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Abstract:

Safe, reliable and efficient computer net-
works are essential for modern digital com-
munication. Configuring these networks is
a challenging task, which today is mostly
performed manually. To aid in this task,
the tool AalWiNes provides polynomial-
time analysis of the behaviour of a type of
network, called MPLS network, even un-
der the scenario of multiple link failures.
AalWiNes answers queries on MPLS net-
works by translating them into reachabil-
ity queries on pushdown systems.
We extend AalWiNes with quantitative
properties of network traces and imple-
ment an efficient algorithm to find traces
minimizing these properties. We also de-
fine an algorithm for automatically gen-
erating MPLS networks, and we imple-
ment algorithms for pushdown system
reachability in the library PDAAAL used
by AalWiNes. Our experimental evalu-
ation demonstrates that we outperform
the state-of-the-art tool previously used
by AalWiNes for pushdown reachability
checking, and that our shortest trace algo-
rithm for weighted pushdown systems only
incurs a small overhead compared to un-
weighted reachability checking.
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Summary

Large computer networks that facilitate modern digital communication are complex
structures, on which many activities rely. Network operators face a challenging task of
configuring their networks in a way so they are both efficient, safe and reliable. To achieve
this, they need to understand not only how the networks behave in normal conditions,
but also how their various fail-safe mechanisms affect the behaviour of the network under
multiple hardware failures. In this thesis we focus on modelling the behavior of the network
type Multiprotocol Label Switching (MPLS), which uses a routing technique of short path
labels to route traffic rather than long network addresses. This avoids complex look-ups
in routing tables, which makes the network traffic more flexible and faster.

The tool AalWiNes [1], developed at Aalborg University and the University of Vienna,
attempts to analyse the behaviour of MPLS networks under the possibility of multiple link
failures. We model the behaviour of an MPLS network as a pushdown automaton (PDA),
which is a formal model that consists of a state machine and a label stack, and where
the transitions of the state machine can push, pop or swap labels on the top of the stack.
AalWiNes uses a special query language based on regular expressions to ask whether a
given kind of trace through the network is possible if up to k links fail. The query together
with the network is translated into a PDA, on which reachability analysis is performed
through the library PDAAAL.

In this thesis we define quantitative properties of networks traces and solve the problem
of finding a trace that satisfies a query while minimizing a weight expression of these
quantitative properties. We implement efficient algorithms for reachability analysis in
PDAAAL including an algorithm for finding shortest trace in weighted pushdown systems.

Finally we define an algebra for combining network topologies to generating large, realistic
networks. We define an algorithm that generates a routing table for any network topology,
such that there is label-switched paths between all pairs of routers, and fast reroute paths
for all links to quickly recover from failures. The experimental evaluation demonstrates
that PDAAAL outperforms the state-of-the-art tool Moped [2], and that minimizing the
weight properties in the trace increases the likelihood of generating valid traces.

ii



Contents

1 Introduction 1

2 MPLS Network 5
2.1 Label Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Network Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Network Topology Manipulation . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Generation of Routing Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 AalWiNes and Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Weight Expressions for Shortest Trace Selection . . . . . . . . . . . . . . . . 16
2.7 Overview of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Reachability in Pushdown Systems 21
3.1 Pushdown Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 P-automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Early Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Weighted Pushdown Systems 27
4.1 Weight Extension for Pushdown Systems . . . . . . . . . . . . . . . . . . . . 28
4.2 Efficient Weighted post∗ Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Weight Encoding for Network Trace Properties . . . . . . . . . . . . . . . . 38

5 Experimental Evaluation 43
5.1 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Case Study: NORDUnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 53
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 57

iii



Introduction 1
Large computer networks that facilitate modern digital communication are complex
structures, on which many activities rely. Network operators face a challenging task of
configuring their networks in a way so they are both efficient, safe and reliable. To achieve
this, they need to understand not only how the networks behave in normal conditions,
but also how their various fail-safe mechanisms affect the behaviour of the network under
multiple hardware failures.

Given the complexity of this task, it is evident that there is a need for automated tools for
analysing and verifying networks - even under multiple failures. There exist several well-
known tools [3, 4, 5, 6, 7] for network analysis, but the support for analysis of behaviour
under failures is limited.

To solve the complexity issue, we apply techniques from formal verification to the analysis
of computer networks. In particular we analyse Multiprotocol Label Switching (MPLS)
[8] networks. MPLS is a network routing technique that uses short path labels to route
traffic rather than long network addresses. This avoids complex look-ups in routing tables,
which makes the network traffic more flexible and faster. MPLS is used for creating fast
wide area network (WAN) [9] and virtual private networks (VPN) [10], and can be used
by network providers to quickly tunnel IP-traffic through their sub-network. To handle
failures, MPLS employs a local protection technique called fast rerouting, where a label is
pushed on top of the existing labels and used to route the packet via an alternative path.
When the packet arrives back on the original path, the extra label is popped.

The tool AalWiNes [1] (formerly named P-Rex [4]) being developed at Aalborg University
and the University of Vienna attempts to analyse the behaviour of MPLS networks under
the possibility of multiple failures.

The behaviour of an MPLS network is modelled using a pushdown automaton (PDA),
which is a formal model that consists of a state machine and a label stack, and where
the transitions of the state machine can push, pop or swap labels on the top of the stack.
AalWiNes uses a special query language based on regular expressions to ask whether a given
kind of trace through the network is possible, if up to k links fail. The query together with
the network is translated into a PDA, on which reachability analysis is performed.

Jensen et al. [4] present a comparison of the approach of P-Rex and existing tools; NetKAT
[3], Header Space Analysis (HSA) [5], VeriFlow [6], and Anteater [7], that all support
reachability checking within a network model. NetKAT is a static verification tool with
reachability and loop detection through Kleene algebra. HSA is like NetKAT, a static
verification tool that covers basic reachability queries, but models each packet header as

1
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a point in a header space. Both VeriFlow and Anteater covers data plane information
by converting it to boolean functions for a SAT solver to identify violations. VeriFlow
is a debugging tool added to the configuration of an OpenFlow network, preventing any
faulty rules to cause anomalous network behavior. Anteater analyses forwarding tables
and checks if a network conforms to a set of invariants. The tool further provide a counter
example of any violations.

All the compared tools can check for compliance of network properties, like reachability
and loop-detection, and provide useful information to validate the correctness of that
network. However, neither of the aforementioned tools support analysis under failure and
they only support a fixed number of packet headers. Verification of MPLS networks, require
arbitrarily large header sizes, so they cannot in general be verified by the mentioned tools.

The main contributions of this thesis are listed and explained below:

1. the pushdown automata reachability library PDAAAL,
2. weighted reachability extension for PDAAAL to find shortest trace in a network,
3. minimization of the global property of the maximum stack size,
4. early termination check to improve the performance of the library,
5. network topology manipulation that allows network topologies to be extended

through the concatenation and injection operations,
6. generation of MPLS routing tables with failover based on the shortest path

computation,
7. reduction of operation sequences in routing tables, and
8. a final experimental evaluation to prove the performance impact of the contributions.

We introduced the reachability library (1) as a performance improvement to AalWiNes,
that formerly used the tool Moped [2] to perform unweighted nondeterministic PDA
reachability analysis and trace generation. The implementation of the library PDAAAL
allows the reachability analysis to be an integrated part of the tool, rather than an
external Moped binary that introduces performance overhead when parsing. The weighted
extension (2) models pushdown systems with weights, allowing for shortest trace queries
using a combination of different quantitative properties of the network traces as weights.
Queries can be annotated to minimize these properties, the supported properties to
minimize in the trace are: number of hops, number of failures, number of tunnels, and
the physical distance. A non-trivial problem is to minimize the global property of the
maximum stack size during a trace (3).

The early termination check (4) is introduced as a performance improvement in the
reachability algorithms of PDAAAL. The early termination check, is implemented as a
constant time lookup in the current system, terminating if the goal state is already reached,
rather than building the complete set of reachable states. Network manipulation (5) is a
contribution to the existing AalWiNes implementation, allowing us to create large, realistic
network topologies for testing. The manipulation works as an algebra for combining
network topologies with concatenation and injection. Routing generation (6) create for
any network topology a routing table, such that there exist label-switched paths between
all pairs of routers, and fast reroute paths for all edges. If any edge in the network fails,
such a fast reroute path is applied rather than the failing edge. Another performance

2
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improvements is introduced by reducing the operation sequence (7). A set of operation
sequence reduction rules are defined, such that operation sequences are reduced to smaller
sequences with the same behavior.

Finally we conduct an experimental evaluation to compare the performance of our
implementation to Moped. The networks used in this experiment are constructed from
five different network topologies from Topology Zoo [11], each manipulated to six different
sizes, and annotated with generated routing tables. The experiment is executed on a cluster
provided by Aalborg University, and include 200 instances of queries for each of the 30
different networks. The performance experiments capture the verification time of Moped
and PDAAAL, and directly compare them in each test case. From the experiment can we
conclude that PDAAAL outperforms the state-of-the-art tool Moped. Another experiment
include the weighted extension to PDAAAL, and captures the results of verifying the same
aforementioned networks and queries. The results show the improvements of annotating
the system with weights, e.g. to minimize the number of links in the trace, such that the
weighted extension improve the likelihood of a valid trace being found, while there is only
little performance overhead of the weighted reachability algorithm.

3





MPLS Network 2
Multiprotocol Label Switching (MPLS) is of great importance when creating a fast
deployable, flexible and efficient package forwarding architecture [8]. A virtual internet
service provider (ISP) can organize a virtual network with provider edge-routers (PE-
router) and provider-routers (P-routers) over its physical network layer routers, where
PE-routers are the edge-routers connecting traffic between different virtual subnets, and
P-Routers are inside the virtual network. The ISP can extend the virtual network to fit
the requirements, handle traffic engineering, and ensure quality of service (QoS) inside the
virtual network [8].

MPLS replace the IP lookup forwarding process [12] with a simpler label switching process.
MPLS can run on top of several different network protocols, hence the multiprotocol part
of the name. It encapsulates the network packet by prepending a header. The MPLS
header contains a label stack, a traffic class, bottom of stack flag, and time to live. The
packet is forwarded in the virtual network by swapping the top label of the stack. If the
packet enters a different subnet another label is pushed on top of the stack, and popped
when leaving the subnet [13].

We here present a formal model of MPLS networks and their behaviour. This model is used
to describe the verification algorithms presented later. The model is based on the model in
[4], but we introduce some differences: we separate the definition of network and network
topology, we define routing and traces over links rather than over interfaces on routers,
and we simplify the definition of the network topology by using a directed multigraph.

Definition 2.1. A network topology is a directed multigraph of routers, defined as a tuple
(V,E, s, t), where:

• V is a finite set of routers,
• E is a finite set of links connecting routers,
• s : E → V assigning the source router to each link, and
• t : E → V assigning the target router to each link.

To ease the presentation, we may sometimes write (v, u) ∈ E to mean e ∈ E such that
s(e) = v and t(e) = u.

Most real-world networks have bidirectional links. We can model this property as the
existence of a bijection p : E → E such that for all e ∈ E, s(p(e)) = t(e) and t(p(e)) = s(e).
If this is the case, we call (V,E, s, t) a bidirectional network topology.

5



Dan Kristiansen & Morten K. Schou 2. MPLS Network

A bidirectional network topology can be modelled by an undirected multigraph, but we
need the direction of edges when defining routing tables later. However, when depicting
bidirectional network topologies in figures, we can often just draw an isomorphic undirected
multigraph, since it carries the same information.

Figure 2.1 shows an example of a network topology with routers V = {v0, v1, v2, v3, v4}
and bidirectional edges as depicted.

v0

v1

v2

v3

v4

Figure 2.1. Example of a network topology.

Let L be a nonempty set of MPLS labels in headers of packets in an MPLS network
and define the allowed MPLS operations on packet headers as Op = {swap(`) | ` ∈
L} ∪ {push(`) | ` ∈ L} ∪ {pop}.

Definition 2.2. An MPLS network is a tuple N = (V,E, s, t, L, τ), where:

• (V,E, s, t) is a network topology,
• L = LM ] L⊥M ] LIP is the set of label stack symbols where,

– LM is the MPLS label set,
– L⊥M is the set of MPLS labels with the bottom of the stack bit set to true,
– LIP is a set of labels for IP routing information.

• τ : E × L → (2E×Op∗)
∗ is the global routing table. For every link e ∈ E and a

top (left-most) label, it returns a sequence of traffic engineering groups O0O1 . . . On,
where each Oi is a traffic engineering group O = {(e1, ω1), . . . , (em, ωm)}, where ej
is the outgoing link such that t(e) = s(ej), ωj ∈ Op∗ is a sequence of operations to
perform on the packet header, and the group Oi has a higher priority than Oi+1.

The global routing table can be represented as a collection of local routing tables
τv : Ev × L → (2Ev×Op∗)

∗
for each router v ∈ V where Ev = {e ∈ E | t(e) = v}

and Ev = {e ∈ E | s(e) = v}.

In a network some links between routers may fail. We call the set of failed links F , where
F ⊆ E. We say that a link e is active if e ∈ E \ F .

From the example network topology in Figure 2.1, we add a router θ to represent the
outside world, and connect it to the PE-routers v0 and v3. For this network topology
(V ′, E′, s′, t′), where

• V ′ = V ∪ {θ},
• E′ = E ∪ {(θ, v0), (v0, θ), (θ, v3), (v3, θ)}

6
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Figure 2.2 shows an example of a routing table with labels L = {ip1, 10, 11, 20, 21, 30}

τ((θ, v0), ip1) = {((v0, v1), push(10)), ((v0, v2), push(20))}
τ((v0, v1), 10) = {((v1, v3), swap(11))}
τ((v1, v3), 11) = {((v3, θ), pop)}
τ((v0, v2), 20) = {((v2, v3), swap(21))} ◦ {((v2, v4), swap(21) ◦ push(30))}
τ((v2, v4), 30) = {((v4, v3), pop)}
τ((v2, v3), 21) = {((v3, θ), pop)}
τ((v4, v3), 21) = {((v3, θ), pop)}
Figure 2.2. Example routing table for the network topology in Figure 2.1.

The example network topology in Figure 2.1 and the associated example routing table
in Figure 2.2 create a network N = (V,E, s, t, L, τ). The routing table allows dataflow
in the network from v0 to v3, such that when a packet arrives at v0 with label ip1, the
push operation encapsulates it in an MPLS label, which is used to route it through the
network. When the packet leaves v3 the MPLS label is popped. The routing table of v0
contains nondeterminism, since τ((θ, v0), ip1) can use either v1 and v2 to reach v3. Rule
τ((v0, v2), 20) include traffic engineering groups, such that if we have (v2, v3) ∈ F then a
fast-reroute path (v2, v4) and (v4, v3) become active to reach v3.

2.1 Label Headers

An MPLS network routes traffic by prepending a header to the data. This header contains
a sequence of labels, which is interpreted as a stack, so we can only read and write on the
top (left-most in our notation) part of the stack. Using a stack of labels means that we
can encapsulate routing labels by pushing a new label on top. This makes it simple to
implement the fast rerouting technique, which we discuss in more detail in Section 2.4.

Definition 2.3 (Valid Header [4]). For a given network N = (V,E, s, t, L, τ) the set of
valid headers H ⊆ L∗ is defined as H = LIP ∪ {α`1`0 | α ∈ LM ∗, `1 ∈ L⊥M , `0 ∈ LIP}.

MPLS operations manipulate the label-stack header by modifying the topmost label. A
valid label-stack header is structured with MPLS labels on top of the underlying tunneled
LIP header. The semantics of the operations must ensure that the result of operations
performed on a valid header is itself a valid header.

Definition 2.4. The semantics of MPLS operations is defined as a partial header rewrite
function H : H ×Op∗ ↪→ H where ω, ω′ ∈ Op∗, ` ∈ L, h ∈ H and ε is the empty sequence
of operations:

H(`h, ω) :=



`h if ω = ε and ` ∈ L
H(`′h, ω′) if ω = swap(`′) ◦ ω′ and `′h ∈ H
H(`′`h, ω′) if ω = push(`′) ◦ ω′ and `′`h ∈ H
H(h, ω′) if ω = pop ◦ ω′ and ` ∈ LM ∪ L⊥M
undefined otherwise

7
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From the definition we observe that the header rewrite function preserves the valid
structure of the label-stack symbols, otherwise undefined.

As an example, let LM = {10, 20}, L⊥M = {30, 40} and LIP = {ip1}. When applying
the sequence of operations pop ◦ swap(40) ◦ push(20) to the header 10 ◦ 30 ◦ ip1, we get:
H(10 ◦ 30 ◦ ip1, pop ◦ swap(40) ◦ push(20)) = 20 ◦ 40 ◦ ip1, which is also a valid header.

