
Exo-Ada: A Boosting Model for Exoskeleton Angle Prediction

Petersen, Emil Thougaard
epeter15@student.aau.dk

Karlsson, Jonathan
jkarls15@student.aau.dk

Thillemann, Palle
pthill15@student.aau.dk

June 2020

Project Report
Group dt103f20

Aalborg University
Software Engineering

Abstract
Exoskeletons offer many possibilities within the
contexts of manual labour as well as rehabili-
tation. A lot of effort has gone into improving
the usability and efficiency of exoskeletons in
order to extent their use cases. In order to con-
trol an exoskeleton, it is necessary to predict
the intended movement of the user. A basic
operation within the domain of intention esti-
mation is that of elbow joint angle estimation.
We have chosen to work with this prediction
problem with measurements from a Force Myo-
graphy (FMG) sensor armband. This problem
is traditionally solved by training a machine
learning model on data collected from a sin-
gle person, used for intention estimation for
specifically that same person. We instead wish
to optimize this approach such that the solu-
tion can quickly be adapted to different users,
reducing the amount of required training data
for each novel person. Along this line, this pa-
per proposes a novel boosting approach, Exo-
Ada, specifically designed for use with exoskele-
tons in order to efficiently transfer to the do-
main of a new user. Exo-Ada is built on top
of 2-Stage TrAdaBoost and uses a learner com-
ponent made up by a rectified Convolutional
Neural Network (CNN), making use of refer-
ence points and dilated convolutions. Exo-Ada
outperforms several baselines on a test on FMG
sensor measurements from multiple people.

1 Introduction
Powered exoskeletons are wearable machinery with mo-
tors that control its joints. They can be used on different
limbs to assist with movement, increasing strength and
endurance. This has many uses such as controlling pros-
thetics, rehabilitation from accidents, or lessening strain
on the body during heavy-duty work. To utilize the mo-
tors on the exoskeleton, it needs to be able to detect the
intended movement of the wearer, to know how much to
bend its joints. In this work, we focus on detecting the
angle of the elbow. To detect the intention of the user,
we use two sensor armbands: one using Force Myogra-
phy (FMG) sensors and another using an accelerometer.
The FMG sensors measure the force exerted by the bi-
ceps and triceps, while the accelerometer measures the
angle of the elbow. Using this data, we can train a neural
network to learn the relation between the force exerted
and the angle of the elbow. This means it can later esti-
mate the angle of the elbow using only the FMG sensor
readings, which is used to control the exoskeletons by
flexing upper arm muscles.

The problem we are trying to solve is to make an ex-
oskeleton usable for many people, meaning that it must

also be inexpensive to train for new people. As such,
the accuracy of predictions should not be dependant on
having a large amount of data to train the neural net-
work for a new person, as is the case with a traditional
neural network. All existing solutions we could find on
this problem, have been in different domains from ours
and could not be adapted trivially.

Enter transfer learning, which can exploit data from
previously recorded people to better fit a model to a new
person, even if the data alone would not traditionally
be enough to support this. Transfer learning is particu-
larly useful to reduce such re-calibration efforts [Pan and
Yang, 2009].

Our project lies within the area of inductive trans-
fer learning, where the source and target domains (the
source people and the target person respectively) are all
fully labeled and within the same feature space. The
difference between the domains lie in their varying data
distributions. This is caused both due to the physical
differences between people, as well as the sensor arm-
bands being placed in slightly different positions for each
use. See Figure 1 for the distribution differences between
three people, illustrating the need for a dedicated trans-
fer learning solution.

Figure 1: Despite similar angle measurements (left), the
sensor measurements (right) are wildly dissimilar

It is important to emphasize that two different mea-
surement sessions on the same person can have distribu-
tion differences rivaling the differences caused by mea-
suring across different people. Therefore, session to ses-
sion differences present a part of this project that equals
person to person differences in importance.

This type of data makes transfer learning through Ad-
aBoost [Dai et al., 2007] an obvious fit [Pan and Yang,
2009]. We use AdaBoost as an instance-based transfer
solution, which makes use of our source datasets (multi-
ple people) and tries to squeeze as much knowledge out
of these for the purpose of learning a target dataset (a
novel person).

Our solution contains two main elements, first being
exoskeleton angle prediction using regression. The sec-
ond part is using transfer learning to use measurement
data gathered from previously known people, in order
to better and more efficiently learn features on a novel

1

person.
The goal of the project was to create a domain specific

implementation of the AdaBoost boosting technique, to
be used for transfer learning between people for exoskele-
ton angle prediction with FMG sensors. For this pur-
pose, we have created Exo-Ada, an evolution on top of
the 2-Stage TrAdaBoost algorithm [Pardoe and Stone,
2010], which takes some actions to specifically fit the
algorithm to the new domain. We have achieved the
following contributions:

• Exo-Ada adapts the 2-Stage TrAdaBoost algorithm
to better allow transfer from multiple source do-
mains

• As its base learner, Exo-Ada uses a CNN designed
for the particular purpose of FMG exoskeleton pre-
diction

• Our experiments, which show that Exo-Ada out-
performs some baselines, but has some drawbacks
as compared to 2-Stage TrAdaBoost

We will start by looking at related work and then
we introduce notations and definitions for the problem.
Next, we present the primary contribution of the pa-
per: Exo-Ada, an algorithm designed to adapt previous
solutions to work with our domain while adding some
needed functionality. Finally, we present our experi-
ments and results from testing our algorithm against four
baselines.

