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Abstract

This paper will introduce the basics of options pricing. Starting with

the Binomial Tree model and moving on to the Black-Scholes model and

the Black-Scholes Greek letters. With a solid theoretical foundation in

place, the paper moves on to presenting more advanced options pricing

models. The reason being that the Black-Scholes model is pricing options

on a �xed volatility. The �xed volatility assumption used by the Black-

Scholes model serves well when learning about options. It has, however,

been proven empirically that the �xed volatility assumptions is not in line

with market behavior. Hence, using the Black-Scholes model for hedging

purposes will lead to wrongful hedges.

The fact that the Black-Scholes model is too simple has lead to nu-

merous more sophisticated options pricing models. This paper will review

two of these models.

First, the Local Volatility model. After breaking down the model I

�nd that for hedging purposes the model is ill suited. Empirically the

model is proven to perform bad when replicating the market behavior.

The model implied volatility simply moves in the opposite direction of

what is observed in the market. This makes it a bad model for hedging.

With this observation I move on to the SABR model. Contrary to the

other models examined in this paper the SABR model applies a stochas-

tic process as part of the volatility measure in the model. This leads to

a model that makes good predictions of the market behavior. Empiri-

cally the SABR model performs well and the model is widely used by

practitioners.

The low interest rate environment has however created a potential

problem for the SABR model as it implicitly assumes the interest rates

to be strictly positive when β 6= 0. The paper introduces some adjusted

SABR models for the reader without going into detail with the models.

However, it is important to know of the existence of these models.
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1 Introduction

In this section I will introduce the paper - starting with the motivation for the
subject, moving on to a minor introduction of the theories to come and some of
the papers used, to what to expect in the paper.

Most private investors invest their money in stocks, bonds and indexes. This
is probably because it is what the media is covering and what is easy accessible
when logging in to ones depository at the bank. To some extent it might also
be because the complexity of these products are not too high. That way you do
not have to be a specialist in order to invest your money in this type of assets.

Investing money is of course embedded with risk. Hence the reward of in-
vesting. Most investors are interested in maximizing their return on investment
given the amount of risk they add to their portfolio. In theoretical �nance the
risk/reward is measured in di�erent ways. Common to most investors is that
they would like to secure their reward given the risk they take. One way to
insure the reward on a portfolio from risk is by buying options. That is, adding
options to a portfolio allows the owner of the portfolio to limit the risk on the
investment.

Options are a type of �nancial instrument that can be bought and sold at
exchanges the same way a stock or another asset is being traded. The formal
de�nition of an option is

De�nition. Owning an option on an underlying asset gives the right, but not
the obligation, to buy or sell that asset at a certain price.

To most private investors options are unknown. This might partly be because it
is a complex area of investing and partly because it is expensive to trade options.
In professional �nance, however, options are widely used. One of the reasons are
that large banks operate with a division called Markets. This division specializes
in market making. That is, they make the market between buyers and sellers.
In order to do this, the Market division buys and sells assets. But sometimes
they are not able to sell an asset straight away. Or they simply choose to keep
that asset because they think they can make more money that way. In order to
reduce the risk on their positions, they hedge their positions using options. This
is typically done at the end of the day. It is common that each trader hedge
their own positions. That way, they know their risk when they leave at night.
But the bank or �nancial institution typically also hedge the overall position of
the bank. To do this, the bank typically have a team of people who specializes
in options trading. This team is highly specialized within options and handle
all customers who need help buying or selling options. The team also handle
the banks overall hedging needs.
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1.1 The purpose of the paper

In this paper I will investigate the world of options. Options are a large part
of professional �nance, as also described above. In order to get a better under-
standing of some of the mechanisms in the �nancial world, I think it will be
bene�cial to have an understanding of options. Hence, this is my motivation for
writing this paper.

Below I will present some research questions that I will try to answer in this
paper. They serve as a guideline for the paper.

Problem. The Black-Scholes model is a well-known options pricing model. Is
there a model that handles options pricing for hedging purposes better than the
Black-Scholes model?

Problem. What are the arguments for choosing one model over another?

Problem. What are the implications of choosing a wrong or less precise model?

Theoretical �nance can be very mathematical. Especially if you choose to ex-
plore the more complicated assets classes or areas like for instance options pric-
ing.
I will not pursue the mathematical solution to the models - or try to prove
the models and their assumptions mathematically. Instead, I will focus on
the general understanding of options and the di�erent options pricing models
presented in the paper. Hence, I will accept and apply the mathematically
proposed models and their solutions and instead focus on the outcome of the
models. Namely the correctness of the pricing from each model and a discussion
about the results from an intuitive standpoint. Moreover, I will not go into any
trading strategies or anything of the like. I will solely focus on the pricing of
options from a hedging perspective.

I will not make any applications of the models in my review. Instead, I will
focus on the intuition of the models using �gures. The reason being that making
an application of each of the models is beyond the scope of this paper.

1.2 Introduction of theory

The Black Scholes model is probably the best known model for options pricing.
The model was �rst introduced by Fischer Black and Myron Scholes in a paper
published in 1973 [3]. The same year Robert Merton published an expansion
of the model [28], making it capable of pricing options on underlying securities
paying out dividends. This model is know as the Black-Scholes-Merton model
and will be introduced in this paper.
Today it is clear that the Black-Scholes model has some shortcomings. These
are especially relevant when options are used for hedging.

The shortcomings of the Black-Scholes model are the reason for other op-
tions pricing models. In this paper I will investigate some of the models in the
search for a better or more correct way of pricing options. I will do this by
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looking at two other models introduced below. The Black-Scholes model is the
�rst model introduced in this paper and it will serve as a sort of baseline model.

The second model the paper is looking at is the Local Volatility Model. This
is a model simultaneously developed by Dupire [13] and by Derman and Karni
[10]. I will use the approach of Derman and Kani.
The Local Volatility Model is trying to account for the none constant volatility
that the Black-Scholes model is failing to address. The way the Local Volatilty
Model handles this is by incorporating the volatility smile - the volatility smile
will be introduced later in the paper. It turns out that the result of incor-
porating the volatility smile in the Local Volatility Model might not give the
intuitively expected result.

The third model introduced is the SABR model. The model was �rst proposed
by Hagan, Kumar, Lesniewski, and Woodward in 2002 [18]. This model is also
trying to handle the non-constant volatility. The way the SABR model solves
this is by allowing the volatility to be stochastic.

Applying the SABR model involves calibration of the volatility smile. The
calibration is a continuous process as the volatility smile changes over time. The
output from the SABR model is applied to the Black-Scholes model to generate
new Black-Scholes Greeks for better hedging.

The paper is structured in the following way: Chapter 2 is introducing the basics
of options. Starting with the binomial tree structure, moving on to the Black-
Scholes-Merton model and on to Itô's formula and ending with the Black-Scholes
Greek letters. This should give the reader a solid theoretical understanding of
what options are before moving on to more complex models of options pricing.

Chapter 3 is looking at the Local Volatility model. For starters, this chapter
introduces the concepts of implied volatility and the volatility smile. Then the
Local Volatility model is introduced before it is applied and the model dynamics
are discussed.

Chapter 4 is about the Stochastic Alpha Beta Rho model. More commonly
known as the SABR model. Before introducing the actual SABR model the
Black-Scholes Greek letters are expanded with two additional Greek letters.
Then the SABR model is introduced and calibration of the model is explained
before the model is discussed.

In chapter 5 the options pricing models are evaluated and compared to each
other in order to answer the research questions presented earlier. Chapter 6 is
concluding.
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2 Introduction to options

In this section I will present some theory needed to understand the basics of
options. It is necessary to know the basics of options and options pricing to
understand and work with volatility models as this is a particular element in
options.

An option is a type of �nancial derivative. That is, the price of an option is
depending on some underlying asset like a stock or a currency. This, in essence,
mean that when the underlying asset's price moves in either direction the option
price makes an equivalent move. When buying an option it is possible to buy
either a put or a call option. The put options value rises as the underlying
assets price is declining. A call options value rises as the underlying assets price
is rising. This makes it possible for options to be regarded as a form of insurance
on a �nancial asset or an insurance of a portfolio as you can buy options moving
in the opposite direction of your assets. It is also possible to sell a call option,
meaning that you have a short position in the option. Going short in a call
option is like going long in a put option. However, there are some di�erences in
doing so.

There are two types of options. European options and American options.
The main di�erence between them is that the American option has an early
exercise element embedded in it. In general, some de�nitions for working with
options are listed below.

De�nition 1. An option is a security that gives the right but not an obligation
to buy or sell an asset within a speci�ed period of time.

De�nition 2. A call option is the kind of option that gives the right to buy a
single share of common stock.

De�nition 3. An exercise price is the price that is paid for the asset when the
option is exercised.

De�nition 4. A European option is a type of option that can be exercised only
on a speci�ed future date

This section will look at the theory of European options on underlying assets
not paying any dividends. The reason for this is that most models are derived
on these assumptions. One reason can be that some underlying assets are not
paying dividends.
Dividends are often paid by stocks. But options can be traded on a great variety
of underlying assets. In fact, the stock market is quite small compared to the
market for foreign exchange or interest rates. However, it is possible to expand
the models to include underlying assets paying dividends, if needed. Also, the
models can be expanded to include American options.
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This section is structured so that we start by looking at binomial trees to get the
basic understanding of pricing an option. We then move on to look at processes
before we dive into the Black Scholes Merton model and Itô's Lemma. All this
is gathered by the Greeks before the section is summed up in the conclusion.

2.1 Binomial Tree

The pricing of options usually start with the introduction of binomial trees.
Pricing an option this way is done in steps where you start at the �nal node
and then price the option backwards. For the binomial tree model to work some
assumptions must be made. The �rst assumption is the one of no arbitrage op-
portunities in the model. That is, it should not be possible to buy and sell the
option at the same time and then make money of it. Further, we assume that
there exist risk less portfolios and risk neutral valuations. This, I will explain
further below.

The risk less portfolio is set up under the assumption that it must earn a return
equal to the risk free interest rate. That is, as there is no risk to the portfolio
there can be no risk premium either. Hence, the investor is requiring the risk
free interest rate in return for the investment.

Setting up a portfolio consisting of a long position in some asset denoted as
S0∆, where S is the price of the asset and ∆ is the quantity of the asset, and
a short position in an option using the same asset as underlying, the one step
binomial tree model can be used to express the risk less portfolio.

S0u∆− fu = S0d∆− fd (2.1)

∆ =
fu − fd
S0u− S0d

(2.2)

Equation 2.1 is the risk less portfolio. No matter if the underlying assets value
goes up or down, the value of the risk less portfolio must equal in order for the
portfolio to be risk less. Hence, solving for ∆ as in equation 2.2 and using this
∆ value ensures that the portfolio is risk less. That is, buying ∆ amount of the
asset and selling one option ensures that you have a risk less portfolio in the
given time period.

Pricing an option using a binomial tree model basically means that you assume
that the price can only be one of to possible things in next period given the
price in this period. The length of the time period can vary from tree to tree.
But when you start to evaluate an option using binomial trees the distance in
time between each node must be �xed.
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Figure 2.1: Binomial Tree structure

Figure from Hull [22]

Note: The binomial tree structure. Starting in f and moving forward the option price can only take
one of two values in each future period. Moving one step forward the option is again facing one of
two prices.

Figure 2.1 depicts the binomial tree model structure. Starting at f and moving
forward the price of the option in the next period can only be fu or fd. The
following period the price can be one of the following three - fuu, fud or fdd -
depending on the node in wich you stand in in the middle period of �gure 2.1.

