in Figure 24, the fMF model is able to more accu-
rately predict user ratings when splitting users into smaller
groups according to their interview answers as long as the
groups do not become too small. However, even after two
questions, the groups become so small that the model loses
the ability to effectively generalise over user preferences.

These issues may well be caused by the sparsity of our
data, however while the experiments are not documented
here, we observed the same issues with MovieLens-100K [24].
Another obvious possibility is that we have chosen ineffective
hyperparameters, namely the number of latent features and
regularisation parameters, for training fMF on our dataset.

1 2 3 4
Depth of tree

1.400

1.425

1.450

1.475

1.500

1.525

1.550

1.575

1.600

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r (

RM
SE

)

FMF RMSE at varying interview lengths

Figure 24: Rating prediction error of fMF at varying inter-
view lengths.

However, due to the computational complexity of the fMF
training algorithm, conducting a full grid search for all such
hyperparameters is not practically viable. While fMF is
able to perform more consistently on larger datasets such
as MovieLens-1M [5], it is also worth mentioning that fMF
is designed primarily for the rating prediction task on 5-star
ratings, and not categorical ratings as are present in Min-
dReader.

7.10 Statistical significance testing
For the purposes of our statistical significance testing, we

follow the methodology of fMF [5] and employ a paired
t-test over 4-fold cross-validation. While this approach is
more powerful than the re-sampled t-test used to evaluate
LRMF [27] since the testing sets between folds are disjoint,
it has the issue that there are overlaps in the training sets
between folds [55]. Consequently, the approach underesti-
mates the variance that would be observed with independent
training sets, resulting in a higher number of Type I errors
(i.e., we are more likely to determine a statistical significance
when there is none).

To reduce the number of type I errors, [55] proposes a
5x2 cross-validation approach, where 5 repetitions of 2-fold
cross-validation are performed such that both the training
and testing sets on a single repetition are non-overlapping.
However, as is also concluded in the paper the choice of ap-
proach should depend on the running time of the algorithm
evaluated. Empirically, we observed that training and test-
ing a single fold of fMF took several days, which would make
it impractical to evaluate 10 folds given the time constraints
of this work. As such, we reckon the choice of 4-fold cross-
validation is justified in our case, but given more time a
better estimate of variance is warranted.

8. RELATED WORK
Our work is primarily concerned with addressing the user

cold-start problem. This specific problem is burdened with a
host of difficult-to-solve problems, e.g., inherent data spar-
sity, how to adapt to different cold-start users in making
recommendations, and how to elicit a user’s preferences ef-
fectively.

26

Preference elicitation. Multiple works have proposed so-
lutions to the preference elicitation problem in the cold-start
recommendation setting [5, 6, 12, 14, 21, 22, 23, 27]. In this
setting, the typical approach is to conduct interviews, asking
users questions in order to elicit their preferences.

At its core, an interview consists simply of a series of
questions to ask the interviewee. The key challenge in these
interviews is to determine the series of questions to ask. In a
simple and early approach to cold-start interviews, [23] pro-
poses to select a set of fixed questions that, when provided
with cold-user feedback, best optimise a given recommender
against a certain metric. While effective, the fixed question
approach lacks adaptability throughout the interview. To
address this issue, a popular approach is to represent the
interview as a decision tree, guiding the user along branches
of the tree according to their answers [5, 7, 22, 26, 27].

The decision tree representation can be a cumbersome
data structure to deal with, especially when the question
selection procedure is computationally expensive [5]. In [6],
users and entities are represented as latent feature vectors,
and the cold-start user embedding navigates the latent space
according to their answers, selecting questions based on the
user’s affinity to other entities. While affinity can be an ef-
fective estimator of informativeness, [21] uses meta-learning
to adapt to new users, using the network gradients as indi-
cators of informativeness.

In addition to presenting a new approach for modelling a
user’s preferences during an interview, [6] further explores
the effects of asking questions specifically considering ab-
solute questions regarding the user’s sentiment towards a
specific entity and pairwise, relative questions asking for
whether a user prefers one entity over another.

Use of auxiliary data. Few works have considered auxil-
iary data to assist in solving the preference elicitation prob-
lem. For example, the MeLU model, as proposed by [21],
incorporates user metadata in order to improve personalisa-
tion. In another work, [12] implicitly determines user pref-
erences w.r.t. genres from movie ratings and uses this in-
formation in question selection. Yet, incorporating auxiliary
data to overcome the data sparsity problem is a common ap-
proach in recommender systems research [8, 37, 38, 53, 56].
As the aforementioned models are the only ones to make use
of such auxiliary information, we find this approach to be
surprisingly overlooked in addressing the preference elicita-
tion problem. While user metadata is not always a readily
available resource, KGs have been incorporated in good ef-
fect in producing more personalised recommendations [56]
and to overcome data sparsity [8]. Specifically, [8] find that
training a multi-tasking neural network to generate KG em-
beddings and user-item recommendations jointly is capable
of generating useful recommendations with only a fraction of
the original ratings. In another example, [53] models a user’s
preferences as ripples over an embedded KG, propagating
the user’s observed ratings across the graph embeddings in
order to generate recommendations. In [37], recommenda-
tions are generated by a combination of KG node embed-
dings generated from random walks over sub-KGs restricted
to certain edge types. Finally, [38] uses a non-uniform tele-
port distribution over a collaborative KG as in PPR-JOINT,
weighing the REs liked by a user and the DEs connected to
the liked REs higher than all other nodes.

Specific and broad questions. While the inclusion of
auxiliary data has not been used in almost all of the afore-

mentioned preference elicitation models, the interviews con-
structed have been designed specifically to select the ques-
tions that elicit the most useful information from the user.
Yet, these works have focused on evaluation in contexts
where REs can be posed as interview questions. Despite
the apparent limitation to RE-based interviews in the liter-
ature, several works have suggested that users express their
preferences naturally through broader, more descriptive en-
tities [6, 12, 13]. In cold-start interview research, the prime
objectives are to (i) conduct interviews that allow for use-
ful recommendations, and (ii) shorten the required interview
length as much as possible, thereby limiting user effort [5,
6, 27]. Keeping an interview brief and rich in information
requires that users are familiar with and able to opine on
questions posed during the interview. As found in [4], while
both DE and RE ratings follow a short-head/long-tail dis-
tribution, users are generally far more likely to be familiar
with certain types of DEs than REs, making DEs intuitively
well-fit sources of information in cold-start interviews where
we want to ask as few questions as possible.

Datasets. This focus on RE-based interviews is likely a
consequence of lacking datasets supporting such interviews.
However, while the two popular MovieLens [24] and Netflix
Prize [57] datasets do not contain explicit user ratings on
DEs, [58] built a dataset of explicit user ratings on movies
and movie-specific tags. The tags are created by the users of
the system through a process called social tagging. Because
tags are not drawn from an existing, structured knowledge
base, the quality of the tags and their semantic relations
to entities varies greatly, and some low-quality tags such as
“bad movie” carry their own sentiment [59].

