
Emergent flocking boid-based
crowd behavior through

generalization of the system rules
in a 3D Reinforcement learning

environment with predator
satiation and foraging

Author:
Georgi Ivanov

Supervisor:
George Palamas

Copenhagen

June 2020

June 4, 2020

1

Aalborg University Copenhagen

Aalborg Univeristy Copenhagen.
A.C. Meyers Vænge 15, 2450.
Copenhagen SV, Denmark.
Secretary: Lisbeth Nykjær
Mail: lny@create.aau.dk
Phone: 99 40 24 70

Abstract
The purpose of this project was to create
an emergent flocking boid-based crowd behav-
ior, through generalization of the system rules,
predatory threat and foraging for the virtual
crowd. Extensive research was conducted on
the topics of flocking boids, prey and preda-
tor behaviors in nature and emergent behav-
iors and self-organizing systems. 3D Reinforce-
ment learning environment was implemented us-
ing Unity ML-agents. Finally, evaluation was
conducted by comparing two different ML crowd
implementations with a flocking boid control
environment. The results showed a successful
evolving of an emergent crowd behavior from one
of the models, using a generalized set of system
rules. Despite the suffered hardware limitations,
the exhibited results satisfied the problem crite-
ria, as well as providing interesting insights and
findings regarding emergent behaviors.

Semester: 10th semester, Medialogy (MSc)

Title: Emergent flocking
boid-based crowd behavior
through generalization
of the system rules in
a 3D Reinforcement learning
environment with predator
satiation and foraging

Project
period: February 1st,
2020 - June 4th, 2020

Semester theme: Media
innovation

Supervisor: George Palamas

Group members:
Georgi Nikolaev Ivanov

Finished: June 4th,
2020
Pages: 65

2020 Copyright c©. This report and appended material may not be published or copied without prior written approval
from the authors. Neither may the contents be used for commercial purposes without this written approval.

mailto:lny@create.aau.dk

Contents

1 Introduction 1

2 Analysis 3
2.1 State of the art . 3

2.1.1 Flocking behaviour in simple ecosystems as a result of artificial
evolution . 3

2.1.2 Investigating and Modeling the Emergent Flocking Behaviour
of Sheep Under Threat with Fear Contagion 4

2.1.3 Emergent Escape-based Flocking Behavior using Multi-Agent
Reinforcement Learning . 6

2.2 Flocking boids . 8
2.2.1 Cohesion . 8
2.2.2 Alignment . 9
2.2.3 Avoidance . 9

2.3 Emergent behaviors . 10
2.4 Predator satiation . 13
2.5 Reinforcement learning and proximal policy optimization 14
2.6 Problem statement . 15

3 Methods 18

4 Design and implementation 20
4.1 Flocking boid . 20

4.1.1 Crowd Manager . 20
4.1.2 Crowd Member . 22

4.2 ML environment . 28
4.2.1 Training environment . 29
4.2.2 Crowd . 31
4.2.3 Predator . 34

5 Evaluation 37
5.1 Evaluation setting . 37
5.2 Results . 41

6 Discussion 53

7 Conclusion 57

8 Future works 58

List of Figures

1 Virtual crowd in ’Lord of the Rings’ [17]. 2
2 Two dimensional environment created by Kwasnicka et. al.[23] 4
3 Environment design by Chang et. al.[6] 5
4 Two dimensional environment created by Hahn, Carsten, et al.[14] . . 6
5 Visualisation of cohesion behavior [34]. 9
6 Visualisation of alignment behavior [34]. 9
7 Visualisation of avoidance behavior[34]. 10
8 Examples of self-organizing systems 12
9 Examples of predator satiation and ’safety in numbers’ behaviors [39] 13
10 Flowchart visualizing the evolution of the project direction 17
11 ’Crowd Manager’ script main function. 20
12 ’agentPrefab’ character model. 21
13 Animation positions [3]. 22
14 ’Cohesion’ function of the ’Crowd Member’ class. 23
15 ’Alignment’ function of the ’Crowd Member’ class. 24
16 ’Avoidance’ function of the ’Crowd Member’ class. 25
17 ’Obstacle avoidance’ function of the ’Crowd Member’ class. 26
18 ’Fibonacci Rays’ class. 26
19 Predator avoidance and foraging functions 27
20 ’Move’ function of the ’Crowd Member’ class 28
21 Unity ML-agents environment flowchart [31] 29
22 NN hyper parameters . 29
23 Environment with food represented by green cubes 30
24 Food positioning function . 30
25 Agent observations . 31
26 Agent raycast observations . 32
27 Agent Action function . 33
28 Agent reset function . 33
29 Agent food collision function . 34
30 Predator main functionality . 34
31 Visual ques used for the emphasizing the exhibited crowd behavior . . 41
32 Top-down view examples of behavioral performance of all three envi-

ronments . 42
33 Orientation angle error for 5 behaviors with 15 agents per model . . . 43
34 Orientation angle error for 5 behaviors with 60 agents per model . . . 44
35 Additional metrics values with 15 agents per model 45
36 Additional metrics values with 60 agents per model 46
37 Cumulative reward over the total number of training steps for ML

model 1 (best training session) . 47

38 Cumulative reward over the total number of training steps for ML
model 2 (best learned behavior) . 47

39 Amount of times the predator caught an agent for 10 000 steps, shown
for each test version of the 3 tested implementations 48

40 Average predator memory size, shown for each test version of the 3
tested implementations . 49

41 Progression during training of ML model 2 (best achieved behavior),
shown for 4 orientation angle errors 50

42 Progression during training of Cohesion orientation angle error 51
43 Progression during training of 3 additional metrics 52
44 Multi-agent performance of Motion Matching model proposed by Najim[31] 59
45 Entropy value over the total number of training steps for ML model 1 64
46 Value loss over the total number of training steps for ML model 1 . . 64
47 Entropy value over the total number of training steps for ML model 2 65
48 Value loss over the total number of training steps for ML model 2 . . 65

Aalborg University Copenhagen Medialogy December 2019

1 Introduction

By definition, crowd simulating is the process of recreating the dynamics of a large
group of entities, unified by a common purpose, environmental conditions or other
external stimulus [40]. Crowd simulations are an all important part of video games
and cinematography, but they are also used in more serious scenarios, such as crisis
training, evacuations or general urban and architecture planning. Based on their pur-
pose and application, there are different types of crowd simulations, each highlighting
different key behaviors. For example, while in an evacuation simulation it might be
beneficial to navigate the crowd using an as realistic as possible pathfinding algo-
rithm, a virtual crowd meant to spark life on the streets of a video game city might
benefit more from character and behavioral diversity and low run-time computational
cost [40].

One of the earliest attempts at engineering an emergent group behavior is that of
Craig Reynolds with his famous Flocking boids algorithm [34]. The reason why this
work is so significant, is because it marks the beginning and becomes a basis of world-
wide efforts in competing to create a robust and lightweight group behavior model
for virtual crowds of large numbers. The release of the continued work of Reynolds
[35] on his original flocking behavior, where he shows the applications of transferring
the flock behavior approach to crowds instead of flying creatures, has further served
as inspiration of many future projects aimed at achieving crowd behavior based on
different emergent approaches. The reason why the emergent approach is so popular
solution to this problem lies in the specifics of virtual crowd dynamics. To be exact,
there are three main methods for designing virtual crowds [33]:

• Flow-based approach, where the emphasis is on the crowd as one singular
entity instead on the individual agent [9].

• Entity-based approach, which is the opposite and focuses on the separate
agents of the crowd. In this scenario all agents are bound by some overall
governing rules that serve as the catalyst to some desired emergent behavior,
making simulations like this useful for studying specific desired aspects of group
dynamics. Basic flocking belongs to that category as well.

• Agent-based approach is the most advanced of the three methods, as it does
not rely only on overall governing rules for the emergence of a certain behavior.
Instead, each member of the crowd is an autonomous intelligent agent, that
has the capacity for a much broader set of possible decisions, than the agents
from the entity-based approach. This solution usually involves some type of
ML model, used for navigating the agents. Furthermore, this method combines
the benefits of the entity-based approach, with the capacity for much more
complex and diverse resulting behaviours, than what a human developer can
produce through a set of navigation rules [40].

1

Aalborg University Copenhagen Medialogy December 2019

As mentioned earlier, one of the biggest problems of virtual crowds is the simula-
tion of groups of virtual entities with sufficient behavioral fidelity at a low computa-
tional cost [40]. A great example for this is the creation of the famous ’Lord of the
Rings’ movie trilogy [17], where in each of the three movies crowds of extremely large
numbers of over 50 000 entities at a time had to be handled (see figure 1). What is
more, due to the nature of the scenes where the crowds were utilized and the aim for
high attention to every detail by the producers, it was a requirement that every single
crowd member behaves naturally and in a unique way that does not give a feeling for
uniformity and staleness of the virtual masses [17]. To achieve that, the producers
used the ’MASSIVE’ (Multiple Agent Simulation System In a Virtual Environment)
crowd generation algorithm [8]. ’MASSIVE’ utilizes the ’Miarmy’ [19] human logic
engine for Autodesk’s Maya 3D modeling tool [27], implementing an AI capable of
choosing from a large set of animation sequences based on the environmental condi-
tions each entity is currently in [17]. This allowed for a high fidelity artificial crowd to
be created for the movies, without the use of traditional techniques for handling crowd
computation costs, that might reduce the quality of the visual experience. Some of
these techniques are 3D culling, which discards objects from the virtual scene that
are considered unimportant at the current moment and decreasing LOT (Level Of
Detail), where the further away a crowd member or object is from the camera, the
less attention to detail is invested into rendering it visually and behaviorally.

Figure 1: Virtual crowd in ’Lord of the Rings’ [17].

As entity and agent-based systems have been proven to be great solutions to the
virtual crowds problem, flocking boids find a large use in this field. One example
for this is the super-massive crowd simulation by Passsos et. al. [32], who achieved
a flocking boid simulation of over 1 million agents. Furthermore, Hartman et. al.
[16] propose the usage of the flocking boids algorithm as a lightweight solution to
simulating virtual crowds in modern games and other virtual simulations. Similar idea
is realised by Dewi et. al. [10], who use flocking boid behavior for the simulation of a
realistic crowd, in order to investigate certain crowd dynamics aspects. In addition,

2

Aalborg University Copenhagen Medialogy December 2019

Chiang et. al. [7], show that the emergent behavior of a flocking boid represents a
viable solution for simulating a virtual crowd.

There are numerous both behavioral and visual high fidelity crowd simulation
solutions nowadays, which make use of the ever-growing computational capacity of
modern computers. However, the field of emergent behaviors also gives purpose to
some much more lightweight solutions such as flocking boid-based crowd simulations,
that combine technical ingenuity with a very respectable level of behavioral fidelity
and large number of applications.

2 Analysis

2.1 State of the art

2.1.1 Flocking behaviour in simple ecosystems as a result of artificial
evolution

One interesting work in the field of emergent behaviors and more specifically flocking,
is the project by Kwasnicka et. al. [23], designed to observe the emergent behaviors
in a open-ended evolutionary system of creatures, evolved by a genetic algorithm.
Genetic algorithms (GA) are a subset of the field of evolutionary approaches, that
are characterised with their operational simplicity (compared to a neural network
approach) and effectiveness in the field of artificial evolutionary ecosystems [23].