When pricing an option using the binomial tree model one starts at the time
of expire of the option and work back towards the start of the option. In �gure
2.1 this means that one would start by pricing fuu, fud and fdd using the values
of the underlying asset at expiry. The same way, one would price fu and fd and
in the end one would price f . This is put more formally in the equations below.

f = e−r∆t [pfu + (1− p) fd] (2.3)

p =
a− d
u− d

(2.4)

u = eσ
√

∆t (2.5)

d = e−σ
√

∆t (2.6)

a = er∆t (2.7)

where r is the risk-free interest rate, σ is the volatility and ∆t is the change in
time.
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Equation 2.3 states the calculation of the option value, f . Equation 2.4 is the
calculation of p using the input from equation 2.5 to equation 2.7. Equation 2.4
is a generalization of equation 2.2. Calculating the option price this way is called
risk neutral pricing. Pricing options this way is based on the assumption that
investors are risk neutral. That is, investors do not expect higher return with
higher risk. This assumption allows for two simplifying features.The expected
return of an investment is equal to the risk free rate. And the discount rate
used to calculate the expected payo� from an option is the discount rate.
P is measuring the probability of a node to be reached.

In the limit the Binomial Tree model and the Black Scholes Merton Model is
the same model. Later in this section I will present the Black Scholes Merton
model, where I will show why the two models are the same.

2.2 Processes

The pricing of a �nancial asset is following a stochastic process. That is, when
a variable is changing value in an uncertain way over time it is said to follow a
stochastic process. This stochastic process can be classi�ed either as a discrete
or a continuous time process. The discrete time stochastic process is a process
where the value of the variable can only change at a certain time. For example
once a day or every time you �ip a coin. A continuous time stochastic process
is one where the value of the variable can change at any time. However, when
talking about �nancial assets the actual change will only take place when the
stock exchange is open.

The choice between discrete time and continuous time is important when
choosing a process. The usage of processes is a way to guess or limit the sample
space of a variable. This is a way of managing expectations in a given situation.
Hence, for a process to make sense it is important to �gure out if it is in discrete
time or in continuous time. Once this is settled, you can move on to try to
estimate the possible values the variable can have. For instance, if you play
heads or tails it makes no sense to use a continuous time process. Flipping a
coin is a discrete time maneuver and the fall out can only be one of two things
- head or tail. Hence, using the correct process enables you to limit the sample
space for this particular game. That way you can easier make predictions about
the fall out of the game.

Given that �ipping a coin is a fairly simple game the gain from using a pro-
cess might seem a bit small since you can easily see the outcome. When working
with more complicated stu� like estimating tomorrows price on a stock it might
be bene�cial using processes.

The Wiener process is a particular type of Markov Stochastic Process with
a mean of zero and a variance of one. A variable z follows a Wiener process if
the change in z for a small period of time ∆t is

∆z = ε
√

∆t (2.8)
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where ∆z = zt − zt−1 and ∆t = tt − tt−1 and ε has a standard normal
distribution φ (0, 1). The values of ∆z must be independent for any two di�erent
short time intervals. It follows from equation 2.8 that ∆z follows a normal
distribution with a mean of zero, variance of ∆t and a standard deviation of√

∆t. Evaluating the change in z on a relatively long time period T, the change
in z can be written as z (T )− z (0). Thinking of this as the sum of changes in z
in N small intervals with a length of ∆t, we get

N =
T

∆t

From this it follows that

z (T )− z (0) =

N∑
i=1

εi
√

∆t (2.9)

From equation 2.9 it follows that z (T ) − z (0) is normally distributed with
mean zero, variance T and standard deviation of

√
T .

It follows from the fact that ∆z must be independent form any two short
time intervals that z follows a Markov Process. We can evaluate z in the limit
as ∆t→ 0. That is, the basic Wiener Process can be expressed as dz, meaning
that it has the properties of ∆z as ∆t → 0. This allows for the Generalized
Wiener Process.

dx = a dt+ b dz (2.10)

where a and b are constants.

The General Wiener Process, equation 2.10, has a drift rate of zero and a
variance of one - a dt being the drift element and b dz being the variability or
noise element of x. The drift rate of zero means that the expected value of z at
any given future time equals the current value. The variance rate of one means
that the variance of change in z is equal to the change in time. In other words,
the expectation for next periods value is equal to this periods value. The lack of
a drift means that the change in value from period to period can be explained
with the change in time.

∆x = a∆t+ bε
√

∆t (2.11)
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Equation 2.11 expresses a change in x given a small change in time t. Like
in equation 2.8 ε has a standard normal distribution. Thus ∆x has a standard
normal distribution with mean a∆t, variance of b2∆t and standard deviation
of b
√

∆t. It follows from previously that the change in value of x in any time
interval T is normally distributed with a mean of aT , variance of b2T and stan-
dard deviation of b

√
T .

The Itô Process is a stochastic process much like the Generalized Wiener
Process. The main di�erence being that the Itô Process uses functions for the
parameters a and b so that they are functions of the underlying variable x and
of time t.

dx = a (x, t) ∆t+ b (x, t) ε
√

∆t (2.12)

Equation 2.12 expresses an Itô Process. Making the parameters a and b
functions of x and t allow for change in the drift rate and in the variance rate.
In a small time interval between t and t+ ∆t the variable x changes to x+ ∆x
where ∆x is expressed in equation 2.13.

∆x = a (x, t) dt+ b (x, t) dz (2.13)

To use equation 2.13 involves the approximation that the drift rate and
variance rate remain constant at their value at time t during the time interval
between t and t+ ∆t. The Itô Process, equation 2.12, is a Markov because the
change in x at time t only depends on the value of x at time t.

2.3 The Black Scholes Merton Model

In subsection 2.1 I mention that the Binomial Tree model and the Black Scholes
Merton model is the same, when evaluating the Binomial Tree model in the
limit. Deriving the Black Scholes Merton model from the Binomial Tree model
is done by letting the time steps in the Binomial Tree model approach in�nity.
I will derive the Black Sholes Merton below.

A tree with n time steps is used to value a European call option with strike
price K and life T. Each step in the binomial tree is of length T/n. j is the
number of upward movements and n− j is the number of downward movements
on the tree. The �nal stock price is then S0u

jdn−j where u is upward movement
and d is downward movement. S0 is the initial stock price. The payo� from a
European call option is then

max
(
S0u

jdn−j −K, 0
)

9



The probability of exactly j upward and n − j downward movements in the
binomial distribution is given by the equation

n!

(n− j)!j!
pj (1− p)n−j

Following the above mentioned argument the expected payo� from the call op-
tion is then given as

n∑
j=0

n!

(n− j)!j!
pj (1− p)n−jmax

(
S0u

jdn−j , 0
)

The binomial tree represents movements in a risk-neutral world and can be
discounted using the risk-free rate r. This gives the option price

c = e−rT
n∑
j=0

n!

(n− j)!j!
pj (1− p)n−jmax

(
S0u

jdn−j , 0
)

(2.14)

As equation 2.14 is for a call option the value of the option is only of interest
when the stock price is greater than the strike price as the option price is zero
otherwise. Hence, the following can be implemented.

S0u
jdn−j > K

or

ln (S0/K) > −jln (u)− (n− j) ln (d)

as u = eσ
√
T/n and d = e−σ

√
T/n the above condition becomes

ln (S0/K) > nσ
√
T/n− 2jσ

√
T/n

or

j >
n

2
− ln (S0/K)

2σ
√
T/n

With this, equation 2.14 is written as

10



c = e−rT
∑
j>α

n!

(n− j)!j!
pj (1− p)n−j

(
S0u

jdn−j −K
)

(2.15)

Where

α =
n

2
− ln (S0/K)

2σ
√
T/n

(2.16)

I de�ne the following

U1 =
∑
j>α

n!

(n− j)!j!
pj (1− p)n−j ujdn−j (2.17)

and

U2 =
∑
j>α

n!

(n− j)!j!
pj (1− p)n−j (2.18)

which gives equation 2.19 below.

c = e−rT (S0U1 −KU2) (2.19)

If we start by evaluating U2. As the number of steps in the binomial distribution
approaches in�nity the distribution approaches a normal distribution. If the
number of steps is denoted n and the probability of success is denoted p, the
probability distribution of the number of successes is approximately normal
with mean np and standard deviation

√
np (1− p). In equation 2.19U2 is the

probability of the number of successes being more than α. From the properties
of the normal distribution, it follows that, for large n's approaching in�nity,

U2 = N

(
np− α√
np (1− p)

)
(2.20)

where N is the cumulative normal distribution function. Substituting for α in
equation 2.20, U2 becomes

U2 = N

(
ln (S0/K)

2σ
√
T
√
p (1− p)

+

√
n
(
p− 1

2

)√
p (1− p)

)
(2.21)

From equation 2.4 to equation 2.7 in subsection 2.1 I have
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p =
erT/n − e−σ

√
T/n

eσ
√
T/n − e−σ

√
T/n

When n tends to in�nity p (1− p) tends to 1
4 and

√
n
(
p− 1

2

)
tends to(

r − σ2/2
)√

T

2σ

Evaluating U2 in the limit as n goes to in�nity equation 2.21 becomes

U2 = N

(
ln (S0/K) +

(
r − σ2/2

)
T

σ
√
T

)
(2.22)

Moving on from U2 to evaluating U1. From equation 2.17 I have the below
expression. I have just rearranged it for a cleaner expression.

U1 =
∑
j>α

n!

(n− j)!j!
(pu)

j
[(1− p) d]

n−j (2.23)

De�ning

p∗ =
pu

pu+ (1− p) d
(2.24)

It follows that

1− p∗ =
(1− p) d

pu+ (1− p) d
Using this, I can rewrite equation 2.23 as

U1 = [pu+ (1− p) d]
n
∑
j>α

n!

(n− j)!j!
(p∗)

j
(1− p∗)n−j

The expected return in a risk neutral model is equal to the risk-free interest
rate, r. From this it follows that pu+ (1− p) d = erT/n and then it follows that

U1 = erT
∑
j>α

n!

(n− j)!j!
(p∗)

j
(1− p∗)n−j

Using the same argumentation as with U2 the above expression shows that U1

involves a binomial distribution with the probability of an up movement is p∗
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instead of p. Again, the binomial distribution goes towards a normal distribution
as n goes to in�nity which gives

U1 = erTN

(
np∗ − α√
np∗ (1− p∗)

)
Again, substitution for α gives

U2 = erTN

(
ln (S0/K)

2σ
√
T
√
p∗ (1− p∗)

+

√
n
(
p∗ − 1

2

)√
p∗ (1− p∗)

)
And substituting for u and d gives

p∗ =

(
erT/n − e−σ

√
T/n

eσ
√
T/n − e−σ

√
T/n

)(
eσ
√
T/n

erT/n

)

By the same argument as with U2, expanding the exponential function and
letting n go to in�nity p∗ (1− p∗) goes towards 1

4 and
√
n
(
p∗ − 1

2

)
goes towards(

r + σ2/2
)√

T

2σ

resulting in

U1 = erTN

(
ln (S0/K) +

(
r + σ2/2

)
T

σ
√
T

)
(2.25)

The �nal model is then expressed using equations 2.19, 2.22 and 2.25.

c = S0N (d1)−Ke−rTN (d2) (2.26)

p = Ke−rTN (−d2)− S0 (−d1) (2.27)

where

d1 =
ln (S0/K) +

(
r + σ2/2

)
T

σ
√
T

(2.28)

and

d2 = d1 − σ
√
T =

ln (S0/K) +
(
r − σ2/2

)
T

σ
√
T

(2.29)

With this, we are able to price an option. However, the more interesting question
is often how the future price of an option is evolving in relation to building a
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portfolio. To this, the Black Scholes di�erential equation is usable. We shall
look more in to this equation later. For now I only state it below.

