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Chapter 1

Introduction

This chapter contains a short introduction to welding followed a statement of the
problem for the work behind this thesis, and a thesis outline. The problem statement
is one proposed by the company Migatronic A/S. Migatronic A/S is a danish company
which produces a variety of metal working equipment, such as Metal Inert Gas, Metal
Active Gas and Tungsten Inert Gas welders [1].

1.1 Introduction to Welding

Welding is a process which fuses metal pieces by applying heat, and in some cases
pressure and/or a filler metal, creating what is known as a weld [2]. The definition
of a weld is:

A localized coalescence of metals or nonmetals produced either by heating materials to
the welding temperature, with or without the application of pressure, or by the appli-
cation of pressure alone and with or without the use of filler metal [2].

If the welding process is successful, then the resulting metal piece can be considered
as one solid piece instead of two joint pieces. There exists several different types of
welding techniques, all with different benefits and drawbacks. The most common of
these techniques can be categorised as [2]:

• Arc welding with non-consumable electrode

– Gas Tungsten Arc Welding (GTAW)

– Plasma Arc Welding (PAW)

• Arc welding with consumable electrode

– Shielded Metal Arc Welding (SMAW)

1



2 Chapter 1. Introduction

– Gas Metal Arc Welding (GMAW)

– Flux-Cored Arc Welding (FCAW)

– Submerged Arc Welding (SAW)

• Other welding techniques

– Oxyfuel Gas Welding (OFW)

– Thermit Welding (TW)

– Solid-State Welding (SSW)

– Resistance Welding (RW)

– Electron Beam Welding (EBW)

– Laser Beam Welding (LBW)

This thesis will focus on the Gas Metal Arc Welding technique, and any other welding
technique is therefore not described further.

1.1.1 Gas Metal Arc Welding

In Gas Metal Arc Welding (GMAW) a consumable electrode is used. An electrical
arc is established between the electrode, often the anode, and the workpiece, acting
as the cathode, which melts the electrode causing drop growth and detachment from
the electrode tip. The consumed electrode is continuously replaced by feeding new
electrode material as a wire, pushed forward by a wire feeding system. To protect
the weld pool from contamination, the process is protected from the ambient air by
a shielding gas [3]. An overview of the GMAW process is shown in Figure 1.1.
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Figure 1.1: The GMAW or MIG/MAG process

Two subtypes of GMAW exists, which are defined by the type of shielding gas used.
Both methods use gas bottles to provide the shielding gas, which is fed through the
welding gun, to protect the weld area.
Metal Inert Gas (MIG) welding uses an inert gas or gas mixture to shield the weld
area, such as argon and helium. Metal Active Gas (MAG) welding uses an active gas
or gas mixture to shield the weld area, often a mixture between carbon dioxide, argon
and oxygen. The shielding gas is important to achieve a good weld, as it affects the
arc stability, metal transfer and degree of spatter. Furthermore, shielding gases can
also impact the penetration of the weld [4]. Figure 1.2 shows the basic equipment
components required in a gas metal arc welding setup.
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Figure 1.2: Basic equipment components in a gas metal arc welding (GMAW) setup [5].

There exists different transfer modes for both MIG and MAG welding. The different
modes each offers different benefits and drawbacks. The different modes are often
achieved by regulation of the current of a constant-voltage power supply, but in some
cases a special power supply is needed.

- Spray transfer: Some times also called axial spray, is a high current transfer
mode, where small drops of molten metal is transferred at a relatively high
frequency. No short circuits between the electrode and workpiece occurs during
the transfer. This results in a large weld pool and a high amount of heat on the
workpiece. Spray transfer is limited to horizontal positions and thicker metals
due to the high amount of heat [2].

- Globular transfer: Some times also called drop transfer or repelled transfer,
is a medium to low current transfer mode, where normally larger drops of
molten metal is transferred at a relatively low frequency. Short circuits between
electrode and workpiece do occur during the welding. The resulting weld is not
as smooth as for spray transfer and produces more spatter. Globular transfer
is normally used in horizontal position for steel welding [2].

- Pulsed-Spray transfer: This is a variation of the Spray transfer mode, that
uses a pulsing power supply. Molten metal is transferred as small droplets at
a fixed frequency. The transfer frequency is determined by the pulse duration
of the power supply. By pulsing the current a lower amount of heat is applied
to the workpiece, allowing Pulsed-Spray transfer to weld thinner material than
with regular Spray transfer, this however results in an increased number of
settings to regulate for a new workpiece, reducing the ease of use [2].
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- Short-Circuit transfer: Some times also called short arc or dip transfer, is a
low current transfer mode. The molten tip of the electrode periodically makes
contact with the weld pool creating a short circuit. Metal is then transferred
to the weld pool by surface tension, disconnecting the electrode from the weld
pool, (also called free burn) and starting the process all over again. This cycle
repeats many times a second. This creates a distinctive current and voltage
waveform pattern, as seen on Figure 1.3.
At stage A, the electrode drop makes contact and short-circuits with the weld
pool, the arc voltage approaches zero and the current level starts to increase. At
B, the electrode necks or pinches, the voltage slowly increases and the current
increases towards a peak value. At C, the drop detaches from the electrode
and the short-circuit ends, and the welding process enters the arc phase, the
current reaches a peak value and the voltage almost immediately raises to a
peak too. D is at the tail-out of the short-circuiting waveform, the electrode
drop reforms. At E, the electrode drop once again short-circuits with the weld
pool. If the current is to high at the time of the free burn, then spatter will
occur, see below. Short-Circuit transfer is normally used for out of position
welding, e.g. when the workpiece positioned such that the weld is vertical, and
for welding of thinner ferrous metals [2].

Figure 1.3: Current and voltage during the GMAW short-circuit transfer process [6].

Welding Performance Improvement

Spatter is the metal particles expelled during fusion welding which do not form a part
of the weld bead [2]. Welding spatter is generated in fusion welding by unbalanced
metal transfer forces, caused by an inadequate welding environment, relating to the
welding current and voltage, shielding gas and the welding filler. Welding spatter is
detrimental to the welding process as the spatter reduces the quality of the welded
product, and necessitates inefficient cleaning processes to remove the spatter [7].
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Figure 1.4 illustrates a weld bead with spatter from the weld process on a welded
product.

Figure 1.4: Illustration of a weld bead and spatter on a welded product

There already exist some methods for improvement of the performance of GMAW
short-circuit welding, namely the Surface-Tension transfer (STT) method [8]. STT
works by modulating the current so that the current is low just before a free burn.
This minimizes spatter, but it also fixes the transfer rate. Similar as for the Pulse-
Spray mode, the number of settings needed is also increased, thereby reducing the
ease of use. Figure 1.5 categorises several industrial controlled Short-Circuit transfer
methods, including STT, and makes a brief comparison of their features.

Figure 1.5: Categories of controlled short circuit transfer and their features [9].

Migatronic A/S [1], has developed a solution for Short-Circuit transfer control called
Intelligent Arc Control (IAC). In IAC, every welding cycle is registered, and the
current waveform is controlled when the electrode drop shorts with the weld pool.
The waveform is then designed such that the current is lowered just before the drop
detaches from the electrode resulting in a rupture. Outside the short-circuit period
the system is voltage controlled. IAC is laborious to set up for new electrode wire
and shielding gas combination, as the system requires approximately 26 welding pa-
rameters to be finely tuned. As such, IAC is only available on a few select welding
programs, see the Sigma Select Program Table in Appendix B. Furthermore IAC
requires additional hardware in operation of the welding system, to enable adjusting
the current fast enough as ruptures cannot be identified early enough to allow for the
regulation of current time in without this extra hardware.
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Figure 1.6: The IAC waveform design (denoted IAC) vs. a conventional Short-Circuit welding
waveform (denoted Org.) [1]

Figure 1.6 shows an IAC designed current waveform, along with the corresponding
voltage waveform versus the conventional Short-Circuit welding current waveform
and its corresponding voltage waveform. The effect of the waveform is showcased
by images from a welding process with IAC current control at various stages in the
welding cycle respectively from a conventional Short-Circuit welding process welding
process at corresponding welding cycle stages.
Describing the IAC process: At A the electrode short-circuits with the weld pool
and the voltage sharply decreases while the current is allowed to increase towards
a peak value higher than in conventional Short-Circuit welding. At B the voltage
is slowly increasing, and the current increases towards a peak value higher than in
conventional welding, to allow the pinch effect on the electrode drop. At C, after
reaching the peak current, the current and voltage both are suddenly decreased to
allow a cold transfer of the molten drop. At D, the short-circuit phase has ended
and the voltage increases, however to allow a stable re-ignition of the arc the current
remains low. Finally, at E the arc has re-ignited and the arc phase begins, the current
is at first increased and then steadily reduced to a low level while a new electrode
drop forms [10].
If instead the time of start of free burn is predicted, based on process current and
voltage measurements, the current can be adjusted just in time to minimize spatter.
This could increase the performance without reducing the ease of use and without
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fixing the transfer rate. Such an estimator should be robust to account for varying
welding settings and working conditions.

1.2 Problem Statement

The project work presented in this thesis is made in collaboration with Migatronic
A/S and it focuses on predicting the start of the free burn phases in a conventional
GMAW Short-Circuit welding process. The full project proposal suggested by Miga-
tronic A/S can be seen in Appendix A.
The extent of the collaboration is such that Migatronic A/S has provided measure-
ment data sets for project work, see Chapter 2.

The aim of the project is to develop a system, which based on estimation and clas-
sification of 50kHz sampled current and voltage data, can predict when free burn is
starting to happen, at least 5 sample-times before it happens.
From Migatronic A/S, it is specified that the free burn phase start is to be predicted
atleast 5 samples before it occurs, which with a sampling frequency of 50kHz cor-
responds to 0.1ms. Focus is put on being able to correctly classify data samples to
determine the current phase of the welding process for the individual measurement
data sample, and whether free burn is going to occur. It is especially important to
not misclassify the phase of the welding process, as this is detrimental to the welding
process.
Features are extracted from the obtained current and voltage data, and modelled
states are observed for use in classification of the system state.

Problem statement: "How should a classification algorithm be, which, based on,
features extracted from the system measurements, can reliably predict when the GMAW
Short-Circuit welding process is about to free burn, in the rupture period, in the end-
ing of the shor-circuit phase."

Welding System
Feature

Extrac�on

State

Observer

Free Burn

Predic�on

Figure 1.7: Overview of the system outlined in this project
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The diagram shown in Figure 1.7 depicts the structure of a free burn estimation sys-
tem proposed in the work of this thesis. From the welding system, measurements of
current and voltage are passed on to the feature extraction where the data is pro-
cessed and additional information is retrieved from the measurements. In parallel, the
measurements are used for observing states of the welding system based on models of
the welding process as additional features. The extracted features are then passed on
to the free burn predictor, where the state of the welding process in predicted based
on a classification model, utilising the extracted and estimated features.

The following is an outline of the work described in this thesis, relating the system
diagram in Figure 1.7:

Chapter 2 presents the welding system component of the system in Figure 1.7. The
welding system setup used in the work of this thesis for acquisition of the GMAW
welding data is described. Models of several parts of the welding system are intro-
duced, including the electrical system and arc, and the mechanical system, along with
the dynamics of the electrode drop detachment.

Chapter 3 discusses the feature extraction part of the system in Figure 1.7. The
stochastic properties of segments of interest in the time series of welding data mea-
surement samples are examined. The classification problem for prediction of free burn
is outlined in preparation for extraction of features from the welding data. A set of
sample-by-sample as well as statistical features are extracted, and the relevance of
these features are quantified.

Chapter 4 relates to the state observer part of the system in 1.7. State observation,
in the form of a extended kalman filter in implemented, to achieve additional features
for solving the classification problem is introduced.

Chapter 5 addresses the free burn prediction part of the system in Figure 1.7. Several
methods of classification are introduced and the performance of these are compared
for the classification problem of predicting rupture samples in the short-circuiting
phase of the system.

In Chapter 6 a conclusion is drawn on the project work and it is evaluated whether
the problem stated was solved.

In Chapter 7 the results achieved in this project are discussed. The strengths and
shortcomings of the results of the project work are addressed and the approach taken
to solve the task is discussed, along with suggestions for future work.





Chapter 2

Welding System Overview

The goal of the work behind this thesis is, as mentioned in section 1.2, to develop
a classifier able to predict when the GMAW short circuit process is about to free
burn/rupture. This prediction has to be made at least 5 measurement samples in
advance, in order for the system to have time to regulate the current in order to
minimise spatter. The current cannot be changed instantaneously due to system
inductance, inherent in the power supply and the power cables. This chapter goes
into more detail about the general welding system setup used for GMAW short circuit.
This includes a closer look at both the electrical and the mechanical system, along
with the data acquisition method.

2.1 Welding System Diagram and Data Acquisition

Figure 2.1 shows a simplified diagram for the GMAW system in Figure 1.2. The
system can be divided into two parts: an electrical and arc system, and a mechanical
system. Different parameters can be used to model each of these two components,
some of which are shown on the diagram.

11



12 Chapter 2. Welding System Overview

Figure 2.1: Simplified diagram for the GMAW system [3]. For legend for the parameter symbols,
see Eq. (2.1)-(2.2)

As mentioned in section 1.2, the work behind this thesis is carried out in collaboration
with Migatronic A/S. They have a robotic welding setup that can be used to produce
consistent welds for testing purposes. The resulting measurement data obtained
during the welding processes can then be used to train and/or test possible free
burn predictors. To simplify the development of the initial estimator, the welding
parameters are kept the same between different welds. The welding parameters here
used for data generation for welding training/test can be see in Table 2.1. For a
detailed overview of the different welding programs, see Appendix B.

Current 185 [A]
Voltage 18.9 [V]

Eletrode diameter 1.0 [mm]
Eletrode material ER 316 LSi
Gas mix [ratio] ArCO2 [98/2]
Program number 202

Table 2.1: Welding settings used by the welding robot for welding training/test data generation.
The Current is I and the voltage is Uc in Figure 2.1

The data measured from the welding system are voltage, current, and reference cur-
rent. The reason for two current measurements, is that the power supply is inverter
based and the system is current controlled, emulating an old transformer based power
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supply. A digital signal processor (DSP) is used to sample the data, with a sampling
frequency of 50kHz. The DSP used for data acquisition also controls the welding sys-
tem symbolised by the box "Control Algorithms" in Figure 2.1. Beside the current
and voltage measurement data, the data accessible for the project work of this thesis
also contains a flag signal, showing an estimate of when in the welding process time
line the short circuits occur. This flag signal is generated by some post-processing and
has the nature more of a guide line than that of an exact categorisation or evidence,
and is not available on the DSP. A short example section of the given data provided
can be seen in Figure 2.2 The data, and how it will be used, are discussed in further
detail in Chapter 3.
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1

1.5
Short circuit

Short circuit Flag

Figure 2.2: Short example section of the data provided by Migatronic A/S. Note the vertical red
lines in the current and voltage data denoting when a free burn/rupture occurs.

2.2 Electrical System

The electrical system of the welding system consists, in the arcing phase of the welding
process of the power supply, the power cables and the arc. In the short-circuit phases
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no arc exists; instead a metal bridge is present, as described in Section 2.3.1. For
the arcing phases, the electrical system can be modeled as a series of resistances and
inductances, with the arc as a voltage drop, described by Eq. (2.2). Eq. (2.1) below
states a model for the control voltage, Uc(t).

Uc(t) = (Lm + Lw)İ(t) + (Rm +Rw +Re(t))I(t) + Ua(t) (2.1)

Where, with reference to denotations to the diagram in Figure 2.1:

Lm = power supply inductance [H]
Lw = power cable inductance [H]
I = current [A]
Rm = power supply resistance [Ω]
Rw = power cable resistance [Ω]
Re = welding wire resistance [Ω]
Ua = arc voltage drop [V ]

The resistance in the system is split into 3 parts: the resistance of the power cables
including the workpiece, Rw, the output resistance of the power supply Rm, and the
resistance of the welding wire Re. For the resistance of the welding wire, only the
part from the contact point to tip is considered, as the current only runs though this
length of the welding wire. Both Rw and Rm stays constant during welding, while Re
varies, due to changes in wire lengths and temperature. Re also changes depending
on whether the welding process is arcing or short-circuited [11]. Rw does not change
during an ongoing welding process, but may change in between welds, if the lengths of
the power cables changes. Similar for the power cable inductance Lw, which changes
depending on the shape and position of the cable. For example if the cable is coiled
up the inductance is higher than if it is not.

2.2.1 The Arc

The electrical behaviour of the arc is a non linear process, where the voltage drop
over the gap between the wire tip and workpiece depends on the welding current, arc
length, wire material, gas mix and several other conditions [3]. This is a very complex
process, it is simplified in the modelling using a linear approximation [3],[11]:

Ua(t) = U0 +RaI(t) + Eala(t) (2.2)

Where, with reference to denotations to the diagram in Figure 2.1:

Ra = arc current coefficient [Ω]
Ea = arc length coefficient [ Vm ]
la = arc length [m]
U0 = arc voltage constant [V ]
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I = current [A]

This linear approximation only depends on arc length and current. The current is
known as the system is current controlled. The arc length is harder to measure pre-
cisely, as distance from the wire tip to the workpiece varies, significantly throughout
the progressing of the welding process, even dropping to zero through the short cir-
cuiting phases.

The mechanical properties of the arc will not be modeled in this thesis, as the arc
phase of the welding process in not of interest in this work, it is only necessary to
know if the welding process is in the arc phase or not. For further information please
refer to [3] and [11].

2.3 Mechanical System

Part of the mechanical system is the drop of molten metal at the end of the welding
wire. This drop forms during each arcing period of the GMAW short-circuit welding
process, and is affected by a multitude of forces. While these forces are not the prime
factor for metal transfer, they still affects the size and shape of the drop. A diagram
of the forces acting on the drop can be seen in Figure 2.3. The directions of the
arrows indicate the directions of the forces when welding on a horizontal workpiece.