2 Related Work
In this section we will briefly cover some closely related
works to this research. We split it up into two distinct
categories: exoskeleton angle prediction, with a focus
on the problems of each method, and transfer learn-
ing methods, where we focus on regression transfer and
boosting.

2.1 Exoskeleton Regression Problem
Islam et al. [Islam et al., 2018] forms the basis for our
understanding and implementation of elbow joint angle
estimation. In this paper, the authors make use of FMG
sensors and an accelerometer for data collection. They
then train a support vector machine (SVM) to map the
relation between joint angle and sensor values, mean-
ing that the SVM can later predict the joint angle us-
ing only the sensor values. The authors have also pre-
viously worked on intention detection [Islam and Bai,
2017] and payload estimation [Islam and Bai, 2019]. Our
solution adapts some of their work by using a more com-
plex model with transfer learning and a CNN instead
of an SVM to allow the need of less data to train the
model.

We would also like to note that our presented research
is a continuation of our previous research and observa-
tions [Petersen et al., 2019]. In this instance, we were

concerned with elbow joint angle estimation for a sin-
gle individual, making use of different types of neural
networks, among which we experimented with the im-
plementation of practices such as reference points, as
inspired by Ke et al. [Ke et al., 2017], and dilated con-
volutions from Eddy [Eddy, 2018]. We observed that
convolutional neural networks implementing these prac-
tices provided the best performance in terms of accuracy
for the exoskeleton regression problem. Our previous
research only concerned a single person, however, this
project will use data from multiple people which is the
reason for using transfer learning. We will be using these
practices as a starting point for our implementation of
regression transfer for elbow joint angle estimation, as
well as a subsequent baseline to measure against the per-
formance of our regression transfer approach.

The study by Liu et al. [Liu et al., 2019] concerns a
similar domain as ours, as it estimates the joint angle
of the knee during walking motions to achieve smooth
estimation of the human motion intention. It is a sur-
face electromyography (sEMG) based sensor solution, re-
quiring them to perform heavy pre-processing on the
raw data before feeding it to their model. The pa-
per proposes a feature-based CNN to learn the complex
functions mapping the sensor signals to knee joint mo-
tions. Our solution uses FMG sensors instead of EMG,
which should allow us to perform less pre-processing and
achieve better usability by easing the data collection pro-
cess.

2.2 Transfer Learning
A problem similar to the one proposed in this research,
with regards to transfer learning, is by Wei et al. [Wei
et al., 2016]. In their research the authors propose a
method to overcome the problem of label scarcity and in-
sufficient data when modelling and predicting air quality
in different cities. The proposed method involves boost-
ing along with the construction of semantically related
dictionaries in order to overcome the problems associ-
ated with insufficient labeled data from the target do-
main. The dictionaries contains related information for
different sectors of a city; the information is transferred
to sectors of different cities which have similar features.
Their solutions uses a complex data representation along
with dictionaries to overcome label scarcity and insuffi-
cient data, where we do not have any label scarcity but
are trying to work with as little data as possible. We
use a simpler data representation while trying to use a
different form of boosting instead of the AdaBoost they
use.

Another paper of particular note is by Yao and
Doretto [Yao and Doretto, 2010], which proposes
MsTrAdaBoost, an extension of the regular TrAdaBoost
algorithm (as designed for classification problems), al-
lowing transfer from multiple source domains. It does
this by creating one weaklearner for each source+target

2

domain combination, but selecting only the strongest of
these weaklearners to add to its ensemble per iteration.
As such, it iteratively learns relevant features from across
either of the source domains. Our solution instead finds
relevant features from all source domains at once, and
creates an ensemble model from those.

3 Preliminaries
In this section we will first formally introduce the nota-
tions and definitions we will be using in the context of
regression transfer with a boosting approach. Secondly,
we will introduce the formalization of the problem we
will be trying to solve, that being elbow joint angle esti-
mation across users. Then we will briefly cover concepts
that are used in our approach for the Neural Network
component that is not related to the boosting process
itself. Finally, we will cover the background knowledge
associated with boosting in relation to AdaBoost and its
variations, which our boosting approach will be based
upon.

3.1 Notations and Definitions
The notations used throughout this paper are described
in Table 1. After the introduction of these notations, we
move on to presenting definitions that describe the asso-
ciations between different notations. We will not cover
all notations in this section, however, the remainder of
the notations not described here will be presented when
they become relevant.

The regression problem of this research concerns mul-
tivariate time series data. This originates from the fact
the exoskeleton which we are developing a solution for
employs an armband A with a number of FMG sensors
as well as a wristband Wr with an accelerometer, where
values are captured for both A and Wr for each times-
tamp t. These factors, along with an implementation
of a machine learning model, is what allows control of
the exoskeleton. As stated previously we are interested
in regression transfer for predicting the elbow joint an-
gle of a user equipped with only A in order to operate
the elbow joint of the exoskeleton, thus circumventing
the need of Wr because these values are predicted. The
series of timestamps is defined as follows:
Definition 3.1. T = {t1, t2, . . . , tn} where t represents
a single timestamp and n denotes the total number of
timestamps.

For any given timestamp t we have a collection of val-
ues, one for each sensor on the armband A. We define A
as follows: A = {a1, a2, . . . , an}, where each a represents
a sensor value and n defines the total number of sensors.
From this we can now define the collection of all samples
X as shown below:
Definition 3.2. X = {x0, x1, . . . , xn} where the samples
x follow the form xi = (Ai, ti) where 0 ≤ i ≤ n, and n
in this context denotes the final timestamp in the series.