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
(2.30)

In this subsection I have derived the price of a call option . By the same
argumentation one can derive the price of a put option. However, I only state
the put option equation, equation 2.27, in this subsection. What should be quite
clear from equation 2.26 and equation 2.27 is that the main di�erence between
calculating the call and the put price is the di�erence between stock price and
strike price. With a call option the option has a positive value when the strike
price is below the stock price, whereas the put option has a positive value when
the strike price is above the stock price. Both equation 2.26 and equation 2.27
make use of equation 2.28 and equation 2.29, but with opposite sign.

2.4 Itô's formula

In this subsection I will present some theory on Ito's lemma. However, I will
not make a full derivation of Ito's formula as it is not the scope of the paper.
Instead, I will introduce Ito's lemma and show the relation to the Black Scholes
Merton model showed in subsection 2.3.

The price of an option is essentially a function two things. The underlying asset
and time. The underlying asset can be regarded as a stochastic variable as its
price is evolving in a stochastic way. Hence, an option is a function of some
stochastic variable and time. In subsection 2.2 I introduced the Itô process as

dx = a (x, t) dt+ b (x, t) dz

where a and b are functions of x, t and dz, where dz is a Wiener process as
introduced in subsection 2.2. The variable x in the above equation has a drift
rate of a and a variance rate of b2. Substituting x for S, as I will look at a
particular situation with a spot price, S, I restate the process as

dS (t) = µS (t) dt+ σS (t) dX (t) (2.31)

where µ and σ are constants. Using Itô's Lemma on a function f = f (S, t)as
a function of S and t gives

df =
∂f

∂t
dt+

∂f

∂S
(S, t) dS +

1

2

∂2f

∂S2
(S, t) dS2 (2.32)

if the function f in equation 2.32 follows the Itô process in equation 2.31,
equation 2.31 can be inserted in equation 2.32 and gives

df =

(
∂f

∂t
(S, t) + µS

∂f

∂S
(S, t) +

1

2
σ2S2 ∂

2f

∂S2
(S, t)

)
dt+σS

∂f

∂S
(S, t) dX (2.33)
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Using the argument of risk neutrality I can use the risk free interest rate.
That is, if a portfolio is eliminated for risk an investor will expect the portfolio
to grow with the risk free rate. In this case the portfolio growth as time passes
is of interest. In subsection 2.5 I will go through this more thoroughly. For
now, let us just accept that delta, ∆, is a measure of change in time for some
quantity of asset.

d (f + ∆S) =

(
∂f

∂t
(S, t) + µS

∂f

∂S
(S, t) +

1

2
σ2S2 ∂

2f

∂S2
(S, t) + ∆µS

)
dt+∆S

(
∂f

∂S
+ ∆

)
dX

(2.34)
where ∆ = − ∂f

∂S (S, t). Using this equation 2.34 reduces to

d (f + ∆S) =

(
∂f

∂t
(S, t) +

1

2
σ2S2 ∂

2f

∂S2
(S, t)

)
dt (2.35)

This reduction has eliminated randomness and the expected growth rate is
now the risk free interest rate. Hence, we can state that

∂f

∂t
(S, t) +

1

2
σ2S2 ∂

2f

∂S2
(S, t) = r

(
f − S ∂f

∂S

)
(2.36)

Rearranging equation 2.36 and dropping the notation (S, t) gives

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
(2.37)

Equation 2.37 is equivalent with the Black Scholes di�erential equation in-
troduced in subsection 2.3. We shall look more into the equation in subsection
2.5.

In this subsection I derived the relationship between the Black Scholes di�eren-
tial equation and Itô's Lemma. With this, we are ready to look at the Greek
letters before round this section o�.

2.5 The Greeks

This subsection looks into the Greeks. The Greeks are a common term used in
explaining the di�erent parts that are used when hedging your portfolio against
di�erent changes like a change in price, in volatility or in time. In total, the
Greeks consist of �ve di�erent measures. Delta, the measure of change in price
in the underlying asset. Theta, the passage of time. Gamma, the speed of
change in the price of the underlying asset. Vega, the change in value with
respect to volatility. Rho, the change in value with respect to the interest rate.

Below I will introduce each of the Greek letters more in depth. The Greeks,
as they are called in 'jargon', are the language used when traders are talking
about hedging a portfolio. Hence, the Greeks are an important part of under-
standing options. I will return to the Greek letters and hedging later in this
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paper.

Delta,∆, is de�ned as the rate of change of the option price with respect to the
price of the underlying asset. From a graphical perspective it is the slope of the
curve relating the option price with the underlying assets price. The delta value
is a re�ection of the change in the option price as the underlying asset changes
value. Hence, a delta value of 0.75 means that when the underlying assets price
changes with one unit, the option price changes with 0.75 unit. This relationship
can generally be shown as

∆ =
∂c

∂S

where c is the price of a call option and S is the price of the underlying asset.
A European call option on non-dividend-paying underlying asset can be set

up as equation 2.38.

∆ (call) = N (d1) (2.38)

In equation 2.38, d1 corresponds to equation 2.28 in subsection 2.3 above.
N (x) is the cumulative distribution function for a standard normal distribution
- calculated as N (x) = 1√

2π
e−

1
2x

2

. Equation 2.38 is the formula for the delta of
a long position in a call option. The delta of a short position in a call option is
denoted −N (d1).

Like with the European call option, a put option can also be set up. This is
done in equation 2.39.

∆ (put) = N (d1)− 1 (2.39)

Whereas a long position in a call option has a positive delta, a long position
in a put option has a negative delta. This mean that to use delta hedging for
a long position in a call option one must maintain a short position of N (d1)of
the underlying asset for each call option purchased. For a long position in a put
option delta is negative. Hence, to hedge this one must hold a long position in
the underlying asset. '

The calculation of delta, as done above, is just as easily done for a portfolio.
In a portfolio delta is dependent on a single assets price, S.

∂Π

∂S

where Π is the value of the portfolio.
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The delta of a portfolio is calculated as the sum of the individual assets
deltas. If a portfolio is constructed with wi as the individual assets portfolio
weight and ∆i as the individual assets delta, the portfolio delta is given as
equation 2.40.

∆ =

n∑
i=1

wi∆i (2.40)

Theta, Θ, of a portfolio is a measure of the rate of change of the value of the
portfolio with respect to the passage of time, all else being equal. That is, how
is the value of a portfolio changing if the only other thing that changes is time.
For a European call option this can be shown as in equation 2.41.

Θ (call) = −S0N
′ (d1)σ

2
√
T

− rKe−rTN (d2) (2.41)

where the probability density function for a standard normal distribution is
given as

N ′ (x) =
1√
2π
e−x

2/2

The theta for a put option is given as

Θ (put) = −S0N
′ (d1)σ

2
√
T

+ rKe−rTN (−d2) (2.42)

The theta of a put option exceeds the theta of a call option by rKe−rT

because N (−d2) = 1−N (d2) in equation 2.42. Hence, the passage of time on a
put option has a larger impact than the passage of time on a call option. When
calculating theta as in equation 2.41 and equation 2.42, theta is calculated on a
yearly basis. Usually one is interested in knowing theta on a daily basis or on a
�xed period of time. Hence, dividing the theta value by 365 you have the value
on a daily basis.

Theta is usually negative. This is intuitive as the value of an option usually
declines as time passes with all else being equal. Usually, theta is not a param-
eter used when hedging ones portfolio. The reason is that it is expected that
time will pass. Hence, it make no sense trying to hedge this. Further, all else is
not equal as time passes. The price of the underlying asset will change with time.

Gamma, Γ, of a portfolio of options on some underlying asset is a measure
of the rate of change in the delta of the portfolio with respect to the price of
the underlying asset. That is, gamma is a measure of how fast the delta is
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changing. The gamma of a portfolio is found as the second partial derivative of
the portfolio with respect to price.

Γ =
∂2Π

∂S2
(2.43)

The value of gamma is a re�ection of the speed of change in delta. Hence, a
small gamma value means that delta changes slowly, whereas a large gamma
value means that delta changes faster. The speed of change in delta plays a
role when hedging ones portfolio. If the speed of change in delta i slow one
can less frequently adjust the delta hedge of the portfolio in order to keep the
portfolio hedged delta neutral. If gamma is highly negative or highly positive,
delta is very sensitive to the price of the underlying asset. This means that if
the objective is to keep a portfolio hedged delta neutral one has to pay a lot
of attention to the hedge as small changes in the price of the underlying asset
makes a big impact on the portfolio.

Figure 2.2: Hedging error using delta hedging

Figure from Hull [22].
Note: Consider a price change for S to S′. If delta hedging a portfolio one would assume that the
call price of a option moves from C to C′. In fact the price moves from C to C′′ which is not
captured when using delta hedging as delta do not account for the curvature in the relationship
between the price of the option and the price of the underlying asset. The di�erence between C′

and C′′ leads to a hedging error making the portfolio non delta neutral. The curvature of the
relationship between the option price and the price of the underlying asset is captured by gamma.
Hence, using gamma when hedging ensures that the portfolio is correctly hedged for changes in the
price of the underlying asset.

Consider a price change for S to S′ in �gure 2.2. If delta hedging a portfolio
one would assume that the call price of a option moves from C to C ′. In fact
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the price moves from C to C ′′ which is not captured when using delta hedging
as delta do not account for the curvature in the relationship between the price
of the option and the price of the underlying asset. The di�erence between
C ′ and C ′′ leads to a hedging error making the portfolio non delta neutral.
The curvature of the relationship between the option price and the price of the
underlying asset is captured by gamma. Hence, using gamma when hedging
ensures that the portfolio is correctly hedged for changes in the price of the
underlying asset.

For a European call or put option on an underlying asset without dividend
payouts gamma is calculated as

Γ =
N ′ (d1)

S0σ
√
T

(2.44)

Where the input parameters are as de�ned earlier in this section. Gamma
of a long position in an option is always positive and varies with S0 as in �gure
2.3.

Figure 2.3: The variation in gamma with the underlying asset

Figure from Hull [22].
Note: Gamma is normally distributed around K for a long position in an option.

To make a portfolio gamma neutral one must add a position in an instrument
that is not linearly dependent on the underlying asset of the option in ones
portfolio. This is because the underlying asset of the option does not have
any gamma. If a delta neutral portfolio has a gamma equal to Γ and a traded
option has a gamma equal to ΓT and the number of traded options added to
the portfolio is equal to wT , the gamma of that portfolio is equal to

wTΓT + Γ

To make this portfolio gamma neutral the position in the traded option must
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be−Γ/ΓT . When including the traded option position in ones portfolio it is
likely that the delta hedging of the portfolio changes. Hence, the position in
the underlying asset in ones portfolio has to change as well to secure that the
portfolio maintain delta neutrality.

Vega of a portfolio of options on some underlying assets is the rate of change
of the value of the portfolio with respect to the volatility of the underlying
asset. That is, how is the value of a portfolio changing with �uctuations in the
volatility in the underlying assets.