The particular environment setup designed by Kwasnicka et. al. involves a sim-
plistic two dimensional environment, combining not only the traditional for this type
of setups large number of agents and predator, but also foraging capabilities for the
agents as well as habitat artefacts, such as plants (serving as food) and life system
for the occupants of the environment, serving as an additional tool for control of the
artificial population (see figure 2).

3

Aalborg University Copenhagen Medialogy December 2019

Figure 2: Two dimensional environment created by Kwasnicka et. al.[23]. The preda-
tor (black triangle) in this particular situation has decided to ignore the prey (white
triangle) and rather continue to the next piece of food (rectangle), as it has learned
that usually larger numbers of prey would gather around unpatrolled food.

Due to the versatility of the GA, the environment includes simultaneous evolution
of both prey and predator, resulting in much higher number of possible outcomes.
What is more interesting about this work however, is that it implements an open-
ended evolution. Open-ended evolutionary systems, also known as autoconstructive
evolution are unique in that they allow for the evolved subjects to choose in the time
of production of their offspring, thus mimicking this aspect of natural life [23].

The findings of the paper constitute mixed opinions about the overall benefit
of introducing such a high number of diversity of the elements of the environment,
as it is speculated to increase the produced entropy to a level where no classifiable
behaviors can be observed. Furthermore, the extensive research conducted by the
authors on the topic of what initial rules and conditions facilitate flocking behavior
in such artificial ecosystems, combined with the findings of their own experiment,
lead to the conclusion that there is still no concrete explanation for the reason of
the emergence of this behavior and any further research in the field will be highly
beneficial for the creation of a universal theory [23].

2.1.2 Investigating and Modeling the Emergent Flocking Behaviour of
Sheep Under Threat with Fear Contagion

Another interesting work in the field of emergent behaviors is the paper by Chang et.
al. [6], aimed at investigating the behavior of agents that include the implementation
of the fear-contagion system (see figure 3).

4

Aalborg University Copenhagen Medialogy December 2019

Figure 3: Environment design by Chang et. al.[6]. The image on the left shows the
reaction of the heard (white triangles) without the implementation of fear-contagion
right after the approach of the dog (black rectangle) has commenced. The image on
the right depicts the same situation, but with the fear-contagion implementation.

The authors of the paper draw inspiration by the work of Delgado-Mata, Carlos,
et al., that did extensive further development of the original flocking boid algorithm,
subsequently after the introduction of the system by Craig Reynolds [34]. More specif-
ically, Chang et. al. have used Unity engine [13], in order to create an evolutionary
environment, the goal of which is to achieve control of a heard of sheep towards a
desired goal, using a single control method, represented by a shepherding dog. The
goal of the conducted experiment was to test the results of including a fear-contagion
factor in the behavior of the heard, against a control environment with a generic
flocking boid implementation. The fear-contagion implementation itself includes an
additional force to the reaction of the sheep to the actions of the dog, based on the
fear levels of the individual neighbours, as well as the distance to the dog.

The results from the experiment show that grouping behavior is achievable through
the proposed model, but in a far less noticeable scale than what would be considered
satisfactory (matching or exceeding the results from the control environment). Ad-
ditionally, paper concludes that further investigation is needed, in order to formulate
the exact causality relation between the rules of the environment and the produced
outcome. Considering the conclusion drawn by the authors, it can be further specu-
lated that the insufficiency in the results was produced by the reliance on an overly
complicated reward system (such that includes indirect dependence on the fear fac-
tor). This conclusion would be an important consideration in the design of the current
project.

5

Aalborg University Copenhagen Medialogy December 2019

2.1.3 Emergent Escape-based Flocking Behavior using Multi-Agent Re-
inforcement Learning

In their paper Hahn, Carsten, et al.[14] show how emergent flocking behavior can be
achieved using an escape-based approach and a simple fitness function for the trained
agents, all combined in their proposed ’SELFish’ approach (Swarm Emergent Learn-
ing Fish). Similarly to this work, Hahn, Carsten, et al. draw their inspiration from
Reynolds’s [34] famous flocking boids implementation.

The goal of this paper is to show that a flocking boid behavior can be achieved in a
simple reinforcement learning environment, where the only motivation for the agents
is to stay alive as long as possible. The key element of the proposed implementation is
the escape-based approach, where along the classic flock of cloned agents, a predator
is introduced to the environment. To be more specific, the environment consists of
a two dimensional, rectangular action field, where the agents and the predator are
represented by circles with same radius for agents and predator (see figure 4).

Figure 4: Two dimensional environment created by Hahn, Carsten, et al.[14], with
the agents in green and the singular predator in orange. The lines in the bodies of
both agents and predator serve to show their current movement direction.

The environment sets no limitations for its occupants, as the rectangular field
is implemented in a way that exiting on one side, immediately leads to entering
back from the opposing side, creating the effect of a infinitely looping field. The
action space of the agents consists from only two actions, that is whether to change
their orientation by some degrees clockwise or counterclockwise. Using such a simple
action vector is possible due to the fact that the agents never stop moving, taking
one step per frame in the direction they are facing. Furthermore, this is important as

6

Aalborg University Copenhagen Medialogy December 2019

it significantly alleviates the processing load of the training algorithm, matching the
overall simplistic theme of the environment and allowing the focus to be entirely on
the exhibited behavior and not on visual fidelity. This is important because even with
such computationally and graphically simplistic environment in its basic setup, these
numbers increase drastically once training is initiated. To emphasize further, due to
the fact that machine learning algorithms generally benefit proportionally to the size
of the learning experiences, during training time the time step of the environment
is usually significantly accelerated. This, combined with the fact that every frame
multiple agent instances are maintained, vastly increases the overall computational
load of the environment.

The observation space of the agents follows the same theme, consisting of each
agent being aware of its own movement, the predator’s and n nearest neighbours.
While this also reduces the computation load of the algorithm, it is also inspired by
the way flock members observe their surrounding environment in nature.

The predator shares the same physical characteristics as the rest of the agents
and its purpose is to serve as a catalyst for the emerging of the flocking behavior.
The main difference between the agents and the predator is in that while the agents
are controlled by a neural network, the predator behavior is hard coded with a very
specific idea in mind, that ties together all elements of the environment to the overall
purpose of the project. More specifically, the predator has a predefined vision radius
which determines which flock member will be targeted. If there are no flock members
within the radius, the predator will go after the closest one from the entire population.
However, if more than one flock members enter the radius, the predator has the
chance to switch targets, by picking a random agent from the current number in his
vicinity. This simple rule adds the key aspect in the the behavior of the predator that
allows agents that have been targeted to escape, by rejoining the rest of the flock and
potentially ’confusing’ the predator. As the agents’ fitness function rewards them
for simply staying alive longer, the above described rule serves as an implicit reward
mechanism, designed to induce swarming of the agents with the goal of prolonging
their survival.

Hahn, Carsten, et al. evaluated the results of the created model, by doing an
in-between comparison among several simulation setups. Particularly, the two main
reinforcement learning setups were based on Deep Q Newtwork (DQN) and Deep De-
terministic Policy Gradient (DDPG) algorithms. The results of those were compared
with the original flocking boid implementation and one even simpler environment,
where the main rule would be that upon facing with the predator, the agents will be
directly repelled to the opposite direction. The results from these environments were
compared in terms of similarity to the generic flocking boids implementation. For ex-
ample, taking the DQN implementation, the average angular deviation of the agents
in that environment was compared with that of the original boid. Other metrics such
as density of the agents, average distance between them and visual inspection were
also used.

7

Aalborg University Copenhagen Medialogy December 2019

By and large, the findings of the paper allow for the conclusion that the two rein-
forcement learning approaches lead to a significantly similar behavior to the original
boids implementation. More importantly, the authors suggest the fact that the agents
still evolve towards a grouping behavior, rather than selfish running away from the
predator is a state of Nash equilibrium for the environment. To put this in other
words, considering the used fitness function and the general rules of that environ-
ment, it can be inferred what is the optimal behavior for maximising the reward and
that is simply turning away from the predator and running away in the opposite di-
rection every time he is encountered. Despite of that however, as mentioned already
the agents would still evolve towards the swarm-like formations. In that case, the
evolved behavior can be explained with the ’Prisoner’s dilemma’ behavior [15]. This
is a situation when multiple actors in some situation are acting in their own self inter-
est, with the intention of achieving the best possible outcome, at the cost of the other
participant’s loss. The result in this paradox however is that both parties always fail
to reach the highest personal output from the situation, resulting in a none-optimal
solution. The authors propose that this is the case with the boid formations in the
above described environment, but further investigation is required. Furthermore, it
is suggested that future developments of that work, such as adding walls to the ter-
rain, including obstacle or including food, hold the potential to even more interesting
results in terms of emerging behavior. What is more, the experiment can be taken
even further, by allowing the predator evolve a behavior of its own and then repeat
the cycle, thus leading to co-evolution of both sides.

2.2 Flocking boids

Created in 1986 by Craig Reynolds [34], ’Flocking boids’ is a work that introduces
an algorithm for achieving emergent flocking behavior, inspired by real life grouping
of large numbers of animals. What is fascinating about it is that it requires just 3
simple rules in order to achieve a complex behavioral pattern. More specifically, those
rules are cohesion, alignment and avoidance. Each agent in the flock is guided by
the combination of those 3 core behaviors, meaning that there is no requirement for
unified control of the group. This leads to a complex swarming pattern of the group,
at the expense of very low computation cost, due to every member being completely
autonomous. This makes the flocking boid algorithm popular to this day, as it holds a
great potential for further development and serves as a basis for many, more complex
works.

2.2.1 Cohesion

Cohesion behavior is implemented by first defining a vision radius for the agents (see
figure 5). Depending on the size of that radius, each agent will consider a certain
number of neighbouring agents at any given time. The way the cohesion movement
vector is calculated, is by taking the positions of all neighbouring agents and averaging

8

Aalborg University Copenhagen Medialogy December 2019

them into one point of interest. The movement vector simply points towards this
point, ensuring that the agent remains in close proximity to his neighbours.

Figure 5: Visualisation of cohesion behavior [34]. The red arrow marks the direc-
tion vector for the observed agent towards the average position of the neighbouring
members.

2.2.2 Alignment

The next component behavior called alignment works in a similar way to the cohesion,
in that each agent considers the number of neighbours currently in his vision radius
and ignores every other agent. The difference is in that in this case, the average is
taken between the forward facing vectors of the neighbours and the agent’s orientation
is adjusted. This ensures that once part of a local group, all agents share similar
directional orientation.

Figure 6: Visualisation of alignment behavior[34]. The red arrow shows the direction
towards which the orientation angle of the observed agent should be changed in order
to match the average orientation of the surrounding neighbours.

2.2.3 Avoidance

Avoidance is a bit different from the other two key behaviours in that it works in
regards to a second predefined radius (usually smaller than the neighbour radius),
called avoidance radius. Here, the agent monitors how many neighbours will get too

9

Aalborg University Copenhagen Medialogy December 2019

close to him in order to avoid collision. Once one or more neighbours are within
the avoidance radius, the average position of those is calculated and the agent is
redirected in the direction pointing away from that position.

Figure 7: Visualisation of avoidance behavior[34]. The red arrow points in the di-
rection of the movement vector opposite to the one in the direction of the average
position of the neighbouring members, that are within the avoidance radius of the
observed agent.