2.2 Network Traces

For a network N = (V,E, s, t, L, τ) and a set of failed links F ⊆ E, a trace is defined as a
routing of a packet that consist of a sequence of active links together with the corresponding
label-stack headers that the packet arrives with.1

For a traffic engineering group O = {(e1, ω1), (e2, ω2), . . . , (em, ωm)} let E(O) =

{e1, e2, . . . , em} denote the set of all links in the traffic engineering group. The group
O is said to be active if it contains at least one active link, i.e. E(O) \ F 6= ∅. Further,
define A(O0O1 . . . On) = {(e, ω) ∈ Oj | e is an active link} where j is the lowest index,
such that Oj is an active traffic engineering group, and define A(O0O1 . . . On) = ∅ if no
such j exists. This defines effectively the active routing entries for a sequence of traffic
engineering groups and a set of failed links.

Definition 2.5 (Network Trace). A trace in a network N = (V,E, s, t, L, τ) with a
set of failed links F ⊆ E is any finite sequence (e1, h1), . . . , (en, hn) ∈ ((E \ F ) × H)∗

of link-header pairs, where for all i, 1 ≤ i < n, we have hi+1 = H(hi, ω) for some
(ei+1, ω) ∈ A(τ(ei, head(hi))) where head(hi) is the top (left-most) label of hi.

There may be more than one active link in an active traffic engineering group, in which
case any active link can be (non-deterministically) picked. We say in this case that the
routing is non-deterministic.

Here is an example of a network trace using the network defined in Figure 2.1 and Figure 2.2
and failed link (v2, v3) ∈ F :

((θ, v0), ip1) ◦ ((v0, v2), 20 ◦ ip1) ◦ ((v2, v4), 30 ◦ 21 ◦ ip1) ◦ ((v4, v3), 21 ◦ ip1) ◦ ((v3, θ), ip1)

1This is based on the definition in [4]. However they define a trace as a sequence of interfaces on
routers rather than a sequence of links.

8
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2.3 Network Topology Manipulation

We introduce in this section the two functions Concat and Inject to manipulate network
topologies. The motivation for this is to create large realistic network topologies that we
can use for testing the performance of the verification algorithms presented later in this
thesis. From the network topologies created by Concat and Inject we can create full
realistic MPLS networks by generating routing tables as described in Section 2.4.

2.3.1 Network concatenation

Definition 2.6. For two disjoint network topologies N = (V,E, s, t) and N ′ =

(V ′, E′, s′, t′) (i.e. where V ∩V ′ = ∅ and E ∩E′ = ∅), and a set of router pairs C ⊆ V ×V ′

connecting N and N ′ we define:

Concat(N,N ′, C) = (V ∪ V ′, (E ∪ E′) ] C, s′′, t′′)

where:

• s′′(e) =


s(e) if e ∈ E
s′(e) if e ∈ E′

v if e = (v, u) ∈ C

• t′′(e) =


t(e) if e ∈ E
t′(e) if e ∈ E′

u if e = (v, u) ∈ C

The concatenated network topology N depicted in Figure 2.3 is defined as N =

Concat(N ′, N ′′, C) where N ′ and N ′′ are the example network topology from Figure 2.1
and C = {(v2, v′0), (v3, v′1), (v′0, v2), (v′1, v3)}.

v0

v1

v2

v3

v4

v′0

v′1

v′2

v′3

v′4

Figure 2.3. Concatenation of two copies of the example network topology from Figure 2.1. The
dotted edges between nodes v2 and v′0, and v3 and v′1, are new connecting links
defined in C.

2.3.2 Network injection

Given two network topologies N = (V,E, s, t) and N ′ = (V ′, E′, s′, t′), we define an
injection tuple that contains the edge to be removed from N , allowing the injection of
N ′, and two connecting routers from N ′ that will be inserted instead of the removed edge,
i.e. (e, v, u) ∈ E × V ′ × V ′.

9
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Definition 2.7. For two disjoint network topologies N = (V,E, s, t) and N ′ =

(V ′, E′, s′, t′) and a set of injection tuples T ⊆ E × V ′ × V ′ we define:

Inject(N,N ′, T ) = (V ∪ V ′, (E \ E−) ∪ E′ ∪ E+, s
′′, t′′)

where:

• E− = {e | (e, v, u) ∈ T } are the removed links,
• E+ =

⊎
(e,v,u)∈T {(s(e), v), (u, t(e))} are the added links,

• s′′(e) =


s(e) if e ∈ E \ E−
s′(e) if e ∈ E′

v if e = (v, u) ∈ E+

• t′′(e) =


t(e) if e ∈ E \ E−
t′(e) if e ∈ E′

u if e = (v, u) ∈ E+

Figure 2.4 shows N = Inject(N ′, N ′′, T ), where N ′ and N ′′ is the example network
topology from in Figure 2.1, and T = {((v2, v3), v′0, v′3), ((v3, v2), v′3, v′0)}, so E− =

{(v2, v3), (v3, v2)}, and E+ = {(v2, v′0), (v′3, v3), (v3, v′3), (v′0, v2)}.

v0

v1

v2

v3

v4

v′0

v′1

v′2

v′3

v′4

Figure 2.4. Injection of the network topology from Figure 2.1 into a copy of itself. The dotted
edges denote the links in E+ and the removed edges in E− are between v2 and v3.

2.4 Generation of Routing Tables

In the previous section we defined the functions Concat and Inject to build network
topologies from other topologies. This section defines a method for generating a realistic
routing table for any network topology, and thereby producing a full MPLS network.

The method for generating routing tables, defined in Algorithm 1, consists of two phases.
First for every pair of routers we create a label-switched path between them to encapsulate
an IP-label. The path is found using a shortest path algorithm, where the weight of each
link is some suitable measure like the physical distance or the inverse of the bandwidth
capacity.

Since the connections to the outside IP-network is not part of the MPLS network model,
we simulate it with an auxiliary router θ. The label-switched path from v to u starts at an
edge going in to v (from θ), where it pushes an bottom-of-stack MPLS label on top of the
IP-label, and ends with an edge going out of u (to θ), where the MPLS label is popped.
This corresponds to a label-switched path for routers connected to an external IP-network.
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Algorithm 1 Pseudocode for generating routing tables
Input A network topology N = (V,E, s, t)
Output An MPLS network with routing N = (V ′, E′, s′, t′, L, τ)

1: function MakePath(e1 . . . en, `e1 , reroute)
2: for i ∈ {2, . . . , n} do
3: L← L ] {`ei} . `ei ∈ LM if reroute, `ei ∈ L⊥M otherwise
4: τ(ei−1, `ei−1) := {(ei, swap(`ei))}
5: return `en
6: function MakeFlow(estart , eend , `ip)
7: e1 . . . en ← Dijkstra(t′(estart), s′(eend ), (V,E))
8: L← L ] {`e1} . `e1 ∈ L⊥M is a fresh label
9: `last ← MakePath(e1 . . . en, `e1 , false)

10: τ(estart, `ip) := {(e1, push(`e1))}, τ(en, `last) := {(eend, pop)}
11: function MakeReroute(e)
12: e1 . . . en ← Dijkstra(s(e), t(e), (V,E \ {e}))
13: L← L ] {`push} . `push ∈ LM is a fresh label
14: for e′, `, i, ω where τ(e′, `) = O0 . . . Om, (e, ω) ∈ Oi do
15: τ(e′, `) := O0 . . . Oi(Oi+1 ∪ {(e1, ω ◦ push(`push))}) . . . Om
16: `last ← MakePath(e1 . . . en−1, `push , true)
17: τ(en−1, `last) := {(en, pop)}
18: for ` where τ(e, `) 6= ε do
19: τ(en, `) := τ(e, `)

20:
21: E′ ← E, s′ ← s, t′ ← t, L← ∅, τ ← λ(e, `).ε
22: V ′ ← V ] {θ} . θ represents the outside world
23: for (v, u) ∈ V × V where v 6= u do
24: E′ ← E′ ] {(θ, v), (u, θ)}
25: s′((θ, v)) := θ, s′((u, θ)) := u, t′((θ, v)) := v, t′((u, θ)) := θ
26: MakeFlow((θ, v), (u, θ), `ip) . `ip ∈ LIP is the ip address to the outside
27: for e ∈ E do
28: MakeReroute(e)
29: return (V ′, E′, s′, t′, L, τ)

Secondly, for every link that may fail, we create a fast reroute path that encapsulates the
header by pushing an MPLS label on top of it, and routes the traffic on an alternative
path. To ensure this path is only used in case of link failure, the routing is added to a
traffic engineering group with lower priority (on line 15) than the group that contains the
direct routing through the failing link (where line 14 iterates over all such groups). The
rerouting label is popped from the header on the last hop of the alternative label-switched
path, and (on line 19) the routing tables of the destination are modified, so the traffic can
continue from there, as if the link did not fail.

11
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The routes are calculated using a standard shortest path algorithm Dijkstra(v, u, G),
which finds the shortest path from node v to node u in the graph G = (V,E), using
some suitable edge-weight function. For the real-world topologies from Topology Zoo we
use coordinates to calculate the great-circle distance between routers using the haversine
formula. The distance between routers is used as edge-weight to generate realistic shortest
path routes.

Some technical details are omitted from the pseudocode in Algorithm 1. If the call to
Dijkstra does not find a path, then the calling function terminates, in which case the
label-switched path (resp. fast reroute) will not be created for that router pair (resp.
failing link). On line 14 if i = m, then by abuse of notation on line 15 we create a new
traffic engineering group Oi+1 and append it to the rest.

A generated routing table example with a data flow between all pairs of routers is too large
to show here. Instead we use Algorithm 1 to show how the routing table in Figure 2.2
can be generated. Note that the routing table in Figure 2.2 only contains data flow
for the router pair v0 and v3, and only a reroute on edge (v2, v3). MakeFlow((θ, v0),
(v3, θ)) is called twice, where for the sake of this example Dijkstra(v0, v3, (V,E))
produces two different paths (v0, v1)(v1, v3) and (v0, v2)(v2, v3) with the same edge-weight.
In MakeReroute((v2, v3)), Dijkstra(v2, v3, (V,E \ {(v2, v3)})) produces the path
(v2, v4)(v4, v3).

The routing table is produced in MakePath(path, `) for both MakeFlow and
MakeReroute, where in line 4 the routing table is extended with a unique label and
swap operation to each ei−1 in path, such that for MakeFlow with path = (v0, v2)(v2, v3)

and `e1 = 20 then τ((v0, v2), 20) = {(v2, v3), swap(21)}. At line 10 the routing
table is further extended to encapsulate the underlying IP-label, where τ((θ, v0), ip1) =

{(v0, v2), push(20)}, and τ((v2, v3), 21) = {(v3, θ), pop}. At this point the routing table is:

τ((θ, v0), ip1) = {(v0, v2), push(20)}
τ((v0, v2), 20) = {(v2, v3), swap(21)}
τ((v2, v3), 21) = {(v3, θ), pop}

The routing table is similarly extended for path = (v0, v1)(v1, v3) and `e1 = 10.
In MakeReroute((v2, v3)) with path = (v2, v4)(v4, v3) and `push = 30, all rules
containing (v2, v3) are modified before creating the failover tunnel, such that the tunnel is
encapsulated. The final routing table is the one shown in Figure 2.2.

2.4.1 Reduction of operation sequences

In some cases, different sequences of operations in a routing table may result in the same
behavior of the MPLS network. If this is the case, using the shorter sequence when creating
routing tables as described above will reduce the size of the resulting table.

To avoid strange edge-cases, the following discussion assumes non-trivial label sets:
|LIP | > 1, |L⊥M | > 1 and |LM | > 1.
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Definition 2.8. A function r : Op∗ → Op∗ is a valid reduction of operations if for all valid
headers h ∈ H and all sequences of operations ω ∈ Op∗, it holds that H(h, ω) = H(h, r(ω))

and |r(ω)| ≤ |ω|.

Define the function r : Op∗ → Op∗:

r(ω) :=



ω′ ◦ swap(`) ◦ ω′′ if ω = ω′ ◦ swap(`′) ◦ swap(`) ◦ ω′′

ω′ ◦ push(`) ◦ ω′′ if ω = ω′ ◦ push(`′) ◦ swap(`) ◦ ω′′

ω′ ◦ pop ◦ ω′′ if ω = ω′ ◦ swap(`) ◦ pop ◦ ω′′

ω′ ◦ ω′′ if ω = ω′ ◦ push(`′) ◦ pop ◦ ω′′

ω otherwise

Repeated application of r on ω will eventually reach a fixed point. We call this value r∗(ω).
At this point either |r∗(ω)| ≤ 1 or all adjacent operations r∗(ω) = ω′ ◦ op1 ◦ op2 ◦ ω′′ are
on the form:

(op1, op2) ∈ {(pop, pop), (pop, swap(`)), (pop, push(`)), (swap(`), push(`′)), (push(`), push(`′))}

This means that r∗(ω) will be on the form described by the following regular expression
of operations, where `i iterates over labels:

pop∗ ◦ swap(`)? ◦ push(`i)
∗

Lemma 2.1. The function r∗ is a valid reduction of operations.

Proof. By straightforward case analysis we see that the function r is a valid reduction.
Repeated application of a valid reduction is also a valid reduction.

Theorem 2.2. Assuming non-trivial label-sets, the reduction r∗ is the unique minimal
valid reduction, i.e. for any ω and ω′ such that for all valid headers h, H(h, ω) = H(h, ω′),
we have |r∗(ω)| ≤ |ω′|, and if |r∗(ω)| = |ω′| then r∗(ω) = ω′.

Proof. Take any ω and ω′ such that for all valid headers h, H(h, ω) = H(h, ω′). If
ω′ = r∗(ω) then the theorem follows directly, so take ω′ 6= r∗(ω). By Lemma 2.1
H(h, r∗(ω)) = H(h, ω′) for all valid headers h. The result of r∗(ω) is on the form
popn ◦ swap(`)s ◦ push(`i)

m, where n and m are non-negative integers and s ∈ {0, 1}.

Define lcs(h, h′) as the largest common suffix (bottom sub-part) of h and h′. Since
we assume non-trivial label-sets, there must exist a valid header h such that |h| −
|lcs(h,H(h, r∗(ω)))| = n + s and |H(h, r∗(ω))| − |lcs(h,H(h, r∗(ω)))| = s + m. Since
H(h, r∗(ω)) = H(h, ω′), we have |h| − |lcs(h,H(h, ω′))| = n + s and |H(h, ω′)| −
|lcs(h,H(h, ω′))| = s+m.

If s = 1 then ω′ must contain at least n + 1 pop operations, or at least n pop operations
followed by a swap. Also ω′ must contain at least m + 1 push operations, or at
least a swap operation followed by m push operations. Since ω′ 6= r∗(ω), we have
|ω′| > n+ s+m = |r∗(ω)|.
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If s = 0, then ω′ must contain at least n pop operations, or at least n − 1 pop

operations followed by a swap. Also ω′ must contain at least m push operations, or
at least a swap operation followed by m − 1 push operations. Since ω′ 6= r∗(ω) and
the number of push minus number of pop operations must be m − n the only possibility
with |ω′| ≤ |r∗(ω)| is ω′ = popn−1 ◦ swap(`) ◦ pushm−1(`i). However, there exists a
valid header h′ such that H(h′, popn−1 ◦ swap(`) ◦ pushm−1(`i)) is a valid header, while
H(h′, popn ◦ pushm(`i)) = H(h′, ω) is undefined. So this sequence will not be a valid
reduction of ω.

The following example shows a repeated application of r to a sequence of operations ω.

ω = swap(1) ◦ push(2) ◦ swap(3) ◦ pop ◦ pop ◦ push(4) ◦ swap(5)

swap(1) ◦ push(2) ◦ swap(3) ◦ pop ◦ pop ◦ push(5)

swap(1) ◦ push(2) ◦ pop ◦ pop ◦ push(5)

swap(1) ◦ pop ◦ push(5)

r∗(ω) = pop ◦ push(5)

We cannot reduce pop ◦ push(5) further to swap(5), since for a header h of size |h| = 1,
H(h, pop ◦ push(5)) is undefined, while H(h, swap(5)) is well defined. So r∗(ω) =

pop ◦ push(5) is the minimal valid reduction of ω.

2.5 AalWiNes and Queries

The tool AalWiNes (Aalborg Wien Network suite) [1] - formerly named P-Rex [4] -
performs what-if analysis of MPLS networks such as reachability and policy-compliance
properties under an arbitrary number of failures. It defines a query language and the main
goal of the tool is to answer whether a given query is satisfied for a given network. If this
is the case, the tool also produces a network trace as proof that the query is satisfied.

