
Master’s Thesis:

An Interactive Musical Installation Using

Physical Modeling and Algorithmic Composition

P. J. Christensen

May 2020

2

IT and Design
Aalborg University
https://aau.dk

Title
Master’s Thesis: An Interactive Musical Installation Using Physical Modeling
and Algorithmic Composition

Theme
Sound and Music Computing, Physical Modeling for Sound Synthesis, Algorith-
mic Composition

Project Period
Spring semester 2020

Participants
Pelle Juul Christensen

Supervisors
Stefania Serafin
Silvin Willemsen

Page Count
61

Abstract
The Danish Music Museum strives to offer its visitors an engaging musical expe-
rience, which they achieve, in part, by exhibiting interactive installations. This
report covers the design of such an installation. A user role framework is used
in a review of the state of the art of musical installations, and subsequently to
arrive at a design for the installation. Finite-difference time-domain techniques
are used to create physical models of a bowed string and struck pitched percus-
sion, which serves as the auditory part of the installation. Then, the history of
algorithmic composition is covered and leads to the explanation of the current
composition, whose main elements are split-note rhythm generation and tone
row techniques. User input is provided by a Leap Motion hand tracker that
allows the user to control the rhythmic and melodic content and dynamics of
the piece in real-time. Prospects of future work are discussed and finally, the
project is wrapped with a conclusion.

https://aau.dk

Copyright c© Aalborg University 2020

Typeset with Computer Modern using LATEX.

Front page figure: the vibrations of a bowed stiff string over time.

4

”With the aid of electronic computers the composer becomes a sort of pilot:
he presses the buttons, introduces coordinates, and supervises the controls of
a cosmic vessel sailing in the space of sound, across sonic constellations and
galaxies that he could formerly glimpse only as a distant dream.”

— Iannis Xenakis in Formalized Music, 1971

Contents

1 Introduction 6
1.1 State of the Art . 7
1.2 Installation Design . 8
1.3 Document Summary . 9

2 Instrument Modeling 10
2.1 Introduction to Finite Difference Schemes 10

2.1.1 Stability . 12
2.2 Solving FDSs Using SymPy . 15

2.2.1 The pal-fds library . 16
2.3 Bowed and Fingered Stiff String 16

2.3.1 Definition in Continuous Time 16
2.3.2 Finite Difference Scheme and Implementation 20

2.4 Hammered Bar of Variable Cross Section 22
2.4.1 Definition in Continuous Time 23
2.4.2 Finite Difference Scheme and Implementation 24

2.5 Software Design . 30

3 Composition and Interactivity 31
3.1 Mapping and Interactivity . 34
3.2 Musicality . 35
3.3 Munola . 36

4 Future Work and Conclusion 38
4.1 Conclusion . 39

A Jupyter Notebooks 44

B Derivations 60
B.1 Interpolation and Spreading Operators 60
B.2 Bar of Variable Cross Section with Change of Variables 61
B.3 Non-iterative Solution of Mallet 61

5

Chapter 1

Introduction

This report describes the development of an interactive musical installation
commissioned by the Danish Music Museum (henceforth The Museum). The
Museum did not give any requirements for the installation (from now on the
Installation) except that it should fit in the provided exhibition space and prefer-
ably be interactive. Thus, the design and purpose of the Installation were left
for me to decide. A demonstration video of the installation software can be
found online1.

The Installation should offer an engaging auditory, visual, and haptic expe-
rience. The museum wanted an interactive installation because a lot of their
exhibition is currently not, and interactivity might increase engagement.

To analyse the interactivity of musical installations I will talk about them
in terms of the following three user roles: the composer, the performer, and the
conductor.

As the composer, the user would choose what music would be played. Assum-
ing that most of the museum visitors are not musically trained, free composition
would be inaccessible, and therefore the role can only work if the compositional
choices made available to the user are reduced to high-level structural ones. As
the creator of the Installation, I would, as a composer, like to retain some aes-
thetic authority over the piece, which is done by letting the user take the high
level, structural decisions, while the details are predetermined.

The possibility of a performer role is limited because of the visitors’ assumed
lack of musical training, and one cannot expect an average visitor to pick up
a novel instrument and play it right away. The difficulty of performing on an
instrument-like setup might decrease the user’s engagement, so the details of
the performance should be left to the Installation, i.e., the computer.

As the conductor, the user would make high-level decisions about how the
music should be played. This role is ideal because it offers an engaging real-time
task that could be simplified enough that the users could approach it without
prior training.

1https://youtu.be/WifqiApaw14

6

https://youtu.be/WifqiApaw14

1.1. STATE OF THE ART 7

1.1 State of the Art

The Museum already contains a few installations or installation-like instru-
ments. One of these, the mash machine2, allows its user(s) to create music
by selecting loops to be played from a pool of pre-composed loops. Which loops
to play are chosen by placing plastic blocks with a visual identifier on a glass
surface. Upon recognizing the identifier, the Mash Machine will start playing
the corresponding loop. Audio effects are applied to the loop based on the lo-
cation of the block. The Mash Machine corresponds mostly to the conductor
role — most of the musical material is predetermined, and the user only makes
structural decisions.

Similar to the Mash Machine instrument is the Reactable3, not present at
the Museum, which also uses plastic blocks on a glass surface, but with visu-
als projected on the surface for real-time visual feedback. The blocks of the
Reactable can represent various DSP or musical objects, such as an oscillator,
filter, sequencer, and loop player. Blocks placed in close proximity are patched
together, similar to a modular synthesizer. The Reactable is versatile, and the
user’s role can be both composer, conductor, and performer, and additionally
also sound designer.

Also present at the Museum is the Omni4, a large, circular, dome-shaped
instrument covered in colored ceramic tiles. By hitting a tile with their hand,
the user will trigger a loop. Tiles closer to the center of the instrument starts
longer loops, while those at the perimeter start shorter loops or one-shot sounds.
The user role of the Omni is somewhere between conductor and performer.

Both the Mash Machine, Reactable, and Omni seem to have been created
with collaboration in mind. The Reactable and Omni are both round, so mul-
tiple people can stand around them and participate in the music-making. The
same goes for the Mash Machine, except in a square form factor, catering to
four participants.

Another music museum, the Haus der Musik in Vienna, seem to possess
several custom made installations. While the Danish Music Museum mostly
exhibits ancient and rare instruments, the Vienna music museum focuses on
communicating the Viennese music’s history and providing an interactive ex-
perience. A part of their permanent exhibition, Sonotopia, seems to contain
multiple installations illustrating various acoustic phenomena and some more
kid-oriented ones5. The Vienna Museum also has The Virtual Conductor in-
stallation6, in which the visitor takes on the role of the conductor of the Vi-
enna Philharmonic, and can control the tempo and dynamics of famous pieces
recorded by using a virtual baton. The Virtual Conductor is reminiscent of Max
Mathew’s Radio Baton and conductor program [18]7, which lets the user control

2https://www.mashmachines.com/
3http://reactable.com/
4I was not able to find a reference for the Omni, but a picture is available on the museum’s

website https://en.natmus.dk/museums-and-palaces/the-danish-music-museum/
5https://www.youtube.com/watch?v=oRTe4BRpOGc
6https://www.hausdermusik.com/en/museum/4-etage-der-virtuelle-dirigent/
7https://www.youtube.com/watch?v=3ZOzUVD4oLg

https://www.mashmachines.com/
http://reactable.com/
https://en.natmus.dk/museums-and-palaces/the-danish-music-museum/
https://www.youtube.com/watch?v=oRTe4BRpOGc
https://www.hausdermusik.com/en/museum/4-etage-der-virtuelle-dirigent/
https://www.youtube.com/watch?v=3ZOzUVD4oLg

8 CHAPTER 1. INTRODUCTION

Figure 1.1: An early 3D concept drawing of the envisioned Installation featuring
the podium, a large screen inside a display case, and four speakers now replaced
by headphones.

the tempo and dynamics of the MIDI playback of a piece.

1.2 Installation Design

The final user role is a combination of the composer and conductor roles. How
the user precisely controls the music is covered in section 3.1. Because of time
limitations, I wanted to build as little hardware as possible, which meant going
with consumer products whenever practical. Inspired by the movements of a
real conductor, the main interface would be the position user’s hands, tracked
by some sensor — a task done expertly by Ultraleaps Leap Motion sensor8. An
advantage of the Leap Motion sensor is that the user does not have to touch
anything, making the Installation less prone to breaking. To mount the Leap
Motion, and as a visual gimmick, a podium, like the one a real conductor uses,
was envisioned. An early concept drawing of the Installation can be seen in
Figure 1.1.

To guide the user, and to add visual interest, the Installation should visualize
the user interaction and modeled instruments. Such visualization could be done
using one or more big screens showing software-generated visuals, coupled with
the sound synthesis application. Due to time limitations, no work was done on
visualization except for a developer interface.

Because other instruments and installations occupy it, the room in which
the Installation will be located is altogether saturated with sound. Therefore,
the best option for sound reproduction is headphones, which might also offer

8https://www.ultraleap.com/product/leap-motion-controller/

https://www.ultraleap.com/product/leap-motion-controller/

1.3. DOCUMENT SUMMARY 9

a more intimate experience to the user. By providing multiple headphones,
multiple users would be able to listen to the Installation at the same time.

To produce sound, I knew I wanted to use physical modeling because, having
worked with physical modeling before, I was intrigued to see how musical I could
make the models sound. I ended up using three voices: a high violin-like sound,
a deep cello-like sound, and a bright glockenspiel-like sound.

1.3 Document Summary

Chapter 1. introduces the project hand, which is an installation made in col-
laboration with the Danish Music Museum. Using a framework of composer,
performer, and conductor user roles, several state-of-the-art musical installa-
tions are analyzed. Afterward, the design of the Installation is presented.

In Chapter 2 the two instrument models are presented, and a review of the
theory concerning the finite-difference time-domain method for physical model-
ing provides a base for the chapter. Theory in hand, two instrument models, a
bowed string and struck bar, are introduced and covered in detail.

Chapter 3 explains what music the Installation is going to be playing. A
review of ancient and modern mechanical composition methods culminates in
the presentation of the musical material used in the Installation. A section on
mapping and interactivity describes how the user may interact with the instru-
ment models and composition, and after that, the measures taken to achieve
expressive playback are outlined. To aid the composition task, a music notation
language, Munola, is developed and its syntax and semantics are elaborated on.

Lastly, Chapter 4 contains perspectives on future work related to the Instal-
lation and concludes with a summary of the project.

Chapter 2

Instrument Modeling

The primary sound for the Installation is a bowed string sound, reminiscent
of a violin or cello, which provides a melodic and harmonic base. A pitched
struck percussion instrument, like a marimba or vibraphone, was added to add
timbral contrast and rhythmic interest. This chapter will cover the theory and
implementation of these two kinds of virtual instrument using physical modeling
for sound synthesis.

Many physical modeling methods exist, such as modal synthesis, digital
waveguides, banded waveguides, and mass-spring systems. This project employs
finite difference time domain (FDTD) techniques. See [24] for a review of the
various methods. Unlike most other methods, FDTD simulates the physics of
vibrating systems directly by implementing the differential equations describing
their dynamics. By doing so, FDTD methods offer control of the systems in
terms of physical parameters and make possible rich, nonlinear interactions.

Note that the goal of the presented models was not to achieve supreme
accuracy, but rather to create algorithms that would sound great, be easy to
tune and interact with, and suit the aesthetic of the Installation.

2.1 Introduction to Finite Difference Schemes

FDTD methods are a way of numerically solving differential equations by dis-
cretizing time and space (and any other dimensions) and approximating their
derivatives. For example, a first-order derivative can be approximated by

d

dt
u(t) ≈ u(t+ k)− u(t)

k
, (2.1)

where k is some small value. As k approaches zero, the approximation becomes
more accurate. In fact, in the limit as k → 0, the above is exactly the definition
of the first-order derivative.

When solving a system of space and time, e.g. u(x, t), it is first discretized
by sampling both dimensions at regular intervals: k for time and h for space.

10

2.1. INTRODUCTION TO FINITE DIFFERENCE SCHEMES 11

This is expressed by the notation

unl = u(lh, nk), (2.2)

where u is now a grid function indexed in time by n and in space by l.
As a notational device, one may define several finite difference operators [5];

approximations to first order temporal derivatives, the backwards, forwards,
and centered difference operator, are defined as

δt−u
n
l ,

1

k
(unl − un−1l) (2.3)

δt+u
n
l ,

1

k
(un+1
l − unl) (2.4)

δt·u
n
l ,

1

2k
(un+1
l − un−1l). (2.5)

The definitions for spatial derivatives are analogous, except they use l and a
spatial sample period h, e.g.,

δx−u
n
l ,

1

h
(unl − unl−1). (2.6)

Lower order operators can be combined to form higher order approximations,
e.g for the second order derivative:

δttu
n
l , δt−δt+u

n
l =

1

k2
(un+1
l − 2unl + un−1l). (2.7)

In some cases one will need averaging operators [5] to ensure stability the
solution, these, the forwards, backwards, and centered averaging operator, are
defined as

µt−u
n
l ,

1

2
(unl + un−1l) (2.8)

µt+u
n
l ,

1

2
(un+1
l + unl) (2.9)

µt·u
n
l ,

1

2
(un+1
l + un−1l), (2.10)

and can likewise be combined to form higher order averaging operators.
As an example, take the differential equation for a mass spring system

M
d2

dt2
u = −Ku, (2.11)

where M is the mass, u is the displacement of the mass, and K is the spring
constant. Subscript notation is often used to shorten expression, e.g. the above
becomes

Mutt = −Ku, (2.12)

12 CHAPTER 2. INSTRUMENT MODELING

where utt is the second order temporal derivative of u. To discretize this, u
is sampled in time and the derivatives are replaced with suitable difference
operators, to get a finite difference scheme (FDS) for the equation

Mδttu
n = −Kun. (2.13)

Since the system is point-like, there is no need to discretize space, hence why
l does not appear above. After expanding the difference operators, the above
becomes

M
1

k2
(un+1 − 2un + un−1) = −Kun, (2.14)

which may then be solved for un+1
l

un+1 = −k2K
M
un + 2un − un−1. (2.15)

This expression is the update rule for the solution which can be used to compute
the next state un+1 from the current and previous state. In this example,
un+1 could be solved explicitly. In some cases, often due to nonlinearities,
the scheme can only be solved implicitly, which requires the use of iterative
numerical methods.