V ega =
∂Π

∂σ

If vega is either highly negative or highly positive, the portfolio is very sensitive
to small changes in the volatility of the underlying assets. That is, the portfolio
value will be very volatile if vega is taking on large positive or negative values.
If vega is close to zero the portfolio �uctuations will be small with �uctuations
in volatility. Like with gamma, the underlying asset has zero vega. The vega of
a portfolio can, like with gamma, be changed by adding a position in a traded
option. Let V ega be the vega of a portfolio and V egaT the vega of a traded
option. A position of −V ega/V egaT in a traded option makes the portfolio
vega neutral. To make a portfolio both vega and gamma neutral two traded
derivatives dependent on the underlying asset must usually be added.

A European call or put option on an underlying asset not paying dividends
is given by

ν = S0

√
TN ′ (d1)

Where the inputs are given as previously described. The vega of a long po-
sition in an option is always positive.

Rho, ρ, of a portfolio of options is a measure of the change in value of the
portfolio with respect to the interest rate. That is, how does the portfolio value
change when the interest rate changes, all else equal.

ρ =
∂Π

∂r

For a European call option on an underlying asset not paying any dividends rho
is

rho (call) = KTe−rTN (d2)

and a put options is

rho (put) = −KTe−rTN (−d2)
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To sum up, the relationship between the greeks and the Black Scholes Merton
model can be illustrated as below

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
(2.45)

Equation 2.45 is known as the Black Scholes Merton Di�erential Equation. Sub-
stituting f with a portfolio Π gives

rΠ =
∂Π

∂t
+ rS

∂Π

∂S
+

1

2
σ2S2 ∂

2Π

∂S2

As shown previously in this section

Θ =
∂Π

∂t
, ∆ = ∂Π

∂S , Γ =
∂Π

∂S2

Inserting this gives

rΠ = Θ + rS∆ +
1

2
σ2S2Γ (2.46)

Equation 2.46 illustrates the use of the greeks. It might be easier to interpret
equation 2.46 using greek letters as notation compared to equation 2.45. Fur-
ther, the interpretation of a delta neutral portfolio is probably easier using the
greek letter notation as it is easier to spot the impact in the equation.

2.6 Conclusion

In section 2 I have presented the basic theory needed to understand the complex-
ity of options. The pricing of an option usually starts with binomial trees. In
subsection 2.1 I introduced the theory of binomial trees. In essence, the pricing
of options using binomial trees are done going backwards in the tree illustrated
by �gure 2.1. This can be formalized by equation 2.3 restated below.

f = e−r∆t [pfu + (1− p) fd]

Equation 2.4 to equation 2.7 can be used to expand equation 2.3. The bino-
mial tree model builds on the assumption that investors are risk neutral. This
allows for risk neutral pricing. However, investors are not risk neutral in prac-
tice. If investors were risk-neutral they had no incentive to invest in options as
they would be satis�ed with the risk-free interest as the return on investment.
But the assumption makes it possible to build the model.

In subsection 2.2 I looked at processes. In essence, processes are about classi-
�cation. The pricing of options can be classi�ed as a stochastic process as the
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price is evolving in an unknown manner. But by characterizing it as a stochastic
process some properties are following. For instance, characterizing something
as a Wiener process means that it has a mean of zero and a variance of one,
which can be helpful going forward.

In subsection 2.3 I introduced the Black Scholes Merton model. I showed how to
derive the model from the binomial tree model, which lead to equation 2.26 and
equation 2.27 with equation 2.28 and equation 2.29 as input. I also introduced
the Black Scholes di�erential equation, equation 2.30, restated below.

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

The Black Scholes di�erential equation was used in subsection 2.4 to show
the relationship between Itô's Lemma and the Black Scholes model.

In subsection 2.5 I introduced the Greek letters and the calculation of those.
Using the the Black Scholes di�erential equation and substituting the price of
an option, f , with a portfolio, Π, I got

rΠ =
∂Π

∂t
+ rS

∂Π

∂S
+

1

2
σ2S2 ∂

2Π

∂S2

Inserting the greek letters I got

rΠ = Θ + rS∆ +
1

2
σ2S2Γ

where

Θ =
∂Π

∂t
, ∆ = ∂Π

∂S , Γ =
∂Π

∂S2

Here, delta is the change in the portfolio value as the underlying assets are
changing in value. Theta is the change in portfolio value with the passage of
time. And Gamma is the speed of change in delta.

Until now the focus has been on understanding what an option is and how
to price it. The models used so far are build on some assumptions. The Black
Scholes Merton model assumes that there is constant volatility. This is obviously
not the case in real life. Hence, other models might o�er better insights if they
include the volatility element? The same way it is assumed that investors are
risk neutral. That means that investors settle with a return equal to the risk free
interest rate. This is obviously not true either. Investors have an expectation
about a payo�. This expectation varies from investor to investor. But most
expect something higher than the risk free interest rate. This is to be examined
going forward.
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3 Local Volatility Model

In this section I will introduce the local volatility model. The Local Volatil-
ity Model tries to solve the issue of constant volatility from the Black Scholes
model. This is done by making the volatility a function of time and of the price
of the underlying asset.

In section 2 I introduced the basic theory needed to understand options and
options pricing. One of the things introduced was the Black Scholes Merton
model in subsection 2.3. The Black Scholes model is one of the most famous
models for pricing options. A continuing problem with the model though, is
that it treats volatility as a �xed component of the options price. Keeping the
volatility �xed is a mistake and it will lead to wrong and unstable hedges of
portfolios. This is undesirable for investors as it is costly to rehedge. But more
importantly, if the market makes big moves that are unfavorable to the investors
position, the investor could loose a lot of money on the investment. The Local
Volatility Model tries to cope with this by making the volatility dependent
of time and of price. That way, the model should be more correct and help
investors to hedge their portfolios right.

rΠ = Θ + rS∆ +
1

2
σ2S2Γ

In subsection 2.5 I accounted for the Black Scholes greek letter. Equation 2.46
from subsection 2.5 is restated above. Remembering that equation 2.46 is the
equivalent of equation 2.37, it is easy to see that the volatility is a constant.
In this section I will dive more into the volatility component, σ. The Black
Scholes model assumes that the volatility is constant throughout time and with
di�erent prices.
Empirically it has been proven that the volatility is not constant and the Black
Scholes assumption turns out not to be true. Hence, other models for volatility
has emerged. The Local Volatility Model being one of them. The model is
originally presented by Derman and Kani [10] and by Dupire [13] [14].

Before the Local Volatility Model is presented, subsection 3.1 will introduce the
concept of implied volatility and the volatility smile. Those are critical concepts
to understand when moving from the Black Scholes Model and into volatility
models. Subsection 3.2 will introduce the Local Volatility Model. In subsection
3.3 I will explain the concepts for setting up the model. In subsection 3.4 I
will make calculations using the model setup. Subsection 3.5 touches upon the
dynamics of the model before subsection 3.6 concludes.

3.1 Implied volatility and the volatility smile

Before moving on to setting up the Local Volatility Model, touching upon a
few things are necessary. Local volatility models often try to price options by
taking account of the volatility smile of options with a particular strike price
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and a particular time to maturity. To understand what a volatility smile is, we
must �rst understand what implied volatility is.

In the Black Scholes model the volatility is kept constant. Black and Scholes
simply assume that the volatility is �xed and not a function of for instance
time or strike price. This means that the volatility curve from the Black Scholes
models point of view is �at. Calculating the volatility in the Black Scholes setup
is done iterative. Hence, when you have the price of an options, you make an
iterative estimate of the volatility until the correct value is reached.

The move from volatility to implied volatility is basically a switch from the-
oretical options pricing to options pricing in the market. That is, the implied
volatility is the calculated volatility using the market price of a given option.
The market price of an option is not necessarily the same as the theoretical
price of the option. Hence, the implied volatility might also be di�erent. The
implied volatility is often referred to as the estimated future volatility of an
option because it uses market prices.

Plotting options with the same time to maturity in a plot with the strike price
on the X axis and the implied volatility on the Y axis gives the volatility smile

Figure 3.1: The volatility smile

Figure from Hull [22]
Note: The �gure depicts a volatility smile of an option with a given time to maturity. The implied
volatility is increasing as the option moves away from the money in either direction. Hence, if the
option is deep in or deep out of the money, the implied volatility is greater than if the option is at
the money.

Figure 3.1 depicts the volatility smile. The implied volatility is increasing as the
option is moving away from the money in either direction. Hence, if the option
is deep in or deep out of the money, the implied volatility is greater than if the
option is at the money.
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The put-call parity secures that the volatility smile for a call option is equal
to the volatility smile of a put option with the same strike price and time to
maturity.

3.2 The Model

One of the problems with the Black Scholes model holding volatility constant
throughout time is that the volatility can be di�erent for overlapping time pe-
riods. For instance, the model allow for the volatility to be some value - say
20% - with a maturity of one year. At the same time, the volatility can be some
other lower value - say 15% - for a maturity time of two years. Hence, the model
suggests that the volatility is constant around a higher level for a year, while
it at the same time suggests that the volatility is at another lower level in the
same period.

Figure 3.2: Constant implied volatility from the Black Scholes model

Note: The �gure depicts the implied volatility from the Black Scholes model. The X axis is time
and the Y axis is the implied volatility. It is easy to see that the implied volatility is constant
through time.

Figure 3.2 depicts this problem. Here the above two mentioned volatilities are
plotted. As the options in question have the same starting time but di�erent
maturities there is an overlap in the time period. This basically gives the prob-
lem of the volatilities being di�erent within the same period of time. Plotting
the volatilities clearly stresses the issue of di�erent volatilities with overlapping
time. This issue is however �xed by letting the volatility be time dependent as
Merton [28] did.

dS

S
= µ (t) dt+ σ (t) dW (3.1)

Equation 3.1 is an Itô process as described in subsection 2.2. In equation 3.1
µ (t) is the risk-neutral drift dependent on time and σ (t) is the local volatility
dependent on time. This corresponds to what Merton did.
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Taking account of time is only one part of the problem with the implied volatility
calculated from the Black Scholes model. The other part is taking account of
the price of the underlying asset. The dependence of implied volatility on the
strike price for a given maturity must in some way be handled. This is the
volatility smile, introduced in subsection 3.1, doing.

Incorporating the volatility smile in a model is the challenge that must be
solved. One of the big challenges when incorporating a volatility smile in a given
model is that the model can become very complex and lose its completeness.

Dupire [13] [14] and Derman and Kani [10] tries to solve the issue of incor-
porating a volatility smile in a model.

dS

S
= r (t) dt+ σ (S, t) dW (3.2)

Equation 3.2 is very similar to equation 3.1. The main di�erence is that the
volatility in equation 3.2 includes the spot price of the underlying asset. The
volatility in equation 3.2 is a deterministic function of the spot price and of
time. A deterministic function is a function that returns the same result every
time the function is called, given that the input is the same. In other words,
the volatility component of equation 3.2 is unchanged, if the input spot price
and the input time is unchanged.

Equation 3.2 is the equation the Local Volatility Model tries to answer.
Dupires approach to solving equation 3.2 is di�erent from the approach of Der-
man and Kani. I will use the approach of Derman and Kani.

3.3 Setting up the model

In this subsection I will do the formal setup of the model. For an easier overview
I will structure the setup in the following way. I start by introducing the no-
tation of the model. Then I show some �gures before introducing equations.
Lastly, I explaining the intuition.