Definition 2.9 (Regular Expression). A regular expression over the alphabet Σ ranged
over by the symbols s1, s2, . . . is given by the abstract syntax:

a ::= · | [s1, . . . , sn] | [ˆs1, . . . , sn] | a1|a2 | a1a2 | a∗ | a+ | a?

where the language of the regular expression Lang(a) ⊆ Σ∗ is given by:

Lang(·) = Σ Lang(a1a2) = Lang(a1) ◦ Lang(a2)

Lang([s1, . . . , sn]) = {s1, . . . , sn} Lang(a∗) = Lang(a)∗

Lang([ˆs1, . . . , sn]) = Σ \ {s1, . . . , sn} Lang(a+) = Lang(a) ◦ Lang(a∗)

Lang(a1|a2) = Lang(a1) ∪ Lang(a2) Lang(a?) = Lang(a) ∪ {ε}

Definition 2.10 (Query [4]). A reachability query q is based on regular expressions and
has the following structure:

< a > b < c > k

where, for a given network N = (V,E, s, t, L, τ), a and c are regular expressions over the
labels L, b is a regular expressions over links E, and k ≥ 0 specifies the maximum number
of failed links to be considered.
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For specifying labels in a and c, the following abbreviations can be used:

• ip = [ip0, . . . , ipn] where LIP = {ip0, . . . , ipn},
• mpls = [`0, . . . , `n] where LM = {`0, . . . , `n}, and
• smpls = [`⊥0 , . . . , `

⊥
n ] where L⊥M = {`⊥0 , . . . , `⊥n }.

The input format for specifying networks to AalWiNes has identifiers on routers and on
the interfaces that connect routers to links, rather than having identifiers on the links
themselves. Each interface is associated with a router and identifies a link. To handle this,
the query language uses the following syntax to specify links in the regular expression b
based on those identifiers:

If v and u are routers, then v # u matches any edge e such that s(e) = v and t(e) = u. If
in1 identifies the interface on router v with outgoing link e, and in2 identifies the interface
on router u with ingoing link e, then v.in1 # u.in2 matches exactly the edge e. Similarly we
have: v # u.in2 matches e if s(e) = v, and v.in1 # u matches e if t(e) = u. The dot-syntax
is extended so that x # · =

⋃
v∈V x # v and · # x =

⋃
v∈V v # x, where either x = u or

x = u.in for some router u ∈ V and interface in on u with semantics as specified above.

Problem 2.1 (Query Satisfiability Problem [4]). For a network N and a query < a >

b < c > k, does there exist a trace σ = (e1, h1), . . . , (en, hn) in the network with a set of
failed links F such that |F | ≤ k, h1 ∈ Lang(a), e1 . . . en ∈ Lang(b), and hn ∈ Lang(c)?
If this is the case, we say that the query is satisfied and that σ is a witness trace for the
query.

A query thus allows property validation within the network. These properties operate on
the routing table, allowing it to find bugs. A test suite of properties can be configured
for an MPLS network, such that the properties enforce correctness. Such correctness
can include connectivity (all routers are connected to a router), and avoidance of certain
links (check connectivity without using a certain links). The connectivity proves useful, if
e.g. there exists some internal data hosting in the MPLS network, and all parties of the
network need access to such host. The avoidance of some link can e.g. be used to ensure
traffic engineering and apply tunnels to transfer data rather than the shortest and possibly
over-loaded path.

An example of a query and resulting witness trace is shown in Figure 2.5 on the network
from Figure 2.1 and Figure 2.2. The query checks if there exist any trace with at most 1
failure (k = 1), starting with a single IP-label on the stack (Lang(a) = {ip1}), taking a
path with an initial edge to v0, with any number of intermediate edges avoiding router v1
and link v2 # v3, and finally an edge from v3 (b = [· # v0] [ˆ · # v1, v2 # v3]∗ [v3 # ·]), and
a ending with a single IP-label on the stack (Lang(c) = {ip1}).

15



Dan Kristiansen & Morten K. Schou 2. MPLS Network

v0

v1

v2

v3

v4

Query: < ip > [· # v0] [ˆ · # v1, v2 # v3]∗ [v3 # ·] < ip > 1

F = {(v2, v3)}

Trace: ((v0, θ), ip1)
((v0, v2), 20 ◦ ip1)
((v2, v4), 30 ◦ 21 ◦ ip1)
((v4, v3), 21 ◦ ip1)
((v3, θ), ip1)

Figure 2.5. An example of a query and a witness trace on the network topology from Figure 2.1
with the label-set and routing table from Figure 2.2.

The links used in the trace in Figure 2.5 is highlighted with bold and green, and the failed
link is marked with a dotted red line. The first applied rule use the current header ip1 to
push 20 on to the header, resulting in a new link and header pair: ((v0, v2), 20 ◦ ip1).

The shortest path from v2 to v3 is through (v2, v3) ∈ E but since (v2, v3) ∈ F the rerouting
path is used and encapsulate the tunnel with swap 21, and push 30. The final two rules
decapsulate the tunnel and the underlying IP-label by pop operations so only ip1 remains
on the stack when leaving the network. Finally |F | ≤ k since |F | = 1, so the query is
satisfied. Note that if the query instead has k = 0 then it cannot be satisfied.

2.6 Weight Expressions for Shortest Trace Selection

Sometimes it is not enough to get a network trace that witnesses a query, if we specifically
want a trace that minimizes some property among all the witness traces. For specifying
these quantitative properties of network traces, we define a weight language. Evaluating
an expression from the weight language on a network trace σ = (e1, h1), . . . , (en, hn) ∈
((E \F )×H)∗ gives a value, which can then be compared to the values for other network
traces. The problem then becomes to find a query-satisfying trace that is shortest with
respect to a given weight expression.

The weight language is build up of the following syntactic categories and production rules:

p ∈ P Atomic properties
le ∈ LinExp Linear expressions
oe ∈ OrdExp Ordered expressions

le ::= p | a * le | le1 + le2 , where a ∈ N

oe ::= (le) | (le, oe)

An atomic property can in principle be any function p : ((E \ F ) × H)∗ → N0. That
is for any network trace σ it evaluates to a non-negative integer p(σ) ∈ N0. However as
described later in Section 4.3, not all properties allow for easy solutions to the shortest
trace problem.
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We define the following atomic properties for a network trace σ = (e1, h1), . . . , (en, hn):

• Links(σ) = n is the length of the trace.
• Hops(σ) = |{e ∈ {e1, . . . , en} | s(e) 6= t(e)}| is the number of hops, where we avoid

counting links that are self-loops.
• Distance(σ) = Σn

i=1d(ei) for any distance function d : E → N0. This can be
physical distance, latency, inverse bandwidth capacity, etc.

• LocalFailures(σ) = Σn−1
i=1 |{e | (e, ω) ∈ Oik , 0 ≤ k < j}|, where τ(ei, head(hi)) =

Oi0 . . . Oim and j is the lowest index such that Oij is an active traffic engineering
group.

• Failures(σ) = |F |, where F is the smallest set of failed links such that σ is a trace
in the network N .

• Tunnels(σ) = Σn−1
i=1 min{#push(ω) | ω ∈ Op∗, (ei+1, ω) ∈ A(τ(ei, head(hi))) ∧

H(hi, ω) = hi+1}, where #push(ω) is the number of push operations in ω. An MPLS
tunnel is started with a push operation, so finding the trace on which the minimal
number of push operations was applied corresponds to minimizing the number of
tunnels.

• StackSize(σ) = maxi |hi| is the maximum size of the header during the trace.

For the denotational semantics of linear expressions we define JleK : ((E \ F )×H)∗ → N0

for le ∈ LinExp by

1. JpK(σ) = p(σ)

2. Ja * leK(σ) = a · JleK(σ)

3. Jle1 + le2 K(σ) = Jle1 K(σ) + Jle2 K(σ)

This is a linear combination of atomic properties.

For the denotational semantics of ordered expressions we define JoeK : ((E\F )×H)∗ → Nk0
for oe ∈ OrdExp and some k ≥ 1 by

1. J(le)K(σ) = (JleK(σ))

2. J(le, oe)K(σ) = (JleK(σ), JoeK(σ))

Point 1 evaluates to a singleton tuple, and point 2 evaluates to a tuple of size k + 1 if the
inner oe evaluates to a tuple of size k.

We use the standard lexicographical ordering of tuples of integers: (a1, . . . , ak) ≤
(b1, . . . , bk) iff a1 < b1 ∨ (a1 = b1 ∧ (a2, · · · , ak) ≤ (b2, · · · , bk)) with the empty sequence
being ≤ all elements of N∗0. A total order of network traces imposed by an ordered
expression oe is defined as:

σ1 voe σ2 iff JoeK(σ1) ≤ JoeK(σ2)

Problem 2.2 (Weighted Trace Problem). For a network, a query and a weight expression
oe, if the query is satisfied, find a witness trace σ such that for any other witness trace σ′,
we have σ voe σ

′.

As an example consider the witness trace σ in Figure 2.5. The value of some of the
atomic properties of this example trace are: Links(σ) = 5, LocalFailures(σ) = 1, and
StackSize(σ) = 3.
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2.7 Overview of the Solution

The query satisfiability problem (Problem 2.1) is solved by the tool AalWiNes, which
is based on the previous tool P-Rex [4]. The contribution of this thesis is to solve the
weighted trace problem (Problem 2.2) by extending AalWiNes with the weight language,
extending the construction of pushdown automata (PDA) with weights, and implementing
weighted reachability analysis in the library PDAAAL (PushDown Automata AALborg),
as well as overall improvements to the library.

AalWiNes
GUI

AalWiNes
MPLS
Network

Query

PDAAAL

post*

pre*

Over-
approximation

Library

Reduction

Moped

post*

pre*

Binary

Satisfied

Network
trace

PDA

Weight

Unsatisfied ResultSuccessful

FailedSuccessful

Trace-
reconstruction

PDA
trace

Failed
Under-

approximation

Inconclusive

Figure 2.6. Overall flow including the contributions of this thesis. The result can be satisfied,
unsatisfied, or inconclusive, such that an inconclusive answer is given if trace
reconstruction fail in both over- and under-approximation.

Figure 2.6 provide an overview to the workflow of AalWines. Starting from the graphical
user interface [14], we get an MPLS network, a query, and, if we want to perform shortest
trace analysis, a weight expression. AalWiNes uses these to construct a PDA by means of
over-approximation. Exact analysis has been deemed too expensive, since it requires an
exponential number of states to keep track of the set of failed links. The over-approximation
is formally defined in [4]. Intuitively, over-approximation counts the number of failed links
locally at each step of the way, rather than keeping a global set of failed links. This means
that the constructed PDA can contain traces that does not correspond to a valid witness
trace in the network. If the over-approximation does not provide a conclusive result, the
tool tries with an under-approximation instead. The under-approximation adds a failed
link counter to each state (thus multiplying the number of states by k), and uses this
counter to keep track of how many failed links the trace has encountered. This is an
under-approximation, since the model can count the same failed link twice.

Once a PDA is constructed, it can be reduced by the top-of-stack reductions defined
in [4]. Reducing the size of the PDA can speed up the reachability analysis, however
the reduction algorithm also takes time. This time trade-off is explored further in the
experimental evaluations in Chapter 5.
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The reachability analysis of the PDA was previously performed by the external tool Moped
[2]. Doing this involves writing the PDA to a file that Moped parses, performs analysis,
and finally prints the result and trace to a file, which is read by AalWiNes. To avoid
this overhead of printing and parsing, we have implemented reachability analysis in the
library PDAAAL. This was implemented by one of the authors in an assignment prior to
this thesis. If a weight expression is specified, then weighted PDAAAL performs shortest
trace reachability analysis of the weighted PDA. Implementing this is one of the major
contributions of this thesis. The result of PDA reachability analysis is a binary answer
and, in the case of positive result, a trace witnessing the reachability.

The trace-reconstruction needs to make sure that the resulting network trace actually
satisfies the query. This check uses two sets of links: active and failed. When we use
a link for the network trace, it is added to active. If a link from a traffic engineering
group with lower priority is added to active, we add the links from the higher priority
traffic engineering groups to failed. If at some point active and failed have a non-empty
intersection, or if the size of failed gets larger than k i.e. active ∩ failed 6= ∅ or |failed | > k,
then the trace-reconstruction fails. With the addition of weighted analysis, the under-
approximation presented in [4] has become unnecessary, since the weighted expression
(LocalFailures) finds any feasible trace that the under-approximation can find.
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Reachability in Pushdown
Systems 3

MPLS networks and the queries implemented in AalWiNes can be modelled as pushdown
systems in which the query becomes a simple reachability query. Reachability in pushdown
systems is a well studied area. We will here present the notation and core algorithms based
on [15]. We also propose a simple early termination check to speed up the reachability
queries.

3.1 Pushdown Systems

Definition 3.1. A pushdown system (PDS) is defined as P = (P,Γ,∆), where:

• P is the set of control locations,
• Γ is the stack alphabet, and
• the rules ∆ is a finite subset of (P × Γ)× (P × Γ∗).

A rule ((p, γ), (p′, w)) ∈ ∆ can be written on the form: 〈p, γ〉 ↪→ 〈p′, w〉. A configuration of
the pushdown system is a pair 〈p, w〉, where p ∈ P and w ∈ Γ∗. The set of all configurations
is denoted Conf (P). The semantics of a pushdown system P is described by the unique
transition system TP = (Conf (P),⇒P), where the transition relation⇒P is defined based
on the rules in ∆, such that if r = 〈p, γ〉 ↪→ 〈p′, w〉 then 〈p, γw′〉 r⇒P 〈p′, ww′〉 for all
w′ ∈ Γ∗. When we are not interested in the rule r, we just write 〈p, γw′〉 ⇒P 〈p′, ww′〉.
The reflexive, transitive closure of ⇒P is denoted ⇒∗P .

We present an example pushdown system with P = {p0, p1, p2, p3}, Γ = {γ0, γ1, γ2} and
∆ defined in Figure 3.1.

p0

p1 p2

p3γ1; pop

γ0; push(γ1)

γ1; swap(γ0)

γ0; push(γ2)

γ2; swap(γ1)

∆ = {r1, r2, r3, r4, r5}
r1 = 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉
r2 = 〈p1, γ1〉 ↪→ 〈p2, γ0〉
r3 = 〈p2, γ0〉 ↪→ 〈p3, γ2γ0〉
r4 = 〈p3, γ2〉 ↪→ 〈p0, γ1〉
r5 = 〈p0, γ1〉 ↪→ 〈p0, ε〉

Figure 3.1. A simple example PDS used throughout this chapter, with the edge notation: Top-
of-stack; Operation.
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3.2 P-automaton

For reachability analysis of a pushdown system P = (P,Γ,∆), we wish to represent a
regular set of configurations in P. For this we define the P-automaton.

Definition 3.2. For a pushdown system P = (P,Γ,∆), a P-automaton is a tuple
A = (Q,Γ,→, P, F ), where:

• Q ⊇ P is a finite set of states,
• the stack alphabet of the pushdown system, Γ, is the alphabet of the P-automaton,
• → ⊆ Q× (Γ ∪ {ε})×Q is the set of transitions,
• the control locations of the pushdown system, P , is the set of the initial states of the
P-automaton, and

• F ⊆ Q is the set of final states.

A accepts a configuration 〈p, w〉 if the labelled transition system (Q,Γ,→, p) satisfies
p

w−→∗ q for some q ∈ F . The set of configurations accepted by A is denoted by Lang(A).
If a set of configurations is accepted by a P-automaton it is called a regular set. For a
transition (p, γ, q) ∈ → we sometimes write it as p γ−→ q.

In most cases, such as for input to the pre∗ and post∗ algorithms presented subsequently,
we restrict the P-automaton to not contain ε-transitions, i.e. → ⊆ Q× Γ×Q. The post∗

algorithm may introduce ε-transitions, hence they are included in the definition here.

3.3 Reachability Analysis

Problem 3.1 (Pushdown Reachability Problem). For a PDS P and two regular sets of
configurations C and C ′, does there exist c ∈ C and c′ ∈ C ′ such that c⇒∗P c′?

A simpler version of this problem, which is sufficient for the use in AalWiNes, is the case
when |C| = |C ′| = 1.

Two algorithms for reachability analysis of pushdown systems are presented in [15, 16]: pre∗

and post∗, which compute the reflexive transitive closure of respectively the predecessors
and successors of a regular set of configurations C. The algorithms exploits the fact that
the set of predecessors or successors of a regular set of configurations is itself a regular set.
This means that even though the set is potentially infinite, it has a finite representation in
the form of a P-automaton. Both algorithms take as input a P-automaton A that accepts
C. The output is a P-automaton Apre∗ (or Apost∗) that accepts pre∗(C) (or post∗(C)).
For post∗ we allow ε-transitions in the resulting automaton. The concrete algorithms
require without loss of generality that the input P-automaton has no ε-transitions and no
transitions into the initial states P .
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3.3.1 Construction of pre∗

Input: A = (Q,Γ,→0, P, F )

Output: Apre∗ = (Q,Γ,→, P, F ), where → is constructed by adding transitions to →0

according to the following saturation rule:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′ w−→∗ q in the current automaton, add a transition p γ−→ q.

Theorem 3.1 ([15]). This algorithm satisfies that Lang(Apre∗) = pre∗(Lang(A)), and can
be executed in O(|Q|2 · |∆|) time and O(|Q| · |∆|+ |→0|) space.