2.1.1 Stability

A topic of great importance when dealing with FDSs is ensuring the stability
of the scheme. A scheme is said to be stable if we can choose a set of initial
conditions for which we can prove that the state of the system stays within
some bound. Several ways of proving stability exist, and a common method is
to perform frequency domain analysis in which one assumes a test solution of
the form of a complex phasor and proceeds to show bounds for that solution [5,
chapter 2, 3 and 5]. When applied to distributed systems, such as the 1D wave
equation, this is known as Von Neumann Analysis. Such methods work great
for linear systems, but cannot be applied to non-linear systems in general.

A more general method is the use of energetic techniques that use an ex-
pression for the energy of a system to prove bounds for the solution [5, chapter
2]. The mass-spring system of the previous section will be used as an example.

A good place to start is to show that energy is conserved for the continuous
system. Using the mass-spring system of Equation (2.12), move all terms to the
left hand side and multiply by ut to get

Mututt +Kutu = 0. (2.16)

Now apply the identities

ututt =

(
1

2
(ut)

2

)

t

utu =

(
1

2
(u)2

)

t

(2.17)

2.1. INTRODUCTION TO FINITE DIFFERENCE SCHEMES 13

to get (
M

2
(ut)

2 +
K

2
(u)2

)

t

= 0. (2.18)

The inner parts of the parenthesis may be identified, respectively, as the kinetic
and potential energy of the system, that is

K =
M

2
(ut)

2 U =
K

2
(u)2. (2.19)

The total energy, also called the Hamiltonian energy, is thus

H = K + U. (2.20)

Equation (2.18) then shows that Ht = 0, which means that the total energy of
the system is unchanging and thus conserved.

A similar procedure can be done on the FDS to get a discrete energy expres-
sion [5, chapter 3]. Multiply the scheme of Equtaion (2.13) by δt·u and use the
identities

(δt·u
n)δttu

n = δt+

(
1

2
(δt−u

n)2
)

(δt·u
n)un = δt+

(
1

2
unun−1

)
(2.21)

to get

δt+

(
M

2
(δt−u

n)2 +
K

2
unun−1

)
= 0, (2.22)

where

k =
M

2
(δt−u

n)2 u =
K

2
unun−1 (2.23)

are discrete approximations of the kinetic and potential energy. This means the
we have the discrete Hamiltonian h = k + u and δt+h = 0. Energy is thus, in
some discrete sense, conserved, however, to prove that u stays bounded we must
show that the energy expression is non-negative [5, 2].

An equation of the quadratic form

f(x, y) = x2 + y2 + 2axy (2.24)

will be a positive definite paraboloid if |a| < 1 and non-negative for a = 1 . For
|a| > 1 the equation is hyperbolic. This is illustrated in Figure 2.1. Observe
that by tracing a level curve at some constant value f(x, y) = c we produce, in
the case |a| < 1, an ellipse. As long as f(x, y) is constant or decreasing, x and y
will be bounded by this ellipse. In the case |a| > 1 the level curve is not closed
and we cannot make a statement about bound for x and y.

Going back to the energy definition from Equation (2.22), the operators can
be expanded to get

M

2
(
1

k
un − un−1)2 +

k

2
unun−1, (2.25)

14 CHAPTER 2. INSTRUMENT MODELING

Figure 2.1: (Top) Plots of Equation (2.24) for two values of a. For |a| < 1
(left) the function is positive definite, for |a| > 1 (right) the result is hyperbolic.
(Bottom) level curves of the plots taken at some f(x, y) = c.

which is then rearranged into the quadratic form

(un)2 + (un−1)2 +

(
2k2

K

M
− 2

)
unun−1. (2.26)

Now let

a = k2
K

M
− 1 (2.27)

and insert into the inequality |a| < 1 to get

∣∣∣∣k2
K

M
− 1

∣∣∣∣ < 1, (2.28)

which implies that when

k <
2

K/M
(2.29)

2.2. SOLVING FDSS USING SYMPY 15

the system will be positive definite, the values of un and un−1 will be bounded,
and therefore stable. This is called the stability condition for the scheme and it
allows one to choose parameters that ensure stability. For example, we usually
have k = 1/44100, which mean that we have to choose K/M so

K

M
<

2

k
= 2 · 44100. (2.30)

Since the frequency of oscillation of the mass-spring system is f0 = 2π(K/M),
the above limits the maximum frequency to 44100 Hz/π ≈ 14037 Hz.

Stability conditions for all the models presented in this document can be
derived using energy techniques. However, showing stability conditions for dis-
tributed models, such as those presented later in this chapter, is slightly more
involved since they need to be applied over the entire domain and account for
boundary conditions; nonetheless, the technique is fundamentally the same.

2.2 Solving FDSs Using SymPy

As demonstrated in Equations (2.13) through (2.15) the FDS is solved for the
next time step to derive and update rule. Solving the FDS of the simple system
of the example was quite simple, but as one tackle more complex systems, the
equations can become unwieldy to do by hand — a high number of terms will
make the process error-prone, and implementation problems are hard to debug.

Therefore, I chose to experiment with solving FDSs using a computer algebra
system (CAS), a software that allows one to do symbolic math with the aid of
the computer.

The CAS used is SymPy 1 [19], a mature, open-source Python library.
SymPy was extended with a custom library named SymFds, developed by me,
that implements the handling of FDS state variables and finite difference op-
erators. Basic use of SymFds, deriving the solution the example from section
2.1., looks like

from sympy import *

from symfds import *

omega0 = symbols(’omega0’)

u = StateSymbol(’u’)

u.isDistributed = False

fds = Eq(dtt(u), omega0 * u)

updateRule = solution(fds, nextt(u))

print(getCppExpression(updateRule))

which outputs

1https://www.sympy.org

https://www.sympy.org

16 CHAPTER 2. INSTRUMENT MODELING

(-1.0 * up) + (2.0 * u) + (omega0 * powf(k, 2.0) * u)

Note that this output is the same as Equation (2.15), but in a slightly less
readable form. This is a general problem with CASs — they do not produce
human-readable output; however, the expressions are correct.

SymFds can handle both distributed and point-like systems. It contains
routines for solving FDSs (leveraging SymPy’s built-in solvers), for optimizing
expressions for real-time implementation, and for generating C++ code.

The optimizer eliminates constant terms from the given expression so they
can be pre-computed prior to running the update loop for the given model. The
optimizer also eliminates common terms by using SymPy’s cse function, so the
same computation is not performed multiple times.

SymPy integrates nicely with Jupyter notebooks, which offers a development
environment capable of printing actual mathematical notation. All the systems
of the following sections were solved using SymPy/SymFds and the notebooks
used to do so can be viewed in Appendix A.

2.2.1 The pal-fds library

At the initial stages of this project, I was working on an FDS C++ library
called pal-fds, in an attempt to create a completely modular physical modeling
library that could implement multiple resonators and exciters from a common
code base. The library got quite far along and worked great for simple models;
however, for more advanced models, such as those of the following sections, a
generalized implementation is hard to accomplish, so I opted to write specific
implementations for each model, which motivated me to write SymFds.

2.3 Bowed and Fingered Stiff String

This section covers the model that is used to achieve the violin and cello-like
sounds. The basis is a damped stiff string — a string whose restoring forces
are the tension and the stiffness of the material. To excite the string, a (violin)
bow is modeled, and a “finger” is modeled to give the model ability to play
different pitches. First, the system is presented is continuous time and is then
discretized.

2.3.1 Definition in Continuous Time

The model for a damped stiff string with external forces is defined by the dif-
ferential equation [5]

utt =
T0
ρA

uxx −
EI

ρA
uxxxx − 2σ0ut + 2σ1utxx + F (2.31)

where u = u(x, t) is the displacement of the string at point x, T0 is the tension
of the string, ρ is the material density, A is the cross-sectional area, E is the

2.3. BOWED AND FINGERED STIFF STRING 17

Figure 2.2: (Left) Plots of the bowed string’s movement over time showed at five
points of one cycle of Helmholtz-type motion. The first frame is where the stick
part of the stick-slip process begins. The slip motion happens between frames
four and five. (Right) The displacement of the string at the bowing point during
the stick-slip cycle.

18 CHAPTER 2. INSTRUMENT MODELING

Young’s modulus of the material, I is the moment of inertia, σ0 and σ1 are
damping parameters, and F is a collection of external forces to be defined later.

It is often convenient to work with scaled versions of models [4], which is done
by defining a new normalized coordinate x′ = x/L, where L is the length of the
domain, henceforth referred to as just x. To reduce the number of parameters
one may collect redundant parameters into a few high-level parameters. When
scaled, Equation (2.31) becomes

utt = γ2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx + F (2.32)

where

γ =

√
T0

ρAL2
κ =

√
EI

ρAL4
. (2.33)

The damped stiff string equation is arrived at by applying Newton’s second
law of motion to an infinitesimal section of the string [16]

ρAutt = F. (2.34)

Assuming the string is under tension, one may analyze the tension forces acting
on the tiny section of the string and show that they are equivalent to γ2uxx.
Similarly, by analyzing the elastic forces within the string [10], occurring due to
the material properties, one may arrive at the term κ2uxxxx. The term 2σ0ut
models loss due to radiation, internal friction, and viscous drag of the air. The
term 2σ1utxx causes higher frequencies to die out faster than lower ones, a
phenomenon observed in e.g., piano strings [3].

If the string is of finite length, one must define what happens at the bound-
aries — the left and right ends of the string. To mimic the bridge and nut of a
real instrument, simply supported boundaries is a good choice, which amounts
to letting [5, 6]

u = uxx = 0, (2.35)

at either end, when x = 0 or x = 1.
One may show, employing energetic techniques that, using simply supported

boundaries2, the energy of the stiff string model is monotonically decreasing [5].

The Bow

The bow works by a friction force between the string and the bow’s hairs, defined
by [5, chapter 4 and 7]

Fβ = − 1

ρA
Fbβ(vnrel), (2.36)

The function β(vnrel) scales the friction force Fb depending on the relative ve-
locity

vnrel = ut(xb)− vb (2.37)

2Simply supported boundary conditions is not the only options. Free or clamped, and a
multitude of other boundary conditions will also work

2.3. BOWED AND FINGERED STIFF STRING 19

where vb is the bow velocity and xb is the bowing position. There are multiple
ways of defining β, but

β(vnrel) =
√

2avrele
−av2rel+1/2, (2.38)

is useful because it is differentiable [5] — a requirement of the implementation,
covered in section 2.3.2. A plot of β is shown in Figure 2.3

Figure 2.3: A plot of β(vnrel) with a = 50. In my experience, suitable values for
a lie between 50 and 100.

The bow will cause the string to start oscillating by undergoing a stick-slip
interaction [10], which is illustrated in Figure 2.2. At the beginning of the cycle,
the friction force makes the string stick to the bow and causes it to move. The
string moves with the bow until the restoring forces become too great, and the
string slips back until it sticks to the bow again, and the cycle repeats. As a
result, the string will undergo Helmholtz-type motion and produce a periodic
output.

Using energetic techniques one may show that the energy of the bowed string
system will be bounded by the energy introduced by the bow.

The Fingers

A crude way of providing pitch control for the string would be to simply change
γ2, however, the resulting pitch change sounds artificial and can cause problems
with accuracy and stability when discretized. Instead, “fingers” can be modeled
to effectively reduce the length of string allowed to vibrate, producing a more
pleasing pitch change while also preserving the model’s accuracy and stability.

The fingers are modeled by a damped spring-like connection to a rigid point,
adapted from the prepared string systems found in [5, chapter 7] , defined by

Ff = −E
[
ω2
f u(xf) + 2σfut(xf)

]
(2.39)

where E = E(t) is a time-dependent envelope function that allows for control
of the finger. The parameter ω2

f is the stiffness of the connection, σf is the
damping, and xf is the point at which the finger is applied.

20 CHAPTER 2. INSTRUMENT MODELING

Note that, by the use of E, Equation (2.39) is not strictly physically cor-
rect. One may show that by holding E constant, the energy of the scheme is
monotonically decreasing [5], however, if E increases quickly while u(xf) 6= 0,
then additional potential energy has been introduced into the system at point
xf, and thus energy is not conserved. However, one can argue that fingering
a string does introduce energy into the system, evidenced by e.g., the tapping
technique on the guitar.

Alternatively, and more correctly, one could model the finger as a mass
colliding with the string while also modeling a fingerboard. Bilbao and Torin
did this in [7], where they also modeled the frets of a guitar. However, they
solved their schemes using iterative methods, which is not ideal for a real-time
solution. Another way of modeling the collision could be to use the state-of-
the-art theory of [8]. I attempted at an early point of the project, but I was not
able to get a satisfactory result.

Combining the Forces

The bow force Fβ and finger force Ff are combined to form F like so

F = δ(x− xb)
1

ρA
Fβ + δ(x− xf)Ff (2.40)

where δ(x) is the Dirac delta function that has unity value when x = 0. Note
that Fβ is unscaled (multiplied 1/ρA), which allows us to specify the bowing
force Fb in Newtons, so it can be matched to the force used when playing a real
violin. For the finger, Ff is left scaled because the finger parameters ω2

f and σf
do not need to be chosen based on any real-world forces.

2.3.2 Finite Difference Scheme and Implementation

To implement Equation (2.32) the following FDS can be used [5]

δttu
n
l = γ2δxxu

n
l + κ2δxxδxxu

n
l − 2σ0δt·u

n
l + 2σ1δt−δxxu

n
l + fnl . (2.41)

The discretized external forces fnl are now defined as

fnl = J(xb)
1

ρA
fnβ + J(xf)f

n
f . (2.42)

where J(x) is some spreading operator, somewhat a discrete version of the Dirac
delta function, that scales whatever it modifies by 1/h and distributes it to grid
points close to x. See appendix B.1 for a more in depth explanation of spreading
and interpolation operators.

After the external forces have been computed, Equation (2.41) can be solved
for un+1

l which gives us our update rule. Using discrete energetic methods (or
von Neumann analysis) one may arrive at the stability condition [25]

h ≥ hmin =

√
γ2k2 + 4σ1k +

√
(γ2k2 + 4σ1k)2 + 16κ2k2

2
. (2.43)

2.3. BOWED AND FINGERED STIFF STRING 21

After choosing the sample rate, wave speed, stiffness, and damping coefficients,
the stability condition is used find hmin, then, by choosing N = floor(1/hmin)
one has h = 1/N .