Table 1: Notations used in the paper

Notation Description
P, Session The set of persons and the collection of

all sessions
Ds, Dt The source and target datasets respec-

tively
Learner Describes a weaklearner, which, in the-

ory, can be any arbitrary neural network
W, w The weight vector (containing the

weights of all data samples) and a single
weight

E, e A collection of errors for all samples, and
a single error value, describing the pre-
diction error for a single sample

models,
errors

An ensemble model that contains a col-
lection of Learners, and the error associ-
ated with that ensemble model

S, N, F The maximum number of boosting steps,
the maximum number of boosting itera-
tions, and the amount of folds used for
cross validation

T, t A series of timestamps, and a single
timestamp

X, x The collection of all samples (all sensor
datapoints) and a single sample

Y, Y′ The collection of all ground truths and
the collection of all predicted ground
truths

Other than the sensor band A, we also employ an
accelerometer in a wristband Wr which returns a value,
wr, for each timestamp. This value represents the elbow
joint angle in radians at the current timestamp, and is
used as such in our solution. We can define Wr as follows:
Wr = {wr}. From this we can now define Y as shown
below:
Definition 3.3. The collection of all wristband values Y
is Y = {(Wr0, t0), (Wr1, t1), . . . , (Wrn, tn)} where t repre-
sents a single timestamp and n denotes the total number
of timestamps.

The set of persons P is given as P = {p0, p1, . . . pn}.
We make a distinction between labeled source and tar-
get data by having distinct datasets for these. The target
dataset Dt is made up of labeled data for a single person,
p0 ∈ P, for whom we wish to adapt our regression trans-
fer approach, such that p0 ∩ P = Dt. The source dataset
Ds also used in our transfer regression approach is made
up of labeled data from the remaining persons who are
not represented in the target dataset P − p0 = Ds. The
datasets can be combined to form the collection of all
samples X where the datasets are given in good order.
How the datasets are combined is given in the following
definition:
Definition 3.4. The collection of all samples X is the

3

combination of dataset Ds and Dt which represent the
source and target domain respectively. X is constructed
such that Ds represents the entries {x0 . . . xn} and Dt
represents the entries {xn+1 . . . xm}. From this it fol-
lows that X = {x0 . . . xm} and X = Ds ∪ Dt also holds.
Furthermore, since X is the combination of Ds and Dt,
we can define XDs = Ds and XDt = Dt for the source
and target dataset.

Moreover, all labeled data obtained from persons in P
have not been collected in one take to make up the collec-
tion of all samples X. Rather, they have been collected
through different sessions s which are each associated
with a unique person p belonging to either Ds or Dt.
The combination of all sessions s is what makes up the
collection of all samples X.
Definition 3.5. A session s is a collection of samples
{xpi

0 , xpi
1 , . . . , xpi

n′} associated with a unique person pi
where n′ denotes the total number of samples for a ses-
sion. The samples of a session s is given in good or-
der, thus n′ can also be taken to denote the number of
timestamps t for respective sessions. A session is of the
form spi

j ∈ Session where 0 ≤ i ≤ n and 0 ≤ j ≤ m.
In this context n denotes the total number of people
p ∈ P and m denotes the total number of sessions cap-
tured for each person. Because of the structure of a
session s, it follows that Session = X which also implies
Session = XDs ∪ XDt .

3.2 Problem Formalization
We now formalize the problem that we have attempted
to solve with our research. To begin with, we will intro-
duce what we consider as the input and output of our
solution. As data from A, represented in X, and Wr,
represented in Y, are related through timestamps t, we
can create two series of pairs, one for the input and one
for the output (note that we have substituted x with its
components (A, t) in X for clarification purposes):

Input: X = {(A0, t0), (A1, t1), . . . , (An, tn)}

Output: Y = {(Wr0, t0), (Wr1, t1), . . . , (Wrn, tn)}
The problem has now taken shape, as the goal be-

comes to estimate the value of Wr with the values of A
at each timestamp t. Since we will be performing re-
gression transfer we will need to distinguish between our
source domain and target domain. For our purposes we
will use the notation for source and target datasets, Ds
and Dt, in order to make this distinction. The act of
regression transfer itself will be performed by Exo-Ada,
denoted as F , which we will describe in section 4. It will
take as input labeled source data from Ds, as well as la-
beled target data from Dt, available in order to transfer
to the target domain. The labeled data will be in the
form of sessions s ∈ Session such that:

XDt = {sp0
0 , sp0

1 , . . . , sp0
j }

XDs = {sp1
0 , sp1

1 , . . . , sp1
j , . . . , spn

0 , spn
1 , . . . , spn

j }

Where person p0 represents the target domain, and
person p1 through pn represents the source domain. Re-
call from definition 3.5 that each session s contains a
collection of samples x which can be associated to re-
spective timestamps t for each session. Thus the rela-
tion between XDt , XDs and Y is kept through t when we
make a prediction. We can define our prediction goal for
regression transfer as:

Y′p0
t+1 = F (XDs

t−h, . . . , XDs
t−1, XDs

t , XDt
t−h, . . . , XDt

t−1, XDt
t)

Here h represents the past history of timestamps and
associated values of A in both Ds and Dt respectively,
which we take into consideration when we make a pre-
diction of Y′p0 at timestamp t + 1.

