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Performance evaluation of Explainable AI methods
against adversarial noise

L. M. Fenoy, A. Ciontos

Abstract—Recent work in machine learning has yielded in
algorithms with high performance and accuracy. However, in
critical areas such as medicine, finance or law, these algorithms
are not yet fully trusted. The reason for this is their ”black-
box” nature. Meaning, when they fail, there is no clear reason
for the failure. To overcome this issue, explainable AI (XAI)
algorithms have been developed to add an extra layer of
explainability towards AI. But with adversarial attacks at hand,
even these algorithms become vulnerable. The aim of this
paper is to study the effect of Fast Gradient Sign Method
(FGSM) adversarial attack on two recent XAI algorithms, namely
Similarity Difference and Uniqueness (SIDU) and Gradient-
weighted Class Activation Mapping (Grad-CAM). Furthermore,
by employing an eye tracker, we analyse how human eye fixation
on natural images can be perceived and compared to the
XAI saliency map. Our findings are that even though initially
GradCam performs better than SIDU, when compared to the
fixation maps as a ground truth, when it comes to noise, the
results switch, thus SIDU is in fact more robust to adversarial
attacks.

Index Terms—XAI, Adversarial attacks, FGSM, Natural
Images

I. INTRODUCTION

The rise of machine learning has greatly impacted our
society. Not only in scientific or technological areas, but
also in medical, financial and even entertainment applications.
Potentially, any application which involves analysing big data,
is a suitable candidate for machine learning algorithms to take
over.

However, while these algorithms can find trends and
patterns in the data with great accuracy and repeatability, it
is hard to understand all the underlying processes that lead to
a specific decision. Resulting in the term ”black box” being
frequently used to denominate the inner workings of machine
learning algorithms. Due to this ”black box” characteristic,
when a machine gives the wrong prediction, we are usually
at a loss determining whether it was caused due to a bias in
the data, a fault in the model’s architecture, or even deliberate
attacks designed to alter the model prediction.

Not being able to properly understand why machines make
the decisions they do, creates a level of distrust which becomes
inherently more so, when a model’s prediction has a direct
impact on human lives, for instance in areas such as medicine,
finance or law. [1] [2]

While there are ethical implications involved with whether
or not a machine should be responsible for making such
decisions, from a technical point of view, AI algorithms
provide enough benefits to motivate their use. In order
to establish trust between humans and AI algorithms, a

new branch of artificial intelligence has recently started to
gain traction. Namely Explainable AI (XAI) which focuses
on interpretability assessment criteria (such as reliability,
causality and usability), often by generating visualisations
comprehensible for a human. [3]

Nonetheless, while these algorithms have proven to
generate legible explanations on different datasets, recent
studies have concluded that adversarial attacks render most
explanations generated by XAI methods obsolete. [4] [5] [6]
Adversarial attacks introduce perturbations in the form of
subtle modifications to the data to be analysed, which cause
the models to make inaccurate predictions. These attacks are
especially dangerous when they are undetectable by the human
eye. Therefore, to maintain trustworthiness, XAI algorithms
should be robust to such attacks.

A. Contribution

The dataset used for the present research consists of
natural images. All images of objects naturally found in our
surroundings will be referred to as natural images. In this
regard, the contributions presented in this paper will be the
following:

• Analysis of natural images. This part will analyse human
attention in terms of fixation maps, when presented
with natural images. This is especially important,
because the aim of XAI algorithms is to produce
comprehensive explanations, they should resemble how
humans understand these images.

• Analysis of XAI explanation heatmaps compared to
fixation maps. This part will analyse the similarity
between the way humans perceive images compared to
how XAI methods explain them.

• Analysis of the effect of adversarial noise on XAI
methods. This part will compare how two different XAI
algorithms react to different levels of adversarial noise
and whether or not their generated explanation remain
consistent with the original fixation maps.

II. RELATED WORK

Since the term XAI was coined by DARPA [7] as an
initiative to unravel the black box characteristic behind
machine learning, there have been multiple interpretations
on how models should enhance their interpretability. Some
applications such as LIME [8], provide local explanations in
the form of linear approximations. This technique aims to
highlight which features had the most impact on the model
decision making. Other applications such as Activation Atlas
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[9], aim to understand how networks ”see” images at different
layers, they do so by providing feature visualisations of
averaged activations. Whereas other XAI approaches, such as
Grad-CAM [4], produce visual explanations.

These XAI methods have contributed tremendously to
establishing trust between humans and machines. However,
they remain vulnerable to adversarial attacks. Thus, since
the algorithm can be disturbed by small perturbations, the
explanations become unreliable. [5] [6] There are two main
types of adversarial attacks, white-box attacks black-box
attacks. The former one, unlike the latter one, requires access
to model parameters. Another way to classify adversarial
attacks is whether they are targeted or non-targeted. Targeted
attacks aim for misclassification to a specifically defined class,
while a non-targeted attack forces the algorithm to misclassify
the input.