The simply supported boundary conditions are implemented by solving the
discrete approximation

unl = δxxu
n
l = 0 (2.44)

at either end of the string, l = 0 and l = N − 1. At the left side, using δxx, the
scheme depends on un−1 which lies outside the string. This is known as a virtual
point, whose value can by solving Equation (2.44), which gives un−1 = −un1 . The
same can be done for the right side.

The Bow

For the bow, Equation (2.37) can be discretized like [5, chapter 4 and 7]

vnrel = δt·I(xb)un − vb, (2.45)

where I(xb) is some interpolation operator of the same order as the spreading
operator used to apply fnβ .

Using δt·u
n
l makes the scheme implicit, which means iterative methods, such

as Newton-Raphson, must be used to solve it. If δt−u
n
l had been used instead,

the scheme would have been explicit. However, it would be hard to make a
statement about the stability of the system [5, chapter 3]. Also, in my experi-
ence, the scheme using the centered difference sounds much better, especially if
the system close to the stability condition.

Given a possibly non-linear function g(x), the Newton-Raphson method,
allows one to numerically find an x so that g(x) = 0 [23]. The method involves
iteratively performing

x← x− g(x)

gx(x)
, (2.46)

where each iteration will (ideally) yield a better approximation of the x for
which g(x) = 0, though there is no guarantee that the algorithm will converge.

To compute vnrel, solve (2.45) and (2.41) for un+1
l , set them equal to one

another, and put them into a form like g(vnrel) = 0. After taking the derivative
of g with respect to vnrel, corresponding to gx(x), run the Newton-Raphson step
until the change in vnrel is sufficiently small or a set maximum of iterations have
been reached. The implementation is simplified by assuming that xb 6= xf. After
vnrel is known the discrete bow force fnβ may be computed directly.

Using the centered difference operator and matching the order of the inter-
polation and spreading operator, one may show that the bow does not influence
the stability of the string and that the energy will be bounded by that supplied
by the bow [4, chapter 7].

The Finger

The finger, Equation (2.39), is discretized as [5, chapter 7]

ff = −E
[
ω2
f I(xf)µt·u

n
l + 2σfI(xf)δt·u

n
l

]
. (2.47)

22 CHAPTER 2. INSTRUMENT MODELING

A simpler scheme would omit the µt·, but one can show that such a scheme would
result in a tighter stability condition [5, chapter 7]. The scheme in (2.47) has no
impact on the stability of the string overall and can, despite its dependence on
I(xf)u

n+1
l , be evaluated without the use of iterative methods (a semi-implicit

solution).
To do so, apply an interpolation operator to (2.41), including fnf , and solve

for I(xf)u
n+1
l . Once I(xf)u

n+1
l is known fnf can be calculated directly using

Equation (2.47).

Implementation Notes

The parameters of the string,γ, κ, σ0, and σ1 are kept constant. γ is chosen based
on the lowest desired pitch, and κ is computed using the material properties E,
I, ρ, and A.

The phrasing of the music, the way in which notes are played and later
released, controls the parameters of the bow. When a phrase begins, an ADSR
envelope increases Fb and vb, and at the end of the phrase, the ADSR’s are
released, setting them back to zero. The bow force is further modulated by
several factors described in Chapter 3.

The desired pitch controls the positions and envelopes of the fingers. Two
fingers are used in turn: when we wish to play a new pitch, a finger is moved to
the corresponding position, and the envelope is triggered while the envelope of
the other finger is released. The position of a finger can be computed by

xf =
f0
τf

(2.48)

where f is the desired frequency and

τ = τ
n/12
0 (2.49)

is a tracking parameter that corrects for inaccuracies in the implementation
where n is the number of semi-tones between f0 and f . Suitable values for τ0
were found by ear.

2.4 Hammered Bar of Variable Cross Section

This section covers the model used to achieve the struck pitched percussion
sound. The sounding objects of such instruments, such as marimbas, glocken-
spiels, and vibraphones, are called bars — blocks of some, usually very stiff,
material suspended by foam pads or wires. Both the bars and the suspension
will be modeled. The bars are traditionally struck with mallets — wooden sticks
with heads made of materials of varying hardness. Mallets are modeled in a way
that allows controls of strike speed and mallet hardness and weight.

2.4. HAMMERED BAR OF VARIABLE CROSS SECTION 23

2.4.1 Definition in Continuous Time

The vibrations of a thin bar with damping are described by [5, chapter 7] [4, 6]

utt = −κ2uxxxx − 2σ0ut + 2σ1utxx + F, (2.50)

which is identical to Equation (2.32) but without the tension term γ2uxx — the
only restoring force of the bar is the stiffness of the material.

Like real bars, Equation (2.50) exhibits inharmonic overtones. However,
inharmonicity is undesirable for musical purposes, so real bars have material
removed at specific places to tune their overtones to harmonic ratios. The same
can be done virtually by modeling a bar of variable cross section, which is defined
by [5, chapter 7]

θutt = −κ20(θ3uxx)xx − 2σ0ut + 2σ1utxx + F, (2.51)

where θ = θ(x) is a function representing the variation in material thickness
and κ0 is a reference stiffness (the stiffness of the bar where θ = 1).

One may show that the bar is energy conserving under the conditions that θ
is constant near the boundaries, and the boundary condition introduced in the
next section is used3[4, chapter 7].

The Suspensions

The bars of marimbas and vibraphones are suspended by strings going through
the bar, allowing their ends to move freely. Using the free boundary condition

uxx = uxxx = 0, (2.52)

the same is allowed for the bar model. The suspensions keeping the bar in place
are modeled by two damped spring-like connections, defined by [5, chapter 7]

Fs = −ω2
su(xs)− 2σ0ut(xs). (2.53)

The Mallet

A model of a collision with a mallet is used to excite the string. A common
choice for modeling the collision force is [5, chapter 4 and 7][8]

Fm = Km([η]
+

)q (2.54)

where
η = um − u(xm), (2.55)

where um is the position of the hammer, Km is the hammer stiffness, q is a
nonlinear compression constant, xm is the impact position, and [η]

+
= (η+|η|)/2

is the positive part of η. Note that using this definition of η, the mallet should
hit the bar from below, which is a convention adopted from [5] and [8]; by

3Again, other boundary condition can also be energy conserving.

24 CHAPTER 2. INSTRUMENT MODELING

inverting η and the consequent forces the mallet could made to hit from above
instead.

The movement of the mallet is determined by

(um)tt = − Fm

Mm
, (2.56)

where Mm is the mass of the mallet. One may show that the mallet/bar system
is energy preserving [5, chapter 7].

A plot of a mallet striking the bar is seen in Figure 2.4. While the collision
model is quite good, the overall mallet does not accurately model what is hap-
pening when a percussion player strikes their instrument. The model counts on
the collision to make the mallet retract, a technique used when playing drums,
however, when playing pitched percussion instruments, the player usually ac-
tively retracts the mallet.

Combining The Forces

The external forces F in Equation (2.51) are determined by

F = δ(x− xm)
Fm

ρA0θ(xm)
+ δ(x− xs1)Fs1 + δ(x− xs2)Fs2 (2.57)

where xm is the hammer impact position, ρA0 is the reference linear density of
the bar, and xs1 and xs2 are the positions of the supports. Like the bow model,
the hammer is left unscaled because it allows us to tweak the parameters using
physical references.

2.4.2 Finite Difference Scheme and Implementation

The obvious way to discretize Equation (2.51) would be [5, chapter 7]

[θ]unl = −κ20δxx(θ3δxxu
n
l)− 2σ0δt·u

n
l + 2σ1δt−δxxu

n
l + fnl , (2.58)

where [θ] is some second order approximation of θ, e.g. µxxθ. The definition of
the discrete forces fnl is postponed until the Implementation notes subsection
later in this section.

Alas, the scheme in Equation (2.58) does not perform well in general. The
variations in stiffness and constant grid spacing make the scheme less accurate at
points of low stiffness, causing a loss of high-frequency overtones and increased
numerical dispersion[4].

To avoid such problems, the bar can instead be discretized with variable
grid spacing by doing a change of variable for x [5, chapter 5]. This is done by
introducing the new coordinate α = α(x) under which the spatial derivatives
become

∂

∂x
→ αx

∂

∂α
(2.59)

∂2

∂x2
→ αx

∂

∂α

(
αx

∂

∂α

)
. (2.60)

2.4. HAMMERED BAR OF VARIABLE CROSS SECTION 25

Figure 2.4: (Left) A plot of a mallet hitting a bar shown at five instances just
before and just after impact. The mallet is represented by the solid black dot
and the suspensions by the hollow dots. (Right, top) The stiffness variation
θ(x) of the bar. (Right, bottom) the displacement of the bar at point x = 0.17
during the impact.

26 CHAPTER 2. INSTRUMENT MODELING

Finite difference operators transform similarly, e.g. the second order spatial
difference operator becomes

δxx → αxδα+((µα−αx)δα−). (2.61)

In case of the bar model a suitable choice for α is [5, chapter 7]

α(x) =
1

αav

∫ x

0

1√
θ(η)

dη, (2.62)

where αav is a constant defined by

αav =

∫ 1

0

1√
θ(η)

dη. (2.63)

A plot of an example θ and the corresponding α can be seen in Figure 2.5.

Figure 2.5: A plot of a θ (bar cross section) function similar to the one actually
implemented and the corresponding α.

Under this transformation Equation (2.51) becomes

θ3/2utt =− κ20
α4
av

(
θ−1/2

(
θ5/2

(
θ−1/2uα

)
α

)
α

)

α

− 2σ0ut + 2σ1
1

α2
av

(
θ−1/2

(
θ−1/2uα

)
α

)
t

+ F.

(2.64)

How the transformation is applied is covered in detail in appendix B.2. A
suitable scheme for this is

[
θ3/2

]
δttu

n
l =− κ20

α4
av

δα+

(
µα−θ

−1/2δα−

(
θ5/2δα+

(
µα−θ

−1/2δα−u
n
l

)))

− 2σ0δt·u
n
l +

2σ1
α2
av

δt−δα+

(
θ−1/2

(
µα−θ

−1/2δα−u
n
l

))

+ fnl ,

(2.65)

2.4. HAMMERED BAR OF VARIABLE CROSS SECTION 27

which can be solved explicitly for un+1
l .

This scheme performs much better than the one in Equation (2.58) with
regards to bandwidth. Energy analysis of the scheme without the damping
terms will reveal the stability condition

h ≥ hmin =
2κk

α2
av

. (2.66)

when
[
θ3/2

]
is chosen as

[
θ3/2

]
= µx+

(
(µx−θ

5/2)µx−(θ−1/2)2
)
. (2.67)

This stability condition does not account for the frequency dependent damping,
but by being conservative in the selection of h, e.g. h = 1.05hmin, and avoiding
too high values of σ1, stability is not a problem.

The Suspensions

Free boundary conditions can be achieved by solving

δxxu
n
0 = δx−δxxu

n
0 = 0 (2.68)

for un−1 and un−2, and

δxxu
n
N−1 = δx+δxxu

n
N−1 = 0 (2.69)

for unN and unN+1, similarly to how it was done for the stiff string.
The supports, defined in Equation (2.53) are implemented using the simple

scheme

fs = −ω2
s I(xs)u

n
l − 2σ0I(xs)δt−u

n
l . (2.70)

Because the energy contribution of this scheme is not necessarily non-negative,
this scheme interferes with the stability of the bar, which means that a stronger
stability condition must be enforced, see [5, section 7.7.1]. However, by choosing
h conservatively, and if ωs is not too large, stability is not a problem. Note that
δt− is used instead of the more accurate δt· to simplify the implementation of
the scheme.

The Mallet

The obvious way to implement the mallet is to compute the discrete mallet
impact force fnm directly with ηn = unh − unlm where lm = floor(xm/h), and then
update the mallet position using the scheme

δttu
n
m = − fnm

Mm
. (2.71)

28 CHAPTER 2. INSTRUMENT MODELING

However, such a solution has a tendency to numerical oscillation, which is un-
desirable [5, chapter 5 and 7]. A better way would be to compute fnm by

fnm = Km([ηn]
+

)q−1µt·η
n (2.72)

which can be solved semi-implicitly. Unlike the schemes presented until now,
this scheme cannot be shown to be energy conserving. However it can be shown
to be almost conservative when q = 1 or q = 3 [5, chapter 4 and 7].

To get a generally energy conserving solution one might now try iterative
methods, however, new developments in non-linear modeling provides a way
to implement our hammer in an energy-conserving manner, without the use of
iterative solver [8, 13]. The system does, however, need to be stated differently,
as will be shown now.

First, rewrite Fm as

Fm = φη (2.73)

where η = um − u(xh), and

φη =
d

dη
φ = Km([η]

+
)q. (2.74)

which means that

φ =
K

q + 1
([η]

+
)q+1 (2.75)

Equation (2.73) can be rewritten as

Fm = ψ
ψt
ηt

(2.76)

where ψ =
√

2φ, see Appendix B.3 for more details. This can be discretized by

fnm = (µt+ψ
n−1/2)gn (2.77)

where

ψn−1/2 = µt−ψ
n
l (2.78)

and

gn =
δt+ψ

n−1/2

δt·ηn
, (2.79)

which may be computed directly using

gn = ψη|η=ηn =
φη√
2φ

∣∣∣∣
η=ηn

. (2.80)

Using the identity

µt+ψ
n−1/2 =

k

2
δt+ψ

n−1/2 − ψn−1/2 (2.81)

2.4. HAMMERED BAR OF VARIABLE CROSS SECTION 29

and (2.79) one may rewrite (2.77) as

fnm =
k(gn)2

2
δt·η

n − gnψn−1/2. (2.82)

Assuming that the hammer impact point does not coincide with any of the
supports, fnlm , the force at the mallet impact point, is

fnlm =
fm
ρ0θlm

. (2.83)

Pairing Equation (2.65) at point lh with (2.71) one may solve for un+1
lh

and un+1
m

and thus, because the zeroth order interpolation/spreading operators are used,
update both the hammer and bar position.

One may show using energy analysis that if φ is non-negative then the en-
ergy of the system will also be non-negative and thus stable under the stability
condition introduced earlier [8].

Implementation Notes

The mallet scheme takes care of updating the bar at point lm, scheme (2.65)
takes care of everything else. Therefore, fm needs not be included in the discrete
definition of fnl , which is

fnl = J(xs1)fs1 + J(xs2)fs2. (2.84)

To tune the bar I followed the process suggested in [14] for tuning real bar
instruments. This entailed making the cross section thinner at points corre-
sponding to the anti-nodes of the second mode using movable Hann functions
defined by

ν(x) =

{
d sin(π(x− w/2− p)/w)2 p− w/2 ≤ x ≤ p+ w/2

0 otherwise
(2.85)

where d is the depth of the notch, w is the width, and p is the center position.
Using two such functions, so that θ = ν1 + ν2, overtones were adjusted by ear
until they sounded pleasing. The profile used can be seen in Figure 2.4. right,
top. Afterwards, κ was set to control the overall pitch.