3.3 Learner Concepts
In this subsection we will briefly cover the concepts that
we make use of in the Learner component introduced in
table 1. Based on previous work in [Petersen et al., 2019]
we have chosen that the Learner component will be made
up by a rectified CNN that makes use of both reference
points and dilated convolutions.
Reference Points The use of reference points [Ke et
al., 2017] in this context is a way to represent relation-
ships between the different sensor values a, as if they
were spatial relationships. With this, sensor values in
A are chosen as anchor points aanc to which the remain-
ing sensor values {a1 . . . an} are changed in relation to,
for each timestamp t. The process of creating this spa-
tial representation Z between the sensor values can be
described with the following function:

Zt = G(aanc
t , {a1

t , . . . , an
t })

The function G calculates a new value for each sen-
sor value a ∈ {a1 . . . an}, except for the sensor that was
chosen as the anchor point, at each timestamp t:

G(aanc
t , at) = at − aanc

t

If we are using multiple anchor points, the resulting
{1 . . . n} reference values are concatenated at each times-
tamp.
Dilated Convolutions The use of dilated convolu-
tions in CNNs [Eddy, 2018] allows us to substantially
increase the receptive field of the output neuron with-
out adding additional hidden layers to the CNNs, which
are used as Learners for our boosting approach. This
is because the receptive field Rf increases exponentially

4

as a function of convolution layer depth Ld when using
dilation:

Rf = L2
d

The receptive field increase is achieved by skipping cer-
tain neurons in the hidden layers according to a dilation
rate. This rate increases multiplicatively (e.g. 1, 2, 4, 8
etc.) for each hidden layer and is what allows the expo-
nential relationship between layer depth and receptive
field size.

3.4 Transferring Knowledge with
AdaBoost

In this section we explain essential background knowl-
edge of boosting techniques, and how this applies to
transfer learning with TrAdaBoost, which is necessary
prerequisite to understand the rest of this paper.

AdaBoost [Freund and Schapire, 1997] is a tech-
nique designed for classification problems, which com-
bines multiple less powerful learners (called weaklearn-
ers), that are iteratively being trained on the same
dataset, into one powerful ensemble learner (called a
stronglearner). All throughout this process, AdaBoost
changes the importance of the individual samples from
the dataset, where it prioritizes the ”hard-to-learn”-
features, performing the so-called ”boosting”, to ensure
that all important features are eventually being learned
by a weaklearner. As such, each weaklearner trains to
predict different kinds of features. Lastly, when the
stronglearner is used for prediction, each of its con-
stituent weaklearners votes on the result, the importance
of each vote depending on the prediction strength of the
weaklearner.

TrAdaBoost [Dai et al., 2007] redesigns AdaBoost for
the purpose of transfer learning from one source domain
to a different target domain. It is a technique for clas-
sification problems within the area of inductive transfer
learning [Pan and Yang, 2009]. It works by iteratively
increasing the weights of the target samples, creating one
AdaBoost ensemble learner per boosting step. As such,
it elegantly attempts to find the ”sweet spot” between
the source and the target domains, to identify and prior-
itize the most transferable features from source dataset,
whilst concurrently learning the most important features
of the target dataset. As such, it attempts to transfer
as many relevant features as possible, whilst ignoring
the features that are not transferable, and avoiding the
common transfer learning problem of negative transfer
(where a model loses accuracy through the addition of
less relevant data).

Lastly, 2-Stage TrAdaBoost [Pardoe and Stone, 2010]
modifies AdaBoost for use in regression problems. For
this purpose, it splits the algorithm into two main steps:
one where it is only allowed to modify the weights of
the target domain, and one where it is only allowed to
modify source.

In the context of our project, a number of modifi-
cations are necessary. Most importantly, we transfer
to a novel person from multiple source domains (mul-
tiple source people), rather than from just one source
domain.

Figure 2: Visual overview of Exo-Ada. The red squares
represent actions which take some input and outputs some-
thing. The blue squares with rounded edges represents stored
information, that is used as input for some action.

4 Exo-Ada
In this section we will present our proposed method in
detail. We will first introduce an overview of the general
framework in figure 2 which includes all major parts of
the method, from data pre-processing to final prediction.
This introduction will be followed up by a detailed look
at the Exo-Ada algorithm, which is a modified version of
Two-Stage TrAdaBoost [Pardoe and Stone, 2010].

5

4.1 Overview
AdaBoost attempts to avoid common transfer learning
problems such as negative transfer, by determining when
it is even useful to transfer a sample through its sample
weight values [Pan and Yang, 2009]. To the best of our
knowledge, a version of regression-AdaBoost that is de-
signed for multiple sources does not exist. So we have
to make our own improvements to allow for this, as it is
necessary for our domain.

The complete Exo-Ada algorithm is given in algo-
rithm 1 showing the steps that are taken from input
to output. A more simple overview of the algorithm is
visualised in Figure 2. We will go into details with its
most important parts later.

Algorithm 1: Exo-Ada
Input: A number of labeled source datasets Ds1 to

Dsd of sizes ss1 to ssd respectively, belonging to
XDs , one labeled target dataset Dt of size st
belonging to XDt , the amount of boosting steps S,
the amount of boosting iterations N and the
amount of folds for cross validation F.

Initialize: Assign the total sample weight of each
dataset to TW = 1

d+1 . Initialize the weight vector
of the target dataset, Wt, such that each sample,
w1 to wst has a value of w = 1

TW . The source
datasets are initialized in a similar manner.

For s = 1, . . . , S:
1. Call AdaBoost.R2’ with the base learner BaseCNN,

iterations N and weight vector W to obtain the
ensemble models.

2. Use F-fold cross validation and call AdaBoost.R2’
with the BaseCNN, iterations N and weight vector
W, to obtain the mean estimate errors over models.

3. Call BaseCNN on samples X and weight vector W
to obtain predicted ground truth Y′.

4. Calculate the error vector E corresponding to the
predicted ground truths in Y′ as in Two-stage
TrAdaBoost [Pardoe and Stone, 2010].

