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cavity as a first order low pass filter, and
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for beam loading.
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Kalman observer predict current states
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shoot and settling time. Lastly it was found
during the stability analysis that, depend-
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Reading Guide

This thesis begins with an Introduction chapter, introducing particle physics, CERN
and how particles are being accelerated in RF cavities around the world. The Mod-
elling chapter models and RF accelerating cavity both as a first and second order
model. It also investigates the noise characteristics of the voltage signals from
the cavities before verifying the derived models. Following this, the Summary of
Internship Project chapter summarises a previous project conducted by the author
of this thesis at CERN, as some of the findings from that project are used to de-
sign control strategies in this thesis. After this the Control Design chapter designs
a Kalman observer for handling a measurement delay, and LQR controllers are
designed based on the Kalman estimations. The Simulation chapter sets up a sim-
ulation environment and tests the designed controllers to verify they are in fact
regulating as intended. A stability analysis of the system and the designed control
strategies are done in the Stability Analysis chapter, before the thesis’ conclusion is
made in the Evaluation chapter.

The Appendix presents chapters not directly relevant to the content of this thesis,
but presents context for more in depth interaction with the LINAC4 machine, Im-
plementation of control algorithms in python. It also presents another version of
the second order model where the complex terms are kept.

This thesis will number figures and tables as X.X related to the chapter they are
located. Citations are put in square brackets as [x], where x is a number referring
to a specific source in the bibliography. A citation placed after a full stop at the
end of a paragraph applies to the whole paragraph. If placed before a full stop, it
only applies to the sentence in which it is placed. Periods are used as the decimal
seperator.
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Introduction

1.1 Introduction to Particle Physics

In 1929 Edwin Hubble made the observation that galaxies are moving away from
each other. This backed up Georges Lemaître’s Big Bang Theory formulated in
1927. Ever since that first observation, particle physics has been and are continuing
to be an ever so important study of the fundamentals of the universe [2].

Particle physics is a branch within physics studying the fundamental particles of
the universe. Particle phycisists seek to find a model describing the entire universe.
This involves discovering what gives particles matter, what gravity is, how it works,
what the universe is made of and how the universe came into existence? This is no
simple task and often require very large, expensive and specialised equipment to
study. Starting in the 1950s up through the 60s and 70s particle physics and high
energy nuclear physics became a high priority field of study within physics. In
this period some of the worlds largest particle physics research institutions (DESY,
Fermilab and CERN) all started. These institutions have been investigating and
trying to find the fundamental particles that make up the universe which have
then been compiled into the Standard Model. The standard model describes the
elemental particles of mass and elemental forces. The elementary particles of mass,
also defined as the building blocks of matter, are separated into two categories -
Quarks and Leptons. Both categories contain six particles connected in 3 gener-
ations. The first generation of quarks, “up” and “down” quarks, are the lightest
and most stable mass particles. The higher the generation, the heavier the parti-
cles are and the less stable they are. This means the higher generation quarks will
at some point decay into the first generation [3]. The standard model is consid-
ered to be the most accurate description of subatomic behaviour currently, yet it
only describes approximately 4% of the known masses, forces and particles in the
universe [3]. The standard model does not describe 1 of the 4 elementary forces,
namely gravity, as the particle believed to be the carrier for the gravitational force
is yet to be discovered. It also does not have explanations of the concepts of “dark
matter” or “dark energy” believed to take up around 26% and 70%, respectively,
of the mass-energy content of the universe [2].
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An achievement worth mentioning is the recent discovery and detection of the
Higgs boson in 2012 at CERN. The Higgs boson was included as an addition to
the Standard Model to explain, how the electroweak force (a combination of two
of the fundamental forces - weak and electromagnetic force) and its carrying force-
particles W and Z bosons does in fact have a mass. This would not be the case
without the Higgs field added to the Standard Model. Although very interesting,
particle physics is not directly the focus of this thesis, and therefore more informa-
tion on the standard model, Higgs boson and more can be found in [4].

What is however the focus of this thesis is the infrastructure and machines making
discoveries like the Higgs boson possible. CERN is the largest particle physics
research institution in the world and have the worlds largest particle accelerator
complex. CERN is located on the border between Switzerland and France near
Geneva, Switzerland. The next section 1.2 will give an overview of the different
machines and the chain of particle accelerators used at CERN, before section 1.3
will give a detailed introduction to particle acceleration and how it is done using
RF cavities. Lastly section 1.5 will specify scope of this thesis.

1.2 CERNs Accelerator Complex

The CERN accelerator complex is made up of a chain of particle accelerators and
a multitude of experiments. This section will merely highlight the most known

Figure 1.1: Figure outlining CERNs complete accelerator complex. It shows all the accelerators and
experiments at CERN, and how the particles travel from LINAC4, through the BOOSTER, PS and
SPS before entering the LHC for head on collisions. [5]
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accelerators and describe the ones relevant for this thesis. Currently the largest
and most well known machine at CERN is the Large Hadron Collider (LHC). It has
4 experiments placed at 4 different points on the 27km ring. In the LHC particles
travel very close to the speed of light being accelerated by RF cavities. RF cavities
uses a dynamically oscillating electric fiels to accelerate particles. This will be
explained in further detail in the following section 1.3. The protons collide at four
points in the LHC which correspond to the 4 experiments highlighted as yellow
dots in figure 1.1. The four experiments (detectors) are called ATLAS, CMS, ALICE
and LHCb. Pictures of the two largest detectors, CMS and ATLAS, can be seen in
the following figure 1.2.

(a) Image taken of the CMS detector. It is
opened up in sections during the long shut-
down period for upgrades and repairs.

(b) The ATLAS detector is CERNs largest
detector. In this image the detector is
opened up for upgrades and repairs.

Figure 1.2

Particle beams, which is a group of particles under acceleration bunched together
to a certain size, travel in two tubes (beam pipes) clockwise and anti clockwise.
The beam pipes intersect each other at the four before mentioned colliding points.
However, the LHC is not the only machine responsible for the acceleration of the
particles. This happens in several stages in several machines. The particles due
to be accelerated are initiated from a source of hydrogen becoming H- ions in the
beginning of the Linear Accelerator 4 (LINAC4). LINAC4 is a new addition to the
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accelerator complex as it replaces LINAC2 (LINAC3 is still in operation) during
the Long Shutdown 2 2019-2020 (LS2), in order to support the long term goal
of increasing the energy in the accelerator complex. The H- ions are accelerated
through LINAC4 up to 160 MeV. This happens in several different stages in the
LINAC, as there are multiple different types of cavities. Firstly the particles are
accelerated to 3 MeV in a radio frequency quadrupole (RFQ). The particles then
enter a group of cavities called Drift Tube Linacs (DTLs) where they are accelerated
to 50 MeV, before they enter the next group of cavities, namely the Cell-Coupled
Drift Tube Linacs (CCDTLs). Lastly they are accelerated to 160 MeV through Pi-
Mode structures (PIMS). [6]

After the H- ions have been accelerated through the entire LINAC4, they are
stripped of their 2 electrons at injection to the Proton Synchrotron Booster (PSB),
marked with just “BOOSTER” in figure 1.1. From this point on, the particle beam
consists of pure proton beams. The booster is an acclerator of 4 rings stacked on
top of each other, creating 4 bunches and accelerates them to 1.4 GeV [7]. After the
booster, the protons goes into the Proton Synchrotron (PS), where they are accel-
erated to 25 GeV before they are injected into the Super Proton Synchrotron (SPS)
to be accelerated to 450 GeV. The SPS is the final machine in the chain before the
particle beams enter the LHC, where they will have reached an almost constant
velocity of close to the speed of light. The protons are accelerated to 6.5 TeV per
beam in the LHC, making the final collision energy around 13 TeV. Apart from
LINAC4 the energies mentioned in this section are based on the last run of the
LHC in 2018 [7]. Currently CERN is undergoing one of the largest uprade projects
yet, to reach what is called the High-Luminosity LHC (HL-LHC). This involves up-
grading almost all the accelerators in the accelerator chain described, to reach even
higher accelerating energies and also increase the number of particle collisions by
a factor of 5-7, when the HL-LHC in 2027 is expected to start up [8].

1.3 Accelerating particles using RF cavities

In the previous section 1.2, it was explained how the particles travel through the
chain of accelerators before collisions in the LHC. This section will dive into the
process of particle acceleration and give an introduction to the concepts behind
and different methods for doing so.

Although this thesis focuses on linear accelerators, this section will explain the
basics of RF particle acceleration using a single cell superconducting cavity in the
LHC for illustrational purposes. Also, in CERNs accelerator complex several par-
ticles are used for example protons, electrons, lead-ions and more, and although
the theory for accelerating these are similar, this section will describe the concept
of accelerating positively charged protons.
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Electric fields are used to accelerate charged particles. Two types of fields can be
used for acceleration: an electrostatic field and a dynamic/oscillating electric field.
An electrostatic field is a field where DC power is used, and the electrical polar-
ity remains constant. This creates an electric field between two charge potentials
with a fixed acceleration direction. An electrostatic field has a downside to particle
acceleration. Although the field is constant and particles can be constantly accel-
erated through the field, it it becomes difficult to scale, as higher constant voltage
differences often results in discharging sparks. Therefore electrostatic fields used
for acceleration is often limited to a few MeV. [9, 10]

Instead, by using RF power in a resonating cavity resulting in an oscillating electric
field, this limit can be overcome, as the cavity resonance functions as an amplifier.
By using oscillating RF power with the correct timing, the electric field will “push”
the particles to accelerate them. The polarity of the field will reverse just before
the particles enter the cavity to minimise the deceleration of the particles. This is
illustrated in figure 1.3, where the particle beam is depicted as a red horizontal
line in the centre of the beam pipe. The cavity itself is illustrated as the oval shape
in the middle of the beam pipe. In figure 1.3a the positively charged protons are
travelling towards the cavity. The electric field (green arrows) is facing towards
the beam and has just passed its peak strength. As the beam enters the cavity, the
polarity is reversed leaving a small time slot with a non existing to weak electric
field as illustrated in figure 1.3b. Just as the entire beam passes the centre point of
the cavity, the field is again growing in intensity and pushing the beam away and
thereby accelerating it. [10]