For two regular sets C and C ′ recognized by A and A′ respectively, there exists c ∈ C and
c′ ∈ C ′ such that c′ ⇒∗P c iff there exists c′ ∈ C ′ such that c′ ∈ pre∗(C), or in other words
if Lang(A′) ∩ Lang(Apre∗) 6= ∅. If |C ′| = 1 this is simply checking whether Apre∗ accepts
c′, which can be solved by e.g. a depth-first-search.

We extend the Apre∗ example from [15] to match with our contribution; the example is
depicted in Figure 3.2.

p0

p1

p2

p3

s1 s2
γ0 γ0

∆ = {r1, r2, r3, r4, r5}
r1 = 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉
r2 = 〈p1, γ1〉 ↪→ 〈p2, γ0〉
r3 = 〈p2, γ0〉 ↪→ 〈p3, γ2γ0〉
r4 = 〈p3, γ2〉 ↪→ 〈p0, γ1〉
r5 = 〈p0, γ1〉 ↪→ 〈p0, ε〉

p0

p1

p2

p3

s1 s2
γ0 γ0

γ2

γ1

γ0
γ0

γ1

γ0
γ1

Figure 3.2. On the left is an input P-automaton A that accepts configuration 〈p0, γ0γ0〉. On
the right is the constructed Apre∗ from applying the pre∗ algorithm to A. All initial
states are marked with an empty in-going edge.

Let A be a P-automaton for a pushdown system with P = {p0, p1, p2, p3}, ∆ shown in
Figure 3.2 such that A accepts C = {〈p0, γ0γ0〉}. After adding all transitions to→ we have
the final Apre∗ also depicted in Figure 3.2. The step-by-step construction of the example
Apre∗ is described below:

1. The first match to the saturation rule is r5 and thus the first transition we add to
→ is p0

γ1−→ p0.
2. With the new set of transitions we get a match for r4 and add p3

γ2−→ p0.
3. With r3 we can now saturate path p3

γ2−→ p0
γ0−→ s1, and thus, add p2

γ0−→ s1.
4. From r2 and the current path p2

γ0−→ s1 we add p1
γ1−→ s1.

5. From r1 and the current path p1
γ1γ0−−−→ s2 we add p0

γ0−→ s2.
6. With the new path p3

γ2γ0−−−→ s2 we can again use r3 and, hence, add p2
γ0−→ s2.

7. Similar with path p2
γ0−→ s2 we can use r2 to add p1

γ1−→ s2
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3.3.2 Construction of post∗

Input: A = (Q,Γ,→0, P, F )

Output: Apost∗ = (Q′,Γ,→, P, F ), where Q′ is obtained by adding new states to Q. For
each pair (p′, γ′), such that P contains at least one rule of the form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, a
new state qp′,γ′ is added.

Then → is constructed by adding transitions to →0 according to the following saturation
rules:

(i) If 〈p, γ〉 ↪→ 〈p′, ε〉 and p γ−→∗ q in the current automaton, add a transition p′ ε−→ q.

(ii) If 〈p, γ〉 ↪→ 〈p′, γ′〉 and p γ−→∗ q in the current automaton, add a transition p′ γ
′
−→ q.

(iii) If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and p γ−→∗ q in the current automaton, first add p′ γ
′
−→ qp′,γ′

and then qp′,γ′
γ′′−→ q.

Theorem 3.2 ([15]). This algorithm satisfies that Lang(Apost∗) = post∗(Lang(A)), and
can be executed inO(|P |·|∆|·(n1+n2)+|P |·|→0|) time and space, where n1 = |Q\P | and n2
is the number of different pairs (p, γ) such that there is a rule of the form 〈p′, γ′〉 ↪→ 〈p, γγ′′〉
in ∆.

For two regular sets C and C ′ recognized by A and A′ respectively, there exists c ∈ C and
c′ ∈ C ′ such that c⇒∗P c′ iff there exists c′ ∈ C ′ such that c′ ∈ post∗(C), or in other words
if Lang(A′)∩ Lang(Apost∗) 6= ∅. If |C ′| = 1 this is simply checking whether Apost∗ accepts
c′, which can be solved by e.g. a depth-first-search.

An example similar to Figure 3.2 is made for Apost∗ in [15] and extended in Figure 3.3.

p0

p1

p2

p3

s1 s2
γ0 γ0

∆ = {r1, r2, r3, r4, r5}
r1 = 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉
r2 = 〈p1, γ1〉 ↪→ 〈p2, γ0〉
r3 = 〈p2, γ0〉 ↪→ 〈p3, γ2γ0〉
r4 = 〈p3, γ2〉 ↪→ 〈p0, γ1〉
r5 = 〈p0, γ1〉 ↪→ 〈p0, ε〉

p0

p1

p2

s1 s2

p3

q1γ1

q3γ2

γ0 γ0

γ1

γ0

γ2

γ0

γ0

γ1
ε

γ0

Figure 3.3. On the left is an input P-automaton A that accepts configuration 〈p0, γ0γ0〉. On the
right is the constructed Apost∗ from applying the post∗ algorithm to A. All initial
states are marked with an empty in-going edge.

After adding all saturating transitions to → and states to Q of A then we have the final
Apost∗ depicted in Figure 3.3. The example process of constructing Apost∗ is iterated below:
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1. From r1 and r3 we add two additional states: q1γ1 and q3γ2 , respectively.
2. The left-hand side of r1 matches the current transition p0

γ0−→ s1, thus, we use
saturation rule (iii) to add the two following transitions: p1

γ1−→ q1γ1 and q1γ1
γ0−→ s1.

3. Then with r2 and saturation (ii) we add p2
γ0−→ q1γ1 .

4. With the new transition p2
γ0−→ q1γ1 and r3 we add two more transitions p3

γ2−→ q3γ2
and q3γ2

γ0−→ q1γ1 .
5. From p3

γ2−→ q3γ2 and r4 we saturate (ii) and add p0
γ1−→ q3γ2 .

6. Then we use the just added transition p0
γ1−→ q3γ2 and r5 to saturate (i) and add the

ε-edge p0
ε−→ q3γ2

7. The final transition is added from p0
γ0−→ ∗ q1γ1 , and r1 with saturation rule (iii),

because p1
γ1−→ q1γ1 already exist, we just add q1γ1

γ0−→ q1γ1 .

3.4 Early Termination

To improve the running time of the pre∗ and the post∗ algorithms, we can add an early
termination check, which will be described in this section. The reasoning is the same for
both pre∗ and post∗.

During the saturation process, let→i be the transition relation after adding i transitions to
→0 using the saturation rule(s), and let Ai be the corresponding intermediate automaton.
During the saturation process we get a sequence of automata A0, . . . ,An, where it holds
that the languages of the automata increases, i.e. Lang(Ai) ⊆ Lang(Ai+1). When the
saturation process stops, we are left with the final automaton An which is Apre∗ (or
Apost∗).

When solving the pushdown reachability problem, we need to determine whether any
configuration c′ ∈ C ′ is an element of pre∗(C) (or post∗(C)). If C ′ ∩ Lang(Ai) 6= ∅ for
some intermediate automaton Ai, it is not necessary to compute the final automaton An,
since the saturation rule(s) are only increasing the accepted language. If this is the case,
the reachability algorithm can terminate early giving a positive result. Otherwise the
algorithm needs to continue.

The purpose of early termination is to speed up the algorithm by terminating as soon as
the answer is known. For this to be efficient, the overhead of checking C ′ ∩ Lang(Ai) 6= ∅
may not be too large.

Problem 3.2 (Early Termination Problem). LetA′ be the P-automaton accepting C ′, and
Ai the current intermediate automaton. The early termination problem is to determine
whether Lang(A′) ∩ Lang(Ai) 6= ∅.
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The general problem of deciding intersection non-emptiness between two finite automata,
is NL-complete [17]. It can be solved by a well known product construction [18]. However,
this is be too expensive to do in every iteration of the saturation rule. Instead it can
be done for every k iterations, for a sufficiently large k, and possibly executed in parallel
of the saturation algorithm. This line of inquiry is not followed further, since the use in
AalWiNes restricts itself to a particular special case, which has a simple and easy solution.

The special case is when C ′ = {〈p, γ〉}, i.e. C ′ only contains a single configuration, in
which the stack has one element. The early termination problem is solved for this special
case by checking whether a transition p γ−→ q, where q ∈ F is a final state, is added to Ai.
This is simply a constant-time check, when adding transitions using the saturation rule.

The correctness of this early termination check is obvious for the pre∗ algorithm. For the
post∗ algorithm the check is obviously sound, but it is not complete, since the saturation
rules in post∗ may add ε-transitions. If Ai contains the transitions p

ε−→ q′ and q′ γ−→ q, with
q ∈ F , then 〈p, γ〉 is accepted by Ai even though no p γ−→ q, with q ∈ F , was added. In
reality this is not a problem, since the concrete algorithm for post∗ [15] will also later add
p

γ−→ q in this case. In the implementation of post∗ in PDAAAL, we use a last-in-first-out
stack for transitions, which means that p γ−→ q will in fact be the next transition to be
added, so early termination will occur only one iteration later.
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Weighted Pushdown
Systems 4

The previous chapter introduced pushdown systems, the reachability problem, and the pre∗

and post∗ algorithms to solve it. This is enough to solve the query satisfiability problem
(Problem 2.1) using the reduction to the pushdown reachability problem (Problem 3.1)
presented in [4].

In this chapter we extend pushdown systems with weights in order to solve the weighted
trace problem (Problem 2.2). Weighted pushdown systems and their pre∗ and post∗

algorithms are presented in [19] for their application to interprocedural dataflow analysis.
To this end they define the weight domain in a rather abstract way based on a semiring.
This definition will become relevant when discussing the weight encoding of the maximum
stack-size for a trace. For the other weight properties, it is sufficient to restrict the weight
domain to be totally ordered, as initially discussed in [15], which will allow for a more
efficient algorithm.

Recall that a monoid is an algebraic structure (M, •), whereM is a set and • : M×M →M

is a binary operator on M , such that the following two properties hold:

• Associativity: ∀a, b, c ∈M, (a • b) • c = a • (b • c),
• Identity: ∃e ∈M, ∀a ∈M, e • a = a = a • e. Here e is called the identity element.

In a commutative monoid, the following additional property holds:

• Commutativity: ∀a, b ∈M, a • b = b • a

Definition 4.1. A well-ordered bounded semiring is a tuple S = (D,u,⊕,>,⊥) where D
is a set, > and ⊥ are elements in D, and u and ⊕ are binary operators on D, such that:

• (D,u) is a commutative monoid with the identity element >.
• (D,⊕) is a monoid with the identity element ⊥.
• ⊕ distributes over u: ∀a, b, c ∈ D we have a ⊕ (b u c) = (a ⊕ b) u (a ⊕ c) and

(a u b)⊕ c = (a⊕ c) u (b⊕ c).
• > is an annihilator for ⊕: ∀a ∈ D, a⊕> = > = >⊕ a.
• ⊥ is an annihilator for u: ∀a ∈ D,⊥ u a = ⊥.
• The order v defined by: ∀a, b ∈ D, a v b iff a u b = a is a well-order (i.e. a total

order with no infinite descending chains).

The first four conditions constitutes the definition of a semiring, and the first five conditions
that of a bounded semiring [20]. By Lemma 3 in [20], this is also an idempotent semiring,
so ∀a ∈ D, a u a = a. By Lemma 2 in [20], D provided with the natural order v is
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monotonic, so for all a, b, c ∈ D: a v b =⇒ (a⊕ c v b⊕ c)∧ (c⊕ a v c⊕ b). This implies
that for all a, b ∈ D: a v a⊕ b and a v b⊕ a.

Lemma 4.1. Given Definition 4.1, the following properties hold:

(a) (D,v) is a meet-semilattice and its binary meet (greatest lower bound) operator is
exactly u.

(b) > is the top element of (D,v).
(c) ⊥ is the bottom element of (D,v).

Proof. (a) This follows from u being associative, commutative and idempotent.
(b) Since > is the neutral element in the commutative monoid (D,u), we have a u > = a

and thus a v > for all a ∈ D, so > is the top element of (D,v).
c. Since ∀a ∈ D,⊥ u a = ⊥, we have ⊥ v a for all a ∈ D, so ⊥ is the bottom element of
(D,v).

Lemma 4.1 justifies using the notation of u, > and ⊥, rather than the usual notation for
an arbitrary semiring (D,⊕,⊗,0,1).

Given a total order (D,v) the meet operator follows directly as a u b =

{
a if a v b
b otherwise

An example of a weight domain is the set of vectors of non-negative integers: S = (Nn0 ∪
∞n,min,+,∞n, 0n) for some n > 0, where the total-order (Nn0 ,≤) is the lexicographical
ordering of vectors, and + is element-wise vector addition. This definition satisfies the
requirements of a well-ordered bounded semiring.

4.1 Weight Extension for Pushdown Systems

With the weight domain defined, we are now ready to extend our definition of pushdown
systems with weights.

Definition 4.2 (Weighted Pushdown System [19]1). A weighted pushdown system is
defined as a tuple W = (P,S, f), where:

• P = (P,Γ,∆) is a pushdown system,
• S = (D,u,⊕,>,⊥) is a well-ordered bounded semiring, and
• f : ∆→ (D \ {>}) is a function that assigns a value from D to each rule in P.

Let σ ∈ ∆∗ be a sequence of rules, and for any σ = r1 . . . rk define v(σ) = f(r1)⊕· · ·⊕f(rk).
For any two configurations c and c′ of P let path(c, c′) denote the set of all sequences of
rules r1 . . . rk that transforms c into c′ by c

r1⇒P · · ·
rk⇒P c′. Let c σ

=⇒
d

⊕ c′ denote the

existence of a sequence σ ∈ path(c, c′), where d = v(σ). If the sequence is not relevant for
the discussion, we may just write c =⇒

d

⊕ c′. For technical convenience define
d
∅ = >,

and if path(c, c′) = ∅ then say c =⇒
>
⊕ c′.

1This follows the definition in [19], except from the requirement of the weight domain to be totally
ordered, which is not the case in [19].
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Definition 4.3 (Shortest Pushdown System Distance). For a weighted pushdown system
W = (P,S, f), where P = (P,Γ,∆), define for any two configurations c, c′ ∈ P × Γ∗ the
shortest pushdown system distance: δ(c, c′) =

d
{d | c =⇒

d

⊕ c′}.

T. Reps et al. [19] defines two reachability problems: finding shortest distance to
respectively the predecessors and the successors of a regular set of configurations. Given
the assumption of a totally ordered weight domain we can generalise these two problems
into the following reachability problem:

Problem 4.1 (Weighted Pushdown Reachability Problem). For a weighted pushdown
systemW = (P,S, f), where P = (P,Γ,∆), and regular sets C ⊆ P ×Γ∗ and C ′ ⊆ P ×Γ∗,
find:

• the shortest distance δ =
d
{δ(c, c′) | c ∈ C, c′ ∈ C ′}, and

• a witness path ω ∈
⋃

c∈C,c′∈C′
path(c, c′) such that v(ω) = δ.

The weighted predecessors and successors problems are solved in [19] for the general case,
where the weight domain is not necessarily totally ordered, using weighted versions of
respectively the pre∗ and post∗ algorithm. The output of those algorithms is a pair of a
P-automaton and a labelling function. For convenience we make the following definition:

Definition 4.4. For a weighted PDS W = (P,S, f) with P = (P,Γ,∆) and S =

(D,u,⊕,>,⊥), we define aW-automaton (or weighted P-automaton) as a pair V = (A, l),
where:

• A = (Q,Γ,→, P, F ) is a P-automaton, and
• l : (Q × (Γ ∪ {ε}) × Q) → D is a function labelling transitions in A with weights,

such that l(t) = > if and only if t /∈ →.

For aW-automaton (A, l) we are not only interested in whether A accepts a configuration
〈p, w〉, but also in the total weight of the accepting path in the W-automaton, where l is
the weight function. For any q, q′ ∈ Q and w ∈ Γ∗, we let q w−→

d

⊕ q′ denote the existence of

states q1, . . . , qn−1 and γ1, . . . , γn ∈ (Γ∪{ε}) such that l(qn−1, γn, q′)⊕· · ·⊕ l(q, γ1, q1) = d

and γ1 . . . γn = w. By convention we say q ε−→
⊥
⊕ q for any q ∈ Q.

Definition 4.5 (Shortest Accepting Path). For a W-automaton V = (A, l), and any
configuration in W: 〈p, w〉 ∈ P × Γ∗, we define ρ(〈p, w〉) =

d
{d | ∃qf ∈ F : p

w−→
d

⊕ qf},
which is the length of a shortest w-labelled path from p to a final state in A.