Whereas bowed string instruments usually play multiple pitches on one
string, bar instruments have one bar for each note. This is implemented by
creating a new bar with the desired pitch (stiffness) for each played note. Find-
ing the correct value for κ, though roughly linear with respect to frequency,
proved difficult, and each note of the Ionian scale from C4 to C6, the desired
range, had to be tuned by hand. Linear interpolation is used to determine the
stiffness of notes outside the scale.

30 CHAPTER 2. INSTRUMENT MODELING

Figure 2.6: A screenshot of the developer GUI for the implementation, with a
window for each voice and one for general parameters.

2.5 Software Design

Two Jupyter notebooks, one for each instrument, were created to solve the
models’ FDSs and generate C++ code for computing the solution. The C++
was then pasted by hand into custom-written C++ classes.

PAL (the pretentious audio library) was used for audio IO and a devel-
oper GUI, a screenshot of which can be seen in Figure 2.6. For UI, PAL uses
Dear ImGui4, an immediate-mode UI library that makes it fast and easy to
modify the GUI for debugging purposes. An invaluable feature to have while
troubleshooting.

The application is structured in a hierarchy to separate concerns. First are
the instrument model implementations, which implement the FDSs and utility
functions related to those. Second are voice classes that take care of the higher
level, musical control of the instrument models, including note sequencing, the
KTH performance rules (see Chapter 3), tuning, and most other mappings. The
third and final layer is the main application loop, which presents the UI, calls
the audio rendering methods of the lower layers, and gets input from the user.

4https://github.com/ocornut/imgui

https://github.com/ocornut/imgui

Chapter 3

Composition and
Interactivity

The act of composition involves using one’s æsthetic sensibilities to choose from
an infinite pool of possibilities what musical elements should be part of the piece.
During the composition process, the composer might delegate some amount of
choice to an external process. For example, in the medieval times, Guido of
Aresso devised a methodical way of assigning notes to syllables [17, chapter
9]. In the Renaissance and Baroque eras, strict rules were developed for har-
mony and voice leading [1, chapter 5 and 6]. In the classical period, so-called
würfelspiel pieces were developed, some attributed to Mozart and Haydn [17,
chapter 9][21], which allowed one to compose music by rolling dice. The second
Viennese school, Schoenberg, Webern, and others, developed the method of 12-
tone serialism, later extended Messiaen, Boulez, and Babbitt[22, chapter 11].
John Cage used the randomness of the Chinese divination method I Ching as a
basis for some of his compositions [22, chapter 11], and Iannis Xenakis used the
stochastic rules governing the movement of gasses [26]. In his piece Klaverstück
XI, Stockhausen distributed 19 musical fragments on a page. During perfor-
mance, any fragment can follow any other as chosen by the performer; choice is
delegated to the performer. In Terry Riley’s piece, In C, 53 short phrases are
played at a pace chosen by the performers, multiple performers will progress at
different speeds resulting in a complex musical structure.

An excellent tool to which the composer may delegate choice is the computer,
and much work has been done in the realm of computer driven composition. An
early example is the Illac Suite by Hiller and Isaacson, a string quartet composed
using Monte Carlo methods [20]. Since then, a staggering amount of techniques
has been used, including grammars, constraint satisfaction techniques, Markov
chains, cellular automata, evolutionary methods, and machine learning, see e.g.,
[20] or [9] for a comprehensive review. In recent years it seems that machine
learning methods have been getting much attention e.g., the Coconet by Google

31

32 CHAPTER 3. COMPOSITION AND INTERACTIVITY

Magenta1, which they trained to harmonize melodies in the style of Bach [15].
In the music composed for this project choice is delegated to both the com-

puter and the user while some is retained for the composer (myself): rhythm
and some amount of the pitch material is predetermined.

The rhythmic material consists of a collection of split-note rhythms. These
are created by starting with a rhythmic sequence and splitting a note in two,
e.g., one 1/4 note becomes two 1/8 notes. For each note we split we get a new
rhythmical pattern, which we can then use to generate more sequences. I call
this split-note rhythms. Starting with a whole-note and successively running
the algorithm on the previous output, we get 1, 2, 3, 6, 24, and 120 rhythms at
each level. This is visualized, from levels one to six, in Figure 3.1.

The pitches to be played over the rhythms are derived from the C octatonic,
half-whole scale. A tone row technique is used to create melodies, which involves
arranging the notes of a scale in a sequence where no note may be repeated before
all other notes have been played. A row may be retrograded (reversed), inverted
(intervals inverted), or both. This is the basis of the twelve-tone technique often
associated with Schoenberg and the second Viennese school, who used tone-row
techniques on the chromatic scale. Tone rows can, however, be constructed from
other scales, such as the octatonic scale.

The tone row to be played will depend on the rhythmic level. At levels two
and below the following tone row is used

The tone rows for level three and four are elaborations on this and are respec-
tively

and

At level five and above the tone row encompasses all the notes of the scale

All rows may be retrograded, but not inverted.
Additional rhythmical interest is obtained by converting some notes to rests.

Let pr be the chance that a note will be converted to a rest. Modulating this
value will yield varying degrees of density in the music.

1https://magenta.tensorflow.org/

https://magenta.tensorflow.org/

33

Figure 3.1: Figure showing how split-note rhythms are generated. Starting on
the left with the whole note, all notes are split to generate a new rhythm for
each note and the process is applied again.

34 CHAPTER 3. COMPOSITION AND INTERACTIVITY

«

εN0

p

l

Silence

0 1 2 3 4 5

Figure 3.2: Illustration of how the user’s hand position is mapped to a rhyth-
mical pattern. In this case Nl = 6. The player hand elevation εNl is around
3.7, so the second pattern within level three is selected.

3.1 Mapping and Interactivity

The user controls the composition in real-time using an Ultraleap Leap Motion,
a device that tracks the position of the user’s hands, arms, and fingers using
near-infrared cameras and computer vision.

The elevation of the user’s hands selects which rhythm to play. The range
of the sensor is divided into six regions (zero to five). While in region zero, no
music is played. In regions one to five, rhythms from the corresponding rhythm
level is played. Patterns within a level are sorted in ascending order according
to their intensity, which I have defined as

ι =
∑

n∈N
− log2(dn) (3.1)

where N is the set of notes in the given pattern and dn is the duration of note
n. The elevation of the user’s hand ε, which normalized from the range (100
mm, 500 mm) to (0, 1), is used to select the rhythm level and the pattern within
that level. The level is determined by

l = floor(εNl) (3.2)

where Nl is the total number of levels. The pattern within the level is selected
by

p = round(Np(εNl − l)) (3.3)

where Np is the number of rhythms within the level and p is the index of the
rhythm to play. How the user selects rhythms is illustrated in Figure 3.2.

The user’s left hand controls the violin voice, and the right hand controls
the cello voice. The percussion voice is controlled by taking the average of the
two hands and mapping it to the range (0, 7), causing the percussion to play
rhythms of higher complexity than the bowed instruments.

When the user’s hand is open, the pr of the corresponding voice is zero.
When the user closes their hand to a fist, pr is set to 0.5. Thus, the number
of rests, and therefore the density, can be controlled for each voice. pr for the
percussion voice is the average of the two others with 0.1 added.

3.2. MUSICALITY 35

The elevation of the user’s hand is also mapped to the bow force Fb, output
volume, and mallet velocity. Most mappings use the function2

f(ε,M) = M

(
esε − 1

es − 1

)
(3.4)

which will map ε to the range (0,M), where s is a free parameter controlling
the shape of the mapping adjusted for each case. For s > 0, the above say s = 2
or s = 3 will yield an exponential curve. For s < 0 it will be logarithmic. When
s is close to zero, the curve is almost linear. s = 0 is not permitted as the result
is undefined.

3.2 Musicality

In traditional composition, the composer counts on the performers to add ex-
pression to the music — a feat performers provide by varying the rhythm, dy-
namics, and intonation of the piece. The same cannot be expected of computers
which, if not instructed otherwise, will play back the material regularly and
monotonically.

To obtain better results from computer performers, one may implement a
set of performance rules such as those of the KTH rule system, which instructs
how notes are to be played back based on a collection of heuristic functions
[11][12].

Most of the KTH rules have to do with rhythm: shortening or elongating
notes to add expression. However, due to the difficulty of implementing such
rules for ensemble music, though Friberg does present a way of doing so [11],
only rules concerning amplitude were implemented. The following rules from
[11] are included:

DPC 1B. High Loud Higher pitched notes are played louder.

DDC 1. Durational Contrast Notes with duration 30ms to 600ms are de-
creased in loudness according to a piecewise function.

DPC 2A. Melodic Charge Notes of the chromatic scale are given weights
based on their distance to the root in the circle of fifths. Further away
notes are played louder.

To impart higher-level musical structure, and to enhance the sense of depar-
ture and arrival, an overall phrase amplitude function was also added, which
somewhat relates to the KTH rule concept of a phrase arc. This makes it so
notes towards the middle of a phrase are played louder. Phrase lengths are
chosen at random and can be either 4, 8, or 12 measures.

2I came up with this function myself, but I would not be surprised to find it somewhere in
the literature.

36 CHAPTER 3. COMPOSITION AND INTERACTIVITY

When playing at rhythmical level five, a bowed voice may switch to playing
notes staccato — notes longer than 1/16 will be converted to a 1/16 note plus
a rest.

All notes played by the bowed instruments are subject to a slight vibrato
controlled by an ADSR envelope, that is, the finger positions are modulated by
a slow sine wave, whose amplitude is governed by the ADSR.

3.3 Munola

During development, there was a need for a way of inputting music that the
virtual instruments could play in order to experiment with different musical
material. The composition I wanted to do required symbolic manipulation of
the music, which the library implementing the notation would have to support.

One option was MIDI, but MIDI uses a binary file format that is not editable
without the use of dedicated software. Also, the way MIDI represents music is
not suited for the style of symbolic manipulation I wanted to do.

A textual format would be more suitable, as it would be editable using any
text editor. One such system is LilyPond3, and open source music notation
language and software package. However, LilyPond is a heavy-weight package
intended for full score notation and rendering and does not seem designed for
integration into other projects nor symbolic manipulation. A similar project is
ABC notation4, which would be a great choice except for a few kinks in the
language and the lack of a mature C++ implementation (that I know of).

To overcome the problems with existing solutions, and to enable design spe-
cific to the needs of this project, a custom notation language Munola (Music
notation language) was created. The goal was for the language to be easy to
read and write for both humans and computers, and to provide a C++ library
for easy symbolic manipulation. Munola served as an excellent tool during both
the technical and creative development of this project. In the end, the music is
not written out in entirely in Munla, but the Munola backend is still used for
symbolic representation.

White-key pitches of the equal-tempered scale are notated with upper case
letters

C D E F G A B

The default octave is 4. A pitch can be raised or lowered one semitone by
prepending # or b, multiple accidentals can be applied to the same note, e.g.

#C bC ##C bbC #bC

which evaluates to C], C[(B), C[[(B[), and just C. Accidentals are not persis-
tent as in traditional western notation. The octave of a pitch can be raised and
lowered by ^ and _ e.g.

3https://lilypond.org/
4https://abcnotation.com/

https://lilypond.org/
https://abcnotation.com/

3.3. MUNOLA 37

^C _C _#C

which evaluates to C5, C3, and C]3. The general octave can be selected by
writing the octave number

3 C D E 5 F G A

which evaluates to C3, D3, E3, F5, G5, and A5.
The default duration of a note is one beat. The duration can be doubled

using +, halved using -, and multiplied by 3/2 (dotted) using ., e.g.

+C ++C -C --C .+C

which evaluates to a two (2/4) beat, four (4/4) beat, 1/2 (1/8) beat, 1/4 (1/16)
beat, and a three beat note.

Rests are notated using R. All modifiers apply to rests, but pitch modifiers
have no effect.

A note can be marked as the end of a phrase using ~, e.g.

C D ~E R F G ~A

which are two phrases, the first ending on E and the second on A. The first
note of the second phrase is a rest.

Notes can be accented by prepending !.
Munola supports functions which are notated by

function(arg1, arg2, arg3)

the function name cane be any string of lower-case characters. A function may
have any number of arguments, including zero. Nested function calls are not
supported. An example of a function employed during this project is either,
e.g.

C E either(G, A, ^C)

which will evaluate to C4, E4, and G4, A4, or C5.

Chapter 4

Future Work and
Conclusion

While the composition, synthesis, and interaction part is pretty much ready for
exhibition, no time has been spent on visualization or building the Installation.
The plan was to have the completed Installation finished at the end of May
2020. However, due to the global COVID-19 crisis, the Museum and university
were closed for most of the project. Therefore, I geared the focus of the project
more towards sound synthesis. The primary Future work is, of course, to finish
the physical and visual part of the Installation, so that it may be exhibited at
the Museum.

Another topic for future work could be to more directly use the results of the
literature on the design of the Installation. For example, the NIME community
has years of published results on the topic of musical interaction and novel
interface. Similarly, research on multi-modal perception and cognition could
provide a more robust empirical basis for the chosen design.

As seen in the discussion of the state-of-the-art musical installations, most
installations at the Museum are designed with collaboration in mind. The In-
stallation could also be made collaborative, perhaps by using two Leap Motion
controllers — one for each voice.

More work could be done on making the playback more expressive. In fact,
the combination of physical modeling and performance modeling might offer
great results, but I haven’t encountered it in the literature. So far, two KTH
performance rules have been implemented, but more rules exist and have been
refined since their introduction in [11]. Especially the timing-related rules might
improve expressiveness.

While the Installation software runs decently in real-time, more effort could
be spent on optimizing the code. This will probably become a necessity if
visualizations have to be produced by the same computer running the synthesis
algorithm. Parallelization of the voices is an obvious strategy to try. Also, the
code produced by SymFds does not seem very efficient, and more optimization

38

4.1. CONCLUSION 39

routines could probably be implemented.
After some cleanup, most of the code modules created for the Installation

could become useful stand-alone libraries or applications. The instrument mod-
els could be extracted and used to create two VST instruments. The pal-fds
library, created in the early stages of the project, while not used in the end, could
still be useful for other purposes. SymFds could be streamlined and made easier
to use. Maybe in the future one could be able to enter differential equation and
SymFds would be able to derive a suitable scheme, boundary conditions, per-
form stability analysis, and generate immediately runnable C++ code. Munola
could be used in other projects as an easily extendable embedded music notation
language.