Contrary to tag datasets, MindReader collects explicit
ratings on DEs and REs drawn from an existing knowledge
base, specifically a KG over entities in the movie domain.
The entities in the MindReader KG carry no underlying
sentiment, and their inter-relations are pre-defined by the
KG rather than the users, ensuring higher quality of DEs.
Furthermore, the MindReader KG not only models the fact
that entities are connected, but how they are connected by
means of relation labels such as Tom Hanks starring in For-
rest Gump, which has the genre drama. This provides a
solid foundation on which to select broader and more de-
scriptive interview questions as well as means for extrapo-
lating a user’s interview answers to a more precise profile of
the user’s preferences.

Conversational recommender systems. Cold-start in-
terviews have close ties to conversational recommender sys-
tems, as both approaches are instances of querying the user
and using their input for the recommendations. The general
difference in existing literature is that cold-start interviews
focus more on what entities to ask about in a structured
manner, whereas conversational recommender systems fo-
cus on how Natural Language Processing (NLP) can be used
to elicit the preferences. In general, conversational recom-
mender systems have been applied in e-commerce, i.e., by
asking the user about technical specifications and price on
the product they are seeking [60, 61]. E-commerce is a more
extreme example of the efficacy of broader questions, since
users are even less likely to opine on specific products as
opposed to the movie domain.

27

9. CONCLUSION
In this work, we present a comprehensive analysis of differ-

ent strategies and models for cold-start user interviews in the
top-K recommendation task, addressing the informational
value of explicit ratings on descriptive and recommendable
entities. We also show how different interviewing systems
can model our definition of user preference, separating enti-
ties of differing sentiments with respect to a given user. We
investigate specifically the relationships between interview-
ing strategies and recommender paradigms in what, to the
best of our knowledge, is the first such study conducted for
cold-start interviews. We show how MindReader, the data
collection platform responsible for the dataset used, can be
further optimised for better recommendation quality and di-
versity while staying performant under high usage. Using
the newest version of the MindReader dataset, we find that
asking towards users’ opinions of descriptive entities leads to
better performance than asking towards recommendable en-
tities, both in terms of ranking quality (i.e., NDCG) as well
as the aggregate diversity and serendipity of recommenda-
tions. We also show how different sampling strategies in
experimentation can help reduce popularity bias and allow
for analysis of the relative performance differences between
interviewing systems in different settings of the recommen-
dation task.

Though not widely used in state-of-the-art models for
cold-start recommendations, we show that iterative, graph-
based models, especially when navigating a knowledge graph,
can generate recommendations of higher quality than other
widely used collaborative filtering models, and encourage
that future research takes advantage of this in constructing
state-of-the-art models for cold- and warm-start recommen-
dations. We show that a linear combination of such models
navigating different graphs can outperform all models con-
sidered in this work, as well as how an optimal combination
can be inferred through simple gradient descent.

We also find that simple and generic methods for selecting
interview questions independent of the underlying recom-
mender system can outperform less generic and more com-
plex state-of-the-art models for cold-start interviews. How-
ever, we note that these results may be subject to scrutiny,
as we did not have access to the original implementation
of two out of three models considered and modification was
required for the model with accessible implementation, the
differences in implementation may have affected the perfor-
mance.

We also find that, while promising and suggested by prior
works, our implementations of reinforcement-learning ap-
proaches to cold-start user interviews are largely unstable
and require substantial computational resources for train-
ing, and that more research is required to make the learning
processes more stable and reinstate better guarantees for
useful convergence in the cold-start setting which is inher-
ently sparse in terms of observable rewards.

While the informational value of descriptive entities in
cold-start interviews is certain, our experiments are limited
to a single dataset in a single domain of recommendation.
We encourage researchers to consider the use of descriptive
entities in other domains, both in cold-start interviews as
well as warm-start recommendations. Furthermore, since
recommender systems are closely tied to human-computer
interaction, additional user-studies should be conducted in
order to fully address the usefulness of descriptive entities.

10. FUTURE WORK
Our results provide grounds for a wide range of interesting

future research within the application of DE ratings in rec-
ommender systems in general and approaches to generating
cold-start interviews. We now cover some of these avenues
of research with concrete examples of approaches to be con-
sidered.

10.1 Improved incorporation of KGs
Though we find PPR models to perform well and effi-

ciently, they do not utilise all the available information of
KGs. Specifically, the PPR models do not take the different
relationship and entity labels into account. Furthermore, as
a linear combination of PPR models seems to outperform
existing PPR models, it might be interesting to further split
the graphs into their relationship labels, as in [37], to utilise
the relation information of the KG.

Moreover, as PPR scores clearly contain valuable infor-
mation, it could be incorporated as auxiliary information
about the cold-start user for other models. More specifi-
cally, for models where we are unable to represent new users,
users could instead be represented by their PPR scores and
translated through a learned translation mechanism, e.g., a
transformation matrix as used in LRMF.

10.2 Improving RL approaches
While theoretically well-founded, our RL-based interview-

ers have failed to produce worthwhile results when compared
to much simpler models with stronger guarantees for perfor-
mance. Nevertheless, we remain firm in the position that
RL is a promising avenue to research in conducting cold-
start interviews, though RL specifically requires substantial
work and additional computational resources before it be-
comes a practically applicable approach.

In subsection B.2, we cover preliminary testing of a Re-
lational Graph-Convolutional Network (R-GCN) in order to
support the DQN decision process with entity embeddings
created from convolving user answers across a joint collab-
orative KG. While our preliminary tests did not show any
significant improvements over the simpler DQN model, this
can likely be attributed to the limited amount of testing and
hyperparameter tuning we were able to conduct. In theory,
graph-based embeddings should assist the model in reason-
ing between which entities to choose for the next questions,
though more work needs to be done on the overall model
and general approach to predicting rewards. We also moti-
vate further research into ensuring stronger guarantees for
useful convergence when training deep learning models for
RL, where potential approaches to consider include model
architectures such as duelling DQNs [62].

Finally, the observed tendency of deep NNs to overfit to
a good average-case prediction and disregard inputs when
they are sparse is another pitfall of deep learning methods
in environments of sparse information that needs to be ad-
dressed in future research, as this is an inherent problem of
the cold-start setting in general.

10.3 Optimising greedy question selection
One of the primary drawbacks of our proposed AG inter-

viewer is that building the decision tree for representing the
interview is computationally complex, and when the height
of the tree increases, nodes with many users become the
primary bottleneck.

28

When receiving a large number of users at a node in the
decision tree, it may be the case that we do not have to
consider all users in that group. Instead, it may be possible
to efficiently determine a subset of the user group that is
optimally representative of the rest.