4.2 Efficient Weighted post∗ Algorithm

In this section we present an algorithm that solves the weighted pushdown reachability
problem, by constructing aW-automaton Vpost∗ = (Apost∗ , l) in a way such that a shortest
distance δ can be reconstructed. It does this more efficiently than the general algorithm
presented in [19] by exploiting the total order of the weight domain. The algorithm in
[19] may process each transition multiple times, whereas our algorithm only processes each
transition once.
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In Subsection 4.2.2 we present as an example a family of weighted pushdown systems for
which our algorithm has asymptotically smaller run-time than the algorithm in [19].

We use a priority queue, with the ability to pop minimum element, and on insertion of
element t with priority d, queue[t] := d, checks if t is already present and in that case only
updates the priority of t, if the new priority is less than the existing, or if t is not present,
it is inserted normally.

The following function is used in Algorithm 3. The variables queue, cost , l and→ are part
of Algorithm 3 and are implicitly passed by reference.

Algorithm 2 Update function

1: function Update(t = p
γ−→ q, d)

2: if t /∈ → then
3: l(t) := l(t) u d
4: if q ∈ Q then
5: queue[t] := d
6: else
7: queue[t] := cost(q)⊕ d

Algorithm 3 implements the saturation process described in Subsection 3.3.2. In short,
the saturation rule can be applied for some p, γ, q, if p γ−→∗ q in the current automaton and
there is a matching rule with 〈p, γ〉 on the left hand side. This is implemented by going
through the transitions t = p

γ−→ q one by one, and finding all matching rules in ∆. The
application of the saturation rule adds new transitions to the workset queue, so they can
be processed later. Since the process can add ε-transitions, we may have p γ−→∗ q due to the
transitions p ε−→ q′ and q′ γ−→ q. To handle this case, we contract ε-transitions thus adding
p

γ−→ q - this is what lines 24 and 27 are for. Only transitions going from a state in P can
match with a rule in ∆, so transitions going from a state in Q′ \ P are added directly to
→, which happens on line 6 and 18.

The description so far applies also to the unweighted version in [15]. What makes
Algorithm 3 able to find the shortest trace, is that the workset, queue, of transitions
still to be considered, is implemented as a priority queue, where the priority of transition
t is the cost of the current shortest path from an initial configuration, accepted by A, to
a configuration, whose accepting path starts with t.

If we later attempt to add the transition t again, due to a shorter path, we update the
priority with this new cost. When processing a transition with priority d popped from the
queue at line 8, the new transitions added to queue, cannot have a priority less than d.
This means that once a transition is popped from the priority queue on line 8, its priority
d is the final shortest path cost for that transition.

The cost of the shortest path in the pushdown system from an initial configuration,
accepted by A, to a configuration c, is encoded in the P-automaton as the cost of the
shortest path accepting c. When processing the saturation rules, we only need the first
transition p γ−→ q of this path, but for computing the transitions priority in the queue, we
need the total cost of the path. If q ∈ Q this is ⊥, since q must be on an accepting path
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Algorithm 3 Shortest trace post∗ algorithm for weighted pushdown systems
Require: A has no ε-transitions, no transitions into initial states and all transitions are

part of an accepting path.
1: function ShortPost∗(W = ((P,Γ,∆), (D,u,⊕,>,⊥), f), A = (Q,Γ,→0, P, F ))
2: Q′ := Q ∪ {qp′,γ′ | 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆}
3: queue[t] := ⊥, ∀t ∈ (→0)∩ (P ×Γ×Q) . priority queue: (P × (Γ∪{ε})×Q′)→ D

4: l(t) :=

{
⊥ if t ∈ →0

> if t ∈ (Q′ × (Γ ∪ {ε})×Q′) \→0

5: cost(q) := > ∀q ∈ (Q′ \Q)
6: → := (→0) ∩ ((Q \ P )× Γ×Q)
7: while queue 6= ∅ do
8: (t = p

γ−→ q, d) := PopMin(queue) . Gets element and priority
9: → :=→∪ {t}

10: if γ 6= ε then
11: for r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
12: Update(p′ ε−→ q, l(t)⊕ f(r))
13: for r = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ do

14: Update(p′ γ
′
−→ q, l(t)⊕ f(r))

15: for r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ do

16: t1 = p′
γ′−→ qp′,γ′ , t2 = qp′,γ′

γ′′−→ q
17: l(t2) := l(t2) u (l(t)⊕ f(r))
18: → :=→∪ {t2}
19: if d⊕ f(r) @ cost(qp′,γ′) then
20: cost(qp′,γ′) := d⊕ f(r)
21: Update(t1, ⊥)
22: else if l(t2) was changed on line 17 then
23: for t′ = (p′′, ε, qp′,γ′) ∈ → do

24: Update(p′′ γ
′′
−→ q, l(t2)⊕ l(t′))

25: else
26: for t′ = (q, γ′, q′) ∈ → do

27: Update(p γ′−→ q′, l(t′)⊕ l(t))
28: return ((Q′,Γ,→, P, F ), l) . Return a W-automaton

in the original P-automaton A, which by definition has cost ⊥. For states q ∈ Q′ \Q we
store the cost of the current shortest path from q to a final state in the function cost(q).
The cost values can be updated on-the-fly (line 20), and allows us to efficiently compute
the priority of the transition (line 7 in Algorithm 2).

Finally the algorithm makes sure to store the transition weights in the function l (on line 3
in Algorithm 2 and line 17 in Algorithm 3). The if-else conditions on lines 19 - 24 makes
sure we only update transitions in the priority queue, when there is a possibility of a
shorter path to them.

After this informal explanation of the algorithm, we move on to prove its correctness
in Theorem 4.2. For a set C ⊆ P × Γ∗ and a configuration c′ ∈ P × Γ∗ we define:
δC(c′) =

d
{δ(c, c′) | c ∈ C}, which is the shortest distance to c′ from any configuration in

C.
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Theorem 4.2 ([15]). For a weighted pushdown system W = (P,S, f), where P =

(P,Γ,∆), and a regular set of configurations C ⊆ P × Γ∗ accepted by A, let Vpost∗ =

(Apost∗ , l) be the output of running Algorithm 3 on W and A. For any configuration
c′ ∈ P × Γ∗, we have δC(c′) = ρ(c′) in Vpost∗ .

Proof. In [15] a procedure for computing shortest trace using post∗ is described and proved
correct, i.e. that δC(c′) = ρ(c′). To prove Theorem 4.2, we only need to show that
Algorithm 3 corresponds to this procedure. The key difference is that the procedure in
[15] does not explicitly use a priority queue to determine which transition to pick in each
iteration. So we need to prove that the priority of the transition popped at line 8 in
Algorithm 3 is the same as the value defined declaratively in the procedure in [15]. This is
proved in Lemma 4.3 using the invariant in Lemma 4.4 and the auxiliary Lemma 4.5.

First we need to define some notation. Let queuei, li, cost i, →i denote the corresponding
values in Algorithm 3 before iteration i of the while-loop on lines 7 to 27, for i ∈ {1, 2, . . . }.

The intermediate W-automaton before iteration i is Vi = (Ai, li), where Ai = (Q′,Γ,→i ∪
queuei, P, F ), where we use transitions both in →i and in queuei. It is easy to verify
that li(t) = > if and only if t /∈ →i ∪ queuei, so Vi does conform to the definition of a
W-automaton.

Let p w−→
d

⊕
i q denote that the property holds in Vi. Let di be the priority of the transition

popped from queuei at line 8 in iteration i of the while-loop.

It is easy to check that→i∪ queuei ⊆ (P × (Γ∪{ε})× (Q′ \P ))∪ ((Q′ \P )×Γ× (Q′ \P ))

for all i, i.e. that no transitions go into states in P , and all ε-transitions go from a state
in P . This fact is used without reference in the remainder of these proofs.

Define ηi(p
γ−→ q) =

d
{d2 ⊕ d1 | p

γ−→
d1

⊕
i q

w−→
d2

⊕
i qf , qf ∈ F, w ∈ Γ∗}, which before round

i is the shortest accepting path starting from p with a word starting with γ. Note that
this path starts either with transition p

γ−→ q or with transitions p ε−→ q′
γ−→ q for some

q′ ∈ Q′ \ P .

Define κi(q) =
d
{d | q w−→

d

⊕
i qf , qf ∈ F, w ∈ Γ∗} which is the shortest accepting path

from q before round i.

First we state some facts that follow directly from unfolding the definitions above:
For all p γ−→ q ∈ P × Γ×Q′, for all i:

ηi(p
γ−→ q) = κi(q)⊕

(l
{li(q′

γ−→ q)⊕ li(p
ε−→ q′) | q′ ∈ (Q′ \ P )} u li(p

γ−→ q)
)

(4.1)

For all p ε−→ q ∈ P × {ε} ×Q′, for all i:

ηi(p
ε−→ q) = κi(q)⊕ li(p

ε−→ q) (4.2)

For all q, q′ ∈ Q′ \ P and γ ∈ Γ, for all i:

κi(q
′) v κi(q)⊕ li(q′

γ−→ q) (4.3)
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To proof Theorem 4.2, we need to show:

Lemma 4.3. The priority di of the transition p
γ−→ q popped on line 8 in round i is:

di = ηi(p
γ−→ q).

Proof. We use the invariant from Lemma 4.4. If ηi(p
γ−→ q) = κi(q) ⊕ li(p

γ−→ q) then it
follows directly from the invariant. Otherwise, assume ηi(p

γ−→ q) 6= κi(q) ⊕ li(p
γ−→ q)

with the purpose of arriving at a contradiction. Due to Equation 4.1 and Equation 4.2
there must be a q ∈ Q′ \ P such that ηi(p

γ−→ q) = κi(q) ⊕ li(q′
γ−→ q) ⊕ li(p

ε−→ q′) and
li(q
′ γ−→ q)⊕ li(p

ε−→ q′) @ li(p
γ−→ q). From this and Equation 4.3 we have:

κi(q
′)⊕ li(p

ε−→ q′) v κi(q)⊕ li(q′
γ−→ q)⊕ li(p

ε−→ q′) @ κi(q)⊕ li(p
γ−→ q)

From κi(q
′)⊕ li(p

ε−→ q′) @ κi(q)⊕ li(p
γ−→ q) and the invariant, we know that p ε−→ q′ must

have been popped from the queue in an earlier iteration j < i.

If q′ γ−→ q /∈ →j then it is added as t2 on line 18 in an iteration k, j < k ≤ i, but then by
Lemma 4.5 the only transition going into q′ in round k is t1, which contradicts that p ε−→ q′

was popped from the queue in round j. So we must have q′ γ−→ q ∈ →j .

Hence on line 27 we update p γ−→ q so that lj+1(p
γ−→ q) v lj(q

′ γ−→ q) ⊕ lj(p
ε−→ q′). Since

p
ε−→ q′ ∈ →j+1, it is not later updated, so we have lj(p

ε−→ q′) = li(p
ε−→ q′).

If lj(q′
γ−→ q) = li(q

′ γ−→ q), then li(p
γ−→ q) v li(q

′ γ−→ q) ⊕ li(p
ε−→ q′) contradicting

li(q
′ γ−→ q)⊕ li(p

ε−→ q′) @ li(p
γ−→ q).

So q′
γ−→ q must have been updated as t2 on line 17 in an iteration k, j ≤ k < i.

Consider the last such k. We have li(q
′ γ−→ q) = lk+1(q

′ γ−→ q) = lk(t) ⊕ f(r). If
dk ⊕ f(r) @ costk(q

′) then by Lemma 4.5 the only transition going into q′ in round k

is t1, which is a contradiction. So costk(q′) v dk ⊕ f(r), and on line 24 we update p γ−→ q

so that lk+1(p
γ−→ q) v lk+1(q

′ γ−→ q)⊕ lk(p
ε−→ q′). Since k was the last change to q′ γ−→ q we

have li(p
γ−→ q) v li(q′

γ−→ q)⊕ li(p
ε−→ q′) contradicting li(q′

γ−→ q)⊕ li(p
ε−→ q′) @ li(p

γ−→ q).
This completes the proof.

The following proofs of Lemma 4.4 and Lemma 4.5 use some insights from less formal
explanations in [15].

Lemma 4.4. Before round i:

(a) The priority of each p γ−→ q ∈ P × (Γ ∪ {ε})×Q′ in queuei is κi(q)⊕ li(p
γ−→ q).

(b) For all q ∈ Q′ \Q: cost i(q) = κi(q).

Proof. By strong induction on i. However we need to use a more fine-grained notion of
iteration than the outer while-loop. For the induction we iterate over the inner for-loops,
so the induction hypothesis holds before each iteration of a for-loop, and the induction step
carries out one such iteration. Since Vi is still a valid W-automaton before each for-loop
iteration, most of the notation generalises to this fine-grained definition of i. Only di needs
special attention, since di is only defined at the beginning of the while loop, i.e. before the
first for-loop iteration. In other cases di will refer to dj , where j ≤ i is the latest iteration in
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which dj is defined. Due to the induction hypothesis we have di = dj = κj(q)⊕ lj(p
γ−→ q).

Since p γ−→ q is added to → in iteration j, we have lj(p
γ−→ q) = li(p

γ−→ q). The only

possibility of a change to κj(q) is a change to l(t2), but then t2 = q
γ′′−→ q is a self loop with

non-negative weight, so this cannot decrease the shortest accepting path. So κj(q) = κi(q),
and di = κi(q)⊕ li(p

γ−→ q).

Basis. i = 1 (before starting the first round). (a) queue only contains transitions from
→0 with priority ⊥. All transitions t in →0 must be part of an accepting path and have
l(t) = ⊥ at line 4.
(b) All states in Q′ \ Q are new and thus not part of transitions in →0, so there are no
accepting paths from them. On line 5 cost(q) = > is initialized correctly.

Inductive step. Assume (a) and (b) holds for all j, j ≤ i, then we show that they hold for
i+ 1:
The weight function l is only updated in two places, so the weight of transitions from states
in P change at line 3 in Algorithm 2, and the weight of transitions from Q′ \ Q change
at line 17 in Algorithm 3. Transitions from states in Q \ P have weight ⊥ which never
changes.

If l(t2) changes on line 17, then the new value is li(p
γ−→ q) ⊕ f(r). The value κi+1(qp′,γ′)

is either unchanged, which by induction hypothesis (b) is κi(qp′,γ′) = cost(qp′,γ′), or it is
lower due to the change of l(t2). Using the induction hypothesis we have κi(q)⊕ li+1(t2) =

κi(q)⊕ l(p
γ−→ q)⊕ f(r) = di ⊕ f(r), so:

κi+1(qp′,γ′) = κi(qp′,γ′) u (κi(q)⊕ li+1(t2)) = cost(qp′,γ′) u (di ⊕ f(r))

This is checked by the if-else conditions at lines 19 to 24. Consider the two possibilities at
line 19:

• If di⊕f(r) @ cost i(qp′,γ′), then at line 20 we correctly set cost i+1(qp′,γ′) = di⊕f(r) =

κi+1(qp′,γ′), which concludes part (b) of the induction step. By Lemma 4.5, the only
transition going into qp′,γ′ is t1, so for all t′ 6= t1, the invariant also holds for t′ at
i+ 1. The priority of t1 is set correctly in the call to Update at line 21 concluding
the induction step for (a).

• If cost i(qp′,γ′) v di⊕f(r), then κi(qp′,γ′) = cost i(qp′,γ′) v di⊕f(r) = κi(q)⊕ li+1(t2).
Since κi(qp′,γ′) v κi(q)⊕ li+1(t2) @ κi(q)⊕ li(t2) there is already a shortest accepting
path from qp′,γ′ not containing t2. Since t2 is the only transition in Q× Γ×Q that
changes in round i, we conclude κi+1(qp′,γ′) = κi(qp′,γ′). This concludes the induction
step.

It is easy to prove that when li+1(p
γ−→ q) is updated on line 3 of Algorithm 2, then the

priority of p γ−→ q in queuei+1 is updated accordingly. It is also easy to check that the
priorities in queuei+1 and the values in cost i+1 is not changed in other places.

Lemma 4.5. Assuming the induction hypothesis from Lemma 4.4 for all j, j ≤ i, if
di ⊕ f(r) @ cost i(qp′,γ′) at line 19, then t1 is the only transition going into qp′,γ′ in Ai.

Proof. From induction hypothesis part (b) we have cost i(qp′,γ′) = κi(qp′,γ′), so:

di v di ⊕ f(r) @ cost(qp′,γ′) = κi(qp′,γ′) v κi(qp′,γ′)⊕ li(t1)
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Since di @ κi(qp′,γ′) ⊕ li(t1), which by induction hypothesis part (a) is the priority of t1
in queuei, we know that t1 cannot have been popped at line 8 in round i or earlier, and
therefore also that t1 /∈ →i. This implies that t1 is the only transition leading into qp′,γ′ in
Ai, since transitions leading into q ∈ Q′ \Q are only added if t at line 8 leads to q, t′ ∈ →
at line 26 leads to q, or if t1 at line 16 leads to q.