Timing the RF oscillation in a cavity is crucial for keeping a continuous acceleration
going as just explained. Timing also has another very important property, namely
bunching of the beam. Bunching is the process of compressing the particle beam to
a certain size in the longitudinal plane. The specific bunching depends on several
design parameters, such as desired bunch length, number of RF buckets etc.. Until
now, the oscillation of the electric field in the cavity has been explained as changing
electrical polarity. In reality this happens by supplying the cavity with a sinusoidal
RF power signal, which makes the voltage in the cavity oscillate around 0 V, with
some amplitude, frequency and phase. In figure 1.4 three different scenarios are
outlined for when a bunch arrives and what effect it has on the acceleration and
behaviour of the particles in the bunch. The individual particles in a bunch has
different velocities and energies. The first particles to arrive to the cavity are the
fastest ones with the highest energy. If a bunch arrives prior to the peak of the elec-
tric field, as shown in figure 1.4a, the fastest arriving particles will be accelerated
less and thereby to a lower energy than the slowest arriving particles. The slowest
arriving particles sees a stronger field, and thereby gains more energy, causing a
bunching effect and compresses the particles closer together. In the case where the
centre of the particle bunch lines up with the peak strength of the electric field, as
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(a) Beam travelling towards cavity cell.
At this point the beam is outside the
accelerating cell, the electric field just
passed its peak strength and the acceler-
ating direction (green arrows) is pointing
towards the beam.

(b) The polarity of the field changes just
when the particles enter the cavity. At this
point the electric field is at its minimum, and
the beam is not accelerated or decelerated.

(c) As soon as the beam passes the mid-
dle of the cavity, the electric field grows
in intensity and pushes the beam along
the direction of the electric field (green
arrows).

Figure 1.3: Illustration of the particle acceleration process in an RF cavity [11].

shown in Fig. 1.4b, it will cause the bunch to be split in two smaller bunches. If the
bunch of particles arrive after the peak magnitude of the field, the fastest arriving
particles will see the strongest field, and get accelerated even more than the slower
arriving particles, as shown in figure 1.4c. Therefore, the desirable option in parti-
cle accelerators is often the case where the bunch arrives before the peak strength
of the electric field causing the slowest particles to be accelerated more than the
fastest part of the bunch. This allows the slower particles to catch up and thereby
compressing the bunch. The process of aligning the bunch arrival with the cavity
frequency is called phasing, and will not be covered any further. This section is
merely meant as an introduction to particle acceleration.
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(a) Beam arrives to the cavity early caus-
ing a bunching effect.

(b) Beam arrives in the centre of the ac-
celerating period, causing the bunch to
be split in two.

(c) Beam arrives late and gets spread out
causing the bunch to slowly be disinte-
grated over time.

Figure 1.4: Illustrating the timing of beam arrival effects on acceleration.

1.4 Current Strategies for Cavity Control Loops

To accelerate particles evenly through a cavity in a linear particle accelerator, the
voltage amplitude has to be kept constant. This requires control strategies to be im-
plemented to keep the voltage in the cavity constant, even when charged particles
passes through and absorbs some of the energy stored in the cavity. Both [12], [13]
and [14] models the cavity as a first order low pass filter and finds it to be a well
enough fit to describe the cavity dynamics. [13] and [14] designs PI regulators to
stabilise the voltage in the cavity, and achieves this without any steady state errors.
[14] also finds that a derivative element in the regulator is not needed, and that the
proposed PI regulator is able to keep the cavity operating under stable conditions.

[15] proposes a feedback controller based on a designed Active Disturbance Rejec-
tion Control (ADRC) observer as a replacement to PI control. It shows promise of
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being able to detect beam loading and correct for it, and the authors also propose
the ADRC disturbance observer to be used for model identification.

[16] outlines the newest developments in control systems relating to the LINAC4
machine at CERN. The authors explain the cavity modelled as a first order low pass
filter, and that LQ Regulators are able to improve the feedback regulator to min-
imise effect of beam loading. The authors also describe an Adaptive Feedforward
Filter (AFF), which is able to learn to correct for beam loading given information on
the exact time when the beam enters the cavity. Both the LQ regulator and AFF are
able to improve the response greatly in terms of disturbance rejection compared
to a PI controller. Findings outlined in this article form the basis of this thesis
investigation, and aims to further improve the control strategies for LINAC4.

1.5 Thesis Delimitation

CERNs accelerator complex is currently undergoing large upgrades to meet en-
ergy and luminosity levels for the upcoming HL-LHC in 2027. LINAC4 is the
newest linear accelerator replacing the previous LINAC2. LINAC4 will be capable
of accelerating particles up to energies of 160 MeV compared to LINAC2s 50 MeV.

This thesis will focus on optimising cavity control loops for the LINAC4 accelera-
tor. The main objective of this thesis is to investigate methods of making the control
system respond to process noise (in this case the effect of beam loading) quickly.

The scope of the thesis is therefore to model an RF accelerating cavity, design a
Kalman observer to handle time delays in a very fast system and to design and test
LQR controllers. A stability analysis of the designed control strategies will also
be made, to gain insight into how fast the control system can be tuned while the
system remains stabile.

This thesis is a continuation of an internship project of the same author and the
project is titled “Cavity Control Loop Optimisation For CERNs LINAC4 Linear
Particle Accelerator”. This project investigated how the already implemented con-
trol structures could be optimised in terms of computational complexity without
losing performance. Findings from this project will be used in this thesis and
form a basis for modelling and control design. A full summary of the project is
presented in chapter 3.



Chapter | 2

Modelling

This chapter will model a particle accelerating RF cavity in two different ways. The
aim is to find an expression for the voltage in a cavity during operation. Modelling
is similar for cavities for both linear and circular accelerators, but this chapter will
model a cavity based on CERNs LINAC4 machine. A cavity in a linear accelerator
is of second order, however currently most LINACs around the world are modelled
as a first order system due to its simplicity. As this project investigates ways to
optimise cavity control loops for CERNs LINAC4, which is currently designed to
be a 1st order system, this chapter will model the cavity as both a 1st order and
a 2nd order system for comparison. Overall the system surrounding a cavity loop
can be illustrated as in figure 2.1, where a klystron (type of amplifier) is generating
the necessary RF power being sent to the RF accelerating cavity via transmission
lines with impedance Z. If a cavity is not perfectly matched on its resonance
frequency and RF frequency, some power may be reflected back from the cavity.
Therefore a circulator is placed between the klystron and the cavity to redirect the
reflected power to a load instead of it going back into and destroying the klystron.
For the modelling of an RF accelerating cavity in this chapter a cavity on tune is
assumed, and therefore only the cavity itself coupled with the transmission line is
modelled omitting the Klystron, Circulator and load.

9
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Figure 2.1: Illustration of overall cavity loop. Power is being generated in a Klystron (amplifier)
and sent to the cavity via transmission lines with impedance Z. A circulator is added to redirect the
generated current Ig to the cavity and the reflected current Ir from the cavity to a load, in order to
not damage the Klystron.

Section 2.1 will derive the 1st order model, and section 2.2 will derive the 2nd
order model. Section 2.3 will analyse the measurement noise in the system to gain
to investigate if a model of the noise is necessary, and lastly section 2.4 will verify
all the derived models.

2.1 1st Order Modelling of a Particle Accel-
erating RF Cavity

The modelling in this section will be based on [12], but with a slightly different
notation and progression.

A cavity is supplied with an RF wave, and can be modelled as a parallel LCR
circuit as shown in figure 2.2. The cavity is being supplied by the Ig generator
current coming from a klystron as illustrated in figure 2.1. Ir is the reflected wave
current, Ib is the induced beam loading current, L is the inductance property of the
cavity, R is the resistivity of the cavity, C is the capacitance and Z is the impedance
on the transmission line transmitting the power from the klystron to the cavity.
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Figure 2.2: Circuit model of the cavity coupled with the transmission line with impedance Z. Here
Ig is the generator current to the cavity, Ir is the reflected wave current, L is the inductance, C is the
capacitance and R is the resistance. Ib is the current induced by the beam loading.

Starting off with describing the current through the circuit:

ILCR = Ig − Ir − Ib (2.1)

Given that it is a parallel circuit, the voltage is the same at any point in the line,
and can be defined by the forward Vf orw and reflected Vre f l :

V = Vf orw + Vre f l = Z
(

Ig + Ir

)
Ir =

V
Z
− Ig (2.2)

Substituting equation 2.2 in equation 2.1 makes the reflected wave current Ir dis-
appear:

ILCR = Ig −
(

V
Z
− Ig

)
− Ib

ILCR = 2Ig − Ib −
V
Z

(2.3)

For each of the three LCR components there exists relations for both voltage and
current. For the inductor, the relations between VL(t) and IL(t) are given by:

VL(t) = L
dIL(t)

dt
(2.4)

IL(t) =
1
L

∫
VL(t)dt + I0 (2.5)
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VL(t) is the voltage over the inductor, IL(t) is the current through the inductor and
I0 is the initial current flowing through the inductor, which in this case is neglected
as there is no initial current.

For the resistor the following relations hold, where R is the resistance:

VR(t) = RIR(t) (2.6)

IR(t) =
VR(t)

R
(2.7)

Lastly for the capacitor, following relations are used:

VC(t) = V0 +
1
C

∫
IC(t)dt (2.8)

IC(t) = C
dVC(t)

dt
(2.9)

Here V0 is also an initial ’state’ representing the voltage over the capacitor at t = 0.
As there is no voltage in the cavity initially this is neglected.