4.1 Conclusion

This report has covered the development of an installation for the Danish Music
Museum. In chapter 1 the premises for the project were introduced, and an
overview of the report was given. Afterward, the state of the art of musical
instruments was reviewed in the context of a composer/performer/conductor
user role frame work. The conductor role, in which the user is allowed to make
high-level structural decisions about the music to be played, was identified as the
best option for the Installation. The review of the state of the art showed that
most of the museum’s installations tend towards the composer role. Afterward,
the initial design idea for the Installation was described. The user would be able
to act as a conductor of a virtual ensemble by using a Leap Motion to track
their hand movements.

Chapter 2 covered the implementation of two virtual instruments, a bowed
string and a struck bar, using the FDTD method. A short introduction to
the subject was given, after which the instrument models were discussed in
continuous and discrete time. The bowed string was modeled as a damped stiff
string excited by a non-linear function mimicking the friction characteristic of
a violin bow. A finger was modeled to add damping at a specific point along
the string, shortening the section of string allowed to vibrate, which makes
it possible to play different pitches. The struck percussion was modeled as a
stiff thin damped bar of variable cross-section with free boundary conditions.
Two spring-like connections model the suspension of the bar, and were used
to keep the bar in place. To excite the bar, a collision with a mallet was
modeled. The discretization of the bar called for the use of stretched coordinates.
The implementation of the mallet model was done using a state-of-the-art non-
iterative solution. The models were implemented using C++, and the software
architecture was described.

The music to be played by the Installation was described in chapter 3 along
with mapping and interactivity, rules to make the computer performance more
expressive, and a description of the custom textual music notation language
Munola. After a review of the history of algorithmic composition, the compo-
sition of the Installation was introduced. An algorithm of splitting notes was

40 CHAPTER 4. FUTURE WORK AND CONCLUSION

used to generate rhythmic sequences. Tone row techniques were used to pro-
vide melodic content. A mapping was implemented that uses the elevation of
the user’s hands to control the melodic, rhythmic, and timbral intensity of the
piece. To acheive a more expressive musical performance, three KTH perfor-
mance rules were implemented to modulate the amplitude of the notes being
played. Three options for musical notation were discussed, MIDI, LilyPond,
and ABC, but none were found suitable. A custom language, Munola, was
developed, and its syntax and semantics were described in detail.

In the current and final chapter, the possibilities for future work were dis-
cussed. The primary task is, of course, to finish the physical and visual part of
the Installation. Other future goals include a more thorough study of interac-
tion, making the Installation collaborative, making the playback more expres-
sive, optimizing the application, and preparing the developed code modules for
publishing and use in other projects.

Bibliography

[1] Edward Aldwell, Carl Schachter, and Allen Clayton Cadwallader. Harmony
& voice leading. Schirmer/Cengage Learning, Boston, MA, 4th ed edition,
2011. OCLC: ocn144518118.

[2] Zdenêk P. Bažant and Luigi Cedolin. Stability of structures: elastic, inelas-
tic, fracture and damage theories. World Scientific Pub, Hackensack, NJ ;
London, world scientific ed edition, 2010. OCLC: ocn645707081.

[3] Julien Bensa, Stefan Bilbao, Richard Kronland-Martinet, and Julius O.
Smith. The simulation of piano string vibration: From physical models
to finite difference schemes and digital waveguides. The Journal of the
Acoustical Society of America, 114(2):1095–1107, August 2003.

[4] Stefan Bilbao. A Modular Percussion Synthesis Environment. In Proc. of
the 12th Int. Conference on Digital Audio Effects, volume 12, Como, Italy,
2009. 12th Int. Conference on Digital Audio Effects.

[5] Stefan Bilbao. Numerical Sound Synthesis. John Wiley & Sons, Ltd, Chich-
ester, UK, October 2009.

[6] Stefan Bilbao. Finite-difference schemes in musical acoustics: A tutorial.
In Rolf Bader, editor, Springer Handbook of Systematic Musicology, chap-
ter 19, pages 349–384. Springer Berlin Heidelberg, New York, NY, 2018.

[7] Stefan Bilbao and Alberto Torin. Numerical Modeling and Sound Syn-
thesis for Articulated String/Fretboard Interactions. Journal of the Audio
Engineering Society, 63(5):336–347, June 2015.

[8] Michele Ducceschi and Stefan Bilbao. Non-iterative Solvers for Nonlinear
Problems: The Case Of Collisions. page 8, 2019.

[9] Jose D. Fernandez and Francisco Vico. AI Methods in Algorithmic Compo-
sition: A Comprehensive Survey. Journal of Artificial Intelligence Research,
48:513–582, November 2013.

[10] Neville H. Fletcher and Thomas D. Rossing. The Physics of Musical In-
strument. Springer, New York, 2nd ed edition, 1998.

41

42 BIBLIOGRAPHY

[11] Anders Friberg. Generative Rules for Music Performance: A Formal De-
scription of a Rule System. Computer Music Journal, 15(2):56, 1991.

[12] Anders Friberg, Roberto Bresin, and Johan Sundberg. Overview of the
KTH rule system for musical performance. Advances in Cognitive Psychol-
ogy, 2(2):145–161, January 2006.

[13] Donald Greenspan. Conservative Numerical Methods for x = f(x). Journal
of Computational Physics, 56(1):28–41, October 1984.

[14] Bart Hopkin and John Scoville. Musical instrument design: practical infor-
mation of musical instrument making. See Sharp Press, Tuscon, Arizona,
seventh printing edition, 2010. OCLC: 838343377.

[15] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville,
and Douglas Eck. Counterpoint by Convolution. arXiv:1903.07227 [cs,
eess, stat], March 2019. arXiv: 1903.07227.

[16] Randall D Knight. Physics for Scientists and Engineers: A Strategic Ap-
proach 4/E. Pearson, 2017.

[17] Gareth Loy. Musimathics: the mathematical foundations of music. MIT
Press, Cambridge, Mass. ; London, 2006. OCLC: ocm60856240.

[18] Max V. Mathews. The Radio Baton and Conductor Program, or: Pitch,
the Most Important and Least Expressive Part of Music. Computer Music
Journal, 15(4):37, 1991.

[19] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-
son K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.
Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats,
Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel,
Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert
Cimrman, and Anthony Scopatz. SymPy: symbolic computing in Python.
PeerJ Computer Science, 3:e103, January 2017.

[20] George Papadopoulos and Geraint Wiggins. AI Methods for Algorithmic
Composition: A Survey, a Critical View and Future Prospects. In Proc.
Intl. Computer Music Conf., page 8, Waseda University, Japan, 1993. In-
ternational Computer Music Conference.

[21] Gary Potter. The Role of Chance In Contemporary Music. Ph.d. thesis,
Indiana University, 1971.

[22] Alex Ross. The Rest is Noise: Listening to the Twentieth Century. Harper
Perennial, London, harper perennial ed edition, 2009. OCLC: 837140014.

[23] Endre Süli and David Mayers. An introduction to numerical analy-
sis. Cambridge University Press, Cambridge ; New York, 2003. OCLC:
ocm50525488.

BIBLIOGRAPHY 43

[24] Vesa Välimäki, Jyri Pakarinen, Cumhur Erkut, and Matti Karjalainen.
Discrete-time modelling of musical instruments. Reports on Progress in
Physics, 69(1):1–78, January 2006.

[25] Silvin Willemsen, Nikolaj Andersson, Stefania Serafin, and Stefan Bil-
bao. REAL-TIME CONTROL OF LARGE-SCALE MODULAR PHYSI-
CALMODELS USING THE SENSEL MORPH. In Proceedings of the 16th
Sound and Music Computing Conference, pages 151 – 158, Malaga, May
2019.

[26] Iannis Xenakis. Formalized music: thought and mathematics in composi-
tion. Number no. 6 in Harmonologia series. Pendragon Press, Stuyvesant,
NY, rev. ed edition, 1992.

Appendix A

Jupyter Notebooks

This appendix contains the Jupyter Notebooks used to solve the FDSs of the
stiff string and struck bar. Please excuse that the output do not fit on the
page. The notebooks, as well as the SymFds source code, is provided with the
hand-in.

44

Bowed and Fingered Stiff String

May 28, 2020

1 Solving the Bowed and Fingered Stiff String

Import SymPy and SymFds for symbolic math support and initialize printing.

In [1]: from sympy import *
from symfds import *
init_printing();

1.1 The String

The symbols needed for the string equation are

In [2]: k, h, c, kappa, sigma0, sigma1 = symbols('k h c kappa sigma_0 sigma_1')
u = StateSymbol('u')
F = StateSymbol('F')

The finite difference scheme for the string is

In [3]: stringFdsEq = Eq(dtt(u), c**2 * dxx(u) - kappa**2 * dxx(dxx(u))\
- 2 * sigma0 * dtc(u) + 2 * sigma1 * dtb(dxx(u)) + F)

display(stringFdsEq)

1
k2 (−2u + un + up) = F+ c2δx+(δx−(u))− κ2δx+(δx−(δx+(δx−(u))))−

σ0

k
(un − up)+

2σ1

k
(δx+(δx−(u))− δx+(δx−(up)))

Solve for un+1 to get the update rule

In [5]: stringUpdate = expandx(solution(stringFdsEq, nextt(u)))
display(stringUpdate)

1
kσ0 + 1

(
Fk2 + 2u + upkσ0 − up +

c2k2

h

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− k2κ2

h

(
1
h

(
1
h

(
−1

h
(−u + u f) +

1
h
(−u f + u f f)

)
− 1

h

(
1
h
(−u + u f)− 1

h
(u − ub)

))
− 1

h

(
1
h

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− 1

h

(
1
h
(u − ub)− 1

h
(ub − ubb)

)))
+

2k
h

σ1

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− 2k

h
σ1

(
1
h
(−up + up f)− 1

h
(up − upb)

))

Use optimize and cse to remove constant terms and common sub expressions and print the
C++ expressions for the resulting expressions

1

In [6]: (stringConstantTerms, stringOptimized) = optimize(stringUpdate)

(stringCommonTerms, stringOptimized2) = cse(stringOptimized)

stringOptimized2 = stringOptimized2[0]

for (name, e) in stringConstantTerms:
expStr = getCppExpression2(e, indexName='l')
print(f'const float {name} = {expStr};')

print('')

for (name, e) in stringCommonTerms:
expStr = getCppExpression2(e, indexName='l')
print(f'const float {name} = {expStr};')

print('')

expStr = getCppExpression2(stringOptimized2, indexName='l');
print(f'un[l] = {expStr};')

const float c0 = (1.0 / (1.0 + (k * sigma0)));
const float c1 = powf(k, 2.0);
const float c2 = powf(c, 2.0);
const float c3 = (1.0 / (h));
const float c4 = powf(kappa, 2.0);

const float x0 = 2.0 * u[l];
const float x1 = powf(c3, 2.0);
const float x2 = x1 * (x0 + (-1.0 * u[l-1]) + (-1.0 * u[l+1]));
const float x3 = 2.0 * k * sigma1;

un[l] = c0 * (x0 + (-1.0 * up[l]) + (c1 * F[l]) + (-1.0 * x2 * x3) + (k * sigma0 * up[l]) + (x1 * x3 * ((-1.0 * up[l-1]) + (-1.0 * up[l+1]) + (2.0 * up[l]))) + (-1.0 * c1 * c2 * x2) + (-1.0 * c1 * c4 * powf(c3, 4.0) * ((6.0 * u[l]) + (-1.0 * 4.0 * u[l-1]) + (-1.0 * 4.0 * u[l+1]) + u[l-2] + u[l+2])));

1.1.1 Boundary Conditions

For simply supported bondary conditions we first have

In [9]: stringUpdateLeft0Exp = N(0)
display(Eq(u, stringUpdateLeft0Exp))

u = 0

and also

In [10]: simplySupportedDef = Eq(dxx(u), 0)
display(simplySupportedDef)

2

δx+(δx−(u)) = 0

which can be solved to get

In [11]: simplySupportedEq =\
solution(Eq(expandx(dxx(u)), 0).subs(u, 0), prevs(u))

simplySupportedEq

Out[11]:

−u f

The C++ expression for this is

In [12]: stringUpdateLeft1 = stringOptimized.subs(prevs(prevs(u)), -u)
stringUpdateLeft1Exp = getCppExpression2(stringUpdateLeft1).replace('l', '1')
print(stringUpdateLeft1Exp)

c0 * ((-1.0 * up[1]) + (2.0 * u[1]) + (c1 * F[1]) + (k * sigma0 * up[1]) + (-1.0 * c1 * c2 * powf(c3, 2.0) * ((-1.0 * u[1-1]) + (-1.0 * u[1+1]) + (2.0 * u[1]))) + (-1.0 * c1 * c4 * powf(c3, 4.0) * ((-4.0 * u[1-1]) + (-4.0 * u[1+1]) + (5.0 * u[1]) + u[1+2])) + (-2.0 * k * sigma1 * powf(c3, 2.0) * ((-1.0 * u[1-1]) + (-1.0 * u[1+1]) + (2.0 * u[1]))) + (2.0 * k * sigma1 * powf(c3, 2.0) * ((-1.0 * up[1-1]) + (-1.0 * up[1+1]) + (2.0 * up[1]))))

Now doing the same for the right side

In [14]: stringOptimizedRight = N(0)
display((Eq(u, stringOptimizedRight)))

u = 0

In [15]: stringUpdateRight1 = stringOptimized.subs(nexts(nexts(u)), -u)
stringUpdateRight1Exp = \

getCppExpression2(stringUpdateRight1).replace('l', 'L-2')
print(stringUpdateRight1Exp)

c0 * ((-1.0 * up[L-2]) + (2.0 * u[L-2]) + (c1 * F[L-2]) + (k * sigma0 * up[L-2]) + (-1.0 * c1 * c2 * powf(c3, 2.0) * ((-1.0 * u[L-2-1]) + (-1.0 * u[L-2+1]) + (2.0 * u[L-2]))) + (-1.0 * c1 * c4 * powf(c3, 4.0) * ((-4.0 * u[L-2-1]) + (-4.0 * u[L-2+1]) + (5.0 * u[L-2]) + u[L-2-2])) + (-2.0 * k * sigma1 * powf(c3, 2.0) * ((-1.0 * u[L-2-1]) + (-1.0 * u[L-2+1]) + (2.0 * u[L-2]))) + (2.0 * k * sigma1 * powf(c3, 2.0) * ((-1.0 * up[L-2-1]) + (-1.0 * up[L-2+1]) + (2.0 * up[L-2]))))