Fg FdFm FstFem

Ftot

Workpiece

Electrode

Figure 2.3: Forces acting on the molten metal drop, while welding on a horizontal workpiece. For
legend for the forces, see Eq. (2.3).

The direction and magnitude of the forces, relative to the electrode, may change
during the weld, due to changes in drop mass, air flow, welding gun position, etc. Eq.
(2.3) shows the total force acting on the drop in vector notation.

Ftot = Fg + Fm + Fd + Fem + Fst (2.3)

Where:
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Ftot = total force acting on drop [N ]
Fg = gravitational force [N ]
Fm = momentum force [N ]
Fd = aerodynamic force [N ]
Fem = electromagnetic force [N ]
Fst = surface tension [N ]

The different forces and their impact on the drop may be described as follows [3]:

- Gravitational force: This force represents the effect of gravity on the drop.
The magnitude is proportional to the mass of the drop, while the direction
relative to the electrode and workpiece, depends on the orientation of the weld.

- Momentum force: This force is due the increase in drop mass, coming from
the electrode melting. The force magnitude changes depending on the melt-
ing rate and feed speed of the electrode. The force direction follows the wire
direction (away from the welding gun).

- Aerodynamic force: This force is caused by the drag produced by the flow
of the shielding gas. While the drop radius is smaller than the electrode radius,
the force magnitude is insignificant, but when the drop radius grows larger than
the electrode radius, the force magnitude increases. The force direction follows
the direction of the gas flow.

- Electromagnetic force: This force due to the electromagnetic field, created
by the current flowing in the drop. If the current is increased, the force magni-
tude also increases. The direction of the force changes depending on the current
path though the drop.

- Surface tension: This force is the dominant force that is keeping the drop
attached to the electrode. When the magnitude of the components of the sum
of all forces, Ftot, in the direction opposite the direction of the surface tension,
Fst, the drop is detached from the electrode. However, in GMAW short circuit
welding, this rarely happens, as the drop at the tip of the electrode usually
makes contact with the workpiece before Ftot becomes larger than Fst.

2.3.1 Metal Bridge

In the short circuiting phase of the welding process, no arc exists, instead a molten
metal bridge, that forms when the molten tip of the electrode makes contact with
the workpiece [11]. This is when the majority of the metal transfer takes place. An
example of this bridge can be seen on Figure 1.6, where A, B, C, D and E shows
the formation, development and collapse of the molten metal bridge, when the rup-
ture occurs. This cycle repeats many times a second, as mentioned in Section 1.1.
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Appendix C takes a closer look at the bridge, using high speed footage. Different
approaches to modeling the bridge characteristics are also discussed. The conclusion
is to model the metal bridge as a piece of wire with a varying cross-sectional area,
leading to Eq. (2.4).

R =
ρl

A
(2.4)

Where:

R = approximate resistance of the metal bridge [Ω]
ρ = resistivity of the wire material [Wm]
l = length of the wire piece [m]
A = cross-sectional area of the wire [m2]

The approximate metal bridge resistance for the short circuiting phase of the weld-
ing process, be in Eq. (2.4), can be added to the electrical model, Eq. (2.1), for
the welding system, expanding the model. The bridge and the arc are mutually ex-
clusive, meaning that only one of the two can exist at a given time. So if, in the
model, a voltage drop is present over the arc, no voltage drop can be over the bridge,
the bridge is non-existing and vice versa. This results in two separate equations
for the electrical system: one for the when the welding process is arcing, given by
Eq. (2.1), and one for when the welding process is short circuiting, given by Eq. (2.5).

Uc(t) = (Lm + Lw)İ(t) + (Rm +Rw +Re(t))I(t) + I(t)
ρl

A
(2.5)

2.4 Chapter Summation

This chapter has presented the general characteristics of the GMAW welding sys-
tem and its different subsystems, looking into the functionality and dynamics of the
subsystems in order to develop adequate models. Chapter 4 will look into state esti-
mation, based on the models developed in this chapter. The next chapter will look
into feature extraction based on the system measurements.





Chapter 3

Data Feature Extraction

This chapter introduces the processing of the welding measurement data sets ob-
tained.
First the data is pre-processed and certain segments of data are discarded. The re-
maining data samples are then divided into classes, in preparation for use in training
and testing of various classification algorithms. Secondly, additional features are ex-
tracted from the data sets, and an analysis is conducted to determine the relevance of
the extracted features. Feature extraction is necessary, as the original welding data
does not contain enough information to accurately predict the start of free burn of
the weld short-circuit. Hence the aim of feature extraction is to obtain new feature
data in which the differences between the various phases of the welding process are
more prominent.

3.1 Data Pre-processing

A welding measurement data set consist of corresponding time series of samples of
current and voltage, measured from the welding system, see Section 2.1. Additionally
a time series of flag samples is included which provide and estimate of whether the
welding process is arcing or short-circuiting. In Figure 3.1 the first 2 seconds of a
typical data set obtained, as provided by Migatronic A/S, is shown. In the start of
the welding data sets, the current and voltage measurements indicate the welding
process has not yet begun These measurements do not belong to any phase in the
welding process, and they are therefore discarded. In between the different data sets
provided, the point of time varies, where the welding process actually beings. But
in no data set indication is found for the data set not to be ongoing 1 second after
start of the data set. Therefore, the first second of each data set is discarded, such
that only data belonging to the welding process is used for training and testing of
classifiers.

19
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Figure 3.1: Current and voltage for the first 2 seconds of a dataset. The red line indicates the
cut-off, at 1 second, data before this point of time is discarded.

Following the discarding of the first second of data, the measurement data samples
of current and voltage are separated into classes, utilising the short-circuit flag data.
The short-circuit flag data are only an estimate of when the short-circuitings occur,
and will therefore not be used for classification purposes, but serves to help divide
the data samples into classes of interest, as a starting point for this, the 4 welding
data classes, introduced in this work are:

c1 = Arc

c2 = Short

c3 = False Short

c4 = Rupture

The set of targeted classes is then C = {c1, c2, c3, c4}. Data samples belonging to the
Arc class are data sampled during the arc phases of the welding process, likewise data
samples belonging to the Short class are data samples from the short-circuit phases
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of the welding process, before rupture begins between the electrode and workpiece.
The False Short class is for data samples belonging to short-circuit periods that are
deemed to short to be a proper short-circuit period and hence are not suited to provide
proper training or testing data samples, as samples from such periods are suspected
to be more irregular. Lastly, the Rupture class is for data samples obtained in the
last segment of a short-circuit period, where the electrode rupture more and more
from the workpiece just before free burn occurs. In this manner any data samples
belong to one class only.
The short-circuit Flag has a value of "0" when it is estimated that the welding
process is in the arcing phase, and a value of "1" when it is estimated to be in short-
circuit phase, see Figure 2.2 for and example. Based on these Flag values, the data
samples are divided into classes by the algorithm below. In the algorithm shortLength
refers to the minimum length of a short-circuit phase, for it to be deemed a proper
short-circuit period, ruptLength refers to the length of the rupturing period, Figure
3.2 illustrates these period lengths. Unless otherwise specified, given in number of
samples, shortLength = 30 and ruptLength = 10. The shortLength is picked to
allow the welding process to properly settle into the short-circuit phase, while the
ruptLength is picked due to the requirement of predicting the start of free burn 5
samples early, by then setting the ruptLength = 10 it can be investigated how early
the prediction is possible. Algorithm for class-division by short-circuit Flag:

1. Find next short-circuit period in the short-circuit Flag, a data sample with Flag
value of "1".

2. Determine the length of the short-circuit period, the length of the sequence of
"1".

3. If the short-circuit period is longer than shortLength, then label the last ruptLength
samples in the short-circuit period with class label c4, signifying a rupture pe-
riod, then label the prior samples in the short-circuit period with class labe
c2. Otherwise label samples in the short-circuit with class label c3, signifying a
false short.

4. Go back to Step 1. until no more short-circuit periods are found.

5. When no more short-circuit periods are found: Label the unlabelled samples
with class label c1, signifying arcing period.
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Figure 3.2: Illustration of a short-circuit period of length shortLength, with a rupture period of
length ruptLength

For one data set Figure 3.3 shows the distribution of data samples of the various
classes upon current and voltage measurement values, while Table 3.1 shows the
proportion of each class within the data set. From Figure 3.3 it is evident that while
the measurement samples of each phase of the welding process is somewhat grouped,
there is a large overlap in the measurement samples meaning the data belonging the
various phases are not easily separated.
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Figure 3.3: Distribution of the various classes for one data set upon current and voltage measure-
ment values

Class Proportion - Samples Proportion - %
Arc 245062 81.8371
Short 45375 15.1527
False Short 4074 1.3605
Rupture 4940 1.6497

Table 3.1: Proportion of the various classes for one data set

In the project work presented, focus lies on distinguishing the Short class from the
Rupture class, as there already are good means at available to determine whether the
welding process has entered the short-circuit phase. The difficulty lies in being able
to predict the free burn of the welding process, marking the end of the short-circuit
phase, based on being able to determine the welding process having entered the rup-
ture period within the short-circuit phase. Therefore features extracted, described
in this chapter, are evaluated only in terms of their relevance to the classes Short
and Rupture, and any classification of data will be concerning classification to these
classes.

Following data pre-processing and division into classes, additional features for the
purpose of classification, can be extracted from the data.
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At first expected feasibility for extraction of features suitable as base for classifica-
tion from the data samples belonging to the period when rupture is ongoing, i.e. the
last part of the short-circuit phase before free burn, is analysed by looking into the
stochastic properties of those data samples.

3.1.1 Stochastic Properties

Before extracting features from the data, it is worth looking into the randomness of
the data leading up to a rupture to ascertain whether they exhibit kinds of patterns
making it seem feasible from them to extract feature on which to base a classifica-
tion. This is done by first identifying when a rupture occurs, and then looking at the
samples obtained in the last time interval leading up to the rupture. For the data
sets provided by Migatronic A/S, this creates more than 500 small rupture data sets
for each measurement type, i.e. voltage, current. By examining at both the auto-
and cross-covariance of these rupture data sets, it is possible to determine whether
they contain any repeating features or patterns or whether they resemble white noise
with no dominant pattern in the signal leading up to a rupture. The Matlab function
xcov() is used to calculate both the auto- and cross-covariance.

By computing the auto-covariance for the rupture data sets and comparing it to
the auto-covariance of white noise, it is possible to determine whether there is any
correlation between the samples in each data set. The auto-covariance is calculated
for the voltage data sets. Here rupture data sets with a length of 25 samples are
used, meaning the data sets each comprises the last 25 samples before rupture/free
burn occurs, ending the short-circuit period. Figure 3.4 shows the auto-covariance of
4 random data sets. By comparing the auto-covariance of the data sets, it is clear
there is some correlation between the samples in the data sets, indicating there is
some degree of pattern in the voltage signal leading up to a rupture. The reasoning
behind comparing the stochastic properties of a period 25 samples here, compared
to the ruptLength of 10 samples in Section 3.1, is to determine how early a pattern
develops, while in the prior section the class division is done to avoid an abundance
of non-rupture samples being labelled as rupture samples.
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Auto-covariance of rupture data
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Figure 3.4: Normalised auto-covariance for 4 voltage rupture data sets from random ruptures, all
with a sample lengths of 25 samples

There is however some differences between the auto-covariance of the different data
sets, indicating there is some variance in the pattern of the voltage signal leading up
to a rupture. One way to analyse this, is to look at the cross-covariance for pairs of
the data sets.

By computing the cross-covariance for pairs of the data sets, it is possible to determine
whether there is any correlation between the samples in one data and the samples in
another data set. Here the cross-covariance is calculated for voltage data sets with a
length of 25 samples. Figure 3.5 shows the cross-covariance for 8 random data sets,
randomly paired. By comparing these with the auto-covariance, it can be seen that
some correlation exits between the different sets.
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Cross-covariance of rupture data
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Figure 3.5: Normalised cross-covariance for random pairs of 8 voltage rupture data sets from
random ruptures, all with a sample length of 25 samples.

Again, even though there is some difference between the cross-covariance of the dif-
ferent pairs of data sets, there is still a clear tendency, due the similarity to the
auto-covariance of the rupture data sets.
Both the auto- and cross-covariance has been calculated for multiple data sets, respec-
tively pairs of data sets, and the results all show the same tendency. The repeating
tendencies indicate that the samples leading up to a rupture contain some degree
of fixed or common features or patterns and are not completely random. Hence it
make senses to it makes sense to search or these features by extracting a number
of candidate features, and to look at the importance of these for the prediction of
ruptures.
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3.2 Feature Extraction

In the first phase of the feature extraction process, features that can be extracted from
the current and voltage measurements sample-by-sample are investigated. The first
two features are the current and voltage measurements, used following the the afore-
mentioned pre-processing in Section 3.1. The total list of features here investigated
is:

• Current, I

• Voltage, U

• I2 + U2

• Power, P = I · U

• Voltage Time Gradient, dUdt

• Resistance, R = U
I

The above features are all obtained by simple operations on the current and voltage
measurements. Figure 3.6, shows the various features plotted for a short example
section. Estimated rupture periods in the data is indicated by the red highlighting,
determined by the labelling of data samples in Section 3.1. As can be seen, several of
these features seem visually to be just scaled versions of the original current or voltage
signals, however it is visible that some parts of the signal have been scaled differently
than other parts. It is assumed, these features will be relevant to class separation
and classification. An analysis is later conducted to determine the relevance of the
extracted features, and whether they are each redundant in relation to other features.
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Figure 3.6: Plots of the extracted sample-by-sample features for a short example section. Rupture
periods are highlighted in red
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3.2.1 Statistical Feature Extraction

In addition to the in Section 3.2 aforementioned sample-by-sample features, several
statistical features are also extracted from the measurement data, in particular from
the voltage data: Further on in the report all discussions of statistical features in
relation to welding data sets are based on voltage data In [12], 11 statistical features
are extracted from an electrical signal for identification of classes of stimuli on plants.
These features can be relevant to the the stimuli resulting in patterns or features in
the electrical signal, although the sequences of data samples investigated are much
longer. Several of these statistical features are extracted from the electrical signals,
that is, the voltage measurements, in the data sets available for this project. The
voltage signal is chosen as base instead of the current signal, since the signal signature
in the transition from short-circuit to free burn is more abrupt. The following is a
list of the extracted statistical features.

• Sample Mean

• Sample Variance

• Sample Skewness

• Sample Kurtosis

• Hjorth Parameters

– Mobility

– Complexity

• Interquartile Range

Contrary to the first set of sample-by-sample features extracted, these statistical
features are computed by evaluating the respective measures for the features over a
sliding window of samples, rather than based on one sample at a time.
E.g. the set of available voltage measurements in a data set is denoted as:

U = (u1, ..., un)

By positioning the sliding window so that in the first position, for computation of the
first feature value, the window includes only the first data sample, and for each new
position, for each computation of a subsequent feature value, moving the window one
data sample forward in time, the first iterations of the feature computation will not
be based on a full window of samples. In general, the set of data samples included,
here voltage measurements, included in the computation of the ith feature value is:

UN =

{
(u1, ..., ui), if i ≤ N
(ui−(N−1), ..., ui) otherwise

(3.1)
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The length of the window is theN samples, and the overlap between window positions
as outlined in Eq. (3.1), is N −1 samples, such that a feature value will be computed
for every measurement sample.
The following gives a short description of the various features and how they are
computed. In the computation formulas Eq. (3.2)-(3.8), xi is the ith sample in the
sliding window.

Mean

The mean is the sample mean of the N samples in the window. The sample mean is
computed as:

x =
1

N

N∑
i=1

xi (3.2)

Variance

The variance is the sample variance of the N samples in the window. The sample
variance is computed as:

Var(x) =
1

N − 1

N∑
i=1

(xi − x)2 (3.3)

Skewness

The sample skewness [13], is a measure of the asymmetry of the value of the data
samples around the sample mean. If the sample skewness is negative, the distribution
of data values is spread out more to the left of the sample mean, than to the right.
If the skewness is positive, the distribution of data values is spread out more to the
right side of the sample mean , covering more values above the mean value, than
to the left side. If the distribution is normal, then the skewness is 0. The unbiased
sample skewness is defined as Eq. (3.4).

Skew(x) =

√
N(N − 1)

N − 2

1
N

N∑
i=1

(xi − x)3

(√√√√ 1
N

N∑
i=1

(xi − x)2
)3

(3.4)

Kurtosis

The sample kurtosis [13], is a measure of how prone the distribution is to outliers.The
sample kurtosis of a normal distribution is 3. Distributions more prone to outliers
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have a kurtosis larger than 3, while distribution less prone to outliers has a kurtosis
less than 3. The unbiased sample kurtosis is defined as Eq. (3.5).

Kurt(x) =
N − 1

(N − 2)(N − 3)
((N + 1)

1
N

N∑
i=1

(xi − x)4

(
1
N

N∑
i=1

(xi − x)2
)2
− 3(N − 1)) + 3 (3.5)

Hjorth Parameters

The Hjorth parameters, activity, mobility, and complexity, are three parameters orig-
inally defined to describe general characteristics in an EEG trace [14], however they
could be suitable as features in other signal processing tasks as well. The parameters
quantify characteristics of a signal based on variance of the signal amplitude, and
variance of the first and second derivative of the signal.
The activity of a signal is the variance of the amplitude, which is already included as
a feature and accounted for above.
The mobility is the square root of the ratio between the variance of the first deriva-
tive and the variance of the amplitude, see Eq. (3.6). This ratio is a measure of the
average curve slope.
The complexity is the ratio between the mobility of the first derivative of the signal,
and the mobility of the signal itself, see Eq. (3.7). The parameter is a measure of
the similarity of the signal to a pure sine wave, where the minimum value of the
parameter, 1, corresponds to a pure sine wave.