2.3 Emergent behaviors

As the technicalities of how the flocking boids algorithm operates have been already
introduced, the following section is going to explore more in-depth the meaning of
one of the most important aspects of this work, that is emergence.

When talking about emergent behaviors, it is not difficult to imagine scenarios
from the natural and none-natural world, where the combination of simple composing
parts into one, can lead to unforeseen outcomes where the composite system holds
much greater capacity for complex behavior than its composing parts alone. Follow-
ing from the previous section, an every day occurrence of an emergent behavior can
be seen in the formations created by flocks of birds during flight, evolved as defence
mechanism against predators. When grouped together, the feathered seek to appear
as one large entity, confusing the predator and eventually achieving a significant re-
duction of hunt-down prey [5]. Similarly, certain species of fish will form schools while
foraging, with the purpose of increasing their chances for survival [30]. Furthermore,
emergent behaviors can be also observed in the insect world, where for example ants
would form colonies, that are vastly more beneficial survival strategy for the survival
of their species, than rejecting cooperation [38]. This behavior is known as swarming.

One of perhaps the most important examples of emergence is the human brain,
where the combination of a large number of fairly simple in functionality parts known
as neurons, leads to the manifestation of arguably the most complex system in the
known world [21].

As suggested above, examples of emergent behaviors can be seen not only in

10

Aalborg University Copenhagen Medialogy December 2019

nature. In man-made systems such as the field of software, emergence can often be
the result of bringing a new component into an already well-explored and known
system, leading to unpredicted behavior, that can be either beneficial or leading to a
failure [29].

By definition, an emergent behavior is something resulting from the creation of
a composite system, that exhibits higher level of complexity than its sub-parts [25].
Emergence itself, is described as the occurrence of systems or entities, that posses
properties which can not be observed in their singular parts. That is to say, when
describing emergent behaviors in a system of multiple agents, the system is observed
as one singular entity, despite the lack of overall governance. What is more, emergent
systems as flocking boids for example are controlled on a local level, where every
agent can be considered an autonomous piece of the whole, but lead to the emergence
of higher complexity only once a larger group operates together.

It is speculated that emergent behaviors occur primarily in systems prone to none-
linearity [25]. That is to say, the output of the system does not match the input in
proportion. Another way to define that is through the mathematical field known as
Chaos theory. This branch of mathematics and statistics deals with systems that
despite of being perceived as completely random in behavior, are actually governed
by very deterministic laws, the hard-to-conceptualize nature of which leads to the
uniqueness of the emergent properties. To emphasize further, it can be speculated
that emergence is a property of systems rich on chaotic characteristics, otherwise
referred to as entropy, that given enough time, lead to self-organization and are
strongly related to the initial conditions of the system [25]. In other words, chaotic
systems have the potential for self-organization.

Self-organizing systems are such systems that undergo a process known as spon-
taneous order, leading to the formation of organized structures or behaviors between
the parts of the system, without the need for external intervention [4]. As sug-
gested earlier, self-organization occurs in both man-made and natural systems. More
specifically, in the field of computer science, examples of spontaneous order systems
are random graphs, cellular automata, evolutionary algorithms, multi-agent systems,
swarm intelligence etc. (see figure 8). [26].

11

Aalborg University Copenhagen Medialogy December 2019

(a) Conway’s ’Game of life’ cellular
automata[1]

(b) Self organizing map[26]

(c) Random graphs[26]

(d) Karl Sims’s procedurally evolved
creatures[37]

Figure 8: Examples of self-organizing systems

The reason why this is important is because a known property of none-linear
systems is that a very minor change to the overall composition, can often result in
a significant change in the output. A well known example for that are the studies
conducted on the Lorenz attractor in the movement of systems of planetary bodies.
Even though that the system is by nature deterministic and therefore predictable,
micro-changes in the input of the simulation that can be otherwise disregarded as
rounding errors, have the potential to lead to extreme differences in the final results
[25].

To summarize, this leads to the conclusion that when designing a setup meant to
manifest emergent properties, a great deal of attention should be directed towards the
initial conditions and overall governing rules of the system. It can be speculated that
the key to achieving a certain desired behavior from the system, lies in the balance
between a set of rules, that are specific enough in order to lead to the desired outcome,
yet not limit the level of entropy of the system, thus allowing for a large set of possible
outputs to manifest.

12

Aalborg University Copenhagen Medialogy December 2019

2.4 Predator satiation

This section is going to discuss one reemerging topic of interest in the works related
to emergent behaviors, that is predator satiation and its relation to the topic of this
project.

One way to classify animals in nature is by separating them to predators and
prey. There are numerous observable tactics derived from the notion of prolonging
survival, that can be observed in both sides. One such strategy is predator satiation,
which is related to the efforts of mass groups of prey to reduce the probability for
each singular member to be eaten by a predator [28] (see figure 9).

(a) A flock of starlings avoiding a hawk in a
’Sort sol’ formation (’Black sun’ from Danish)

(b) A school of fish avoiding a shark

Figure 9: Examples of predator satiation and ’safety in numbers’ behaviors [39]

More specifically, predator satiation involves an anti-predator adaptation behavior
in which the grouping prey aims to overwhelm the predator by appearing in much
higher numbers and densities than the predator can consume. Once the predator is
flooded with prey, it can consume only a certain maximum amount, which combined
with the higher density of the prey, ultimately results in less individual casualties.
Furthermore, this is speculated to have a relation to the safety in numbers hypothesis,
which states that almost every type of animal would, in certain situations, show a
tendency to a mass behavior of grouping with its self-similar. This is speculated to
be induced by efforts to increase safety and general chances for survival [28].

Furthermore, the predator satiation hypothesis occurs in both animals (formations
of flocks of starlings and schools of fish for example) and plants (mast seeding).
However, the specific topic of interest for this project will be the instance of this
behavior occurring in the non-vegetal part of the animal world.

The reason why it is important to realise the specifics behind this phenomena is
because this is the exact type of behavior that has served as inspiration for Craig
Reynolds in the creating of his flocking algorithm [34]. The grouping instinct observ-
able in almost every animal in nature, is usually the result of a multitude of outside

13

Aalborg University Copenhagen Medialogy December 2019

stimuli and not just predator avoidance. The common occurrence of this behavior is
also part of the reason why the flocking boid behavior itself appears as so natural and
animal-like, despite of it being the result of such simple and crude rules [34]. Fur-
thermore, there are numerous approaches that are speculated to serve as a catalyst
for emergent grouping behavior of agents in virtual environments - using a predator,
implementing a food seeking behavior, an escape based behavior to name a few [6].
Some of those approaches have even already been observed in practical application
in some of the examples presented in beginning of the Analysis.

2.5 Reinforcement learning and proximal policy optimiza-
tion

This chapter will describe in higher detail the specifics behind the machine learning
method of choice for this project.

There are three main types of widely utilized machine learning (ML) algorithms
nowadays - supervised, unsupervised and reinforcement learning. While the first two
are paradigms usually related to solving problems that include non-dynamic environ-
ments, the later has become the state-of-the-art approach when it comes to dealing
with intelligent agents in games [36]. More specifically, reinforcement learning is a
ML approach that deals with teaching virtual agents, by relaying on a specific action-
state-reward causality relationship, instead of manually labeled data. To emphasize
further, this relation produced by the interaction between the actor (agent) and the
space-time state of the environment is also known as the Markov decision process
(MDP) [36]. What is characteristic about this approach is the memorylessness of the
algorithm, also referred to as the Markov property.

To explain this into further detail, while the environment operates in predefined
time-steps, at each step the decision maker (agent) finds itself in some state s. Going
forward, the agent can choose between a number of possible actions A, dependent
on the current state he is in. Once the agent proceeds with the chosen action, the
process (environment) will respond by transitioning into a new state s′ (considered
random from the perspective of the agent), rewarding the agent with reward Ra(s, s

′)
based on the action he has chosen. Taking into consideration the causality of this
cycle, it can be inferred that the new state s′ is directly affected by the chosen action
a, which on the other hand is a result of the previous state s. That is to say, the
decision making process is conditionally independent of past states beyond s, thus
satisfying the aforementioned Markov property.

However, reinforcement learning is far from perfect. Traditional reinforcement
learning methods are synonymous for problems such as intractability of the unwanted
behavior of the algorithm due to things like lack of certainty in the agents value func-
tion (how good would a certain state be in terms of future reward) and overwhelming
complexity arising from continuous state/action space [36]. Some of these issues are

14

Aalborg University Copenhagen Medialogy December 2019

solvable by introducing Policy gradient (PG) methods, that make use of gradient
descent optimization, which is essentially a mathematical method used to find the
minimum of a given function, in this case the loss of the trained agent. Even with that
however, PG methods are still prone to problems such as over-sensitivity to chosen
step size or need of tremendously long learning times, resulting from poor sampling
efficiency [36].

This is where Proximal policy optimization (PPO) steps in. PPO models are
essentially an improved version of traditional RL with PG models in that they combine
the relative ease of hyper parameters tuning of supervised models with PG update
computation at every step, leading to minimized deviation from previously learned
policies [36]. Furthermore, this improvement in performance is achieved through the
use of Stochastic gradient descent, which is an alternative way for optimizing the
agent’s objective function, by relying on a smaller number of random samples from
the collected data, instead of sampling the entire available data set as with traditional
GD [36].

Considering the above described benefits of RL with PPO, this approach is further
a beneficial choice due to its wide availability through Unity engine’s newly introduced
ML library, namely Unity ML-agents [36].

2.6 Problem statement

Trough the extensive research described in the Analysis, it was shown that virtual
crowd simulations find great use in the video game, cinematography and other fields.
Studying the capabilities of emergent systems, it was hypothesized that complex
nature-like grouping behavior can be derived using only few simple initial rules and
conditions. Furthermore, the research suggests that the output of the system can
be greatly enhanced by the use of additional catalyst conditions, such as predatory
threat or need for foraging. Several great examples of that were described in detail,
both from the entertainment industry and the scientific field studying the dynamics
of virtual emergent grouping behaviors. Taking all of this into consideration, an
interesting direction for this project would be to create a complex emergent crowd
behavior that also has practical applicability in video games, cinematography, etc. In
addition, it was speculated upon the information gathered regarding self-organizing
systems, that a proper choice of initial rules that does not diminish the level of entropy
of the system, would lead to a much larger set of potential outcomes. Translated to
the field of emergent behaviors, this would mean that in order to achieve a certain
desired behavior, a balance must be set in the initial rules of the environment, such
that they do not over-specify the desired outcome, yet still narrate towards it. In
other words, more generalized set of conditions rather than too specific ones, have
the potential for a much more complex emergent crowd behavior. Finally, in order to
practically achieve that, a state of the art reinforcement learning approach is to be
utilized. Combining its applicability in both video games and movie-making with its

15

Aalborg University Copenhagen Medialogy December 2019

machine learning capabilities, Unity engine and its ML-agents library are the perfect
tool for the realisation of this project.

With this in mind, the following problem statement can be formulated:

Is it possible to achieve emergent flocking boid-based crowd behav-
ior through generalization of the system rules, using a 3D Reinforcement
learning environment with predator satiation and foraging of the virtual
crowd?