In [16]: stringUpdateRight0Exp = getCppExpression2(stringOptimizedRight, distributed=True)
print(stringUpdateRight0Exp)

0.0

1.1.2 Stability conditions

To compute the minimal value of h use

In [17]: hmin = sqrt((c**2 * k**2 + 4 * sigma1 * k\
+ sqrt((c**2 * k**2 + 4 * sigma1 * k)**2 + 16 * kappa**2 * k**2)) / 2)

hmin

3

Out[17]:
√

c2k2

2
+ 2kσ1 +

1
2

√
16k2κ2 + (c2k2 + 4kσ1)

2

Which is implemented in C++ by

In [18]: hminExp = getCppExpression2(hmin).replace('_', '')
print(f'float hmin = {hminExp};\nint L = 0.9 * floor(1 / hmin);')

float hmin = sqrt((0.5 * sqrt(powf((powf(c, 2.0) * powf(k, 2.0)) + (4.0 * k * sigma1), 2.0) + (16.0 * powf(k, 2.0) * powf(kappa, 2.0)))) + (0.5 * powf(c, 2.0) * powf(k, 2.0)) + (2.0 * k * sigma1));
int L = 0.9 * floor(1 / hmin);

1.2 The Bow

The bow model is defined by the equation

In [19]: Fb, Jb, vb = symbols('F_b J_b v_b')
eta = StateSymbol('e')
eta.isDistributed = False
phi = Function('phi')(eta)
Fbow = -Jb * Fb * phi
Fbow

Out[19]:

−Fb Jbϕ(e)

Inserted into the string update equation we get

In [21]: stringFdsWithBow = stringFdsEq.subs(F, Fbow)
stringFdsWithBow

Out[21]:

1
k2 (−2u + un + up) = −Fb Jbϕ(e)+ c2δx+(δx−(u))− κ2δx+(δx−(δx+(δx−(u))))−

σ0

k
(un − up)+

2σ1

k
(δx+(δx−(u))− δx+(δx−(up)))

eta is the relative velocity between the bow and the string defined by

In [22]: etaEq = Eq(eta, dtc(u) - vb)
etaEq

Out[22]:

e = −vb +
un − up

2k

We see that eta is dependent on un+1, so we must use iterative methods to solve it. First, put
the equation into normal form

4

In [23]: etaEqNormal = etaEq.rhs - etaEq.lhs
etaEqNormal

Out[23]:

−e − vb +
un − up

2k
An then substitue the solution of un+1 of the string scheme into this

In [24]: stringFdsWithBowUpdate = expandx(solution(stringFdsWithBow, nextt(u)))
etaEqNormalExpanded = etaEqNormal.subs(nextt(u), stringFdsWithBowUpdate)
etaEqNormalExpanded

Out[24]:

−e− vb +
1
2k

(
−up +

1
kσ0 + 1

(
2u + upkσ0 − up − Fb Jbk2ϕ(e) +

c2k2

h

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− k2κ2

h

(
1
h

(
1
h

(
−1

h
(−u + u f) +

1
h
(−u f + u f f)

)
− 1

h

(
1
h
(−u + u f)− 1

h
(u − ub)

))
− 1

h

(
1
h

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− 1

h

(
1
h
(u − ub)− 1

h
(ub − ubb)

)))
+

2k
h

σ1

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− 2k

h
σ1

(
1
h
(−up + up f)− 1

h
(up − upb)

)))

To compute the Newton-Raphson update we must take the derivate of this expression with
respect to eta

In [78]: etaEqNormalExpandedDiff = diff(etaEqNormalExpanded, eta)
etaEqNormalExpandedDiff

Out[78]:

−Fb Jbk d
de ϕ(e)

2 (kσ0 + 1)
− 1

Which is used in the definition of delta that is used to update eta (vrel)

In [28]: delta = simplify(etaEqNormalExpanded / etaEqNormalExpandedDiff)
delta

Out[28]:

1

h4k
(

Fb Jbk d
de ϕ(e) + 2kσ0 + 2

)
(

uph4 (kσ0 + 1) + 2h4k (e + vb) (kσ0 + 1) + h4 (−2u − upkσ0 + up + Fb Jbk2ϕ(e)
)
+ h2k

(
c2k (2u − ub − u f)− 2σ1 (−2u + ub + u f) + 2σ1 (−2up + upb + up f)

)
+ k2κ2 (6u − 4ub + ubb − 4u f + u f f)

)

We can optimiza the delta expression

In [29]: (deltaConstantTerms, deltaOptimized) = optimize(delta)

In [30]: deltaConstantExp = '';

for (name, e) in deltaConstantTerms:
deltaConstantExp += 'const float ' + str(name) + ' = '\
+ str(getCppExpression2(e)) + ";\n"

print(deltaConstantExp)

5

const float c0 = powf(h, -4.0);
const float c1 = (1.0 / (k));
const float c2 = 2.0 * k * sigma0;
const float c3 = powf(h, 4.0);
const float c4 = powf(k, 2.0);
const float c5 = powf(h, 2.0);
const float c6 = powf(c, 2.0);
const float c7 = 1.0 + (k * sigma0);
const float c8 = powf(kappa, 2.0);

And then compute delta using

In [32]: deltaExpReady = deltaOptimized.subs(diff(phi, eta),\
Symbol('phid')).subs(phi, Symbol('phi'))

deltaExp = getCppExpression2(deltaExpReady, distributed=False)
print(deltaExp)

(1.0 / (c1)) * (1.0 / (2.0 + c2 + (Fb * Jb * k * phid))) * ((powf(c1, 2.0) * ((-2.0 * u) + (-1.0 * k * sigma0 * up) + up)) + (Fb * Jb * phi) + (c0 * c8 * ((-4.0 * ub) + (-4.0 * uf) + (6.0 * u) + ubb + uff)) + (c7 * powf(c1, 2.0) * ((2.0 * k * (vb + e)) + up)) + (-1.0 * c0 * c5 * k * powf(c1, 2.0) * ((-2.0 * sigma1 * ((-2.0 * up) + upb + upf)) + (2.0 * sigma1 * ((-2.0 * u) + ub + uf)) + (c6 * k * ((-2.0 * u) + ub + uf)))))

To compute phi use

In [33]: alpha = symbols('alpha')
phiEta = sqrt(2 * alpha) * eta * exp(-alpha * eta**2 + 0.5)
phiEta

Out[33]:

1.64872127070013
√

2e
√

αe−e2α

In [34]: phiEtaExp = getCppExpression2(phiEta, distributed=True)
phiEtaExp

Out[34]: '1.6487212707001282 * 1.4142135623730951 * sqrt(alpha) * e * (exp((-1.0 * alpha * powf(e, 2.0))))'

And to compute ϕ′η

In [39]: diff(phiEta, eta)

Out[39]:

−3.29744254140026
√

2e2α
3
2 e−e2α + 1.64872127070013

√
2
√

αe−e2α

In [40]: phidEtaExp = getCppExpression2(diff(phiEta, eta), distributed=True)
print(phidEtaExp)

(1.6487212707001282 * 1.4142135623730951 * sqrt(alpha) * (exp((-1.0 * alpha * powf(e, 2.0))))) + (-3.2974425414002564 * 1.4142135623730951 * powf(alpha, 1.5) * powf(e, 2.0) * (exp((-1.0 * alpha * powf(e, 2.0)))))

6

Finally, the code for computing the bow force is

In [41]: with open('template_nr.txt', 'r') as f:
source = f.read()
source = source.replace('<constantExp>', deltaConstantExp)
source = source.replace('<etaInitExp>',\

getCppExpression2(dtb(u) - vb, distributed=False))
source = source.replace('<intermediateExp>',\

f'float phi = {phiEtaExp};\n' + f'float phid = {phidEtaExp};\n')
source = source.replace('<deltaExp>', deltaExp)
source = source.replace('<forceExp>',\

getCppExpression2(Fbow.subs(phi, Symbol('phi'))))
source = source.replace('.at(l', '.at(lb')
source = source.replace('_', '')
print(source)

float delta = 1;
float e = (-1.0 * vb) + ((1.0 / (k)) * ((-1.0 * up) + u));
float Jb = 1.0 / h;
int maxIterations = 50;

const float c0 = powf(h, -4.0);
const float c1 = (1.0 / (k));
const float c2 = 2.0 * k * sigma0;
const float c3 = powf(h, 4.0);
const float c4 = powf(k, 2.0);
const float c5 = powf(h, 2.0);
const float c6 = powf(c, 2.0);
const float c7 = 1.0 + (k * sigma0);
const float c8 = powf(kappa, 2.0);

for (int i = 0; i < maxIterations && fabs(delta) > 1e-4; i++)
{

float phi = 1.6487212707001282 * 1.4142135623730951 * sqrt(alpha) * e * (exp((-1.0 * alpha * powf(e, 2.0))));
float phid = (1.6487212707001282 * 1.4142135623730951 * sqrt(alpha) * (exp((-1.0 * alpha * powf(e, 2.0))))) + (-3.2974425414002564 * 1.4142135623730951 * powf(alpha, 1.5) * powf(e, 2.0) * (exp((-1.0 * alpha * powf(e, 2.0)))));

delta = (1.0 / (c1)) * (1.0 / (2.0 + c2 + (Fb * Jb * k * phid))) * ((powf(c1, 2.0) * ((-2.0 * u) + (-1.0 * k * sigma0 * up) + up)) + (Fb * Jb * phi) + (c0 * c8 * ((-4.0 * ub) + (-4.0 * uf) + (6.0 * u) + ubb + uff)) + (c7 * powf(c1, 2.0) * ((2.0 * k * (vb + e)) + up)) + (-1.0 * c0 * c5 * k * powf(c1, 2.0) * ((-2.0 * sigma1 * ((-2.0 * up) + upb + upf)) + (2.0 * sigma1 * ((-2.0 * u) + ub + uf)) + (c6 * k * ((-2.0 * u) + ub + uf)))));
e = e - delta;

}

F.at(lb) = -1.0 * Fb * Jb * phi;

1.3 Fingers

Fingers are modeled as a rigid connection between the stirng and an achor point. The force acting
on the string is defined by

7

In [42]: omegaF, sigmaF, env, Jf= symbols('omega_f sigma_f env J_f')
zeta = StateSymbol('z')
e = StateSymbol('e')
FFin = env * Jf * (-omegaF**2 * utc(u) - 2 * sigmaF * dtc(u))
FFin

Out[42]:

J f env
(
−ω2

f (0.5un + 0.5up)− σf

k
(un − up)

)

This is plugged into the string equation to get

In [44]: stringFdsWithFinger = stringFdsEq.subs(F, FFin)
display(stringFdsWithFinger)

1
k2 (−2u + un + up) = J f env

(
−ω2

f (0.5un + 0.5up)− σf

k
(un − up)

)
+ c2δx+(δx−(u))− κ2δx+(δx−(δx+(δx−(u))))−

σ0

k
(un − up)+

2σ1

k
(δx+(δx−(u))− δx+(δx−(up)))

which is then solved for un+1

In [46]: stringFdsWithFingerUpdate = expandx(solution(stringFdsWithFinger, nextt(u)))
stringFdsWithFingerUpdate

Out[46]:

1
0.5J f envk2ω2

f + J f envkσf + kσ0 + 1

(
2u − 0.5upJ f envk2ω2

f + upJ f envkσf + upkσ0 − up +
c2k2

h

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− k2κ2

h

(
1
h

(
1
h

(
−1

h
(−u + u f) +

1
h
(−u f + u f f)

)
− 1

h

(
1
h
(−u + u f)− 1

h
(u − ub)

))
− 1

h

(
1
h

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− 1

h

(
1
h
(u − ub)− 1

h
(ub − ubb)

)))
+

2k
h

σ1

(
1
h
(−u + u f)− 1

h
(u − ub)

)
− 2k

h
σ1

(
1
h
(−up + up f)− 1

h
(up − upb)

))

The optimized C++ code to compute this is

In [47]: (commonTerms, stringFdsWithFingerUpdateOptimized) =\
cse(stringFdsWithFingerUpdate)

stringFdsWithFingerUpdateOptimized = stringFdsWithFingerUpdateOptimized[0]

print(f'float Jf = (1 / h);')

for (name, e) in commonTerms:
expStr = getCppExpression2(e, indexName='lf', distributed = False)
print(f'const float {name} = {expStr};')

etanExp = getCppExpression2(stringFdsWithFingerUpdateOptimized,\
distributed = False).replace('_', '')

print(f'float en = {etanExp};\n')

8

print(f'float ep = up;')
print(f'float e = u;')

FFinEta = stateSubs(FFin, StateSymbol('e'))

print(f'float f = {getCppExpression2(FFinEta, False).replace("_", "")};')

float Jf = (1 / h);
const float x0 = k * sigma0;
const float x1 = Jf * env * k * sigmaf;
const float x2 = powf(k, 2.0);
const float x3 = 0.5 * Jf * env * x2 * powf(omegaf, 2.0);
const float x4 = -1.0 * up;
const float x5 = 2.0 * k * sigma1;
const float x6 = (1.0 / (h));
const float x7 = x6 * ((-1.0 * u) + uf);
const float x8 = x6 * ((-1.0 * ub) + u);
const float x9 = x6 * (x7 + (-1.0 * x8));
float en = (1.0 / (1.0 + x0 + x1 + x3)) * (x4 + (2.0 * u) + (x0 * up) + (x1 * up) + (x5 * x9) + (-1.0 * x3 * up) + (x2 * x9 * powf(c, 2.0)) + (-1.0 * x5 * x6 * ((x6 * (x4 + upf)) + (-1.0 * x6 * ((-1.0 * upb) + up)))) + (-1.0 * x2 * x6 * powf(kappa, 2.0) * ((x6 * ((-1.0 * x9) + (x6 * ((-1.0 * x7) + (x6 * ((-1.0 * uf) + uff)))))) + (-1.0 * x6 * (x9 + (-1.0 * x6 * (x8 + (-1.0 * x6 * ((-1.0 * ubb) + ub)))))))));

float ep = up;
float e = u;
float f = Jf * env * ((-1.0 * powf(omegaf, 2.0) * ((0.5 * en) + (0.5 * ep))) + (-1.0 * sigmaf * (1.0 / (k)) * ((-1.0 * ep) + en)));

9

Hammered Bar of Variable Cross Section

May 28, 2020

1 Solving the Hammered Bar of Variable Cross Section

Import SymPy and SymFds for symbolic math support and initialize printing.

