
Aalborg University
Software Engineering

Title:
Mask R-CNN for Segmentation of Aerial Data with Edge Aware Loss

Project-period:
2020 Spring Semester

Project Group:
DT102F20

Group Members:
Frederik Østerby Hansen
Mikkel Vestergaard Hem
Matias Dahlin Holst

Supervisor:
Chenjuan Guo

Page Count: 8

Abstract: In this project we tackle the problem of image
segmentation in aerial data, where the goal is to draw accu-
rate segmentation masks unto buildings. We utilize an existing
machine learning model, Mask R-CNN, and attempt to opti-
mize the mask loss function, such as to improve the accuracy of
the segmentation masks. We therefore propose and implement
three different loss functions for the model, to measure their ef-
fects on performance, specifically when applied on our dataset.
We also produce a dataset, derived from aerial photographical
data and LiDAR data. We find that the Edge Aware loss func-
tion results in a noteworthy improvement in output masks.

Mask R-CNN for Segmentation of Aerial Data with Edge Aware Loss

Hansen, Frederik Østerby , Hem, Mikkel Vestergaard and Holst, Matias Dahlin
Aalborg University

faha15@student.aau.dk, mhem15@student.aau.dk, mholst15@student.aau.dk

Abstract

In this project we tackle the problem of image seg-
mentation in aerial data, where the goal is to draw
accurate segmentation masks unto buildings. We
utilize an existing machine learning model, Mask
R-CNN, and attempt to optimize the mask loss
function, such as to improve the accuracy of the
segmentation masks. We therefore propose and im-
plement three different loss functions for the model,
to measure their effects on performance, specifi-
cally when applied on our dataset. We also pro-
duce a dataset, derived from aerial photographical
data and LiDAR data. We find that the Edge Aware
loss function results in a noteworthy improvement
in output masks.

1 Introduction
The process of extracting information from images has gained
a lot of attention in the previous decade, as it has a wide range
of applications, depending on the given type of image. To per-
form this task, neural networks are a popular choice, as they
have a large collection of tools, and can be trained to perform
a variety of tasks. Such tasks could be image classification,
labeling the object in an image, object detection, marking the
general area of an object e.g. by a square, or image segmen-
tation, creating a pixel mask for the object in the image.

For the image segmentation task, the goal is to produce a
pixel mask, henceforth mask, where each pixel is associated
with a chosen label. Any given pixel will then either be clas-
sified as part of a given object instance, or not.

One specific area is the extraction of buildings from aerial
photos, which provides data that can be used by areas such, as
real estate, industry, homeland security, flood management,
and city planning, e.g. to create a model of the city. While this
task can be done manually by hand, it is a tedious and costly
process, and as such automating this process could provide
a cheaper and faster alternative. This however comes with a
set of challenges; e.g. noise from the image can make the
end product blurry or oddly shaped. In this paper we aim to
alleviate this problem, in order to produce a sharper and more
accurate representation of the building’s location. We do this
by taking an existing image segmentation model, and attempt

to optimize its loss function for mask generation, to achieve
improved results.

Existing work concerning this problem tries to account for
some of the difficulties in various ways. One example is
[Chen et al., 2014], where the focus is put on detecting the
shadows cast on buildings, as these could obscure the roofs,
making it hard to effectively mark the building. This is done
by first separating the image into smaller sections, or clus-
ters, and then using an algorithm to classify these sections.
The disadvantage of their method is that the method consists
of multiple parts, that are independent of each other, an there-
fore unable to work together.

Other works use LiDAR data, containing information
about the height of each pixel in the image. In [Rotten-
steiner and Briese, 2003] LiDAR data is used to construct
a 3D model of a group of buildings. This is done by using the
LiDAR data to get a rough estimate of the roof of the build-
ings, passing this information to an algorithm separating the
different buildings, and then finding the slope of each roof to
construct a 3D model. However only using LiDAR data may
not provide enough information, especially when the task in-
volves detecting a certain type of building, e.g. residences.