In a parallell circuit the voltage over each component is equal:

V(t) = VL(t) = VC(t) = VR(t) (2.10)

And the total current through the system is also the sum of currents going through
all the components in the LCR lump:

ILCR(t) = IL(t) + IC(t) + IR(t) (2.11)

Inserting the relations in equations 2.5, 2.7 and 2.9 for current through each com-
ponent into equation 2.11 results in:

ILCR(t) =
1
L

∫
V(t)dt + C

dV(t)
dt

+
V(t)

R
(2.12)

Two expressions for ILCR has now been found in equation 2.3 and 2.12, combining
them will give:
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2Ig(t)− Ib(t)−
V(t)

Z
=

1
L

∫
V(t)dt + C

dV(t)
dt

+
V(t)

R

2Ig(t)− Ib(t) =
1
L

∫
V(t)dt + C

dV(t)
dt

+ V(t)
(

1
R
+

1
Z

)
(2.13)

From equation 2.13 it is evident that expressions for both V(t), dV(t)
dt and

∫
V(t)dt

are needed. The circuit is AC and the voltage is given by the complex-valued
function [12]:

V(t) = A(t)eiωt (2.14)

Here A(t) is the amplitude of the oscillating voltage, ω is the angular frequency.
Based on this expression for V(t), dV(t)

dt and
∫

V(t)dt can be found. Starting with
dV(t)

dt using the product rule d(uv)
dt = u dv

dt + v du
dt :

dV(t)
dt

= A(t)
deiωt

dt
+

dA(t)
dt

eiωt

= iωA(t)eiωt +
dA(t)

dt
eiωt

=

(
iωA(t) +

dA(t)
dt

)
eiωt

(2.15)

The integral of V(t) can be found using the rule of integration by parts, as V(t) is
a product of two funtions. Integration by parts states

∫
v du

dt dt = uv−
∫

u dv
dt dt. In

equation 2.14 A(t) is chosen to be v and eiωt is du
dt , thereby obtaining:

∫
V(t)dt =

∫
A(t)eiωtdt

=
A(t)
iω

eiωt −
∫ dA(t)

dt
1

iω
eiωtdt

(2.16)

A new integral with the product of two functions is observed. Using integration
by parts again on this term using v = dA(t)

dt and du
dt = 1

iω eiωt results in:
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∫
V(t)dt =

A(t)
iω

eiωt +
1

ω2
dA(t)

dt
eiωt +

∫ 1
ω2

d2A(t)
dt2 eiωtdt

=

(
A(t)
iω

+
1

ω2
dA(t)

dt

)
eiωt +

∫ 1
ω2

d2A(t)
dt2 eiωtdt

(2.17)

Looking at the last integral term in equation 2.17, two observations are made.
Firstly, the expression 1

ω2 becomes a very small number close to 0 for very high
frequency systems as this (352.2 MHz). Secondly, the amplitude A(t) is expected
to change very little in one RF oscillation, due to the high frequency, therefore
the double derivative of the amplitude d2 A(t)

dt2 will also be very close to 0. This last
integral term is therefore neglected as it is considered to be without influence. This
therefore results in the integral of V(t) which will further be used for modelling:

∫
V(t)dt =

(
A(t)
iω

+
1

ω2
dA(t)

dt

)
eiωt (2.18)

Substituting equations 2.14, 2.15 and 2.18 into equation 2.13 gives:

2Ig(t)− Ib(t) =
1
L

(
A(t)
iω

+
1

ω2
dA(t)

dt

)
eiωt + C

(
iωA(t) +

dA(t)
dt

)
eiωt

+ A(t)eiωt
(

1
R
+

1
Z

) (2.19)

It was previously assumed that the amplitude A(t) changes very little per RF oscil-
lation, and [12] states that all variables including Ig(t) and Ib(t) is also proportional
to eiωt. By therefore dividing through by eiωt results in:

2Ig(t)− Ib(t) =
1
L

(
A(t)
iω

+
1

ω2
dA(t)

dt

)
+ C

(
iωA(t) +

dA(t)
dt

)

+ A(t)
(

1
R
+

1
Z

) (2.20)

Putting A(t) and dA(t)
dt outside parentheses yields:
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2Ig(t)− Ib(t) =
A(t)
Liω

1
Lω2

dA(t)
dt

+ CiωA(t) + C
dA(t)

dt
+

A(t)
R

+
A(t)

Z

=

(
1

Liω
+ Ciω +

1
R
+

1
Z

)
A(t) +

(
1

Lω2 + C
)

dA(t)
dt

=

(
− i

Lω
+ Ciω +

1
R
+

1
Z

)
A(t) + C

(
1 +

1
ω2LC

)
dA(t)

dt

=

(
Ciω

(
1− 1

ω2LC

)
+

1
R
+

1
Z

)
A(t) + C

(
1 +

1
ω2LC

)
dA(t)

dt

(2.21)

The next steps are to express the circuit properties in terms of cavity parameters.
The theory of a parallel RLC circuit states that the resonant angular frequency is
given by ω0 = 1√

LC
[17]. Thereby the relation LC = 1

ω2
0

exists, such that equa-
tion 2.21 becomes:

2Ig(t)− Ib(t) =

Ciω

(
1−

ω2
0

ω2

)
+

1
R
+

1
Z

 A(t) + C
(

1 +
1

ω2LC

)
dA(t)

dt
(2.22)

Only the first LC is substituted. The second LC term relates to the derivative
of A(t), and this can instead be approximated to ω2LC ≈ 1 [12]. Inserting this
approximation and restructuring gives the following expression:

2Ig(t)− Ib(t) =

(
Ciω−

Ciω2
0

ω
+

1
R
+

1
Z

)
A(t) + 2C

dA(t)
dt

=

(
Ciω2

w
−

Ciω2
0

ω
+

1
R
+

1
Z

)
A(t) + 2C

dA(t)
dt

=

Ci
(

ω2 −ω2
0

)
ω

+
1
R
+

1
Z

 A(t) + 2C
dA(t)

dt

=

(
Ci

ω2 −ω2
0

ω
+

1
R
+

1
Z

)
A(t) + 2C

dA(t)
dt

(2.23)

Here ω0 is the resonant angular frequency and ω is the RF frequency. Ideally these
should be equal, but are not necessarily the same (however very close), which
means detuning can be introduced ∆ω = ω0 −ω. The term ω2 −ω2

0 becomes:
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ω2 −ω2
0 = ω2 − (ω + ∆ω)2

= ω2 −ω2 + ∆ω2 − 2ω∆ω

(2.24)

The difference between ω and ω0 is expected to be very small, and therefore ∆ω2

is a very small number and is neglected:

ω2 −ω2
0 ≈ −2ω∆ω (2.25)

Substituting equation 2.25 in equation 2.23 results in:

2Ig(t)− Ib(t) =
(
−2i∆ωC +

1
R
+

1
Z

)
A(t) + 2C

dA(t)
dt

(2.26)

The circuit quantities C, R and Z are still left to be expressed in terms of cavity
parameters. For a capacitor carrying a charge q, it is known that [18]:

C =
q
|∆V| (2.27)

It will not be proven in this thesis, but in [12] it is shown that for a beam travelling
through a cavity with a cavity-shape parameter (R/Q), the capacitance can be
expressed as:

C =
1

ω (R/Q)
(2.28)

Similarly, for a parallel resonant circuit a quality factor Q0 is given as [17]:

Q0 = ωCR

C =
Q0

ωR

(2.29)

By inserting this into 2.28 results in the following equation for resistance:
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Q0

ωR
=

1
ω (R/Q)

R =
Q0
ω
1

ω(R/Q)

R = Q0(R/Q)

(2.30)

Equivalent for Z which is the impedance of the transmission line, having quality
factor Qext, a relation for Z expressed in cavity quantities is:

z = Qext(R/Q) (2.31)

C, R and Z are now expressed in terms of physical cavity parameters in equa-
tion 2.28, 2.30 and 2.31 respectively. Substituting these into equation 2.26:

2Ig(t)− Ib(t) =

(
−2i∆ω

1
ω (R/Q)

+
1

Q0(R/Q)
+

1
Qext(R/Q)

)
A(t) + 2

1
ω (R/Q)

dA(t)
dt

Ig(t) =

(
−2i

∆ω

ω (R/Q)
+

1
Q0(R/Q)

+
1

Qext(R/Q)

)
A(t)

2
+

1
ω (R/Q)

dA(t)
dt

+
Ib(t)

2

Ig(t) =
(

1
Q0

+
1

Qext
− 2i

∆ω

ω

)
A(t)

2(R/Q)
+

1
ω (R/Q)

dA(t)
dt

+
Ib(t)

2

As the cavity is coupled to a resonating transmission line, a loaded quality factor
can be introduced QL: [19]

1
QL

=
1

Q0
+

1
Qext

(2.32)

This relation gives the following expression for Ig(t):

Ig(t) =
(

1
QL
− 2i

∆ω

ω

)
A(t)

2(R/Q)
+

1
ω (R/Q)

dA(t)
dt

+
Ib(t)

2
(2.33)

Multiplying by ω(R/Q):
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(
Ig(t)−

Ib(t)
2

)
ω(R/Q) =

(
1

QL
− 2i

∆ω

ω

)
A(t)ω

2
+

dA(t)
dt

(2.34)

=

(
ω

2QL
− i∆ω

)
A(t) +

dA(t)
dt

(2.35)

To achieve the final dynamics of the voltage amplitude, V(t) is substituted for A(t)
and the voltage derivative is isolated:

dV(t)
dt

= −
(

ω

2QL
− i∆ω

)
V(t) + ω(R/Q)

(
Ig(t)−

Ib(t)
2

)
(2.36)

This is the continuous-time model first order model of the voltage dynamics in
an RF accelerating cavity. A particle accelerating RF cavity is usually modelled
with I and Q modulation making the system complex (which is why the ∆ω is
complex). However as this modulation and demodulation happens in the Low
Level RF (LLRF) firmware (or directly in the hardware), the control system itself
will only deal with the complex envelope of the voltage signal. Therefore for
control design the complex detuning can be neglected:

dV(t)
dt

= − ω

2QL
V(t) + ω(R/Q)

(
Ig(t)−

Ib(t)
2

)
(2.37)

The input to the cavity is the generator current Ig from a klystron, and the in-
duced current Ib from beam loading. The state of the system is the voltage V(t)
in the cavity and the output of the system is the voltage itself. However there is a
measurement delay from measuring the voltage output, which will be described in
more detail in the following chapter 4. Setting this on state space form will result
in:

V̇(t) = AV(t) + Bu(t) (2.38)

V̇(t) =
[
− ω

2QL

]
V(t) +

[
ω(R/Q)

]
Ig(t) +

[
−ω(R/Q)

2

]
Ib(t) (2.39)

Y(t) = V(t) (2.40)
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Discretisation

The cavity model found above is continuous, however the hardware where the
control system needs to be running on is discrete with a sampling time of Ts =

45.45ns. The model therefore has to be discretised. This is done using forward
Euler numerical approximation [20]:

Φ = [I + ATs] (2.41)

Γ = [BTs] (2.42)

Here I is the identity matrix with the same dimensions as A. This results in new
system matrices, and the complete discrete time state space representation of the
voltage in the cavity can be found in the following equation 2.43.