16

Aalborg University Copenhagen Medialogy December 2019

Figure 10: Flowchart visualizing the evolution of the project direction

17

Aalborg University Copenhagen Medialogy December 2019

3 Methods

This section is going to describe the techniques used to evaluate the problem statement
of the project.

As described in the Problem statement section, the main goal of this project would
be to create a Reinforcement learning PPO model, that can learn a flocking boid-
based crowd behavior through generalization of the rules of the emergent system. In
the context of RL, these rules can either be coming from the environment in which the
ML model is situated or from the model itself. In terms of the ML model, these rules
are represented by the fitness function, which aims at guiding the behavior of the
model through defining some constraints. These constraints are realised in the form
of different rewards, that are given to the agent based on the exhibited behavior. This
is where the main focus for achieving the aforementioned balance will be, as apart
from side factors such as neural network hyper parameters and overall structure of
the environment, the fitness function is the main key to successful training of the any
RL agent [36].

In terms of the environment, the external factors that will shape the behavior of
the ML model are the inclusion of a predator and need for food. As shown earlier
in the Analysis, both of these are proven to serve as catalysts for nature-like crowd
behaviors of different virtual crowds.

Furthermore, it was described in the Problem Statement section that an addi-
tional goal would be that the product of this project can have further practical utility,
beyond just empirical study of the dynamics of the emergent behavior. The major-
ity of the examples of emergent flocking boid-based crowd behaviors studied in the
Analysis implement only the minimal requirements in terms of visual fidelity of their
products. The reason for that is because as already mentioned, most of these projects
focus solely on studying the dynamics of the emergent system. In that case, a simple
two dimensional environment with the agents and other inhibitors and objects repre-
sented by simple geometric shapes would suffice and it will even further benefit the
performance of the application. The goal of the current project is to go a step further,
by creating a product which upon completion of the training of the ML model, can
be directly imported and used as an asset for a bigger video game project, movie or
other. In order to accomplish that, the product will be implemented in a 3D environ-
ment in Unity engine, which is used both as a game engine and a film making tool
[11], [12]. What is more, the agents inhabiting the environment will be represented
by fully animated biped humanoids, thus further enhancing the visual fidelity of the
created behavior.

Finally, the level of success of the presented product is to be evaluated. The way
this will be done is by comparing the produced emergent behavior to the original
flocking boid behavior. To achieve a 1 to 1 comparison where the additional elements
of the environment do not create biases, a second visually and conditionally identical
implementation will be made, with the only difference being that instead of a ML

18

Aalborg University Copenhagen Medialogy December 2019

model governing the virtual crowd, the original flocking boid rules will serve for
navigation. The trained ML model will then be compared in terms of how close
its learned behavior is to each of the 3 flocking behaviors (cohesion, alignment and
avoidance).

The technicalities of the above described concepts will be discussed into further
detail in the Design and Implementation chapter of the report. Furthermore, an
in-depth description of the evaluation setting can be found in the Evaluation chapter.

19

Aalborg University Copenhagen Medialogy December 2019

4 Design and implementation

This section is going to describe the technical details behind the product of this
project. The primary tools used to build the implementation are Unity engine [13],
Microsoft Visual Studio [20] and Unity’s Ml-agents library [22] with Anaconda 3 with
Python 3.6 [2].

4.1 Flocking boid

As the purpose of this project is to compare the behavior of the trained agents to the
original flocking boid implementation, first a control environment had to be created.
The boid implementation consists of two main classes - ’Crowd Manager’ and ’Crowd
Member’.

4.1.1 Crowd Manager

The ’Crowd Manager’ class is responsible for instantiating the flock with the appro-
priate initial parameters (see figure 11).

Figure 11: ’Crowd Manager’ script main function.

The ’Instantiate’ function holds the ’agentPrefab’, which in turn contains all the
visual details of the individual agent, as well the ’Crowd Member’ script (see figure
12). Furthermore, the ’Instantiate’ position field is overridden with a short function
that spawns each new agent at a random position inside a unit circle, with radius
controlled by a density variable. Same thing can be seen about the initial orientation
field, where every agent has a new random initial orientation, making sure the entire
flock does not face the same direction upon initialization. Finally, all agents are
assigned a name and added to a list, from which are later accessed by the ’Crowd
Member’ script.

20

Aalborg University Copenhagen Medialogy December 2019

Figure 12: ’agentPrefab’ character model

Character controller
The visuals of each individual agent, along with the animations applied to them,

have been achieved through the use of advanced version of Unity’s standard assets
character controller model, which includes a biped humanoid character, fully ani-
mated for running, crouching and jumping. The reason why the control of the char-
acter here is more special, is related to the way the animation is applied to the 3D
model. Usually, when creating a walking animation for example, the way of deciding
what animation to play at every frame is by moving the character into the desired
direction and then checking their speed. Then, depending on the speed of the charac-
ter, the appropriate animation is run at that frame (see figure 13). That is to say, we
first determine position P2 and then play the animation appropriate to the character
movement to P2. As much as it is robust and simple to implement, this approach
however fails once the goal is to have not only animation for running forward, but also
such more complex one for turning around, changing direction at varying speeds and
so on. The solution to that is to instead reverse the process by moving the character
based on the played animation sequence. That is to say, once we determine the posi-
tion P2 that we want the character to be in, we first play the animation appropriate
for that transition and only then move the character, based on the played animation
and not on the position we want them to be in.

21

Aalborg University Copenhagen Medialogy December 2019

Figure 13: Animation positions [3]

4.1.2 Crowd Member

The ’Crowd Member’ class deals with the navigation of each individual agent. As
mentioned earlier in the analysis, one of the big advantages of Reynolds’s boids algo-
rithm is that there is no need for overall control of the flock. Instead, the behavior
of each agent is governed locally. With that being said, the ’Crowd Member’ class
is the heart of the flocking boid part of the project, as it contains all the necessary
ingredients for achieving the desired behavior of the agents.

The ’Crowd Member’ class consists of 5 main functions, 4 of which are responsi-
ble for the separate flocking boid sub-behaviors Cohesion, Alignment and Avoidance,
including one additional custom behavior called Obstacle Avoidance, which is unique
to this project. The fifth main function of this class is simply called ’Move’ and it
serves as a weighting system for the aforementioned behaviors, combining them into
a singe output vector.

Cohesion
The cohesion function of the ’Crowd Member’ class serves to the same purpose

as the already explained in the Analysis original cohesion behavior by Reynolds [34],
with some small modifications, required as so to fit to this project scenario (see figure
14).

Firstly, another side function is called, that is GetNeighbours(), which returns
a list of all agents that are currently within the predefined neighbour radius of the
one of interest. Should there be no neighbouring agents at the current frame, the
returned value e 0. If there are however any neighbours, their positions are taken and
summed into a single composite 3D vector. Then, the summed positions are divided
by their total number in order to produce an average value. Finally, the direction
of the resulting vector is set to point away from the position of the current agent

22

Aalborg University Copenhagen Medialogy December 2019

of interest, by subtracting his position value from the whole. This logic can be also
expressed in the form of the following equation, where C is the composite cohesion
vector for the current agent, N is the total number of neighbouring agents A of that
agent, and A.pos is the position of each neighbour:

C =
ΣN

i=1Ai.pos

N

Additionally, the cohesion function has been altered by the original by using a
’SmoothDamp’ function, in order to make the transition between two consecutive
directions seamless in real time. This is important due to the fact that from all three
boid sub-behaviors, the cohesion function has the largest reflection onto the actual
movement of the agents and being called every frame will result in a jittery motion
in the flock, due to the constant overall movement.

Figure 14: ’Cohesion’ function of the ’Crowd Member’ class

Alignment
Similar to the cohesion function, the alignment function makes use of the total

number of neighbouring agents, but instead of their positions, it sums the vectors
pointing in the relative forward direction for each neighbour at the current frame
(see figure 15). If there are no neighbours in the vicinity of the agent of interest,
there is no change to the orientation of the agent. The logic of the function can be
expressed in the following equation, where Align is the composite alignment vector
for the current agent, N is the total number of neighbouring agents A of that agent,
and A.forward is the local forward vector of each neighbour:

Align =
ΣN

i=1Ai.forward

N

23

Aalborg University Copenhagen Medialogy December 2019

Figure 15: ’Alignment’ function of the ’Crowd Member’ class

Avoidance
The avoidance function is slightly different from the previous two in that it makes

use of a second radius around the agent of interest, called avoidance radius (see figure
16). If there are any neighbours within the avoidance radius of the current agent of
interest, their positions are used to calculate a vector pointing away from the current
agent for each neighbour. Then, those vectors are summed together and divided by
the total number of neighbours that are too close in order to average them. Should
there be no neighbours stepping within the avoidance radius of interest at the current
frame, no division is performed and a 0 value is returned in order to avoid errors.
The logic of the function can be expressed in the following equation, where Avoid is
the composite avoidance vector for the current agent Ac, N is the total number of
neighbouring agents A of that agent, and A.pos is the position of each neighbour:

Avoid =
ΣN

i=1Ac.pos− Ai.pos

N

24

Aalborg University Copenhagen Medialogy December 2019

Figure 16: ’Avoidance’ function of the ’Crowd Member’ class

Obstacle avoidance
The main reason for the obstacle avoidance behavior is so that the agents can ma-

neuver on a terrain surrounded by walls. Usually, when designing an obstacle avoid-
ance function, the approach would be similar to that used for the flocking avoidance
method. However, when dealing with objects such as walls, that can not be effectively
described by a single position point, another options must be investigated. This lead
the current obstacle avoidance function (see figure 17), which makes use of a second
supplementary class called Fibonacci Rays (see figure 18). The way the supplemen-
tary class works, is by casting a sequence of rays, starting from the forward vector
of the assigned object and pointing away from its center. If the entire sequence of
rays is completed, the shape that they describe would be a sphere. This way, the
ObstacleAvoidanceForce() method checks every next cast ray, if its direction is ob-
structed. Once an unobstructed direction is discovered, it is returned by the function
as a moving direction.

25

Aalborg University Copenhagen Medialogy December 2019

Figure 17: ’Obstacle avoidance’ function of the ’Crowd Member’ class

Figure 18: ’Fibonacci Rays’ class

Predator avoidance and foraging
The way the flock agents avoid the predator and move towards food is quite

straight forward. Firstly, the AvoidPredator() method works by simply checking if
the predator is within a certain predefined avoidance radius. If yes, the function
returns the direction vector pointing in the direction opposite of the predator (see
figure 19).

Also similarly simple is the Forage() function, which sorts through all available
food pieces and determines the closest one. Then the function returns the direction
vector pointing towards that piece (see figure 19).

26

Aalborg University Copenhagen Medialogy December 2019

Figure 19: Predator avoidance and foraging functions

Combined weighted movement
After all the other sub-behaviors have been sampled for the current frame, their

resulting vectors are combined into one composite force that is used to move each
agent (see figure 20). The Move() function does exactly that, by normalizing and
weighting each vector. The weights for each sub-behavior have been chosen trough
trial and error. Furthermore, the resulting vector is clamped to a predefined maximum
value and scaled appropriately by a chosen speed. Finally, the product of this whole
operation is scaled again by a fixed time update, in order to ensure that the movement
of the agents is not out of sync with the rest of the environment during run time.