10.4 Improvements to PPR-LINEAR
Currently, we learn a single weight per sentiment-graph

combination. When we have no likes or dislikes to use as
source nodes, we use a teleportation vector with a uniform
weight distribution, i.e., global PageRank. In the training
phase, this is not an issue since most users have both likes
and dislikes, hence the global PageRank is rarely used. How-
ever, this intuitively leads to overfitting during the testing
phase, since the input from users is very sparse and thus we
are more likely to use global PageRank.

In an AG-based interview, we group dislikes and “don’t
know” answers together. As the disliked group is the small-
est group and “don’t know” is the largest, we worry that
the negative ratings have little impact in the selection of
the next question. With our PPR-LINEAR model, we are
able to represent likes and dislikes in different graphs, and it
may make sense to group likes and dislikes together instead
and let the model itself use the ratings. Doing so would in-
crease the number of users in each node, and thereby help
in overfitting.

Acknowledgements
We would like to thank our supervisors Katja Hose, Mat-
teo Lissandrini, and Peter Dolog for their valuable input
and contributions to this thesis. Furthermore we would like
to thank the users of MindReader for providing preference
data.

References
[1] A. Belloǵın and A. Said, “Recommender systems eval-

uation”, in Encyclopedia of Social Network Analysis
and Mining, R. Alhajj and J. Rokne, Eds. New York,
NY: Springer New York, 2018, pp. 2095–2112, isbn:
978-1-4939-7131-2. doi: 10.1007/978-1-4939-7131-
2_110162. [Online]. Available: https://doi.org/10.
1007/978-1-4939-7131-2_110162.

[2] P. Pu, L. Chen, and R. Hu, “A user-centric evalua-
tion framework for recommender systems”, in Proceed-
ings of the fifth ACM conference on Recommender sys-
tems - RecSys ’11, ACM Press, 2011. doi: 10.1145/
2043932.2043962. [Online]. Available: https://doi.
org/10.1145/2043932.2043962.

[3] C. C. Aggarwal, Recommender systems: the textbook.
Springer, 2016.

[4] A. Brams, A. Jakobsen, and T. Jendal,“Evaluating the
effects of non-item ratings inrecommender systems”,
2019. [Online]. Available: https://projekter.aau.
dk/projekter/files/320764987/MI911_new.pdf.

[5] K. Zhou, S.-H. Yang, and H. Zha, “Functional matrix
factorizations for cold-start recommendation”, in Pro-
ceedings of the 34th international ACM SIGIR confer-
ence on Research and development in Information -
SIGIR 11, ACM Press, 2011. doi: 10.1145/2009916.
2009961. [Online]. Available: https://doi.org/10.
1145/2009916.2009961.

[6] K. Christakopoulou, F. Radlinski, and K. Hofmann,
“Towards conversational recommender systems”, in Pro-
ceedings of the 22Nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ser. KDD
’16, San Francisco, California, USA: ACM, 2016, pp. 815–
824, isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.
2939746. [Online]. Available: http://doi.acm.org/
10.1145/2939672.2939746.

[7] M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and
H. Zha, “Learning multiple-question decision trees for
cold-start recommendation”, in Proceedings of the sixth
ACM international conference on Web search and data
mining - WSDM ’13, ACM Press, 2013. doi: 10.1145/
2433396.2433451. [Online]. Available: https://doi.
org/10.1145/2433396.2433451.

[8] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M.
Guo, “Multi-task feature learning for knowledge graph
enhanced recommendation”, CoRR, vol. abs/1901.08907,
2019. arXiv: 1901.08907. [Online]. Available: http:

//arxiv.org/abs/1901.08907.

[9] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S.
Chua, “Explainable reasoning over knowledge graphs
for recommendation”, Nov. 2018.

[10] P. Cremonesi, Y. Koren, and R. Turrin, “Performance
of recommender algorithms on top-n recommendation
tasks”, in Proceedings of the Fourth ACM Conference
on Recommender Systems, ser. RecSys ’10, Barcelona,
Spain: ACM, 2010, pp. 39–46, isbn: 978-1-60558-906-0.
doi: 10.1145/1864708.1864721. [Online]. Available:
http://doi.acm.org.zorac.aub.aau.dk/10.1145/

1864708.1864721.

[11] Y. Ren, T. Zhu, G. Li, and W. Zhou, “Top-n recom-
mendations by learning user preference dynamics”, in
Advances in Knowledge Discovery and Data Mining,
J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 390–401, isbn: 978-3-642-37456-2.

[12] X. Zhang, J. Cheng, S. Qiu, G. Zhu, and H. Lu, “Du-
alds: A dual discriminative rating elicitation frame-
work for cold start recommendation”, Knowledge-Based
Systems, vol. 73, pp. 161–172, 2015.

[13] F. Radlinski, K. Balog, B. Byrne, and K. Krishnamoor-
thi, “Coached conversational preference elicitation: A
case study in understanding movie preferences”, in Pro-
ceedings of the Annual SIGdial Meeting on Discourse
and Dialogue, 2019.

[14] A. M. Rashid, G. Karypis, and J. Riedl, “Learning
preferences of new users in recommender systems: An
information theoretic approach”, Acm Sigkdd Explo-
rations Newsletter, vol. 10, no. 2, pp. 90–100, 2008.

[15] F. M. Harper, X. Li, Y. Chen, and J. A. Konstan,
“An economic model of user rating in an online recom-
mender system”, in International conference on user
modeling, Springer, 2005, pp. 307–316.

[16] K. Swearingen and R. Sinha, “Beyond algorithms: An
hci perspective on recommender systems”, in ACM SI-
GIR 2001 workshop on recommender systems, Cite-
seer, vol. 13, 2001, pp. 1–11.

29

https://doi.org/10.1007/978-1-4939-7131-2_110162
https://doi.org/10.1007/978-1-4939-7131-2_110162
https://doi.org/10.1007/978-1-4939-7131-2_110162
https://doi.org/10.1007/978-1-4939-7131-2_110162
https://doi.org/10.1145/2043932.2043962
https://doi.org/10.1145/2043932.2043962
https://doi.org/10.1145/2043932.2043962
https://doi.org/10.1145/2043932.2043962
https://projekter.aau.dk/projekter/files/320764987/MI911_new.pdf
https://projekter.aau.dk/projekter/files/320764987/MI911_new.pdf
https://doi.org/10.1145/2009916.2009961
https://doi.org/10.1145/2009916.2009961
https://doi.org/10.1145/2009916.2009961
https://doi.org/10.1145/2009916.2009961
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.1145/2939672.2939746
http://doi.acm.org/10.1145/2939672.2939746
http://doi.acm.org/10.1145/2939672.2939746
https://doi.org/10.1145/2433396.2433451
https://doi.org/10.1145/2433396.2433451
https://doi.org/10.1145/2433396.2433451
https://doi.org/10.1145/2433396.2433451
https://arxiv.org/abs/1901.08907
http://arxiv.org/abs/1901.08907
http://arxiv.org/abs/1901.08907
https://doi.org/10.1145/1864708.1864721
http://doi.acm.org.zorac.aub.aau.dk/10.1145/1864708.1864721
http://doi.acm.org.zorac.aub.aau.dk/10.1145/1864708.1864721

[17] J. Gope and S. K. Jain, “A survey on solving cold start
problem in recommender systems”, in 2017 Interna-
tional Conference on Computing, Communication and
Automation (ICCCA), IEEE, 2017, pp. 133–138.