Examples of white-box attacks include among others,
methods such as the Fast Gradient Sign Method (FGSM) [10],
or Projected Gradient Descent (PGD) [11]. The Fast Gradient
Sign Method works by introducing a small amount of noise
to the image, which is indistinguishable by the human eye.
The direction of this noise is the same as the gradient of the
cost with respect to the input data. Similarly, the Projected
Gradient Descent (PGD) works by iteratively applying FGSM
to the image, thus generating an adversarial example, which
is then repeatedly projected as a valid example. Furthermore,
examples of black-box attacks, which are unrelated to the
model parameters are Carlini-Wagner attack (CW) [12], or
DeepFool. [13] Most of the aforementioned methods perform
pixel-wise operations on images, meaning all pixels are
changed slightly. However, there are methods that introduce
perturbations only in a specific location of the image. An
example of such attack is the adversarial patch. [14]

III. ANALYSIS OF NATURAL IMAGES

In order to analyse what areas in a natural image attract
most attention for a human observer, we set up an eye
tracking experiment. An eye tracker is a device that points near
infrared light into the pupil. The light is then reflected inside
the optical system, which results in detectable reflections
between the cornea (outer-most layer of the eye) and the
pupil. This reflection is then recorded by an image sensor.
This measurement yields the point of gaze, in other words,
the direction the person is looking towards. There are different
metrics to gather appropriate eye tracking data, out of which
we use fixations for establishing areas of interest. Fixations
are clusters of gaze points. [15] The gaze points are collected
according to the frequency of sampling, i.e. 60 Hz. Hence,
fixations are used to measure the distribution of visual
attention. In order to visualise the visual attention, we generate
fixation maps.

This method is chosen because of its similarity to XAI
visualisations, which often come in forms of heatmaps
representing salient areas in an image, therefore becoming a
relevant metric to compare the similarity between the way
humans perceive images compared to how the XAI algorithms
explain them.

IV. FAST GRADIENT SIGN METHOD (FGSM)

As presented in Section II, there are multiple methods which
can be used to generate adversarial attacks. However, when
choosing a specific method, an important fact to consider
is whether or not the network’s architecture and parameters
are known. Currently, most successful attacks are white box
attacks, specifically, gradient based attacks. Some examples
of such attacks are FGSM and PGD. PGD is an iterative
application of FGSM, it is stronger than FGSM, but the
process is also more complex and time consuming. Therefore,
because of its simplicity and effectiveness at the same time,
we have chosen the Fast Gradient Sign Method (FGSM).

FGSM works by adding carefully calculated noise to an
image. The direction of this noise is the same as the gradient
of the cost with respect to the input data. This is given by the
direction of the gradient, in other words, the Gradient Sign
(+/-). The amount of noise can be controlled by a coefficient,
epsilon. When this coefficient is applied correctly, it will
alter the model prediction while still being undetectable to
the human eye. The following formula stands at the base of
generating FGSM noise:

adv x = x+ εsign(∆xJ(θ, x, y)) (1)

Where: adv x = Adversarial image, x = Original image,
ε = Coefficient, ∆x = Gradient, J = Loss, θ = Model
parameters, y = Input label.

In order to better demonstrate both the robustness and
explainability of different XAI algorithms, we experimentally
defined three optimal noise coefficients (ε). The chosen values
are ε = 0.007, ε = 0.05 and ε = 0.1. The first value is
optimal because it is small enough to pass unnoticeable by the
human eye, but large enough to affect the algorithms, as also
demonstrated by [10]. The other two coefficients are chosen
for experimental purposes. Figure 1 showcases a natural image
with FGSM type noise added on the three chosen values and
the resulted predictions.

(a) Original:
Flamingo

(b) ε = 0.007 :
American egret

(c) ε = 0.05 :
Nematode

(d) ε = 0.1 :
Nematode

Fig. 1: Example of a natural image in its original form and
also with three different levels of noise, together with the

corresponding predictions

V. XAI METHODS & HYPOTHESIS

This paper compares two XAI algorithms. The first one
being Gradient-weighted Class Activation Mapping (Grad-
CAM) [4]. Grad-CAM is a method which generates visual
explanations via gradient based localization. To do so, it
extracts the gradients from the last convolution layer of the
network. The intuition behind this method is that the layer
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prior to the classification retains the information of feature
relevance while maintaining spatial relations, and therefore it
can generate a heatmap (based on a weighted combination of
activation maps dependent on gradient score) which highlights
the features with a positive influence for the specific class
which is chosen as the prediction.