In [1]: from sympy import *
from symfds import *
init_printing()

1.1 The Bar

The FDS for the bar of variable cross section is defined by

In [2]: alphaav, kappa, sigma0, sigma1 = symbols('alpha_av kappa sigma_0 sigma_1')
p = StateSymbol('p') # phi
u = StateSymbol('u')
F = StateSymbol('F')

phi^(3 / 2)
p32 = uxf(uxb(p**(5.0 / 2.0)) * uxb(p**(-0.5))**2.0)
stiffness = -(kappa**2.0 / alphaav**4.0) *\

dxf(uxb(p**-0.5) * dxb(p**(5.0 / 2.0) * dxf(uxb(p**-0.5) * dxb(u))))
damp = -2 * sigma0 * dtc(u)
freqDamp = 2 * sigma1 * dtb((1 / alphaav**2) * p**-0.5 * dxf(uxb(p**-0.5) * dxb(u)));
varBarFds = Eq(p32 * dtt(u), stiffness + damp + freqDamp + F)
varBarFds = Eq(dtt(u), -kappa**2 * dxx(dxx(u)))

display(varBarFds)

1
k2 (−2u + un + up) µx+

(
µ2.0

x−
(

p−0.5)µx−
(

p2.5)) = F− κ2.0

α4.0
av

δx+
(
δx−
(

p2.5δx+
(
δx−(u)µx−

(
p−0.5)))µx−

(
p−0.5))− σ0

k
(un − up)+

2σ1

k

(
1

p0.5α2
av

δx+
(
δx−(u)µx−

(
p−0.5))− 1

pp0.5α2
av

δx+
(
δx−(up)µx−

(
pp−0.5))

)

Which can be solved for un+1

In [4]: varBarUpdate = expandx(solution(varBarFds, nextt(u)))
display(varBarUpdate)

1

1

p0.5 pp0.5α8.0
av

(
kσ0 + 0.5

(
0.5
p0.5 +

0.5
pb0.5

)2.0
(0.5p2.5 + 0.5pb2.5) + 0.5

(
0.5
p0.5 +

0.5
p f 0.5

)2.0
(0.5p2.5 + 0.5p f 2.5)

)
(

Fp0.5 pp0.5α8.0
av k2 + 2p0.5 pp0.5uα8.0

av

(
0.5
(

0.5
p0.5 +

0.5
pb0.5

)2.0 (
0.5p2.5 + 0.5pb2.5)+ 0.5

(
0.5
p0.5 +

0.5
p f 0.5

)2.0 (
0.5p2.5 + 0.5p f 2.5)

)
+ p0.5 pp0.5upα8.0

av kσ0 − p0.5 pp0.5upα8.0
av

(
0.5
(

0.5
p0.5 +

0.5
pb0.5

)2.0 (
0.5p2.5 + 0.5pb2.5)+ 0.5

(
0.5
p0.5 +

0.5
p f 0.5

)2.0 (
0.5p2.5 + 0.5p f 2.5)

)
− α4.0

av k2

h
p0.5 pp0.5κ2.0

(
−1

h

(
0.5
p0.5 +

0.5
pb0.5

)(
p2.5

h

(
−1

h

(
0.5
p0.5 +

0.5
pb0.5

)
(u − ub) +

1
h

(
0.5
p0.5 +

0.5
p f 0.5

)
(−u + u f)

)
− pb2.5

h

(
1
h

(
0.5
p0.5 +

0.5
pb0.5

)
(u − ub)− 1

h

(
0.5

pb0.5 +
0.5

pbb0.5

)
(ub − ubb)

))
+

1
h

(
0.5
p0.5 +

0.5
p f 0.5

)(
− p2.5

h

(
−1

h

(
0.5
p0.5 +

0.5
pb0.5

)
(u − ub) +

1
h

(
0.5
p0.5 +

0.5
p f 0.5

)
(−u + u f)

)
+

p f 2.5

h

(
−1

h

(
0.5
p0.5 +

0.5
p f 0.5

)
(−u + u f) +

1
h

(
0.5

p f 0.5 +
0.5

p f f 0.5

)
(−u f + u f f)

)))
− 2k

h
p0.5α6.0

av σ1

(
−1

h

(
0.5

pp0.5 +
0.5

ppb0.5

)
(up − upb) +

1
h

(
0.5

pp0.5 +
0.5

pp f 0.5

)
(−up + up f)

)
+

2k
h

pp0.5α6.0
av σ1

(
−1

h

(
0.5
p0.5 +

0.5
pb0.5

)
(u − ub) +

1
h

(
0.5
p0.5 +

0.5
p f 0.5

)
(−u + u f)

))

The optimized C++ expression for this is

In [13]: (constExp, varBarUpdateOptimized) = optimize(varBarUpdate)
(commonExp, varBarUpdateOptimized2) = cse(varBarUpdateOptimized)
varBarUpdateOptimized2 = varBarUpdateOptimized2[0]

for (name, exp) in constExp:
expStr = getCppExpression2(exp)
print(f'const float {name} = {expStr};')

print('')

for (name, exp) in commonExp:
expStr = getCppExpression2(exp)
print(f'const float {name} = {expStr};')

print('')

expStr = getCppExpression2(varBarUpdateOptimized2);
print(f'un[l] = {expStr};')

const float c0 = powf(alphaav, -8.0);
const float c1 = k * sigma0;
const float c2 = powf(alphaav, 8.0);
const float c3 = powf(k, 2.0);
const float c4 = powf(alphaav, 6.0);
const float c5 = (1.0 / (h));
const float c6 = powf(alphaav, 4.0);
const float c7 = powf(kappa, 2.0);

const float x0 = powf(p[l], 3.0);
const float x1 = powf(p[l-1], 2.0);
const float x2 = sqrt(p[l-2]);
const float x3 = powf(p[l+1], 2.0);
const float x4 = sqrt(p[l+2]);
const float x5 = powf(pp[l], 1.5);
const float x6 = sqrt(pp[l-1]);
const float x7 = sqrt(pp[l+1]);
const float x8 = powf(p[l], 2.5);
const float x9 = powf(p[l-1], 2.5);
const float x10 = sqrt(p[l]);
const float x11 = (1.0 / (x10));
const float x12 = sqrt(p[l-1]);

2

const float x13 = x10 + x12;
const float x14 = powf(x11 * x13 * (1.0 / (x12)), 2.0) * (x8 + x9);
const float x15 = powf(p[l+1], 2.5);
const float x16 = sqrt(p[l+1]);
const float x17 = x10 + x16;
const float x18 = powf(x11 * x17 * (1.0 / (x16)), 2.0) * (x15 + x8);
const float x19 = sqrt(pp[l]);
const float x20 = powf(c5, 2.0);
const float x21 = x5 * x6 * x7 * powf(p[l], 2.0);
const float x22 = -1.0 * u[l+1];
const float x23 = x12 * x17;
const float x24 = x13 * ((-1.0 * u[l-1]) + u[l]);
const float x25 = x16 * x24;
const float x26 = x14 + x18;
const float x27 = (-1.0 * u[l]) + u[l+1];
const float x28 = x8 * ((-1.0 * x25) + (x23 * x27));

un[l] = (1.0 / (x0)) * (1.0 / (x1)) * (1.0 / (x2)) * (1.0 / (x3)) * (1.0 / (x4)) * (1.0 / (x5)) * (1.0 / (x6)) * (1.0 / (x7)) * (1.0 / (c1 + (0.0625 * x14) + (0.0625 * x18))) * ((x0 * x1 * x2 * x3 * x4 * x5 * x6 * x7 * ((c1 * up[l]) + (c3 * F[l]) + (0.125 * x26 * u[l]) + (-0.0625 * x26 * up[l]))) + (0.25 * c0 * c3 * c6 * c7 * x12 * x16 * x21 * powf(c5, 4.0) * ((x12 * x13 * x4 * powf(p[l+1], 1.0) * ((x2 * x28) + (x16 * x9 * ((-1.0 * x2 * x24) + (x10 * (x12 + x2) * ((-1.0 * u[l-2]) + u[l-1])))))) + (x16 * x17 * x2 * powf(p[l-1], 1.0) * ((x28 * x4) + (x12 * x15 * ((x17 * x27 * x4) + (-1.0 * x10 * (x16 + x4) * (x22 + u[l+2])))))))) + (-1.0 * c0 * c4 * k * sigma1 * x2 * x20 * x21 * x4 * powf(p[l-1], 1.5) * powf(p[l+1], 1.5) * (x25 + (x23 * (x22 + u[l])))) + (1.0 * c0 * c4 * k * sigma1 * x0 * x1 * x19 * x2 * x20 * x3 * x4 * ((x6 * (x19 + x7) * ((-1.0 * up[l+1]) + up[l])) + (x7 * (x19 + x6) * ((-1.0 * up[l-1]) + up[l])))));

2 The Hammer

The hammer force is defined by

In [16]: psi, g, m, k = symbols('psi g m k')
w = StateSymbol('w')
w.isDistributed = False
v = StateSymbol('v')
v.isDistributed = False
eta = u - w
Fh = ((k * g / 2) * dtc(eta) + utb(v)) * g;
display(Fh)

g
(

0.5v + 0.5vp +
g
4
(un − up − wn + ℘)

)

The FDS for the hammer is

In [17]: hammerFds = Eq(dtt(w), - (1 / m) * Fh)
hammerFds

Out[17]:

1
k2 (−2w + wn + ℘) = − g

m

(
0.5v + 0.5vp +

g
4
(un − up − wn + ℘)

)

The hammer force can be plugged into the bar FDS to get

In [18]: Jh, rho = symbols('J_h rho')
varBarFdsWithHammer = Eq(varBarFds.lhs, varBarFds.rhs + (1 / rho) * Jh * Fh)
varBarFdsWithHammer

3

Out[18]:

1
k2 (−2u + un + up) µx+

(
µ2.0

x−
(

p−0.5)µx−
(

p2.5)) = F+
Jhg
ρ

(
0.5v + 0.5vp +

g
4
(un − up − wn + ℘)

)
− κ2.0

α4.0
av

δx+
(
δx−
(

p2.5δx+
(
δx−(u)µx−

(
p−0.5)))µx−

(
p−0.5))− σ0

k
(un − up)+

2σ1

k

(
1

p0.5α2
av

δx+
(
δx−(u)µx−

(
p−0.5))− 1

pp0.5α2
av

δx+
(
δx−(up)µx−

(
pp−0.5))

)

Which can be solved as two equations with two unknowns for un+1 and wn+1

In [19]: solutionSet = solve((hammerFds, varBarFdsWithHammer), nextt(w), nextt(u))

hammerUpdate = expandx(solutionSet[nextt(w)])
varBarWithHammerUpdate = expandx(solutionSet[nextt(u)])

display(simplify(hammerUpdate))
display(varBarWithHammerUpdate)

1

pb2
√

pbbp f 2
√

p f f pp
√

ppb
√

pp f α4
avh4

(
ppbp f Jhg4k4 + (g2k2 − 4.0m)

(
ppbp f k (−Jhg2k + 4.0ρσ0) + 0.25ρ

(
pb
(√

p +
√

p f
)2
(

p
5
2 + p f

5
2

)
+ p f

(√
p +

√
pb
)2
(

p
5
2 + pb

5
2

))))
(

pb2
√

pbbp f 2
√

p f f pp
√

ppb
√

pp f α4
avh4

(
ppbp f k

(
−Jhg2k + 4.0ρσ0

)
+ 0.25ρ

(
pb
(√

p +
√

p f
)2 (

p
5
2 + p f

5
2

)
+ p f

(√
p +

√
pb
)2 (

p
5
2 + pb

5
2

))) (
−upg2k2 + 2.0vgk2 + 2.0vpgk2 − 8.0wm + ℘g2k2 + 4.0℘m

)
+ g2k2

(
ppb3

√
pbbp f 3

√
p f f pp

√
ppb

√
pp f α4

avh4k
(
4.0Fkρ − upJhg2k + 4.0upρσ0 + 2.0vJhgk + 2.0vpJhgk + ℘Jhg2k

)
+ 4.0ppb3

√
pbbp f 3

√
p f f α2

avh2kρσ1

(√
ppb

(√
pp +

√
pp f

)
(up − up f) +

√
pp f

(√
pp +

√
ppb

)
(up − upb)

)
− 4.0pb

5
2
√

pbbp f
5
2
√

p f f pp
√

ppb
√

pp f α2
avh2kρσ1

(√
pb
(√

p +
√

p f
)
(u − u f) +

√
p f
(√

p +
√

pb
)
(u − ub)

)
+ 1.0pb

3
2 p f

3
2 pp

√
ppb

√
pp f k2κ2ρ

(√
pbp f

√
p f f

(√
p +

√
pb
) (

p
5
2
√

pbb
(√

pb
(√

p +
√

p f
)
(−u + u f)−

√
p f
(√

p +
√

pb
)
(u − ub)

)
+ pb

5
2
√

p f
(√

p
(√

pb +
√

pbb
)
(ub − ubb)−

√
pbb

(√
p +

√
pb
)
(u − ub)

))
+ pb

√
pbb
√

p f
(√

p +
√

p f
) (

p
5
2
√

p f f
(√

pb
(√

p +
√

p f
)
(−u + u f)−

√
p f
(√

p +
√

pb
)
(u − ub)

)
+
√

pbp f
5
2

(
−√

p
(√

p f +
√

p f f
)
(−u f + u f f) +

√
p f f

(√
p +

√
p f
)
(−u + u f)

)))
+ pb2

√
pbbp f 2

√
p f f pp

√
ppb

√
pp f α4

avh4ρ (0.5u − 0.25up)
(

pb
(√

p +
√

p f
)2 (

p
5
2 + p f

5
2

)
+ p f

(√
p +

√
pb
)2 (

p
5
2 + pb

5
2

))))

1

√
p
√

ppα4
av

(
Jhg4k4 + (g2k2 − 4.0m)

(
−Jhg2k2 + 4.0kρσ0 + 4.0ρ

(
0.5
(

0.5p
5
2 + 0.5pb

5
2

)(
0.5√

pb
+ 0.5√

p

)2

+ 0.5
(

0.5p
5
2 + 0.5p f

5
2

)(
0.5√

p f
+ 0.5√

p

)2
)))