In [Lee et al., 2008] LiDAR data is used together with
aerial images to find the locations of buildings. This is done
by first proposing a set of candidate regions, where buildings
might be present, and then using the aerial images to find the
best candidates. This method exploits the benefits of the two
data types, however as the many processes applied to the data
are not aware of each other, it may be hard to fully utilise both
data types, as their information can not be connected more di-
rectly.

To process images and produce a useful output, a model
is needed that is designed to extract information from im-
ages. Fortunately, such a model has gained a lot of popularity
lately, this being the Regional Convolutions Neural Network
(R-CNN). This network model, together with the more recent
descendants of it, proposes a set of regions in an image, and
processes the information in the regions separately to produce
an output, thus providing both image classification and image
segmentation.

However, the Regional Convolutions Neural Network is a
general solution for image processing, and is thus unlikely
to achieve outstanding performance on a specific problem.
In this paper we therefore propose to improve the model for

1

extracting buildings from aerial data, by optimizing the loss
function. For our problem we choose a variation of the R-
CNN, the Mask R-CNN, designed to produce pixel masks.
To achieve better performance we test a series of alternate
loss functions, to investigate what works best for our problem
domain. We also construct our own dataset using aerial data
to test the performance of the network, using aerial images
together with LiDAR data to increase the amount of informa-
tion available for the network. In this paper we make the fol-
lowing contributions; 1) Create our own dataset for building
detection, using aerial images and LiDAR data. 2) Show the
performance of Mask R-CNN using different loss functions.

2 Related Works
2.1 Regional Convolutional Neural Network
The Regional Convolutional Neural Network (R-CNN), has
gone through several iterations, from the most simple model
[Girshick et al., 2014], to the newer faster versions [Ren et
al., 2015] [He et al., 2017].

The idea behind R-CNN is that instead of looking through
every possible region, of the image, a set of regions, or areas
within the image, are proposed, in which objects might be
present. These regions are then processed further, depending
on the desired output, such as image classification, labeling
the object in the region, object detection, refining the region
the in which the object is located, or image segmentation, cre-
ating a pixel mask for the object.

The ability to create masks for the object in a region was in-
troduced in the Mask R-CNN version from [He et al., 2017].
This process was made to run parallel to the other tasks, such
that as little overhead was added as possible, ensuring that the
fast performance of the network was not reduced.

2.2 Edge Aware Models
To increase the performance of a model used to compute a
semantic segmentation task, some papers have experimented
with creating a line marking the edge, or boundary, of the
object, in addition to creating a pixel mask for each object.
One reason for computing the edge of an object is to help
the model differentiate between overlapping, or touching, ob-
jects, by making it not only locate the objects, but also create
an outline of them.

This was the idea in [Mou and Zhu, 2018], where the goal
was to create a mask, as well as an outline of each individual
car, from an aerial photo, to improve the performance of the
segmentation task. To perform this task, the model was con-
structed to compute these two output from data processed by
a series of convolutions and residual layers, which could then
be used to create the individual masks.

In [Kirillov et al., 2017] they also use edge detection to
separate different objects, in photos taken from a human per-
spective, which could be defined as a more complicated task,
as a greater overlap between the objects is possible. To cre-
ate masks for each object, they calculate the probability for
each pixel to belong to a certain class, and the probability of
it touching another object. They then divide the image into
small clusters and use this, together with the previous proba-
bilities, to construct masks for each object.

The idea behind edge detection is to differentiate objects
within an image, by looking for a sharp change in intensity or
color. A common method for finding the edge of an object is
by using the Sobel Operator, that is split into a horizontal and
a vertical directions (also referred to as the x and y directions).
A kernel is then created for each direction, to find edges, or
changes in the image, for that orientation. The output of each
direction can then combined to one value, representing how
big the change is.

3 Preliminaries
The data we use consists of the following three different data
types; Aerial photographic data (orthophoto) O, which has
three color channels red, green and blue. A height map
H derived from LiDAR data, including a surface-map HS

(buildings, trees and other objects), and a terrain-map HT ,
with data points excluding surface objects. There is also a
set of building polygons B (representing building footprints),
where each individual polygon consists of a series of points
outlining the building. We assume a complete geographical
overlap, between layers O, H and B.