The second XAI method evaluated is Similarity Difference
and Uniqueness Method (SIDU) [16]. This method generates
a heatmap based on two values: Similarity difference and
Uniqueness. First, a heatmap of the most salient areas of
an image is generated by calculating the similarity difference
between sets of feature activation maps. Secondly, it evaluates
feature map uniqueness. This step calculates how different a
specific feature map is from the others. If a feature map is
unique, then it will be labelled as more salient and have a
higher weight. The final score that gives the feature importance
is given by the dot product between the two values, which
is then used to calculate the weighted sum of all feature
activation image masks. and generate the visual explanation.

Both methods generate their heatmaps using information
from the last convolution layer of the network and produce
visual explanations which highlight the pixels that contribute
to the class prediction. However, the way these heatmaps are
generated greatly differs from each other. Our hypothesis is
that since Grad-CAM depends on gradient values to generate
its visual explanations, the FSGM will have a great impact on
the heatmaps. On the other hand, since SIDU is a gradient
free method, we believe that it will be robust to this kind
of adversarial attack and be able to generate unaltered visual
explanations.

VI. EXPERIMENTS AND RESULTS

A series of experiments have been carried out to compare
robustness of XAI methods.

A. The dataset

The dataset used for the following experiments consists of
100 natural images, distributed as 10 images belonging to 10
different classes defined in ImageNet. [17] The images in the
dataset are all RGB and resized to 224x224 pixels. This dataset
is used both in the eye tracking experiments as well as the XAI
algorithms.

B. How do humans and machines perceive natural images

As previously mentioned, in order for XAI explanations
to be comprehensible to humans, they need to resemble how
humans perceive images. Therefore, we need to collect data
on humans’ understanding of natural images. This is done
using an eye tracker. The eye tracker records aggregated eye
fixations across multiple participants. These eye fixations are
then represented as the most salient areas in the fixation map.

For experimenting with eye tracker measurements, 5
subjects have been tested. Each image from the dataset was
displayed in arbitrary order for 3 seconds as demonstrated
by [18]. Finally, an aggregated heatmap of fixations gathered
from all participants has been generated for each image.

Figure 2 presents the results from the eye tracker study
(human perception) as well as machine perception counterparts
generated by SIDU and Grad-CAM.

(a) Eye tracker (b) SIDU (c) Grad-CAM

Fig. 2: Most salient areas in the same image, captured with
different methods

In [19], Das et.al. concluded that machine learning
algorithms do not define salient areas in an image the same
way that humans do. This can be appreciated in Figure 2,
where the results from the eye tacker show concentrated
fixation points, whereas both XAI generated heatmaps show
large areas of interest.

However, in order to quantify the resemblance between
these heatmaps, we use the Kullback–Leibler divergence
(KL divergence). [20] This method is used as a metric for
estimating overall dissimilarity between two distributions. To
compare the heatmaps from the eye tracker and each XAI
method individually, we need to measure the dissimilarity
between the saliency maps’ probability distribution (SalMap)
from SIDU and Grad-CAM and the human eye fixation
probability distribution (Emap) as described by Eq.2. [21]

KLDiv =

X∑
x=1

Emap(x) · log(
Emap(x)

SalMap(x) + ε
+ ε) (2)

Where X is the number of pixels and ε is a small coefficient
to avoid log and division by zero. The KL Divergence will
return scores between 0 and ∞, the closer the score to 0, the
more similar the distributions. We then use another metric
to asses whether or not consistent patterns emerge in the
heatmaps comparisons. For this purpose, we use Spearman’s
correlation, as presented by [19]. This is a non-parametric
measure that analyses whether or not the relationship between
two datasets is monotonic. This metric varies between -1 and
1, where a score of 0, represents no correlation. The sign shows
whether the datasets are positively or negatively related, and
the values represent how strong the relation is as mapped in
the list bellow [22]:

• Very weak: 0.00 to 0.19
• Weak: 0.20 to 0.39
• Moderate: 0.40 to 0.59
• Strong: 0.60 to 0.79
• Very strong: 0.80 to 1.00

The expression bellow calculates this correlation, where ui
and vi are ranks of the values collected from the two data
sets, in this case between eye tracker measurements and XAI
methods.
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The results show that the KL divergence between the eye
tracker measurements and SIDU has a value of 0.90, while
between the eye tracker measurements and Grad-CAM it
has a value of 0.81. For the same scenarios, Spearman’s
correlation returns 0.18 and 0.20 respectively. Therefore we
can conclude that, on average, Grad-CAM’s explanations are
closer to the ground truth when compared to SIDU. The results
are presented in Table I for the KL divergence and Table II
for Spearman’s correlation.

