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Chapter 1

Introduction

In the field of auralization in enclosed spaces, both perceptual credibility as well as com-
putational efficiency are of essence [39]. Based on perceptual parameters and physical
phenomena in room acoustics, a plethora of models have been invented and refined [41].
Oftentimes, this process involves operations that are computationally expensive. Due to
that, numerous solutions have been developed for offline-computation, i.e. based on speci-
fied static room geometries, room impulse responses are generated for fixed receiver points
[36][6].
However, due to recent hardware developments and improvements, auralization is on the
verge of being implemented in real-time environments: With changing room geometry as
well as source and receiver locations, the room impulse responses are generated and up-
dated.
This report describes the development of a reverberator using feedback delay networks.
In the time domain, a room impulse response can be compartmentalised into three com-
ponents: The initial impulse, early reflections and a late reverberation tail [22]. The early
reflections are a filter-based implementation consisting of delay lines, lowpass and allpass
filters. The late reverberation tail is modeled perceptually with a feedback delay network,
is parametrised such that frequency-dependent reverberation times can be controlled [20].
All implementation is carried out in the Unity R© game engine [35], whereas the feedback
delay network is developed using JUCE [14]. The resulting impulse responses are then
evaluated in comparison with impulse responses from comparable frameworks [33][23].
Moreover, limitations, drawbacks and possible improvements of the the hybrid acoustic
model are discussed.

1.1 Motivation

In the context of game development, reverberation is an integral part of creating a sense
of immersion [18]. However, in large-scale projects with a large number of virtual rooms,
specifying reverberation settings for each individual room can be a tedious task. Address-
ing this issue, the objective of this report is therefore:

1. Design a perceptually plausible reverberator for indoor room acoustics.

1



2 Chapter 1. Introduction

2. Account for a set of room acoustics parameters, such as room size, absorption char-
acteristics and source-receiver distance.

3. Leave room for design parameters by game developers.

Given these objectives, a suitable extension of the feedback delay network is deployed
[20]. This allows for sensible parametrisation of the room impulse response, which is ex-
plained in chapter 2. An extensive derivation of filter models, the feedback delay network
and its parametrisation is given in chapter 3. Implementation details using the real-time
audio development framework JUCE [14] and the game engine Unity R© [35] are covered in
chapter 4. Subsequently, the proposed reverberator is tested against 2 commercially avail-
able frameworks on its accuracy and perceptual qualities. The results and test setup are
reviewed critically and this report is concluded with remarks on possible improvements,
extensions and outlooks.



Chapter 2

Related Works

This section provides an overview of components and procedures to achieve auralization
digitally. A set of psychoacoustic phenomena is described, along with models and sim-
plifications that approximate these phenomena. Moreover, the properties of room impulse
responses are explained and a selection of room reverb approximations are given.

For clarity, the terms sound source and emitter are used interchangeably throughout
this chapter, so are the terms listener and receiver.

2.1 Reverberation

Vorländer established two principal components of auralization: The spatial impression
and the local impression [38].

As a high-level abstraction, reverberation constitutes the effect that a given room has on
a signal that is emitted by a sound source and reaches the receiver [39]. An established set
of effects are frequency absorption by the propagation medium (air), damping, absorption
by materials as well as scattering and energy loss at surfaces with sound propagating
at c = 343 m

s at a room temperature of 21◦C. The influence of these properties can be
captured in a room impulse response (RIR), assuming that these influences are of linear
behaviour. Convolving any arbitrary signal emitted by a sound source with said room
impulse response constitutes the reverberant signal [39].

2.1.1 RIR Properties

The overarching property of room impulse responses its exponential decay over time.
Therefore, a metric to evaluate room impulse responses is the time at which its energy
decays to a certain level. The RT60 describes the time needed until the sound pressure level
has decreased by 60 dB less, relative to its original impulse:

RT60 = 0.161
V
A

(2.1)

3



4 Chapter 2. Related Works

with A = αS, S being the surface area of a given room, α the absorption coefficient of said
surface and V the volume of the room [39].

Similarly, Barron et.al. established a compartmentalization scheme for room impulse
responses in the time domain [2]:

1. Direct impulse (1 - 5 ms)

2. Early reflections (6 - 200 ms)

3. Late reverberation tail (> 200 ms)

Described by Gardner, the early reflections of a room represent the acoustic modes
that are innate to the room due to its geometric properties [8]. After a certain point, these
modes overlap such that the reflections appear randomized and therefore resemble a noise-
like signal [13]. Due to that, a set of approximations have been developed to recreate these
properties.

2.1.2 Geometric Models

In its most basic form, reverberation can be achieved by the analysis of a three-dimensional
space and inferring a set of physical properties [41]. Based on source-receiver positions as
well as room dimensions and assumptions about wave propagation, geometrical models
of room reverberation offer a way to derive a room’s impulse response. The image-source
reverberation model by Allen and Berkley reproduce reflections by mirroring a source at
the room’s boundaries and produces deterministic results [1], as the receiver’s, emitter’s
and boundary positions are known. The model has laid groundwork for many extensions
ever since [5], yet does not account for scattering at boundaries. Furthermore, it is assumed
that waves travel along straight lines.

Similar in its approach is the concept of ray tracing. While the receiver’s, emitter’s
and boundary positions are known, the ray tracing algorithm emits a number of rays in
randomly distributed directions. Those rays, that intersect with the receiver constitute the
impulse response [36]. This accuracy of the algorithm can be extended by increasing the
number of rays. However, due to its stochastic approach, this method leads to increased
computational time [39].

Recent advancements by Raghuvanshi et. al. incorporate a custom solver for the wave
equation and allow for pre-computing the room impulse response at certain positions
and interpolating between them [22]. In the light of current hardware improvements for
interactive applications, it can be assumed that this approach is of relevance in applied
research in the near future.

2.1.3 Algorithmic Reverberation

As stated initially, the modelling of sound propagation relies on making simplifications
and assumptions about its effect on a signal. First developed by Schroeder, the series of
reflections caused by a room are recreated using a series of allpass filters. This filter type
has a flat frequency response, yet has an effect on the phase component of the input signal.
The length of the cascaded filters correspond to the size of the room that is approximated
[29]. This basic filter model has been extended by Moorer, which incorporates a lowpass
filter to simulate the high frequency absorption caused by air [37].
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As the frequency response of the Schroeder allpass cascade depends entirely on the
individual delay line lengths, the frequency response of this reverberator is oftentimes
uneven. Therefore, it is not a suitable method to model the noise-like late reverberation tail.
Established by Jot and Chaigne, the feedback delay network solves this issue. By analysing
and constraining the eigenfrequencies of the reverberator, a late reverberation tail with
an even frequency response can be achieved [13]. The basic feedback delay network has
been extended and parametrised in various ways to improve its parametrisation and pulse
density [20][26]. An extensive analysis is given in chapter 3.

2.2 Binauralization

The second phenomenon established by Vorländer is Binauralization [39]. Therefore, the
basic concepts and properties of binauralization are dissected and explained.