5. Calculate βs such that the resulting weight of the
target samples (the final st weights in W) is
TW + s

S−1 ∗ (1 − TW)

6. Update the weight vector as in Two-stage
TrAdaBoost [Pardoe and Stone, 2010] using βs.

Output: The models with the lowest errors

4.2 Main Concepts
Here we define the main concepts that Exo-Ada makes
use of. Since our approach is based on boosting, it re-
quires a collection of base learners in order for boost-
ing to be performed. For our purposes this will be ful-

filled by the Learner component, which along with the in-
put dataset X provides the foundation for our solution.
Specifically, we use the BaseCNN, which is a rectified
CNN that uses reference points and dilated convolutions
to predict the elbow angle.
Definition 4.1. A Learner is a base component for our
boosting solution. Within boosting it is commonly re-
ferred to as a weaklearner, that is constructed from a
base learner throughout the boosting process. In our
case, we use the BaseCNN as our base learner. Each
Learner is associated with a specific estimation weight,
WE, which is calculated as in 2-Stage TrAdaBoost, us-
ing the weights W and errors E of all samples X.

The weight WE is used as a measure of the learner’s
accuracy belonging to the target domain Dt at the cur-
rent boosting iteration N. As we progress through the
algorithm, we create new learners that improve upon the
accuracy of the previous learner, for the samples x that
were hardest to estimate.

Likewise a models represents an ensemble of multiple
Learner components, which is also commonly referred
to as a stronglearner. Because of this, each models is
associated with a collection of weights, one WE for each
Learner. As such we can define a models as:
Definition 4.2. An ensemble model, models
is a collection of learners: models =
{Learner1, Learner2, . . . , Learnern} where n represents
the number of learners in the ensemble. Each ensemble
model has a collection of weights, one WE for each
constituent Learner, and an errors which is the error of
the ensemble model measured on target domain samples
x from Dt.

4.3 Initialization
After receiving the necessary input, the algorithm ini-
tializes sample weights for all datasets W, such that each
dataset has the same amount of total weight regardless
of how much data it contains. Since, at the moment of
initialization, we know nothing about the samples con-
tained within each dataset, and therefore cannot pass
judgement on the applicability of the different source
datasets compared to the target person, our start as-
sumption is that each dataset is precisely as important
as the others. This is regardless of the individual lengths
of the different datasets that make up our total samples
X - otherwise we would unfairly bias longer measure-
ment sessions, even though they might contain very little
transferable knowledge. Recall that the major challenge
of this research is to predict intentions across multiple
users, meaning that it is prudent to focus our efforts
on learning features that are applicable across multiple
users.

This initialization is essential, since the algorithm im-
mediately starts adjusting source vs target weight dis-
tributions, meaning that we need an acceptable start

6

point, and that bad start sample weights would not just
fix themselves over boosting steps S.

4.4 Ensemble Model
In step (1) of algorithm 1 we call AdaBoost.R2’ with
the base learner and the weight vector W of the cur-
rent step. AdaBoost.R2’ iteratively creates N different
weaklearners, Learner, combining them into a single en-
semble model models, the stronglearner. Whilst building
models, each weaklearner learns a particular set of fea-
tures, and is then evaluated. The weights of the target
domain samples are then adjusted to make certain that
we learn even the hardest features throughout the pro-
cess of stacking weaklearners on top of each other.

To calculate the error of each ensemble learner, we
recall that only the performance on the target domain
matters. Unfortunately, since target data is scarce in our
problem, we cannot be confident in the results. As such,
step (2) uses cross validation to run multiple versions of
the current models, each adapted to an F-fold part of the
target domain, and average the results to gain the most
accurate possible estimation error errors of stronglearner
models. At the end of the algorithm, the models with the
lowest errors is used as output. The final predictions of
this ensemble model is the weighted median of each of
its constituent weaklearners’ predictions.

4.5 Weight Update
The last parts of the Exo-Ada algorithm are where we
update the weights of all samples. In step (3) we create
and fit a new BaseCNN model on all samples, using the
same weight vector we used in prior steps W. We use
this new model to get a prediction for each sample. In
step (4) we use the predictions to calculate the error e of
each sample. The error for a specific sample es

t is calcu-
lated by: es

t = |yt − y′t|/MEs where MEs is the highest
error obtained, which is then used for normalization be-
tween 0 and 1. Here y and y′ are the individual ground
truths and predictions taken from Y = {y0 . . . yn} and
Y′ = {y′0 . . . y′n}. This error vector allows us to judge,
for our current iteration of sample weights, which source
samples were the best transferable to the target do-
main.

Then in step (5) we approximate a value βs using bi-
nary search, one which will ensure that the importance
of the target samples increases for each boosting step.
In step (6) we use the error vector E and βs to update
the weights of each source sample, ready for later boost-
ing steps. Updating the weights is done using the for-
mula:

ws+1
i =

{
ws

i β
es

i
s /ZNs, 1 ≤ i ≤ n

ws
i /ZNs, n + 1 ≤ i ≤ n + st

Where n = ss1 + ss2 + · · ·+ ssd, and ZNs is a normal-
izing constant such that the sum of all weights Ws stays
at 1.

This ensures that we, throughout our boosting steps S,
increase our focus on only the most transferable features
within source. This also means that the distribution of
weights between the different source datasets is bound to
change depending on which dataset is the most similar
to our target dataset.

We use Mean Absolute Error (MAE) for our loss func-
tion for the algorithm, which is given by:

MAE =
∑n

i=1 y′i − yi

n

Here n is the length of the given data in the specific
situation.