Hmob(x) =

√
V ar(dxdt )

V ar(x)
(3.6)

Hcomp(x) =
Hmob(

dx
dt )

Hmob(x)
(3.7)

Interquartile Range

The interquartile range (IQR), is the range or difference between the 75th and 25th
percentiles or upper and lower quartiles. Given a set of en even 2n values, or a set of
an odd number of values, 2n+1 valuues, then the first quartile Q1 equals the median
of the n smallest values and the third quartile Q3 equals the median of the n largest
values. Then the interquartile range IQR equals the difference between Q1 and Q3,
i.e. Eq. (3.8) [15].

IQR = Q3 −Q1 (3.8)
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Finding Optimal Window Length N

It is necessary to determine the optimal length N of the sliding window, in terms
of relevance to classification, for the computation of the aforementioned statistical
features. In order to determine the best value for N , the relevance of each feature
computed for various value of N is quantified. Additionally a simple classification
model is fitted to the computed feature values, and performance measures quantifying
the classification performance are computed, using a tenfold cross-validated feature
set for each window length N . Section 3.2.2 outlines a method of evaluating the
relevance of features to a classification problem.

3.2.2 Minimum Redundancy Maximum Relevance

To evaluate the relevance of a feature set for a classification, it is necessary to deter-
mine a method of quantifying this relevance. On such method is the Minimum Re-
dundancy Maximum Relevance (mRMR) [16] feature selection method. The mRMR
method aims to find the subset of features S, from the set of features F , that con-
tains the features with maximum relevance for the targeted classes and the minimum
redundancy with respect to each other. For two variables, x and y, the mutual infor-
mation, Eq. (3.9), is based on joint probabilities, p(x, y) and marginal probabilities,
p(x) and p(y).

I(x, y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
(3.9)

For features and targeted classes, if a feature is strongly differently expressed for
different targeted classes, the mutual information is large, while if the expression of the
feature is random or uniform for the different targeted classes, the mutual information
is zero. Recall that C is the set of targeted classes. The mutual information condition
to maximize, to maximize relevance for all features in S is given as:

VS =
1

|S|
∑
fi∈S

I(C, fi) (3.10)

Hence, what is sought is:

maxVS = max
( 1

|S|
∑
fi∈S

I(C, fi)
)

(3.11)

Where |S| is the number of features in S and I(C, fi) is the mutual information of
the classes in C with respect to feature fi, calculated as:

I(C, fi) =
∑
c∈C

p(c, fi) log
p(c, fi)

p(c)p(fi)
(3.12)

The mutual information is also to used as a measure of similarity between features.
Ideally the features should be mutually maximally dissimilar. That is, the mutual
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information between features in S should be minimised. Then, the redundancy con-
dition for S to strive for is given as:

minWS = min
( 1

|S|2
∑

fi,fj∈S
I(fi, fj)

)
(3.13)

However, finding S using Eq. (3.11) and (3.13) directly, ideally requires an exhaustive
search considering all 2|F | feature combinations. Instead the features are ranked using
the mutual information quotient (MIQ):

MIQ =
( I(C, fi)

1
|S|

∑
fj∈S

I(fi, fj)

)
(3.14)

MIQ expresses the ratio of the relevance of a feature fi to the redundancy of this
feature fi to the other features fj in S, where the numerator and denominator in
Eq. (3.14), given by Eq. (3.15) and Eq. (3.16) are the relevance and redundancy
conditions to optimise when adding an additional feature fi to S.

Relevance of feature fi: Vfi = I(C, fi) (3.15)

Redundancy of feature fi: Wfi =
1

|S|
∑
fj∈S

I(fi, fj) (3.16)

The features in F are then ranked as follows [17]:

1. The feature with the highest relevance maxfi∈F Vfi is added to the empty feature
set S.

2. Then features in Sc, where Sc is the complement of S within F , i.e. Sc consists
of the features in F not in S, with non-zero relevance to C, Eq. (3.15), and
zero redundancy to the features already added to S, Eq. (3.16), is found.

• If Sc has no features with non-zero relevance and zero redundancy, go to
4.

• Otherwise add to S the feature with highest relevance and zero redun-
dancy, i.e. the feature with maxfi∈Sc,Wfi

=0 Vfi .

3. Repeat 2. till no more features with zero redundancy are in Sc.

4. Select the feature in Sc with largest MIQ value and non-zero redundancy, i.e.
the feature with maxfi∈ScMIQ and add it to S.

5. Repeat 4. till no more features with non-zero relevance remains in Sc.

6. Add the remaining features in Sc to S is random order.
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From the ranked set of features S, the features with largest relevance and lowest
redundancy can then be selected.

In Table 3.2, the mRMR feature importance scores based on voltage data for the
various features for window length N = 4, ..., 10 is shown, together with the average
of feature scores for each value of N . The highest score for each feature is highlighted
with red. For essential features, the feature importance score is defined by their
relevance Vfi , for features with some redundancy the scores are the MIQ values.
In Table 3.2 an indication is seen that N = 4 provides the best feature importance
scores. It is of interest to determine whether further decreasing of the window size
would result in an even better feature importance score. However, the skewness and
kurtosis feature need minimum 3 and 4 samples respectively for their computation.
Therefore, an mRMR test is performed forN = 2, ..., 10 where the two aforementioned
features are excluded. These features also have the lowest individual feature scores,
so not a significant amount of information is lost by excluding these.

N 4 5 6 7 8 9 10
Mean 0.1257 0.1228 0.1199 0.1175 0.0698 0.1033 0.1098
V ar 0.0563 0.0221 0.0240 0.0204 0.0884 0.0578 0.0798
Skew 0.0232 0.0068 0.0051 0.0335 0.0084 0.0121 0.0182
Kurt 0.0060 0.0038 0.0007 0.0014 0.0011 0.0000 0.0013
Mob 0.0696 0.0354 0.0290 0.0260 0.0306 0.0415 0.0431
Comp 0.0863 0.0873 0.0854 0.0866 0.0394 0.0800 0.0843
IQR 0.0591 0.0436 0.0335 0.0259 0.0290 0.0408 0.0563
Average 0.0609 0.0460 0.0425 0.0445 0.0381 0.0479 0.0561

Table 3.2: mRMR feature importance scores for various window lengths N . Highest scores high-
lighted with red

The results of the second mRMR test is shown in Table 3.3. The scores indicate
that with a window length N = 2, the features in general have the highest relevance,
closely followed by N = 3. It is noteworthy that V ar has a higher score for N = 10

in both Table 3.2 and 3.3, likewise for Comp in Table 3.3. It should be noted that
the skewness feature could have been included at N = 3. However, to properly
determine the skewness and kurtosis, a larger sample size than what is of interest
here is necessary. Therefore these two features are excluded for classification in work
further on. It is important to note, that when the statistical features are considered
together with the the sample-by-sample features, the feature importance scores may
differ, as the latter features may have higher relevance and imply an increase in the
redundancy of the statistical features to the then combined set of features.
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N 2 3 4 5 6 7 8 9 10
Mean 0.1317 0.1122 0.1257 0.1228 0.1199 0.1175 0.0690 0.1033 0.1098
V ar 0.0758 0.0429 0.0546 0.0216 0.0237 0.0267 0.0884 0.0571 0.0787
Mob 0.0858 0.0505 0.0675 0.0345 0.0287 0.0317 0.0303 0.0411 0.0425
Comp 0.0744 0.0544 0.0837 0.0851 0.0844 0.0850 0.0389 0.0791 0.0832
IQR 0.0721 0.0783 0.0573 0.0425 0.0331 0.0329 0.0287 0.0404 0.0556
Average 0.0880 0.0676 0.0778 0.0613 0.0580 0.0588 0.0511 0.0642 0.0740

Table 3.3: mRMR feature importance scores for various window lengths N . High scores highlighted
with red

3.2.3 Naive Bayes Classifier

In addition to the feature importance scores from the mRMR algorithm, the effect of
the window length N is also evaluated for classification based only on the statistical
features for window lengths N = 2, ..., 10.
For classification the Naive Bayes classifier is employed. The classifier is "naive" as
given a class ck, the features f1, ..., fP are assumed independent [18]. Generally this
assumption does not hold, and certainly not in the case of the derived statistical
features, however the classifier still in many cases performs well, often outperforming
more sophisticated methods [18].
The Naive Bayes algorithm assigns a new observation to a class by estimating the
posterior probability for each class, and then assign the observation to the most
probable class, i.e. applying a maximum a posteriori decision rule. The Naive Bayes
classifier algorithm is as follows [19]:

1. Estimate the probability density of each feature for each class

2. Model the posterior probability for a new observation to belong to a given class
according to Bayes rule Eq. (3.17):

P̂ (Y = k|X1, ..., XP ) =

P (Y = k)

P∏
j=1

P (Xj |Y = k)

K∑
k=1

P (Y = k)

P∏
j=1

P (Xj |Y = k)

(3.17)

Where:

• k = 1, ...,K are the class indices for the classes available c1, ..., cK .

• Y is the random variable corresponding to the class of an observation, i.e.
one class amongst c1, ..., cK .

• X1, ..., XP is a random observation of the features f1, ..., fP .
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• P (Y = k) is probability for class k.

• P (Xj |Y = k) is the probability for feature fj having the observed value
Xj given the class is ck.

3. Classify the observation by estimation of the posterior probability for each class,
calculated using Eq. (3.17), then assign the observation to the class with the
maximum posterior probability.

For a Gaussian Naive Bayes, where the probability densities of the features are esti-
mated as Gaussian distributions, the probability P (Xj |Y = k) is calculated as Eq.
(3.18)[20].

P (Xj |Y = ck) =
1√

2πσ2
jk

exp (−

(
Xj − µjk)2

2σ2
jk

)
(3.18)

Where:

• µjk is the mean of feature fj in class ck.

• σ2
jk is the variance of feature fj in class ck

Such as Gaussian Naive Bayes classifier is employed for this classification problem.
To use the classifier to assign classes to new observations, training data is necessary,
to estimate the densities the feature/class combinations.

K-fold Cross-Validation

When evaluating the performance of a classification model, ideally one data set, which
explains the different phenomena of the data distribution well, is used for training the
model, and another set is used for estimating the error rate of the model. By applying
the cross-validation method, the classification model can be trained and validated on
the the same data set, by using different data partitions for training and validation,
and then performing several iterations of training and validating, such that in the
end the model has been validated on the entire data set.
One partition scheme for cross-validation is K-fold cross-validation [18]. In K-fold
cross-validation, the data is partitioned into K partitions, then for the kth iteration,
the model is validated on the kth partition, while having been trained on the other
K − 1 partitions. Figure 3.7, illustrates the data partitioning and cross-validation
iterations of a five-fold cross-validation scheme.
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Figure 3.7: Illustration of five-fold cross-validation of a data set. Blue partitions are training data,
green partitions are validation data. CV k signifies the kth iteration of the cross-validation.

For the evaluation of the Naive Bayes classifier described above a ten-fold cross-
validation scheme is employed, as it is recommended as a good compromise be-
tween model bias and variance [18]. Furthermore, the cross-validation partitioning is
stratified, such that the proportion of each class in each partition is roughly equal.
After cross-validation, an estimate of the performance of the classifier on the entire
data set is obtained.

Classification Performance Measures

To quantify the performance of the classification model, the performance measures,
sensitivity, specificity, precision and accuracy, are computed [21]. In this case, the
performance measures are evaluated for the binary classification problem with the
"Short" and "Rupture" classes, where the "Rupture" class is considered the positive
class and "Short" is considered the negative class.

Sensitivity or True Positive Rate (TPR), is the proportion of samples belonging
to the positive class that was correctly identified as such. Values close to 1 is better.

Specificity or True Negative Rate (TNR), is the proportion of samples not be-
longing to the positive class, that was correctly identified as such. Values close to 1
is better.
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Precision or Positive Predictive Value (PPV), is the proportion of samples cor-
rectly identified to belong to the positive class, out of all samples identified to belong
to that class. Values close to 1 is better.

Accuracy (ACC), is the proportion of samples that correctly identified to belong
to the positive class plus samples correctly identified to not belong to the positive
class, out of all samples in the population. Values close to 1 is better.

The performance measures are calculated as follows:

TPR =
TP

TP + FN
(3.19)

TNR =
TN

FP + TN
(3.20)

PPV =
TP

TP + FP
(3.21)

ACC =
TP + TN

TP + TN + FP + FN
(3.22)

Where:

• TP are True Positives, samples correctly identified to belong to the positive
class.

• TN are True Negatives, samples correctly identified to not belong to the positive
class.

• FP are False Positives, samples incorrectly identified to belong to the positive
class.

• FN are False Negatives, samples incorrectly identified to not belong to the
positive class.

An example confusion matrix for the binary classification system, with the "Rupture"
class considered the positive class is shown in Figure 3.8.
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Figure 3.8: Example confusion matrix for binary classification problem with positive class, "Rup-
ture", and negative class, "Short".

The performance measures for the binary classification problem, with decisions "Rup-
ture", or "not-Rupture (Short)" are shown in Table 3.4, red highlighted values are
better. It is apparent that a trade-off between measures have to be made. Two mea-
sures, PPV and ACC have maximum values for N = 3, one measure at, TNR, has
maximum at N = 2, and only a little less for N = 3, while the measure TPR has
maximum value for N = 10 and nearly one third less for N = 3. Since for all mea-
sures higher values are better, an average of the performance measures for each N is
computed, higher averages being better. From the average measure, N = 3 performs
better by a significant margin to the other values of N , and is therefore chosen as the
best performing window length for the Naive Bayes classifier test, supported also by
the PPV and ACC, measures, and to a major degree the TNR measure, as remarked
above.

N 2 3 4 5 6 7 8 9 10
TPR 0.2130 0.6573 0.8231 0.8755 0.8994 0.9107 0.9229 0.9300 0.9358
TNR 0.9683 0.9395 0.7399 0.5471 0.4163 0.3427 0.3029 0.2826 0.2707
PPV 0.4225 0.5420 0.2562 0.1739 0.1436 0.1311 0.1260 0.1237 0.1226
ACC 0.8941 0.9118 0.7481 0.5794 0.46377 0.3985 0.3638 0.3462 0.3360
Average 0.6245 0.7627 0.6418 0.5440 0.4808 0.4458 0.4289 0.4206 0.4163

Table 3.4: Naive Bayes classification performance measures for various window lengths N . Highest
scores are highlighted in red.

Recall,in the the mRMR importance test, Section 3.2.2, the best performing window
length was N = 2, closely followed by N = 3. Since, in the Naive Bayes classifier
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test, the performance is significantly better at N = 3, then even though the mRMR
test indicates higher average score for N = 2, N = 3 is chosen as window length for
the work further on.
From both the mRMR importance test, and the Naive Bayes classifier test, it is
concluded that the window length N = 3 has the best performance. Examples of the
extracted statistical features with N = 3 is shown in Fig. 3.9.
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Figure 3.9: Plots of the extracted statistical features for a short example section. Rupture periods
estimated in data preprocessing, Section 3.1, of length 10 samples are highlighted with red

3.3 Rupture Period Ensemble Correlation

A somewhat different approach to the estimation of rupture periods in the welding
data signals is to apply a method based on rupture period ensemble correlation: By
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creating a template rupture period signal, rupture periods can be identified in the
welding process data by finding periods in the signal with high correlation to the
template rupture period signal [22]. Intuitively, it makes sense to create the template
rupture period signal, using the rupture period data from the actual welding data,
based on the pre-segmentation of this into rupture periods and others obtained in the
data pre-processing Section 3.1.
Three approaches are taken to create the template signal.

1. Ensemble mean of the rupture period.

2. Ensemble median of the rupture period.

3. Ensemble quartile mean: discarding data below the first quartile and above
the the third quartile, to eliminate outlier samples in calculation of the mean
values.

Recall, all rupture periods found in the data pre-processing are of the same fixed
length of 10 samples. An ensemble here is the set of all data samples of same location
in time within the rupture period to which they belong, respectively. E.g. one
ensemble is the set of all samples being the first sample in a rupture period. An
ensemble mean sample value is then the mean value of the data values of all samples
in a specific ensemble. And the ensemble mean of the rupture period is the signal
synthesised by the sequence of ensemble mean values, in the order of the data samples
on which they are based. Similar for ensemble median and ensemble quartile mean
of the rupture period.
The resulting template signals are shown in Figure 3.10.

1 2 3 4 5 6 7 8 9 10

Rupture Period Sample

9

10

11

12

13

V
o

lt
a

g
e

 [
V

]

Rupture Period Ensemble

Ensemble Mean

Ensemble Median

Ensemble Quartile Mean

Figure 3.10: Rupture period ensemble mean, ensemble median, and ensemble quartile mean.

To determine which of the three approaches results in the best performing template,
and whether the entire template signal should be employed, the mRMR algorithm,
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see Section 3.2.2, is used to quantify the performance of the correlation coefficient
between the welding process data and the template signal of each approach, for a
range of sub-parts of the template signal. In the mRMR algorithm the correlation
coefficient of the three approaches are evaluated against each other for calculation of
redundancy. The resulting mRMR feature importance scores are shown in Table 3.5.
The samples parameter indicate the interval of samples being used from the template
signal. The number of samples directly influence the length of the template signal,
and therefore also the corresponding length of the welding process data window being
investigated, i.e. correlation with the template.
The results show the best performing template is the ensemble quartile mean of the
rupture period, where the entire length of the template signal is used. This correlation
coefficient is then added to the feature set for classification.