Constituted by Blauert et. al., the human anatomy adjacent to the ears is mainly re-
sponsible for the human ability to localize sounds [4]. The shape of a person’s head, the
position of the shoulders and the form of the pinna influence the sound waves that reach
the eardrum. Assuming again that all these influences are linear, this effect can be char-
acterised by an impulse response. As the human head is the reference in this impulse
response, it is therefore referred to the head-related impulse response (HRIR). Similarly,
the head-related transfer function (HRTF) represents these effects in the frequency domain.
Hence, convolving any arbitrary signal with a HRIR will result in the binauralized signal.

HRIRs are usually indexed by the emitter’s position relative to the listener in polar
coordinates, where ϕ denotes the angle on the horizontal plane (azimuth), Θ the angle on
the sagittal plane (elevation) and r the respective distance.

There is a plethora of influences that improve or diminish the perceptual qualities of
HRIRs, summarised in system theory form by Völz [42]. Yet, two factors are of importance:

1. Interaural level difference (ILD): The effect, that the incoming sound pressure will
be different for both ears depending on the angle between the source and the lis-
tener [3]. This is due to the distance between the source and the left and right ear
respectively.

2. Interaural time difference (ITD): The delay between the left and the right ear when
subjected to an auditory stimulus.

It is important to note that this is only a subset of all physiological and cognitive aspects
of spatial hearing and mostly Blauert, Moller and Vorländer’s work are of significance to
this field [4] [17] [39]. Generally, the recording of an HRIR and its playback bear many
factors that could diminish its perceptual plausibility [42]. Yet, a notable determining
factor is the personalization of HRIRs. As explained above, the human anatomy shapes
how sound is received, which is individually unique. Therefore, recent advancements in
this field include simplifying and improving the personalization process of HRIRs by e.g.
leveraging machine learning [32].
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2.3 Frameworks and Projects

As of this date, a plethora of different frameworks and libraries exist to model impulse
responses. A selection with relevance to this project is given below:

• Evertims: Developed by Poirot et. al., this is an extension to the 3D and physics
simulation engine Blender R© [7]. The early reflections are computed using the image
source model described previously. The late reverberation tail is based on a feedback
delay network [19]. It offers binauralization options, ambisonic rendering support
and dynamic impulse response calculation based on the room geometry specified in
Blender.

• Wayverb: This project developed by Reuben Thomas at the university of Hudders-
field uses the image source model to find early reflections. The late reverberation tail
is approximated by a ray tracing algorithm. Moreover, low-frequency room modes
are found using a digital waveguide mesh [36]. The developed application computes
the room impulse response offline for later usage.

• RAVEN: Implemented by Vorländer and Schröder at RWTH university in Aachen,
this framework also computes the impulse response based on the image source
model and stochastic ray tracing techniques [30]. It also incorporates other effects
such as diffraction and allows for flexible geometry during runtime [30].

2.3.1 Summary

As a high-level abstraction, the propagation behaviour of a room can be defined by its im-
pulse response, assuming that these influences are linear. Although some physical effects
of room reverberation such as scattering at boundaries are not linear [24], many geometric
models have been developed to derive a room’s impulse response [1]. Simultaneously,
the algorithmic models using filter theory incorporate these effects as well. Based on the
Schroeder allpass filter, the plausibility of these effects have improved with parametetrised
models of comb filter structures and feedback delay networks [13].

The second component, binauralization, incorporates the effects that the human anatomy
has on the emitted signal. Again, these effects are assumed to be linear, so that these can be
replicated by a head-related impulse response. Recent efforts include the personalization
of HRIRs with leveraging modern machine learning techniques.



Chapter 3

Fundamentals

As established in section 2, the overarching premise of algorithmic reverberation is to
assume that all modeled acoustic phenomena are linear and can thus be described by a
linear, time-invariant system. Therefore, convolving any arbitrary signal with the system’s
impulse response will result in the reverberant version of that signal. In this chapter, the
underlying principles of algorithmic reverberation are covered. Starting with the early
prototypes and later on covering more sophisticated systems, the structure of each section
consists of stating the underlying idea, its mathematical implications and the problems and
shortcomings it encounters. As a general convention, fs represents the sampling frequency,
y[n] the output and x[n] the input of a system at a given discrete time step n. Variables
named b denote feedforward coefficients, a denote feedback coefficients. ω represents the
radial frequency, T = 1

f s and j =
√
−1.

3.1 Comb Filter

In its most simple form, the comb filter consists of a delay element and a feedback path,
scaled by a coefficient. This can be expressed as follows:

y[n] = b0x[n]− ay[n−m] (3.1)

with m being the length of the delay element. With this structure, the impulse response of
this filter is infinite, as the feedback path feeds the system continuously. In the frequency
domain, this filter introduces poles at multiples of m, with its transfer function

H(z) =
Y(z)
X(z)

=
zm

zm − a
(3.2)

assuming that b0 = 1.
On the unit circle, this filter can be interpreted as a system with m poles in equal

distance to the origin, which are in turn dependent on a and zeros where zm = a.
Similarly, this filter can be implemented as a feedforward filter by:

y[n] = b0x[n] + bMx[n−m] (3.3)

This, in turn, introduces zeros at the multiples of m.

7



8 Chapter 3. Fundamentals

Figure 3.1: Frequency Response of a feedback comb filter

3.2 Allpass Filter

As established by Schroeder, coalescing a feedback and feedforward filter yields an allpass
filter. Combining eq. 3.3 and 3.1 results in

y[n] = b0x[n] + x[n−m]− amy[n−m] (3.4)

Taking the z-transform yields

H(z) =
Y(z)
X(z)

=
b0 + z−m

1 + amz−m (3.5)

Assuming b0 = am and substituting z with the complex sinusoid e−jωT results in the
magnitude response [31]

|H(e−jωT)| = | a + e−jωMT

a + ejωMT | = 1 (3.6)

As an abstraction, the zeros of the feedforward path cancel out the poles of the feedback
path, as shown in fig. 3.3. The system’s frequency response is flat as indicated in fig 3.2. It
does however introduce drastic phase shifts. With this property, the concept of the allpass
reverberator by Schroeder aims to model overlapping reflections in a given room. [29].

With these components at hand, the initial prototype by Schroeder and Logan consists
of a structure of parallel comb filters followed by serialized allpass filters, as presented in
fig. 3.4.
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Figure 3.2: Frequency Response and Phase Response of 4th order Allpass Filter

Figure 3.3: Pole-Zero plot of 4th order Allpass Filter

Figure 3.4: Comb filter structure proposed by Schroeder and Logan in [29]
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3.3 Feedback Delay Network

Having introduced Feedback Delay Networks in section 2.1, a few questions arise:

• How to extend the feedback comb filter whose resulting impulse response fulfils the
characteristics of a room impulse response described in section 2.

• How to find a sensible relation between LTI systems and perceptual qualities of
reverberation such as the T60 reverberation time.

• How to tune the comb filter structure in such a way, that accurate frequency-dependent
reverberation times can be achieved.