Vn+1 =
[
1− ωTs

2QL

]
Vn +

[
ω(R/Q)

]
ig,n −

[
ω(R/Q)

2

]
ib,n (2.43)

This is a discrete first order state space model, which can be used for control design.

2.2 Modelling a Particle Accelerating RF Cav-
ity as a 2nd Order System

In the previous section a particle accelerating RF cavity was modelled as a first or-
der system by neglecting the second order term in equation 2.17. The LCR circuit
presented forming the basis of the model is of 2nd order as it contains two compo-
nents to store energy, namely both an inductor and a capacitor. An assumption was
made that the second order term would have little effect as it is weighted by the
inverse squared angular frequency 1

ω2 , and the model therefore shifted to 1st order.
While this might be perfectly adequate for designing control strategies from a re-
sult based engineering perspective, from an academic perspective, it is interesting
to investigate how a second order system potentially differs, and if there is gains
to be made in the control strategies either in performance, stability or robustness.

This section will therefore derive a 2nd order model by continuing from equa-
tion 2.13, but keeping the second order term. The referenced equation is repeated
below for convenience.

2Ig(t)− Ib(t) =
1
L

∫
V(t)dt + C

dV(t)
dt

+ V(t)
(

1
R
+

1
Z

)
(2.13 revisited)
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Taking the derivative of the entire equation to get rid of the integral yields:

2
dIg(t)

dt
− dIb(t)

dt
=

1
L

V(t) + C
d2V(t)

dt2 +
dV(t)

dt

(
1
R
+

1
Z

)
(2.44)

Restructuring the equation to isolate d2V(t)
dt2 :

2
dIg(t)

dt
− dIb(t)

dt
=

1
L

V(t) + C
d2V(t)

dt2 +
dV(t)

dt

(
1
R
+

1
Z

)

C
d2V(t)

dt2 = − 1
L

V(t)− dV(t)
dt

(
1
R
+

1
Z

)
+ 2

dIg(t)
dt
− dIb(t)

dt

d2V(t)
dt2 = − 1

LC
V(t)− dV(t)

dt

(
1

CR
+

1
CZ

)
+

2
C

dIg(t)
dt
− 1

C
dIb(t)

dt
(2.45)

From equation 2.45 a state space model can be formed. Setting states to be x1 =

V(t) and x2 = dV(t)
dt , input u to be u =

dIg(t)
dt and disturbance d = dIb(t)

dt . Thereby
state vector X and input vector U can be formed:

X =

[
x1

x2

]
(2.46)

U =

[
u
d

]
(2.47)

State space model can now be retrieved from these equations:

dx1

dt
= x2

dx2

dt
= −

(
1

LC

)
x1 −

(
1

CR
+

1
CZ

)
x2 +

(
2
C

)
u−

(
1
C

)
d

Putting these equations on matrix form yields:

Ẋ =

 0 1

− 1
LC −

(
1

CR + 1
CZ

) [x1

x2

]
+

[
2
C 0
0 − 1

C

] [
u
d

]
(2.48)
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Just like in the first order case, the electrical circuit parameters need to be replaced
with cavity parameters. In resonant parallel circuits, there exists a relation ω0 =

1√
LC

, and therefore: [17]

LC =
1

ω2
0

Using this relation will therefore transform equation 2.48 into:

Ẋ =

 0 1

−ω2
0 −

(
1

CR + 1
CZ

) [x1

x2

]
+

[
2
C 0
0 − 1

C

] [
u
d

]
(2.49)

In the section deriving the first order model, expressions for C, R and Z was de-
rived to be:

C =
1

ω(R/Q)
(2.28 revisited)

R = Q0(R/Q) (2.30 revisited)

z = Qext(R/Q) (2.31 revisited)

Inserting these expressions in the model will result in:

Ẋ =


0 1

−ω2
0 −

(
1

Q0(R/Q)
ω(R/Q)

+ 1
Qext(R/Q)

ω(R/Q)

)
[

x1

x2

]
+

[
2ω(R/Q) 0

0 −ω(R/Q)

] [
u
d

]
(2.50)

Ẋ =

 0 1

−ω2
0 −

(
ω(R/Q)
Q0(R/Q)

+ ω(R/Q)
Qext(R/Q)

) [x1

x2

]
+

[
2ω(R/Q) 0

0 −ω(R/Q)

] [
u
d

]
(2.51)

Ẋ =

 0 1

−ω2
0 −ω

(
1

Q0
+ 1

Qext

) [x1

x2

]
+

[
2ω(R/Q) 0

0 −ω(R/Q)

] [
u
d

]
(2.52)

The loaded quality factore Ql can be introduced as:
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1
Ql

=
1

Q0
+

1
Qext

Therefore the final 2nd order continuous state space model is presented in the
following equations 2.53 and 2.54:

Ẋ =

[
0 1
−ω2

0 − ω
QL

] [
x1

x2

]
+

[
2ω(R/Q) 0

0 −ω(R/Q)

] [
u
d

]
(2.53)

Y =
[
1 0

] [x1

x2

]
(2.54)

Discretisation

Forward Euler was the chosen discretisation method for the first order system, and
the principle can be seen in equation 2.55. However the 2nd order model becomes
unstable using Forward Euler to discretise it, due to the very fast sample time.

Xn+1 = [I + AT]Xn (2.55)

Γ = [BT] (2.56)

Using a bilinear transform (also known as Tustins method) guarentees discrete
time stability if the continuous time model is stable. The bilinear transform maps
the left half plane of the complex s-plane into the unit circle in the z-plane, and
thereby preserving stability. The bilinear transform is a first order approximation
and can be characterised by the following equations [21]:

z = esT (2.57)

z ≈
1 + T

2

1− T
2

(2.58)

This report will not go into further details with the bilinear transformation, as it is
outside the scope of the project. Matlabs c2d command will be used to convert the
continuous time model presented in equations 2.53 and 2.54 into a discrete time
system.
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2.3 Noise Analysis in Voltage measurement

This section will investigate the noise content in the voltage signal in the LINAC4
cavities with the purpose of evaluating if the noise signal need to be modelled and
accounted for in future control design. A section of the steady state signal of the
CCDTL7 cavity was recorded with a total sample size of 4000 and can be seen in
figure 2.3.

Figure 2.3: Voltage measurement of the CCDTL7 cavity in steady state. Sample size is N=4000.

It can be seen there is an upwards trend in the data due to the cavity being in open
loop. The noise signal can be detrended without losing it’s characteristics by using
linear regression to achieve a model of the trend and subtract that from the noise
signal. The detrended data compared to the sample data with subtracted mean
can be seen in figure 2.4.
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Figure 2.4: Detrended noise signal (orange) of the CCDTL7 cavity in steady state.

From the data it is hard to characterise the type of noise and its characteristics. To
further investigate the type of noise signal, it is relevant to look at periodicity in the
data. White noise has a special characteristic, that it should be completely random,
meaning equal intensity over all frequencies and no correlation with lag-versions
of it self. To investigate if the noise signal in the CCDTL7 cavity can be assumed
white noise, the autocorrelation function of the sample signal can be obtained.

The auto correlation of the above signal, which can be seen in the following fig-
ure 2.5, indicates that it is not pure white noise. There is periodic behaviour in the
data. For it to be white noise, it needs to only be correlated with it self, which the
autocorrelation function in this case shows it clearly is not.
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Figure 2.5: Auto correlation of the noise signal from a Voltage measurement of the CCDTL7 cavity.

That the noise signal is not white noise, might be due to analog to digital con-
verters, amplifiers, klystrons and digital to analog converters all being in the loop.
Looking at two other cavities namely CCDTL56 and PIMS0102, similar signals can
be seen in figures 2.6 and 2.8, and their corresponding autocorrelations in figure 2.7
and 2.9. It can be seen that the noise characteristics displayed in the autocorrelation
functions are quite different from all three cavities. None of the three cavities noise
signal can be categorised as white noise. However looking at the raw noise signals
they all vary between −6000V to +6000V. The magnitude of the voltage variation
in all three noise samples can therefore be concluded to be negligible compared to
the magnitude of the cavity voltage. The noise will therefore not be modelled and
included in future simulation environments.
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Figure 2.6: Noise signal of the CCDTL56 cavity with sample size of 4000.

Figure 2.7: Auto correlation of the noise signal from a Voltage measurement of the CCDTL56 cavity.
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Figure 2.8: Noise signal of the PIMS0102 cavity with sample size of 4000.

Figure 2.9: Auto correlation of the noise signal from a Voltage measurement of the PIMS0102 cavity.

2.4 Model Verification

The models derived in previous sections need verification before control strategies
can be designed. The purpose of model verification is to confirm that a model
emulates the behaviour of a real system, which makes it possible to test differ-
ent control strategies in a simulation environment without the risk of breaking or
damaging any hardware or possibly injuring people.
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An open loop response of the real CCDTL7 cavity in LINAC 4 has been obtained
with a reference of 8.1 · 106V including beam entering the cavity around 300µs. In
order to not trip the RF amplifiers on the cavity, the drive power (and thereby the
voltage) is ramped to the setpoint in 25µs. A small environment was set up in
simulink to test the open loop response of the model with the same parameters as
the CCDTL7 cavity. A 29 time step delay is added to the output to match the delay
in the real cavity. When the beam enters the CCDTL7 cavity, a voltage drop of
10% is observed. A step of −8.1 · 105 is added as process noise to the input of the
model to mimic beam loading in the real cavity. The simulink setup can be seen in
figure 2.10.