S0 The spot price of the underlying asset we are calculating the options price
for. This price is known when t = 0. Hence, this is the initial price of the
underlying asset.

si This is the known stock price at node (n, i) at level n node i. This is also
the strike value for options expiring at level n+ 1.

Si+1 The unknown state value reached after an upward move in the tree. Think
of it as the new spot price after an upward move.

Si The unknown state value reached after a downward move in the tree. Think
of it as the new spot price after a downward move.

pi The risk neutral probability of moving from si to Si+1. Equivalently, the
probability of moving from si to Si is 1− pi.
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Fi The known forward price one period forward from the know price si.

λi The Arrow-Debreu price calculated using forward induction.

t Time in years.

n node.

Now that the notation is in place, the �gure below depicts the way in which the
subscripts are used in the binomial tree.

Figure 3.3: Notation form in the tree

Note: t is the time measure. n is the node group. i is the speci�c node we are looking at. The
speci�c node, i, is always starting from the bottom with value 1 as show in the �gure.

We are now almost ready to look into the mathematics of the model. But before
doing that, there are a few things to note. This model is trying to calculate
transition probabilities, pi, and future unknown state values, Si. To do so, the
model maintains the spot price, S0, as a central node throughout the tree - �g-
ure 3.4a shows this as the central node maintains the spot price of 100 - known
as the centering constraint. This is done to ensure uniquely determined param-
eters. Now, the market prices can be calculated using the observed volatility
smile.

At a given time n > 0 there are 2n+ 1 parameters describing the transition
from time n to time n+ 1 - the new stock price Si and the n transition proba-
bilities pi at time n+ 1. The information at hand at time n is n forward prices
and n option prices. Hence, to determine 2n + 1 parameters using 2n equa-
tions something must be done. Adding the centering constraint solves this issue
and makes it possible to uniquely determine all parameters within the time step.

The �rst step in setting up the model is to acknowledge that the forward price
corresponding to Si is Fi = er∆tSi. With this, the following identity equation
must hold.
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Fi = piSi+1 + (1− pi)Si (3.3)

Equation 3.3 is the known forward price. Reminding our self that Si+1 denotes
an upward move, Si a downward move and that pi is the probability.

The value of a call option is now represented by C (K, tn+1) with a strike K
and maturity tn+1.

C (K, tn+1) = e−r∆t
n∑
j+1

{λjpj + λj+1 (1− pj+1)}max (Sj+1 −K, 0) (3.4)

Using the Arrow-Debreu prices, λi, equation 3.4 states the value of a call option.
e−r∆t indicates that we discount back to time 0. Setting K = si allows for
equation 3.4 to be simpli�ed.

C (si, tn+1) = e−r∆t

λipi (Si+1 − si) +

n∑
j=i+1

λj (Fj − si)

 (3.5)

Equation 3.5 is the simpli�ed expression. From this, only up moves in the tree
will have a positive impact, whereas down moves will have zero impact. The
forward statement in equation 3.3 is applied to equation 3.5 as well. Equation
3.5 can now be evaluated in two steps. The �rst part of the bracket is only
adding value with some probability, pi, whereas the last part of the bracket for
sure is adding value. This value is the sum of all di�erences between the forward
price and the stock price. The unsure value is only added if there is an upward
move in the tree.

As the forward prices are known and a volatility smile is given, only the
transition probability, pi, and the underlying asset after an upward move, Si+1,
are unknown. Combining equation 3.3 and equation 3.5 can solve this. However,
combining the two equations add an unknown, Si. Making the centering around
S0 makes it possible to start at the central node and work upwards in the tree.
Solving equation 3.3 and equation 3.5 simultaneously yields

Si+1 =
Si
[
er∆tC (si, tn+1)−

∑]
− λisi (Fi − Si)

[er∆tC (si, tn+1)−
∑

]− λi (Fi − Si)
(3.6)

pi =
Fi − Si
Sj+1 − Si

(3.7)

where
∑

=
∑i−1
j=1 λj (si − Fj) from equation 3.5.

A key element in calculating state values and transition probabilities this way
is knowing the value of the central node. When not knowing this, a di�erent
approach must be used. This is for instance when moving from n = 1 to n = 2.
Derman and Kani uses the natural logarithm to solve this issue.
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Log (S0) =
log (Si+1) + log (Si)

2

which is equivalent to

Si =
S2

0

Si+1
(3.8)

Substituting equation 3.8 in to equation 3.6 and rearranging yields

Si+1 =
S0

[
er∆tC (S, tn+1) + λiS0 −

∑]
λiFi − er∆tC (S0, tn+1) +

∑ (3.9)

The implied volatility can now be calculated for each node in the tree based on
the possible state values and the transition probability.

σi =
√
pi (1− pi)log

(
Si+1

Si

)
(3.10)

3.4 Applying the model

In this subsection I will apply the model on a sample calculation. That way, it
should be easier to see how the model works.

For this calculation, the setting is as follows.

� t ∈ {0, 1, 2} and n ∈ {1, 2, 3}.

� The spot price of the underlying asset is S0 = 100.

� The risk free interest rate is 3%.

� The volatility smile has an at the money volatility of 10% and a 0, 5 per-
centage point change for every 10 unit change in the strike price starting
at K = S0. This is calculated as

σimp (K) = 10%− 0, 5%× (K − S0)

10
(3.11)
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Figure 3.4: Binomial local volatility modeling results

a. State values b. Grid implied volatilities

c. Transition probabilities d. Arrow-Debreu prices
Note: Figure a shows the results of the state values - s(n,i)- when solving the local volatility
model. Figure b is the grid implied volatilities - σ(n,i). Figure c is the transition probabilities -
p(n,i).Finally, �gure d is the Arrow-Debreu pricses for the given option - λ(n,i).

Figure 3.4 shows the results from solving the Local Volatility Model with the
characteristics listed in the beginning of this subsection. Below is the calcula-
tions corresponding the results in �gure 3.4.

The objective is to essentially calculate all state values in the tree - that is,
solving the tree of �gure 3.4a. To do that, the other trees must be solved as well.
This is a step wise procedure where one value at the time is found. To calculate
the state value of (n, i) = (2, 2), the Arrow-Debreu price of (n, i) = (1, 1) must
be know. As this is the spot price note, the Arrow-Debreu price is simply equal
to one. Solving S(2,2), we must �rst solve C (100, 1), as there is no central node
in node group two. That is, we can only move up or down in the node group
making this a special case. Hence, we must use equation 3.9 to calculate the
price. To calculate C (100, 1) I use the implied volatility smile. As the option
has a strike price of 100, the implied volatility is σimp (100) = 10% cf. equation
3.11. Using this I get σ = σimp = 10% and C (100, 1) = 6, 38. Inserting this
information and the fact that node (2, 2) is the highest node in the group, S(2,2)

is calculated below.

S(2,2) =
100

[
e3% × 6, 38 + 1× 100− 0

]
1× 100 (1 + 3%)− e3% × 6, 38 + 0

= 110, 52

As mentioned, node (2, 2) is the highest in the group, meaning that the Σ−term
is equal to zero. The result of S(2,2) is now used to calculate S(2,1) using equation
3.8.
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S(2,1) =
1002

110, 52
= 90, 48

With the prices at node two in place it is now possible to calculate the transition
probability p(1,1) using equation 3.7.

p(1,1) =
100× 1, 03− 90, 48

110, 52− 90, 48
= 0, 625

Using the transition probability and the state values calculated above, the grid
implied volatility is calculated as

σ(1,1) =
√

0, 625× (1− 0, 625)log

(
110, 52

90, 48

)
= 9, 69%

Using equation 3.11 to calculate the implied volatility yields

σimp (110, 52) = 10%− 0, 5%× (110, 52− 100)

10
= 9, 47%

The same way as above, the next steps in the tree is calculated. This iterative
process is carried out until the whole tree is calculated. I will not calculate more
steps, as it o�ers no more information. Instead, I will discuss the model in the
next subsection.

3.5 Model Dynamics

In subsection 3.4 I showed how to calibrate the model to a volatility smile in a
numerical example. Here, the volatility smile was given by equation 3.11. With
the knowledge of how to solve the model I will now move on to the dynamics
of the model. In other words, how is this a good model from an intuitive
standpoint.

To better evaluate the dynamics of the model, I start by simplifying the
initial setup by removing the time dimension from equation 3.2.

dS = σloc (S)SdW (3.12)

Evaluating the model in this particular setup is the focus of a paper by Hagan
and Woodward [19]. In this paper, Hagan and Woodward give an approximation
of the implied volatility from the Black-Scholes model. Equation 3.12 is stated
on spot prices, whereas Hagan and Woodward are investigating on forward
prices as stated below - under the forward measure previously introduced.

dF = σBFdW (3.13)

With this, the Black-Scholes volatility for a given strike price, K, and a give
forward price, F, is
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σB (K,F ) = σloc

(
F +K

2

)[
1 +

1

24

d2σloc
df2

(
F+K

2

)
σloc

(
F+K

2

) (F +K)
2

+ ...

]
(3.14)

Intuitively, from looking at equation 3.14, it is clear that the contribution
from the �rst term - σloc

(
F+K

2

)
(×1) - is greater than from the second term -

σloc
(
F+K

2

) (
× 1

24

)
. Hagan et al. [18] states that the contribution from the sec-

ond term is usually less than 1%. From a pricing perspective the second term
is important. But from an analytical point it makes sense to omit the second
term leaving us with

σB (K,F ) = σloc

(
F +K

2

)
(3.15)

With this reduced equation in place I now turn to the analytical evaluation
of the model. Suppose a forward price observed today denoted as F0 and a
strike price K. Together they form a volatility smile denoted as σ0

B (K) . With
σ0
B (K) and equation 3.15, for the model to be calibrated it must hold that
σloc (F ) = σ0

B (2F − F0) since

σ0
B (2F − F0) = σloc

(
F0 + [2F − F0]

2

)
= σloc (F ) (3.16)

If the current forward price, F0, changes to some other forward value, F , equa-
tion 3.15 together with equation 3.16 imply that

σB (K,F ) = σloc

(
F +K

2

)
= σ0

B

(
2

[
F +K

2

]
− F0

)
= σ0

B (K + [F − F0])

This is the new implied volatility for a an option with a strike price, K, an
initial forward price of F0 and a new forward price of F . Figure 3.5 depicts the
situation where the forward price decreases from F0 to F .
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Figure 3.5: Implied volatility if the forward price decreases

Note: Plot of a volatility smile moving as the forward price is changing. The interesting point is
that the volatility smile is moving in the opposite direction of the forward price change.

Assuming an implied volatility of σ0
B (K,F0) = σ0

B (K + 0) is observed. Letting
the forward level decrease so that F < F0 leaving us with a new implied volatility
being σB (K,F ) = σ0

B (K + [F − F0]). When the forward price decreases from
F0 to F the volatility smile moves up and to the right. This is a move in the
opposite direction of the underlying asset. Hagan et al. [18] �nd that this move
is the opposite of the typical market behavior. The typical market behavior
being that volatility smiles move in the same direction as the underlying asset.