3.3.1 Topology

Introduced by Jot and Chaigne in 1991, the Feedback Delay Network proposes the follow-
ing improvements to the aforementioned comb filter structure: Following the perceptual
qualities of room impulse responses described in section 2, the pulse density has to in-
crease linearly over time. Moreover, the frequency response of the system should be flat at
all times to incorporate the noise-like perceptual quality of a room impulse response.

In the solution by Jot and Chaigne, the parallel comb filter structure remains. Yet,
to increase the pulse density, a matrix in the feedback path of all comb filter is inserted.
Conceptually, this allows each parallel comb filter to be connected to the remaining comb
filters of the system. To ensure stability, the feedback matrix is chosen to be unitary.

3.3.2 Attenuation Filter

A second major suggestion by Jot and Chaigne is to introduce an attenuation filter to
allow for a frequency-dependent reverberation time, which is explained as follows: Given
a single feedback comb filter, an attenuation filter with the transfer function A(z) is inserted
at the end of the delay line. The choice, structure and sophistication of this attenuation filter
determines, to which degree the resulting feedback delay network can be parametrised
[13]. Inserting this attenuation filter results in the following transfer function of the comb
filter structure:

H(z) =
1

1− A(z)z−m (3.7)

From eq. 3.7 alone, it is evident that A(z) is dependent upon the length of the delay
line m.

Replacing z with the complex sinusoid, the magnitude response of the attenuation
filter can be written as a function of ω in dB:

A(ω) = 20 log10|A(ejω)| (3.8)

Bearing in mind that T60 is usually expressed in seconds, the individual gains for a
frequency band with center frequency ω can be achieved by finding a certain gain γ for
this specific band. This can be calculated according to [13]:

γdb(ω) =
−60

fsT60(ω)
(3.9)
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In principal, the attenuation filter could be any arbitrary filter structure. In its original
implementation, a lowpass filter was used. In recent extensions, a graphical equalizer for
a frequency-dependent reverberation time was used [20]. Therefore, the reasoning and
relations in the works by Prawda et.al. will be presented [20].

Recalling the delay line element in the feedback comb filter, the consequence is that
longer delay line decay faster than short delay lines. From a design perspective, the desired
reverberation time in seconds is usually known and should be achieved. Relating the
absorptive filter to the desired reverberation time, the following condition needs to be
fulfilled [20]:

AdB(ω) = MγdB(ω) (3.10)

3.3.3 Graphic Equalizer

As mentioned, the approach taken in [20] and implemented in this project utilizes a graphic
equalizer with fixed frequency bands. Structurally, a graphic equalizer is a series of peak
filters, in this case a second order peak filter as described by Orphanidis in [25]. Given N
peak filters with an overall gain of g0, the magnitude response of the entire series of peak
filters can be formulated as:

HdB(ejω) = g0 +
N

∑
n=1

HdB,n(ejω) (3.11)

Given in [25], a peak filter can be described by its center frequency, bandwidth and
gain. When cascading peak filters, one inherent issue is the gain of one peak filter leaking
of into the subsequent peak filter. Unless the peak filters are purposely designed to have a
very small bandwidth, this effect is likely to take place. In the delicate case of the graphic
equalizer being responsible for controlling the reverberation time of a certain frequency
band, this can lead to instability. As proposed in [40], this issue can be overcome by storing
the magnitude response of each individual peak filter on K additional frequency points.
Given a graphic equalizer of N cascaded peak filters, the interaction matrix between all
filters within the graphic equalizer structure can be stored according to [40]:

Bk,n = HdB,n(ejωk )/gp,n (3.12)

Recalling the topology of the Feedback Delay Network, gp,n is the gain factor which is
common to all graphic equalizers on each comb filter path. Having covered the graphic
equalizer, this can now be used as the attenuation of the Feedback Delay Network. Recall-
ing eq. 3.10, γ can be replaced by B, yielding the following:

A(~ω) = Bgp (3.13)

in which A(~ω) is now a vector of K frequencies.
With this interaction matrix at hand, it can be ensured that additional leaking of gains

between bands will not cause any stability issues. However, if neighbouring octave bands
in the attenuation filter differ dramatically in their respective gain, the error between the
target reverberation time and the reverberation time of the feedback delay network will be
increased. In addition to the aforementioned gain optimization, the difference between the
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reverberation time computed in eq. 3.10 and eq. 3.13 needs to be minimized using linear
least square methods [20]. Defining Ẽ as the relative error, this can be computed as:

Ẽ =

∣∣∣∣∣∣∣∣ 1
A(~ω)

− 1
Mγ(~ω)

∣∣∣∣∣∣∣∣2
2

(3.14)

In summary, it can be stated that the Feedback Delay Network introduces two addi-
tional components to the comb filter structure described by Schroeder and Logan in [29].
First, the feedback paths are extended by a matrix, which allows the parallel comb filters
to introduce "crosstalk" to its adjacent paths. Moreover, the introduction of an attenuation
filter allows for frequency-dependent reverberation times. Depending on the choice and
complexity of the attenuation filter, the individual tuning of the impulse response in in-
dividual frequency bands can be more or less extensive. As suggested by Prawda et.al in
[20], a graphic equalizer in the form of cascaded peak filters can be used as the attenua-
tion filter. To overcome leaking between bands, an interaction matrix as explained in [40]
constitutes the magnitude response of the attenuation filter.

Figure 3.5: Feedback Delay Network Structure

3.4 image source Model

Although the image source Model was not directly implemented in this project, a lot of its
concepts were modeled and referenced. Therefore, the theoretical background is covered
in this section.
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3.4.1 Terminology

As the image source Model pursues a different room approximation than the aforemen-
tioned Feedback Delay Network, some new terms and symbols are defined. This follows
the original implementation by Allan in Berkley [1]:

• Room dimensions: l, w, h

• Listener location~r

• Source location~s

• Absorption coefficient α, 0 ≤ α ≤ 1

• Speed of sound c = 343 m
s

3.4.2 Assumptions and Simplifications

At its most general level, the image source Model approximates a room impulse response
with a time series of scaled and time-shifted impulses. Whenever a source emits a signal,
its first order reflection can be modeled as a mirrored source at the respective boundary [1].
From there, second and higher order reflections can be computed recursively. Assuming
that c is constant, the appropriate delay and volume of the impulses reaching the receiver
can be computed.

To understand the implications of the image source Model on the room impulse re-
sponse, the following assumptions have to be made:

• Sound propagates at straight lines (rays)

• Rays reflect perfectly at boundaries, i.e. no energy loss at boundaries due to nonlin-
ear scattering is included in the calculation

• When a ray intersects a boundary, it spawns a secondary source at the mirrored
position of the original emitter relative to the boundary

This implies, that any nonlinear effects such as scattering at boundaries are neglected
by the image source Model.