Samples 1-5 1-6 1-7 1-8 1-9 1-10 2-10 3-10 4-10 5-10 6-10
Mean 0.0608 0.670 0.0541 0.1197 0.0863 0.0722 0.0677 0.0618 0.0571 0.0523 0.0523
Median 0.0928 0.1009 0.0724 0.0792 0.1295 0.0908 0.0860 0.0806 0.0744 0.0674 0.0610
Quartile 0.0609 0.0663 0.1093 0.0534 0.0854 0.1363 0.1292 0.1210 0.1118 0.1017 0.0924

Table 3.5: mRMR feature importance scores for a range of sub-parts of the rupture period ensemble
signal. The highest score is highlighted in red

An example of the correlation coefficient signal for the best performing template,
ensemble quartile mean of full length, computed by windowing the original welding
data, and computing the correlation with the template signal, is shown in Figure
3.11.
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Figure 3.11: Plot of the rupture correlation coefficient for the ensemble quartile mean template of
full length for an example section of a voltage data set. Rupture periods are highlighted in red.

3.4 Feature Relevance and Redundancy

From the feature extraction process, the 12 features for further consideration are as
follows:
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f1 = Current, I

f2 = Voltage, U

f3 = I2 + U2

f4 = Power, P

f5 = Voltage Time Gradient, dUdt
f6 = Resistance, R

f7 = Sample Mean of U

f8 = Sample Variance of U

f9 = Hjorth Mobility of U

f10 = Hjorth Complexity of U

f11 = Interquartile Range, IQR of U

f12 = Rupture Correlation of U

The set of features for classification is then F = {f1, f2, ..., f12}.
This section aims to analyse the various features and quantify the relevance of the
features before used for classification.

3.4.1 Sample Correlation Coefficient Matrix

For all features, a sample correlation test is carried out to investigate the interdepen-
dence of the various features. The test is conducted by calculation of for all pairs of
features the Pearson correlation coefficient; for two features x and y given as rxy in
Eq. (3.23) [23]:.

rxy =

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2
n∑
i=1

(yi − y)2

(3.23)

Where:

• xi = the value of feature x for data sample i.

• x = the mean value of feature x for all data samples.

From the calculated coefficients the correlation coefficient matrix is constructed for
the set of features. This a matrix with the correlation coefficients for each pairwise
feature combination, as exemplified in Eq. (3.24) for a feature set of of two features:

R =

[
rxx rxy
ryx ryy

]
(3.24)

For the features computed from one data set, the correlation coefficient matrix is
shown in Table 3.6. The correlation coefficient is in the range of ±1, where 1 is total
positive linear correlation, 0 is no linear correlation, and −1 is total negative linear
correlation. As the order of the features in the Pearson correlation coefficient Eq.
(3.23 is irrelevant, that is rf1,f2 = rf2,f1 , the matrix symmetric, and only the upper
triangular matrix is shown.
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It is notable from Table 3.6, that multiple features are highly correlated, especially
f1 and f2 being highly correlated with several of the non-statistical features. This
is expected, as it was previously concluded that several features are to some degree,
scaled features of the original data. It also expected that f2 and f7 are positively
correlated, since f7 is mainly f2 after moving average filtering.
It cannot be determined solely based on the sample correlation test, which features
should be selected for classification purposes, as the correlation shows only the re-
dundancy of the one feature in comparison to another. It is also necessary to evaluate
the relevance of each feature, to the targeted classes.

Features f1 f2 f3 f4 f5 f6

f1 = I 1.00 0.2910 0.9975 0.7548 0.2944 -0.1439
f2 = U ? 1.00 0.3052 0.8412 -0.1631 0.7411
f3 = I2 + U2 ? ? -0.3950 0.2641 -0.4257 1.00
f4 = P ? ? ? 1.00 0.0932 0.2641
f5 = dU

dt ? ? ? ? 1.00 -0.4257
f6 = R ? ? ? ? ? 1.00
f7 = Mean ? ? ? ? ? ?

f8 = V ar ? ? ? ? ? ?

f9 = Mob ? ? ? ? ? ?

f10 = Comp ? ? ? ? ? ?

f11 = IQR ? ? ? ? ? ?

f12 = Rupt.Corr. ? ? ? ? ? ?

Features f7 f8 f9 f10 f11 f12

f1 = I 0.1495 -0.3123 -0.3659 0.3649 -0.3260 0.4398
f2 = U 0.9545 0.5530 0.1747 -0.2101 0.5712 0.1678
f3 = I2 + U2 0.1677 -0.2930 -0.3459 0.3448 -0.3051 0.4287
f4 = P 0.7209 0.1763 -0.1082 0.0852 0.1895 0.3764
f5 = dU

dt -0.4274 -0.7116 -0.7829 0.8274 -0.6218 0.4825
f6 = R 0.8152 0.7810 0.4681 -0.5024 0.7977 -0.1830
f7 = Mean 1.00 0.7439 0.4389 -0.4793 0.7416 -0.0299
f8 = V ar ? 1.00 0.7825 -0.8230 0.9687 -0.4088
f9 = Mob ? ? 1.00 -0.9657 0.7660 -0.6115
f10 = Comp ? ? ? 1.00 -0.8033 0.5889
f11 = IQR ? ? ? ? 1.00 -0.3995
f12 = Rupt.Corr. ? ? ? ? ? 1.00

Table 3.6: Feature sample correlation coefficients matrix

To quantify the relevance of the feature set to the targeted classes, the mRMR al-
gorithm, see Section 3.2.2, is once again employed. However this time with the full
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feature set, that is S = F . The ranked features in S are shown in Fig. 3.12 along
with the resulting feature importance scores. A large score value indicates the corre-
sponding feature is important, furthermore, a large drop in score value from feature
fi to feature fj indicates confidence in the importance of feature fi.

It is evident that f12, Rupt.Corr., is the most important feature, followed by the
features f4, P , and f5, dU

dt . Though the remaining features do not seem of great
importance from the mRMR results in Figure 3.12, it is in Section 5.1.5 investigated
whether discarding or keeping them has an effect on classification.
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Figure 3.12: Feature ranking based on mRMR

3.5 Chapter Summation

In this chapter, a set of 12 features are extracted from the original welding data,
including the current and voltage measurements. Included in this set of features are
7 sample-by-sample features, i.e. features computed sample-by-sample from the orig-
inal data. Additionally 5 statistical features are extracted. These statistical features
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are computed from a window of samples from the original voltage measurements. For
these statistical features, it is found that the optimal window length was N = 3 sam-
ples. A template rupture period voltage signal is created from ensemble mean values,
and the correlation between the template signal and the welding process voltage data
is computed and added as a feature. The correlation, relevance and redundancy of the
complete feature set is examined, and it is concluded that all extracted features could
be of some significance in classification of samples in the short-circuiting phase of the
welding process into classes "Rupture" respectively "Short", i.e. "not-Rupture". The
following chapter is exploring the possibility of adding features by state observation.





Chapter 4

System State Observation

This chapter looks into increasing the number of features available for classification
by estimation of system parameters and states, while also incorporating the current
measurements in the estimations. The system parameters and states are estimated
with a kalman filter, based on models presented in Chapter 2.

4.1 State Space Representation

Migatronics already uses a kalman filter to estimate system resistance and induc-
tance, based on on a simplified version of Eq. (2.1). The purpose of the kalman filter
employed in the work here presented is to estimate "hidden" system states, like the
cross-sectional area of the metal bridge neck, apparent in the short circuiting phase.
In order to use a kalman filter to estimate these parameters, a complete state space
model is set up.

Chapter 2 presents continuous time models for the different parts of the welding
system. One of these models is the electrical model for the welding system in short
circuit mode and was given by Eq. (2.5).

Uc(t) = RI(t) + Lİ(t) + I(t)
ρl

A(t)
(4.1)

Where:

Uc = control voltage [V ]
I = current [A]
İ = time derivative of current [As ]
R = Rm +Rw +Re = combined resistance [Ω]
L = Lm + Lw = combined inductance [H]
A = cross-sectional area of the neck of the metal bridge [m2]
ρ = resistivity of the eletrode material [Wm]

49
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l = Distance from eletrode tip to workpice (length of the metal bridge [m]

The cross-sectional area of the neck, A(t) is an unknown system state, so it has to be
estimated by the kalman filter. For this A(t) is added as a seperate state equation.
In Appendix C it is discovered that the pinching of the neck does not happen at
a constant rate. One way to model this is as a negative integral, multiplied with
constant, as in Eq. (4.2). The bridge length l might not be a true constant, but as
it’s variations are quite small, it will be considered a constant.

A(t) = −c
∫ t

0
I(t)dt⇒ Ȧ(t) =

d

dt

(
−c
∫ t

0
I(t)dt

)
= −cI(t) (4.2)

To make sure that the system is propper, the pole/zero placement is checked. This is
done by finding the transfer function for the system. The first system state equation,
U̇c(t) has two inputs: I(t) and A(t), while the second system state equation, ˙A(t)

only has I(t) as input. However, as Eq. (4.1) is non-linear, it has to be linearized
before it can be Laplace transformed.

Uc(t) = RI(t) +Lİ(t) + I(t)
ρl

A(t)
≈ Ûc(t) = RÎ(t) +L

˙̂
I(t) +

ρl

Ā
Î(t)− ρlĪ

Ā2
Â(t) (4.3)

Eq. (4.3) shows the small signal approximation. Similar is done to Eq. (4.2), but as
it is already linear, A(t) and I(t) is simply replaced with Â(t) and Î(t). Now that
the equations are linearized, they can be Laplace transformed:

L
{
Ûc(t) = RÎ(t) + L

˙̂
I(t) +

ρl

Ā
Î(t)− ρlĪ

Ā2
Â(t)

}
⇒

Ûc(s) = RÎ(s) + sLÎ(s) +
ρl

Ā
Î(s)− ρlĪ

Ā2
Â(s)

L
{

˙̂
A(t) = −cÎ(t)

}
⇒ sÂ(s) = −cÎ(s)

(4.4)

Now that the state equations have been Laplace transformed, they can be turned
into a transfer function, by first finding a transfer function for each input/output
combination for the different states in Eq. 4.4, and then combining them into one
transfer function, as shown on Figure 4.1.



4.1. State Space Representation 51

H1(s) =
Ûc(s)

Î(s)
= sL+R+

ρl

Ā

H2(s) =
Ûc(s)

Â(s)
= −ρlĪ

Ā2

H3(s) =
Â(s)

Î(s)
= −c

s

H(s) =H1(s) + (H3(s)H2(s)) = sL+R+
ρl

Ā
+
ρlcĪ

Ā2s

=
s2LĀ2 + s(RĀ2 + ρlĀ) + Īρlc

sĀ2

(4.5)

One combined transfer function, H(s), is possible because both U̇c(t) and ˙A(t) have
I(t) as input. Figure 4.1 shows a system block diagram for the entire system from
current input to voltage output.

H1

H3 H2
Â(t)

Î(t) Ûc(t)

+

+

Figure 4.1: Block diagram of the system transfer function.

The transfer function, H(s) form Eq. (4.5, has more zeros than poles, 2 zeros and 1
pole. This is a non proper transfer function, which is not desired. To remedy this,
a small time constant is included in the model for the first state, Uc, to add a pole
to the transfer function, see Eq. (4.6). The model for the second state, A stays the
same as before.

τU̇c(t) + Uc(t) = RI(t) + Lİ(t) + I(t)
ρl

A(t)
(4.6)

The equation is then again linearized:

τU̇c(t) + Uc(t) = RI(t) + Lİ(t) + I(t)
ρl

A(t)
≈

τ
˙̂
Uc(t) + Ûc(t) = RÎ(t) + L

˙̂
I(t) +

ρl

Ā
Î(t)− ρlĪ

Ā2
Â(t)

(4.7)

Then Laplace transformed:



52 Chapter 4. System State Observation

L
{
τ

˙̂
Uc(t) + Ûc(t) = RÎ(t) + L

˙̂
I(t) +

ρl

Ā
Î(t)− ρlĪ

Ā2
Â(t)

}
⇒

τsÛc(s) + Ûc(s) = RÎ(s) + sLÎ(s) +
ρl

Ā
Î(s)− ρlĪ

Ā2
Â(s)

(4.8)

leading to changed transfer functions H1(s) and H2(s), see Eq. (4.9), which combined
with the unchanged H3(s), results in a changed combined transfer function H(s), as
also shown on Eq. (4.9):

H1(s) =
Ûc(s)

Î(s)
=
sL+R+ ρl

Ā

τs+ 1

H2(s) =
Ûc(s)

Â(s)
=
−ρlĪ
Ā2

τs+ 1

H3(s) =
Â(s)

Î(s)
= −c

s

H(s) =H1(s) + (H3(s)H2(s)) =
Īρlc

Ā2(τs+ 1)s
+
sL+R+ ρl

Ā

τs+ 1

=
s2LĀ2 + s(RĀ2 + ρlĀ) + Īρlc

s2Ā2τ + sĀ2

(4.9)

The transfer function H(s) in Eq. (4.9) shows that the addition of the time constant
have resulted in an extra pole, bringing the number of poles up to 2. This means there
is now an equal amount of poles and zeros, making H(s) a proper transfer function.

Now that equations for all the system states has been derived, they can be written
on state space from, first as a non-linear state space equation on the form ẋ = f(x, u)

and then as a linear state space equation on the form ẋ = Ax + Bu. Eq. (4.10)
shows the non-linear representation, while Eq. (4.11) shows the linear representation
derived from the transfer function given in Eq. (4.9).

U̇c(t) = −1

τ
Uc(t) +

(
R+

ρl

A(t)

)
I(t)

1

τ
+ Lİ(t)

1

τ

Ȧ(t) = −cI(t)

(4.10)

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

0 − 1
τ

] [
x1(t)

x2(t)

]
+

[
0

1

]
I(t)

Uc(t) =
[
Īρlc
τĀ2

(Rτ−L)Ā+lρτ
τ2Ā

] [x1(t)

x2(t)

]
+
L

τ
I(t)

(4.11)
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As the system modelled by these equations, is to be implemented on a computer
and applied to discrete data sets, it has to be transformed from continuous time to
discrete time. This is done using the forward Euler method [24].

Uc(k + 1) = Uc(k) + Ts

(
−1

τ
Uc(k) +

(
R+

ρl

A(k)

)
I(k)

1

τ
+ L

I(k)− I(k − 1)

Ts

1

τ

)
A(k + 1) = A(k)− Ts(cI(k))

(4.12)

[
x1(k + 1)

x2(k + 1)

]
=

[
0 1

Ts

0 1−
1
τ
Ts

] [
x1(k)

x2(k)

]
+

[
0
1
Ts

]
I(k)

Uc(k) =
[
Īρlc
τĀ2

(Rτ−L)Ā+lρτ
τ2Ā

] [x1(k)

x2(k)

]
+
L

τ
I(k)

(4.13)

Where:

Ts = Sampling rate [s]

With the discrete state space model presented in Eq. (4.12) and (4.13), an extended
kalman filter can now be designed, to estimate the system states.

4.1.1 Test of Transfer Function

In order to validate the system model, a linear simulation of the system is performed.
This is done in MATLAB using the function lsim on the system transfer function
in Eq. (4.9). As the model only is valid when the system is short circuited, the
simulation is ran only upon measurements from when the system is short circuited.
Also the measurements are divided into segments of measurements from single short
circuit periods, as the bridge model has to be reset after each rupture. When using
the lsim function for a transfer function, clearest results are achieved if the input
magnitude starts at 0, so input data magnitude is altered to start at 0, while still
following the original shape. Figure 4.2 shows the result of the simulation using the
parameters given in Table 4.1 in Section 4.3.
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Figure 4.2: Voltage output of the linear simulation of the linearized system transfer function.

The output of the simulation, very vaguely resembles the shape of the voltage output
from the real system, shown in Figure 4.3, the magnitude for the simulation output
is however several time larger than that of the real system. The parameter values
used values can be seen in Table 4.1. The big difference in magnitude of the outputs
might result in inaccurate state approximation, but to test this, the extended kalman
filter has to be designed.
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Figure 4.3: System output for one short circuit.
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4.2 Extended Kalman Filter

The extended kalman filter is an expansion of the normal kalman filter. The extended
kalman filter is used for estimation of non-linear systems in the same way as the nor-
mal kalman filter is used for linear systems, and can be described by the same block
diagram, shown in Figure 4.4.

Figure 4.4: Block diagram for an extended kalman filter. [24].

4.2.1 Kalman Filter Design

The extended kalman filter works by first calculating an uncorrected estimated output
based on the previous corrected estimate. This new estimate is then compared to the
real system output, resulting in an error value, that multiplied with a kalman gain
can be used to correct the estimate. The now corrected estimate is then used to
calculate the next uncorrected estimate [24]. All of this is done using the non-linear
system model, see Eq. (4.12). The kalman gain however is calculated using linear
approximation of the system, see Eq. (4.13). However the model from Section 4.1
can not be used, as it does not have Uc and A as system states. A new partial model
is then made by calculating the Jacobian matrix [24] for the both the system and
output functions, see Eq. (4.12). This results in two matrices A and C, shown on
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Eq. (4.14). The B and D matrices are not calculated, as they are not needed for the
filter calculations.

A =

[
1− Ts

τ −ρlĪTs
Ā2τ

0 1

]
and C =

[
1 0

]
(4.14)

For calculation of the kalman gain K, the initial values for the auto-covariance ma-
trices, Q and R, (the process and measurement noise) are given as:

Q =

[
1 0

0 1

]
and R =

[
1
]

(4.15)

With the new linearized partial model and auto-covariance matrices, the kalman filter
is now implemented in MATLAB

4.3 Test of Kalman Filter

The extended kalman filter implemented in MATLAB, is now tuned and tested.
Tuning is done by first assuming initial values for the systems parameters, then
slowly changing the parameters after each filter iteration, until an acceptable result
is achieved. Some of the he initial values for the system parameters are based upon
prior research done on a similar system [11], parameters like resistance, inductance
and resistivity of the welding wire. Other parameters are determined by either the
measurement settings, e.g. the sample rate, or by how the mathematical model has
been derived, e.g. the operating points. Table 4.1 shows the final values of all pa-
rameters after tuning of the kalman filter. The initial conditions for Uc and A are
chosen to be 0 and 3.142 · 10−6.