Figure 2.10: Simulink environment for getting open loop model responses with beam loading in-
cluded.

Using the same model parameters for Ql = 15754.44 and R/Q = 1195.99 for both
the first order model and the second order model, responses were obtained, and
can be seen compared to the open loop data response of the CCDTL7 model in the
following figure 2.11
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Figure 2.11: Model responses compared to CCDTL7 cavity open loop response with beam loading.
The first and second order models use the same parameters.

As can be seen the models follows the behaviour of the real cavity both while
ramping up, and during beam loading. There is however variations from model
to cavity which can be due to model parameters not being estimated perfectly. In
the comparison in figure 2.11 it is assumed that the parameters provided by CERN
is valid for both a first order and second order model. As a cavity is a system
of second order, it is expected that the second order model should be following
the recorded cavity response closer than the first order model. If instead of using
the same parameters as the first order model, the Ql and R/Q parameters can be
estimated given the data from the open loop response of the cavity. This is done
using Matlabs greyest function which estimates Ql and R/Q using the method of
least squares. The new estimated parameters are then:

Ql = 11400

R/Q = 5703

Using these new parameters in the second order model, the responses can again
be compared. A full cycle can be seen in figure 2.12.
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Figure 2.12: Model responses compared to CCDTL7 cavity open loop response with beam loading.
The first and second order models use different model parameters.

Zooming in on the transient response can be seen in figure 2.13, showing a much
close fit to the recorded data. It can be seen that the second order model follows
the recorded data almost perfectly during the ramp up and transient. The first
order model also behaves very similar to the behaviour of the real cavity.
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Figure 2.13: Transient model responses compared to CCDTL7 cavity open loop response. The first
and second order models use different model parameters.

The big difference between the first order and second order model is during beam
loading as can be seen in figure 2.14. The second order model follows the exact
behaviour of the cavity whereas the first order model also follows the behaviour of
the cavity but with some variations.
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Figure 2.14: Model responses compared to CCDTL7 cavity open loop response during beam loading.
The first and second order models use different model parameters.

It is clear that the second order model with grey box estimated cavity parameters
describes the cavity more closely than the first order model. Root Mean Squared
Errors of the models compared to the open loop data are presented in table 2.1.
During the transient response, the second order model deviates 8.2% less from the
reference cavity response than the first order model. The same tendency applies
during beam loading where the second order model deviates 71.60% less than the
first order model. Both models are however deemed to fit well enough to the actual
cavity, and will both be used in the following chapters to design and test control
strategies.

Table 2.1: Deviations measured by the Root Mean Squared Error (RMSE) comparing the two derived
models to output data from a cavity. Only the same section of the response can be compared between
the models, and therefore a seperating horisontal line is added.

Model Section of response RMSE RMSE visualised
1st Transient 71226 V
2nd Transient 65358 V
1st Beam loading 267.5 V
2nd Beam loading 76.96 V
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Summary of Internship Project

A previous project for CERN investigated by the author of this thesis was to find
ways to improve the cavity control systems running on the LINAC4 particle ac-
celerator in terms of reducing computational complexity. This resulted in a report
titled “Cavity Control Loop Optimisation For CERNs LINAC4 Linear Particle Ac-
celerator” [1]. This chapter will summarise the motivation, methods and findings
of that project, as some of the control design in this thesis builds on experiences
from the previous project.

3.1 Cavity Control Loop Optimisation

The motivation for the project was to investigate if the computational complexity
of the cavity control loops could be reduced without losing performance of the
regulators. As all the control loop computations have to be completed within a
strict deadline of 45.3ns, large regulator matrices and multiplications caused some
of the cavities control loops to fail timing tests. The author proposed to design a
regulator based only on the estimate of the voltage in the cavity at that specific
time instance, instead of regulating based on all delayed states. This would reduce
the controller dimensions from [1 × N + 1], where N is the size of the delay in
terms of time steps, to a single dimension, and thereby reducing the number of
mathematical operations needed per iteration drastically.

This project modelled the cavity as a first order system, just as shown in this thesis,
section 2.1. The discretised model is repeated here for convenience:

Vn+1 =
[
1− ωTs

2QL

]
Vn +

[
ω(R/Q)

]
ig,n −

[
ω(R/Q)

2

]
ib,n (2.43 revisited)

Based on this model, a Kalman estimator was designed to predict the voltage in the
cavity at the current time step based on N-delayed voltage measurement. This was
done by expanding the system matrices by N-dimensions. The method of doing
this will be explained in section 4.1 where a Kalman estimator is designed based
on the derived second order model to estimate V̂n based on Vn−N measurements.

33
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The output of the Kalman estimator would be the estimated states going from the
current time instance to the N-delayed time instance.

Two different sets of LQR controllers were designed. One designed based only the
most recent estimate of the voltage in the cavity, and the other designed using all
the estimated states. The controllers were tuned with the same Q and R weights,
and the outputs were tested and compared, both in simulation and on different
real LINAC4 cavities, which the following sections will explain.

3.2 Comparison of Full State and Single State

Feedback in Simulation

Simulink was used as the simulation environment for testing and comparing the
single and full state regulators. The simulink setup can be seen in figure 3.1. The
reference model was designed based on a ramp and an upper limit block. This was
to reproduce the input drive to the real cavity, where the drive is ramped to refer-
ence in 25µs. Next was a discrete time integrator before the integral gain, together
adding integral action to prevent steady state errors. The derived 1st order state
space model, Kalman estimator and LQR state feedback gain were implemented
using prebuilt Simulink blocks taking in the system matrices as inputs. Worth
noting is the beam was added as process noise using a pulse with a magnitude
corresponding to 10% of the reference voltage, and white noise was added after a
N time step delay to simulate measurement noise. The output of the plant (cavity
voltage) was saved to the MATLAB workspace, for later evaluation. The entire sim-
ulation was running with a 45.3ns sample time and based on the CCDTL7 cavity
in LINAC4.
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Figure 3.1: Simulation environment in Simulink of a single cavity loop based on a first order model.

This model was used to test both a full state feedback controller and a single state
feedback controller. As shown in figure 3.1, a state selector was added just before
the state feedback gain to only chose the first estimated state. If the state selector
block is taken out, it becomes a full state feedback regulator and would require a
state feedback vector as the gain.

Results

The single state feedback controller was simulated selecting only the first state
of the Kalman filter V̂n, and multiplying with the state feedback gain Ks. The
full state feedback used all the estimated states [V̂n, V̂n−1, ..., V̂n−N ] and the state
feedback was a N + 1× 1 vector.

The purpose of the simulation was to check if performance was lost switching from
a full state feedback to a single state feedback controller. This was compared by
both visual inspection and average standard deviation from reference.

In simulation it was possible to achieve a very similar response from the single
state regulator compared to the full state feedback regulator. The responses can
be seen in figure 3.2 showing the full response including the ramping up and the
beam loading at around 300µs to 400µs. A closer look at the response to beam
loading can be seen in figure 3.3.

In both figures the responses are very similar, and can almost not be distinguished,
however the single state feedback had a slight edge when looking at the standard
deviation.
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During beam loading, the full state feedback deviated around 1% more from the
reference than the single state regulator. This was however a very small difference,
and it was therefore not concluded that the single state feedback strictly performed
better. This was to be tested on real cavities before any conclusions could be drawn.

Figure 3.2: Simulation of full state feedback compared to single state feedback. Almost identical
performance for the full response including ramp-up and beam loading.
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Figure 3.3: Zoomed in on beam loading. It can be seen response is very similar between the full state
and single state feedback.

3.3 LINAC4 cavity testing

Both sets of regulators were implemented on multiple cavities in LINAC4, us-
ing the python control toolbox, explained in chapter B.1, to calculate the LQ and
Kalman gains. Two types of cavities was used for testing. The first one was a Pi-
mode structure cavity (PIMS0304) and the second was a Cell-Coupled Drift Tube
Linac (CCDTL0506). They are designed for acceleration at different energy levels,
but both modelled as a first order system as explained in the modelling chapter 2,
and the difference will therefore not be explained further in this report.

PIMS0304 Cavities

Testing the full state feedback on the PIMS0304 cavity, resulted in a response as
shown in the following figure 3.4. This was used as the benchmark behaviour, to
compare the single state feedback regulator against.
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Figure 3.4: Full response data including transient (feedback on), and beam loading.

Two different tunes of the single state feedback was tested - an aggressive and a
non aggressive tune. Below are presented two figures showing different LQR tunes
on the same cavity. In Fig. 3.5 of transient responses, two examples of a single state
feedback is shown together with a full state feedback. By adjusting the Q and
R parameters, the single state feedback can be tuned to give both a response with
more and less overshoot than the full state regulator. In this figure one of the single
state feedback regulations achieves to settle faster than the full state feedback, with
no overshoot and significantly less undershoot.
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Figure 3.5: Transient responses of full state and single state feedback schemes in LINAC4 RF cavity
PIMS0304.

The same behaviour can be seen in Fig. 3.6 showing the different controllers re-
sponse to beam loading. No performance seem to have been lost from the single
state feedback, although the full state response seem to have if not the same set-
tling time then a little better. This data has been smoothed by a centred moving
average filter for easier comparison of the responses as the signal was quite noisy.
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Figure 3.6: Responses to beam loading in LINAC4 RF cavity PIMS0304.

The performance was evaluated closer by the average standard deviation from the
reference of 5.4 · 106V. It was calculated and can be seen visualised in figure 3.7.
It can be seen for the PIMS0304 cavity the non aggressive single state feedback
controller performed slightly worse than the full state feedback. However the dif-
ference is very small. Being that the difference was that small, it seemed as though
no crucial performance were lost switching to the single state feedback.

Figure 3.7: Standard deviation of the three responses RF cavity PIMS0304.