[18] J. Lee, “Recommendation systems”, in Big Data and
Computational Intelligence in Networking, CRC Press,
2017, pp. 227–264.

[19] I. Fernández-Tob́ıas, M. Braunhofer, M. Elahi, F. Ricci,
and I. Cantador, “Alleviating the new user problem in
collaborative filtering by exploiting personality infor-
mation”, User Modeling and User-Adapted Interaction,
vol. 26, no. 2-3, pp. 221–255, 2016.

[20] W. Wang, H. Yin, Z. Huang, X. Sun, and N. Q. V.
Hung,“Restricted boltzmann machine based active learn-
ing for sparse recommendation”, in International Con-
ference on Database Systems for Advanced Applica-
tions, Springer, 2018, pp. 100–115.

[21] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “Melu:
Meta-learned user preference estimator for cold-start
recommendation”, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 1073–1082.

[22] F. Hu and Y. Yu, “Interview process learning for top-
n recommendation”, in Proceedings of the 7th ACM
conference on Recommender systems, 2013, pp. 331–
334.

[23] N. Golbandi, Y. Koren, and R. Lempel, “On boot-
strapping recommender systems”, in Proceedings of the
19th ACM international conference on Information and
knowledge management, 2010, pp. 1805–1808.

[24] F. M. Harper and J. A. Konstan,“The movielens datasets:
History and context”, ACM Trans. Interact. Intell.
Syst., vol. 5, no. 4, Dec. 2015, issn: 2160-6455. doi:
10.1145/2827872. [Online]. Available: https://doi.
org/10.1145/2827872.

[25] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M.
McNee, J. A. Konstan, and J. Riedl, “Getting to know
you: Learning new user preferences in recommender
systems”, in Proceedings of the 7th international con-
ference on Intelligent user interfaces, 2002, pp. 127–
134.

[26] N. Golbandi, Y. Koren, and R. Lempel, “Adaptive
bootstrapping of recommender systems using decision
trees”, in Proceedings of the fourth ACM international
conference on Web search and data mining, 2011, pp. 595–
604.

[27] L. Shi, W. X. Zhao, and Y.-D. Shen,“Local representative-
based matrix factorization for cold-start recommen-
dation”, ACM Transactions on Information Systems
(TOIS), vol. 36, no. 2, pp. 1–28, 2017.

[28] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Be-
yond accuracy: Evaluating recommender systems by
coverage and serendipity”, in Proceedings of the Fourth
ACM Conference on Recommender Systems, ser. Rec-
Sys ’10, Barcelona, Spain: Association for Comput-
ing Machinery, 2010, 257–260, isbn: 9781605589060.
doi: 10.1145/1864708.1864761. [Online]. Available:
https://doi.org/10.1145/1864708.1864761.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning”, Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.
Erez, Y. Tassa, D. Silver, and D. Wierstra, “Contin-
uous control with deep reinforcement learning”, arXiv
preprint arXiv:1509.02971, 2015.

[31] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sune-
hag, T. Lillicrap, J. Hunt, T. Mann, T. Weber, T. De-
gris, and B. Coppin, “Deep reinforcement learning in
large discrete action spaces”, arXiv preprint arXiv:1512.07679,
2015.

[32] S. Funk, “Netflix update: Try this at home”, 2006.

[33] X. Ning, C. Desrosiers, and G. Karypis, “A compre-
hensive survey of neighborhood-based recommenda-
tion methods”, in Recommender systems handbook, Springer,
2015, pp. 37–76.

[34] D. Gallo, M. Lissandrini, and Y. Velegrakis, “Personal-
ized page rank on knowledge graphs: Particle filtering
is all you need!”,

[35] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh, “Wtf: The who to follow service at twit-
ter”, in Proceedings of the 22nd International Con-
ference on World Wide Web, ser. WWW ’13, Rio de
Janeiro, Brazil: Association for Computing Machinery,
2013, 505–514, isbn: 9781450320351. doi: 10.1145/

2488388.2488433. [Online]. Available: https://doi.
org/10.1145/2488388.2488433.

[36] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov,
E. E. Tyrtyshnikov, and N. L. Zamarashkin, “How to
find a good submatrix”, in Matrix Methods: Theory,
Algorithms And Applications: Dedicated to the Mem-
ory of Gene Golub, World Scientific, 2010, pp. 247–
256.

[37] E. Palumbo, D. Monti, G. Rizzo, R. Troncy, and E.
Baralis,“Entity2rec: Property-specific knowledge graph
embeddings for item recommendation”, Expert Sys-
tems with Applications, p. 113 235, 2020.

[38] C. Musto, G. Semeraro, M. de Gemmis, and P. Lops,
“Tuning personalized pagerank for semantics-aware rec-
ommendations based on linked open data”, in Euro-
pean Semantic Web Conference, Springer, 2017, pp. 169–
183.

[39] T. H. Haveliwala,“Topic-sensitive pagerank: A context-
sensitive ranking algorithm for web search”, IEEE trans-
actions on knowledge and data engineering, vol. 15,
no. 4, pp. 784–796, 2003.

[40] W. Chen, T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li,
“Ranking measures and loss functions in learning to
rank”, in Advances in Neural Information Processing
Systems, 2009, pp. 315–323.

[41] S. Rendle and C. Freudenthaler, “Improving pairwise
learning for item recommendation from implicit feed-
back”, in Proceedings of the 7th ACM international
conference on Web search and data mining, 2014, pp. 273–
282.

30

https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/2488388.2488433
https://doi.org/10.1145/2488388.2488433
https://doi.org/10.1145/2488388.2488433
https://doi.org/10.1145/2488388.2488433

[42] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet:
A unified embedding for face recognition and cluster-
ing”, in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 815–
823.

[43] A. Taha, Y.-T. Chen, T. Misu, A. Shrivastava, and L.
Davis, “Boosting standard classification architectures
through a ranking regularizer”, in The IEEE Winter
Conference on Applications of Computer Vision, 2020,
pp. 758–766.

[44] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank:
Review-aware explainable recommendation by model-
ing aspects”, in Proceedings of the 24th ACM Interna-
tional on Conference on Information and Knowledge
Management, ser. CIKM ’15, Melbourne, Australia:
ACM, 2015, pp. 1661–1670, isbn: 978-1-4503-3794-6.
doi: 10.1145/2806416.2806504. [Online]. Available:
http://doi.acm.org/10.1145/2806416.2806504.

[45] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S.
Chua, “Neural collaborative filtering”, in Proceedings
of the 26th international conference on world wide web,
International World Wide Web Conferences Steering
Committee, 2017, pp. 173–182.