5 Experiments
This section describes the dataset and baselines, and
compares their results to Exo-Ada. We will then go into
detail with some noteworthy Exo-Ada results to explain
some of its qualities and shortcomings. All our tests
evaluate model performance based on the MAE values
obtained while attempting to estimate a single session,
that is purely used as the test set.

5.1 Dataset
Our data is collected using our two sensorbands with
a MATLAB application that allows us to calibrate the
FMG sensors, perform data-collection and choose the
data we want to save. The data is recorded in sessions
s of roughly 60 seconds each, where the user performs
lifting sequences, as in Figure 1. The data is recorded in
1000 Hz, meaning that 60 seconds of data will generate
60,000 samples of data. In our tests we use a granularity
of 30, which means that we average every 30 samples, to
get rid of unnecessary and repeat data for the purposes of
improving training time. Granularity of 30 was chosen,
as the samples often stay the same for 10-30 samples in
a row, meaning it would not change much to combine
them. We chose 30 over something like 10 or 20 as it
would allow us to test with more steps and iterations.
We perform five measurement sessions for each person
and have data from three different people. We refer to
these people as person A, B and C as well. The first
two people are used as source Ds, and the third person
is used as target Dt. For the target person, we use the
first four sessions as training data, and the last session
is used purely as test data. We refer to this last session,
sp3

5 , as the test session.

5.2 Baselines
This section describes the baselines used for our experi-
ments. The common thread for all baselines is that they
concern themselves with only their performance on the
last session of person C, though some are able to make
use of sessions from person A and B to help for this
purpose.

7

CNN Small This baseline uses our baseCNN estimator,
but is only trained on person C. It shows the accu-
racy if we were to forego any kind of cross-person
transfer learning.

CNN Big This model also uses the baseCNN estima-
tor, and shows the performance on person C, if we
naively train on person A, B and C, whilst test-
ing on person C, while the model has no intrinsic
knowledge of transfer learning.

Ensemble CNN This model consists of one baseCNN
estimator trained on each person individually. Its
predictions are the means of the constituent models’
predictions (ergo naive voting, not based on weight).
This model shows how voting might be an important
way to squeeze additional knowledge out of transfer
learning solutions.

2-Stage TrAdaBoost This baseline utilizes 2-stage
TrAdaBoost R2 [Ren, 2018][Pardoe and Stone,
2010] with out-of-the-box configurations, utilizing
decision trees as its base learner. This model has an
intrinsic knowledge of the difference between source
and target samples and introduces boosting as a way
to evaluate and highlight the relevancy of individ-
ual samples to the base learner. This baselines also
measures the strength of weight based voting. Since
the decision trees are not designed for multivariate
data, we flatten the inner layer of the data array.

Exo-Ada This model is based upon 2-Stage TrAd-
aBoost, its main difference being that it utilizes
our domain specific baseCNN estimator as its base
learner. Additionally, its adds functionality allow-
ing it to distinguish between the multiple source do-
mains (person A and person B).

The baseCNN has had its hyperparameters tuned
through 500 iterations, and includes the domain specific
initiatives of reference points and dilated convolutions,
as described in subsection 3.3. See all hyperparameters
below:
Keras Epochs 10, batch size 500, optimizer ”adam”
CNN Filters 94, kernel size 2, past history 267, layers

5, padding ”valid”, kernel initializer ”uniform”, ac-
tivation ”relu”, dilation rate 2, reference points ”one
at biceps, one at triceps”

Boosting Steps 10, folds 3, learning rate 1, decision tree
max depth 4, loss ”linear”

Additional to these parameters, 2-Stage TrAdaBoost
uses 25 iterations N, which cannot be set much higher
due to training time constraints. Exo-Ada instead uses
5 iterations N, as initial tests show that its performance
does not meaningfully increase and might even decrease
with more weaklearners, because its individual weak-
learners are much more powerful. Further tuning of the
Exo-Ada and 2-Stage TrAdaBoost algorithms is a do-
main for future expansion of the tests.

5.3 Results
Accuracy Comparisons
One of our main goals with this research was to increase
the quality of the regressor in the cases where little target
data is available. This test shows the performance of our
model and baselines, as we we decrease the amount of
target data available for training, see Figure 3.

Figure 3: Comparison of the error of Exo-Ada and the base-
lines, as we increase the number of sessions available for train-
ing person C

Looking at CNN_Small, the results show that, when
using the full 4 target sessions for training, it is able
to learn sufficient knowledge for good performance com-
pared to the other baselines, almost rivaling the perfor-
mance of the boosting methods without employing any
kind of transfer learning. As we reduce the available
data, however, CNN_Small quickly falls behind, prov-
ing the importance of transfer learning solutions in cases
with less data. Comparatively, with 4 available sessions,
CNN_Big is affected by negative transfer, making its
performance worse than CNN_Small in this case, since
it learns too many unrelated features from other people
and has no procedures to distinguish between different
people. Notably, as we reduce available training data,
CNN_Big loses the least accuracy along with Exo-Ada,
because it focuses on learning features that are shared
across sessions and people.

The Ensemble CNN has some similarly conservative
results, the accuracy of which are not particularly af-
fected by the size of the target dataset. It falls behind
the boosting strategies because it lacks weight based vot-
ing, opting for a naive mean of the constituent results
instead. Moreover, it performs worse than CNN_Big
because its constituent models are not able to learn fea-
tures shared across multiple people.

Exo-Ada performs noticeably better than CNN_Big

8

in the case of 4 available target sessions, owing to its
boosting strategy that elegantly puts more emphasis on
hard to estimate features across all people and sessions,
squeezing more knowledge out of the available data, so
long as there are enough sessions for it to actually draw
deeper meaning from.