Constant Value Unit Description
R 10 · 10−3 Ω Resistance
L 230 · 10−6 H Inductance
l 2 · 10−3 m Distance from wire tip to workpiece
ρ 2 · 10−7 Ω

m Resistivity of wire
τ 0.01 s Time constant
Ts

1
50000 s Sample rate

c 3 - Bridge constant
Ā 3.142 · 10−6 m3 Operating point, cross-sectional area
Ī 120 A Operating point, current

Table 4.1: Values for system parameters used in testing of the kalman filter.

As mentioned in Section 4.1.1, the model for the system is valid only when the system
is short circuited. The kalman filter is therefor tested on measurements only from
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system short circuit periods, divided into segments of single short circuits, and tests
are carried out for a single short circuit period at a time, as the model for the cross
sectional area has to reset for the start of each new short circuit period as noted in
Section 4.1.1. Figures 4.5, 4.6 and 4.7 shows the results of the extended kalman filter.
It is seen on Figure 4.6, that the corrected estimate of Uc fits very well to the real
value, while the estimate of A, see Figure 4.7, is quite poor, as the estimate quickly
becomes negative, which is physically impossible. No explanation has been found for
this behavior.
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Figure 4.5: Comparison between the uncorrected, corrected and real voltage output of the kalman
filter.
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Figure 4.6: Same comparison as Figure 4.5, but with the 2 first samples of the uncorrected output
removed of better visual clarity.
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Figure 4.7: Comparison of the uncorrected and corrected cross-section area of the metal bridge.

Figure 4.5 shows the magnitude of the uncorrected output, rises fast at the beginning,
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but quit soon falls to follow the corrected output and real values, most of the time
below these, as seen on Figure 4.6. The filter is tested with several different combina-
tions of parameters, inputs and covariance matrices, all resulting in an estimate of the
cross section that becomes 0 long before the metal bridge collapses. This may be the
result of the model by its relative simplicity being incapable of properly describing
the physics of the metal bridge.

4.3.1 Residual

The kalman filter may provide another possible feature that worth considering to
employ for classification, is the residual. The residual is used to correct the predicted
output of the kalman filter as it is the difference between the real system output and
the non corrected output of the kalman filter, denoted e(k) on Figure 4.4. Figure 4.8
shows the residual generated by the same kalman filter with 4 different inputs. The
first 2 samples of the residual is discarded and not shown on Figure 4.8, as the resid-
ual generated by the firsts samples is magnitudes larger than the following, making
it harder to find tendencies. It also takes the kalman filter 2 samples to have the
corrected output match the real output.
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Figure 4.8: Residual generated by the kalman filter for 4 different short circuits.

When comparing the different residuals, a clear tendency emerges. The residual ex-
hibits minor rapid fluctuations around a trend that slowly rises until the last few
samples, where the residual starts to increase steeply. This tendency is consistent



60 Chapter 4. System State Observation

for both short and long short circuits. In order to test the relevancy of the residual
as a feature for classification, an error signal is calculated for all data sets. This
signal consists of the residuals generated by the kalman filter for each short circuits
period, placed in time so they each lines up with the voltage and current signals for
the according short circuit period in the measurement data set. The mRMR method
from Chapter 3 is then used to determine the relevancy of the residual, compared
to the other features selected for classification, see Section 3.4. Figure 4.9 shows the
resulting mRMR feature importance score with the residual denoted as f13.
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Figure 4.9: Updated feature ranking based on mRMR. The residual is feature 13

From Figure 4.9, the importance score of the residual, f13, is almost as high as feature
f7 and f11 (Sample Mean and IQR). This means the residual is a more redundant
feature, but is however still worth to include in the feature set tested for classification,
to see how this feature impacts the classification algorithm.
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4.4 Chapter Summation

In this chapter, a kalman filter was designed with the goal of estimating system states
for use as additional features for clasification. Targeted state was the cross-sectional
area of the molten metal bridge that exists when the system is in the short circuit
phase. The kalman filter was however unable to produce a usable estimation of the
cross-sectional area, but the residual generated by the filter proved to be a usable fea-
ture of some relevancy. In the following chapter, this feature, along with the features
selected in Chapter 3, is tested for different classification algorithms to determine
which algorithm is best suited.





Chapter 5

Classification

This chapter contains an introduction to multiple classification model options, fol-
lowed by a comparison between these to determine the best performing model. Opti-
mum hyperparameters are found for the determined model, the optimal classification
is tested, and the performance of the model is evaluated.

5.1 Comparison of Classification Models

In this section, comparison of various classification methods is conducted. The meth-
ods considered are selected based on frequent occurrence in literature [25][12]. The
methods are:

• Naive Bayes Classifier

• K-Nearest Neighbour

• Discriminant Analysis

– Linear Discriminant Analysis

– Quadratic Discriminant Analysis

• Support Vector Machines

An introduction to the selected classification methods is given in the following, in
addition hyperparameters for each of the methods are described. Hyperparameters
are parameters set to fixed values before model training, meaning they are not de-
termined while the model is fit to the training data. The hyperparameters therefore
influence the performance of the trained model, and they may optimised.

5.1.1 Naive Bayes Classifier

The Naive Bayes Classifier was introduced previously, in Section 3.2.3.

63
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Hyperparameters

When fitting a Naive Nayes classifier, there are several parameters to optimise in
order to obtain the best performance. These parameters are as follows:

• Distribution: Class probability density distribution.

5.1.2 K-Nearest Neighbour (KNN)

The K-Nearest Neighbour (KNN) classification method [18] is one of the simplest
methods. Given an input sample, the classification of the sample is determined by
the classes of the k nearest samples, in the training data, defined by a neighbour-
hood function,. The class of the input sample is then the majority class of the K
neighbouring samples, ie. the class to which the majority of the K neighbouring
samples belong. The neighbourhood function determines for a given input sample
the K-nearest neighbouring samples based on a specific measure of distance, e.g. city
block, euclidean etc.
An illustration of a 5-Nearest Neighbour classification of an input sample is shown in
Figure 5.1.
For KNN classification, the classification model is the training data set itself, which
may be a limiting factor depending on the implementation platform for the model.
It is also an aspect worth consideration that the model complexity increases with
training data sample size, and with the value of K.

Figure 5.1: Illustration of 5-Nearest Neighbour example: The red sample is the input sample to
be classified. Blue samples belong to class 1, green samples to class 2. Since the majority of the
5 nearest samples, indicated with arrows, belongs to class 1, the red input sample is classified as
belonging to class 1.
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Hyperparameters

When fitting a KNN classifier, a couple of parameters to optimised in order to obtain
the best performance. These parameters are as follows:

• Distance function. Choices include City block, Euclidean, Mahalanobis and
more.

• Number of neighbours K

5.1.3 Discriminant Analysis

Similar to the Naive Bayes classifier, discriminant analysis relies on estimating the
probability densities of the classes, i.e. the probability of having a data sample of a
certain class given the value of the data sample, in this case Gaussian densities, in
order to determine so called decision boundaries defined by the decision function [18].
Two different discriminant analysis techniques, Linear Discriminant Analysis (LDA)
and Quadratic Discriminant Analysis (QDA) exist. The two techniques differ in the
way the decision function forms the class boundaru by linear or quadratic functions
of the sample value respectively. Figure 5.2 illustrates the decision boundary forms
in discriminant analysis

Figure 5.2: Illustration of the linear (solid) and quadratic (stipled) decision boundaries of LDA
and QDA respectively. Colours of the data samples indicate their true class membership; blue, green
are different classes.

Linear Discriminant Analysis (LDA)

Analogous to the Naive Bayes classifier, the discriminant analysis also relies on Bayes
Rule for estimating the class posterior probability, i.e.

P̂ (Y = k|X = x) =
P̂ (X = x|Y = k)P̂ (Y = k)

P̂ (X = x)
(5.1)
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Where:

• Y is the random variable corresponding to the class of an observation, amongst
the set of classes c1, ..., cK .

• X = x is the random variable corresponding to an observation of the features
f1, ..., fP .

• P̂ (Y = k) is the prior probability estimate, also denoted p̂ik.

• P̂ (X = x|Y = k) is the likelihood estimate, also denoted f̂k(x).

The prior probability P̂ (Y = k) = π̂k is estimated from the input data samples. The
likelihood estimate P̂ (X = x|Y = k) = f̂k(x) is modelled as a multivariate normal
distribution.
Assume the prior probability πk and the likelihood fk(x) are both known exactly.

With the multivariate normal distribution model, the likelihood fk(x) may be written:

fk(x) =
1

(2π)d|Σ|
1
2

exp
(
− 1

2
(x− µk)TΣ−1(x− µk)

)
(5.2)

Where:

• µk is the mean of input data samples belonging to class ck.

• Σ is the class covariance matrix, assumed common for all classes.

• d is the dimension of the feature space.

Bayes Rule Eq. (5.1) are now reformulated in terms of the above, while all terms not
depending on the class k are collected into constant terms C,C ′, C ′′. This gives:

P (Y = k|X = x) =
fk(x)πk
P (X = x)

= C × fk(x)πk

=
Cπk

(2π)d|Σ|
1
2

exp
(
− 1

2
(x− µk)TΣ−1(x− µk)

)
= C ′πk exp

(
− 1

2
(x− µk)TΣ−1(x− µk)

)
Taking the logarithm on both sides yields

logP (Y = k|X = x) = logC ′ + log πk −
1

2
(x− µk)TΣ−1(x− µk) (5.3)

From Eq. (5.3) it follows, the likelihood P (Y = k|X = x) is maximised over k for the
expression below being maximised, ie.e the right hand side of Eq. (5.3) disregarding
the constant term C ′.

log πk −
1

2
(x− µk)TΣ−1(x− µk) = C ′′ + log πk −

1

2
µTk Σ−1µk + xTΣ−1µk
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From this the decision function δk(x) is defined as:

δk(x) = log πk −
1

2
µTk Σ−1µk + xTΣ−1µk (5.4)

An observation x is classified to belong to the class k for which the decision function
has maximum value.
The linear decision boundary in LDA are the points in feature space, i.e. the sample
values x, where 2 classes perform equally well with respect to the decision function.
E.g. the boundary between the classes k and l is given by:

δk(x) = δl(x)

log πk −
1

2
µTk Σ−1µk + xTΣ−1µk = log πl −

1

2
µTl Σ−1µl + xTΣ−1µl

which is a linear function of x.

Quadratic Discriminant Analysis (QDA)

QDA differs from LDA in that the class covariance matrix Σk may be different for
different classes [18].
This means for QDA both mean µk and covariance matrix Σk have to be estimated
for each class ck.
Following the steps as above for LDA in reformulation of Bayes Rule, the decision
function for QDA then becomes:

δk(x) = log πk −
1

2
µTk Σ−1

k µk + xTΣ−1
k µk −

1

2
xTΣ−1

k x− 1

2
log |Σk| (5.5)

The decision function is now quadratic in x, and so is the decision boundary in
between any two classes as well.

Hyperparameters

When fitting a discriminant analysis classifier, several parameters are to be optimised
in order to obtain the best performance. These parameters which are applicable for
both LDA and QDA, see Discriminant Type, are as follows:

• Delta. Linear coefficient threshold. Features with modelled linear coefficient
less than the threshold can be excluded from the classifier model.

• Discriminant Type. Linear or Quadratic, with class covariance matrices esti-
mated to be of type regular or diagonal, using the pseudo-inverse.

• Gamma. Amount of regularisation to apply when estimating the covariance
matrix for each class.
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5.1.4 Support Vector Machines (SVM)

A Support Vector Machine (SVM) classifier [18][26] is a linear classifier, mostly binary
classifier. It is a popular classifier due to its good generalisation properties, i.e. the
classification model is kept as general as possible by avoiding overfitting the model.
The main idea of SVM is to fit a linear hyperplane to separate the two training data
classes, such that the distance from the hyperplane to each class, ie.e the nearest
data point of each class, respectively is the same and tlargest possible. The sum of
these two distances is denoted the margin between the classes; hence the hyperplane
is fitted such that the largest possible margin between the data classes is obtained.
Initially two parallel hyperplanes H1 and H2 are fitted such that neither makes a
classification error, both hyperplanes H1 and H2 separate correctly all points of one
class from all data points of the other class, while the distance in between these initial
hyperplanes, the class margin, is maximised. The final hyperplane is the hyperplane
located halfway between these initial hyperplanes, see Figure 5.3. The name Support
Vector Machine comes from the data points which lie on these initial hyperplanes,
and therefore are "supporting" the final separating hyperplane. These "supporting"
points are seen as vectors, i.e. they are the support vectors of the classifier.

Origin

Margin

−�

�

�

�1

�2

Figure 5.3: The maximal margin linear separation by SVM. The two data classes, blue and green,
are separated by the margin between the two initial hyperplanes H1 and H2 (indicated by stipled
lines); and the final hyperplane halfway in between these (shown as a solid line). Support vectors
are circled.

The training data for the SVM are the data points xi, with the corresponding label
yi = ±1, such that the labels for the two classes are −1 and +1 respectively. Element
in the training data set may be written:.

{xi, yi}, i = 1, .., N, yi ∈ {−1, 1}, xi ∈ Rd (5.6)

Where N is the number of training data points. The points x lying on the final
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hyperplane satisfy
wTx+ b = 0 (5.7)

where w is a normal to the hyperplane. Assuming, in the feature space considered the
training data are linearly separable, points x lying on one of the initial hyperplanes
H1 and H2, the hyperplanes located at the same side of the final hyperplane as the
data points of the class with label −1 respectively same side as data points of the
class with label -1. satisfy the first respectively the second equation below:

wTx+ b = +1 for yi = +1 (for initial hyperplanes boundary of class with label +1)
(5.8)

wTx+ b = −1 (for initial hyperplanes boundary of class with label −1) (5.9)

The distance between these hyperplanes, the class margin is 2
||w|| , so to find the pair

of hyperplanes resulting in the maximum margin, the aim is to minimise

1

2
||w||2 (5.10)

subject to the constraints

wTx+ b ≥ +1 for yi = +1 (5.11)

wTx+ b ≤ −1 for yi = −1 (5.12)

which can be combined into one set of inequalities

yi(w
Tx+ b)− 1 ≥ 0 ∀i (5.13)

The solution to the optimisation problem can be found through a Lagrangian formu-
lation of the problem [26]. The training of the SVM is then to maximize LD in Eq.
(5.14) with respect to the lagrange multipliers αi,

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj (5.14)

subject to

w =
∑
i

αiyixi (5.15)∑
i

αiyi = 0 (5.16)

There is a lagrange multiplier αi for every training point. In the solution to the
SVM, data points where αi > 0 are the support vectors, lying on either of the margin
boundaries, hyperplanes H1 or H2. All other points have αi = 0. The constant b in
Eq. (5.7), is found by Eq. (5.13), using support vectors only.
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The decision function for the SVM classifier is then

f(x) = wTx+ b =

N∑
i=1

αiyix
T
i x+ b (5.17)

from which prediction of class membership for new input sample x is made according
to the sign of the decision function f(x): x is predicted to have class label of same
sign as f(x).

SVM for linearly separable data as here is called hard margin SVM. A soft margin
SVM definition exists for the case where the data is not linearly separable.

Non-Separable Case

When data is not linearly separable the optimization problem, for linearly separable
data stated in Eq. (5.10)-(5.12) can be modified by adding a penalty for violating
the constraints. The new problem is then to minimize

1

2
||w||2 + C

n∑
i=1

ζi (5.18)

subject to relaxed constraints

yi(w
Tx+ b)− 1 + ζi ≥ 0 ∀i (5.19)

Here ζi ≥ are "slack" variables, and C is a constant defining the allowed violation of
the margin, where as C → ∞ less violations are allowed, and the system eventually
behaves like a hard margin case. The solution to the SVM optimisation problem for
the non-separable case here is given in similar manner as for the linearly separable
case, with the difference from the hard margin case is that 0 ≤ αi ≤ C.

Kernel Functions

Initially the SVM classifier can perform only a linear separation of the feature space.
However by mapping the feature vectors into a higher dimension space and apply
the linear separation, a non-linear separation may be achieved in the original feature
space. The mapping of feature vectors is performed by use of kernel functions. Kernel
functions are are mapping functions of the feature space on to the high dimension
space for the SVM to operate in. The SVM classifier considers data points, i.e.
data vectors, only in the form of the inner products of those. The advantage of this
is, the kernel functions allows for evaluation of the inner products without actually
constructing the data vectors resulting from the mapping in the higher dimension
space On result is that mappings can be performed to spaces of very high dimensions.
Various kernel functions exist, including [26]:
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• Linear Kernel
K(xi, xj) = (xTi xj) (5.20)

• Polynomial Kernel
K(xi, xj) = (1 + (xTi xj))

p (5.21)

• Radial Basis Kernel

K(xi, xj) = exp
(
− |xi − xj ||2

)
(5.22)

In the above K(xi, xj) defines the kernel function computing the inner product the
mapped data vector.
Another way of defining a mapping is by explicitly stating the data vector resulting
from the mapping of the original feature vector, e.g. as in the polynomial mapping
exapme φ(x) given below for an original feature vector x = [x1 x2]:

x→ φ(x) = [x2
1 x2

2

√
2x1x2

√
2x1

√
2x2 1]

As mentioned, use of the kernels in SVM means the resulting mapped feature vector
as e.g. φ(x) above is not computed for each original feature vector, only the inner
product of the mapped feature vectors φ(x)Tφ(x) given in the kernel definition, in
terms of the original feature vector x.