[46] L. Chen, Y. Yang, N. Wang, K. Yang, and Q. Yuan,
“How serendipity improves user satisfaction with rec-
ommendations? a large-scale user evaluation”, in The
World Wide Web Conference on - WWW ’19, ACM
Press, 2019. doi: 10.1145/3308558.3313469. [On-
line]. Available: https://doi.org/10.1145/3308558.
3313469.

[47] T. Murakami, K. Mori, and R. Orihara, “Metrics for
evaluating the serendipity of recommendation lists”, in
New Frontiers in Artificial Intelligence, K. Satoh, A.
Inokuchi, K. Nagao, and T. Kawamura, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 40–
46.

[48] G. Adomavicius and Y. Kwon, “Improving aggregate
recommendation diversity using ranking-based tech-
niques”, IEEE Transactions on Knowledge and Data
Engineering, vol. 24, no. 5, pp. 896–911, 2011.

[49] M. G. Kendall, “A new measure of rank correlation”,
Biometrika, vol. 30, no. 1/2, pp. 81–93, 1938.

[50] Z. Zolaktaf, R. Babanezhad, and R. Pottinger,“A generic
top-n recommendation framework for trading-off ac-
curacy, novelty, and coverage”, in 2018 IEEE 34th In-
ternational Conference on Data Engineering (ICDE),
IEEE, 2018, pp. 149–160.

[51] A. Belloǵın, P. Castells, and I. Cantador, “Statisti-
cal biases in information retrieval metrics for recom-
mender systems”, Information Retrieval Journal, vol. 20,
no. 6, pp. 606–634, 2017.

[52] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei,“Fac-
torization meets the item embedding”, in Proceedings
of the 10th ACM Conference on Recommender Sys-
tems - RecSys ’16, ACM Press, 2016. doi: 10.1145/
2959100.2959182. [Online]. Available: https://doi.
org/10.1145/2959100.2959182.

[53] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie,
and M. Guo, “Ripplenet: Propagating user preferences
on the knowledge graph for recommender systems”,
in Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management,
2018, pp. 417–426.

[54] E. Palumbo, G. Rizzo, R. Troncy, E. Baralis, M. Osella,
and E. Ferro, “Translational models for item recom-
mendation”, in ESWC’18, 2018, pp. 478–490.

[55] T. G. Dietterich, “Approximate statistical tests for
comparing supervised classification learning algorithms”,
Neural computation, vol. 10, no. 7, pp. 1895–1923, 1998.

[56] Y. Cao, X. Wang, X. He, Z. Hu, and T.-S. Chua,
“Unifying knowledge graph learning and recommen-
dation: Towards a better understanding of user pref-
erences”, in The World Wide Web Conference on -
WWW, ACM Press, 2019. doi: 10.1145/3308558.

3313705. [Online]. Available: https://doi.org/10.
1145/3308558.3313705.

[57] J. Bennett, S. Lanning, et al., “The netflix prize”, in
Proceedings of KDD cup and workshop, Citeseer, vol. 2007,
2007, p. 35.

[58] S. Sen, J. Vig, and J. Riedl, “Tagommenders: Connect-
ing users to items through tags”, in WWW’09, 2009,
pp. 671–680.

[59] F. Gedikli and D. Jannach, “Improving recommenda-
tion accuracy based on item-specific tag preferences”,
ACM Transactions on Intelligent Systems and Tech-
nology, vol. 4, no. 1, pp. 1–19, Jan. 2013. doi: 10.

1145/2414425.2414436. [Online]. Available: https:

//doi.org/10.1145/2414425.2414436.

[60] Y. Zhang, X. Chen, Q. Ai, L. Yang, and W. B. Croft,
“Towards conversational search and recommendation:
System ask, user respond”, in Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, 2018, pp. 177–186.

[61] Y. Sun and Y. Zhang, “Conversational recommender
system”, in The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, 2018, pp. 235–244.

[62] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M.
Lanctot, and N. De Freitas,“Dueling network architec-
tures for deep reinforcement learning”, arXiv preprint
arXiv:1511.06581, 2015.

[63] Y. Gal and Z. Ghahramani,“Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep
learning”, arXiv preprint arXiv:1506.02142, 2015.

[64] D. Bahdanau, K. Cho, and Y. Bengio,“Neural machine
translation by jointly learning to align and translate”,
arXiv preprint arXiv:1409.0473, 2014.

31

https://doi.org/10.1145/2806416.2806504
http://doi.acm.org/10.1145/2806416.2806504
https://doi.org/10.1145/3308558.3313469
https://doi.org/10.1145/3308558.3313469
https://doi.org/10.1145/3308558.3313469
https://doi.org/10.1145/2959100.2959182
https://doi.org/10.1145/2959100.2959182
https://doi.org/10.1145/2959100.2959182
https://doi.org/10.1145/2959100.2959182
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/2414425.2414436
https://doi.org/10.1145/2414425.2414436
https://doi.org/10.1145/2414425.2414436
https://doi.org/10.1145/2414425.2414436

APPENDIX
A. EXPERIMENTAL FRAMEWORK

From working with SOTA models, we found that the re-
producibility of these is rather limited in the sense that both
fMF and LRMF do not provide code for their model imple-
mentation nor experimental setup [5, 27]. Given the issues
we encountered we want to allow other researchers to easily
reproduce our findings, including both model implementa-
tions and experimental setup. With our cold-start frame-
work, researchers can easily access implementations of the
SOTA and novel methods covered in this work, and arbi-
trarily combine recommenders with interviewers as we have
done. The cold-start framework in its entirety is available
on GitHub7. In the remainder of this section, we outline key
features of the framework.

A.1 Experiment definitions
In this work, we have demonstrated how issues such as

popularity bias can be alleviated by means of different sam-
pling strategies. With a few different sampling strategies
and experiment settings, managing and maintaining all ex-
periments can become cumbersome. In our cold-start frame-
work, we define experiment configurations by means of Ex-

perimentOptions objects as shown in Listing 1.

e q u a l p op u l a r i t y = ExperimentOptions (
seed =123 ,
name=’ equal ’ ,
c o l d s t a r t r a t i o =0.25 ,
include unknown=False ,
eva luat i on sample s=1
c o u n t f i l t e r s =[

CountFi l te r (
lambda count : count >= 1 ,
e n t i t y t y p e=EntityType .RECOMMENDABLE,
sent iment=Sentiment . POSITIVE)

] ,
r ank ing opt i ons=RankingOptions (

unseen sampl ing=
UnseenSampling .EQUAL POPULARITY,

num pos it ive =1,
num unseen=100

)
)

Listing 1: Configuration of our experiment using equal-
popularity sampling on one positive sample against 100 neg-
ative samples, requiring that all users have at least one pos-
itive rating on a recommendable entity.

Regardless of the experiment configuration, an experiment
can be run where interview questions are restricted to REs
by including the recommendable flag when running the ex-
periment (see Listing 4).