This opposite movement of the implied volatility in the model can lead to
potential wrongful hedging. Letting C (K,F, σB (K,F )) denote the call value
of an option with strike price K, forward price F and volatility calculated from
the local volatility model being σB (K,F ) . Calculating the delta risk for this
option as

∆C =
∂C (K,F, σB (K,F ))

∂F
+
∂C (K,F, σB (K,F ))

∂σB

∂σB (K,F )

∂F
(3.17)

The �rst term of equation 3.17 is the standard delta risk from the Black-Scholes
model using constant volatility. The second part of equation 3.17 is the cor-
rection term. This is a result of the volatility being a function of the forward
price. As a result of the Local Volatility model handling the implied volatility
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wrongfully, as depicted in �gure 3.5, the delta risk is wrongfully hedged. That
is, using the Local Volatility model one might under hedge when the forward
price rises and over hedge when the forward price decreases.

3.6 Conclusion

In this chapter I started by introducing implied volatility and the volatility smile.
The implied volatility is the market generated volatility - volatility based on
market prices. The implied volatility is sometimes referred to as the estimated
future volatility of an option based on the market price.

Figure 3.1 plotted a volatility smile. The volatility smile is a way of showing
how the implied volatility changes when the strike price changes. As the price
moves further away from the strike price in either direction, the implied volatility
changes. Remember how the implied volatility is higher when the option is either
far out of the money or far in the money and how the implied volatility gradually
decreases as the strike price moves closer at the money. This forms a curve that
resembles just like a smile - hence the name.

The implied volatility and the volatility smile are both important concepts
to understand as they play a big role in the pricing of options. In particular
when looking at alternative options pricing models to the Black-Scholes model.

In section 2 I introduced the Itô formula. In this, the volatility was kept
constant. This formula looked something like the one below, where r (t) = µ.

dS

S
= r (t) dt+ σdW

In this section I found that the question the Local Volatility model tries to
answer is equation 3.2 restated below.

dS

S
= r (t) dt+ σ (S, t) dW

The main di�erence between the two above stated equations are the addition of
time and price. But the addition of time and price is exactly what the Black-
Scholes model is missing. Hence, answering this question might be the answer to
doing options pricing. This is at least the approach of Derman and Kani. They
came up with a model to solve the issue of assumed constant volatility. That is,
the model should solve equation 3.2 to handle the problem of assumed constant
volatility. To solve this, the model proposes a variety of equations. The reason
being that they want to keep the mathematics at a level not too complex. Below
is the restated model highlighting the most important equations in solving this
model.

Fi = piSi+1 + (1− pi)Si
The �rst assumption of the model is that of the forward price. It states that
the forward price is equal to the discounted spot price. This assumption leads
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to the relationship stated above, which is that the forward price is equal to the
probability of the spot price moving up or down in the pricing tree. This leads
to the pricing of a call option stated below.

C (si, tn+1) = e−r∆t

λipi (Si+1 − si) +

n∑
j=i+1

λj (Fj − si)


Solving the above two stated equations simultaneously leads to the pricing of
an upward move in the tree.

Si+1 =
Si
[
er∆tC (si, tn+1)−

∑]
− λisi (Fi − Si)

[er∆tC (si, tn+1)−
∑

]− λi (Fi − Si)
And calculating the probability as

pi =
Fi − Si
Sj+1 − Si

The pricing of a downward move in the tree can be calculated like

Si =
S2

0

Si+1

Substituting Si into equation3.6 and rearranging and you get

Si+1 =
S0

[
er∆tC (S, tn+1) + λiS0 −

∑]
λiFi − er∆tC (S0, tn+1) +

∑
This gives the implied volatility of the model as

σi =
√
pi (1− pi)log

(
Si+1

Si

)
Applying the model like I did in subsection 3.4 and writing the results from the
calculations in a binomial tree structure like in �gure 3.4 restated below.
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Figure 3.6: Binomial local volatility modeling results

a. State values b. Grid implied volatilities

c. Transition probabilities d. Arrow-Debreu prices
Note: Figure a shows the results of the state values - s(n,i)- when solving the local volatility
model. Figure b is the grid implied volatilities - σ(n,i). Figure c is the transition probabilities -
p(n,i).Finally, �gure d is the Arrow-Debreu pricses for the given option - λ(n,i).

With the calibration of the model to a volatility smile in place, the dynamics of
the model was examined. The examination of the dynamics ended up with an
equation for the implied volatility restated below.

σB (K,F ) = σ0
B (K + [F − F0])

This is the Black Scholes volatility as a function of strike price and forward
price. Using the the Black Scholes implied volatility I found that the implied
volatility from the Local Volatility Model moves in the opposite direction of the
price of the underlying asset. This is intuitively di�cult to understand as it is
the opposite behavior of what is the typically observed market behavior. The
movement is depicted in �gure 3.5.

Calculating the delta risk of a call option using the volatility from the Local
Volatility Model leads to the below stated equation.

∆C =
∂C (K,F, σB (K,F ))

∂F
+
∂C (K,F, σB (K,F ))

∂σB

∂σB (K,F )

∂F

Since the volatility from the Local Volatility Model moves in the opposite di-
rection of what is empirically documented, the second part of the delta-equation
above is incorrect. As this is incorrect the delta-hedging becomes incorrect.
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Hence, the Local Volatility Model does not deliver the desired properties for
hedging purposes.

37



4 The SABR Model

This section is introducing the SABR Model. The SABR model is an options
pricing model allowing stochastic parameters in the model. That way, it might
be a better suited model for handling volatility.

4.1 Vanna and Volga

Before delving in to the SABR model, a few things must be touched upon. In
section 2 I gave an introduction to the basics of options. In this introduction
I introduced the Greek letters for options pricing. The theory presented in
subsection 2.5 about the Greek letters must be expanded with a few more letters.
Namely the Greek letters Vanna and Volga.

Vanna is de�ned as

V anna =
∂2Vcall
∂S∂σ

(4.1)

Vanna is the second order derivative of the value of the option with respect to
the price of the underlying asset and the volatility. This is the same as being
the sensitivity in delta with respect to volatility.
Why is this of interest? It is of interest because the delta hedging of a portfolio
changes with changing volatility. If accounting for this, the portfolio might be
better and perhaps cheaper hedged.

Volga is de�ned af

V olga =
∂Vcall
∂σ2

(4.2)

Volga is the second order derivative of the value of the option with regards to
volatility. Being the second order, it is the same as being the volatility of the
volatility. Why is this of interest? It is of interest because the volatility of
the volatility reveals something about the market sentiment. That is, should I
hedge my portfolio for rising volatility or should I hedge my portfolio for a more
calm environment?

I will return to the Greek letters later in this chapter as the �ndings of the
SABR model will be applied to the Black-Scholes Greeks.
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4.2 Introduction to the SABR model

The Stochastic Alpha Beta Rho model, also known as the SABR model, is a
model that tries to handle the stochastic volatility of options pricing. One can
think of the SABR model as a sort of add on to the Black-Scholes model.

The Black-Scholes model is a model that prices options. As mentioned previ-
ously in this paper, the Black-Scholes model prices options on �xed volatilities.
To get a more correct pricing, expanding the model with a non-constant volatil-
ity is a possibility. This is where the SABR model becomes handy. Where
the Black-Scholes model handles volatility by keeping it constant and the Local
Volatility Model presented in section 3 handles it by letting the volatility be
locally constant, the SABR model is handling the volatility by allowing it to be
a function of time, strike price and current forward price.

The SABR model was originally published by Hagan et. al. in 2002 [18]. This
paper is taking the same approach as of Hagan et. al. One of the attractive
things of the Hagan et. al. approach is that they try to keep the model as
simple as possible. Other papers are evaluating the SABR model using more
advanced mathematical methods that are outside the scope of this paper.

The SABR model is given by three equations. One equation for a forward price
process, one equation for a volatility process and one equation with a correla-
tion coe�cient for the two Brownian motions included in the �rst two equations.
The three equations are stated below after a de�nition of the variables used.

αt is the stochastic volatility. α is the variable re�ecting the level of volatility
smile curve.

ft is the forward price at time t.

β is the exponent of the forward rate.

v is the volatility of the volatility. This is the variable that controls the curva-
ture of the volatility smile curve.

ρ is the correlation between the Brownian Motions.

σATM At the money volatility.

σB (K, f) Implied volatility from the Black-Scholes model.
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With the notation in place, the model looks like,

dft = αtf
β
t dW

1
t (4.3)

dαt = ναtdW
2
t (4.4)

dW 1
t dW

2
t = ρdt (4.5)

Equation 4.3 is the forward price process. The forward price process is given by
volatility, forward price to the power of β and a Brownian motion. Changes to
the forward price is given by volatility and the Brownian motion.

Equation 4.4 is the volatility process. This is given by the volatility itself, the
volatility of volatility and a Brownian motion. Changes to the volatility is then
given by the volatility of volatility and a Brownian motion.

Equation 4.5 is the correlation between the two Brownian motions. This is mea-
sured with the correlation coe�cient ρ.

The model can be solved using Monte Carlo but this is a tedious process. In-
stead, Hagen et. al. solves the model using singular perturbation techniques.
The results from using this technique is presented in the next section.

4.3 Solving the SABR model

In subsection 2.3 I introduced the Black-Scholes-Merton model for pricing op-
tions. More speci�cally, I ended up with the equations 2.26 to 2.29 for the �nal
model. Using the same approach for valuing options, the SABR model can be
solved by singular perturbation. Approximating the implied volatility this way,
σB (K, f), gives the following result

σB (K, f) =
α
{

1 +
[

(1−β)2

24
α2

(fK)1−β
+ 1

4
ρβvα

(fK)(1−β)/2
+ 2−3ρ2

24 v2
]
tex

}
(fK)

(1−β)/2
{

1 + (1−β)2

24 log2
(
f
K

)
+ (1+β)4

1920 log4
(
f
K

)} × ( z

x (z)

)
(4.6)

where

z =
v

α
(fK)

(1−β)/2
log

(
f

K

)
(4.7)

and

x (z) = log

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
(4.8)
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Using the same technique for at-the-money options, the case where K = f , the
formula simpli�es to

σATM = σ (f, f) =
α

f (1−β)

{
1 +

[
(1− β)

2

24

α2

f (2−2β)
+

ρβvα

4f (1−β)
+

2− 3ρ2

24
v2

]
tex

}
(4.9)

Equations 4.6 and 4.9 are the main results of the 2002 paper by Hagen et. al.
[18]. This result is a replication of the volatility given a certain volatility smile.
This way, the model is able to give a value for the volatility given di�erent input
factors.

With this result in place it is now time to look at the calibration of the
SABR model in order to make consistent estimates.

4.4 Calibrating the model

The parameters in the SABR model must be calibrated before the model is
functioning as intended. That is, before the model is calibrated it will not be able
to �t the volatility smile properly. This means that any volatility predictions
are wrong and will lead to mistaken hedging. As most traders are applying
the SABR model to help making hedging correct, wrongful calibration is not
desirable.

4.4.1 The beta value

When calibrating the SABR model, the β value is the �rst parameter to be
�xed. This is done manually by the trader. The β value is �xed based on the
traders own belief given the market conditions - in other words, the traders
intuition about the market he is participating in.

In the SABR model the β value is limited to be between zero and one. Usually
the β value is set high when the interest rates are high. Similarly the β value
is set low when the interest rates are low. In the following I will show the two
corner solution values of β. The β value is limited to be between 0 and 1 and
hence the corner solutions are a β value of 0 and a β value of 1.

Setting β = 0 makes the forward process normally distributed. By Setting β = 0
the forward process is reduced to the expression in equation 4.10.

dft = αtdWt (4.10)

The reduced forward process means that the forward price increments are
stochastic normally distributed in within the model. More speci�cally, the for-
ward price movements are normally distributed with a mean of zero and a
log-normal distributed stochastic standard deviation.