Problem Definition
We provide a formal description of the problem, such as to
precisely define the input and output of this paper.

Input
The information available to us is the orthophoto, LiDAR,
and polygonal data, which will create the foundation for this
project, and are used to train the model to produce our desired
output. See Equation 1.

Problem = (O,H,B) (1)

Output
The output we wish to achieve, is a set of bitmasks, where
each mask represents a building within the input data. See
Equation 2.

Solution = {bitmask1, .., bitmaski | i > 0} (2)

4 Method
From preliminary experimentation, we quickly observed that
the Mask R-CNN model exhibited weak performance in re-
gards to mask accuracy, when applied to our dataset. The
model is very good at recognizing buildings, and does quite
a good job at drawing a bounding boxes. However, the pro-
duced masks are not representative of the building polygons.
It became evident that the masks tended to have rounded
shapes, and thus did not fit most buildings well. Buildings
tend to have right angles, and straight sides. These seem dif-
ficult for the Mask R-CNN model to accurate produce masks
for, the same observation can be reflected in the mrcnn mask
loss metric. In this section we will describe our process for
constructing our dataset using areal images and LiDAR data.

2

We then give a more detailed description of the architecture
of the Mask R-CNN, and its components. Lastly, we present
the loss functions we will train the model with.

4.1 Model Input & Output
We provide a formal description such as to precisely define
the input and output of the model. When talking about the
dataset, it is important to first understand what input the Mask
R-CNN model works on, and what output it produces.

Model Input
The model (during training) takes two inputs, an im-
age (tile) t and its associated masks (ground truth) <
mask1, ..,maski >. Section 4.2 covers how we derive data
in this form. In inference mode, the model only takes t. See
Equation 3.

Input = (t, < mask1, ..,maski >) where i > 0 (3)

Note that i must be greater than zero, otherwise there is
no mask, ground truth(s), associated with the input, and thus
training is impossible. Tiles without masks must therefore be
filtered out before training.

Model Output
The model produces three outputs for each detected instance:
a classification label class, a bounding box bbox and a seg-
mentation mask mask. The model is trained to optimize the
prediction accuracy of these three outputs. See Equation 4.

Output = {(classi, bboxi,maski) | i ≥ 0} (4)

The output contains i predictions, each representing a de-
tected building. If no buildings are detected, the output set
may be empty, i = 0.

4.2 Dataset Processing
This section covers the sourcing and processing of the data
used to derive our dataset. A brief explanation is followed by
a formalized description of the processing.

Our data source offers height map data in three formats, a
point cloud (raw LiDAR data points), a terrain map (raster)
and a surface map (raster). We utilize the terrain HT and sur-
face HS rasters to derive a new height map, which we denote
as relative height map HR. The terrain map only includes
the terrain (hills, ditches, etc.), and the surface map includes
surface features (buildings, bridges, vegetation, etc.). Both
of these height maps are relative to sea level. Therefore we
can compute a relative height map by subtracting the terrain
from the surface. By doing this we can remove the terrain
(which does not hold relevant information, with regards to our
problem), and effectively put all surface features on a level
ground. Note that height values are now relative the ground
level, as opposed to sea level.

The data was sourced from Kortforsyningen (Danish Map
Supply, Agency for Data Supply and Efficiency), and is pub-
licly available. This includes surface and terrain height maps,
orthophoto and building polygons.

The orthophoto data is usually provided as arbitrarily large
blocks, with extremely high pixel resolution, the same being
true for the height data. Because of this high resolution, we
process it to produce a set of smaller tiles, with reasonable
spatial and pixel resolution dimensions. We also compute the
relative height map, correct for the differences in resolution
between the data, and append the height map data to the or-
thophoto data. This is done by using a 4th channel in the or-
thophoto raster. Some image formats support a 4th channel,
often interpreted as transparency (e.g. PNG). We utilize this,
to place the height map data in said 4th channel, alongside
the RGB channels from the aerial imagery. An illustration of
this can be seen in Figure 2.

Figure 2: Illustration of channels in an image with appended relative
height data, in the fourth channel. Individual channels are rendered
in greyscale.