A.2 Model definitions
As we have mentioned, interviewers can arbitrarily be

combined with recommenders under our framework. Con-
sider for example Listing 2 in which we define a model us-
ing the AG interviewer with PPR-JOINT as the underly-
ing recommender. As is also shown in the example, model

7https://github.com/MI-911/cold-start-framework

definitions can include custom arguments for both the in-
terviewer and recommender. In this case, the GreedyInter-

viewer class supports both fixed and adaptive interviews, so
we explicitly specify an adaptive approach should be used.

’ adaptive−greedy−ppr−j o i n t ’ : {
’ i n t e r v i e w e r ’ : GreedyInterviewer ,
’ recommender ’ : JointPageRankRecommender ,
’ i n t e rv i ewer kwargs ’ : {

’ adapt ive ’ : True
}

}
Listing 2: Model definition of AG with PPR-JOINT.

The GreedyInterviewer and JointPageRankRecommender

classes both must inherit from the abstract Interviewer-

Base and RecommenderBase classes, respectively, that define
methods required for training and evaluation. The class sig-
natures are shown in Listing 3.

class Inte rv i ewerBase :
def warmup(t ra in ing , i n t e r v i e w l e n g t h)
def i n t e rv i ew (answers , max qs)
def p r e d i c t (items , answers)
def get parameters ()
def l oad parameters (params)

class RecommenderBase :
def f i t (t r a i n i n g)
def p r e d i c t (items , answers)
def c l e a r c a c h e ()

Listing 3: Class signature of the Interviewer-

Base and RecommenderBase abstract classes.

A.3 Distributed experiments
Running all experiments on a single machine becomes im-

practical and time-consuming with a high number of model
combinations, splits, experiment settings, and models re-
quiring substantial computing resources.

To distribute the experimentation effort while maintain-
ing an overview of experimentation status, we enable auto-
matic uploading of experiment results to a main server that
aggregates the data automatically, presenting a statistical
overview for each model and metric at any interview length.

This functionality is enabled with the upload flag when
running an experiment as seen in Listing 4. The address
to which results should be pushed is configured in the top-
matter of the interview.py entrypoint, which must run the
Spectate API found in our GitHub repositories. The Spec-
tate API is a centralised, optional part of the framework to
which results can be uploaded and retrieved amongst dis-
tributed workers.

python3 . 8 en t rypo in t s / in t e rv i ew . py
−−exper iments equal
−−recommendable
−−upload

Listing 4: Running the equal-popularity experiment with
interview questions restricted to recommendable entities and
automatic results uploading enbaled.

Using the Spectate API, the results are visualised as seen
in Figure 25.

32

https://github.com/MI-911/cold-start-framework

Figure 25: Results visualisation in the Spectate API.

B. ADDITIONAL MODELS
In addition to our proposed models for interviewing and

recommendation, we have conducted preliminary testing of
other models and approaches to question selection. In the
following, we briefly cover those approaches, why we have
tested them, and the observations we made.

B.1 Uncertainty-based models
In this work, we have primarily been focused on selecting

questions based in their informativeness, namely, how much
useful information will a question provide the model with
in making better recommendations. However, informative-
ness can be difficult to quantify, as asking the question that
allows an underlying recommender to perform the best for
some group of users is not necessarily the most informative
question, but rather the question that supports recommen-
dations for that group the best.

Another way of thinking about informativeness is instead
lack of information. Indeed, a natural approach to select-
ing interview questions is to select the questions that the
interviewer is most unsure about. In deep learning, one
way of representing uncertainty is to run the same input
through the same model using random dropout in every for-
ward propagation, measuring the prediction variance for ev-
ery output neuron [63]. This approach of course requires
the model to be a deep learning interviewing recommender
model, as it both has to generate recommendations (in or-
der to measure uncertainty in recommendations) and select
questions based on that uncertainty.

We constructed a simple feed-forward neural network tak-
ing in an interview state representation vector as described

in subsubsection 4.2.4, and produces a vector of ranking
scores for all entities. In selecting questions, we run the
same state vector through the network 100 times, applying
50% dropout on the hidden layers in the network at ev-
ery forward pass. The question selected corresponds to the
entity with the highest variance in predicted ranking score
weighted by the popularity of the entity as in [21].

While we observed that the model was capable of choosing
good questions that largely corresponded to those selected
by the AG interviewer, we also observed that the model was
not able to consistently improve as it was provided with
more questions. This leads into a broader discussion of the
limitations of deep learning models and sparse input vectors,
as we see the same issue in both the MeLUN, DQN, and
DDPG models.

The interview state vector s ∈ R|E|·2 is a huge and very
sparse vector, and neural networks are trained to best ap-
proximate the desired function over all inputs. When the in-
put neurons almost always receive a 0, the network is likely
to simply disregard the input, and update the weights and
biases in the hidden layers in order to generate an optimal
average prediction.

Related works have proposed attention mechanisms in or-
der to let the network (or a completely separate network)
learn what features should be paid attention to, and what
features can be disregarded from the input vector [64]. How-
ever, this specific issue is less one of paying too much atten-
tion to the wrong features, and more that each feature must
be assumed to be equally important, but only a very small
number of features are actually observed.

33

B.2 Graph convolutional networks
While we have little information to append to the sparse

interview-state vector, we can provide some additional infor-
mation to the RL models by processing the input by means
of the KG the entities are situated in. Graph-Convolutional
Networks (GCNs) are specific types of NNs that allow a
model to convolve inputs across neighbouring nodes in a
graph, tying convolution weights to each node and relation
in the graph. In order to take advantage of the full expres-
sive power of KGs, we use an R-GCN to model a combined
KG and collaborative graph as used in PPR-JOINT.

The goal of including this additional model is to allow a
DQN to learn latent representations of the entities in the ac-
tion space that are supported by the graph structure. The
input is convolved across the graph by means of message
passing, where the weights of a node are passed and aggre-
gated in the neighbouring nodes. For R-GCN specifically,
we use separate weights for different relation types. Each
layer of the network propagates the features to neighbour-
ing nodes, resulting in aggregations in the l-hop neighbours
at the lth layer of the network.

Formally, the representation of a node hi at layer l + 1 is
given by the message passing formula:

hl+1
i = σ

(∑
r∈R

∑
n∈Nr

W(l)
r h(l)

n

)
(31)

where r ∈ R denote the relation types, n ∈ Nr denote the
neighbours of hi reachable through a single relation of type

r, W
(l)
r are the relation-specific weights at layer l, and σ is

a non-linear activation function.
We generate a distribution of Q values by taking the inner

product between node entity embeddings and a user embed-
ding, much like the procedure of MF. In order to construct a
user embedding, we extract the embeddings for each of the
entities the user has provided answers for from the interview
state vector.

Let M denote the layers of the R-GCN, and let E ′ de-
note the entities the user has provided answers for in the
interview. We first extract entity embeddings by passing
the entities through the network, yielding the embeddings
E = [M(ei) for ei ∈ E ′].