3.4.3 Computation

First, the dirac delta function is given by [31]:

δ(n) =

{
1 if n = 0
0 otherwise

(3.15)

Given a single source at position p and a single ray that intersects a boundary at point
t with normal vector n, the image source position p′ can be calculated as given in [36]:

p′ = p− 2n(n(p− t)) (3.16)

For a single image source, the distance d to the receiver can be computed trivially:

d =
√
(rx − sx)2 + (ry − sy)2 + (rz − sz)2 (3.17)
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The delay τ introduced by the distance d between the source position ~s and receiver
position~r is given by [36]:

τ =
d
c

(3.18)

Therefore, the entire impulse response can be described by the sum of scaled and
shifted impulses [5]:

Assuming that the boundary intercepted by ray w has an absorption coefficient α, the
gain g of the impulse contributed by the image source is given by

g =
1
d

αw (3.19)

Being able to compute g, d and τ for each image source, we can calculate the entire
room impulse response as the sum of all individual impulses [5]:

hISM(n) =
I

∑
i=1

giδ(n− τi) (3.20)

Figure 3.6: Calculation of image source positions for a single source, receiver, boundary and ray

3.4.4 Computational Cost

While it’s not entirely obvious in eq. 3.20, this algorithm runs with exponential time com-
plexity by its reflection order [5]. The approach of the model implies that for each order,
each image source will have as many children as there are rays that intersect with a bound-
ary. However, a series of validity and audibility checks are made, by which the number
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of valid image sources is reduced [1]. Realtime implementations using multithreading
techniques have been achieved and integrated into the Unity R© game engine in [9]. While
the image source Model is potentially more intuitive to understand and based on geome-
try, simple algorithmic reverberators such as the feedback delay network outperform it in
terms of computational complexity. In recent years, attempts have been made to model the
increasing pulse density inherent to the image source Model with feedback delay networks
[27].





Chapter 4

Implementation

In this chapter, a rundown of all technical tools for the implementation of the reverber-
ator are presented. As mentioned in the introduction, a plugin for parametrised room
reverberation is the overarching objective of this project. Given that these have to happen
in real-time, minimal and optimized computation at runtime are paramount. Therefore,
a set of tools were chosen to help in this process. Furthermore, a timeline of failed and
succeeded attempts and learnings are presented in a timeline-like order.

4.1 Technical Overview

4.1.1 Unity R©
First released in 2005, the Unity R© engine has become a popular application for creating
interactive experiences [35]. It consists of a plethora of renderers, creation, build and
scripting tools to prototype quickly. With its recent advancements, the engine aims to
run efficiently on most architectures by parallelizing and vectorising machine code using
proprietary compiler and memory management tools [35].

In this work, the most significant section of the engine is the AudioMixer module. With
a structure that is similar to most digital audio workstations, audio emitters in the game
hierachy can be connected to channels within the AudioMixer environment. Each channel
provides volume control and an effect section, where plugins can be inserted. This is where
the reverb is applied to the signal.

4.1.2 JUCE

Initially published in 2004, the JUCE framework aims to ease the creation of audio plugins
and real-time audio applications [14]. It contains a comprehensive set of helper classes
and tools, which both improve user interface design and algorithm design. In this context,
it’s been used to compile native C++ code into a proprietary plugin format to be read by
Unity R©.

17
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4.1.3 Eigen

As described in Chapter 3, the solutions for a frequency dependent feedback delay network
depends on solving equations using linear least squares methods. For ease of use, the C++
library Eigen has been deployed. It consists of a multitude of containers and supports,
linear algebra operations, indexing operators and vectorisation of instructions [11]. As the
creation of a sensible linear algebra library has been deemed as overscoped for this project,
the Eigen library has proven to be a useful asset during implementation.

4.1.4 SOUL

As described later throughout this chapter, a Feedback Delay Network is a complex struc-
ture of filter elements. As a prototyping environment, the emerging domain-specific lan-
guage SOUL has been utilized. With a c-like syntax, SOUL aims to ease the implementation
of audio effects and abstract more complex aspects of low-level languages away without
losing performance or precision [34]. As of now, a multitude of cross-compilers exist, e.g.
to export SOUL code to C++. In this project, SOUL has been used to prototype peak fil-
ters, delay lines, lowpass filters and a primitive version of the Feedback Delay Network
described in [13]. Example code can be found in the appendices.

4.2 Initial Implementation Plan

Recalling the objectives of this project described in chapter 1, the real-time implementa-
tion of a reverb with sensible parametrisation was defined of the main objective. With the
utilization of multi-threading techniques and sensible separation of operations, the image-
source model described in section 3.4 has already been implemented as a .dll solution
for the Unity R© Engine. However, in recent advancements, Unity R© has put a considerable
effort into parallelising operations, as for example described in the context of light render-
ing in [12]. Therefore, the initial premise was to employ Unity R©’s native capabilities, such
as its built-in raycast system to track image source positions and thus compute an impulse
response based on room geometry. A prototype of the position tracker can be found be-
low. With a number of 360 raycasts around one source object, the CPU profiler in Unity R©
did not show any significant performance spikes, so that from a performance standpoint,
this implementation could potentially be done without any dynamic linking and explicit
multi-threading instructions. However, a number of obstacles were introduced, among
others the following:

• As described in section 3.4, the number of image sources grows exponentially by
increasing order. Therefore, it is sensible to store each image source position in a
tree-like data structure. As of now, this data structure is not yet supported by DOTS.
Therefore, crow-barring the ISM into DOTS would likely make it less usable.

• The only way to store data using Unity R© DOTS is sequentially. For every image-
source model with a higher order, this storage paradigm would get inconvenient to
work with.

• As of now, there is no way to write the elements of any buffer into a .wav file
using Unity R© DOTS. This is crucial if it is desired to later convolve signals with the
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impulse response generated by the image-source model.

After consideration, the endeavour to implement the image source model natively in
Unity R© was abandoned. For this to succeed, it was concluded that the DOTS system
would have to mature more. Nevertheless, the idea itself is worth pursuing. It could also
be implemented as an offline tool, which calculates a static room impulse response from
existing 3d geometry before run-time. Furthermore it lead to some simplifications and
assumptions, which lead to the implementation proposed in the following section.

4.3 Early Reflections

Recalling section 3.4, the distance, delay and volume of a single image source can be cal-
culated [5]. From there, secondary and higher-order image sources can be computed.
However, following the paradigm in section 2.1 and the findings by Jot and Chaigne in
[13], it can be assumed that due to the high pulse density in the early reflection phase of
an impulse response, the exact temporal position of individual pulses will not be distin-
guishable. Therefore a filter structure similar to [29] is presented, containing the following
elements:

1. A parallel path containing a single delay line element, a lowpass filter and a gain
coefficient for each boundary. As the volume is dependent of a single impulse de-
scribed in eq. 3.19, the lowpass filter acts as a simplified tone control parameter.
Although absorption coefficients are usually given per frequency band and could
potentially be controlled with a more sophisticated graphical equalizer, this would
also increase the overall complexity.

2. All paths are summed and sent through 4 serialized allpass filters described in chap-
ter 3. This is to compensate the pulse sparsity, which would otherwise be dependent
on the number of the previously-described paths.

With this simple filter structure, it is both possible to control the delay introduced by
the distance between the image source and the receiver as well as some basic tone control.
The lowpass filter was implemented as proposed by Vadim Zavalishin in [44]. The allpass
filter lengths were chosen as provided in [43] and evaluated to work well for small to
medium-sized rooms. The individual delay line lengths are capped at 10000 samples.