The resulting imagery is then sliced up into smaller tiles of
reduced spatial size and image resolution. The building poly-
gons (ground truths) are sliced likewise, such that we have a
set of tiles, and their corresponding ground truths. For each
tile, a set of bitmasks is produced where each mask corre-
sponds to a single building feature in said tile.

The following is a step-by-step explanation of how we de-
rive the dataset from the source data. We have four input
data: The terrain height map HT , the surface height map HS ,
the orthophoto O and building polygons B. Note that we as-
sume a complete overlap between these inputs, such that they
all cover the same geographical area. From these inputs we
produce a set of image tiles T , where each tile tn has an as-
sociated set of bitmasks < mask1, ...maski >. The set T is
the output of this procedure, and thus describe the form of the
dataset. See Equation 5.

T = {(t1, < mask1, ..,maski >), ..,

(tn, < mask1, ..,maskj >) | n, i, j > 0} (5)

The following steps one (1) through four (4), explains the
process used to produce T :

Step 1 - Compute Relative Height Map
Using the terrain and surface height maps, HT and HS we
derive the relative height map HR by subtraction.

HR = HS −HT (6)

Step 2 - Merge
We now append HR into the 4th channel of O. As this is a
rather simple process, it will not be explained in detail, but

3

Figure 1: Mask R-CNN model architecture illustrated with image example.

simply denoted as the function append. From this opera-
tion we obtain an image M , with four channels (R,G,B,A),
where the alpha channel contains the data from HR.

M = append(O,HR) (7)

Step 3 - Slice to Tiles
We now cut the image M into a set of tiles T ′. Each tile
t ∈ T ′ has dimensions N × N , while M has dimensions
L× L. N must be selected such that (L mod N = 0). This
ensures that it is only possible to produce tiles such that all
tiles fit within M . The tiling algorithm is denoted as→.

M → T ′ = {t1, .., tn | n > 0} (8)

The same procedure is performed on the buildings B.

B → B′ = {b1, .., bn | n > 0} (9)

Given the sets T ′ and B′ we can produce pairs, such that
each tile t is associated with the set of buildings b located
within the spatial area of t.

{(t1, b1), (t2, b2).., (tn, bn) | n > 0} (10)

Step 4 - Produce Bitmasks
For each tile/buildings pair (tj , bj) we can now produce a bit-
mask for each building feature in bj . This produces a number
of bitmasks masks, which remains associated in-place, with
the tile tj . Each bitmask has the same dimensions N ∗ N as
the tile. This algorithm is denoted with the arrow .

(tj , bj) (tj , < mask1, ..,maski >) | j, i > 0 (11)

Thus we have arrived at the output as described in equation
5.

4.3 Architecture Overview
Mask R-CNN [He et al., 2017] expands on the architecture of
Faster R-CNN, by adding the ability for the network to create
pixel masks for the object within the image. The network con-
sists of five different parts, those being the backbone, RPN,

and three heads performing classification, bounding boxes
and masks respectively.

In figure 1 the architecture of Mask R-CNN can be seen,
shown with intermediate image representations. The input
image is processed by the backbone network, consisting of
a series of residual convolutional layers. The output is then
passed to the Region Proposal Network (RPN), which pro-
poses a series of Regions of Interest (ROIs). Each ROI is
fed through an additional convolutional network, before it
branches off to the heads. These heads will then work in-
dividually, to produce either a classification, a bounding box
or a segmentation mask, for all ROIs. Each part of the model
has its own respective loss metric (e.g. RPN, mask generator,
classification).

In this project we have utilized an implementation of Mask
R-CNN, using Keras on Tensorflow, provided by Github user
Matterport [Matterport, 2019].

Architecture Modules
The Mask R-CNN model, as described previously, consists
mainly of five components, see figure 1. While these are con-
nected with additional layers (e.g. convolutions), we disre-
gard these and provide an explanation of the significant and
distinct parts as follows:

Backbone
The first component in the model is the backbone. An
interchangeable subnet, whose responsibility is to ana-
lyze the input image for objects. Any object recognition
model may be used, however the Mask R-CNN imple-
mentation [Matterport, 2019] we utilize in this project
has ResNet-50 and ResNet-101 implemented (we use
the latter). The backbone outputs a set of feature maps,
each of which is then used to construct the later feature
pyramid in the Region Proposal Network.