From E, we construct a unified embedding for each rating
category in {Like,Dislike,Don’t know} by summing embed-
dings within each category, resulting in the embeddings eL,
eD, and eU , respectively. In order to capture the seman-
tics of different ratings, we use a fully connected layer L
to construct the final user embedding u = L([eL; eD; eU]) =
σ(WL · [eL; eD; eU]+bL) where WL and bL are the weights
and biases in L.

The final Q values are then predicted as Q(s, e) = u·M(e)
where s is the interview state, e is an action (i.e., an entity to
ask about), and u is given by our user embedding procedure
u = L(M(s)). The network parameters are updated simi-
larly to the update strategy used in Algorithm 2, descending
the gradient of the temporal difference loss from predicted
and observed rewards incurred by the learned policy.

Unfortunately, our R-GCN model did not seem to improve
significantly upon the results of our simpler DQN model.
However, it should be noted that we did not have the time
to fully test and tune the model, and that the increased com-
putational complexity of the R-GCN DQN did not allow for
exhaustive testing sessions. In the end, we observed the
same issues as with our uncertainty-based NN and MeLUN,

Model NDCG@10 DIV@10 SER@10 HR@10
AG 0.0974 0.2296 0.1498 0.1953
AGDIV 0.0859 0.2597∗ 0.1348 0.1809
AGSER 0.0890 0.2380 0.1458 0.1867
AGHR 0.0950 0.2371 0.1510 0.1943
AGMIX 0.0978 0.2465∗ 0.1568 0.2023

Table 6: Results after a 5-length interview. Subscript indi-
cates the metric to reorder top-5% candidate questions on.
Star indicates statistical significance from non-reordering
model (α = 0.05).

where the network simply approximates a good average pre-
diction and more or less disregards different inputs.

C. ADDITIONAL EXPERIMENTS
The results covered in the main body of this work are pri-

marily oriented with optimising models for cold-start inter-
views and recommendations. However, since MindReader
is a new dataset and opens up for much interesting new
research, we deem it worthwhile to conduct a series of ad-
ditional experiments specifically addressing what kinds of
entities are best to ask about.

C.1 Reordering candidate questions
In our experiments with the AG interviewer, we observed

that the difference in NDCG between the top candidate
questions is often quite small. As such, we posit that a sec-
ondary ordering on another metric, e.g., DIV or SER, could
greatly improve the other qualities of the recommendations
while largely maintaining ranking quality.

We show the results of reordering the top-5% candidate
questions in Table 6 using the equal-popularity sampling
dataset. We use PPR-JOINT as the underlying recom-
mender due to its efficiency and high performance in the
main experiments. As can be seen, reordering on DIV re-
sults in a statistically significant increase in DIV, yet the
NDCG does not decrease with statistical significance. A
small decrease in ranking quality is expected, as the trade-off
between ranking quality and diversity has been documented
in existing works [48]. On the other hand, reordering on
other metrics, specifically HR and SER, does not appear to
cause a significant difference in any of the metrics.

We also consider a combination of all additional param-
eters in the reordering where the candidate questions are
ordered by the mean of all metrics, denoted AGMIX. This
approach achieves the best performance across all metrics
except on DIV, however a statistically significant increase
in DIV is afforded without loss of NDCG.

C.2 Limiting entity types
In this additional experiment, we consider the effect of

limiting an interviewer to the different broader entity types
in the KG, i.e., people, categories, companies, and decades.
We compare against the two settings used in the main body
(i.e., only REs and DEs, respectively) and a scenario where
all entities can be asked about. Due to time constraints, we
consider only the AG interviewer with a PPR-JOINT recom-
mender. Furthermore, we allow the interviewer to interview
each user with up to 50 questions. We set the maximum
adaptive depth to 10 questions and use a fixed-question ap-
proach for the remaining 40 questions. The results from

34

this experiment are shown in Figure 26, where we plot the
NDCG@10 at different interview lengths when limited to
different entity types.

We observe that asking about decades yields little infor-
mation, and its performance flattens after only a few ques-
tions. This is expected, since there are only 10 decades in the
KG and few ratings on older decades. Among the different
entity types, asking about categories (i.e., genres and sub-
jects) seems to yield the most information. From Figure 27,
which shows the rating variance and how well-known dif-
ferent entity types are, we observe that subjects have high
variance and are relatively well-known. Similarly, genres are
among the most well-known entities, with relatively high rat-
ing variance. On the other hand, movies have high variance,
but users are less likely to be familiar with these, hence the
performance on REs-only interviews is relatively low.

Finally, we observe that asking towards both REs and DEs
becomes the optimal strategy ones the interview becomes
long (> 20 questions). By means of adaptive interviews, we
can elicit coarser preferences with DEs first and then finer
preferences with REs. Indeed, inspections of the generated
decision trees show that the interviewer tends to first ask
about DEs, then a mix of REs and lesser known DEs in
later parts of the interview.

D. TIME COMPLEXITY
We now analyse the complexity of our AG interviewer, as

it is the most complex interviewer we have proposed. We
denote Ecand as the entities we can ask about, i.e., DEs and
REs, and O(S) as the complexity of the recommender. We
can then define complexity of the selection process at node
N as O(n(N) ∗ |Ecand| ∗ O(S)), where n(N) is the number of
users in node N . The overall complexity is then O

(
|Ecand| ∗∑

N∈N [n(N) ∗ O(S)]
)
, where N is the set of nodes in the

tree, s.t. |N | = dm+1 − 1

d− 1
, where d is the maximal degree of

a node and m is the interview length. The AG interviewer
is therefore exponential in the depth of the interview as it is
dependent upon the tree structure, similar to existing works
that rely on decision trees for adaptive interviews [5, 27].

While the time complexity is exponential, we found the
biggest bottleneck to be the recommender systems as the
AG interviewer is directly dependent on the complexity of
these. In the following, we explain how the practical runtime
can be reduced drastically.

D.1 Caching
As our proposed interviewing strategies support arbitrary

recommenders, exhaustively testing candidate questions on
a large subset of users can become intractable for complex
underlying recommenders on large datasets. To overcome
this issue, we have implemented caching on PPR-based mod-
els, k-NN, and MF. In our implementation, we cache the
scores over all REs given a question-answer state (i.e., finite
mapping from entities to ratings).

Caching is particularly useful in preference elicitation for
several reasons: First, since the recommenders have no ac-
cess to learned representation of cold-start users, they are
effectively stateless components that always output the same
RE scores given the same question-answer state. This is un-
like learned models in the warm-start recommendation set-
ting, where each user is represented with an individual latent
representation. Second, even though users have individual

preferences, many preferences will be similar when evaluat-
ing candidate questions. For example, consider the case of
determining an initial question for the AG interviewer. For
a single candidate question, users can either like, dislike, or
state that they don’t know it. To reduce the state space
of the cache, we can treat a “don’t know” answer as a non-
answer. With |Ecand| candidate questions, the recommender
is then invoked a maximum of |Ecand| ∗2 + 1 times assuming
there is no cache limit.