27

Aalborg University Copenhagen Medialogy December 2019

Figure 20: ’Move’ function of the ’Crowd Member’ class

4.2 ML environment

The ML environment consists of 3 main pieces, that are the crowd of agents controlled
by the ML model, the predator and the interactive environment in which those two
dwell.

As mentioned earlier, this project makes use of Unity ML-agents library for imple-
menting Reinforcement learning. This ML environment consists of several intercom-
municating parts (see figure 21). The agent holds the implementation of the fitness
function and is the learner in the system. To him is connected a brain, which is the
neural network, which determines the behavior of the agent. As the agent interacts
with the environment, the brain will decide the behavior of the agent accordingly. All
of these are connected to the Academy class, which acts as an overseer of the entire
process. Furthermore, the progression of the neural network is handled by Python
ML library.

28

Aalborg University Copenhagen Medialogy December 2019

Figure 21: Unity ML-agents environment flowchart [31]

The hyper parameter values for the agent’s brain can be seen in figure 22. The
majority of these values have been chosen through trial and error, in order to provide
the best possible learning for the current environment.

Figure 22: NN hyper parameters

4.2.1 Training environment

The physical part of the environment consists of rectangular floor, surrounded by
walls that limit the available field for both agents and predator (see figure 23). The

29

Aalborg University Copenhagen Medialogy December 2019

size of the usable area has been chosen with the total number of agents that are to
be used in mind. That is to say, through trial and error in the initial iterations of the
implementation, it was determined that a too small or too big area leads to either
overpopulation by agents or inability to exploit the entire usable field effectively, thus
leading to behavioral artefacts.

Figure 23: Environment with food represented by green cubes

In addition, the environment comes with a class called ’Food Caster’, which is
used for instantiating and keeping track of the food available for the agents. The
main functionality of the ’Food Caster’ class can be found in the GetRandomPos()
function, which through recursion keeps track of the positions of the food pieces
scattered around the map (see figure 24). Upon starting the simulation, a predefined
number of food pieces are instantiated at random, non-repeating positions. Once an
agent consumes a food piece, the ’Food Caster’ will destroy it and replace it with a
new one, at a new random position, thus preserving a constant number of food pieces
on the map throughout the entire simulation.

Figure 24: Food positioning function

30

Aalborg University Copenhagen Medialogy December 2019

4.2.2 Crowd

The flock formation or the crowd, consists of identical instances of the same ML
agent, that combines a Unity Ml-agent with the same character controller used for
the flock members described above.

Firstly, the agent receives observations from the environment which serve as feed-
back for his actions. This is handled by the CollectObservations() method (see figure
25), which in this case passes 9 different feature vectors, equaling to a total of 17
observation values for the brain. These are the following:

• Agent position.

• Agent velocity on the x and z axis.

• Agent forward orientation vector.

• Predator position.

• Predator velocity on the x and y axis.

• The distance between the agent and the predator.

• Predator orientation vector.

Figure 25: Agent observations

The second part of the agent observations are handled by a raycast function which
can detect 4 different objects - other agents, predator, food and walls (see figure 26).
The raycast of the agents consists of 18 vectors in total with a spread of 340 degrees.
This ensures that the agents have no blind spots.

31

Aalborg University Copenhagen Medialogy December 2019

Figure 26: Agent raycast observations

The reason why the agent velocity is passed through a hand-made function in-
stead of Unity’s native Rigid body velocity method is because of the way the later is
calculated. Essentially, in situations when the agent is facing an obstacle and running
towards it, the native velocity method would still return a positive value, despite of
the agent staying in one place. This is highly problematic, as the velocity values are
essential observation for the learning of the agent. Therefore, if those values are false
in certain moments, this can lead to the agent updating its policy for situations which
are wrongly described by his experience.

Furthermore, the AgentAction() function is the most important from the agent
class, as it defines the reward system for the agent (see figure 27). Firstly, the agent
receives a control signal vector from the brain, which is used to move the avatar.
Then three separate conditional checks are performed - whether the agent is colliding
with food (see figure 29), whether he is colliding with the predator and whether he
is colliding with any of the walls surrounding the training area. Upon collision with
food, the agent is rewarded with a positive reward of 0.5. Upon collision with the
predator, the reward is negative and twice as big. Additionally, the agent is rewarded
a second negative reward of 0.5 for colliding with the walls. Upon collision with
any of the food pieces, the food is removed and a new piece is positioned at a new
random point on the field. The Done() method is called upon collision with wall
or predator, as it is used for resetting the agent (see figure 28), which terminates
the learning episode and re-instantiates the agent at a new random position, with a
random facing direction. The reward values were chosen through numerous trials and
errors and are aimed at balancing the behavior of the agent in terms of the different
parts of the surrounding environment. The reason why the agents are penalized for

32

Aalborg University Copenhagen Medialogy December 2019

hitting the walls, is in order to define the boundaries of the movable area for the brain.
During the initial iterations it was discovered that if no such penalty is introduced,
the agents will inevitably regress towards a behavior of ’picking a corner’ until the end
of the learning episode, which lead to no significant progress in the policy updates.

Figure 27: Agent Action function

Figure 28: Agent reset function

33

Aalborg University Copenhagen Medialogy December 2019

Figure 29: Agent food collision function

4.2.3 Predator

The predator also consists of a character controller and a predator class, that deter-
mines his movement. While the character controller for the predator is essentially
identical to the one used for the agents of the flocking boid implementation, the main
functionality of this class is contained in the MoveDirection() function, that yields a
direction vector for him every frame (see figure 30).

Figure 30: Predator main functionality

The key in the functionality of the predator is in that he does not just chase the
closest pray. Instead, in order to create a more complex behavior, the predator will

34

Aalborg University Copenhagen Medialogy December 2019

chase the closest pray, only if there is no other prey in his predefined vision radius. In
case there are more than one flock members within the predator’s vision radius, he will
go after the last one that has entered his vicinity. This ensures a complex behavior
that provides the prey a chance to escape, by moving closer to other flock members,
thus ’confusing’ the predator. Furthermore, with the predator being the main mov-
ing force behind the emerging behavior of the pray, this way of implementing him
predisposes the flock to seek ’safety in the numbers’, ultimately making the predator
a catalyst for the flocking behavior. This approach to the predator implementation
has been inspired by the examples presented in the ’State of the Art’ section of the
Analysis.

The way this behavior is achieved is by first checking which flock members are
within the predators vision radius. This is done on two levels - first, with a simple list
that aims to check the members within radius for the current frame and second, with
a global list the contents of which are independent from the update cycle, essentially
serving as a memory for the predator. The reason why this type of implementation
was necessary, is because of the way the dynamic between the predator and the prey
work. More specifically, this addresses the problem two or more flock members enter-
ing the vicinity of the predator simultaneously, thus resulting in skips in the chain of
targets for the predator. Furthermore, if the predator’s direction function is depen-
dent on the frame rate cycle, it becomes difficult to account for the flock members
that have temporarily exited the predator’s vision and then have reentered it again
shortly after. This would result in undesired and more importantly inconsistent be-
havior in the predator, which can not be allowed, considering that the training of the
flock depends on the interaction with him. The ’radius memory’ of the predator is
updated in three cases. First, if a flock member is noticed to be within the vision
radius, but is not currently contained in the memory, then he is added. Second, if
a flock member is exits the predator vision radius and has been in the memory so
far, then he is removed from the memory. Finally, if the predator memory exceeds 20
flock members at a time, it is flushed completely and the information from the current
frame is added again. The last step is executed by a ’fail-safe’ function that is ran
independently from the main direction calculation function and the reason for it is to
prevent situations in which the predator, being essentially part of the environment,
begins to slow down the entire simulation due to excessive calculations performed at
each frame. Furthermore, the predator class is optimized by using the System.Linq
(Language Integrated Query) library, native to C#, for sorting the lists of prey and
comparing the distances between them. Additionally, further optimization has been
achieved, by replacing the Vector3.Distance function for the comparison between dis-
tances, with a manual calculation that makes use of the much more lightweight in
terms of computational load .sqrtMagnitude function. To explain this into further
detail, this is done by comparing the squared magnitudes of the position vectors of
interest, thus bypassing the expensive square root operation embedded into the orig-
inal distance function. As explained earlier in the Analysis, when dealing with large

35

Aalborg University Copenhagen Medialogy December 2019

number of agent instances to process through, combined with an 100-fold increased
environment time scale during training time, these small solutions for reducing the
computational load result into a great improvement in the achieved performance.

36

Aalborg University Copenhagen Medialogy December 2019

5 Evaluation

This section is going to describe the evaluation setting and the results produced with
it respectively.

5.1 Evaluation setting

In order to evaluate the problem statement of this project as accurately as possible,
the test process was designed so that it utilizes both quantitative and qualitative
data. To be more specific, the test consisted of comparison between 3 different crowd
implementations - two ML implementations using the same RL model but with dif-
ferent settings and one crowd implementation identical to the original flocking boid
implementation. For the quantitative part of the test, the three implementations
were compared using various numerical statistics that describe the behavior of the
crowds. For the qualitative part, visual inspection and comparison was done upon
each solution, implementing additional visual ques that helped to underline behav-
ioral artefacts and other less visible characteristics.

Throughout the numerous implementation iterations of this project, several RL
model versions were deemed successful in terms of satisfying the conditions described
in the Methods section. Each different version was designed with the purpose to test
a different approach, hypothesized to be the solution to the problem statement. The
main variation between the different implementations was expressed primarily in the
reward function of the agents, the hyper parameters of the NN and the environmental
conditions. As explained earlier in the report, due to the nature of the emergent
approach, even the slightest variation in the initial conditions of the environment can
potentially lead to an entirely different and unforeseen outcome. This is also the
main reason why this project requires an implementation process with such a high
emphasis on iterating through different possible solutions.

Out of those implementations, two were chosen for comparison with the original
flocking boid-derived crowd implementation. To go into further detail, the two chosen
solutions are the one that got the closest in terms of behavior to the control envi-
ronment and the one that had the best results in terms of training the ML model
(highest reward achieved, highest learning rate, etc.).

To be more specific the main difference between the two chosen ML implementa-
tions is in the fitness function used for each algorithm (see table 1).

37

Aalborg University Copenhagen Medialogy December 2019

Vector observations Ray cast observations
ML model 1
(best training
performance)

- agent position
- agent velocity
- agent orientation

18 rays with a total spread
of 340 degrees

Ml model 2
(best achieved
behavior)

- agent position
- agent velocity
- agent orientation
- predator position
- predator velocity
- distance from predator
- predator orientation

18 rays with a total spread
of 340 degrees

Table 1: Reward systems used for the two ML models

In order to compare the three implementations in terms of quantitative data, a
separate program was built, so that it keeps track of the metrics of interest produced
by the performance of the algorithms. More specifically, the program monitored the
following values:

• Distance from the average center of the nearest group of neighbours.

• Distance from the predator.

• Number of neighbouring agents.

• The error in terms of angular difference between the forward vector of each
agent, describing his movement at the current frame and the vector describing
each of the three native flocking boid behaviors as well as the perfect desired
behaviors for finding food and avoiding the predator:

– Cohesion - the direction vector towards the average center of the nearest
group of neighbours.

– Avoidance - the direction vector pointing away from the average center of
all neighbours that trespass the avoidance radius.

– Alignment - the direction vector that is the average result between the
forward vector of the nearest group of neighbours.