RPN
The second component is the RPN (Region Proposal
Network). This works on the output from the backbone,
determining whether recognized objects are of signifi-
cant importance. In other words, it produces proposed
regions of interest (ROIs), in the input image. Each
of these region areas are then passed forward as input
for each of the following heads (class, bbox and mask
heads). This is done by computing a feature pyramid,
where each level of the pyramid contains interesting fea-
tures and different depths in the image. At each depth in
the pyramid, regions of interest are selected and passed
on.

4

Class Head
The class head takes a ROI from the RPN as input, and
performs classification on the given object, associating
it with a label from a set of classes. In our case we only
have one class, which is building.

BBox Head
The bbox head (bounding box) takes a ROI as input from
the RPN, and attempts to fit a minimum bounding box
around the given object.

Mask Head
The mask head takes a ROI as input from the RPN. This
head performs classification on each pixel in the input
region, in order to determine which pixels belongs to a
given object, and which does not. This results in a pixel
mask (bitmask) segmentation of the object in question.

Thus, when all three heads are employed, the model out-
puts, for each recognized object: a classification label, a
bounding box and a segmentation mask.

4.4 Loss functions
The default implementation of the Mask R-CNN utilizes
Cross Entropy (CE) to calculate the loss for the mask gen-
eration. Intuitively, this a rather simplistic approach to im-
age segmentation loss, and we hypothesize that employing a
different loss function, will yield a better performing model,
with regards to our problem. We therefore describe two addi-
tional loss functions, which we implement in Mask R-CNN,
to explore whether they can improve the mask output of the
model.

The first described is CE, the loss function implemented in
Mask R-CNN, which we believe may contribute to less than
optimal mask generation. Second is the squared hinge loss
(SH), and third is Edge Aware (EA) loss. We run experi-
ments using these three functions as losses for the Mask head
of Mask R-CNN, to determine their effects on the model’s
performance.

For the loss functions we use the notation ŷ to denote the
predicted value, being the value produced by the model. We
use the notation y to denote the actual value, or ground truth,
to which the predicted value is compared.

Cross Entropy
Cross Entropy is a loss function based on calculating the en-
tropy across two distributions. In supervised learning these
two distributions can be thought of as a know distribution y
and a presumed distribution ŷ.

CE = − 1

N

N∑
i=1

yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi)

(12)
To calculation the loss the network predict a value ŷi be-

tween zero and one, where zero would be the case of the data
not belonging to the class, and one being the data belonging
to the class. The function, found in Equation 12, uses either
the left or right hand term, if the ground truth yi is either true
or negative respectively.

The loss itself, is the reverse of the logarithmic function,
and thus grows at an increasing rate when approaching zero,
punishing predictions that are far away from the truth more,
in respect to rewarding the predictions that are closer to the
truth.

Squared Hinge
Hinge loss builds on the theory that a model should not focus
on the predictions that are correct, specifically on those it is
very certain of, but instead should instead focus the incorrect
predictions. For this reason all predictions which are correct
are treated the same, providing zero loss, while the loss for
the incorrect predictions are based on their difference to the
correct predictions.

SH =
1

N

N∑
i=1

(max(0, 1− yi ∗ ŷi)2) (13)

For the Squared Hinge loss function, which can be seen in
Equation 13, the labels yi for the data are either 1 or -1. As
the multiplicative of the correct and the predicted values are
subtracted from one, this means that for the cost to be zero,
the multiplicative of the the two values have to result in a
number equal or greater than one.

As we are working with values between 0 and 1, we will
have to stretch this range, such that it matches the expected
range of SH , -1 and 1.

Edge Aware
The Edge Aware loss function EA utilizes convolutions to
detect edges in both the ground truth y and the predicted value
ŷ. L2 loss is then applied on the convoluted values y′ and ŷ′,
after which each filter layer is merged into a single layer by
the mean product. Then an optional weight is applied, and
finally the mean loss is outputted as shown in Equation 14.