Corollary 4.5.1. Continuing from Theorem 4.2: In particular for a regular set C ′ ⊆
P ×Γ∗, the shortest distance as defined in Problem 4.1 is found by: δ =

d
{ρ(c′) | c′ ∈ C ′}

in Vpost∗ .

Proof. Follows trivially from Theorem 4.2 and the definition of Problem 4.1.

By Corollary 4.5.1, Algorithm 3 reduces the weighted pushdown reachability problem
(Problem 4.1) to the problem of finding shortest accepting paths in a finite automaton.
For the simple case where C ′ = {c′}, we have δ = ρ(c′), which is a simple graph traversal
problem solved by Dijkstra’s algorithm.

The general case, where the regular set C ′ is accepted by a P-automaton A′, is a bit more
complicated, since we need to find the minimum ρ(c′) for an element c′ in the possibly
infinite set of configurations C ′. However its finite representation as A′, allows us to
represent the intersection L(Vpost∗) ∩ L(A′) by means of a product construction [18] of
Vpost∗ and A′, where we keep the weights from Vpost∗ . Finding a shortest accepting path
on this weighted product automaton solves the weighted pushdown reachability problem.

4.2.1 Computing the shortest trace

Algorithm 3, as presented here, only allows us to compute the cost of the shortest trace δ
in the pushdown system. It does not have enough information to reconstruct the witness
trace ω itself. Reps. et al. [19] describe how to compute a witness set in the general case
by modifying the Update procedure to construct a hypergraph of transition-weight pairs,
where edges are annotated with rules.

In our algorithm, where the weight domain is totally ordered and the transitions are stored
in a priority queue, each transition is only processed once, and there exists a trace with
weight δ. Given these facts, we can use the simpler approach for pushdown systems without
weights presented in [15] and further formalized by Morten Schou in an assignment [21]
prior to this project. The following text and Algorithm 4 is based on [21].

We use a function α to annotate all transitions in Apost∗ . The annotation of a transition
p

γ−→ q is either:

• α(p
γ−→ q) = ⊥ if p γ−→ q is in the original A,

• α(p
γ−→ q) = r with r = 〈p′, γ′〉 ↪→ 〈p, w〉 if p γ−→ q was added because of the rule r, or

• α(p
γ−→ q) = 〈q′〉 if p γ−→ q was added because of the transitions p ε−→ q′ and q′ γ−→ q.

The following additions to Algorithm 3 is needed to annotate the edges of the P-automaton.
We annotate with the rule used at line 12: α(p′

ε−→ q) := r, line 14: α(p′
γ′−→ q) := r, line 18:

α(t2) := r, and line 21: α(t1) := r. And we annotate with the intermediate state at line 24:

α(p′′
γ′′−→ q) := 〈qp′,γ′〉 and line 27: α(p

γ′−→ q′) := 〈q〉.
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Given the annotations α, the trace can be reconstructed using Algorithm 4. It finds
an accepting path for a configuration using Dijkstra’s algorithm, and then it uses the
annotations to reconstruct all the intermediate configurations and the rules that were
applied. This sequence of configurations is the PDA-trace.

Algorithm 4 Trace generation for post∗

1: function MakeConf((p γ1−→ q1, . . . , qn−1
γn−→ qn))

2: return 〈p, γ1γ2 . . . γn〉
3: function Trace(〈p, w〉, Vpost∗ = (Apost∗ , l), α)
4: let γ1γ2 . . . γn = w
5: if 〈p, w〉 ∈ L(Apost∗) then
6: (p, q1, . . . , qn)← compute accepting path for 〈p, w〉 in Vpost∗ . Using Dijkstra
7: edges ← (p

γ1−→ q1, . . . , qn−1
γn−→ qn)

8: trace ← [〈p, w〉]
9: t1 ← pop front of edges
10: while α(t1) 6= ⊥ do

11: let (p′
γ′−→ q) = t1

12: if α(t1) = 〈q′〉 then
13: push (p′

ε−→ q′, q′
γ′−→ q) to front of edges

14: else (α(t1) = 〈p, γ〉 ↪→ 〈p′, w′〉)
15: if |w′| ≤ 1 then
16: push (p

γ−→ q) to front of edges
17: else (|w′| = 2)
18: t2 ← pop front of edges
19: let (q

γ′′−→ q′′) = t2
20: (α(t2) = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉)
21: push (p

γ−→ q′′) to front of edges
22: push MakeConf(edges) to front of trace
23: t1 ← pop front of edges
24: return trace
25: return with no trace

4.2.2 Example of Asymptotic Improvement

Our solution to the weighted pushdown reachability problem (Algorithm 3) uses a priority
queue to ensure that each transition of the resulting P-automaton is only processed once
in the algorithm. The corresponding algorithm in [19], which applies to a broader range
of weight domains by not assuming it to be totally ordered, cannot use a priority queue.
Instead, transitions are stored in a set and picked arbitrarily. To ensure correctness it
needs to add transitions to the set whenever their weight changes, which can happen many
times in the worst case. This sections presents an example of pushdown systems, where
our algorithm is asymptotically faster than the one in [19].

Figure 4.1 gives a simple example of a pushdown system, where our Algorithm 3 has better
worst-case performance than the algorithm in [19] when applying weighted post∗ to the
regular set of initial configurations C = {〈1, γ〉 | γ ∈ Γ}. Note that while Figure 4.1 has
Γ = (A, . . . , Z) it is straightforward to extend it to an arbitrarily large Γ.
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Γ = (A, . . . , Z) C = {(1, γ) | γ ∈ Γ}

1
... 2

... 3

A; 1; swap(A)

B; 2; swap(A)

Z; 26; swap(A)

A; 1; push(A)

A; 1; push(B)

A; 1; push(Z)

Figure 4.1. A pushdown system for which our Algorithm 3 in the worst case outperforms
the algorithm in [19] by using a priority queue. As an example of the notation,
the annotation A; 1; push(B) on the edge from 2 to 3 corresponds to the rule
r = 〈2, A〉 ↪→ 〈3, BA〉 with weight f(r) = 1.

To illustrate why, this example gives a poor worst-case performance for the algorithm in
[19], we go through a possible execution of the algorithm. Initially the set of transitions
to be considered is {1 A−→ 4, . . . , 1

Z−→ 4}. In the worst case the algorithm picks 1
Z−→ 4, so

when applying the saturation rule it adds 2
A−→
26

4. Our Algorithm 3 will then proceed to

pick the other transitions from state 1, since they all have weight ⊥, leaving 2
A−→
1

4 in

the workset. However the algorithm in [19] does not know to pick these first, so it can in
the worst case pick 2

A−→
26

4, and then the saturation rule adds transitions 3
A−→
⊥

5
A−→
27

4,

3
B−→
⊥

6
A−→
27

4, ..., 3
Z−→
⊥

30
A−→
27

4. Figure 4.2 illustrates the intermediate W-automaton
at this point.

1 ... 4

2

3
...

5 6
. . .

. . .

30

A

⊥
B

⊥

Z

⊥

A

26

A

⊥

B

⊥

Z

⊥

A 27

A 27 A 27

Figure 4.2. An intermediate W-automaton during a possible execution of the weighted post∗

algorithm in [19] applied to the pushdown system in Figure 4.1 with the initial
configurations C = {〈1, γ〉 | γ ∈ Γ}.

The algorithm can then in the worst-case go through all these transitions, and then pick
transition 1

Y−→
25

4, so the saturation rule adds 2
A−→
25

4, which has a smaller weight than

before and hence is added back to the workset. Picking 2
A−→
25

4 next will add transitions

5
A−→
26

4, 6
A−→
26

4, . . . , 30
A−→
26

4, which all have lower weight than before, so they are added
back into the workset. This process can continue each round decreasing the weight by 1

until 1
A−→ 4 is picked and the weights converge to their final value.
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This example shows how in the worst case the algorithm in [19] adds each transition
5

A−→ 4, . . . , 30
A−→ 4 to the workset once for each transition in {1 A−→ 4, . . . , 1

Z−→ 4},
which leads to a quadratic factor in the complexity of the algorithm for this problem
instance. In the our Algorithm 3 each of the edges 5

A−→ 4, . . . , 30
A−→ 4 are only added

once, so the corresponding factor is only linear in the input size. Even considering the
logarithmic overhead of the operations on the priority queue, our Algorithm 3 has a better
asymptotic complexity then the algorithm in [19] for this family of pushdown systems.

4.3 Weight Encoding for Network Trace Properties

The weight expressions described in Section 2.6 apply to a full network trace σ, but the
weight function in the weighted pushdown system assigns a weight to each pushdown rule.
Therefore we need a way to decompose the weight expression for the network trace into
single weights for each rule.

When constructing the pushdown system from the MPLS network, we create a pushdown
rule for each operation in the operation sequence of a routing table entry. The details of
this construction is presented in [4]. Here it is enough to know that we can identify which
rules correspond to a routing going out on a link, and which are auxiliary rules carrying
out the operation sequence. Given this, it is straightforward to decompose the following
atomic properties into weights for each pushdown rule r:

• Links: f(r) = 1 if r corresponds to a routing along a link, 0 otherwise.
• Hops: f(r) = 1 if r corresponds to a routing along e, where s(e) 6= t(e), 0 otherwise.
• Distance: f(r) = d(e) if r corresponds to a routing along e, 0 otherwise, where
d : E → N0 is the distance function used, e.g. physical distance, latency, etc.

• LocalFailures: f(r) = |{e | (e, ω) ∈ Oi, 0 ≤ i < j}| if r corresponds to a routing
along e′ for the routing table lookup τ(e′′, `) = O0 . . . On, where j is the index of the
traffic engineering group Oj containing e′.

• Tunnels: f(r) = 1 if r corresponds to a push operation in Op, 0 otherwise.

When using these decomposable atomic properties, it is trivial to extend the decomposition
to linear expressions and ordered expressions. For StackSize however, decomposing it
into weights for each pushdown rule is not trivial, since local information at each rule is
not enough to determine its impact on the overall weight of the trace. In other words,
StackSize is a global properties of the trace. Failures is another global property that
is not covered in this thesis.

Figure 4.3 shows an example PDS where the StackSize property cannot be easily
decomposed into weights on each rule. The example shows four traces all starting in
state 1 with the first two ending in state 8 and the latter two ending in state 9. When
performing the shortest trace post∗ algorithm starting at state 1, we need to know which
trace going to 5 is the shortest in terms of the weights. However, as the four traces in the
example show, one needs to keep track of both possible traces from 1 to 5.

If at state 5 we choose that the trace directly from 1 to 5 is shorter than the one going
through states 2, 3 and 4, then if we decide to proceed to state 8, we will have a stack
size of 3, while the other possible trace has a maximum stack size of 2. If we instead at
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1

2

5

push

push
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push pop

pop
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7 8

9
swap

push

swap
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1 2 3 4 5 6 7 8

1
2

1 5 6 7 8

1
2
3

1 2 3 4 5 6 9

1

2

1 5 6 9

1

Figure 4.3. A pushdown system (PDS) (left), and four traces from node 1 to node 8 and node 9
(right).

state 5 choose that the shortest trace is the one going through states 2, 3 and 4, then if
we decide to proceed to state 9, our trace will have a maximum stack size of 2, while the
other possible trace has a maximum stack size of 1. This shows that it is impossible to
make a local choice at state 5 about which trace is shortest, so the maximum stack size
of a trace is a global property. The next section gives a solution for solving the weighted
trace problem for the weight expression (StackSize).

4.3.1 Minimizing the maximum stack size in a trace

Some measures describe global properties of the trace. One such example is the maximal
stack size of a configuration of the trace. For simplicity we here analyse the maximal
stack size problem for stacks in pushdown systems, but it is analogous to minimizing the
maximal MPLS stack size of a network trace.

The problem is, for a weighted pushdown systems W and two regular sets C and C ′ to
find a trace that transforms a c ∈ C into a c′ ∈ C ′ while minimizing the maximum stack
size of configurations on this trace. However for the weighted post∗ algorithm to work,
the empty trace to an initial configuration must have weight 0, so we need to reformulate
the problem as finding a trace for which the maximum increase in stack size compared
to the initial stack is minimal. If all configurations in C have the same stack size this is
equivalent to minimizing the maximal stack size.

Define a sub-trace as any contiguous sub-sequence of a trace. The relevant information
for a sub-trace is the maximum increase in stack size during the trace, and the stack size
at the end compared to the beginning of the trace. Both of these numbers can be easily
computed for any given sub-trace. We will call these two numbers the weight of a sub-
trace: w(σ). Push rules have weight (1, 1), pop rules have weight (0,−1), and swap rules
have weight (0, 0).

When concatenating two sub-traces σ1 and σ2, the weight of the resulting sub-trace can be
calculated from the weights of σ1 and σ2: (a1, b1)⊕ (a2, b2) = (max{a1, b1 + a2}, b1 + b2).
Figure 4.4 shows a concatenation of two sub-traces with weight (2, 1) and (1,−1).
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0

1
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b1

(2, 1)

⊕

a2

b2

(1,−1)

=

(max{2, 1 + 1}, 1 + (−1))

a1

b1

b1 + a2

b1 + b2

Figure 4.4. Concatenation of two sub-traces (left) σ1 and σ2 such that w(σ1) = (2, 1) and
w(σ2) = (1,−1). The trace (right) show the calculation of the final trace, such
that w(σ) = (2, 0)

The problem comes when comparing the weights of two sub-traces to find the one that
will lead to a minimum weight trace in the end. For example at state 5 in Figure 4.3,
where we need to choose between two different traces from 1 to 5. If in the end we have
((2, 0) u (1, 1)) ⊕ (0, 0), we prefer (1, 1) over (2, 0), but if we have ((2, 0) u (1, 1)) ⊕ (2, 2)

we prefer (2, 0) over (1, 1). This example shows that there is no reasonable total ordering
of the weights. Instead we need to define the meet operator u in such a way that it keeps
the information of both traces.

In general we want to consider the weight of a set of sub-traces. Initially these will be
singleton sets, but when performing the meet operation, we take the union of two sets:
W1 uW2 = W1 ∪W2, and filter out the elements for which there is a smaller element in
the set with respect to the product order: (a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 ∧ b1 ≤ b2.

When combining two sets of sub-traces W1 and W2, we try all combinations of sub-traces
from the two sets: {w1 ⊕ w2 | w1 ∈ W1, w2 ∈ W2}, and then filter out the non-minimal
elements.

4.3.2 Formal definition of StackSize weight

We extend the integer operators + and ≤ to work on infinity in the standard way: for all
a ∈ Z ∪ {∞}, a ≤ ∞ and a+∞ =∞+ a =∞. Likewise max{a,∞} =∞.

We define the binary operator ⊕ over N× Z ∪ {(∞,∞)} by:

(a1, b1)⊕ (a2, b2) = (max{a1, b1 + a2}, b1 + b2)

Definition 4.6. For any W ∈ 2N×Z∪{(∞,∞)} we define the pruning operator for filtering
out non-minimal elements R(W ) = {(a, b) ∈W | @(a′, b′) ∈ (W \{(a, b)}). a′ ≤ a∧b′ ≤ b}.
We call R(W ) the minimal representation of W .

Definition 4.7 (Obtainable Values). For a domain D, a finite set of initial values I ⊆ D,
and a finite set of binary operators F = {f1, . . . , fn}, fi : D×D → D, define the F -closure
of I: F ∗(I) ⊆ D by the inductive definition:

• if d ∈ I then d ∈ F ∗(I), and
• if d1, d2 ∈ F ∗(I) and f ∈ F then f(d1, d2) ∈ F ∗(I).
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Definition 4.8. SStackSize = (DStackSize,u,⊗, {(∞,∞)}, {(0, 0)}) is the stack size weight
domain, where

• DStackSize = F ∗(I) with I = {{(1, 1)}, {(0, 0)}, {(0,−1)}, {(∞,∞)}}, F = {u,⊗},
• W1 uW2 = R(W1 ∪W2), and
• W1 ⊗W2 = R({x1 ⊕ x2 | x1 ∈W1, x2 ∈W2}).

Lemma 4.6. For any obtainable weight W ∈ DStackSize, the following invariants hold:

• W 6= ∅
• ∀(a, b) ∈W. a ≥ b.
• ∀(a1, b1), (a2, b2) ∈W. a1 ≤ a2 ∧ b1 ≤ b2 =⇒ (a1, b1) = (a2, b2)

Proof sketch. By structural induction: Base case: The invariants hold for each initial
value in I = {{(1, 1)}, {(0, 0)}, {(0,−1)}, {(∞,∞)}}. Inductive step: The invariants are
preserved by the operations u and ⊗.

As noted, SStackSize does not satisfy the well-order requirement of Definition 4.1. It does
however satisfy the requirements for an idempotent semiring [20]:

Theorem 4.7. SStackSize = (DStackSize,u,⊗, {(∞,∞)}, {(0, 0)}) is an idempotent
semiring, i.e. it satisfies the following:

• (DStackSize,u) is a commutative monoid with the identity element {(∞,∞)}, where
u is idempotent: ∀a ∈ DStackSize. a u a = a.