SVM is often used as the classifier in general has a good performance, and is quite
easy to set-up due to the small amount of parameters and kernels to choose from.
One drawback of SVM is that the training can be quite slow in the case of a large
sample size. Likewise, testing can be slow in the case of a large number of support
vectors.

Hyperparameters

When fitting a SVM classifier, several parameters are to be optimised in order to
obtain the best performance. These parameters are as follows:

• Box constraint. Margin violating constraint C, the cost of misclassification of
training data in soft margin SVM.

• Kernel scale. Feature data values are divided by kernel scale.

• Kernel function. Linear, polynomial or radial basis kernel.

• Polynomial order. Order of polynomial kernel from 2 to 4, only applies if the
polynomial kernel is employed.
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5.1.5 Comparison Results

A comparison between the the above, in Section 5.1.1-5.1.4, presented classification
methods:

• Naive Bayes (NB)

• K-Nearest Neighbour (KNN)

• Linear Discriminant Analysis (LDA)

• Quadratic Discriminant Analysis (QDA)

• Support Vector Machines (SVM)

is conducted in the same manner as applied for the window length comparison in
Section 3.2.3: Each classification method is evaluated using a 10-fold cross-validation
scheme in order to obtain the performance across the entire training and validation
data set.

From the welding process data set the 12 features selected for classification use,
described in Chapter 3, listed in Section 3.2.2, and the residual feature described in
Chapter 4, in particular in Section 4.3.1, are extracted and used for training of the
methods, and for prediction of the data sample class.
Prior to classification, it is advised in [27] to linearly scale each feature in the training
data to a range of [−1 1] or [0 1], to avoid features with larger numeric ranges from
dominating other features. Hence, each feature fi, i = 1, ..., 13, is scaled as follows:

f ′i =
fi −min(fi)

max(fi)−min(fi)
(5.23)

Where f ′i is the scaled feature vector for feature fi. Eq. (5.23) applied element wise,
ensures all scaled feature f ′i have values in the range [0 1] only. The same scaling,
understood as scaling by the same off-set and divisor in Eq. (5.23) as used for scaling
feature values in the training data, has to be applied to the original feature values
in the data used for validating or testing the classification model, i.e. if a feature
in the training data was scaled from a range of [166.1 317.3] to [0 1] using scale
off-set 166.1 and divisor 317.3− 166.1 = 151.2, then the corresponding feature in the
validation or testing set with a range of e.g. [165.2 317.3] is scaled to [−0.006 1].
Performing the mRMR test, described in Section 3.2.2, to acquire feature importance
scores and rankings of features according to those after scaling of feature data, see
Figure 5.4, shows that the relevance of some features have changed slightly, however
the overall hierarchy of the features is still equivalent to what was found for the
original features values, presented at the end of Chapter 4, Figure 4.9.
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Figure 5.4: Left: Updated feature ranking and importance scores based on mRMR after scaling.
Right: The changes in importance score for each feature from unscaled to scaled features.

The list of features considered for classification is as follows:

f1 = Current, I

f2 = Voltage, U

f3 = I2 + U2

f4 = Power, P

f5 = Voltage Time Gradient, dUdt
f6 = Resistance, R

f7 = Sample Mean of U

f8 = Sample Variance of U

f9 = Hjorth Mobility of U

f10 = Hjorth Complexity of U

f11 = Interquartile Range, IQR of U

f12 = Rupture Correlation of U

f13 = Residual from kalman filter

It is concluded in the the end of Section 3.2.2, that features f4, f5 and f12, from the
evaluations performed, are significantly more relevant for classification use than the
remaining set of features. For purpose of clarification, the classification comparison
is performed with three different feature sets as follows:

• F = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13}

• F1 = {f4, f5, f12}

• F2 = {f1, f2, f3, f6, f7, f8, f9, f10, f11, f13}

The intend is to showcase the performance using the full feature set, a feature set
including only the most relevant features, and as contrast the performance using a
large number of features, here the remaining features, all of minor relevance.
The hyperparameters for the various classification methods in this comparison are
chosen to be the default hyperparameter options in the MATLAB software [28]. These
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are as follows:

• Naive Bayes

– Distribution: Normal

• K-Nearest Neighbour

– Distance function: Euclidean

– Number of neighbours: 1

• Linear Discriminant Analysis and Quadratic Discriminant Analysis

– Delta: 0

– Gamma: 0

• Support Vector Machines

– Box constraint: 1

– Kernel scale: 1

– Kernel function: radial basis kernel

– Polynomial order: Not applied

The results of the classification method comparison for the different feature sets,
in terms of the confusion matrix based performance measures introduced in Section
3.2.3, are shown in Tables 5.1-5.3 respectively.
Confusion matrices for each classification method obtained for the comparison is
shown in Appendix E, Figures E.1-E.3. Note, the true class populations are 14720
samples for "Rupture" and 139461 samples for "Short".

Method TPR TNR PPV ACC Average
NB 0.8344 0.8987 0.4653 0.8925 0.7727
KNN 0.8469 0.9866 0.8697 0.9732 0.9191
LDA 0.5101 0.9938 0.8963 0.9475 0.8369
QDA 0.9416 0.7227 0.2641 0.7436 0.6680
SVM 0.5718 0.9962 0.9407 0.9556 0.8661

Table 5.1: Performance measures for the classification methods using feature set F . Highest result
for measure highlighted in red
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Method TPR TNR PPV ACC Average
NB 0.5414 0.9851 0.7932 0.9427 0.8156
KNN 0.8309 0.9826 0.8349 0.9681 0.9041
LDA 0.3394 0.9899 0.7803 0.9277 0.7593
QDA 0.4092 0.9953 0.8997 0.9386 0.8091
SVM 0.5159 0.9863 0.7995 0.9414 0.8108

Table 5.2: Performance measures for the classification methods using feature set F1. Highest result
for measure highlighted in red

Method TPR TNR PPV ACC Average
NB 0.7917 0.8952 0.4439 0.8853 0.7540
KNN 0.7771 0.9835 0.8328 0.9638 0.8893
LDA 0.4910 0.9916 0.8612 0.9438 0.8219
QDA 0.9379 0.6608 0.2262 0.6873 0.6280
SVM 0.5370 0.9871 0.8145 0.9441 0.8206

Table 5.3: Performance measures for the classification methods using feature set F2. Highest result
for measure highlighted in red

The comparison results show the overall best performance is obtained by KNN with
feature set F . KNN is on average also the best method for the other feature sets,
which is interesting as KNN is by far the simplest of the classification methods.
Generally good results are found for all methods using feature set F . However for
methods NB and QDA, it seems less is more, as these methods on average achieve
better results with F1. On the contrary to this, LDA performs better on average
with F2 than with F1. SVM, which is the most complex of the methods has the
overall second best performance on average for feature set F , however the TPR is
low compared to other methods.

As KNN, from the comparison here conducted, now has been identified as the best
performing classification method for the classification problem at hand, the opti-
misable hyperparameters for this method are investigated to determine whether the
performance of this classifier can be futher improved.

5.2 Optimisation of Classification Model Hyperparame-
ters

To improve the performance of the KNN classification method, which in Section 5.1.5
above was determined to have the best performance, optimal hyperparameters are
identified. Recall from Section 5.1.2, for the KNN the optimisable hyperparameters
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comprise the distance function and the number of neighbours K.
Distance function options are as follows [29]:

• City block distance

• Chebyshev distance

• Correlation distance

• Cosine distance

• Euclidean distance

• Jaccard distance

• Mahalanobis distance

• Minkowski distance

• Standardised Euclidean distance

• Spearman distance

The number of neighbours K, is investigated with values for K from 1 to 51 with a
2 neighbour increment. For each distance function and value of K, a 10-fold cross-
validation is performed, and the confusion matrix based performance measures are
evaluated.
Figures 5.5 and 5.6 show performance measures for the different distance functions
and numbers of neighbours.
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Figure 5.5: Performance measures for different distance functions as a function of number of
neighbours. Note: Rate axis scale differ for distance function Jaccard graph.
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Figure 5.6: Performance measures for different distance functions as a function of number of
neighbours. Note: Rate axis scale differ for the different distance function graphs.

The maximum performance measures observed among all the distance function per-
formance measures obtained, are shown in Table 5.4. It is evident, the Mahalanobis
distance function generally has the best performance, and the optimal number of
neighbours is K = 1.
From this analysis the optimal classification method is then the 1-Nearest Neighbour
algorithm with Mahalanobis distance function.

Max. Measure TPR TNR PPV ACC Average
Rate 0.8714 0.9948 0.8924 0.9777 0.9326
Dist. Func. Mahalanobis Spearman Mahalanobis Mahalanobis Mahalanobis
K 1 1 1 1 1

Table 5.4: Maximum performance measures with the corresponding distance function and number
of neighbours K. For comparison: TNR = 0.9907 for Mahalanobis distance function with K = 1.

Following the above selection of an optimal classification model based on performance
measures, by cross-validation, the selected model is tested on unused data to achieve
an unbiased evaluation of the performance.
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5.3 Test of Classification Model

The purpose of test here described of the optimal classification model, a 1-Nearest
Neighbour classifier using Mahalanobis distance, is to provide a final unbiased eval-
uation of the model performance. The optimal model is trained on the training data
previously used, however evaluation is performed upon classification of data not em-
ployed before in the selection and optimisation process. The data should however
orginate from a welding process of the same conditions and welding system settings
as the training data. It is expected, the performance obtained in testing is lower
than in the performance obtained for the classification comparison based on cross-
validation in Section 5.1.5.

Table 5.5 shows the confusion matrix based performance measures, see Section 3.2.3,
obtained from the testing of the optimal classification model upon unused data as
described above. It is notable, the performance is significantly lower than in the
classification model selection cross-validation Tables. 5.1-5.4, especially compared
to the best results of those presented in Section 5.1.5. More specifically, a smaller
proportion of sample of class "Rupture" are being correctly classified, see TPR and
PPV, while a larger proportion of samples of class "Short" are incorrectly classified,
see TNR and PPV. Both changes contribute to lower accuracy ACC and overall
average score. The observed discrepancy between the performance in the classification
model selection cross-validation and the testing of unused data is significant.

Measure TPR TNR PPV ACC Average
Rate 0.7290 0.9445 0.5787 0.9241 0.7941

Table 5.5: Performance measures from test of the Nearest Neighbour model

The aforementioned errors in classification is visualised are the confusion matrix,
Figure 5.7. Note, the true class populations are 4927 samples for "Rupture" and
47155 samples for "Short".
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Figure 5.7: Confusion matrix from test of the Nearest Neighbour model.

Recall from the data pre-processing, all true rupture periods has a length of 10 data
samples. By inspection of the predicted class for all samples in the true rupture
periods, i.e. all samples of true class "Rupture", TPR for each sample number in the
true rupture periods, i.e. TPR for all samples of timewise same location in a true
period, can be computed for each sample number, sample 1 to sample 10, in the true
rupture periods. The resulting TPR for each sample number in the rupture period
are shown in Figure 5.8. The results show TPR for the first sample is 0.4634, meaning
at this point fewer than 50% of "Rupture" class samples are correctly classified. By
sample 6, five samples before rupture, TPR has increased to 0.7642. At sample 10,
TPR is 0.998, meaning 99.8% of "Rupture" class samples are correctly classified at
this point, however as per the problem formulation, this is too late in the rupture
period to regulate the current to avoid a violent rupture. It could however be argued,
it is better to predict the rupture late, than not predicting it at all, allowing the
welding current to be lowered by some degree before rupture, though not to the
desired current level.
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Figure 5.8: TPR for each rupture period sample

Obtaining false negative class predictions early in the rupture period is not a prob-
lem, as long as the rupture is otherwise predicted in due time to regulate the current
properly. It is more of a concern to obtain a large number of false positive class
predictions, samples that are predicted to be in the rupture period, but are not. As
shown in Figure 5.8, the confidence in prediction of class membership for samples in-
crease the further into the rupture period the welding process has reached. A system,
based on the classification model here tested might be put in place to determine over
a couple of samples, and not just one sample, whether the electrode metal bridge is
about to rupture.

5.4 Test of Classification Model on Various Programs and
Settings

Following the test above of the classification model on a data set acquired from a
welding process applying the same welding program and system settings as applied
for the welding process from which the training data were acquired, it is interesting
to test the same model on data from welding processes applying different programs
and settings in order to determine the generalisation properties of the model and the
extracted features. The data sets have been produced and provided for this project
by Migatronic A/S, and reflects realistic welding settings. Below are listed welding
programs and settings for the data sets:

• Program 202
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– Current: 185A Voltage: 18.9V

• Program 112

– Current: 65A Voltage: 15.9V

– Current: 133A Voltage: 17.9V

• Program 113

– Current: 106A Voltage: 15.7V

– Current: 143A Voltage: 16.7V

– Current: 181A Voltage: 19.4V

The data sets used hitherto used for training and testing, welding programs and set-
tings were the first in the list, program 202, 185A current setting and 18.9V voltage
setting.

Performance of classification model is evaluated for each of the data sets by means
of the confusion matrix based performance measures, see Section 3.2.3. The results
for each of the data sets is shown in Table 5.6.
From these performance measures, it is evident, performance of the classification
model on the data sets acquired for programs 112 and 113 is not on par with the per-
formance on the data set acquired for program 202. The performance is particularly
worse on data sets from program 112, where TPR is low, meaning few samples of
class "Rupture" are correctly classified and PPV is low, meaning a large proportion
of false positives are found. Having a bad performance in both of these metrics is the
worst case scenario. For data sets from program 113, primarily TPR is low, while
PPV more acceptable.
The low TPR for programs 112 and 113 is further illustrated in Figure 5.9 showing
TPR per sample number for sample 1 to sample 10 in the true rupture periods, where
TPR for these programs is from extremely low to low, only acceptable for the last
two samples, sample 9 and 10.
The conclusion must be, as the performance measures obtained in these cross-program,
cross-setting tests indicate strongly, feature values extracted from a data set with a
particular program and setting, are not equivalent to features extracted from another
data set with a different program and setting.
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Prg. Curr. Set [A] Volt. Set. [V] TPR TNR PPV ACC Average
202 185 18.9 0.7290 0.9445 0.5787 0.9241 0.7941
112 65 15.9 0.1290 0.9249 0.0999 0.8767 0.5076
112 133 17.9 0.2239 0.9867 0.4994 0.9441 0.6635
113 106 15.7 0.1350 0.9995 0.9287 0.9623 0.7564
113 143 16.7 0.1748 0.9994 0.9271 0.9632 0.7661
113 181 19.4 0.2192 0.9997 0.9726 0.9665 0.7895

Table 5.6: Performance measures from test of the Nearest Neighbour model on various programs
and settings
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Figure 5.9: TPR for each true rupture period sample for various programs and settings. P is the
program, C is the current setting, and V is the voltage setting.
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Onwards from the prior conclusion, it is interesting to investigate whether the features
extracted are useful at all in classification of rupture samples from rupture periods
in data sets acquired from other welding programs than program 202. To determine
this, a new Nearest Neighbour classification model is trained with data from all three
programs 202, 112 and 113, with the different settings as listed in the start of the
section.
In addition, the feature sets is extended with a program feature. In [27] it is advised
to transform categorical predictors to numerical predictors in the same range as the
other feature data is being scaled to, i.e. [0 1]. The transformation of values for the
added program feature is as follows:

• Program 202 → 0

• Program 112 → 0.5

• Program 113 → 1

The performance measures obtained from testing the new Nearest Neighbour model
on data sets from the different programs and settings is shown in Table 5.7. These
measures show an increased performance for all programs and settings, but in partic-
ular for program 113, where the performance for 2 out of the 3 settings is better than
for program 202. It is also evident, the performance for program 112 is not om par
with the performance for program 202 and 113, which might indicate the features
extracted are not as relevant for classification of data samples from this program,
compared to data samples from programs 202 and 113.
In Figure 5.10 TPR per sample number for sample 1 to sample 10 in the true rupture
periods is shown. From this it is evident, where for program 112, confidence in cor-
rect classification is not achieved until around rupture sample 7 or 8. In comparison
the same confidence is achieved at rupture sample 5 for program 202 and at rupture
sample 3 or 4 for program 113. The conclusion is, that in order to have an effective
classification model for classification of samples from rupture periods from various
welding programs and settings, the model has to be trained on data from the same
variety of welding programs and settings.

Prg. Curr. Set [A] Volt. Set. [V] TPR TNR PPV ACC Average
202 185 18.9 0.7314 0.9472 0.5912 0.9268 0.7993
112 65 15.9 0.3442 0.9984 0.9344 0.9588 0.8090
112 133 17.9 0.4917 0.9814 0.6105 0.9540 0.7594
113 106 15.7 0.7443 0.9945 0.8582 0.9837 0.8952
113 143 16.7 0.8132 0.9918 0.8207 0.9840 0.9025
113 181 19.4 0.8134 0.9285 0.3360 0.9236 0.7504

Table 5.7: Performance measures from test of the Nearest Neighbour model, with programs labels,
on various programs and settings
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Figure 5.10: TPR for each true rupture period sample for various programs and settings. P is the
program, C is the current setting, and V is the voltage setting.

5.5 Chapter Summation

In this chapter multiple options for classification model were introduced and the
performance of these were compared based on cross-validation of the training data
set. The K-Nearest Neighbour model was evaluated to be the best performing model,
and optimum hyperparameters evaluated to be determined to be the Mahalanobis
distance function with 1 neighbour. The performance of this optimal classification
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model was evaluated on testing data separate from the training data, where it was
found, the performance especially lacked in terms of the number of false positives. The
same classification model was tested on new acquired from various welding processes
applying different welding programs and settings, with results showing the model
trained on data from a particular welding program and setting, did not perform well
in testing on data from other programs and settings. A new classification model
of same algorithm and hyperparameters, K-Nearest Neighbour with Mahalanobis
distance function and 1 neighbour, was trained on the full variety of programs and
settings and a better interprogram performance was achieved.