The reason to make the loss function edge aware lies in
the assumption that most buildings have distinct consecutive
edges, that often conclude in right angles. Thus by making
the model aware of these edges, we will be able to improve
the mask generation.

EA =
1

N

N∑
i=1

W ∗ 1

M

M∑
j=1

(f(yi)j − f(ŷi)j)
2 (14)

In Equation 14 the function f is the filters applied on the
inputs y and ŷ as shown in Equation 15.

f(y) = f ∗ y, where ∗ is the convolution operation
(15)

Edge aware loss can utilize most edge filtering operators,
but for this project the Sobel Operator and the Prewitt Op-
erator, have been chosen. Both operators are represented by
two 3x3 kernels, the horizontal (x) and vertical (y), shown in
Equation 16 and Equation 17.

The Sobel operator computes an approximate derivative of
the input, which represents the gradient of the image.

5

This is useful because it allows EA to pick up on spatial
qualities of the mask, that another loss function, such as CE,
cannot.

sobelx =

[
+1 0 −1
+2 0 −2
+1 0 −1

]
, sobely =

[
+1 +2 +1
0 0 0
−1 −2 −1

]
(16)

The purpose and intuition of the Prewitt Operator (equa-
tion 17) follows that of the Sobel operator.

prewittx =

[
+1 0 −1
+1 0 −1
+1 0 −1

]
, prewitty =

[
+1 +1 +1
0 0 0
−1 −1 −1

]
(17)

A problem with using Edge aware loss is that the output
is the approximate derivative, and does not wholly represent
the correct ground truth. This can be mitigated by applying
the identity operator, shown in Equation 18. As this opera-
tor will output the identity, consequently making the function
also output an MSE loss.

identity =

[
0 0 0
0 +1 0
0 0 0

]
(18)

5 Experiments
This section covers the experiments we have conducted. We
present training parameters and our strategy, as well as details
about the datasets. Lastly, we present the results yielded from
the experiments.

5.1 Dataset
We have produced a dataset, encompassing both rural, sub-
urban, and urban features. The dataset covers an area in
and around the city of Copenhagen, the capital of Denmark.
The location was chosen due to the aerial imagery and Li-
DAR captures being as temporally close as possible. Also, a
large variety of building types can be found, and little area is
wasted on non-populated areas. Note that the dataset does not
have a perfect temporal synchronization between the capture
dates of LiDAR and aerial imagery.

Dataset Copenhagen

Area 600 km2

of Buildings 396,543
Orthophoto year 2019
LiDAR year 2019
of Tiles 9,600
Tile Size 250×250 m
Tile Resolution 1024×1024 px

Table 1: Our dataset, and its respective attributes

5.2 Training Parameters
We apply a training/test split of 75/25, such that a quarter of
the dataset is reserved for testing. As our datasets are fairly
large, we take the liberty to use a rather large test set. If we
used a small test set, we would risk that the set contains an
unbalanced variety of building types. This would make the
test set biased towards certain buildings types. The significant
training parameters used, can be found in table 2.

Parameter Value
Train/Test split 75%/25%
Backbone ResNet-101
Mini mask shape 56×56 px
Image resize 512×512 px
Train ROIs per image 200
Learning rate 1×10−4
Min. detection confidence 0.9

Table 2: Training parameter configuration

The approach we have chosen for the training process, is
to run it for an undefined number of epochs, until overfit-
ting starts to occur. We then use the weights, taken immi-
nently before the exhibition of overfitting behavior. We do
this for sake the of fairness, as different model variations may
require longer or shorter training phases to reach their poten-
tial. Thus, the metrics used in this project reflects the best
achieved losses, with no overfitting. Furthermore, the train-
ing strategy and parameters (see figure 2) are kept constant
across all model training sessions. We initialize the model
with pre-trained ResNet-101 weights.

Note in table 2 that input images are resized (downsam-
pled), from their original size (1024x1024). This is to cut
down the memory requirements and training time.