– Foraging - the direction vector pointing towards the nearest piece of food.

– Predator avoidance - the direction vector pointing away from the preda-
tor, if he is within the agent’s immediate vicinity (predefined predator
avoidance radius).

Furthermore, the predator behavior was also recorded for comparison between the
3 implementations. More specifically, two metrics were extracted from his behavior:

38

Aalborg University Copenhagen Medialogy December 2019

• Amount of times the predator caught a prey.

• The predator memory size.

As explained in the Implementation, the predator complex behavior is achieved
by storing the number of agents that are within his vision radius in a frame rate inde-
pendent memory. Therefore, the higher the size of that memory is, the more times an
agent managed to avoid being eaten, because the predator got confused and targeted
another crowd member in the middle of the chase. Additionally, the agents have been
implemented with a maximum velocity that approximately 20% smaller than that of
the predator, ensuring that they can not regress into a behavior of endless chasing in
circles.

Upon collecting the above metrics, each of them was averaged for the total number
of agents used for the given simulation, in order to gain representation of the entire
crowd. Furthermore, in order to avoid biases, the values were noted 100 times, each
time recording after 100 consecutive frames and finally averaged over the total number
of recordings. This is done as to ensure that situations where the agents are showing
behavioral artefacts are accounted for in the final measurements. Same was done
with the predator data. Finally, for each of the three tested models two versions were
tested - one with 15 and one with 60 members of the crowds. The above described
evaluation setup can be seen summarized in table 2.

Test version I Test version II
ML model 1 (best
training performance)

15 agents 60 agents

ML model 2 (best
achieved behavior)

15 agents 60 agents

Flocking boid-based crowd
(control implementation)

15 agents 60 agents

Table 2: Evaluation setup

Furthermore, the reason why only 15 agents per crowd were used during train-
ing, brings us to the hardware setup used for conducting all of the above described
experiments (see table 3).

CPU Intel Core i5-5200U (2 core, 2.2 - 2.7 GHz, 3 Mb cache)
GPU nVidia GeForce GTX 950m 2GB
RAM 2 x 4 GB DDR3 (1600 MHz)

Table 3: Hardware setup used for developing and testing the product

39

Aalborg University Copenhagen Medialogy December 2019

Due to the highly insufficient computational power provided by the used setup,
the maximum number of ML agents that could be trained at once without suffering
too high performance losses was 15. Unfortunately, this is a number that is highly
limiting for the overall scale of the project. The reason for that is because the crowd
number during training, defines what relative number of neighbours each agent is
trained to work with during inference. Of course it should be noted that provided a
high enough robustness of the trained model is achieved, theoretically the agents can
simply be cloned to get a higher crowd count during real-time performance and their
learned group behavior should translate to this more numerous model. This is exactly
what was done with this project, as to reach the higher number of 60 agents for the
second version of the simulations. However, in a perfect situation, the total count of
the crowd members during training should match that of the crowd during inference.
The reason for that is simply in the total number of neighbours that can be at once in
the immediate vicinity of each agent. Hypothetically, having such a low total count
that less than half of the crowd members can be completely surrounded at once (find
themselves in a group) during training, means that the overall experience from which
the model learns is that the average crowd member moves completely alone or with
only a few neighbours. Given the small learning experience to which the training
times of the compared models translate due to the computational insufficiency, this
would unavoidably reflect on the final learned behavior by the model and therefore
on the evaluation results. However, taking into consideration the current scale of the
project, this does not in any way devalue the findings of the performed experiments.

The overall reason why a second more numerous version of each model was tested,
was based on the observation during initial testing that the exhibited behavior does
not change linearly with the higher number of agents introduced. This is due to
the complexity of the environment and the high number factors contributing to how
the model learns. Furthermore, a higher crowd members count was shown to be
the desired version of one such product, as the majority of studied examples in the
Analysis either achieve the desired emergent behavior with much higher numbers, or
show that the general application of a practical crowd simulation usually entails a
very large crowd.

Finally, for the visual inspection of the crowds, the following visual ques were
implemented (see figure 31). All of the color values have been chosen specifically to
contrast between the different elements of the environment.

40

Aalborg University Copenhagen Medialogy December 2019

Figure 31: Visual ques used for the emphasizing the exhibited crowd behavior. Preda-
tor has both his avatar and forward vector orange. Crowd members are colored white
or magenta, depending on the size of their local group and their forward vectors are
colored in cyan. Food is colored green.

The purpose of the above described test setting is defined by the hypothesis that
having the behavior rules essentially hard-coded, the flocking boid crowd implemen-
tation would have the most desirable results. It can then be used as a control envi-
ronment to which the two ML implementations can be compared. The results from
the above described experiment can be found in the next chapter.

5.2 Results

Each of the two ML models was trained for approximately 8 hours, equalling around
900 000 real-time steps for each agent. The training sessions were terminated after
approximately the same time, in order to avoid differences in the training conditions.
The number of food pieces used for the training and testing for each implementation
was 4. This number was chosen through trial and error during the initial implemen-
tation iterations as well as using the information gathered throughout the research
of other similar examples, as it provides the greatest balance between all of the other
elements of the environment. The same process was used for the choice of terrain
size, surface friction values, collider sizes, etc. Finally, both models used the same
hyper parameters for their NNs.

The visual observation part of the test shows that ML model 2 was the one that
was able to learn the best flocking boid-like behavior. However, the model seems
to prioritize avoiding the predator, instead of balancing between foraging and avoid-
ance. Due to that, the model fails to maximize its reward. Instead it reaches a state

41

Aalborg University Copenhagen Medialogy December 2019

of dynamic equilibrium where the newly received negative rewards are minimized.
ML model 1 shows the best training, meaning that the algorithm successfully maxi-
mizes its reward. Here, the model achieves a relative balance between foraging and
predator avoidance. However, instead of prioritizing grouping, the individual agents
of the crowd would prefer to deal with the predator on their own, mostly trying to
outmaneuver him.

(a) ML model 1 (best learning performance) (b) ML model 2 (best learned behavior)

(c) Control environment

Figure 32: Top-down view examples of behavioral performance of all three environ-
ments

Figure 33 shows the total average of the orientation angle errors for cohesion,

42

Aalborg University Copenhagen Medialogy December 2019

alignment, avoidance, foraging and predator avoidance for each of the three imple-
mentations tested with 15 members per crowd. ML model 1 (best trainer) shows to
be the worst in terms of alignment, avoidance and foraging, followed by ML model
2 (perfect flocking behavior) and the control environment. This tendency however is
reversed when it comes to the predator avoidance and cohesion. This can be further
confirmed by the visual inspections of the three behaviors, showing that ML model 1
has the best maneuverability of the agents, therefore avoiding the predator with ease.

Figure 33: Orientation angle error for 5 behaviors with 15 agents per model - Co-
hesion, Alignment, Avoidance, Forage and Predator avoidance. The values for each
behavior are listed for comparison between 3 models - ML model 1 (best learning
model), ML model 2 (best flocking model) and original flocking boid

Figure 34 shows the same measurements, but for the test version with 60 agents.
Here the control environment still performs best in terms of alignment, avoidance,
foraging and predator avoidance, but the trend is shifted when comparing the two ML
models. In avoidance, foraging and predator avoidance ML model 1 outperforms ML
model 2, while the measurements for alignment show the opposite. Cohesion shows
equal performance for ML model 1 and the control environment, while ML model 2
outperforms both.

43

Aalborg University Copenhagen Medialogy December 2019

Figure 34: Orientation angle error for 5 behaviors with 60 agents per model

Figure 35 shows the grouping, predator distance and number of neighbours per-
formance for the three implementations, in a test with 15 agents per group. Here
ML model 2 outperforms both ML model 1 and the control environment in each cat-
egory (notice that for grouping, a smaller distance means better performance, while
for predator distance and number of neighbours, low values mean the opposite). ML
model 1 does better than the control environment only in terms of predator distance,
but the difference is too small to be considered significant.

44

Aalborg University Copenhagen Medialogy December 2019

Figure 35: Additional metrics values with 15 agents per model. Presented metrics
are Grouping, Predator distance, Number of neighbors

Figure 36 show the same but for the test with 60 agents. Here the exhibited trend
is exactly the same as in the test with 15 crowd members, with the only difference
being that in this case the control environment outperforms ML model 2.

45

Aalborg University Copenhagen Medialogy December 2019

Figure 36: Additional metrics values with 60 agents per model. Presented metrics
are Grouping, Predator distance, Number of neighbors

The following figure shows the cumulative reward of ML model 1’s training session
(best achieved training). Here the algorithm continues to increase its reward, stabi-
lizing at around 1 000 000 steps. As it can be seen from the graph, this model shows
relatively small fluctuation in performance, maintaining positive reward the entire
session. However, as shown from the visual observations of the learned behavior, the
model mostly fails to evolve toward grouping behavior.

46

Aalborg University Copenhagen Medialogy December 2019

Figure 37: Cumulative reward over the total number of training steps for ML model 1
(best training session). Smoothing function has been applied due to high fluctuation

The next figure 38 shows the cumulative reward of ML model 2 for the entire
training session. As mentioned earlier, despite of the near-perfect grouping behavior
exhibited by the agents, this algorithm failed to as high of reward as the other pre-
sented ML model. With that being said however, the graph still shows some progress
over time. The occasional spikes, followed by immediate drops indicate the efforts of
the model to update its policy by attempting strategies that bring only short term
success.

Figure 38: Cumulative reward over the total number of training steps for ML model 2
(best learned behavior). Smoothing function has been applied due to high fluctuation

The next figure shows the total number of times the predator caught an agent for
the duration of each test session (see figure 39). As it can be seen from the graph, the
difference in the 15 agents test version is quite small. However, the results show that
ML model 1 has the least amount of casualties, followed by the control environment.
The difference is increased in the more numerous version of the test, where the agents

47

Aalborg University Copenhagen Medialogy December 2019

from the control environment were the best at avoiding the predator and ML model
2 did the worst.

Figure 39: Amount of times the predator caught an agent for 10 000 steps, shown for
each test version of the 3 tested implementations

Furthermore, figure 40 shows the average predator memory size for each test
session. It can be seen from the graph that in the less numerous version of the
test, the predator was most confused with the control environment and was mostly
hunting single moving agents with ML model 1. This tendency is completely reversed
in the second version of the test, where the predator was least confused in the control
environment and most confused in ML model 2.

48

Aalborg University Copenhagen Medialogy December 2019

Figure 40: Average predator memory size, shown for each test version of the 3 tested
implementations

Additionally, as the previous graphs as well as the visual observations show that
ML model 2 solves the hypothesis by learning an excellent grouping behavior, the
progress of the model has been sampled during training (see figures 41 and 42). The
graphs show the progress for the orientation angle error of the model for cohesion,
alignment, avoidance, foraging and predator avoidance. The way the presented data
has been accumulated is by recording the performance of the algorithm every 50
000 steps of the training. Starting with alignment, it can be seen that the model
increases the angular difference from the perfect behavior only once for a relatively
short time during the entire session. The same can be said about the avoidance
between neighbours, as the error peaks only once in the beginning of the training. It
can be further observed that the model puts less priority in the foraging. Furthermore,
predator avoidance is nearly perfect during the entire session. Cohesion is highly
fluctuating, but note that due to the insignificance of the values, it is presented in
another graph where it never goes above 1 degree error difference.