CCDTL0506 Cavities

Testing on cavity CCDTL0506 in LINAC4 as well showed similar behaviour. In
Fig. 3.8 it can be seen, that on the transient response the single state feedback
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regulator was superior to the full state regulator. There is a significant difference
in overshoot and settling time. Comparing the beam loading responses, it was
found to be comparable to the case of the PIMS0304 cavity.

Figure 3.8: Transient responses of full state and single state feedback schemes in LINAC4 RF cavity
CCDTL56.
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Figure 3.9: Responses to beam loading in LINAC4 RF cavity CCDTL56.

Figure 3.10: Standard deviation of the three responses RF cavity CCDTL0506.

Looking at the standard deviation in figure 3.10 from the reference of 8.5 · 106V, it
can be seen that the single state regulator performed slightly better than the full
state regulator, with generally less deviation from the reference.

Based on these tests, it was concluded that there were no significant loss in per-
formance going from full state to single state regulation. In some cases the single
state had a more desirable response with less overshoot and faster settling time.
This was therefore concluded to be a viable option to eliminate extensive matrix
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multiplications and thereby passing the timing tests. Building upon this experi-
ence means that all control design in this thesis, will first and foremost be based
on the second order model, and will not be designed using a full state feedback,
but merely designed on the most recent estimates. This will be further explained
in the following control design chapter 4.
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Control Design

In chapter 2 both a first and second order model of an RF accelerating cavity was
derived, and an open loop response was presented of both the model and recorded
data from a cavity in LINAC4. The concept of beam loading was introduced: when
charged particles enter the cavity, they absorb some of the energy stored in the
cavity in order to accelerate. This results in the voltage in the cavity dropping while
particles are accelerated through. This directly translates to the particles in a bunch
being accelerated unevenly, as the fastest particles arrive when the voltage has not
yet dropped and they therefore absorb the most energy. The slower particles in
the same bunch that enters the cavity later, sees a smaller voltage, and therefore
absorbs less energy causing a smaller acceleration. This chapter will focus on
designing control systems to regulate the RF power to the cavity to minimise the
effect of beam loading. The first order model presented in the previous chapter
was purely derived to show what is generally used to design control systems for
RF accelerating cavities, and will not be used for control design in the remainder of
this thesis. Chapter 3 presented a use case and results of control systems designed
around the first order model based on a previous project. All control design in this
chapter will therefore be based on the grey box derived and verified second order
model. First section 4.1 will design a Kalman observer to handle a measurement
delay, section 4.2 will verify the designed Kalman estimator before section 4.3 will
design an LQR regulator based on the Kalman estimated voltage.

All theory presented in this chapter is based on [22], [23] and [24].

4.1 Kalman Estimation of Voltage in LINAC4
RF Cavity

The second order model derived in equations 2.53 and 2.53 describes the cavity
voltage over time. The voltage in the cavity can be measured at several different
points in the cavity. However, these measurements are delayed with timestep N,
and only the voltage Vn−N can be measured. In figure 4.1 a section of the LINAC4 is
illustrated. The RF accelerating cavities sits in a tunnel below the ground while the
electronics, computers and crates running the control systems sits above ground.

44
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When dealing with particle acceleration, it is crucial to have a very fast reacting
control system. The cavities run at 352.2MHz and the control system has a sample
rate of 45ns. Since the wires connected to the voltage antennas are spanned out
over some distance from the cavities under ground to the control computers above
ground, they introduce fixed delays depending on the cable lengths. LINAC4 is 86
meters long, and is located 12 meters below the ground surface. All the Klystrons
supplying the RF power to the cavities and the control computers are located in
the same building, and therefore depending on the cavity and its location in the
LINAC4 structure, the delay is different for each cavity as the length of the wires
varies.

Figure 4.1: Illustration of a section of the LINAC4 accelerator and how the voltage measurements
and control systems are connected to the RF power generator. Due to the very fast sample rate
needed for the control system, 45 ns, the wire length from the voltage antenna in the cavity under
ground, to the computers running the control systems above ground causes an N-timestep delay.

Due to the fast sample time, the delays can potentially be a large number of time
steps. Therefore designing a fast control system based on very old measurements
can mean, that the regulator can make the system unstable as it is regulating
blindly. Figure 4.2 illustrates what effect a large time delay could have. When
the beam enters and starts loading the cavity the voltage sensor picks up a drop-
ping voltage (green alert on the figure). Due to the wire length and thereby the
large delay, when the computer picks up the voltage starting to drop (red alert on
the figure), the particle bunch will already have travelled a certain distance through
the cavity, and the voltage will have dropped as shown. This is a very extreme case,
and merely used to illustrate what a measurement delay in the system can mean.
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Figure 4.2: Illustration showing what effect an unhandled delay can have. When the particles enter
the cavity at the green alert, the voltage sensor picks up that the voltage starts to drop. The red alert
is the time instance when the control system computers receives the delayed voltage measurements
and detects the beam loading, showing particles having travelled a distance through the cavity and
a voltage drop.

Since the system is linear, a Kalman filter can be used in a Smith predictor configu-
ration to estimate the voltage Vn given a Vn−N measurement. Simplified the system
can be illustrated as in figure 4.3 where the output of the Kalman estimator is V̂n.
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Figure 4.3: Illustration showing the Kalman estimator to estimate Vn, given the measurable Vn−N .

A Kalman estimator can be used to inroduce a way to predict states of a system,
given previous measurements and a model of the system. The ’delayed’ discrete
Kalman estimation equation for a system with Xn as the state vector and Yn as the
output are:

X̂n = ΦX̂n−1 + Γun−1 − L
(

Yn−1Ŷn−1

)
(4.1)

Here Φ and Γ are the discrete system and input matrices, X̂n is the estimated state
vector, Ŷn−1 is the estimated output of the previous time step, and Yn−1 is the real
output of the system of the previous time step.

In the case of the cavity, the system model has two states, the voltage in the cavity
and its derivative, where only the voltage itself can be measured. As illustrated in
figure 4.3 the necessary state needed for the design of a state feedback controller
is the latest voltage in the cavity. Therefore a reduced order observer need to
be designed focusing only on the delayed states of voltage x1,n. This should be
estimated based on the measurement Yn−N . As can be observed from equation 4.1,
the current estimate is based recursively on the previous estimates. Each state
estimate can then be substituted in to the equation until it is only dependent on
the Yn−N measurement, as illustrated with N = 3:
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X̂n = ΦX̂n−1 + Γun−1 + L
(

Yn−1 − Ŷn−1

)
X̂n = Φ

(
ΦX̂n−2 + Γun−2 + L

(
Yn−2 − Ŷn−2

))
+ Γun−1 + L

(
Yn−1 − Ŷn−1

)

X̂n = Φ

(
Φ
(

ΦX̂n−3 + Γun−3 + L
(

Yn−3 − Ŷn−3

))
+ Γun−2 + L

(
Yn−2 − Ŷn−2

))

+Γun−1 + L
(

Yn−1 − Ŷn−1

)
The process of substituting and storing previous control inputs and system outputs
are automated by extending the state space matrices to include all N-delay states
of x1. The state vector will then be:

X̄n =



x1,n

x2,n

x1,n−1

x1,n−2

...
x1,n−N


(4.2)

State matrix is extended to:

Φ̄ =

Φ 0
I 0

 (4.3)

Here I is the identity matrix of [N × N] delay dimensions. Γ and H are extended
to corresponding sizes with N zeros:

Γ̄ =

Γ
0

 (4.4)

H̄ =
[
0 H

]
(4.5)
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An important part to introduce before designing the estimator is process noise vn

and measurement noise wn as shown in Fig. 4.4. This expands the system equations
to:

X̄n+1 =
(
Φ̄X̄n + Γun + vn

)
(4.6)

yn = H̄X̄n + wn (4.7)

Here X̄n is the extended state vector, Φ̄ is the extended system matrix, yn is the
output of the system, H̄ is the extended output matrix.

Cavity

Kalman Estimator

State feedback
gain

Process
noise

Measurement
noise

Figure 4.4: Illustration showing the Kalman estimator in more detail coupled with a state feedback
gain Ks regulating based on the estimated ˆ̄Vn.

Given the extended system matrices, a Kalman estimator can be implemented us-
ing two steps, predict and update. The predicting step includes a priori state
estimate ˆ̄Xn|n−1 and a priori error covariance estimate Pn|n−1.

ˆ̄Xn|n−1 = Φ̄n
ˆ̄Xn−1|n−1 + Γnun−1 (4.8)

Pn|n−1 = Φ̄nPn−1|n−1Φ̄T
n + Qn (4.9)
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The update step estimates the output, calculates the Kalman gain L, and updates
the state and covariance estimates.

ŷn = zn − H̄n
ˆ̄Xn|n−1 (4.10)

Sn = H̄nPn|n−1H̄T
n + Rn (4.11)

Ln = Pn|n−1H̄T
n S−1

n (4.12)

ˆ̄Xn|n = ˆ̄Xn|n−1 + Lnŷn (4.13)

Pn|n =
(

I − LnH̄n
)

Pn|n−1 (4.14)

Qn and Rn is the covariance of the process and measurement noise respectively.
They are defined by:

Qn = E
[
vT

n vn

]
(4.15)

Rn = E
[
wT

n wn

]
(4.16)

Ln is the Kalman gain which will be used in equation 4.1 to estimate the cavity
voltage at time step n. L will be a [N × 1] dimensional vector. In reality on LINAC4
the estimation itself is implemented in the firmware, and needs only the Kalman
gain vector L. As a cavity is a linear system, this gain can be calculated using the
model of the cavity and equation 4.9, 4.11, 4.12 and 4.14 iteratively until the gain L
converges. This implementation is explained further in section B.1 in the appendix.

4.2 Verification of Kalman Voltage Estimator

The Kalman estimator from section 4.1, will in this section be tested and verified.
The goal of the Kalman estimator is to predict the voltage in the cavity before the
measurement delay, based on the delayed measurements. It will be tested both in
simulation using the previously derived 2nd order model and given real openloop
data from the CCDTL7 cavity in LINAC4.

Kalman Verification Using Model of System

Two simulation setups was made to test the Kalman estimator using the plant
model. Both setups added the beam loading to the input to the model, but only
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one setup included beam loading to the input of the kalman estimator as well. The
setups can be seen in figures 4.5 and 4.6.