The number of possible question-answer states will in-
crease with longer interview lengths, resulting in fewer cache
hits and therefore more invocations of the underlying rec-
ommender. However, for the AG interviewer the number of
users will decrease for nodes that are deeper in the tree, re-
sulting in a smaller per-node cost. Furthermore, the users at
an arbitrary node share sentiment on the predecessor nodes.
In Figure 28, we illustrate this effect by showing the per-
centage of cache hits at different levels of an AG-generated
decision tree. As expected, we observe that deeper parts of
the tree generally incur more care misses. In addition, we
observe that the percentage of cache hits is lower for the
right part of the tree, since red branches group dislike and
“don’t know” answers. Even with a relatively larger num-
ber of cache misses in the lower nodes of the tree, caching
drastically reduces the runtime of AG models. We note that
such a form of caching is not a possibility for the embedding-
based fMF and LRMF models, since these models construct
nodes by means of optimising embeddings for all candidate
questions and users at a given node.

D.2 Performance on a large dataset
To consider the runtime performance of different inter-

viewers, we measure runtime on 5-length interview construc-
tion using a dataset larger than MR-170K and compare
against SOTA methods. Specifically, we consider the largest
available MovieLens dataset [24], containing 25M movie rat-
ings from 162K users. While larger datasets exist, our KG-
based methods are designed specifically for the movies used
in the MovieLens datasets, hence they can be used in our
cold-start framework without construction of a new KG. For
non-SOTA models, we consider PPR-JOINT as the underly-
ing recommender. Runtime for all models is measured using
the same machine with 64 GB RAM and an 8-core AMD
Opteron 6376 CPU running at 2.3 GHz. Due to time con-
straints, we allow the models to run for two days.

Model Runtime
FixedPop (FP) 3s
FixedGreedy (FG) 1h 11m
AdaptiveGreedy (AG) 1h 15m
LRMF > 5h 13m
fMF DNF

Table 7: 5-length interview construction time on different
models on the MovieLens 25M dataset. DNF indicates that
the model did not finish within the time window.

From Table 7 we observe that the runtime of AG and FG
is quite similar, despite that FG only has to select questions
five times. However, this is in compliance with our expec-
tations given the effect of using caching in AG interviews,
as described in subsection D.1. In terms of the SOTA mod-
els, unfortunately none of them managed to finish interview

35

1 5 10 15 20 25 30 35 40 45 50
Interview length

0.07

0.08

0.09

0.10

0.11

0.12

ND
CG

@
10

All DEs
All REs
All entities
Categories
Companies
Decades
People

Figure 26: NDCG@10 at different interview lengths where an AG interviewer using a PPR-JOINT recommender is limited to
different entity types.

Subject
(57.52%)

Movie
(41.39%)

Director
(29.46%)

Actor
(36.11%)

Genre
(77.85%)

Company
(47.79%)

Decade
(79.32%)

0.0

0.2

0.4

0.6

0.8

V
ar

ia
nc

e
of

 ra
tin

gs

Figure 27: Variance and how well-known different entity
types are. Percentages denote the fraction of all ratings for
an entity type that are binary ratings, i.e., not “don’t know”
ratings.

construction. LRMF managed to construct a 1-length in-
terview but ran out of memory. In the case of fMF, it did
not manage to finish within the time window of two days.
We note that even on the much smaller MR-170K dataset,
construction of a 10-length interview took several days. We
expect that fMF is even slower on the MovieLens dataset as
its time complexity depends on both the number of entities
and number of ratings per user [5].

More generally, we note that few works have focused on
the runtime performance of models for preference elicitation.
Our implementations of the DQN and DDPG interviewers
were an attempt to alleviate this long runtime, yet more
research is required to make these methods viable. While
fMF in particular appears to be very slow, this is to be
expected from how the greedy question selection strategy is
implemented in the model. At every node, fMF learns an
optimal user embedding for representing all users at the node
and records the loss using this representation to predict the

99.76%

99.66% 98.52%

96.45%

92.28%
92.05%

99.31%

98.42% 98.20%

95.89%96.65%

77.23% 93.95% 87.73%
92.61%

Figure 28: Percentage of cache accesses being cache hits dur-
ing question selection in the nodes of an AG-generated deci-
sion tree. Green branches indicate likes, while red branches
indicate dislikes and “don’t know” answers.

users’ ratings for a candidate question. This procedure must
take place for all remaining candidate questions (limited to
the top-100 most popular entities in our experiments) so the
candidate question leading to the lowest loss can be selected,
which is inherently a very complex procedure even with a
small number of candidate questions.

LRMF alleviates part of this issue with fMF by effectively
cutting the decision tree in half and replacing the remaining
questions with a fixed set of questions identified by means
of the Maxvol algorithm, which is much more efficient than
building individual nodes by means of testing all candidate
questions individually. In our AG approach, we have drawn
inspiration from LRMF in only splitting users in two groups
and allowing the specification of a maximum adaptive depth
of the decision tree.

36

	Introduction
	Cold-start interviews
	Theoretical overview
	Interviewing strategies
	Fixed-question interviews
	Adaptive interviews

	Recommenders
	Embedding-based
	Neighbourhood-based
	Graph-based

	Model implementations
	Fixed-question interviews
	Naive interviewers
	Greedy interviewers
	Meta-Learned User Preference Estimator

	Adaptive interviews
	Functional Matrix Factorisation
	Local Representative-based Matrix Factorisation
	Greedy adaptive interviewers
	Exploratory adaptive interviewers

	Recommenders
	Cold-start user embeddings
	Personalised PageRank
	Neighbourhood-based recommenders

	Data collection
	Quality of recommendations
	Particle filtering

	Related entities
	Scaling question frequency
	Statistics

	Evaluation
	Dataset
	Reproducibility
	Metrics
	Negative sampling
	Experiments
	Model selection
	Results
	Impact of interviewing strategies
	Performance of re and de interviews
	Improvement over longer interviews
	Serendipity of recommendations
	Separation task

	Discussion
	Impact of interviewing strategies
	Performance in RE and DE interviews
	Improvement over longer interviews
	Impact of recommenders
	Impact of negative sampling strategies
	Separation performance
	Comparison to state-of-the-art methods
	Instability of rl models
	Group sizes and overfitting
	Statistical significance testing

	Related work
	Conclusion
	Future work
	Improved incorporation of kg
	Improving rl approaches
	Optimising greedy question selection
	Improvements to ppr-LINEAR

	Experimental framework
	Experiment definitions
	Model definitions
	Distributed experiments

	Additional models
	Uncertainty-based models
	Graph convolutional networks

	Additional experiments
	Reordering candidate questions
	Limiting entity types

	Time complexity
	Caching
	Performance on a large dataset