• (DStackSize,⊗) is a monoid with the identity element {(0, 0)}.
• ⊗ distributes over u: ∀a, b, c ∈ DStackSize we have a⊗ (bu c) = (a⊗ b)u (a⊗ c) and

(a u b)⊗ c = (a⊗ c) u (b⊗ c).
• > is an annihilator for ⊗: ∀a ∈ DStackSize, a⊗> = > = >⊗ a.

Proof sketch. These properties can be proved by expanding definitions, simplifying and
applying structural induction over DStackSize.

An idempotent semiring has a partial order v defined by a v b iff a u b = a called the
natural order [20].

Using the following weight function fStackSize : ∆→ DStackSize we can define a weighted
pushdown system WStackSize = (P,SStackSize, fStackSize), where ∆ are the rules in P:

fStackSize(〈p, γ〉 ↪→ 〈p′, w〉) =


{(1, 1)} if |w| = 2

{(0, 0)} if |w| = 1

{(0,−1)} if |w| = 0

The pre∗ and post∗ algorithms in [19] takes as input a weighted pushdown systems, where
the weight domain are required to be an idempotent semiring, where the natural order v
contains no infinite descending chains. Unfortunately SStackSize has the infinite descending
chain {(0, 0)}, {(0,−1)}, {(0,−2)}, . . . , where each weight is obtainable since it corresponds
to a sequence of pop rules. However, the ’no infinite descending chains’ property is only
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used to prove termination of the algorithms in [19], so if we prove termination in another
way, then SStackSize being an idempotent semiring is still enough to ensure correctness.

We do not proceed to prove termination, but we conjecture that the post∗ algorithm in
[19] terminates on the input WStackSize = (P,SStackSize, fStackSize) and A, if A is a
P-automaton with no cycles, i.e. the language it recognizes is finite.

The complexity of the pre∗ and post∗ algorithms in [19] are increased from their unweighted
counterparts, which have polynomial complexity, by a factor no larger than the length of
the maximal length descending chain to any value that appear in the annotated automaton
[19]. This is assuming that the u and ⊗ operations can be performed efficiently.

The result of these algorithms is a W-automaton with transition weights in the domain
DStackSize. In this W-automaton we need to find the shortest accepting distance for a
configuration 〈p, w〉. Without a total order, we cannot use the classical Dijkstra algorithm.
Instead we use a workset, to which nodes may be added multiple times. The tentative
shortest distance of a node ρ′(q) is updated as ρ′(q) := ρ′(q)udnew , where dnew is calculated
using ⊗, ρ′(q′) for some other state q′ and a transition from q′ to q. If this changes the
value of ρ′(q), then q is added back to the workset. We cannot stop as soon as a final node
is reached, instead the process ends, when the workset is empty, i.e. when the weights stop
changing. Now the shortest distance is ρ(〈p, w〉) =

d
{ρ′(q) | q ∈ F}.

While the minimal maximum stack size for a sub-trace cannot be represented by a total
order, we have for a full trace the total order: (a1, b1) ≤ (a2, b2) iff a1 ≤ a2. So we find
the value a such that (a, b) ∈ ρ(〈p, w〉) ∧ ∀(a′, b′) ∈ ρ(〈p, w〉). a ≤ a′. This is the minimal
maximum stack size of any trace reaching the configuration 〈p, w〉.

When weights are updated with ρ′(q) := ρ′(q)udnew , they may combine multiple traces, so
it is not in general guaranteed that there is a single trace with that weight. However in our
case, each value (a, b) ∈ W for a weight W ∈ DStackSize corresponds to a specific trace.
So when finding the minimal (a, b) ∈ ρ(〈p, w〉) for a full trace, this will also correspond to
a specific trace. To reconstruct the trace, we need to annotate the values (a, b) ∈W with
information about which trace it corresponds to and make sure that the operators u and
⊗ preserve this information. The details of these annotations are left for future work.
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We perform a series of experiments to evaluate the behavior and performance of AalWiNes
with our contributions. The experiments are separated in two, where the first aim to clarify
the best configuration for the tool, while testing the performance of our contributions. The
latter is a case-study on the MPLS network of NORDUnet, from which we evaluate and
compare the behavior of the best configuration on a real network. Finally, will we use the
tool to analyse some queries provided by NORDUnet and evaluate the applicability of
the tool.

5.1 Performance Tests

This experiment uses various size of MPLS networks from Topology Zoo [11], that all
are manipulated to larger network topologies, through the network topology manipulation
described in Section 2.3. Each network is also annotated with routing tables generated by
Algorithm 1. For each of the networks we create queries based on 5 generic query types.
To produce consistent results, and to allow better comparisons, we execute each individual
test 10 times on the cluster provided by Aalborg University, and use the median values of
the 10 executions for analysis.

In the analysis of the results we compare the different levels of reduction of the PDA, we
compare the engines to each other, and we compare the weighted analysis to the unweighted
version.

5.1.1 Generation of test cases

Starting with six different network topologies from Topology Zoo [11], we generate for each
five different versions. For N ∈ {1, . . . , 5} we create N copies of the network topology t1
to tN . Using Concat we connect ti to ti+1 by connecting every third router to its copy.
For the next i we switch the offset for routers, so it is different routers that connect to
the copy before and after. Intuitively think of N layers, where some routers are connected
vertically to the next.

For each of these 30 test networks, we create a number of queries. We use five different
general types of queries that are instantiated to concrete queries for each test network:

1. < smpls ip > [ · # v1] ·∗ [v2 # · ] < mpls+ smpls ip > k

2. < (mpls∗ smpls)? ip > [ · # v1] [∧ · # v2]∗ [v3 # · ] < (mpls ∗ smpls)? ip > k

3. < (mpls∗ smpls)? ip > [ · # v1] ·∗ [v2 # · ] < (mpls∗ smpls)? ip > k

4. < (mpls∗ smpls)? ip > [ · # v1] ·∗ [v2 # · ] < smpls ip > k

5. < (mpls∗ smpls)? ip > [ · # v1] ·+ [v1 # · ] < (mpls∗ smpls)? ip > k
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Query type 1 checks for transparency, i.e. whether it is possible for MPLS labels to leak
out on the stack when leaving router v2. Type 2 is a waypointing query. It checks whether
it is possible to avoid router v2 on a path from v1 to v3. If this is not the case, then all
paths from v1 to v3 goes through the waypoint v2. Type 3 simply checks for reachability
between v1 and v2. Type 4 checks if it is possible to end up with exactly one mpls label
on the stack. Type 5 checks for loops, i.e. if the router v1 can occur multiple times in a
trace.

For each of these query types we make a concrete query for each k ∈ {0, . . . , 3} failed links
and Qi ∈ {1, . . . , 10} random instantiations of the routers v1, v2 and v3. This gives in total
6.000 test cases.

5.1.2 Running the tests

Each test case is executed for combination of the engines E ∈ {Mpost∗,Mpre∗, post∗, pre∗}
and reduction level R ∈ {0, . . . , 4} each with ten equal executions. This gives 960.000 test
executions. The four engine types represent Moped post∗, Moped pre∗, and our post∗

and pre∗ implementations respectively. The reduction levels show the top-of-stack (tos)
reductions of the PDA before applying the verification algorithm. The reduction techniques
it uses are called: simple, dual-stack and target-tos [1]. They are configured through
different reduction levels: R0 = no reduction, R1 = simple, R2 = R1 + dual-stack, R3 =
R2 + target-tos, R4 = R1 + target-tos. It turns out that the dual-stack technique can
be very time-consuming in the worst-case, so R4 is a good compromise as the following
results will show.

For each test execution we record the time for compilation (building the PDA), reduction
(of the PDA using level R) and verification (of the PDA using engine E). We compute the
total time as the sum of these three times i.e. ttotal = (tverification + treduction + tcompilation).
We also record the number of routers, interfaces and labels in each test network and the
number of states and rules in the generated PDAs before and after reduction.

For the external Moped engine, the verification time is measured only for its call to its
verification algorithm, so all extra parsing is not included in this time.

The test data is organized into three projections of the data that will help us draw
conclusions. The first projection show an overall comparison of the reduction levels, the
second projection show an overall comparison of verification-time on the four engines
alongside a more in depth analysis, lastly we show the performance of the weighted
extension while comparing it with the amount of conclusive queries.
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5.1.3 Comparing reductions

Figure 5.1 compare the total time on post∗ for each test case across the reduction levels.
For each execution in the reduction test we set an environmental limit, a timeout of 20

minutes, and memory usage limit of 30 GB. If the test execution exceeds either of these,
it is considered failed. From the 6000 test cases 5627 succeeded and 373 failed within the
environmental limitations.

Figure 5.1. Cactus plot over the reduction-levels executed on post∗ measuring the ttotal in
logarithmic scale. The plot only include the test-cases where the same result is
reached.

The results show that reduction level 4 makes a significant speedup when compared to R2
and R3. From Figure 5.1 using no reduction shows to be fast in the small test-cases, and
in the larger test-cases reduction 1 and reduction 4 are very similar. We are especially
interested in optimizing the time for the large test cases, where we see the most significant
speedup, thus, Table 5.1 show a more thorough comparison of reduction 1 and reduction
4 on post∗.

The table list the size of the network as well the size of the label-set L and rules ∆ in the
PDA. Since the reductions remove rules, ∆ is listed both for reduction 1 and reduction
4. The ratio is calculated on the median of the total time over 10 executions, where
Ratio = median(tR1

total )/median(tR4
total ), and if this is below 1, we change Ratio = −1/Ratio,

so the absolute values are comparable. To ensure that the data are comparable we filter
out the data that do not return the same result, where True and False are conclusive and
None is an inconclusive result.
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Nodes Rules |L| |∆|R1 |∆|R4 Query Result tR1
total tR4

total Ratio
196 176060 44889 144151 53581 F:3 I:9 T:4 None 44.3078 70.1125 -1.5824
76 36183 10214 41495 10315 F:0 I:7 T:2 True 1.5228 2.2735 -1.493
196 176060 44889 89944 44911 F:0 I:6 T:2 True 6.2791 9.2753 -1.4772
76 36183 10214 52504 10826 F:0 I:1 T:4 True 7.0366 10.2379 -1.4549
118 61872 17885 93110 21320 F:2 I:2 T:5 True 1.2941 1.8285 -1.413
...

...
...

...
...

...
...

...
...

...
67 28440 8275 97473 46222 F:2 I:5 T:3 None 2.0157 2.043 -1.0136
58 24611 7181 70619 31861 F:3 I:6 T:2 None 1.1274 1.1427 -1.0135
51 18359 6727 49389 20439 F:1 I:8 T:5 None 0.7712 0.7816 -1.0135
196 176060 44889 572210 287688 F:3 I:0 T:4 None 442.8557 448.7878 -1.0134
46 12418 4136 35247 17632 F:2 I:2 T:2 None 0.5143 0.5211 -1.0132
...

...
...

...
...

...
...

...
...

...
126 100255 30331 1 1 F:0 I:1 T:4 False 3.2484 1.5386 2.1113
97 124776 36673 1 1 F:0 I:4 T:4 False 4.2683 1.9017 2.2445
145 221829 61305 1 1 F:0 I:2 T:4 False 8.9179 3.3582 2.6555
145 221829 61305 1 1 F:0 I:7 T:4 False 9.1311 3.3669 2.7121
193 356243 95144 1 1 F:0 I:4 T:4 False 30.3483 7.8104 3.8856

Table 5.1. Comparing median ttotal = (tverification + treduction + tcompilation) of 10 executions with
post∗ on R1 and R4. The query is represented as: F,I,T = Failover, Instance, Type.

From Table 5.1 can we see how the ttotal of the two reduction levels are very similar in the
middle cases. For most of the cases can reduction 4 reduce the system more than reduction
1, and in the middle cases reduction 4 are a margin faster, and thus, for the remainder of
this experiment we use on reduction 4.

5.1.4 Comparing the engines

For each execution, in this test, we set an environmental limit, timeout of 10 minutes, and
memory usage limit of 16 GB. If the test execution exceeds either of these, it is considered
failed. 5250 out of the 6000 test cases succeeded, the failures were due to the environmental
limitations of both timeout and out-of-memory failure.

Since the test cases are very different, there is little sense to compute average verification
times. Instead we compare the engines’ verification times for each test case on reduction
4. To compute an aggregate we count the wins for each engine. To avoid the observed
variation affecting the results, we use a cutoff margin for both the relative and absolute
difference in verification time.

Engine Wins
post∗ 2504
pre∗ 860
Even 1886

Engine Wins
Mpost∗ 2712
Mpre∗ 359
Even 2179

Engine Wins
Mpost∗ 1448
post∗ 2238
Even 1564

Engine Wins
Mpre∗ 1116
pre∗ 2990
Even 1144

Table 5.2. Number of wins for each engine on reduction 4 where M is the Moped implementation.
It is considered a win of the faster engine if the verification time is above 30% of the
slower engine, and the absolute difference i above 1 millisecond. Otherwise they are
considered even.

Table 5.2 depict a similar pattern between the post∗ and pre∗ implementations in the first
two tables from the left. post∗ seemingly has an advantage in the general case, but still
pre∗ is shown to be important. The latter two tables, show some promising results when
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directly comparing Mopeds implementation to ours. To get a more qualitative view of
which tests cases favors which engine and how big the differences are, we sort the test
cases by the ratio between the verification times of engine A and engine B, and create a
table with the top, middle and bottom test cases. For each pair of engines (A,B) we filter
the cases and compute Ratio between the median verification times, similar to Table 5.1.

Nodes Rules |L| |P | |∆| Query Result Mpost∗ post∗ Ratio
76 36183 10214 43633 56722 F:2 I:7 T:4 True 0.5494 8.9492 -16.2899
96 63897 17460 660 18714 F:0 I:8 T:4 True 3.2037 44.5725 -13.9128
77 43917 12232 534 13288 F:0 I:1 T:4 True 0.8147 10.9656 -13.4596
96 63897 17460 658 18670 F:0 I:9 T:4 True 2.2556 29.7362 -13.1835
111 77709 20365 99950 129484 F:2 I:8 T:4 None 8.3884 108.1571 -12.8937
...

...
...

...
...

...
...

...
...

...
76 38277 12706 472 14758 F:0 I:1 T:2 True 0.9846 0.5854 1.6819
96 63897 17460 82802 105202 F:3 I:8 T:5 None 2.4758 1.469 1.6854
96 63897 17460 659 19237 F:0 I:2 T:3 True 2.202 1.3042 1.6884
58 24611 7181 28773 36457 F:2 I:8 T:4 True 2.2841 1.3526 1.6887
76 38277 12706 23574 45422 F:1 I:8 T:3 None 1.2846 0.7569 1.6972
...

...
...

...
...

...
...

...
...

...
193 356243 95144 448753 592875 F:3 I:6 T:4 False 213.9265 11.584 18.4674
196 176060 44889 7070 53633 F:3 I:0 T:5 False 32.008 1.6819 19.0304
196 176060 44889 245467 286074 F:3 I:8 T:4 False 39.224 1.7262 22.7222
145 221829 61305 152340 281422 F:1 I:6 T:5 False 98.2886 4.0534 24.2485
145 221829 61305 252159 354473 F:2 I:2 T:4 False 96.1797 3.4423 27.9406

Table 5.3. Median verification time of 10 runs with reduction 4 and engines: Mpost∗ and post∗,
the query is specified through F,I,T = Failover amount, Instance number, Query Type

The data shown in Table 5.3 show a minimal speedup for post∗ in the general case. With
both engines showing potential speedup on all types of queries, with results being True,
False, and None, we expect the efficiency to be very similar.

Nodes Rules |L| |P | |∆| Query Result Mpre∗ pre∗ Ratio
40 13682 4802 73 4921 F:1 I:9 T:3 True 0.4881 2.5999 -5.3268
26 8841 3476 171 3524 F:0 I:5 T:3 True 0.2268 0.6584 -2.9027
51 18359 6727 10297 19970 F:1 I:1 T:3 True 1.1164 3.1699 -2.8394
79 34368 10567 491 11069 F:0 I:3 T:3 True 2.4715 6.7204 -2.7191
26 8841 3476 8015 11556 F:3 I:3 T:3 True 0.327 0.8881 -2.7162
...

...
...

...
...

...
...

...
...

...
26 8841 3476 7994 12468 F:2 I:9 T:5 True 6.3778 0.6957 9.1676
89 54767 14841 614 16690 F:0 I:9 T:5 True 108.9158 11.8711 9.1749
45 13492 4249 327 5546 F:0 I:6 T:5 True 11.3175 1.2325 9.1826
45 13492 4249 15532 22215 F:2 I:4 T:5 True 13.8767 1.5096 9.1922
77 43917 12232 27893 52099 F:1 I:5 T:3 None 69.3562 7.5433 9.1944
...

...
...

...
...

...
...

...
...