Figure 4.5: Simulink setup used to test and verify if the Kalman estimator outputs the expected state
estimate compared to a delay model of a cavity without including the beam loading in the input to
the kalman estimator.

Figure 4.6: Simulink setup used to test and verify if the Kalman estimator outputs the expected state
estimate compared to a delay model of a cavity and including the beam loading in the input to the
kalman estimator - with the possibility to delay the beam loading signal to simulate the measurement
delay.
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Using these structures, and selecting the first state estimate from the Kalman esti-
mator, V̂n, the estimates can be logged and compared to the model outputs before
and after the measurement delay.

In figure 4.7 the Kalman voltage estimation is compared with the transient response
of the model before the measurement delay. As expected since they are both based
on the same model, the estimated state V̂n follows exactly the cavity voltage.

Figure 4.7: Comparison of the Kalman state estimate of V̂n and the cavity model voltage output
before the added measurement delay. They match completely as expected.

Without including beam loading in the Kalman input, as in figure 4.5, the estimated
voltage compared to the model output can be seen in figure 4.8. It is evident that
the Kalman estimator is not able to detect the beam loading based on the output
of the cavity model. This might be due to the ’forced’ 0 beam loading input to the
Kalman estimator coupled with the estimated output error Yn − Ŷn being of much
lower magnitude than the states and inputs. This will make the previous estimated
states and inputs dominant in the estimation of the new state.



4.2. Verification of Kalman Voltage Estimator 53

Figure 4.8: Comparison of the Kalman state estimate of V̂n and the cavity model voltage output
before the added measurement delay during beam loading. The Kalman estimator is not able to
estimate the beam loading without including it in the input.

Including beam loading in the Kalman input, as illustrated in figure 4.6, both
with a delay to simulate the measurement delay and without yields the voltage
estimations in figures 4.9 and 4.10. It can be seen in both situations the Kalman
estimator is able to estimate the voltage drop in the cavity. Adding a delay to the
beam loading signal results in a delayed beam loading estimate as expected.

It is expected that the Kalman estimator is able to estimate the exact output of the
cavity before the delay, when the inputs to the system is identical to the Kalman
inputs and both the system since the Kalman estimator uses the same model. In
reality beam loading is seen as process noise, and therefore not a real signal that
can just be included in the Kalman estimator. A suggestion can be to make an
estimate of the expected voltage drop in the cavity from beam loading, and include
that in the Kalman input in the real system. The effects of adding beam loading
into the Kalman estimator will be investigated later when testing control systems,
however designing a beam loading estimator is out of scope for this thesis.



54 Chapter 4. Control Design

Figure 4.9: Comparison of the Kalman state estimate of V̂n and the cavity model voltage output
before the added measurement delay during beam loading. The Kalman estimator is able to estimate
the voltage during beam loading when it is included in the input, however delayed as the input signal
is delayed too.

Figure 4.10: Comparison of the Kalman state estimate of V̂n and the cavity model voltage output
before the added measurement delay during beam loading. The Kalman estimator is able to estimate
the voltage during beam loading perfectly when it is included in the input with no delay.



4.2. Verification of Kalman Voltage Estimator 55

Kalman Verification Using CCDTL7 Open Loop Data

Having already recorded open loop data from the CCDTL7 cavity in LINAC4,
the Kalman filter is also tested against a real cavity output. The data is the same
response used in the verification of the cavity model, and can be seen in figure 2.11.
The reference model including beam loading is replicated in Simulink and the
cavity output data is loaded to the Kalman filter. The setup is shown in figure 4.11.

Figure 4.11: Simulink setup used to test the designed Kalman estimator against real open loop data
from the cavity.

The output of the Kalman estimator compared to the open loop CCDTL7 data can
be seen in the following figures 4.12 and 4.13. The same behaviour is observed
as with using the model of the cavity. The estimated voltage during the transient
response rises earlier than the output data of the real cavity. The beam loading
signal was both tested with and without the measurement delay. Both situations
the voltage estimate follows the voltage drop in the cavity very closely. The de-
signed Kalman estimator for voltage estimation and measurement delay handling
is hereby verified and will be used in the following sections to design control
strategies.
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Figure 4.12: Zoomed in on transient response. It can be seen that the Kalman voltage estimation is
ahead of the cavity output, as expected. Same behaviour as the simulation model.

Figure 4.13: Zoomed in on response to beam loading. Same behaviour as in simulation.
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4.3 LQR Regulator for Cavity Voltage Control

Being able to estimate the cavity voltage V̂n a regulator can be designed. Section 2.3
investigated the measurement noise properties, and concluded it not to be white
noise and thereby not Gaussian. Likewise the process noise in the system is not
Gaussian and therefore the regulator is chosen to be a Linear Quadratic Regulator
(LQR). The LQR regulator is represented as the state feedback gain Ks in the control
loop shown in Fig. 4.4.

System equations as given by equations 4.17 and 4.18 can be used to obtain a state
feedback gain Ks.

Xn+1 = ΦXn + Γun (4.17)

Yn = HXn (4.18)

An LQR controller is said to be an optimal controller, as the state feedback gain
is found by solving an optimisation problem. A state feedback gain Ks needs to
be found, such that the cost function J is minimised. The general finite-horizon
discrete time cost function is given in the following equation 4.19 [22].

J = E

[
xT

KFxK +
K−1

∑
i=0

(
xT

i Qxi + uT
i Rui

)]
(4.19)

Here xi and ui is the current states and inputs respectively while xK is the final
state, and F is the weight on the final state. F can be used as a tuning parameter to
punish the regulator to reach a certain final state. Q and R are also tuning matrices
to weight states and inputs respectively.

Using discrete time notation, the state feedback gain can be found by:

Ks =
(

R + ΓTSn+1Γ
)−1

ΓTSn+1Φ (4.20)

Here S is the solution to the Discrete Algebraic Ricatti Equation (DARE), which is
found backwards in time:

Sn = Q + ΦTSn+1Φ− KT
s ΓTSn+1Φ (4.21)
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Having found the state feedback gain Ks, the control input to the plant can be
found by the control law given in equation 4.22.

un = −KsX̂n (4.22)

Adding Integral Control

To eliminate any potential steady state error an integral part is added to the control
scheme. The control diagram is therefore updated to incorporate the integral state
and including integral gain Kint as shown in figure 4.14.
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Figure 4.14: Illustration showing the Kalman estimator, LQG state feedback regulator and included
integral control with reference rn.

This is done by adding an integral state to the system xi,n:

xi,n = rn − yn−N

Here rn is the reference input and yn−N is the system output after the measurement
delay. Essentially this means expanding the system matrices:
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Xn =

xi,n
x1,n

x2,n

 (4.23)

Φint =

[
1 −H
0 Φ

]
(4.24)

Γint =

[
0
Γ

]
(4.25)

Hint =
[
0 H

]
(4.26)

This will result in the gain vector K, containing both the integral gain Kint and the
state feedback gain Ks:

K =
[
Kint Ks

]
(4.27)

Choosing Q and R

For the design of the LQR controller, the state and input weights Q and R need to
be chosen. Q and R can be chosen to obtain different responses of the controller.
The choice is purely a design choice based on knowledge of the system and desired
response. In this case the system with the added integral action has 3 states. Q has
to be a symmetric positive semidefinite matrix with the same size as the system
matrix, which in this case means Q must be a [3× 3] matrix. R has to be symmetric
positive definite matrix with the same size as number of inputs. In this case R has
to be a [2× 2] matrix, as the beam loading disturbance is considered an input.

The derivative of the voltage in the cavity can not be measured, only estimated and
since there is a large difference in magnitude between the velocity state compared
to voltage, a purely output estimate controller will be designed. The Q matrix will
therefore be chosen so that the voltage derivative will have no effect. A possible
choice of Q could be:

Q =

1 0 0
0 1 0
0 0 0

 (4.28)
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This would define the integral state and the voltage in the cavity to be of equal
importance in terms of minimising the cost function. Several designs will in the
next chapter be tested where different weights are put on the voltage estimate and
the integral state.

As the system has 2 inputs, Ig and Ib where the beam loading current Ib is a
disturbance to the system and can not be controlled, the R matrix is chosen to put
a high weight on the controllable Ig input, and a very low weight on the beam
loading current. An example could be:

R =

[
10 0
0 0.1

]
(4.29)
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Simulation

Having designed a controller in chapter 4, the control loop is implemented in
simulation. This is done to evaluate if the controllers perform as intended and
to make sure that the controllers will stabilise the system, before implementing
the control strategies on the real machine in the future. Avoiding any damage to
equipment is of high priority, and therefore this section will describe setting up a
simulation environment to mimic the behaviour of a LINAC4 cavity for the control
strategies to be tested on.

5.1 Simulation Environment

Simulink is a powerful tool for simulating control systems and will be used for the
simulation environment. The simulation is made up of different blocks connected
by signal lines corresponding to either inputs or outputs.

The simulation environment can be seen in figure 5.1. Initially the beam loading
is considered process noise and therefore not included in the Kalman estimator.
The Kalman estimator will therefore behave as in figure 4.8, and it will be inves-
tigated how well a controller can regulate the voltage given the wrong V̂n state
estimate during beam loading. The regulation effect of including beam loading
in the Kalman estimator will be investigated later in the chapter. The reference
model is designed based on a ramp and a upper limit block. This is to emulate
the input drive to the real cavity, where the drive is ramped to reference in 25µs.
Next is a discrete time integrator before the integral gain, together adding integral
action to prevent steady state errors. The previously derived state space model, the
designed Kalman estimator and LQR state feedback gain are implemented using
prebuilt Simulink blocks taking in the system matrices as inputs. Worth noting is
the beam is added as process noise using a pulse with a magnitude corresponding
to 10% of the reference voltage. The output of the plant (cavity voltage) is delayed
by N timesteps before being saved to MATLAB workspace, for later evaluation.
The entire simulation is running for a total of 1ms with a 45.43ns sample time and
is based on the CCDTL7 cavity in LINAC4.
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Figure 5.1: Simulation environment in Simulink of a single cavity loop.