4.4 Late Reverberation Tail

For the late reverberation tail, the feedback delay network proposed in [20] and explained
in chapter 3 has been used. The attenuation filter for each path in the feedback delay
network is comprised of a cascade of peak filters. Modifying the gain of the peak filters
results in a parametrisable reverberation time for each specified frequency band. To be
conform with the subsequent evaluation described in 5, the number of frequency bands
is limited to six bands with ~ω = {125, 250, 500, 1000, 2000, 4000}Hz. It is important to
know that an existing implementation by Willemsen and Prawda [20] has been utilized
and modified to fit the needs of this project.
Similar to the approach taken in 4.3, the feedback delay network can be broken down into
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individual processing blocks, namely peak filters, coefficients, delay lines and feedback
connections. Therefore, these individual blocks were implemented as individual classes,
which are then instantiated and reused. For the peak filter, the method proposed by
Orphanidis in [25] was implemented. The complete structure of the reverberator, meaning
the direct signal, the early reflections and the late reverberation tail can be found in figure
4.1

Figure 4.1: Complete Structure of the designed Reverberator

4.5 Parameter Automation in Unity R©

Once compiled, the reverb plugin is ready to use in any Unity R© environment. So far, the
only parametrisable section of the reverb is the early reflection filter structure. To change
the incoming early reflections, a C# script in Unity R© was created which automates the
delay and volume of the parameters during runtime. Additionally, the lowpass frequency
for each path in the filter structure can be set before runtime to simulate different boundary
materials and their absorptive behaviour.

The delay for each boundary follows the receiver position in relation to the boundary
position. The farther the receiver is away from the audio source, the greater the delay will
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be set. Similarly, the volume of a single reflection will decrease as the distance between the
boundary and the receiver increases. In addition to the individual reflections, the sum of
all early reflections are automated by the average distance of the receiver to the boundaries
in a room. Furthermore, the volume of the late reverberation tail increases, as the distance
between the receiver and the audio source increases, so that the direct signal of the audio
source is decreased.

4.6 Technical Obstacles

Over the course of of the implementation phase of this project, a number of issues were
encountered, which are explained in this section.

Recalculation of Late Reverberation Tail

The feedback delay network structure by Prawda et.al. suggests a cascaded peak filter
structure as the attenuation filter for each path [20]. However, due to the potential leaking
of adjacent frequency bands, the computation of the coefficients for the desired reverber-
ation time per band relies on multiple matrix calculations per time step. To abide the
objectives of this project given in chapter 1, namely real-time computation, these calcu-
lations are deemed to exceed the permitted runtime calculations. Broadly speaking, this
wouldn’t yield a significant disadvantage in terms of usability: In the context of an in-
teractive application, the rooms are assumed to have a fixed size and therefore a constant
reverberation tail. Unless a room needs to be resized during runtime, this trade-off is worth
taking. Instead, the next best solution would be to calculate the reverberation time before
the host application starts rendering any audio output. In the JUCE framework explained
in section 4.1.2, there are three functions which execute sample calculations:

• prepareToPlay(): Executed before the host application starts rendering audio sam-
ples, e.g. when the user of a DAW presses on play.

• processBlock(): Executed during playback, in which an audio buffer is fetched,
processed, and returned to the respective audio device.

• releaseResources(): Executed after the application stops rendering audio samples,
e.g. when the user of a DAW presses stop.

The issue of this procedure lies in the fact, that it is the host’s responsibility to call
these functions at the correct point in time and has been described in numerous threads
within the developer community [21]. In the case of Unity R© being the host application,
preparetoPlay() does not get called. In consequence, the desired reverberation times have
to be known before compiling the plugin and for each desired room size, a complementary
version of the plugin has to be exported. In the scope of the evaluation of this project, this
did not pose a problem, yet in large-scale game applications, this would not presumably
diminish the plugin’s user-friendliness.

Frequency instabilities

Despite the measures described in chapter 3, the feedback delay network became instable at
certain frequencies after long periods of running (> 1 minute). After extensive debugging
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and error-checking, no apparent reason for this has become evident. Therefore, the gain
coefficient of the feedback delay network out put was capped at 75 %. Furthermore, a 1st
order Lowpass filter as described in [44] was inserted after the feedback delay network
was inserted, whose cutoff frequency fc = 10000Hz was determined experimentally.

Parameter Scaling

During implementation, it was found out that despite the averaging of the distances be-
tween the wall and the receiver, significant jumps in the volume of the early reflection’s
volume occurred. The same behaviour happened for the volume of the late reverberation
tail. Therefore, the actual values which drive the parameters of the plugin were scaled by
values, which were found experimentally, to keep it within a the allowable range.

4.7 Summary

Concluding the implementation done in this work, the core components consist of the plu-
gin developed in JUCE using C++ as well as a script which automates its parameters. The
reverberation times of each frequency band for the late reverberation tail remains constant
during runtime, only the overall volume of the tail is automated. The early reflections are
modeled as 4 parallel delay line paths with a lowpass filter and a gain coefficient. Based
on the Image-Source Model explained in section 3.4, it is assumed that all impulses after
the first order can be modeled by a series of allpass filters. With these simplifications at
hand, the reverb can run in real-time and the early reflections are updated based on the
listener position relative to the audio source and the room’s boundaries.
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Evaluation

To classify the perceptual qualities and accuracy of the reverberator described in section 4, a
2-fold evaluation is performed. 2 freely available extensions for the Unity R© engine, which
achieve objectives similar to the ones in this report, are compared with the reverberator
of this project. In this chapter, the frameworks, the test setup and the environment are
presented.

5.1 Technical Overview

Analysing the reverb in this project in terms of its capability to make parameter changes
during playback, it can be stated that the reverberation tail is fixed, yet the early reflections
can update in accordance with the relative position between the receiver, source, and room
boundary positions. Having this set of capabilities at hand, it is sensible to compare the
reverberator to 2 presumably more accurate and sophisticated reverbs. It is important
to note that while these frameworks are well-documented [33][23], the actual technical
and computational schemes behind these reverberators are only partly or not published.
Therefore, the descriptions of these frameworks are a combination of paper analysis and
inferences that can be made based on their documentation.

5.1.1 Google Resonance

First published in 2018, Resonance Audio is a software development kit which extends
existing game engines, audio engines and digital audio workstations [23]. Its features are
comprised of a binaural renderer as described in [10] as well as 2 different reverberators.
In Unity R©, the binauralization works by attaching the scripts ResonanceAudioListener
and ResonanceAudioSource to the respective objects within the virtual environment. Sim-
ple algorithmic reverberation is achieved by attaching the script ResonanceAudioRoom to
an object. From there, a set of parameters such as the reverberation time as well as per-
ceptual super-parameters such as "Brightness" can be tuned. Furthermore, a geometry-
based reverb tail can be calculated by using the scripts ResonanceAudioReverbProbe and
ResonanceAudioAcousticMesh. The reverberation tail is then computed before the scene
can be played.