Exo-Ada prominently outperforms 2-Stage TrAd-
aBoost in the case of only 1 available training session,
managing to keep the good performance of its base
learner. This is achieved by avoiding negative transfer in
conditions where the target data is not representative of
the test set because of notable session to session differ-
ences. Recall that the boosting approaches are designed
to focus on learning only the features from its source do-
mains, which are relevant for its target domain.

The major difference here is that Exo-Ada uses the do-
main specific baseCNN whilst 2-Stage TrAdaBoost uses
a general purpose regression decision tree, and the re-
sults represents a fundamental difference in how the two
base learners operate. While the baseCNN focuses on
learning features that concern the relationships between
sensor values over time, the decision tree has no such
notions. As such, it appears that the baseCNN learns
features that span across sessions, learnt from source,
before it even has more than one target session to train
for, allowing Exo-Ada and CNN_Big to get a head start
on 2-Stage TrAdaBoost.

However, this approach has clear drawbacks in the
case of 2 and 3 available sessions, where Exo-Ada does
not improve noticeably. It clearly is great at captur-
ing the most obvious cross-session features immediately,
while it has trouble grasping the inner meanings un-
til sufficient data has been provided. The weaker de-
cision trees used by 2-Stage TrAdaBoost have the ad-
vantage of focusing more narrowly on the features that
are the most relevant to the available target domain,
rather than having an inborn general intuition of the
FMG sensor feature space. As such, it is our notion
that 2-Stage TrAdaBoost inherently is better at trans-
ferring data from other people, while Exo-Ada has more
inherent knowledge about the problem domain, mean-
ing that its performance is more consistent, and rarely
swings wildly dependant on the quality of the available
target datasets.

The experiments show that Exo-Ada is on par with,
or better than, all baselines in all tested situations,
other than 2-Stage TrAdaBoost in the case of 2 and 3
available target sessions. As the MAE values for the
4 session measurements are hard to distinguish on the
graph, we repeat them here: Exo-Ada has an MAE of
0.149, 2-Stage TrAdaBoost 0.152, Ensemble CNN 0.182,
CNN_Big 0.162 and CNN_Small has 0.161. As we can
see, Exo-Ada performs better than even 2-Stage TrAd-
aBoost in this situation, however, we are vary of jump-
ing to conclusions based on only such marginal differ-
ences.

5.4 Exo-Ada Deep Dive
In this section, we will look into detail at some of the
qualities of Exo-Ada.
Predictions
See Figure 4 (a) for the plotted predictions on a represen-
tative subset of the test session. Its main difficulties lie
in correctly predicting the peaks and, most notably, the
valleys of individual lifting sequences. This appears to be
a consistent shortcoming of Exo-Ada regardless of how
many iterations N it uses to create its ensemble learn-
ers. This deficiency might be caused by the way that
the baseCNN convolutes a long history of measurement
samples to make its predictions, making it performant
on the majority of the dataset, but not for the peaks
and valleys, that have a high rate of change with regards
to the elbow angle.
Source vs Target Similarities
Going further in-depth with the inner workings of Exo-
Ada, we see in Figure 4 (b) the sample weight distribu-
tions between the datasets of each person used for train-
ing, over the boosting steps S. It uniformly increases
the value of the target dataset over its steps, building
one stronglearner per step, and later selecting the one
with lowest error to perform its final predictions. The
multi-domain adaptations of Exo-Ada cause the weight
distributions of each of the three datasets to start at
0.33, regardless of differences in the amount of samples
within each dataset.

Strikingly, and this result is substantiated by almost
every other performed test, we see that the algorithm
prefers to prioritize samples from person A higher than
person B, as it finds more transferable features within
person A’s dataset. This difference likely has to do with
multiple factors affecting the feature similarities, therein
the quality of the dataset, and the physical build of the
people involved. In this case, the build of the two people
it likes to associate is similar. This leads to future work
of note, as it may be worth investigating additional ac-
tions that can be taken based upon ”expert” knowledge
of the similarities between the datasets.

Another element of note is that Exo-Ada commonly
selects the stronglearner created at boosting steps 0-3 as
the one with the lowest errors, while 2-Stage TrAdaBoost
commonly goes for indexes 7-9. This represents a funda-
mental difference in how the two models learn features
from across sessions and people. This divergence is likely
caused by the difference in relative predictive strength
between using a CNN as the base learner, rather than
using a weaker regression tree, and letting the stacking
of many weaklearners do the job. Whereas the CNN’s
can achieve good performance across sessions and peo-
ple to begin with, the regression trees may require the
later boosting steps to have pre-tuned the weights of the
target dataset, in order to focus on the most important
features first.

9

(a) Elbow Angle Estimation (b) Sample Weight Distributions (c) Ablation Study

Figure 4: (a) shows predicted elbow angle Y′ compared to the ground truths from a subset of the test session sp3
5 , (b) shows

the distributions of sample weights W between the datasets (all training sessions) by person p1, p2 and p3 (c) shows the error
of ablated models

5.5 Ablation Study
Figure 4 (c) presents the ablation study to display the
impact of individual components we have added, and
see how they contribute to the performance of Exo-Ada.
We test the four ablated models: Exo-Ada, which uses
the full Exo-Ada algorithm, E-Singl, which removes Exo-
Ada’s multi-domain adaptations, E-Regr, that uses re-
gression decision trees as its base learner, and 2-Stage,
which is the original 2-stage algorithm. The tests are run
in the condition where Exo-Ada has achieved the most
improvement compared to the baselines, where only one
target session is available for training.