With this reduced forward process the implied normal volatility is given by
equation 4.11.
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σN (K) = εα

{
1 +

2− 3ρ2

24
ε2v2τex + ...

}
(4.11)

The implied normal volatility from the Black-Scholes model is given by equa-
tion 4.12.

σB (K) = εα
log (f/K)

f −K
×
(

ς

x̂ (ς)

)
×
{

1 +

[
α2

24fK
+

2− 3ρ2

24
v2

]
ε2τex + ...

}
(4.12)

where ς and x̂ are given by

ς =
v

α

√
fK × log

(
f

K

)
and

x̂ (ς) = log

(√
1− 2ρς + ς2 − ρ+ ς

1− ρ

)

Setting the β value to zero further means that the volatility curve will behave
as depicted in �gure 4.1.

Figure 4.1: The volatility curve with a β value of zero

Note: On the x-axis is given the underlying forward rate and on the y-axis is given the model implied
volatility. Starting from the top left corner a volatility smile is given. As the underlying forward
rate rises the volatility smile moves down to the right. The model implied volatility is decreasing
as the the underlying forward rate rises.

Starting from the top left corner a volatility smile is given. As the underlying
forward rate rises the volatility smile moves down and to the right. Hence, the
model implied volatility is decreasing as the the underlying forward rate rises.
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Setting β = 1 makes the forward process a log normal process. The forward
process is reduced to the expression in equation 4.13.

dft = αtftdWt (4.13)

The forward process is now very similar to the Black-Scholes model. In fact,
if v = 0 the SABR model reduces to the Black-Scholes model. The forward
rate in equation 4.13 follows a log-normal distribution meaning that it has a
non-negative property.

With this reduced forward process the implied normal volatility is given by
equation 4.14

σN (K) = εα
log (f/K)

f −K
×
(

ς

x̂ (ς)

)
×
{

1 +

[
− 1

24
α2 +

1

4
ραv +

1

24

(
2− 3ρ2

)
v2

]
ε2τex + ...

}
(4.14)

The implied normal volatility from the Black-Scholes model is given by equa-
tion 4.15

σB (K) = εα×
(

ς

x̂ (ς)

)
×
{

1 +

[
1

4
ραv +

1

24

(
2− 3ρ2

)
v2

]
ε2τex + ...

}
(4.15)

where ς and x̂ are given by

ς =
v

α
log

(
f

K

)
and

x̂ (ς) = log

(√
1− 2ρς + ς2 − ρ+ ς

1− ρ

)
Setting the β value to one further means that the volatility curve will behave

as depicted in �gure 4.2.
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Figure 4.2: The volatility curve with a β value of one

Note: On the x-axis is given the underlying forward rate and on the y-axis is given the model
implied volatility. With β = 1 the volatility smile is moving horizontally as the underlying forward
rate is rising.

With a β value of one the volatility smile is moving horizontally. Hence, the
model implied volatility is limited to being the smile curve. With a β value
of zero the model implied volatility is changing with changing values in the
underlying forward rate. Instead of a limited model implied volatility like in
the case of β equals one, the model implied volatility is now responding to the
underlying forward rate and at the same time also moving along the smile curve.

If the underlying forward rate is high the model implied volatility is low
when the β value is set to zero. This is in accordance with what I wrote earlier
- that a β value of zero is applied when the interest rates are low whereas a β
value of one is applied when the interest rates are high. Figure 4.1 and �gure
4.2 displays the outcome of this. But the two �gures also display something
about how often one might have to re-calibrate the model.

One thing to remember about the re-calibration of the model is that the
interest rates usually do not make large moves. However, when large movements
are happening it is usually due to some sort of crisis in the markets. When this
happens chances are the model must be re-calibrated often in order to re�ect
the market conditions.

4.4.2 Estimating α, v and ρ

With the β value �xed the remaining parameters can be estimated. The remain-
ing parameters being α, v and ρ. One way of estimating the parameters is by
assigning values to ρ and v. From there the α parameter can be estimated using
the σATM - at the money implied volatility - information found in equation 4.9
restated below.
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σATM = σ (f, f) =
α

f (1−β)

{
1 +

[
(1− β)

2

24

α2

f (2−2β)
+

ρβvα

4f (1−β)
+

2− 3ρ2

24
v2

]
tex

}
(4.16)

Rearranging equation 4.16 I �nd

Aα3
0 +Bα2

0 + Cα0 − σATMf (1−β) = 0 (4.17)

where A =
[

(1−β)2T
24f(2−2β)

]
, B =

[
ρβvT

4f(1−β)

]
and C =

[
1 + 2−3ρ2

24 v2T
]
. This is a

cubic with up to three real roots. Typically there will only be one real root.
Should there be more than one real root the smallest possible real root should
be chosen [32].

With this, the model is essentially calibrated.

When applying the model to trading data some optimization is needed. It
is in reality a question about minimizing the sum of squared errors of v and ρ
leaving the optimization problem to be

min
v,ρ

∑
i

(σi − σB (v, ρ, α (v, ρ, σATM ) ,Ki, f, β))
2 (4.18)

where σi is the market implied volatility and σB is the Black-Scholes implied
volatility using the SABR implied volatility. With all parameters estimated the
SABR model is properly calibrated.

4.5 The properties of the model

When the model is properly calibrated it is a single self-consistent model for all
strikes K which means that the risks calculated at one strike is consistent with
strikes calculated at other strikes. With the risks calculated being consistent
across strike prices the risks of options on the same underlying asset can be
added together. This is a model speci�c property that means that instead of
hedging the risk of every position one by one they can be grouped and one can
hedge the residual risk of all the positions instead.

Lets look at the the Greek letters coming from the SABR model. To start,
the value of a call option is given by

Vcall = BS (f,K, σB (K, f) , tex) (4.19)

This is the value by the Black-Scholes model where the volatility component
σB (K, f) ≡ σB (K, f ;α, β, ρ, v) is given by equation 4.9 to equation 4.8.
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The Vega risk is found by di�erentiating the value of the call option with
respect to the volatility - in the SABR model it is α. It can also be σATM as it
was used to �t the model with.

V ega ≡ ∂Vcall
∂α

=
∂BS

∂σB
× ∂σB (K, f, α, β, ρ, v)

∂α

=
∂BS

∂σB
×

∂σB(K,f,α,β,ρ,v)
∂α

∂σATM (f,α,β,ρ,v)
∂α

≈ ∂BS

∂σB
× σB (K, f)

σATM (f)

≈ ∂BS

∂σB
× σB (K, f)

σB (f, f)

Next is Vanna and Volga as introduced in the beginning of this section.
Vanna is given as

V anna =
∂Vcall
∂ρ

=
∂BS

∂σB
× ∂σB (K, f ;α, β, ρ, v)

∂ρ
(4.20)

Vanna is the partial derivative of the value of a call option with respect to
ρ - the ∆ sensitivity with respect to volatility.

Volga is given as

V olga =
∂Vcall
∂v

=
∂BS

∂σB
× ∂σB (K, f ;α, β, ρ, v)

∂v
(4.21)

Volga is the volatility of volatility. In the SABR model it is found as the
partial derivative with respect to v.

Now, lets look at the delta value from the SABR model.

∆ =
∂Vcall
∂f

=
∂BS

∂f
+
∂BS

∂σB
× ∂σB (K, f ;α, β, ρ, v)

∂f

The ∆ is the partial derivative with respect to the forward price plus a
correction term with respect to the volatility from the SABR model. Hence it
is the stochastic volatility instead of a �xed predetermined volatility.

4.6 Conclusion

In this section I started by expanding the greek letters introduced in section 2.
The expansion was necessary in order to evaluate the SABR model that was
introduced in subsection 4.2.

After de�ning all variables in the model, the SABR model was shown as

dft = αtf
β
t dW

1
t

dαt = ναtdW
2
t
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dW 1
t dW

2
t = ρdt

In subsection 4.3 I solved the model �nding equations 4.6 and 4.9 to be the
main results of the 2002 paper by Hagen et. al. [18].

With the main result in place and a general understanding of the model I
moved on to calibrating the model in subsection 4.4.

In order to get consistent results from the model, the model estimates must
be �tted to observed volatility curves. To do that the models β value is �xed at
some value estimated by the trader. Depending on the chosen β value di�erent
scenarios play out. Figure 4.1 and �gure 4.2 show the volatility curve movement
with a β value of zero and a β value of one. These values are the corner solutions
for the model.

With a chosen β value the parameters α, v and ρ can be estimated. This
is an optimization problem where v and ρ should be minimized. To �t these
values α can be set equal to σATM , which is the at-the-money volatility.

With the model �tted I moved on to looking at the properties of the model
in subsection 4.5. Here I evaluated the value of a call option using the SABR
model.

Vcall = BS (f,K, σB (K, f) , tex)

The call is de�ned as the Black-Scholes model using the SABR volatility.
With this setup the ∆ value is found as

∆ =
∂Vcall
∂f

=
∂BS

∂f
+
∂BS

∂σB
× ∂σB (K, f ;α, β, ρ, v)

∂f

Here, the ∆ is the partial derivative of the Black-Scholes model with respect
to the forward price plus a correction term with respect to the volatility from
the SABR model.

The Vega value is found similarly, but instead of the partial derivative with
respect to the forward price it is now the partial derivative with respect to α -
the model volatility.

V ega ≡ ∂Vcall
∂α

=
∂BS

∂σB
× ∂σB (K, f, α, β, ρ, v)

∂α

Remembering from subsection 2.5 that Vega is representing the change in
value with respect to volatility.

With Vega in place it is now time to focus on Vanna and Volga. Initially I
described the intuition in the beginning of this section in subsection 4.1. Equa-
tion 4.20 and equation 4.21 from subsection 4.5 states the Vanna and Volga
values from the SABR model. Remembering that Vanna is the Delta sensitivity
to volatility changes represented by ρ in the SABR model and that Volga is
the volatility of volatility represented by v. The delta sensitivity to volatility
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changes is essentially how much the Delta position is changing with changes in
volatility. The volatility of volatility is a measure of how much the volatility is
changing when it is changing.
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5 Analyzing the Models

In this section I will compare the di�erent models presented in the previous sec-
tions. The Black-Scholes model is the benchmark model for this discussion as
this model is used to price options in general.

5.1 Comparing the models

Until now this paper has reviewed numerous options pricing models. By now
the reader should have a clear idea about what options are and how to price
them. Now, it is time to compare the three main models of this paper and
to understand the di�erences between them. After reading this subsection the
reader should have a clear understanding of why a particular model is used and
what that models key focus is.

5.1.1 Black Scholes

The Black-Scholes model is in many ways the go-to model for options pricing.
Especially when you are �rst introduced to options. If you attend a �nance class
at university chances are that you have heard about the Black-Scholes model.

However, if you enter into professional �nance you will soon realize that the
Black-Scholes model is not the best model in practice. The big issue with the
Black-Scholes model is that it assumes that the volatility is constant. Hence,
the model volatility is constant whereas the market volatility is changing when
the price of the underlying asset is changing or when the time to maturity of
the option is changing.

The implication of the Black-Scholes model using a �xed model volatility is
that the model is not well suited for hedging purposes. The reason being that
the hedging will be o� in the exact moment of time the hedging is made.