23
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In this project, the reverberator developed in this project was compared to the algorith-
mic reverb of the Google Resonance SDK.

5.1.2 Steam Audio

Initially released in 2017, the Steam Audio Library augments the Unity R© engine in a
similar fashion as Google Resonance. It consists of a custom binaural renderer and a
geometry-based reverberator. Within a Unity R© environment, the binaural renderer is en-
abled by attaching the scripts SteamAudioListener and SteamAudioSource to the respec-
tive objects in the scene. Furthermore, any number of boundaries (e.g. walls, ceilings,
floors, doors, windows) can be tagged with a SteamAudioMaterial script. The compo-
nent SteamAudioProbeBox acts as a virtual microphone, from which the room impulse
response is computed. The number of microphones in the given space can be customized,
which increases the resolution at the cost of increased computation. The reverb is then pre-
computed ("baked") before run-time. Whether or not the system relies on a deterministic
model such as the image-source model described in section 3.4 or on a stochastic model,
is not known. Yet, as the reverberator computes all signals offline, it can be considered as
the most sophisticated model of all addressed in this work.

5.1.3 Test Environment

Recalling the motivation and main objective of this project described in section 1.1, a sensi-
ble method to evaluate the reverberator is within an interactive game environment, which
is explained as follows:

For test conduction, a simple scene in Unity R© was constructed, consisting of a rect-
angular room with a loudspeaker placed inside it. Furthermore, a simple camera con-
troller enabling a 1st person perspective and an AudioListener component was imported.
The controller can be controlled using the WASD keys on any conventional keyboard. An
AudioSource component was attached to the loudspeaker, which plays back a small sam-
ple of a female voice, which was trimmed to conform to the conventions proposed in the
MUSHRA test setup [16]. Although a MUSHRA test was not performed in this work,
its recommendations can be considered valuable in other test scenarios and was there-
fore utilized. The room’s boundaries were completed with a material component which
resembles wood.

With the sizes and dimensions of the room’s boundaries as well as the given material
in place, the individual reverberation times were calculated per band according to eq. 2.1
with absorption coefficients given by [39] and given as follows:

Frequency (Hz) Reverberation Time (seconds)
125 1,26
250 1,60
500 2,07
1000 3,91
2000 3,52
4000 3,19

, resulting in an average reverberation time of 2.59 seconds.
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Figure 5.1: 1st person view of the virtual test environment

With this information at hand, the self-developed reverberator was tuned such that the
individual reverberation times are met numerically.

The reverberator by Google Resonance does not have such a precise parametrisation,
such that individual frequency bands can be tuned individually. Instead, the reverb as-
sumes that only rectangular rooms with 6 surfaces are used. The surface materials can be
chosen from a pre-defined list, in this case, the setting "Interior Wood" seemed the most
fitting. Moreover, the parameters "Reflectivity", "Gain", "Brightness" and "Time" serve to
tune the reverberator. The first 3 were determined experimentally, while the parameter
"Time" was set to the average of the calculated reverberation time. Whether or not this
value is actually mapped to the T60 value described in chapter 2.1 is not apparent.

The reverberator by Steam Audio has a similar black-box like behaviour. As described
above, the reverb computes by analysing the geometry of the room. Scene objects that
represent room boundaries are tagged with a certain script, by which the framework com-
putes the reverb parameters are calculated offline. Similarly, material presets can be chosen
from a pre-defined list. Again, choosing the material preset "Wood" was found to be the
most semantically sensible in the scope of this evaluation.

5.2 Numerical Evaluation

To have a more tangible measure for comparison, the impulse responses of all 3 systems
were taken and compared. The impulse signal was generated from Matlab R©. Recalling
Vorländers definition of the 2 aspects of auralization described in section 2, local and
spatial impression respectively, it was considered useful to separate these 2 components
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as much as possible. Therefore the binauralization settings in all 3 engines was set to
minimum, such that, at best, no HRIR convolution would take place and thus colour the
results. The resulting impulse responses were then recorded from Unity to a .wav file at a
sampling rate of 48000 Hz. Subsequently, the impulse responses were normalized to unity
gain to eliminate potential attenuation caused in the recording process. The spectrograms
shown below were computed in Matlab R© with a hop-size of 2048 samples.

5.3 Subjective Evaluation

Recalling the parametrisation of the reverberator described in chapter 4, the reverberator
encompasses the features of setting a frequency-dependent reverberation time before run-
time, early reflections updating during run-time and dynamic mixing of direct ("Dry")
and reverberant ("Wet") signal parts based on source and listener positions. Moreover, the
initial objectives stated in section 1.1 states the use of the reverberator within interactive
environments. Therefore, the following criteria for a sensible comparison and evaluation,
the following categories were defined before designing the subjective evaluation:

1. Visual and auditory congruence: The perceived size of the room matches with the
perceived reverberation time.

2. Distance attenuation: The overall volume of the signal matches with the distance to
the sound source.

3. Dynamic mixing of direct and reverberant signal: The mixing between direct and
reverberant signal matches with the distance to the sound source.

4. Dynamic mixing of early reflections and late reverberation tail volume: The mix-
ing between early reflections and late reverberation tail changes in a perceptually
plausible manner.

These four categories should then be evaluated in three conditions, with reverb being
generated from the designed reverberator, Google Resonance’s reverb and Steam Audio’s
pre-baked, geometry-based reverb. It was chosen to evaluate these statements on a Likert
scale within a range from 1 ("Strongly disagree") to 7 ("Strongly Agree").

5.3.1 Test Setup

Due to the start of the Covid-19 pandemic in March 2020, it was decided to construct a test
setup that allows users to participate remotely. Therefore, the same virtual environment
was exported three times, each having a different reverb engine running. The order of
evaluation was then randomized, resulting in 6 different possible orders. Along with clear
test instructions to ensure the user was wearing headphones, these packages were sent out
manually to the participants. By giving each participant a unique identifier, the ratings
could be reconstructed correctly.
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Results and Discussion

6.1 Numerical Results

As it is trivial to see throughout the spectrograms in figures 6.3, ?? and ??, all reverberators
fail to meet the specified average reverberation time of 2.59 seconds. In terms of frequency
decay, it can be seen that the reverberator by Google Resonance introduces a steep fre-
quency cut at 11 kHz and decays very abruptly. Similarly, the reverberator by Steam
Audio has a much more equally-distributed frequency spectrum, yet decays abruptly. The
reverberator developed in this project has a clear exponential decay and the frequency-
dependent reverberation times are visible as horizontal lines in the power spectrum.
In the time domain, the difference in decay over time is evident. While the designed re-
verberator has many distinctly visible echos, Steam Audio’s reverb has a much smoother
tail. Google Resonance’s reverb seems to decay faster than the specified reverberation time
promises. To have a single measure for the similarity between the individual impulse re-
sponses, the pearson correlation coefficient was computed for the time domain signals,
resulting in the following values:

Reverb 1 Reverb 2 r
Custom Google Resonance 0.42
Custom Steam Audio 0.17

Google Resonance Steam Audio 0.36

Table 6.1: Correlation Coefficients between the impulse responses of the reverberators at stake

27
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Figure 6.1: Spectrogram of impulse response of the designed reverberator

Figure 6.2: Spectrogram of impulse response of Google Resonance’s reverberator
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Figure 6.3: Spectrogram of impulse response of Steam Audio’s reverberator

Figure 6.4: Time domain plots for the individual reverberators Top: Custom, Middle: Google Reso-
nance, Bottom: Steam Audio



30 Chapter 6. Results and Discussion

6.2 Listening Tests Results

With the given design of the questionnaire explained in section 5.3, it is likely that the
data does not follow a normal distribution due to the low resolution of the rating scales.
Therefore, common analysis schemes such as student’s t-test or the analysis of variance
would not yield valid or insightful results. It was decided to perform a Mann-Whitney U
test as this assumes that the data is not normally distributed [15] and accounts for a low
resolution of rating possibilities.