Chapter 6

Conclusion

The aim of the work presented in this thesis is to investigate, and to develop a so-
lution to the problem of predicting the start of free burn in the short-circuit phase
of a conventional Gas Metal Arc Welding (GMAW) welding process. The problem is
formulated as:

"How should a classification algorithm be, which, based on, features extracted from
the system measurements, can reliably predict when the GMAW Short-Circuit welding
process is about to free burn, in the rupture period, in the ending of the short-circuit
phase."

In in this problem statement lies multiple sub-problems, which need to be addressed
to answer the question put forth.

The problem of predicting the start of free burn in the short-circuiting phase of the
welding process was formulated as a binary classification problem. In this formulation,
data samples from the short-circuit phase of the welding process would classified as
"Rupture" if they belonged to the last 10 data samples of the short-circuit phase, the
rupture period, or as "Short" for the remaining data samples from the prior period
of the short-circuit phase. The problem of estimating whether the welding process
is in arc phase or short-circuit phase was not considered in the scope of this project
work.
To establish a base for the classification algorithm, additional feature data were ex-
tracted from the provided current and voltage welding system measurements, samples
throughout the welding process. The measurement data examined at this point were
all acquired from welding processes set to the same welding program and settings.
Since the data samples from to the rupture periods in the given measurement data
is not sufficiently distinguishable from the data samples from the prior part of the
short-circuit phases, this feature extraction is a necessary step. First, a set of seven

87
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sample-by-sample features, meaning these features are based on one measurement
sample at a time, was extracted. Secondly, five statistical features were extracted,
using a sequence of data samples in a sliding window over the time series of mea-
surement data samples as a basis. Lastly, a feature was extracted comprised of the
correlation coefficient to the measurement signal computed for a template rupture
period signal slid over the time series of measurement data. The features above were
all extracted from the voltage measurement data. The relevance of these features to
the targeted classes in the classification problem, classes "Rupture and "Short respec-
tively, and their redundancy to each other was quantified and ranked based on feature
importance scores computed by means of the Minimum Redundancy Maximum Rel-
evance (mRMR) feature selection method. Here it was concluded the importance of
the extracted features varied significantly, but no features were excluded from use for
the classification problem.
In addition to the prior features, it was investigated whether the cross-sectional area
of the metal bridge, formed when the welding electrode short-circuit with the weld-
ing workpiece, could be estimated and added as a feature, basing the estimation on
a simple model of the evolution of the cross-sectional area and a model of the control
voltage in the short-circuit phase of the welding process. This was done with an ex-
tended kalman filter as the model for the control voltage was non-linear. The resulting
estimate of the cross-sectional area was not realistic, as it estimated the bridge to
collapse far earlier than then the welding process entered the rupture period. Instead
it was found that the residual, based on the error between the uncorrected estimate of
the control voltage and the measurement of the control voltage was a suitable feature
to add for the classification.

The overarching problem, development of a classification algorithm reliably applica-
ble to the binary classification problem stated earlier, was successfully solved, based
on feature extracted. Classification models such as the Naive Bayes classifier, the
K-Nearest Neighbour classifier, Linear and Quadratic Discriminant Analysis classi-
fier, and lastly the Support Vector Machines classifier, were trained with feature
data. The performance of the classification models, set to standard hyperparameters
as of MATLAB, was evaluated in cross-validation in terms of binary classification
measures, True Positive Rate, True Negative Rate, Positive Prediction Value, and
Accuracy, and it was found, the K-Nearest Neighbour classification model performed
the best.
In optimisation of the hyperparameters for the K-Nearest Neighbour model, the best
performing distance function and number of neighbours was found to be the Maha-
lanobis distance using 1 neighbour. In an unbiased test of the optimised K-Nearest
Neighbour model, on hitherto unused data but still from the same welding program
and setting, it was concluded that the performance be significantly worse, especially
the Positive Prediction value was low, indicating a large number of false positives, i.e.
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data sample4s not belonging to the "Rupture" class being classified as such. While
the True Positive Rate was also lower than desired it was found the low rate mainly
pertained to samples from early in the rupture period, and that the classification
performance increased significantly halfway into the rupture period.
By testing the model on measurement data from different welding programs and set-
tings, it became clear that the feature values extracted from one measurement data
set, from a particular program and setting, where not equivalent to the feature values
extracted from another measurement data set from a different program and setting.
In order to obtain a classifier able to reliably predict the correct class for a given mea-
surement data sample, regardless of program and setting, the classifier needs to be
trained on data with the given program and setting. To incorporate data belonging
to different programs into one classification model, an additional feature was created
based on the program label, with the aim this would, in the classification model,
separate data from the various programs according to program. However even then,
performance was for data from some welding programs, not on the level of perfor-
mance seen in the first test, where the classification model was trained on data from
the same welding program as tested on, implying the features extracted may not be
equally relevant for classification for all the tested welding programs.

In conclusion through the work presented in this thesis it is found that a classification
algorithm, the K-Nearest Neighbour classifier, based on relevant feature data can be
developed to predict when free burn is about to happen in a conventional GMAW
Short-Circuit welding process. However for certain welding programs and settings,
where the feature data here presented is less relevant to the classification problem,
the prediction is less reliable than desired.





Chapter 7

Discussion

This chapter discusses the thesis results, along with thoughts on future improvements
to the system. The thoughts presented in this chapter, are based on the findings in
this thesis and any recommendations for improvement are purely speculative.

7.1 Thesis Results

As is evident from the conclusion in Chapter 6 and from Section 5.3, it was possible
to some extend to predict when the welding process was about to free burn. This,
however, was possible only if the K-Nearest Neighbor classification algorithm was
trained with data, originating from a welding scenario similar to the one in question
for the classification and prediction. When the training data origin differed in welding
program and setting, the number of correct predictions fell drastically. To overcome
this, welding measurement data from various welding programs and settings was
included as training data for the K-Nearest Neighbour model, and in an attempt to
separate data from the various programs from each other in the model, the program
label was added as a feature. This saw an increase in the interprogram performance,
however, it is possible that also adding the welding setting as a feature would improve
performance even further, especially on the welding program and setting combinations
where the performance was far less than desired.
Another aspect to note is the change in the amount of true positives as the welding
process moves towards a rupture. In the cases where the classification algorithm had
been trained with data from similar origin as the welding measurements at hand, the
rate of true positives increased linearly. In the other cases, where the classification
algorithm had been trained with data from dissimilar origin, the rate of true pos-
itives increased exponentially, from a rather low start value, as seen on Figure 5.9
and 5.10. This might indicate the extracted features are relevant for the different
welding programs, but the absolute feature values are not transferable as classifica-
tion parameters from one welding scenario to another. A possible solution could be
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to normalise all data, both training and testing data, as this might reduce the vari-
ations in data value magnitude between data from different welding programs. For
practical applications, the normalisation should then be based on the feature values
of the training data.
A different solution would be to identify and extract features with values that are
universal for all welding programs and independent of system settings. The cross
sectional area of the metal bridge is an example of a feature that retains its properties
for different programs, since the neck of the metal bridge is always small just before
a rupture occurs. In the suggested approach, obtain for an estimate suitable as a
feature for use in classification, a new state model would have to be developed, as the
one developed in this thesis did not produce realistic results. The kalman filter would
have to be tuned for each welding electrode type, as the electrodes varies in electrode
diameter and material composition. And, the progressing over time in the decrease of
the cross-sectional area may differ depending on electrode type to a degree to prevent
the use of the same model for all welding scenarios. That is, this might turn out a
non-universal feature.
In Chapter 5, Section 5.1.5, the K-Nearest Neighbour model was determined to be
as the best performing classification model evaluated on binary classification perfor-
mance measures, based on cross-validation of training data, in comparison with a
range of other classification models. After selecting from this the K-Nearest Neigh-
bour model, as the model to use further in this project work the model was optimised
by determining the optimal hyperparameters. It is plausible the hyperparameter op-
timisation should have taken place before the classification comparison, and for each
of the compared classification models, as it is not given the comparison conducted
based on the default hyperparameters in the MATLAB software would show an accu-
rate comparison. Optimising the models before comparison would ensure the selected
model would be the best performing model among the optimised versions of the mod-
els. Perhaps in this order of operations, the Support Vector Machines or the Linear
Discriminant Analysis, which generally came second and third, respectively, in the
score ranking in the comparison conducted, would then be performing better.
In the classification model comparison, Section 5.1.5, Support Vector Machines was
the second best performing model, impeded only by a low True Positive Rate, while
having a higher Positive Prediction Value than the K-nearest Neighbour. It is not
out of question, the low TPR pertained only to the early samples in the rupture
periods, while the TPR for samples in the latter part of the rupture periods could
be acceptable. Given this is true, the Support Vector Machines classification model
might with its lower amount of false positives, possibly be a model better fit for the
classification problem.
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7.2 Welding System Improvements

As mentioned in Section 7.1, the closer the welding process came to a rupture, the
more reliable the classification became.If the welding control system performance can
be improved, so that the prediction horizon, the time needed from prediction till
occurrence of a rupture, could be lowered, from 5 samples times to e.g. 3 sample
times i.e. from 0.1ms to 0.06ms, this would according to the results in Section 5.3,
in some cases result in more than a doubling of the rate of true positives, without
any changes to the classification algorithm. Such a control system upgrade, would
also make a possible real time implementation of the classification algorithm more
plausible, as the control system in its current state requires considerable computation
time for the classification model suggested. One loop of the kalman filter alone takes
up to 0.191 ms to complete, while measurement samples are taken every 0.02ms by
the Digital Signal Processing unit of the control system, so a real time implementation
would require either an optimisation of the code base or a hardware upgrade. This is
stressed by consideration of the time to perform the actual classification, which with a
K-Nearest Neighbour model takes a substantial amount of time. Other classification
models which employ a decision function, such as Linear Discriminant Analysis or
Support Vector Machines, may perform the classification task faster.

7.3 Future Work

The work presented in this thesis makes use mainly of machine learning algorithms
to predict ruptures. A different strategy could be to approach the problem as a fault-
detection problem. The idea is to improve the state model for the welding system,
specifically for the periods when it is in short circuit mode, and then use this model
to generate a residual, similar to what was done in Chapter 4. The residual would
be the difference between the real system output and the model output. The idea
is that as the system moves toward a rupture, the residual may exhibit a significant
change, as the model would be further from its operating point. This is however only
speculations, based on the results of Chapter 4, further development and tests would
have to be done in order to determine the viability of this approach. One benefit
of this approach is that the rupture prediction system then only needs tuning of a
state observer, not training of a classifier, before it can produce results, depending
on complexity, needed of the component to detect the residual change.

For the approach taken in the work here presented, to seek improvement of the
reliability of the prediction, different classification algorithms or combinations of al-
gorithms would have to be tested. If the data from the welding process is normalized,
this might result in a different classification algorithm performing best. An increase
or change in the set of features for the classification might produce a similar result.
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Determination of whether a classification algorithm is usable lies for a large part not
only in a high amount of true positives but also in a low amount of false positives.
The low amount of false positives are important, because if the current is turned
down prematurely, it results in a bad weld, which requires more work to correct
than cleaning up splatter. It could be interesting to look into a method for checking
whether the current was turned down prematurely, so that immidiately the current
could be turned back up in order to avoid a bad weld.
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Appendix A

Project Proposal

Here is a copy of the original project proposal by Migatronic A/S.
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Weld process free burn estimator  
 

For some years there has been a cooperation between the welding company Migatronic A/S and Aalborg 
University, which has resulted in several student-projects and an industrial PhD project. Migatronic has been 
manufacturing welding machines in Denmark since 1970, and today employs 300 people worldwide, with 
production facilities in Denmark, China and India. 
 
As the technology in the welding machines has evolved from simple power transformers to sophisticated 
microcontroller systems, more complex control of the process has been made available. Today’s inverter 
technology, using a powerful DSP, assists even “unskilled” welders in creating high-quality welds – where 
the quality of a weld earlier was solely dependent on the skill of the welder. 
 
The welding current is controlled with 50 kHz, all decisions are made based on measurements of weld 
current and voltage. To improve the welding it is crucial to have knowledge about different states in the weld 
process, preferable based on only the two before mentioned measurements. A number of different weld 
processes exists, each having their benefits and drawbacks. One such process, primary use for thin plates, 
is called short circuit welding. In this process a wire is fed forward to a weld pool, and an accurately 
controlled current, through the wire, causes the process to alternate between a short circuit and an arc 
between the wire tip and weld pool. The drawback of the short circuit process is however, a large explosion 
at the moment of free burn; that is where the process changes from being short circuited to ignite an arc. 
 
If an estimator could inform when the free burn is 
about to happen (before it happens), actions could be 
taken, to avoid a large explosion. In figure 1, an 
example of some measurements is shown. In the 
bottom the voltage is shown, where low voltage equals 
short circuit and high voltage equals arc. It is fairly 
simple to separate these two states, but the challenge 
is to estimate the free burn before it happens, and to 
make this estimator robust to an ever changing 
system. 
 

    
 
 
 
 
 
 

 
Project proposal: 
Develop an estimator that, based on measurements of the weld current and voltage, can estimate when the 
weld process is about to free burn.  
The following should be considered: 

- Robustness for different settings of current / wire speed 
- Robustness for different wire materials 
- Ability to adapt to changing the setup (changing cable lengths, coiling the cables, etc.) 
- It should be possible to implement the estimator and run it in real time 

 
 
 
Jesper L. Skovfo, Control System Engineer, M.Sc.E.E., Migatronic A/S, JLS@migatronic.dk 
Steffan K. Ovedal, Control System Engineer, M.Sc.E.E., Migatronic A/S, SKO@migatronic.dk 
René Petersen, Control System Engineer, Ph.D., Migatronic A/S, RPE@migatronic.dk 

Figur 2: Arc Figur 3: Short circuit 

Figur 1: Measurements from short circuit welding 
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Appendix B

Sigma Select Program Table

SIGMA SELECT PROGRAM TABLE

50113800 A2
Valid from 17.12.2018

PROGRAM PACKAGE PROCESS

Material Diameter Gas specification Polarity Program

number

Item

number

Standard 

10681000

Mild steel

10681001

Stainless 

steel

10681002

Aluminium

10681003

All 

included

10681099

DC Pulse Power Arc 

10682003

IAC  

10682004

10682999

10682001 10682002

MMA  - + 001 Included x x x

Manual MIG/MAG CO2 100 + 002 Included x x x

Manual MIG/MAG ArCO2 82/18 + 003 Included x x x

ArcGouging  - + 004 10680004 x x x

Fe SG2 ER70S6

ø 0.6 mm

CO2 100 + 106 10680106 x x x

ArCO2 82/18 + 116 10680116 x x x x

ArCO2O2 90/5/5 + 128 10680128 x x x

ø 0.8 mm

CO2 100 + 101 10680101 x x x

ArCO2

82/18 + 111 10680111 x x x x x

92/8 + 130 10680130 x x x x

ArHeCO2O2 91/4/2/3 + 125 10680125 x x x x

Ar O2 92/8 + 185 10680185 x x x x

ArCO2O2 90/5/5 + 121 10680121 x x x x

ø 0.9 mm

CO2 100 + 109 10680109 x x x

ArCO2 82/18 + 119 10680119 x x x x x

ArCO2 92/8 + 120 10680120 x x x x

ø 1.0 mm

CO2 100 + 102 10680102 x x x

ArCO2

82/18 + 112 10680112 x x x x x x

98/2 + 131 10680131 x x x x

92/8 + 115 10680115 x x x x x 

ArCO2O2

90/5/5 + 122 10680122 x x x x

90.5/7/2.5 + 134 10680134 x x x x x

82.5/15/2.5 + 136 10680136 x x x x x

ArHeCO2 68/20/12 + 138 10680138 x x x x x

ArHeCO2O2 91/4/2/3 + 126 10680126 x x x x x

ArO2

97/3 + 132 10680132 x x x x x

92/8 + 176 10680176 x x x x x

ø 1.2 mm

CO2 100 + 103 10680103 x x x

ArCO2

82/18 + 113 10680113 x x x x x x

92/8 + 118 10680118 x x x x x

ArCO2O2

90/5/5 + 123 10680123 x x x x x

90.5/7/2.5 + 135 10680135 x x x x x

82.5/15/2.5 + 137 10680137 x x x x x

ArHeCO2 68/20/12 + 139 10680139 x x x x x

ArHeCO2O2 91/4/2/3 + 127 10680127 x x x x x

ArO2

97/3 + 133 10680133 x x x x x

92/8 + 180 10680180 x x x x

ø 1.4 mm ArCO2

82/18 + 124 10680124 x x x x

92/8 + 129 10680129 x x x x

ø 1.6 mm

CO2 100 + 104 10680104 x x x

ArCO2 82/18 + 114 10680114 x x x x x

ArCO2 92/8 + 117 10680117 x x x x

Innershield

ø 0.9 mm - - - 199 10680199 x x x

ø 1.2 mm - - - 193 10680193 x x x

ø 1.6 mm - - - 194 10680194 x x x

ER 308 LSi

ø 0.8 mm
ArCO2 98/2 + 221 10680221 x x x x

ArCO2H2 96/3/1 + 226 10680226 x x x x

ø 1.0 mm

ArCO2 98/2 + 222 10680222 x x x x

ArO2 98/2 + 220 10680220 x x x x

ARCO2H2 96/3/1 + 227 10680227 x x x x

ø 1.2 mm
ArCO2 98/2 + 223 10680223 x x x x

ArCO2H2 96/3/1 + 228 10680228 x x x x

ER 309 LSi

ø 0.8 mm
ArCO2 98/2 + 224 10680224 x x x x

ArCO2H2 96/3/1 + 230 10680230 x x x x

ø 0.9 mm ArCO2 98/2 + 231 10680231 x x x x

ø 1.0 mm

ArCO2 98/2 + 225 10680225 x x x x

ArO2 98/2 + 232 10680232 x x x x

ArCO2H2 96/3/1 + 229 10680229 x x x x

ER 316 LSi

ø 0.8 mm ArCO2 98/2 + 201 10680201 x x x x x

ø 0.9 mm ArCO2 98/2 + 209 10680209 x x x x

ø 1.0 mm
ArCO2 98/2 + 202 10680202 x x x x x

ArO2 97/3 + 212 10680212 x x x x x

ø 1.2 mm
ArCO2 98/2 + 203 10680203 x x x x x

ArO2 97/3 + 213 10680213 x x x x x

ø 1.6 mm ArCO2 98/2 + 204 10680204 x x x x x

ER 347 Si
ø 1.0 mm ArHeCO2 68/30/2 + 242 10680242 x x x x

ø 1.2 mm ArHeCO2 68/30/2 + 243 10680243 x x x x

Duplex 2209

ø 1.0 mm
ArHeCO2 83/15/2 + 252 10680252 x x x

ArO2 98/2 + 254 10680254 x x x x

ø 1.2 mm
ArHeCO2 83/15/2 + 253 10680253 x x x

ArO2 98/2 + 255 10680255 x x x x

CrNi Zecor ø 1.2 mm ArCO2 98/2 + 273 10680273 x x x x
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Material Diameter Gas specification Polarity Program