−√

p
√

ppJhα4
avg2k2 (−upg2k2 + 2.0vgk2 + 2.0vpgk2 − 8.0wm + ℘g2k2 + 4.0℘m

)
+
(

g2k2 − 4.0m
)

4.0F

√
p
√

ppα4
avk2ρ + 8.0

√
p
√

ppuα4
avρ

0.5

(
0.5p

5
2 + 0.5pb

5
2

)(0.5√
pb

+
0.5√

p

)2

+ 0.5
(

0.5p
5
2 + 0.5p f

5
2

)(0.5√
p f

+
0.5√

p

)2

−√

p
√

ppupJhα4
avg2k2 + 4.0

√
p
√

ppupα4
avkρσ0 − 4.0

√
p
√

ppupα4
avρ

0.5

(
0.5p

5
2 + 0.5pb

5
2

)(0.5√
pb

+
0.5√

p

)2

+ 0.5
(

0.5p
5
2 + 0.5p f

5
2

)(0.5√
p f

+
0.5√

p

)2

+ 2.0

√
p
√

ppvJhα4
avgk2 + 2.0

√
p
√

ppvpJhα4
avgk2 +

√
p
√

pp℘Jhα4
avg2k2 − 4.0ρ

h
√

p
√

ppk2κ2

(
−1

h

(
0.5√

pb
+

0.5√
p

)(
p

5
2

h

(
−1

h

(
0.5√

pb
+

0.5√
p

)
(u − ub) +

1
h

(
0.5√

p f
+

0.5√
p

)
(−u + u f)

)
− pb

5
2

h

(
1
h

(
0.5√

pb
+

0.5√
p

)
(u − ub)− 1

h

(
0.5√
pbb

+
0.5√

pb

)
(ub − ubb)

))
+

1
h

(
0.5√

p f
+

0.5√
p

)(
− p

5
2

h

(
−1

h

(
0.5√

pb
+

0.5√
p

)
(u − ub) +

1
h

(
0.5√

p f
+

0.5√
p

)
(−u + u f)

)
+

p f
5
2

h

(
−1

h

(
0.5√

p f
+

0.5√
p

)
(−u + u f) +

1
h

(
0.5√
p f f

+
0.5√

p f

)
(−u f + u f f)

)))
− 8.0k

h
√

pα2
avρσ1

(
−1

h

(
0.5√
ppb

+
0.5√

pp

)
(up − upb) +

1
h

(
0.5√
pp f

+
0.5√

pp

)
(−up + up f)

)
+

8.0k
h

√
ppα2

avρσ1

(
−1

h

(
0.5√

pb
+

0.5√
p

)
(u − ub) +

1
h

(
0.5√

p f
+

0.5√
p

)
(−u + u f)

)

The C++ expression for the bar update at the hammer point is

In [20]: (commonExp, varBarWithHammerUpdateOptimized) = cse(varBarWithHammerUpdate)

varBarWithHammerUpdateOptimized = varBarWithHammerUpdateOptimized[0]

for (name, exp) in commonExp:
expStr = getCppExpression2(exp, indexName='lh')
print(f'const float {name} = {expStr};')

print('')

expStr = getCppExpression2(varBarWithHammerUpdateOptimized, indexName='lh');
print(f'un[lh] = {expStr};')

const float x0 = sqrt(p[lh]);
const float x1 = (1.0 / (x0));
const float x2 = sqrt(pp[lh]);
const float x3 = (1.0 / (x2));
const float x4 = powf(alphaav, 4.0);
const float x5 = 4.0 * m;
const float x6 = powf(g, 2.0);
const float x7 = powf(k, 2.0);

4

const float x8 = x6 * x7;
const float x9 = x8 + (-1.0 * x5);
const float x10 = 4.0 * k * rho * sigma0;
const float x11 = powf(p[lh], 2.5);
const float x12 = 0.5 * x11;
const float x13 = powf(p[lh-1], 2.5);
const float x14 = 0.5 * x1;
const float x15 = 0.5 * powf(p[lh-1], -0.5);
const float x16 = x14 + x15;
const float x17 = powf(p[lh+1], 2.5);
const float x18 = 0.5 * powf(p[lh+1], -0.5);
const float x19 = x14 + x18;
const float x20 = (0.5 * powf(x16, 2.0) * (x12 + (0.5 * x13))) + (0.5 * powf(x19, 2.0) * (x12 + (0.5 * x17)));
const float x21 = 4.0 * rho * x20;
const float x22 = x0 * x2 * x4;
const float x23 = 2.0 * g * x7;
const float x24 = x23 * v;
const float x25 = x23 * vp;
const float x26 = x8 * wp;
const float x27 = x8 * up[lh];
const float x28 = x0 * x2 * x4 * up[lh];
const float x29 = Jh * x0 * x2 * x4;
const float x30 = (1.0 / (h));
const float x31 = x0 * x30;
const float x32 = powf(alphaav, 2.0);
const float x33 = 0.5 * x3;
const float x34 = x19 * x30;
const float x35 = x34 * ((-1.0 * u[lh]) + u[lh+1]);
const float x36 = x16 * x30;
const float x37 = x36 * ((-1.0 * u[lh-1]) + u[lh]);
const float x38 = x35 + (-1.0 * x37);
const float x39 = x11 * x30 * x38;

un[lh] = x1 * x3 * (1.0 / (x4)) * (1.0 / ((x9 * (x10 + x21 + (-1.0 * Jh * x8))) + (Jh * powf(g, 4.0) * powf(k, 4.0)))) * ((x9 * ((x10 * x28) + (x24 * x29) + (x25 * x29) + (x26 * x29) + (-1.0 * x21 * x28) + (-1.0 * x27 * x29) + (8.0 * rho * x20 * x22 * u[lh]) + (4.0 * rho * x0 * x2 * x4 * x7 * F[lh]) + (-4.0 * rho * x2 * x31 * x7 * powf(kappa, 2.0) * ((x34 * ((-1.0 * x39) + (x17 * x30 * ((-1.0 * x35) + (x30 * (x18 + (0.5 * powf(p[lh+2], -0.5))) * ((-1.0 * u[lh+1]) + u[lh+2])))))) + (-1.0 * x36 * (x39 + (-1.0 * x13 * x30 * (x37 + (-1.0 * x30 * (x15 + (0.5 * powf(p[lh-2], -0.5))) * ((-1.0 * u[lh-2]) + u[lh-1])))))))) + (-8.0 * k * rho * sigma1 * x31 * x32 * ((x30 * (x33 + (0.5 * powf(pp[lh+1], -0.5))) * ((-1.0 * up[lh]) + up[lh+1])) + (-1.0 * x30 * (x33 + (0.5 * powf(pp[lh-1], -0.5))) * ((-1.0 * up[lh-1]) + up[lh])))) + (8.0 * k * rho * sigma1 * x2 * x30 * x32 * x38))) + (-1.0 * Jh * x22 * x6 * x7 * (x24 + x25 + x26 + (-1.0 * x27) + (x5 * wp) + (-1.0 * 8.0 * m * w))));

The C++ expression for the hammer update is

In [21]: (commonExp, hammerUpdateOptimized) = cse(hammerUpdate)

hammerUpdateOptimized = hammerUpdateOptimized[0]

for (name, exp) in commonExp:
expStr = getCppExpression2(exp, indexName='lh')
print(f'const float {name} = {expStr};')

print('')

5

expStr = getCppExpression2(hammerUpdateOptimized, indexName='lh');
print(f'wn = {expStr};')

const float x0 = sqrt(p[lh]);
const float x1 = (1.0 / (x0));
const float x2 = sqrt(pp[lh]);
const float x3 = (1.0 / (x2));
const float x4 = powf(alphaav, 4.0);
const float x5 = 4.0 * m;
const float x6 = powf(k, 2.0);
const float x7 = x6 * powf(g, 2.0);
const float x8 = 4.0 * k * rho * sigma0;
const float x9 = powf(p[lh], 2.5);
const float x10 = 0.5 * x9;
const float x11 = powf(p[lh-1], 2.5);
const float x12 = 0.5 * x1;
const float x13 = 0.5 * powf(p[lh-1], -0.5);
const float x14 = x12 + x13;
const float x15 = powf(p[lh+1], 2.5);
const float x16 = 0.5 * powf(p[lh+1], -0.5);
const float x17 = x12 + x16;
const float x18 = (0.5 * powf(x14, 2.0) * (x10 + (0.5 * x11))) + (0.5 * powf(x17, 2.0) * (x10 + (0.5 * x15)));
const float x19 = 4.0 * rho * x18;
const float x20 = x19 + x8 + (-1.0 * Jh * x7);
const float x21 = x0 * x2 * x4;
const float x22 = 2.0 * g * x6;
const float x23 = x22 * v;
const float x24 = x22 * vp;
const float x25 = x7 * wp;
const float x26 = x7 * up[lh];
const float x27 = x0 * x2 * x4 * up[lh];
const float x28 = Jh * x0 * x2 * x4;
const float x29 = (1.0 / (h));
const float x30 = x0 * x29;
const float x31 = powf(alphaav, 2.0);
const float x32 = 0.5 * x3;
const float x33 = x17 * x29;
const float x34 = x33 * ((-1.0 * u[lh]) + u[lh+1]);
const float x35 = x14 * x29;
const float x36 = x35 * ((-1.0 * u[lh-1]) + u[lh]);
const float x37 = x34 + (-1.0 * x36);
const float x38 = x29 * x37 * x9;

wn = x1 * x3 * (1.0 / (x4)) * (1.0 / ((x20 * (x7 + (-1.0 * x5))) + (Jh * powf(g, 4.0) * powf(k, 4.0)))) * ((x7 * ((x23 * x28) + (x24 * x28) + (x25 * x28) + (x27 * x8) + (-1.0 * x19 * x27) + (-1.0 * x26 * x28) + (8.0 * rho * x18 * x21 * u[lh]) + (4.0 * rho * x0 * x2 * x4 * x6 * F[lh]) + (-4.0 * rho * x2 * x30 * x6 * powf(kappa, 2.0) * ((x33 * ((-1.0 * x38) + (x15 * x29 * ((-1.0 * x34) + (x29 * (x16 + (0.5 * powf(p[lh+2], -0.5))) * ((-1.0 * u[lh+1]) + u[lh+2])))))) + (-1.0 * x35 * (x38 + (-1.0 * x11 * x29 * (x36 + (-1.0 * x29 * (x13 + (0.5 * powf(p[lh-2], -0.5))) * ((-1.0 * u[lh-2]) + u[lh-1])))))))) + (-8.0 * k * rho * sigma1 * x30 * x31 * ((x29 * (x32 + (0.5 * powf(pp[lh+1], -0.5))) * ((-1.0 * up[lh]) + up[lh+1])) + (-1.0 * x29 * (x32 + (0.5 * powf(pp[lh-1], -0.5))) * ((-1.0 * up[lh-1]) + up[lh])))) + (8.0 * k * rho * sigma1 * x2 * x29 * x31 * x37))) + (x20 * x21 * (x23 + x24 + x25 + (-1.0 * x26) + (x5 * wp) + (-1.0 * 8.0 * m * w))));

6

Appendix B

Derivations

B.1 Interpolation and Spreading Operators

Discretized spatial models are by default only accessible at grid points (multi-
ples of h). Access to values in between grid points is handled by interpolation
operators [5, chapter 5].

Given some real-valued position x along the domain of the model the sim-
plest, zeroth order, interpolation operator is

I0(x)ul = ul0 , (B.1)

where l0 = floor(x/h). A first order interpolation operator uses linear interpo-
lation and is defined by

I1(x)ul = (1− α)ul0 + αul0+1 (B.2)

where α = (x/h) − l0. Higher order interpolators can be constructed as one
wishes, see e.g. [5, chapter 5] for the definition of cubic interpolators.

Related to interpolation are spreading operators which allow one to spread
some value over a grid function at some fractional index and can be thought of
as the discrete version of the Dirac delta function. The zeroth order spreading
operator is defined as [5, chapter 5]

J0(x) =
1

h

{
1 l = l0

0 otherwise
(B.3)

that is, the desired value is multiplied by 1/h and applied to the grid point at
the truncated index. The first order spreading operator is

J0(x) =
1

h

(1− α) l = l0

α l = l0 + 1

0 otherwise

(B.4)

where the value is scaled by 1−α at point l0 and α at l0+1. As with interpolation
operators higher order spreading operators can be constructed, see [5, chapter 5].

60

B.2. BAR OF VARIABLE CROSS SECTIONWITH CHANGEOF VARIABLES61

B.2 Bar of Variable Cross Section with Change
of Variables

Given the definition of α from Equation (2.62), using the fundamental theorem
of calculus, we have

α′ =
1

αav
θ−1/2 (B.5)

Focusing on the stiffness term of Equation (2.51) we have

κ20(θ3uxx)xx → κ20α
′ (α′(θ3α′(α′uα)α)α

)
α
. (B.6)

Substituting α′ for Equation (B.5) we get

κ20
1

α av
θ−1/2

(
1

α av
θ−1/2

(
θ3

1

α av
θ−1/2

(
1

α av
θ−1/2uα

)

α

)

α

)

α

κ20
α4
av

θ−1/2
(
θ−1/2

(
θ3θ−1/2

(
θ−1/2uα

)
α

)
α

)

α

κ20
α4
av

θ−1/2
(
θ−1/2

(
θ5/2

(
θ−1/2uα

)
α

)
α

)

α

.

B.3 Non-iterative Solution of Mallet

Starting with φu we have

φu =
dφ

du
=
dφ

du

dt

dt
=
dφ

dt

dt

du
=
φt
ut

(B.7)

Letting
ψ =

√
2φ (B.8)

one may write

φu = ψψu = ψ
ψt
ut

(B.9)

because, by the chain rule,

ψψu =
√

2φ

√
2

2
√
φ
φu = φu. (B.10)

	Introduction
	State of the Art
	Installation Design
	Document Summary

	Instrument Modeling
	Introduction to Finite Difference Schemes
	Stability

	Solving FDSs Using SymPy
	The pal-fds library

	Bowed and Fingered Stiff String
	Definition in Continuous Time
	Finite Difference Scheme and Implementation

	Hammered Bar of Variable Cross Section
	Definition in Continuous Time
	Finite Difference Scheme and Implementation

	Software Design

	Composition and Interactivity
	Mapping and Interactivity
	Musicality
	Munola

	Future Work and Conclusion
	Conclusion

	Jupyter Notebooks
	Derivations
	Interpolation and Spreading Operators
	Bar of Variable Cross Section with Change of Variables
	Non-iterative Solution of Mallet