Reconsidering the assumptions made about the different reverberators, the hypotheses
for the individual comparisons can be formulated as follows:

1. There is no significant difference across all categories in question between the means
of the ratings for the designed reverb and Google Resonance’s reverb.

2. There is no significant difference across all categories in question between the means
of the ratings for the designed reverb and Steam Audio’s reverb.

3. There is no significant difference across all categories in question between the means
of the ratings for Google Resonance’s reverb and Steam Audio’s reverb.

The pre-determined level for a significant difference was defined as α = 0.05 as com-
monly used in statistical analysis.

Custom Reverb Google Resonance Steam Audio
Q1 m = 5.2, s = 1.5 m = 4.8, s = 1.9 m = 3.9, s = 1.4
Q2 m = 5.0, s = 1.5 m = 4.7, s = 1.9 m = 5.0, s = 1.8
Q3 m = 4.8, s = 1.6 m = 4.5, s = 1.8 m = 5.0, s = 1.2
Q4 m = 5.0, s = 1.6 m = 4.9, s = 1.5 m = 4.7, s = 1.5

Table 6.2: Means and standard deviations for each reverb condition and each category observed

6.2.1 Participant Data

In total, 14 persons participated in the listening tests, of which 11 were male and 3 female.
No participants reported any hearing deficiencies, therefore no participant was discarded
for further analysis. The mean age at the time of data collection of the participant group
was 30 with a standard deviation of 5.36. No technical problems were reported in the
questionnaires.

6.2.2 Comparison: Custom Reverb vs. Google Resonance

With regards to the visual and auditory congruence of the 2 reverberators, there was no
significant difference in the ratings, with the U-test yielding pq1 custom vs gr = 0.70.

Similarly, there was no significant difference for the plausibility of the perceived dis-
tance attenuation, resulting in pq2 custom vs gr = 0.90.

In terms of the dynamic mixing of the direct and reverberant signal, there was no
significant difference according to the ratings with pq3 custom vs gr = 0.85.
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Lastly, there was no significant difference in the perceived dynamic mixing between
the early reflections and late reverberation tail with pq4 custom vs gr = 0.70.

6.2.3 Comparison: Custom Reverb vs. Steam Audio

With respect to the match between visual and auditory stimuli, it can be stated that there
is a significant difference between the custom reverb and Steam Audio’s reverb with a
probability of pq1 custom vs sa = 0.02. The hypothesis stating that there is no significant
difference in this category is therefore rejected.

As for the perceived distance attenuation, there was no reported significant difference
with pq2 custom vs sa = 0.91.

Regarding the dynamic mixing between the direct and reverberant signal, no signifi-
cant difference was found with pq2 custom vs sa = 0.85.

Lastly, no significant difference was found between the perceived mixing of early re-
flections and late reverberation tail with pq4 custom vs sa = 0.39.

6.2.4 Comparison: Google Resonance vs. Steam Audio

For completeness, the 2 referenced frameworks are compared as well.
Regarding the visual and auditory congruence, the Mann-Whitney test does not yield

a significant difference, with pq1 gr vs sa = 0.14.
Similarly, the distance attenuation of both frameworks are reportedly not significantly

different, resulting in pq2 gr vs sa = 0.65.
With respect to the perceived mixing between direct and reverberant signal, no signif-

icant difference is found with pq3 gr vs sa = 0.42.
Lastly, no significant difference was found between the perceived mixing of early re-

flections and late reverberation tail with pq4 gr vs sa = 0.84.

Reverberators Q1 Q2 Q3 Q4
Custom vs Google Resonance 0.71 0.71 0.74 0.70

Custom vs Steam Audio 0.02 0.91 0.85 0.39
Google Resonance vs Steam Audio 0.14 0.66 0.42 0.85

Table 6.3: Means and standard deviations for each reverb condition and each category observed

In summary, no significant difference across all categories has been reported with the
exception of the visual and auditory congruence between the custom reverb and Steam
Audio’s pre-baked reverb. As seen in figure 6.5, the the custom reverb was evaluated to
provide a more consistent spatial impression of the described room. Apart from that, the
means of the rating do not differ significantly.
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Figure 6.5: Boxplots showing the ratings of all reverberators for all questions

6.3 Discussion

Having the results at hand, these should be reviewed critically given the circumstances of
the test setup and the validity of the comparison itself. First and foremost, it is important
to note that numerically, the differences between the impulse responses are quite big, with
a maximum correlation coefficient of 0.42. The listening test results however show that
participants did not hear a difference that was big enough to reflect a significant difference
after running a Mann-Whitney U test, with one exception. Having that discrepancy at
hand, there are a multitude of reasons why the numerically different impulse responses
are only partially reflected in the listening tests results.

Recalling the topology and objective of the reverb designed in this work, it computes
both the early reflections and the late reverberation tail in different filter structures. Judg-
ing by the short length of their impulse responses, the other reverb implementations are
assumed to have a vastly different implementation scheme. Especially Steam Audio’s re-
verb seems to omit a late diffuse tail and merely cuts the signal at a given threshold. This
issue is supported by informal conversations of other users of the plugins and can be
found in appendix section A.1. Bearing that in mind, it can be stated that the comparison
between these systems was not entirely applicable, as at least one of the compared reverb
implementations fulfils a late reverberation tail only to a small degree.

Moreover, the capturing process of the impulse responses has to be addressed. Recall-
ing the parameters and settings of both Google resonance and Steam Audio in section 5.1.1
and section 5.1.2 respectively, it can be stated both systems have different parametrisation
capabilities than the feedback delay network. Steam Audio’s impulse response is calculated
in processes, which are not transparent and judging by the power spectrum representation,
it is possible that it neglects audio samples below a certain threshold. As an improvement,
it is therefore suggested to choose more similar projects for future comparisons, such as
Evertims by Poirot et.al [19].
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With regard to the listening test conduction, there are a number of issues at hand which
need to be addressed. An immediate problem is the comparatively small sample size. In
the test setup, an environment with high ecological validity was introduced. As the user
is subject to multiple stimuli with rich information, the probability that other variables
have influenced the decision-making process while answering the questionnaire can not
be eliminated. For more reliable results, a perceptually sparse environment and a higher
number of participants is suggested.