49

Aalborg University Copenhagen Medialogy December 2019

Figure 41: Progression during training of ML model 2 (best achieved behavior), shown
for 4 orientation angle errors - Alignment, Avoidance, Foraging, Predator avoidance.
One time step on the graph equals 50 000 training steps for the algorithm

50

Aalborg University Copenhagen Medialogy December 2019

Figure 42: Progression during training of Cohesion orientation angle error. One time
step on the graph equals 50 000 training steps for the algorithm

The last graph shows the progression of ML model 2 for 3 additional metrics -
grouping, distance from predator and number of neighbours. While the distance from
the predator is quite fluctuating, the distance from the local group center and the
average number of neighbours are relatively stable throughout the session. Having
an average number of neighbours of 3.5, shows that the algorithm keeps the majority
of the agents surrounded in a group almost all of the time.

51

Aalborg University Copenhagen Medialogy December 2019

Figure 43: Progression during training of 3 additional metrics - grouping, distance
from predator and number of neighbors. One time step on the graph equals 50 000
training steps for the algorithm

The findings from the above presented results will be described in the discussion.

52

Aalborg University Copenhagen Medialogy December 2019

6 Discussion

Based on the visual observations of the 3 implemented environments, it can be con-
firmed with certainty that ML model 2, which learned the best crowd-like behavior
fulfils this requirement of the project’s PS. During the research of the different key
aspects utilized in these implementations (predatory threat, foraging, etc.), it was
speculated that a natural evolution towards a grouping behavior will occur, provided
the agents are given enough freedom of action through the rules of the environment.
While this was also confirmed, the examination of the quantitative data gathered
from the test, indicate that there are still some issues with the environments. For
example, looking at the angular errors of the models in the two versions of the test,
ML model 2 outperforms ML model 1 when dealing with 15 agents. Once the number
is increased however, this tendency is shifted in the opposite direction. This, as spec-
ulated earlier, is due to the fact that the insufficient training caused by the hardware
limitations is crippling for the performance of the less robust in terms of individual
agent manoeuvrability ML model 2 when changes in the environment are introduced.
However, even with these limitations, looking at the results for distance from local
group center, distance from predator and average number of neighbours, ML model
2 outperforms ML model 1 even in the more numerous version of the test. What is
more, in most of these criteria ML model 2 got better results even than the control
environment, which can be further confirmed by the visual inspection.

For example, when looking at the average number of neighbours for the two test
versions and comparing that to the neighbor avoidance behavior, it can be seen that
the agents from ML model 2 became so proficient in navigating while in a densely
packed group, that they no longer need to maintain the neighbour avoidance radius
that is present in the control environment. This is important because each agent
avatar is implemented with a certain amount of friction to its collider. Even though
the friction values for all agents are minimized in order to avoid situations when they
get stuck on each other, the way Unity handles friction is that when two colliders are
moving while in contact with each other, they still experience a significant reduction
in velocity. This was initially implemented with the idea to push forward the estab-
lished tendency in the majority of other similar projects, which usually handle their
crowd members as pass-through objects, independent of collisions. However, despite
the danger of becoming slower and getting caught by the predator, the agents still
prioritized the ’safety in numbers’ approach. Looking at the predator distance this
strategy can be confirmed to be beneficial, as it outperformed the other ML model
in this category. However, when examining the amount of times the agents from the
two models were caught by the predator, it can be seen that ML model 1 performed
better. This can be further confirmed by the visual observations, as it is clear that
here, despite of never evolving towards a group, the agents became really good at
individually outmaneuvering the predator.

As described in the beginning of the Evaluation, the only difference between the

53

Aalborg University Copenhagen Medialogy December 2019

two ML implementations is in the amount of observations they receive. While the
agents from ML model 1 were relying mostly on ray cast observations to perceive
the world around them, the agents from ML model 2 had on their disposal several
additional global vector observations. More specifically, the agents from ML model 2
could see the predator, even if he was not in the viewing distance of their observation
rays. Furthermore, while ML model 1 learned to balance between foraging and preda-
tor avoidance by employing a strategy of independent behavior for each agent, ML
model 2 reached a strategy that mostly prioritizes predator avoidance and individual
agents rarely risk to break out from the group in search for food. Based on the results
from the test, as well as visual observation of both the learned behaviors it can be
hypothesized that this is due to the fact that agents that are completely surrounded in
a group, have their ray cast vision obstructed by their immediate neighbours. In that
situation, the agent has two options - either follow the movement of its neighbours,
thus maintaining a group formation, or break out from the group in an effort to be
able to see the potential threat from the predator and search for food. Therefore, the
agents from ML model 1 who can rely only on their view radius, prefer to avoid their
neighbours and move as much as possible, thus decreasing the chances of missing
the incoming predator and increasing the chance to find food. On the other hand,
the agents from ML model 2, even though having their vision obstructed, can still
perceive the predator and can focus entirely on perfecting their movement in cohesion
with the overall motion of the group.

In addition, it can be seen from the training progression statistics extracted for ML
model 2, that the model excels in predator avoidance and alignment nearly throughout
the entire training session. Even though the cohesion statistic shows high fluctuations,
it should be noted that the reason why this behavior was presented in a separate graph
is because the error there is really low. Therefore, these fluctuations in the margin
of 0.20 degrees can be disregarded. One interesting observation from the progression
graphs is that the food seeking behavior becomes increasingly worse over time, with
the highest spike at the end of the training session. This confirms the so far collected
observations, that this model prioritises predator avoidance and grouping, instead
of looking for food. Furthermore, it can be hypothesized that had the training not
suffered from the hardware limitations, the model can potentially learn to balance
more efficiently between the two behaviors.

When looking at the predator statistics, one interesting finding to mention is that
for almost all test sessions, the higher predator memory size does not translate to
a smaller amount of agents eaten. This contradicts the initial speculations that the
more the agents are able to confuse the predator, the safer they would be. However,
the fact still remains that the agents form ML model 2 still prioritized grouping,
despite of it being less efficient in the long-term. One way to explain this is that
being in a group does prolong on average the life of each individual agent, without
reducing the overall success of the predator. Inspecting the behavior of the agents,
this can be further confirmed, as the most hunted down agents are primarily the

54

Aalborg University Copenhagen Medialogy December 2019

ones that break away from the group. Additionally, this is in correlation with the
way predator satiation works in nature, as the ’safety in numbers’ is a strategy that
primarily benefits the individual group member and not the group as a whole.

As mentioned earlier, while ML model 2 is the implementation that got closest to
the control environment, if looking only at the NN statistics of the model, it is not
the one that performed best during training (for additional statistics from the train-
ing sessions of both models, see the Appendices section). However, given that the
model still managed to reach the desired behavior, also shows the importance of the
non-linear correlation between the design of the fitness function and the desired out-
come. It can be hypothesized that this is mostly due to the relative unpredictability
of ML models in general, especially when a larger emphasis is given on environmental
stimuli (guiding the model’s behavior through environmental catalysts such as food
and predator) rather than extrinsic rewards. The reason why such large freedom was
given to the ML models during training is exactly because of the main hypothesis
of this project, that generalization instead of explicitness is the right approach to-
wards an emergent behavior. What is more, it can be concluded that for the current
project’s scale, this hypothesis has been confirmed. That is to say, throughout the
numerous initial iterations for finding the proper solution to the problem statement
requirements, both explicit and implicit reward systems were tested. The final verdict
is that over-specifying the fitness function in an attempt to narrow down the possible
learning outcomes for the algorithm is not the right approach when looking to achieve
emergent complexity out of given certain simple initial rules. Based on the numerous
attempts, it can be further concluded that this is due to the very nature of how ML
and more specifically RL models operate. To be exact, when designing an explicit
reward system, the more specific its description is, the higher the risk for creating an
exploitation hole. If such breakthrough opportunity exists, it can be said with nearly
100% certainty, that the agent will find a way to exploit it.

An example for that can be given with one of the earlier attempts for finding a
solution to the PS. This attempt was based on the hypothesis that a singular agent
can be thought the flocking behavior through imitation of the flock crowd. Then,
the idea was that once this agent has perfected this behavior, he will be cloned,
thus achieving an emergent crowd behavior. The fitness function for the agent was
such that he would be rewarded the closer he follows the average center point of the
nearest group of crowding neighbours. The way this was done was by first finding
the distance between the position of interest and the position of the agent each frame
and storing it. Then, upon making his next step, the agent would get rewarded either
negatively or positively depending on whether or not he moved in the direction of
the crowd center. Furthermore, the agent would be additionally penalized for every
frame of not taking any action at all. In addition, the frequency of these reward
signals also meant faster and more accurate learning, as the agent can rely on an
immediate feedback for virtually every possible action he could take. This on theory
leaves the agent with only one opportunity, which is to learn to follow the cohesion

55

Aalborg University Copenhagen Medialogy December 2019

center of his neighbours and align with their movement, thus maximizing his reward.
However, upon several hundred thousand iterations of exploring the environment,
the agent actually discovered a ’lazier’ method for building up a positive reward, by
predicting a sequence of positions where he can wait, while an approaching group of
neighbours would ’bring’ the position where he is supposed to go near him. Not only
that, but the agent actually became so good at this, that he managed to maximize
his reward by developing a highly optimized energy conservation strategy, mitigating
the penalty for staying in one place by moving slightly from side to side. Despite
of this being an impressive emergent behavior on its own, it is completely different
from the desired behavior and an excellent example of how over-specifying can lead
to undesired results.

Combining this experience with the findings from the current evaluation, it can
be seen how the generalization of the initial rules of the system, translates to more
opportunities for the development of nature-like strategies, the emergence of which
in real life is not restricted by explicit set of guiding rules.

56

Aalborg University Copenhagen Medialogy December 2019

7 Conclusion

The purpose of this project was to create an emergent flocking boid-based crowd
behavior through generalization of the system rules. Furthermore, this was to be
achieved in a 3D Reinforcement learning environment, including predatory threat
and foraging behavior of the implement crowd.

Summarizing the findings made upon the results from the evaluation, it can be
concluded that the implemented ML model 2 fulfils the problem statement require-
ments. Both the quantitative and qualitative data indicate that the algorithm not
only managed to evolve towards a crowding behavior, but it even surpassed the con-
trol environment in some of the measured criteria. However, the model still suffers
certain limitations. As it was shown in the test results, the virtual crowd performs
worse than the two other compared models in terms of seeking food, thus failing to
maximize the explicit reward during training. Furthermore, an interesting finding was
that despite the higher total suffered losses from the predator, the algorithm would
still prefer the ’safety in numbers’ survival strategy. This can be hypothesized to be a
beneficial state of dynamic equilibrium between prolonging the life of the individual
agent and the overall damage which the predator can inflict to the crowd as a whole.
Finally, the performance exhibited by the presented crowd implementations show that
complex emergent crowd behavior can be derived through generalization of the initial
rules of the system and effectively guided through external environmental catalysts
towards a certain desired result. However, further testing with longer training times
is certain to show more satisfying results.