number

Item

number

Standard

10681000

Mild steel

10681001

Stainless 

steel

10681002

Aluminium

10681003

All 

included

10681099

DC Pulse Power Arc 

10682003

IAC 

10682004

10682999

10682001 10682002

Super Duplex 2509

ø 1.0 mm

ArCO2 98/2 + 262 10680262 x x x

ArHeCO2

83/15/2 + 256 10680256 x x x

68/30/2 274 10680274 x x x

ArHeO2 69/30/1 + 267 10680267 x x x

ArO2 98/2 + 264 10680264 x x x x

ø 1.2 mm

ArCO2 98/2 + 263 10680263 x x x

ArHeCO2

83/15/2 + 257 10680257 x x x

68/30/2 275 10680275 x x x

ArO2 98/2 + 265 10680265 x x x x

AlMg5 ER5356

ø 0.8 mm Ar 100 + 311 10680311 x x x

ø 0.9 mm Ar 100 + 319 10680319 x x x x

ø 1.0 mm

Ar 100 + 312 10680312 x x x x

ArHe
70/30 + 316 10680316 x x x x

50/50 + 332 10680332 x x x x

ø 1.2 mm

Ar 100 + 313 10680313 x x x x

ArHe
70/30 + 317 10680317 x x x x

50/50 + 333 10680333 x x x x

ø 1.6 mm
Ar 100 + 314 10680314 x x x x

ArHe 70/30 + 318 10680318 x x x x

AlMg4.5MnZr ER5087 ø 1.2 mm Ar 100 + 321 10680321 x x x x

AlMg4.5 ER5183
ø 1.2 mm ArHe 20/80 + 323 10680323 x x x x

ø 1.6 mm ArHe 70/30 + 328 10680328 x x x x

AlMg3Mn ER5554 ø 0.9 mm Ar 100 + 369 10680369 x x x

AlSi5 ER4043

ø 0.9 mm Ar 100 + 359 10680359 x x x

ø 1.0 mm
Ar 100 + 352 10680352 x x x x

ArHe 70/30 + 356 10680356 x x x x

ø 1.2 mm
Ar 100 + 353 10680353 x x x x

ArHe 70/30 + 357 10680357 x x x x

ø 1.6 mm
Ar 100 + 354 10680354 x x x x

ArHe 70/30 + 358 10680358 x x x x

Al99.5 ER1100
ø 1.2 mm Ar 100 + 363 10680363 x x x x

ø 1.6mm Ar 100 + 364 10680364 x x x x

AlSi12 ER4047
ø 1.0mm Ar 100 + 372 10680372 x x x x

ø 1.2 mm Ar 100 + 373 10680373 x x x x

AlSi10 MG ER4046 ø 1.2 mm ArHe 50/50 + 383 10680383 x x x x

AlSi10Cu4 ER4145 ø 1.2 mm Ar 100 + 393 10680393 x x x

FCW FeRutil 215

ø 1.0 mm ArCO2 82/18 + 402 10680402 x x x

ø 1.2 mm ArCO2 82/18 + 403 10680403 x x x

ø 1.6 mm
ArCO2 82/18 + 404 10680404 x x x

CO2 100 + 444 10680444 x x x

FCW FeRutil 217 ø 1.2 mm ArCO2 82/18 + 453 10680453 x x x

FCW FeRutil 713R ø 1.2 mm ArCO2 82/18 + 454 10680454 x x x

FCW FeRutil 15.14 ø 1.2 mm CO2 100 + 443 10680443 x x x

FCW FeRutil Nittetsu SF-1A ø 1.2 mm ArCO2 82/18 + 407 10680407 x x x

FCW FeRutil Nittetsu SF-1E ø 1.2 mm CO2 100 + 448 10680448 x x x

FCW FeRutil Nittetsu 

SF-3AM

ø 1.2 mm ArCO2 82/18 + 408 10680408 x x x

ø 1.4 mm ArCO2 82/18 + 409 10680409 x x x

FCW FeRutil PZ6111 ø 1.6 mm ArCO2 82/18 + 405 10680405 x x x

FCW FeRutil PZ6111-HS ø 1.6 mm CO2 100 + 446 10680446 x x x

FCW FeRutil 6114 ø 1.2 mm ArCO2 82/18 + 458 10680458 x x x

FCW FeRutil PZ6114S ø 1.2 mm CO2 100 + 447 10680447 x x x

FCW FeRutil PZ6138 ø 1.2 mm ArCO2 82/18 + 457 10680457 x x x

FCW FeRutil DWA 55E ø 1.2 mm ArCO2 82/18 + 451 10680451 x x x

FCW FeRutil 

Tubrod 15.14
ø 1.2 mm

ArCO2 82/18 + 452 10680452 x x x

CO2
100 + 495 10680495 x x x

FCW FeMetal 6104 ø 1.2 mm ArCO2 82/18 + 456 10680456 x x x

FCW FeMetal MX 100T ø 1.2 mm ArCO2 82/18 + 429 10680429 x x x

FCW FeMetal 115

ø 1.2 mm ArCO2 82/18 + 423 10680423 x x x x x

ø 1.4 mm ArCO2 82/18 + 425 10680425 x x x

ø 1.6 mm ArCO2 82/18 + 424 10680424 x x x

CO2 100 + 445 10680445 x x x

FCW FeMetal 235M ø 1.2 mm ArCO2 82/18 + 420 10680420 x x x x

FCW FeMetal 710M/742M ø 1.0 mm ArCO2 82/18 + 426 10680426 x x x

FCW FeMetal 710M ø 1.2 mm ArCO2 82/18 + 427 10680427 x x x

FCW FeMetal 742M ø 1.2 mm ArCO2 82/18 + 428 10680428 x x x

FCW FeMetal MC-RS ø 1.2 mm ArCO2 82/18 + 418 10680418 x x x

FCW FeMetal 700 T-MC ø 1.2 mm ArCO2 92/8 + 461 10680461 x x x x

FCW FeMetal HL 51-MC ø 1.0 mm ArCO2 92/8 + 462 10680462 x x x x

FCW FeMetal HL 51-MC ø 1.2 mm ArCO2 92/8 + 463 10680463 x x x x

FCW FeMetal 700MC ø 1.0 mm ArCO2 92/8 + 464 10680464 x x x x

FCW FeMetal 700MC ø 1.2 mm ArCO2 92/8 + 465 10680465 x x x x

FCW FeBasic 515 ø 1.2 mm ArCO2 82/18 - 413 10680413 x x x

FCW FeBasic 6130 ø 1.4 mm
CO2 100 +/- 435 10680435 x x x

ArCO2 82/18 +/- 415 10680415 x x x

FCW FeBasic 6125 ø 1.0 mm ArCO2 82/18 - 417 10680417 x x x

FCW FeBasic 15.00 ø 1.4 mm CO2 100 +/- 433 10680433 x x x
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PROGRAM PACKAGE PROCESS

Material Diameter Gas specification Polarity Program

number

Item

number

Standard

10681000

Mild steel

10681001

Stainless 

steel

10681002

Aluminium

10681003

All 

included

10681099

DC Pulse Power Arc 

10682003

IAC 

10682004

10682999

10682001 10682002

FCW FeCr ø 1.6 mm ArCO2 82/18 + 474 10680474 x x x

FCW CrNi E316LT-1 ø 1.2 mm ArCO2 82/18 + 483 10680483 x x x

FCW 2205 ø 1.2 mm ArCO2 82/18 + 484 10680484 x x x

FCW 2507 ø 1.2 mm ArCO2 82/18 + 485 10680485 x x x

FCW CrNi 15.31 ø 1.2 mm ArO2 98/2 + 486 10680486 x x x

FCW CrNi 309 ø 1.2 mm CO2 100 + 493 10680493 x x x

FCW CrNi 316L ø 1.2 mm CO2 100 + 494 10680494 x x x

CuAl8 Brazing

ø 0.8 mm Ar 100 + 501 10680501 x x x x

ø 0.9 mm Ar 100 + 509 10680509 x x x

ø 1.0 mm Ar 100 + 502 10680502 x x x x

CuAl8 Welding

ø 0.8 mm Ar 100 + 571 10680571 x x x

ø 1.0 mm Ar 100 + 572 10680572 x x x

ø 1.2 mm Ar 100 + 573 10680573 x x x

CuSn Brazing ø 1.2 mm Ar 100 + 523 10680523 x x x

AlBz9Fe Welding ø 1.6 mm Ar 100 + 554 10680554 x x x

CuSi3 Brazing

ø 0.8 mm Ar 100 + 561 10680561 x x x x

ø 0.9 mm Ar 100 + 569 10680569 x x x x

ø 1.0 mm
Ar 100 + 562 10680562 x x x x

ArCO2 92/8 + 567 10680567 x x x x

Inconel 625
ø 1.2 mm

Ar 100 + 588 10680588 x x x x

ArHe 85/15 + 583 10680583 x x x x

ø 1.6 mm ArHe 85/15 + 584 10680584 x x x x

Inconel 718 ø 1.2 mm ArHeCO2 95.8/4/0.2 + 591 10680591 x x x x

Inconel 825 ø 1.2 mm ArHeCO2 81/18/1 + 590 10680590 x x x x

Inconel 82 / Monel 400 ø 1.2 mm Ar 100 + 589 10680589 x x x x

FCW Inconel 625-PW ø 1.2 mm ArCO2 82/18 + 593 10680593 x x x

UTP A 8051Ti ø 1.2 mm ArCO2 98/2 + 595 10680595 x x x

SMO
ø 1.0 mm ArHeCO2 68/30/2 + 596 10680596 x x x x

ø 1.2 mm ArHeCO2 68/30/2 + 597 10680597 x x x x

Titanium Gr.2 ø 1.6 mm ArHe 70/30 + 704 10680704 x x x

Note: the number of available programs may vary from your machine, as it depends on date of purchase. 
Please contact your Migatronic dealer for purchase of new licenses.



Appendix C

High Speed Footage of Metal Bridge

To further the understanding of the formation and collapse of the metal bridge, high
speed footage of the GMAW short circuit process is used. The goal of this is to figure
out if there is some features/patterns that can be used to describe the development
of the bridge. The full high speed clip can be in appendix D.

Figure C.1: Still frame of the formation of the metal bridge, just after formation
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Figure C.2: Still frame of the formation of the metal bridge

Figure C.3: Still frame of the formation of the metal bridge
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Figure C.4: Still frame of the formation of the metal bridge, just before collapse

Figure C.1 though C.4 shows the development of the metal bridge, from formation
to just before collapse. The bridge can be roughly described as a cylinder, where the
sides goes from a convex shape to a concave one. The top and bottom diameter of
the cylinder does not change, while the middle gets pinched.

The time it takes for the bridge to go though its cycle varies, which correlates with
the current and voltage measurements. The time between bridge formation is also
not constant, due in turn to "waves" or oscillations in the weld pool caused by the
collapse of the former bridge. These waves also tend to cause small deformations in
the shape of the bridge.

From the high speed footage is it also clear that the pinching of the bridge is not
linear. this means that the pinching of the bridge start slow and then the speed
increases as the neck gets thinner. The footage also shows that the distance form the
electrode to the workpiece remains quit uniform.

As for finding a suitable model for the bridge there are several options and this
appendix will cover two of these models: one that is based on the physical properties
of the bridge and another that is based on the electrical properties. The first model
is to describe the bride as a capillary bridge. A capillary bridge [30] is a term used
for a liquid "membrane" that spans the gap between to objects. This membrane
can be described by 4 parameters: h, the distance between to two surfaces, r0, the
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radii of the neck, rc, the contact radii and ϕc, the contact angle. The shape and the
membrane is also tied to the pressure difference between outside and the inside of
the membrane, denoted as P1 and P2. Comparing figure C.5 with figures C.1 though
C.4, shows that this is a suitable model for describing the shape of the molten metal
bridge. To add the pinching of the neck, a fitting rate of change for the neck radii
has to be found.

Figure C.5: Example of a capillary bridge between 2 flat surfaces[30].

Another approach is to model the bridge as a piece of wire with changing resistance,
as this is electrically how it acts, when it is in short circuit mode. The resistance of
a piece of wire is given by:

R =
ρL

A
(C.1)

Where:

ρ = resistivity of the wire material [Wm]
L = lengths of the wire piece [m]
A = cross-sectional area of the wire [m2]

By multiplying the equation with I(t), it can replace Ua in the electrical model of the
welding system, when the system is short circuited, as the bridge is "replacing" the
arc. From looking at the high speed footage, it is clear that the change in resistance
in the molten metal bridge, manly comes from the change in the cross-sectional area
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of the bridge. By incorporating this into the model, it should be possible to model the
bridge from an electrical standpoint. The lengths of the wire is the distance form the
electrode to the workpiece. As the available data for the welding system is electrical,
it makes the most sense to use this model to describe the molten metal bridge.





Appendix D

Migatronic Data Sets

This is attached as a folder containing all data received by Migatronics A/S for this
thesis. The contents of the folder is:

• Multiple data sets, for 3 welding programs and various current and voltage
settings, each containing current and voltage measurements for roughly 7 sec
of welding

• The welding table, also seen in Appendix B

• The presentation given by Migatronic A/S, outlining and expanding upon the
project proposal seen in appendix A
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Appendix E

Classification Comparison Confusion
Matrices
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Figure E.1: Confusion matrices for classification comparison using feature set F
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Figure E.2: Confusion matrices for classification comparison using feature set F1
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Figure E.3: Confusion matrices for classification comparison using feature set F2



Appendix F

Thesis Summary - Dansk

Denne rapport undersøger hvorvidt der kan opstilles et system der er i stand til
at forudse hvornår kortslutnings-fasen er ved at ophøre i en konventionel GMAW
Short-Circuit svejseprocess, også kendt som et free burn eller rupture. Ved at forudse
hvornår hvornår denne fase ophører, kan svejsestrømmen reguleres således at vold-
somme brud på svejseelektroden undgås når kortslutningen ender, hvilket betyder at
fjernelse af spatter fra svejseprocessen er mindre nødvendigt.
Problemet bliver opstillet som et binært klassifikationsproblem, hvor i ønskes at klas-
sificere målingsdata fra svejseprocesser i kortslutnings-fasen som enten tilhørende
"Rupture" klassen, hvis målingen er blandt de sidste målinger i kortslutnings-fasen,
eller som tilhørende "Short" klassen, hvis målingen er blandt de resterende forkomne
målinger i kortslutnings-fasen.
Strømstyrke- og spændingsmålinger bliver brugt til klassifikationsproblemet, og der
ud over bliver der brugt en række sample-by-sample og statistiske features, som
primært bliver ekstraheret fra spændingsmålinger fra svejseprocessen. Dertil bliver
der opstilt en model simpel for tværsnitsarealet af svejseelektroden gennem kortslutnings-
fasen, som det bliver forsøgt at estimere ved brug at en extended kalman-filter. Es-
timatet viser sig dog ikke at være realistisk. I stedet bliver residualet fra spænd-
ingsmålinger og kalman-filterets spændingsestimat tilføjet som en feature til klassi-
fikationsproblemet.
For at finde den bedste klassifikationsmodel til problemet, bliver der lavet en sam-
menligning af forskellige modeller, baseret på en række præstationsmål udvundet fra
forvirringsmatricer for de forskellige modeller i kryds-validering på træningsdata. Her
bliver det vurderet at K-Nearest Neighbor modellen (KNN) har den bedste præsta-
tion, hvorefter optimale hyperparameter bliver fundet til at være Mahalanobis-afstand
med 1 nabo.
I test af KNN-modellen bliver det vurderet at præstationen er acceptabel på testdata
af samme afart som modellen træningsdata, hvorimod præstationen på testdata fra
svejseprocesser med andre programmer og indstillinger sammenlignet med trænings-
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dataet ikke var acceptabel. Ved at træne modellen på træningsdata fra en række
svejseprocesser med forskellige programmer og indstillinger, og derefter lave en test,
bliver det vurderet, at for at opnå en acceptabel præstation på et testdatasæt fra en
svejseproces af en givet afart, skal klassifikationsmodellen være trænet med trænings-
data fra en svejseproces af samme afart.
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