Secondly, the conditions of the user tests were vastly different for each participant
and thus far from an ideal controlled testing environments. Due to the outbreak of the
Covid-19 pandemic in March 2020, the tests had to be conducted remotely across different
machines. Moreover, the listening environments and other technical factors such as the
choice of headphones were different for each participant. Although there were no technical
difficulties encountered according to self-reports, one pre-tested computer with one pair
of headphones would potentially decrease the standard deviation, abide to scientific test
conduction conventions and yield more reliable results.

Moreover, the overarching construct of auralization should be reconsidered. Recalling
Vorländer’s definition of spatial and local impression of auralized signals [39], the focus
of this project was entirely on the spatial impression. The approach of room reverberation
in this project does not consider the binaural aspect of auralization, i.e. identifying the
distinct position of a sound source. It can therefore be argued, that instead of separating
these two components, auralization should always be evaluated as a combination of these
two. Thus, the binaural aspect should be considered more heavily in future endeavours.

Furthermore, it is important to review the outcome of this project by relating it to its
predefined objectives defined in section 1.1, i.e. creating a perceptual plausible reverb for
real-time usage which takes acoustic parameters into account and leaves some space for
game developers to tune the reverberator to their needs.

The perceptual plausibility in this work was defined by evaluating 4 different aspects
of reverberation, namely the auditory and visual congruence, the distance attenuation, the
mixing between direct and reverberant signal and the mixing between early reflections
and late reverberation tail. According to the listening tests, these criteria are met and no
anomalies are reported. During development, it was found out that the late reverberation
tail is still unstable at certain frequencies. So it can be stated that the reverb meets this
requirement not completely, but at least partially.

Moreover, a set of acoustic parameters are considered, at least for rectangular room
and the reverberation time can be set for individual frequency bands. Due to a set of
technical errors explained in section 4, the reverberation time needs to be calculated before
the plugin is compiled. Assuming that room sizes are not subject to change during engine
playback, this trade-off was considered to be appropriate. With this functionality, the
reverb is not in an ideal state, yet it fulfils the requirement at least partially.

Further parameter tuning can be achieved in the early reflections section of the reverb.
As of now, the early reflections are modeled as individual delay lines with gain coefficients
and a lowpass filter for modeling material absorption. For further improvements, it is
suggested to replace the lowpass filter with a more sophisticated filter structure, similar
to the graphic equalizer of the feedback delay network. Taking these into consideration, it
can be stated that the reverb fulfils the requirements partially.





Chapter 7

Conclusion

The objectives of this report were to design a perceptually plausible reverberator for inter-
active virtual environments, which incorporate dynamic changing of its characteristics at
run-time, accounts for room geometry and leaves some space for design parameters.

Summing up the background theory, the implementation and evaluation of the rever-
berator, it can be stated that these objectives have been partially fulfilled. The parameters of
the early reflections, the mix between early reflections and the overall mix between direct
and reverberant signal are updated based on receiver positions. A first order lowpass-
filter allows for rudimentary frequency tuning of the early reflections. For rectangular
rooms, the late reverberation tail needs to be pre-computed, yet a frequency-dependent
reverberation time can be achieved, based on a set of absorption coefficients. Due to the
computational cost for this calculation, this cannot be updated during runtime. However,
a dynamic reverberation tail would mean that rooms are resized during run-time. This
seems a reasonable trade-off given the scope of the project.

Subsequent comparisons in a single room setup with other commercially available re-
verbs indicate that there is a vast difference between the impulse responses of the systems,
with a correlation coefficient of < 0.5. Listening tests enquiring about the perceptual
plausibility of the reverb show that there is no significant difference perceptually when
compared to two other reverberators apart from one exception. With this discrepancy,
immediate improvements to the project would include a more exhaustive comparison to
other, more similar reverberation systems, testing in a perceptually sparse environment,
and conducting the listening tests in a controlled environment.

Thus far, the designed reverb incorporates only linear effects of room reverberation.
Therefore, further immediate improvements to the system include the incorporation of
diffraction and shadowing effects caused by room geometry. Furthermore, the reverb is
only applicable to rectangular rooms. With these shortcomings, the perceptual qualities of
the reverb seem plausible, yet it lacks some ease of use. However, as the objective of this
project is to create a reverb that can function in real-time contexts, the lack of nonlinear
effects seems appropriate. Described in [27] and [28], the modeling of nonlinear reverber-
ation effects in feedback delay networks seems applicable. Therefore, it can be stated that
the objectives defined in this report are partially met and it is hoped that this project lays a
proper foundation for the implementation of reverbs with sensible parametrisation in the
context of real-time environments.
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A.2 Example Code of SOUL: Peak Filter Implementation
with fixed center frequency and bandwidth

processor PeakFilter (const float peakFreq, const float deltaFreq)
{

input stream float audioIn;
output stream float audioOut;

const int fs = 44100;

const float omega = (2 * pi * peakFreq) / fs;
const float deltaOmega = (2 * pi * deltaFreq) / fs;

const float beta = tan(deltaOmega / 2);

const float b = 1 / (1 + beta);

float coeff_yMin1 = 2 * b * cos(omega);
float coeff_yMin2 = -2 * b + 1;

const float coeff_x = 1 - b;
const float coeff_xMin1 = 0.0f;
const float coeff_xMin2 = -1 + b;

float x, xMin1, xMin2, yMin1, yMin2, out;

void run()
{

loop
{

x = audioIn;

out = coeff_x * x +
coeff_xMin1 * xMin1 +
coeff_xMin2 * xMin2 +
coeff_yMin1 * yMin1 +
coeff_yMin2 * yMin2;

audioOut << out;

yMin2 = yMin1;
yMin1 = out;
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xMin1 = x;
xMin2 = xMin1;

advance();
}

}
}
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A.3 Boxplots of listening test ratings for each question and
reverberator
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A.4 Spectrograms for all Impulse Responses

Figure A.1: Spectrogram of the impulse response of the designed reverberator

Figure A.2: Spectrogram of the impulse response of Google Resonance’s algorithmic reverb



A.4. Spectrograms for all Impulse Responses 49

Figure A.3: Spectrogram of the impulse response of Steam Audio’s geometry-based reverb
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A.5 JUCE Plugin Code

The plugin code of the reverb is found in the folder path CODE/PLUGIN. The plugin can
then be built from the .jucer file and the appropriate IDE.

A.6 Unity Environment

The Unity environment is found in the folder path CODE/UNITY. Under Assets/Scenes,
there are 6 scenes available:

• NATIVE_SCENE: Scene containing the designed reverberator.

• GR_SCENE: Scene containing Google Resonance’s implementation.

• SA_SCENE: Scene containing Steam Audio’s implementation.

• NATIVE_SCENE_OBJ: Scene for capturing the designed reverberator’s impulse response.

• GR_SCENE_OBJ: Scene for capturing Google Resonance’s impulse response.

• SA_SCENE_OBJ: Scene capturing Steam Audio’s impulse response.

Under Assets/Scripts, the respective scripts can be found.

A.7 User Test Data

The data of the listening test rating can be found in DOCS
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