5.3 Training Strategy
Before we train the entire model, we need to perform some
initial training on different components. Due to our input im-
age having four channels, we cannot use pre-trained weights
for the first convolutional layer in the model. Furthermore,
it is recomended when training the Mask R-CNN model, to
train the backbone and the heads individually initially. We
therefore employ a simple training strategy, as follows:

Stage 0, (1 epoch)
We train the first convolutional layer. All other layer
weights are frozen. This stage uses a higher learning
rate of 1× 10−3.

Stage 1, (3 epochs)
We train the backbone subnet (ResNet-101), with all
other layers remaining frozen. This stage also uses a
higher learning rate of 1× 10−3.

Stage 2, (1 epoch)
We train the network heads (class, bbox and mask
heads).

Stage 3, (∞ epochs)
We train the entire model, for an unbounded number of
epochs, until overfitting occurs.

6

mIoU (%) F1

MRCNN+CrossEntropy* 81.68 0.3346
MRCNN+SquaredHinge 79.84 0.3686
MRCNN+EdgeAware 83.27 0.3273

Table 3: Comparison of MRCNN with chosen evaluation metrics,
mIoU (mean Intersection over Union) and the F1 score. *(Baseline).

5.4 Results
After having conducted three experiments, by training the
Mask R-CNN model with three different loss functions for
its mask generation, and having performed testing, we have
arrived at some evaluation metrics (shown in table 3). The
mask losses are the result of different loss functions, and thus
cannot be compared directly. We therefore calculate a mean
Intersection over Union (mIoU) and F1 scores, when testing
in order to yield comparable metrics. The most relevant met-
ric is mIoU, as it directly computes the overlap of masks, be-
tween predicted and ground truth.

The results shown that the best mIoU performance is
achieved by EA, and the worst performance is SH . The best
performance of F1 score is achieved by SH , while the worst
is EA.

We use two evaluation metrics in table 3, which are defined
as follows:

mIoU
Mean Intersection over Union, computes the overlap be-
tween predicted masks and ground truth masks, as a per-
centage. This is done for each prediction/ground truth
pairs, and averaged to a single metric.

mIoU =
1

N

N∑
i=1

|maskgti
⋂

maskpredi |
|maskgti

⋃
maskpredi |

(19)

F1 score
The F1 score is the harmonic mean of precision and re-
call calculated for each test sample.

F1 score =
1

N

N∑
i=1

(2 ∗ precisioni ∗ recalli
precisioni + recalli

) (20)

6 Conclusion
It follows from the results in section 5.4 in Table 3, that
the Squared Hinge loss function outperforms both the base-
line and Edge Aware, by a significant margin in F1 score
(∼ 10%). This is a positively surprising result, however in
terms of mask generation, the Squared Hinge loss produces
slightly weaker results than the baseline.

We had expected to see an improvement over both the
baseline and Squared Hinge, using Edge Aware loss. While
the resulting F1 score for Edge Aware is comparable with the
baseline (albeit slightly worse), the mIoU shows a noteworthy
improvement (∼ 1.9%) relative to the baseline.

It is important to note that we do not believe the evalua-
tion metrics to be grounds for an absolute conclusion. There

is too much uncertainty in the training strategy and hyperpa-
rameters, which remains unexplored, and may shift the re-
sults. However, we do observe a clear advantage for both the
Squared Hinge and Edge Aware loss functions. Importantly,
we observe a noteworthy improvement in the mask genera-
tion, using the Edge Aware loss, from looking at the mIoU
evaluation metric.

We can therefore conclude that the Edge Aware loss func-
tion should be applied in the Mask R-CNN model, when
working with our dataset, as it retains a similar F1 score, but
grants improved mIoU score. It might also hold true that
Edge Aware Mask R-CNN may show significant improve-
ments elsewhere in other problems, where the segmentation
boundary accuracy may be of importance.

7 Future work
This section describes a few different directions which poten-
tial continued work may explore.

7.1 Combine Squared Hinge with Edge Aware loss
From the experiments we have observed that both the intro-
duction of Squared Hinge and Edge Aware separately, con-
tribute to an improvement in model performance. Thus, we
propose that the model may be trained with parallel weighted
loss functions, where both Squared Hinge and Edge Aware
are employed simultaneously, potentially achieving the bene-
fit of both.