...
97 124776 36673 143931 201614 F:3 I:2 T:3 False 449.717 0.7225 622.4254
126 100255 30331 111972 155692 F:2 I:7 T:2 False 261.7125 0.3947 663.0148
145 221829 61305 152902 281139 F:1 I:0 T:4 False 127.1445 0.1525 833.9258
145 221829 61305 152340 281422 F:1 I:6 T:5 False 381.8485 0.4577 834.2422
118 61872 17885 2460 20801 F:2 I:9 T:4 False 2.7644 0.0031 878.6163

Table 5.4. Median verification time of 10 runs with reduction 4 and engines: Mpre∗ and pre∗,
the query is specified through F,I,T = Failover amount, Instance number, Query Type
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The comparison of Mpre∗ and pre∗ in Table 5.4, show a major speedup for pre∗ on the
test cases with False output result. The verification times are more equal for the output
result True and None.

The data in Table 5.3 and Table 5.4 both support our expectation of the implementations
to be very similar, and with our data structures seemingly being more efficient in the test
cases resulting in False. These test results show that the pre∗ and post∗ engines perform
well enough to replace the use of Moped in AalWiNes, which will also remove the overhead
of writing and parsing Moped files.

5.1.5 Which configuration to choose?

Now the question emerges, whether the tool should use the pre∗ or post∗ engine. Table 5.5
show a comparison of post∗ and pre∗, similar to those in Tables 5.3 and 5.4.

Nodes Rules |L| |P | |∆| Query Result post∗ pre∗ Ratio
67 28440 8275 33972 47523 F:2 I:5 T:5 None 0.2482 10.8794 -43.8364
26 8841 3476 8953 14892 F:2 I:9 T:3 True 0.0518 2.0219 -39.0535
51 18359 6727 10889 23091 F:1 I:6 T:5 None 0.2037 7.5296 -36.9615
79 34368 10567 45016 54962 F:3 I:7 T:5 True 0.3654 13.4887 -36.9186
61 22656 6779 13827 25927 F:1 I:6 T:5 None 0.1541 5.6748 -36.8253
...

...
...

...
...

...
...

...
...

...
79 34368 10567 38479 48741 F:2 I:7 T:3 None 0.4274 3.1081 -7.2727
118 61872 17885 34687 63079 F:1 I:3 T:5 None 0.8091 5.8758 -7.2619
111 77709 20365 100219 130592 F:2 I:8 T:3 None 1.7066 12.3871 -7.2583
39 10864 3855 269 4971 F:0 I:4 T:3 True 0.1014 0.7354 -7.2542
89 54767 14841 36644 68678 F:1 I:5 T:5 None 1.032 7.4767 -7.2447
...

...
...

...
...

...
...

...
...

...
111 77709 20365 768 21893 F:0 I:4 T:4 True 64.138 0.107 599.2665
96 63897 17460 660 18680 F:0 I:5 T:4 True 43.4486 0.0703 618.0319
49 58824 19033 344 19394 F:0 I:6 T:4 True 15.6583 0.0225 697.3417
157 109478 29415 63509 114619 F:1 I:1 T:4 False 57.919 0.0817 708.9604
157 109478 29415 63502 114061 F:1 I:4 T:4 False 64.4546 0.0794 812.0776

Table 5.5. Median verification time of 10 runs with reduction 4 and engines: post∗ and pre∗, the
query is specified through F,I,T = Failover amount, Instance number, Query Type

The data in the overall comparison of Table 5.2, and the thorough comparison of Table 5.5
show post∗ to be the faster engine in most of the test-cases, hence performing well compared
to the state-of-the-art tool Moped. However, pre∗ is very fast in the test cases of query
type 4. Through more testing of general heuristics it is very interesting to explore the
performance increase with an automatic engine choice in the tool, such that post∗ is the
default engine, and pre∗ is chosen for the cases proved to be more efficient. Alternatively
both engines can run in parallel, and the result from fastest is used.
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5.1.6 Comparing weighted post∗

So far have we only been testing the unweighted implementation of post∗. Here we test
the implementation of the weighted extension formally described in Chapter 4. The tests
show verification time overhead of introducing weight notation on each rule in the PDA.
We expect the overhead to be due to the different data structure of the implementation as
the weight has to be kept in memory and use of a priority queue rather than the stack for
unweighted.

Figure 5.2 depicts a cactus plot [22], listing the test results for each individual weight
properties, a weight annotation of zero to all rules, a more complex weight expression,
the unweighted over- and under-approximation as well as the unweighted dual-mode.
It also shows the tests which were solved by the reduction, i.e. where the PDA
had no rules after reduction. The complex weight expression used in the test is
(5 * LocalFailures + Hops, (3 * Tunnels + 2 * LocalFailures, (Distance)))

The x-axis shows the number of test cases verified with the time on the logarithmic y-axis.
The test-cases included are those that conclude either a reachable trace or unreachable,
where the solid lines represent weighted and dashed lines the unweighted.

Figure 5.2. Cactus plot over the weighted properties and unweighted for all conclusive test cases,
executed on post∗ with reduction 4.

The cactus plot in Figure 5.2 shows how the weight annotation increase the likelihood
to find a conclusive answer over the unweighted approaches. Remember that dual is
a combination of the unweighted over- and under-approximation, such that if over-
approximation is inconclusive then the under-approximation is used. From these
unweighted graphs can we see the importance of both over- and under-approximation
as they in collaboration solve many test-cases. Dual are however conclusive in fewer test-
cases than for example than for example using the weight LocalFailures, but dual has
in most test-cases a slightly faster verification-time.
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Since dual does not include the time of potentially both over- and under-approximation,
we expect the trade-off between dual and local failures to be less significant, since local
failure only execute on over-approximation. From the local failures graph can we see the
importance of weight annotation as it is conclusive for the most test-cases, in fact we notice
that it provides conclusive answers for all test-cases within the environmental limitations of
this test. The results show that local failures can solve 535 test-cases that dual cannot solve
within the same time limitations, however dual solves 139 test-cases where local failures
times out. In the following case study of NORDUnet, we will explore this space more
thoroughly by measuring the full time of executing a query on a realistic sized network
without having a timeout limit.

5.2 Case Study: NORDUnet

NORDUnet is a collaboration between the National Research and Education Networks
(NRENs) of the five Nordic countries, connecting more than 400 research and education
institutions with more than 1.2 million users [23]. The MPLS network of NORDUnet
operate on a global scale, to interconnect the NRENs of the five Nordic countries, and
to provide international connectivity. This connectivity is achieved through 31 routers
distributed across three continents: North America, Asia and Europe.

Figure 5.3. NORDUnet MPLS network loaded into the AalWiNes GUI with a validated trace,
from router 0 through router 5 to router 1 with maximum 1 link failure.

Figure 5.3 shows the result of verifying a query on the NORDUnet network loaded into the
graphical user-interface (GUI), which is developed in collaboration with Bernhard Schrenk
at the University of Vienna [14]. This work improves the experience of the AalWiNes tool,
providing visualization for our contributions to the verification part of the tool.
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The tool includes a large set of example network topologies extracted from Topology Zoo
[11], with a routing table generated using our algorithm from Section 2.4. The user can
experiment with these networks either by applying the example queries or by specifying a
query in the tool. For convenience this is split into four fields for specifying respectively
the initial header, path restrictions, final header and maximum number of failures. Trace
options in the GUI allow the user to navigate our main contributions by specifying which
engine to use; post∗, pre∗ or Moped, and to create a weight expression of the quantitative
trace properties to use in the verification.

The example experiment shown in Figure 5.3, contains the query:

< [$449550] ip > [· #R0] ·∗ [· #R5] ·∗ [· #R1] < ip > 1

and the weight (LocalFailures) verified on post∗. The witness trace starts on an edge
from router 0, towards an edge ending at router 1 passing through router 5 while minimizing
the number of failures in the trace. The result prove that such a trace exists, with 1 or 0
failures encountered.

In this section we conduct a more thorough experiment on NORDUnet’s MPLS network
to test the behavior and the applicability of AalWiNes as a tool. The queries we explore
are similar to the previous section with k ∈ {0, . . . 3} and in total 6000 test cases.

Note the smaller size of NORDUnet compared to one of the largest generated networks
where NORDUnet (Routers: 31, Labels: 20.962, Rules: 562.249) and Bellcanada-5
(Routers: 240, Labels: 138.288, Rules: 537.812).

Figure 5.4. Cactus plots of all queries on NORDUnet MPLS network, executed on post∗ with
reduction 4.
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In this test we measure the full time used when querying the tool, such that tfull =

ttotal + tparsing . For dual mode this includes the time of applying both over- and under-
approximation in sequence in the case over-approximation is inconclusive. Figure 5.4 plots
the results of the different weight properties similarly to the experiment conducted in
Subsection 5.1.6, and confirms how minimizing any of the weight properties will increase
the likelihood of finding a valid witness trace.

We observe for e.g. LocalFailures that it is inconclusive for eight test-cases, and that
dual is inconclusive for 427 test-cases. Thus, LocalFailures are conclusive in 419 test
cases for which dual is inconclusive, and dual cannot solve any of the queries where the
weighted approaches are inconclusive. For Tunnels and LocalFailures in Figure 5.4
we note a small performance trade-off when comparing to the unweighted dual approach.
However, we note a larger performance trade-off for Complex, Distance, and Hops.
We expect this to be due to the different order of transition affecting when the early
termination can be used. Similar to Figure 5.2, we notice that this performance trade-off
occurs when reduction 4 is not able to reduce the constructed PDA to zero rules, shown
as the reduced graph (grey dotted line).

In this last part, we explore a small set of queries provided by NORDUnet, such that, we
test the applicability of AalWiNes for a set of queries that are relevant for NORDUnet
to answer on their real MPLS network. Each of the queries are executed on the cluster for
bothMpost∗ and post∗ with reduction 0 for a direct comparison. All queries are conclusive
for both engines, however the verification times vary. Table 5.6 lists the provided queries
and the verification time for the reachability analysis on Mpost∗ and post∗. It shows the
performance increase gained from our contributions to unweighted AalWiNes.

Query tMpost∗

verification tpost∗

verification

< smpls ip > [· #R6] ·∗ [· #R4] < smpls ip > 1 10.6855 1.0935
< smpls ip > [· #R2] ·∗ [· #R18] < (mpls∗ smpls)? ip > 1 11.7013 0.8959
< ip > [· #R0] ·∗ [· #R4] < ip > 0 0.9722 0.0099
< [$449550] ip > [· #R0] ·∗ [· #R5] ·∗ [· #R1] < ip > 0 1.7478 0.0169
< [$449550] ip > [· #R0] ·∗ [· #R5] ·∗ [· #R1] < ip > 1 6.9725 0.0453
< smpls ip > · · · · · · · · ·∗ < ·∗ > 1 112.457 6.5489
< smpls? ip > ·∗ < · smpls ip > 0 108.357 15.8453

Table 5.6. Seven queries provided by NORDUnet solved by two different AalWiNes engines.

Each of the seven queries in Table 5.6 indicate a significant performance increase on
verification time, when using the PDAAAL reachability library. The first five queries
show acceptable verification times on Mpost∗, however, the performance of the remaining
two queries are very slow. The same queries are executed much faster on our post∗

implementation and show the importance of the performance improvements from our
contributions. We expect that a full analysis of NORDUnet’s MPLS network will require
at least several thousand queries, so the performance of verification will become a large
factor in the usefulness of the tool.

The combination of the GUI, the weighted extension and the performance increase show
how AalWiNes is improved, making it a more applicable tool for MPLS network analysis.

52



Conclusion 6
We extended the Multiprotocol Label Switching (MPLS) network analysis tool AalWiNes
[4, 1] with quantitative analysis, we presented an algorithm for generating realistic MPLS
networks, and we improved the performance of reachability analysis of pushdown systems
in the library PDAAAL used by AalWiNes.

For quantitative analysis we defined an expression language for properties of traces in
MPLS networks. The weighted trace problem was defined as finding a query-satisfying
trace that minimizes a given weight expression of these network trace properties. We
solved the weighted trace problem by decomposing the weight expression into weights on
each rule of a weighted pushdown system. We defined the reachability problem for weighted
pushdown systems and presented a concrete algorithm for shortest trace reachability
analysis.

The property of maximum stack size in a trace is a global property in the sense that it
cannot be decomposed. For this property we presented a solution that keeps all relevant
information in the weights, so a trace that minimizes this property can be reconstructed
in the end.

For generating MPLS networks, we presented the functions Concat and Inject that
combines network topologies to larger topologies. We also presented an algorithm that
for any topology generates a routing table with label switched paths for data transfer and
fast-reroute paths to overcome failures based on a shortest path algorithm. To reduce
the size of these routing tables, we showed how sequence of operations can be reduced to
smaller equivalent sequences.

We implemented the pre∗ and post∗ algorithms for reachability analysis in the library
PDAAAL. We improved the performance by implementing an early termination check
that allows the algorithms to terminate as soon as the target is found to be reachable. We
also improved the performance by using the right data structures in various parts of the
program.

We tested the configurations of the tool to find the best overall performance increase. The
experiments were conducted on automatically generated networks of various sizes, and on
a case-study of a real network from NORDUnet. The performance tests showed that
the pre∗ and post∗ algorithms in PDAAAL on average outperform the state-of-the-art
tool Moped, which was previously used as a pushdown system reachability back-end for
AalWiNes. The extension with weighted analysis did incur a little time overhead compared
to the unweighted algorithms.
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On the other side, the weighted reachability algorithm was better at succesfully
reconstructing traces from the over-approximation that AalWiNes uses to model MPLS
networks as pushdown systems. In fact the weight LocalFailures completely eliminates
the use of the under-approximation in AalWiNes, which gives a performance increase,
when the result of over-approximation is inconclusive. The extension with weights also
improved the tool in the sense that fewer queries give inconclusive results.

6.1 Future Work

We suggest some ideas for future work to extend to network manipulation operations,
further improve verification performance, find an exact solution to query satisfiability and
extend the query language to support more types of questions.

6.1.1 Manipulation of networks with routing tables

We defined the functions Concat and Inject to manipulate network topologies, and we
defined an algorithm to create routing tables for topologies. However, this cannot be used
to combine networks containing routing tables. There are non-trivial decisions on how to
extend Concat and Inject to work on full networks. It is interesting for future work to
find a general solution with intuitive semantics for extending the manipulation operators
to full MPLS networks.

6.1.2 Performance improvement by abstraction

Some real world networks have many labels with the exact same behaviour. To improve the
performance of verification in these cases, it is interesting to explore using counterexample-
guided abstraction refinement (CEGAR) [24] to find the groupings of these equivalent
labels and perform verification on the smaller abstract model. CEGAR works by first
creating an over-abstraction of the system, and then refining it until the reachability
result can be reconstructed in the original system. This way the system undergoing
reachability analysis will only be as complex as needed to verify the query, which may
improve performance.

6.1.3 Towards an exact solution for query satisfiability

The LocalFailures weight atom outperforms the under-approximation construction in
[4]. However it is still not an exact solution to the query satisfiability problem, since in
the case of loops on the trace, the same links may be counted twice and links may be used
as both active and failed in different parts of the trace, hence trace validation may still
fail. We described the weight atom Failures, which avoids counting links twice. Due to
Failures being a global property, we did not provide a solution for it, but it is interesting
for future work to try using a construction similar to the global property StackSize
to solve the problem of minimizing the Failures property. Combining StackSize and
Failures with the local properties in the weight expression language is also left for future
work.
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Given that the Failures property may be solvable, it is also interesting to investigate
an exact solution along the same lines. This would require the weight to keep track
of both the set of failed links and set of active links, and encode a form of on-the-fly
trace validation into the weight operators. Such an approach would have an exponential
worst-case complexity, but it may in practice perform much better than constructing a
pushdown system of exponential size, which is the more straightforward approach for an
exact solution.

6.1.4 Extending the query language

The current query language models queries asking whether there exists a set of failed links
no larger than k, such that there exists a network trace satisfying < a > b < c >. The
query language cannot model queries asking whether for all sets of failed links no larger
than k there exists a network trace satisfying < a > b < c >. This type of query
is desirable for analysing connectivity under failure, e.g. whether two routers will always
have a connection if at most k links fail.

Alternating pushdown systems generalise pushdown systems with existential and universal
states, and reachability of alternating pushdown systems is decidable in polynomial time
[25]. It is interesting for future research to extend the query language with quantifiers and
investigate if the corresponding satisfiability problem can be modelled using alternating
pushdown systems.

Another type of question that cannot be answered with the current query language, is e.g.
whether there exists an infinite trace that keeps visiting a specific router. This type of
query is a liveness property and can be expressed in linear temporal logic (LTL). Model
checking LTL properties of pushdown systems is DEXPTIME-complete, but for a fixed
LTL formula it is polynomial in the size of the pushdown system [25]. Given this, it would
be interesting to extend the query language and verification algorithms to support LTL
model checking.
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