Clearly, the most important performance impact is
caused by the removal of the baseCNN, which is what
allows us to learn cross-session differences so well. The
multi-domain adaptations show performance increases as
well, that may be explained by the model not missing its
source vs target weight balancing ”sweet spot” because
it has to spend the first few steps S tuning the target
weights to emphasize its most important samples. The
ablation also shows that both of our adaptations are re-
quired to achieve the qualities of Exo-Ada.

6 Conclusion
This paper proposes a domain specific method called
Exo-Ada for the use with FMG-based exoskeletons to
predict a user’s elbow angle. The method uses knowl-
edge gained from other users through transfer learning
to improve its performance on the novel person. Exo-
Ada adapts the algorithm 2-Stage TrAdaBoost to better
transfer from multiple source domains and uses CNNs
designed for the particular domain of exoskeleton elbow
estimation. Our experiments show that Exo-Ada out-
performs several baselines in tests, but is still only on
par with some of the others at its best. Results did,
however, show a clear advantage of using Exo-Ada when
too few target data sessions are available.

7 Future Work
We believe that Exo-Ada can perform better than shown
in this paper and we have several areas we would like to
experiment with in the future. It would be interesting
to experiment with some other Learners to see what kind
of effect this could have, and possibly even using mul-
tiple, different base learners, to harness the powers of
each.

Our dataset in this paper only consisted of three peo-
ple, which could be expanded to facilitate more tests
about the amount of data, and to see if our hypotheses
about Exo-Ada preferring to boost samples from people
with a similar build hold true, and if so, how this could
be exploited.

We would also like to do some general optimization of
the algorithm as we started encountering memory prob-
lems when running with too much data. This, along
with more powerful hardware, would allow us to tune the
models, particularly Exo-Ada and 2-Stage TrAdaBoost,
much more precisely, and be able to better gauge their
true performance limits.

Lastly, we had some additional features in mind,
such as adding StartSteps, which would be a specifiable
amount of steps the algorithm would take without chang-
ing the weight distributions, to allow more time to em-
phasize the most relevant features of the target dataset.
Intuitively this would allow the algorithm to not miss the
source vs target ”sweet spot”, simply because it had not
highlighted the most essential target features yet.

Acknowledgments
We would like to thank our project supervisor Chenjuan
Guo. Additionally, we would like to thank Muhammad
Raza Ul Islam, research assistant at Aalborg University,
for providing the data collection software and the sensor
armband utilized in this project.

10

References
[Dai et al., 2007] Wenyuan Dai, Qiang Yang, Gui-Rong

Xue, and Yong Yu. Boosting for transfer learning.
In Proceedings of the 24th international conference on
Machine learning, pages 193–200, 2007.

[Eddy, 2018] Joseph Eddy. Time series forecasting with
convolutional neural networks - a look at wavenet,
2018.

[Freund and Schapire, 1997] Yoav Freund and
Robert E. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to
boosting, 1997.

[Islam and Bai, 2017] Muhammad Raza Ul Islam and
Shaoping Bai. Intention detection for dexterous hu-
man arm motion with fsr sensor bands. In Proceedings
of the Companion of the 2017 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, pages
139–140. ACM, 2017.

[Islam and Bai, 2019] Muhammad RU Islam and Shaop-
ing Bai. Payload estimation using forcemyography
sensors for control of upper-body exoskeleton in load
carrying assistance. 2019.

[Islam et al., 2018] Muhammad RU Islam, Kun Xu, and
Shaoping Bai. Position sensing and control with fmg
sensors for exoskeleton physical assistance. In Inter-
national Symposium on Wearable Robotics, pages 3–7.
Springer, 2018.

[Ke et al., 2017] Qiuhong Ke, Mohammed Bennamoun,
Senjian An, Ferdous Ahmed Sohel, and Farid Bous-
saïd. A new representation of skeleton sequences for
3d action recognition. CoRR, abs/1703.03492, 2017.

[Liu et al., 2019] Geng Liu, Li Zhang, Bing Han, Tong
Zhang, Zhe Wang, and Pingping Wei. semg-based
continuous estimation of knee joint angle using deep
learning with convolutional neural network. In 2019
IEEE 15th International Conference on Automation
Science and Engineering (CASE), pages 140–145.
IEEE, 2019.

[Pan and Yang, 2009] Sinno Jialin Pan and Qiang Yang.
A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359,
2009.

[Pardoe and Stone, 2010] David Pardoe and Peter
Stone. Boosting for regression transfer. In Pro-
ceedings of the 27th International Conference on
International Conference on Machine Learning, pages
863–870, 2010.

[Petersen et al., 2019] Emil Thougaard Petersen, Fred-
erik Østerby Hansen, Jonathan Karlsson, Ma-
tias Dahlin Holst, Mikkel Vestergaard Hem, and Palle
Thillemann. Exploring neural network models for es-
timating accelerometer data with multivariate time-
series prediction, 2019.

[Ren, 2018] Jie Ren. Two-stage tradaboost
github. https://github.com/jay15summer/
Two-stage-TrAdaboost.R2, 2018.

[Wei et al., 2016] Ying Wei, Yu Zheng, and Qiang Yang.
Transfer knowledge between cities. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1905–
1914, 2016.

[Yao and Doretto, 2010] Yi Yao and Gianfranco
Doretto. Boosting for transfer learning with multiple
sources. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
1855–1862. IEEE, 2010.

11

https://github.com/jay15summer/Two-stage-TrAdaboost.R2
https://github.com/jay15summer/Two-stage-TrAdaboost.R2