7.2 Modified Backbone Net
As for this project, we have utilized the ResNet-101 as the
backbone component in Mask R-CNN. It seemed to perform
well, however, we are open to the possibility that a differ-
ent backbone may exhibit improved performance, in terms of
its capacity to accurately recognize buildings (and potentially
other surface features), and even differentiate between build-
ing types. This project was concerned with the improvement
of the mask generation component, and as such, the backbone
has went largely ignored.

7.3 A GAN Approach to Mask Generator
Improvement

Through the duration of this project, we have explored dif-
ferent avenues to improving the mask generation component
of the Mask R-CNN model. One of these was the introduc-
tion of a Discriminator component, inspired by its successful
usage in GAN models (Generative Adversarial Networks).
The basic idea is that a generator and a discriminator acts
as each others adversaries, such as to improve their perfor-
mance. Based on this intuition, we explored the introduc-
tion of a discriminator as an adversary to the Mask generator
in Mask R-CNN. However, due to time constraints, this idea
was scrapped. However, we think this approach may be worth
looking further into, in the future.

7.4 Additional Filters for Edge Aware Loss
While this project has worked with the application of filters,
the filters we have chosen to apply are fairly simple. Fu-
ture experimentation with various other filter types, e.g. the

7

Laplace operator, may prove an interesting endeavour for the
Mask R-CNN mask head loss function.

7.5 Better Training Strategy
The training protocol described and applied in this project
could have been conducted better. We propose that future
work utilizes a pre-trained Mask R-CNN model, trained with-
out the mask head. Said trained model should then be frozen,
and the mask head should be trained thrice, with the three
loss functions. Thus each experiment would have the same
pre-trained weights for the entire model, with the exception
of the mask head.

References
[Chen et al., 2014] Dongyue Chen, Shibo Shang, and

Chengdong Wu. Shadow-based building detection and
segmentation in high-resolution remote sensing image.
journal of multimedia, 9(1):181–188, 2014.

[Girshick et al., 2014] Ross Girshick, Jeff Donahue, Trevor
Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[He et al., 2017] Kaiming He, Georgia Gkioxari, Piotr
Dollár, and Ross Girshick. Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision,
pages 2961–2969, 2017.

[Kirillov et al., 2017] Alexander Kirillov, Evgeny Levinkov,
Bjoern Andres, Bogdan Savchynskyy, and Carsten Rother.
Instancecut: from edges to instances with multicut. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5008–5017, 2017.

[Lee et al., 2008] Dong Hyuk Lee, Kyoung Mu Lee, and
Sang Uk Lee. Fusion of lidar and imagery for reliable
building extraction. Photogrammetric Engineering & Re-
mote Sensing, 74(2):215–225, 2008.

[Matterport, 2019] Matterport. Mask r-cnn. https://github.
com/matterport/Mask RCNN, 2019.

[Mou and Zhu, 2018] Lichao Mou and Xiao Xiang Zhu. Ve-
hicle instance segmentation from aerial image and video
using a multitask learning residual fully convolutional net-
work. IEEE Transactions on Geoscience and Remote
Sensing, 56(11):6699–6711, 2018.

[Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross Gir-
shick, and Jian Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99,
2015.

[Rottensteiner and Briese, 2003] Franz Rottensteiner and
Christian Briese. Automatic generation of building mod-
els from lidar data and the integration of aerial images.
2003.

8

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

	Introduction
	Related Works
	Regional Convolutional Neural Network
	Edge Aware Models

	Preliminaries
	Method
	Model Input & Output
	Model Input
	Model Output

	Dataset Processing
	Step 1 - Compute Relative Height Map
	Step 2 - Merge
	Step 3 - Slice to Tiles
	Step 4 - Produce Bitmasks

	Architecture Overview
	Architecture Modules

	Loss functions
	Cross Entropy
	Squared Hinge
	Edge Aware

	Experiments
	Dataset
	Training Parameters
	Training Strategy
	Results

	Conclusion
	Future work
	Combine Squared Hinge with Edge Aware loss
	Modified Backbone Net
	A GAN Approach to Mask Generator Improvement
	Additional Filters for Edge Aware Loss
	Better Training Strategy