Even though the Black-Scholes model is not well suited for hedging purposes
the model is still used. For one, because it is intuitive when learning about
options. It takes the student into the options universe without making it too
complex. But most importantly, the Black-Scholes model is used in professional
�nance when quoting prices. That is, when traders are quoting prices to other
traders they use the Black-Scholes price of an option. That might seem a bit
strange as everyone knows that the prices are quoted on �xed volatilities. But
that is the market standard.

In his 2008 letter to investors Warren Bu�ett reviewed the Black Scholes
model. Here, Warren Bu�ett acknowledges the importance of the Black-Scholes
model by writing that the model has approached the status of holy writ. He
then gives an example of how the model is wrong if applied to longer maturities.
This leads him to write

�If the formula is applied to extended time periods, however, it
can produce absurd results. In fairness, Black and Scholes almost
certainly understood this point well.�
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Warren Bu�ett, (Annual letter to shareholders 2008, page 20 [4])

With this, Bu�et touches upon one of the other issues of the Black-Scholes
model. In Bu�ett's example he uses 100 years as the time frame to prove his
point. His point is however equally valid on shorter time horizons - that when
trying to estimate the Greek's it is only possible to do on shorter time horizons.
In other words - the further out in time one wishes to hedge the more insecure.
When thinking about it, this makes perfect sense. It is easier to estimate what
happens tomorrow - all things equal - than it is estimating what happens in two
years time.

One thing that is in favor of the Black Scholes model is that hedging positions
usually run for a fairly short period of time. Since hedging essentially is an
insurance contract on an underlying asset that might appreciate or depreciate
in value over time there is a natural life span on a hedging position. This is
intuitive. When a portfolio is hedged, it is done at a point in time where the
owner of the portfolio has a certain view on the market. This view is in part
re�ected in the pricing of the assets in that market. When the market moves,
the hedge either kicks in at secures the value of the portfolio or the hedge
becomes irrelevant because the market moves in the opposite direction. Hence,
the hedging position must be re-hedged in order to become relevant again.

5.1.2 Local Vol

The Local Volatility Model was introduced in section 3. Here I found the implied
model volatility to move in the opposite direction of what is intuitively expected.
This is depicted in �gure 3.5. Here, the volatility curve moves up and to the
right when the forward price is falling compared to the initial forward price.

What seems to be intuitively wrong is at the same time proven to be em-
pirically wrong. That is, the observed market behavior is opposite of what the
model predicts. To this, Hagan et. al. says

�... Due to this contradiction between model and market, delta
and vega hedges derived from the model can be unstable and may
perform worse than naive Black-Scholes' hedges.�

Hagan. et. al., (Hagan et. al 2002, page 1 [18])

Hagan et. al. argument about the Local Volatility Model as a hedging instru-
ment seems rather convincing. However, as Jim Gatheral points out

�It is unlikely that Dupire, Derman and Kani ever thought of local
volatility as representing a model of how volatilities actually evolve
(...) the idea is more to make a simplifying assumption that al-
lows practitioners to price exotic options consistently with the known
prices of vanilla options.�

Jim Gatheral, (Gatheral 2002, page 6 [16])
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According to the citation of Gatheral above, the intention of the Local Volatil-
ity model was never to be a hedging instrument. Instead, the intent of the
model was to provide an instrument that could help price exotic options using
a volatility smile of vanilla options. That is, to be able to price more complex
options using a volatility smile from the most basic options available.

As the volatility smile in the Local Volatility Model moves in the opposite
direction of what is observed in the market it is clear that the model is ill suited
for hedging purposes. This is clear as the model will lead to wrongful hedging.
With this knowledge it is no surprise that other models has come forward.
However, with the statement of Jim Gatheral it is likely that the model was
never intended for hedging.

5.1.3 SABR

In section 4 I reviewed the SABR model. After solving the model and showing
how to calibrate it to a volatility smile I found that the model makes consistent
estimates. Hagan et. al. puts it this way

�The SABR model also predicts that whenever the forward price f
changes, the implied volatility curve shifts in the same direction and
by the same amount as the price f. This predicted dynamics of the
smile matches market experience.�

Hagan. et. al., (Hagan et. al 2002, page 16 [18])

With this it is reasonable to believe that the model is well suited to pricing
options and applicable for hedging. From my previous job in Nordea Markets
I know that the SABR model is the market standard within options pricing
models.

With this knowledge the next logical question to ask is why the SABR model
is market standard? In my opinion it comes down to a few things. Most
importantly because it integrates with the Black-Scholes model by �xing the
issue with constant volatility from the Black-Scholes model.

Further, as Hagan et. al. states, and I restate above, the SABR model
predictions are close to what is observed empirically in the �nancial markets.
As this is the case a lot of traders are using the SABR model. This is a further
strength of the model. Namely that a lot of people are using the same model
for pricing. The strength in this is that people have trust in the prices given by
other traders. Put di�erently. Either everyone is correct or everyone is wrong
in their pricing of options.

The SABR model was �rst proposed in the paper by Hagan et. al. in 2002. At
that time the interest rates were well above zero percent.
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Figure 5.1: Plot of Danish interest rates from 2000 to 2019

Note: Plot of Danish interest rates month by month from 2000 to 2019. The data shows a clear
downward sloping trend for the entire period. The Cibor rate, 10y bond rate and 30y bond rate
data expire earlier than the discount rate and the lending rate. [9]

Figure 5.1 shows a sample of Danish interest rates. The interest rates are
showing a clear downward sloping trend over time. The interest rates are espe-
cially dropping around the last part of 2008. The data points for the Cibor rate,
10 year bond rate, and 30 year bond rate are not available past 2013. However,
both the Cibor rate and the long term bond rates have been dropping in the
time period.

The low interest rate market raised some issues with the SABR model. The
SABR model with β 6= 0 is implicitly assuming the interest rates to be strictly
positive. The new low interest market violates this assumption. Hence, the
SABR model has been reviewed and new extensions to the SABR model ap-
peared.

5.2 SABR Models for low interest rate markets

With the low interest rate environment the extensions to the SABR model are
important. For that reason I will brie�y mention some of the extensions below.
Breaking down the models, however, is beyond the scope of this paper.

The shifted SABR model [25] is one of the simplest models trying to coupe
with the low interest rate environment. The shifted SABR model using the
forward rate is setup as
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dFt = σt (Ft + s)
β
dW 1

t , F (0) = f

dσt = vσtdW
2
t , σ (0) = α

dW 1
t dW

2
t = ρdt and s is a positive deterministic shift.

Using the initial values F (0) = f and σ (0) = α makes the model quite
similar to the SABR model derived in section 4. The only real di�erence being
the addition of the shift, s. The shift, however, changes the lower boundary
from 0 to -s allowing the Ft to reach negative levels.

Another extension to the SABR model is the Free Boundary SABR model [1].
The forward rate is assumed to have the following dynamics

dFt = vt |Ft|β dW 1
t , F (0) = F0

dσt = γvtdW
2
t , v (0) = v0

dW 1
t dW

2
t = ρdt, and with 0 ≤ β < 1

2 , and a free boundary.

The free boundary model is not bounding how negative the interest rate
can become. This makes the Free Boundary SABR model quite �exible when
applying it to market data.

5.3 Conclusion

In this subsection I have compared the three models presented in this paper.
The Black-Scholes model, the Local Volatility model and the SABR model.

I found that the Black-Scholes performance over long time periods becomes
absurd. But also that Black and Scholes probably knew this. None the less
the Black-Scholes model is still widely used for a lot of reasons. And nothing
suggests that this will change.

The Local Volatility model was found to move in the opposite direction of
the observed market data. I this subsection it is stated that the model was
probably not made to try to replicate the volatility behavior. Instead it was
made as a tool for easily pricing exotic options. Hence, the intent of the model
was never to use it for hedging of portfolios.

Lastly, I �nd that the SABR model is handling the volatility smile in a
desirable way. The SABR model output is in line with what is observed in the
market. For that reason the SABR model is well suited for hedging purposes.
One issue with the model, however, is that it relies on an implicit assumption
of the interest rates being strictly positive. In the current low interest rate
environment this assumption might be violated. For that reason I �nish this
subsection with introducing some adjusted SABR models.
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6 Conclusion

In this paper I have taken the reader through some of the theory regarding
options pricing. In section 2 I introduced the reader for options in general -
starting with the binomial tree model and ending with the Black-Scholes model
and the Black-Scholes Greek letters [22].

In section 3 I reviewed the Local Volatility model. This is a model simulta-
neously presented by Dupire [14] and by Derman and Kani [10]. The objective
of the Local volatility model is to incorporate the volatility smile in the pricing
of options.

Form the Local Volatility model I moved on to reviewing the SABR model
in section 4. The SABR model is presented by Hagan et. al. [18]. The strength
of the SABR model is that it allows the volatility to be stochastic which none
of the previous reviewed models do.

After reviewing the SABR model I analyzed the di�erent models before in-
troducing the reader to some adjusted SABR models.

Common to most of the theory reviewed in this paper is that it builds on the
Black-Scholes model in some sense. This makes sense since the Black-Scholes
model is still the model used when quoting options prices.

In subsection 1.1 I wrote the purpose of this paper - including some problems
that I wanted to answer with this paper. In total, I wrote down three questions.
They are restated below.

Problem. The Black-Scholes model is a well-known options pricing model. Is
there a model that handles options pricing for hedging purposes better than the
Black-Scholes model?

Problem. What are the arguments for choosing one model over another?

Problem. What are the implications of choosing a wrong or less precise model?

The question to answer �rst is if there is a model to price options for hedg-
ing purposes that are better than the Black-Scholes model? In the paper I have
reviewed a lot of theory about the di�erent models. It is clear that the Black-
Scholes model is still used for a variety of things. But it is also clear that the
Black-Scholes model is not the best model for hedging purposes. So the short
answer to the question is: Yes, there are models better suited to price options
for hedging purposes. The logical next question then is - which models?

I reviewed the Local Volatility model as an alternative to the Black-Scholes
model. But it turns out that this model is not ideal for hedging purposes. As
Gatheral stated.

�It is unlikely that Dupire, Derman and Kani ever thought of local
volatility as representing a model of how volatilities actually evolve
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(...) the idea is more to make a simplifying assumption that al-
lows practitioners to price exotic options consistently with the known
prices of vanilla options.�

Jim Gatheral, (Gatheral 2002, page 6 [16])

Gatheral's statement is a statement about the model dynamics. It turns out that
the models implied volatility moves in the opposite direction of that observed
in the market. This is depicted in �gure 3.5. The implication of this is that the
delta hedging of the option is wrong.

Disregarding the Local Volatility model as a model of choice when hedging
- as it produces wrongful hedges and never was intended for risk management,
according to Gatheral - I moved on to the SABR model.

The SABR model turns out to be a better solution. One of the main argu-
ments for a model like the SABR model is that it allows for stochastic volatility.
According to Gatheral [16], most people engaged in the stock markets agree
that the prices are evolving stochastically. For that reason it makes sense to let
the volatility evolve stochastically.

When comparing the SABR model results to that observed in the markets
the SABR model performs well. Hence, the SABR model handles option pricing
for hedging purposes better than the Black-Scholes model - this is probably why
the SABR model is widely used in professional �nance today.

The arguments for choosing one model over another should be quite clear
after reading this paper. As some models are performing really bad you might
be worse o� using those models than using the simple Black-Scholes model - or
not hedging at all. The implications of choosing a wrong or less precise model
is at best more expensive hedging. At worst it is wrongful hedging meaning
that you are not covered the way you thought. Using a model like the Local
Volatility model when hedging could end up meaning that you are way more
exposed than you thought.
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