57

Aalborg University Copenhagen Medialogy December 2019

8 Future works

One area where there is certain need for future improvement is the hardware on which
the proposed model was brought trough all the test iterations and eventually trained
for the final evaluation. Due to the limitations imposed by the circumstances of the
time of writing of this project, there was no availability for anything better than a
low level consumer grade computer. It should be mentioned that the fact that the
simulation was able to perform at its current level despite all the limitations, speaks
even more well for the final product. However, it can also be stated with certainty that
should the proper amounts of computational power has been available, the results
would have been much more impressive. Furthermore, this is not only because of
the fact that longer training times would have been achieved, but also because much
more test iterations would have been possible. This is extremely important due to the
high number of variables that can be tweaked in order to improve the performance
of the system. Taking into consideration the possible amounts of fitness function
and environment configurations, combined with the 23 available hyper parameters of
the neural network, some of which taking an input range of over several thousands
different values, achieving the desired outcome of the system through trial and error
benefits from every single extra frame of performance.

Another aspect of the project that can be improved is related to optimization.
As mentioned previously in the Implementation section, several optimization ploys
have been utilized, in order to improve the performance of the simulation. However,
there are more strategies that could have been implemented, should the project has
taken place over a longer time period. One of these improvements is the division
of the environment into smaller sectors and limiting the agents’ input to the sector
they are currently in. Such partitioning scheme would have definitely improved the
performance of the simulation, as right now every single member of the crowd has to
loop through all the other members.

In order to optimize the simulation even further, all repetitive calculations that
slow down the system once multiplied with the number of agents, could be moved to
a compute shader. The way compute shaders work, is by outsourcing calculations to
the GPU, outside of the normal rendering pipeline. This allows for a large number of
calculations that would otherwise be assigned to the CPU, to be done in parallel, thus
significantly improving the overall performance of the given system. Unity engine does
provide a way for compute shaders to be utilized, similar to the native to Microsoft
Windows ’DirectX’ API [24]. Combining these optimization techniques can vastly
improve the run-time performance of the system during training, therefore allowing
for far more experimental iterations to be conducted and better overall results to be
achieved respectively.

In addition, the visual aspect of the simulation can be improved as well. While
right now the program uses a fairly robust animation technique in combination with
a 3D humanoid biped model for all of the characters present in the simulation, this

58

Aalborg University Copenhagen Medialogy December 2019

can be taken to a higher level. To be more specific, using a state of the art Motion
Matching (MM) technique can vastly improve the visual fidelity of the animations,
while also taking advantage of the already utilized ML-agents algorithm. To explain
into further detail, MM is an alternative approach to standard virtual animations,
developed by Ubisoft in 2015 for their new title at the time ’For Honor’ [18]. The way
MM works is by bypassing the traditional way of implementing animation through
an animation state machine with predefined transitions and blends between clips and
conditions. Instead, animations are constructed by choosing from the entire animation
set at run-time, switching to any available pose based on the current one the character
is in and the gameplay input. Each newly chosen pose is rapidly blended in with the
ongoing sequence, thus leading to a much smoother and seamless transitions than with
traditional animation. What is more, this technique can be improved even further, by
utilizing machine learning for the choice of appropriate animation poses. This novel
approach was proposed by Yousif Najim in his work ’Motion Matching with Proximal
Optimization Policy’ [31], where he used ML-agents in combination with PPO for
achieving an innovative, far more optimized animations in Unity engine (see figure
44).

Figure 44: Multi-agent performance of Motion Matching model proposed by
Najim[31]

Furthermore, one of the main differences between the product of this project and
the state of the art examples presented in the Analysis, is that this emergent crowd is
also implemented in a highly versatile 3D environment. This, as mentioned earlier in
the report, creates a double utility for this application, as it can not only be used for
scientific research purposes in the field of emergent behaviors, but also as a practical
standalone utility that can find purpose in various industries. With that being said,
one huge leap from all the other examples in the field of this project would be to

59

Aalborg University Copenhagen Medialogy December 2019

create a crowd that can navigate not only through all-flat areas, but also through
terrains with varying altitudes, such as slopes, hills, mountains, etc. Incorporating
the curvature of the terrain into the movement of the individual crowd members can
potentially create an entirely different dimension of diversity to the overall crowd
behavior.

60

Aalborg University Copenhagen Medialogy December 2019

References

[1] Andrew Adamatzky. Game of life cellular automata, volume 1. Springer, 2010.

[2] INC ANACONDA. Conda documentation, 2018.

[3] brackeys.com. Brackeys, 2020.

[4] Scott Camazine, Jean-Louis Deneubourg, Nigel R Franks, James Sneyd, Eric
Bonabeau, and Guy Theraula. Self-organization in biological systems, volume 7.
Princeton university press, 2003.

[5] Thomas Caraco, Steven Martindale, and H Ronald Pulliam. Avian flocking in
the presence of a predator. Nature, 285(5764):400–401, 1980.

[6] Gabriel Chang and Michaela Stjerndal. Investigating and modeling the emergent
flocking behaviour of sheep under threat with fear contagion, 2019.

[7] Ching-Shoei Chiang, Christoph Hoffmann, and Sagar Mittal. Emergent crowd
behavior. Computer-Aided Design and Applications, 6(6):865–875, 2009.

[8] G Davis and B Far. Massive: Multiple agent simulation system in a virtual
environment. University of Calgary, 2003.

[9] Pierre Degond, Laurent Navoret, Richard Bon, and David Sanchez. Congestion
in a macroscopic model of self-driven particles modeling gregariousness. Journal
of Statistical Physics, 138(1-3):85–125, 2010.

[10] Meilany Dewi, Moch Hariadi, and Mauridhi Hery Purnomo. Simulating the
movement of the crowd in an environment using flocking. In 2011 2nd Interna-
tional Conference on Instrumentation, Communications, Information Technol-
ogy, and Biomedical Engineering, pages 186–191. IEEE, 2011.

[11] Veselin Efremov. Adam. In ACM SIGGRAPH 2016 Real-Time Live!, pages
17–17. 2016.

[12] Veselin Efremov and Adrian Lazar. Real-time procedural vfx characters in unity’s
real-time short film” the heretic”. In ACM SIGGRAPH 2019 Real-Time Live!,
pages 1–1. 2019.

[13] Unity Game Engine. Unity game engine-official site. Online][Cited: October 9,
2008.] http://unity3d. com, pages 1534–4320, 2008.

[14] Carsten Hahn, Thomy Phan, Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Emergent escape-based flocking behavior using multi-agent re-
inforcement learning. In The 2018 Conference on Artificial Life: A Hybrid of the

61

Aalborg University Copenhagen Medialogy December 2019

European Conference on Artificial Life (ECAL) and the International Confer-
ence on the Synthesis and Simulation of Living Systems (ALIFE), pages 598–605.
MIT Press, 2019.

[15] Henry Hamburger. N-person prisoner’s dilemma. Journal of Mathematical Soci-
ology, 3(1):27–48, 1973.

[16] Christopher Hartman and Bedrich Benes. Autonomous boids. Computer Ani-
mation and Virtual Worlds, 17(3-4):199–206, 2006.

[17] Craig Hight. Making-of documentaries on dvd: The lord of the rings trilogy and
special editions. The Velvet Light Trap, 56(1):4–17, 2005.

[18] https://forhonor.ubisoft.com/game/en us/home/. Ubisoft, 2020.

[19] http://www.basefount.com/miarmy.html. Miarmy, 2020.

[20] Brian Johnson, Marc Young, and Craig Skibo. Inside Microsoft Visual Studio.
NET. Microsoft Press, 2002.

[21] Steven Johnson. Emergence: The connected lives of ants, brains, cities, and
software. Simon and Schuster, 2002.

[22] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627, 2018.

[23] Halina Kwasnicka, Urszula Markowska-Kaczmar, and Marcin Mikosik. Flocking
behaviour in simple ecosystems as a result of artificial evolution. Applied Soft
Computing, 11(1):982–990, 2011.

[24] Frank Luna. Introduction to 3D game programming with DirectX 11. Stylus
Publishing, LLC, 2012.

[25] Tyson Macaulay. RIoT control: understanding and managing risks and the in-
ternet of things. Morgan Kaufmann, 2016.

[26] Marco Mamei, Ronaldo Menezes, Robert Tolksdorf, and Franco Zambonelli. Case
studies for self-organization in computer science. Journal of Systems Architec-
ture, 52(8-9):443–460, 2006.

[27] Autodesk Maya. Autodesk maya, 2010.

[28] NJ Mills. Satiation and the functional response: a test of a new model. Ecological
Entomology, 7(3):305–315, 1982.

[29] Jeffrey C Mogul. Emergent (mis) behavior vs. complex software systems. ACM
SIGOPS Operating Systems Review, 40(4):293–304, 2006.

62

Aalborg University Copenhagen Medialogy December 2019

[30] James E Morrow Jr. Schooling behavior in fishes. The Quarterly review of
biology, 23(1):27–38, 1948.

[31] Yousif AH NAJIM. Motion Matching with Proximal Optimization Policy. PhD
thesis, Aalborg University Copenhagen, 2019.

[32] E Passos, Mark Joselli, Marcelo Zamith, Jack Rocha, E Clua, Anselmo Mon-
tenegro, Aura Conci, and Bruno Feijo. Supermassive crowd simulation on gpu
based on emergent behavior. In Proceedings of the Seventh Brazilian Symposium
on Computer Games and Digital Entertainment, pages 70–75. Citeseer, 2008.

[33] Nuria Pelechano, Jan M Allbeck, and Norman I Badler. Virtual crowds: Methods,
simulation, and control, volume 8. Morgan & Claypool Publishers, 2008.

[34] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, pages 25–34, 1987.

[35] Craig W Reynolds. Steering behaviors for autonomous characters. In Game
developers conference, volume 1999, pages 763–782. Citeseer, 1999.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques, pages 15–22, 1994.

[38] Robert T Sullivan. Insect swarming and mating. The Florida Entomologist,
64(1):44–65, 1981.

[39] Yaniss Touahmi, Nikolay Burlutskiy, Kongwoo Lee, and Beomhee Lee. Con-
gestion avoidance for multiple micro-robots using the behaviour of fish schools.
International Journal of Advanced Robotic Systems, 9(3):67, 2012.

[40] Suiping Zhou, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Yoke Hean Low,
Feng Tian, Victor Su-Han Tay, Darren Wee Sze Ong, and Benjamin D Hamilton.
Crowd modeling and simulation technologies. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 20(4):1–35, 2010.

63

Aalborg University Copenhagen Medialogy December 2019

Appendices

Figure 45: Entropy value over the total number of training steps for ML model 1

Figure 46: Value loss over the total number of training steps for ML model 1

64

Aalborg University Copenhagen Medialogy December 2019

Figure 47: Entropy value over the total number of training steps for ML model 2

Figure 48: Value loss over the total number of training steps for ML model 2

65

	Introduction
	Analysis
	State of the art
	Flocking behaviour in simple ecosystems as a result of artificial evolution
	Investigating and Modeling the Emergent Flocking Behaviour of Sheep Under Threat with Fear Contagion
	Emergent Escape-based Flocking Behavior using Multi-Agent Reinforcement Learning

	Flocking boids
	Cohesion
	Alignment
	Avoidance

	Emergent behaviors
	Predator satiation
	Reinforcement learning and proximal policy optimization
	Problem statement

	Methods
	Design and implementation
	Flocking boid
	Crowd Manager
	Crowd Member

	ML environment
	Training environment
	Crowd
	Predator

	Evaluation
	Evaluation setting
	Results

	Discussion
	Conclusion
	Future works