C. How do XAI saliency maps deviate from fixation maps after
applying FGSM generated noise?

For this experiment, FGSM noise with different epsilon
levels as defined in Section IV has been added to the dataset.
Then, we evaluated both SIDU and Grad-CAM, using the
contaminated data. In this test, we want to analyse how
robust the XAI methods are against an adversarial attack in
terms of generating reliable explanations. Reliable explanation
are defined in terms of similarity to the fixation maps. To
collect the results we calculate the average KL divergence and
Spearman’s correlation for all pairs of maps as follows:

D = (

I∑
i=1

KLDiv(Emap(i), SalMapadv x(i)))/I (4)

S = (

I∑
i=1

rs(Emap(i), SalMapadv x(i))/I (5)

Where I is the total number of images and SalMapadv x is
the saliency map obtained by the explanation of the adversarial
examples. This operation is then performed for all noise levels.
KLDiv and rs are defined in Equation 2 and 3 respectively.

From Table I, it can be observed that when comparing
the explanations from the noisy images to the eye tracker
ground truth, the averaged KL-divergence (D) results from
SIDU outperforms those of Grad-CAM by approximately a
factor of 2. Regarding the averaged Spearman’s correlation (S),
the results from Table II show that the scores from Grad-CAM
present a very weak negative correlation with the eye tracker
heatmaps, whereas SIDU has a weak positive correlation.
These results can also be visualised in Figure 10. Overall,
SIDU seems to be more robust to adversarial noise compared
to Grad-CAM.

SIDU + FGSM Grad CAM + FGSM
Noise
Levels 0 0.007 0.05 0.1 0 0.007 0.05 0.1

Eye
Tracker 0.90 0.87 0.75 0.71 0.81 1.54 1.37 1.63

SIDU - 0.56 0.40 0.37 - - - -
Grad
CAM - - - - - 1.17 0.99 1.17

TABLE I: Averaged KL divergence of SIDU and Grad CAM
for different noise levels

SIDU + FGSM Grad CAM + FGSM
Noise
Levels 0 0.007 0.05 0.1 0 0.007 0.05 0.1

Eye
Tracker 0.18 0.26 0.22 0.14 0.20 -0.11 -0.17 -0.16

SIDU - 0.33 0.35 0.29 - - - -
Grad
CAM - - - - - -0.04 -0.10 -0.04

TABLE II: Averaged Spearman’s correlation of SIDU and
Grad CAM for different noise levels

D. How do saliency maps from adversarial examples deviate
from original saliency maps?

As previously mentioned, human attention maps and
machine heatmaps tend to differ. Therefore, we chose to
compare how the XAI explanations behave before and after
applying FGSM. Therefore we compare results from both
SIDU and Grad-CAM algorithms with ε = 0 (no noise) as
the ground truth with each subsequent noise level. The results
should further prove the algorithm’s robustness when faced
with adversarial noise. The process is the same as described
in Equations 4 and 5, except, the ground truth is switched from
the fixation maps (Emap) to original saliency maps (SalMap).

When comparing the averaged KL-divergence results from
Grad-Cam after the adversarial attacks to the original Grad-
Cam heatmap, and the SIDU noisy heatmaps to original SIDU,
once again, SIDU results are better by approximately a factor
of 2, as it can be observed in Table I. Lastly, in Table II th
averaged Spearman’s coefficient shows a very weak negative
correlation between FGSM perturbed images and a weak
positive correlation for the SIDU images. Overall, SIDU still
continues to be more robust to adversarial noise compared to
Grad-CAM.



5

Original Eye Tracker ε = 0

Model T

ε = 0.007

Model T

ε = 0.05

Tricycle

ε = 0.1

Tricycle

Model T Model T Tricycle Tricycle

Armadillo Moongoose Ruffed grouse Ruffed grouse

Armadillo Mongoose Ruffed grouse Ruffed grouse

Acorn Thimble Thimble Thimble

Acorn Thimble Thimble Thimble

Llama Gazelle Gazelle Arabian camel

Llama Gazelle Gazelle Arabian camel

Fig. 10: Visual outputs and predictions for XAI methods with different noise levels
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VII. CONCLUSION

In this paper, we carried out an analysis of natural images,
to understand the similarity between human fixation maps
gathered with an eye tracker, compared to XAI (Explainable
Artificial Intelligence) saliency maps. Furthermore, we
created adversarial examples using the FGSM algorithm,
and used them as input for SIDU (Similarity Difference
and Uniqueness) and Grad-CAM (Gradient-weighted Class
Activation Mapping) XAI algorithms. The aim was to test
how the explanations deviate from both fixation maps and
original saliency maps prior to the adversarial attack. When
generating explanations, both algorithms predict the same class
and that is due to the fact that they have been implemented
on the same model. Our results show that Grad-CAM visual
explanations are more similar to the human fixation maps
than SIDU explanations are. However, when FGSM noise is
introduced, SIDU is more robust than Grad-CAM. We suspect
this is true because SIDU, unlike Grad-CAM, is not a gradient
based method.
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