As the designed controller is not regulating based on the delayed estimates, a
state selector is added just before the state feedback gain to only chose the current
estimated state, as it is shown in figure 5.1.

5.2 Simulating LQR Response to Beam Loading

The purpose of designing a cavity control loop is to regulate the power to the
cavity such that the voltage in the cavity reaches a desired reference voltage. This
has been illustrated previously that it can be done in open loop by setting the
reference voltage, however when a beam travels through the cavity the voltage
drops. The designed LQ Regulators job is to minimise the deviation from the
reference during beam loading. The reference ramped input of 8.1 · 106V can be
seen in figure 5.2.
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Figure 5.2: Reference input used showing the reference voltage being ramped to 8.1 · 106V in 25µs.

Figure 5.3 shows the response of the LQ controller with integral action included
compared to the open loop response of the system. It is clear that the LQ Regulator
is stabilising, and is able to correct for beam loading. It can be seen that the voltage
drops when the beam enters the cavity at 300µs and the voltage rises when the
beam exits the cavity just before 380µs. The crucial part is the first dip when the
beam enters the cavity, as the voltage directly affects the acceleration of the beam.
The rise of the voltage when the beam exits the cavity is due to integral wind-up
and is not of importance as there are no particles under acceleration in the cavity
at this point in time.

Figure 5.3: Verification of the designed controller regulating the voltage back to the reference during
beam loading.
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It is desirable to minimise the voltage dip to accelerate the particle bunch as evenly
as possible. Two ways of doing that are investigated in this thesis. The first one
being to tune the controller more aggressively by altering the penalising weights Q
and R to allow the controller to regulate faster. In figure 5.4 various different LQ
designs were tested to inspect the resulting response of the system. The RMSE of
the different responses compared to the reference is outline in table 5.1 with the
corresponding Q and R combinations shown in table 5.2.

It can be seen that the responses with the smallest deviations all use the Q2 matrix
which has a higher weight on the integral state penalising deviation. Varying the
R matrix seems to have little impact on deviation from reference, however the
higher the weight in R the higher the deviation for all Qs. It can be seen the Q
and R combination of (Q2, R2) has the lowest deviation from reference of 778V on
average when the beam is in the cavity. This corresponds to the light blue response
with no oscillations in figure 5.4. The next section will investigate if inputting the
beam loading in the Kalman estimator can improve the response of the closed loop
system.

Table 5.1: Table showing the Root Mean Squared Error (RMSE) of the different gains tested. The
RMSE is shown as both a value and a horisontal bar graph.

Q R RMSE RMSE visualised
Q1 R1 979 V
Q1 R2 1124 V
Q1 R3 1223 V
Q1 R4 1300 V
Q2 R1 896 V
Q2 R2 778 V
Q2 R3 803 V
Q2 R4 835 V
Q3 R1 979 V
Q3 R2 1124 V
Q3 R3 1223 V
Q3 R4 1300 V
Q4 R1 980 V
Q4 R2 1125 V
Q4 R3 1224 V
Q4 R4 1300 V
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Table 5.2: Table showing the different Q and R matrices used to obtain the various responses.

Q1 =

1 0 0
0 1 0
0 0 0

 Q2 =

10 0 0
0 1 0
0 0 0

 Q3 =

1 0 0
0 0.1 0
0 0 0

 Q4 =

1 0 0
0 10 0
0 0 0



R1 =

[
10 0
0 0.1

]
R2 =

[
20 0
0 0.1

]
R3 =

[
30 0
0 0.1

]
R4 =

[
40 0
0 0.1

]

Figure 5.4: Comparison of different designs of the LQ controller showing that the performance of
the LQ regulation can be improved by choosing different Q and R matrices.
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5.3 Including Beam Loading in Kalman Estima-
tor Input

The concept of adding the beam loading to the input of the Kalman estimator has
been explained and pictured in section 4.2 and the simulation setup explained in
section 5.1. This section will investigate whether introducing the beam loading in
the Kalman estimator will improve the regulation. It was tested in simulation, as
the beam loading can be directly connected to the input of the Kalman filter by
adding it as shown in the following figure 5.5.

Figure 5.5: Simulation environment used for testing the Beam loading included in the input to the
Kalman Estimator.

In simulation the exact beam loading amount can be inputted at the exact time it
occurs in the cavity. As this might not be possible to know in reality, this section
investigates effects of deviations in both timing and magnitude of beam loading.
Starting with analysing adding a delay to the inputted beam loading signal to
simulate a measurement and or estimation delay. Multiple cases are compared in
figure 5.6. Relatively even distribution of delays are added to the beam loading
input to the Kalman filter, from 0 time step delay up to full 29 time step delay of
the CCDTL7 cavity. The resulting response showed to have an improvement of
between 3.76 and 1.57 times less deviation from reference during beam loading,
and thereby manage to correct for the beam loading faster than without including
it in the input to the Kalman filter. The deviation is measured using the Root Mean
Squared Error (RMSE). It is evident, both from the response graph and the data
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Table 5.3: Table showing the Root Mean Squared Error (RMSE) of the different delays applied to
the beam loading input in the Kalman estimator. The RMSE is shown as both a value, a percent
improvement from the first row (reference deviation without beam in Kalman), and a horisontal bar
graph.

Delay RMSE Improvement RMSE visualised
– N/A – 424.7 V –

0 89.24 V 376%
5 101 V 321%
10 113.8 V 273%
15 127.1 V 234%
20 140.7 V 202%
25 154.4 V 176%
29 165.3 V 157%

that including beam loading, even with a delay, into the Kalman estimator shows
substantial potential for minimising the voltage drop during beam loading. In
this case the state feedback and integral gain were kept constant for comparison,
however coupled with a more aggressive tune as illustrated in the previous section
could improve the response even further.

Figure 5.6: Including beam loading in the Kalman estimator input to artificially drive the input signal
higher when the beam loading occurs. The controller is able to react and correct for beam loading
much faster as no delay through measuring even with the signal being delayed.
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Second part of this analysis is to investigate if the magnitude of the beam estimate
varies from the actual beam loading. To test this, the beam loading was scaled
evenly up to 30% larger and smaller and compared with not including the beam
loading in the Kalman estimator. Figure 5.7 shows the responses of scaled beam
loading in Kalman compared to the response without including beam loading in
Kalman. Table 5.4 shows the beam loading scale factor, the RMSE from reference,
the difference in RMSE compared to the non-scaled beam loading, the improve-
ment over not including beam loading in Kalman and the RMSE visualised. In
both the figure and the table it is evident, that even though the magnitude of the
beam loading is not estimated perfectly, even with a deviation of more than 30%,
it is still beneficiary to include beam loading in the Kalman estimator.

Figure 5.7: Including beam loading in the Kalman estimator input to artificially drive the input
signal higher when the beam loading occurs. The beam loading signal was scaled to mimic that they
magnitude of beam loading not being estimated correctly.
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Table 5.4: Table showing the Root Mean Squared Error (RMSE) of the different scaled beam loading
inputs in the Kalman estimator. The RMSE is shown as both a value, a percent difference in deviation
from the non-scaled beam loading, improvement from the reference without beam in Kalman, and a
horisontal bar graph.

Scale factor RMSE Difference Improvement RMSE visualised
– N/A – 424.7 V – –

0.70 180.9 V -51% 135%
0.85 132.1 V -32% 222%

1 89.24 V – 376%
1.15 65.29 V 37% 550%
1.30 79.63 V 12% 433%
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Stability Analysis

The previous chapters have designed and tested different control strategies in or-
der to minimise deviation from the reference voltage during beam loading. Two
methods of minimising the deviation were introduced, namely designing the Q
and R matrices differently and introducing beam loading estimate in the input to
the Kalman estimator. Both methods were tested in previous chapter 5, and leads
to the next discussion, namely stability of the system. This chapter will analyse the
stability of a cavity control loop from two different perspectives: Stability in terms
of how aggressive the controllers can be tuned while keeping the system stable,
and in terms of parameter variations of the model used to design the cavity con-
trol loop. Both stability aspects will be tested using a Monte Carlo type simulation
by simulating varying gains and model parameters. Section 6.1 will investigate the
stability of the system when varying LQ gains, and 6.2 will investigate parameter
variation stability of the system model.

6.1 Controller Gain Stability

This section investigates how aggressive the controller gains can be tuned before
the system becomes unstable. This is an important and interesting analysis as it
will give an overview to CERN of limits to how aggressive the cavity controllers
can be tuned without affecting stability. From CERNs perspective, it is desirable
to have a controller that can react as fast as possible to beam loading, but still
be stable. This section assumes the cavity model to be a perfect representation of
the actual cavity. As the cavity control loops on LINAC4 are setup to take state
feedback gains and integral gain, these will be the values of comparison in this
section. A basis of state feedback and integral gains are used:

Ks = −14.7 Kint = 0.2150

Corresponding Q and R matrices:
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Q =

0.05 0 0
0 125 0
0 0 0

 R =

[
1 0
0 0.1

]

To test the stability of the system LQ gains were varied evenly from 33% of their
original values up to 66% higher than their original values. 5 values were chosen
for each gain:

Ks =

[
−4.8517 −9.7035 −14.7023 −19.5540 −24.4058

0 0 0 0 0

]

Kint =
[
0.0710 0.1419 0.2150 0.2860 0.3569

]
The simulation environments previously described were slightly modified to run
25 times and varying either Ks or Kint each run. The resulting responses are plotted
in figure 6.1 and for comparison their corresponding RMSE listed in table 6.1. It
can be seen that the controller causes the system to become unstable when the
state feedback gain is Ks = −4.86 and the integral gain is either Kint = 0.2860 or
Kint = 0.3569. In the case where Ks = −4.86 and Kint = 0.2150 there is a high
amount of oscillations, but they seem to converge back to the reference. Generally
it is observed that a high integral gain can potentially cause the system to become
unstable due to integral windup, whereas a high state feedback gain makes the
system have a slower response to beam loading, which is not desired.

It can also be concluded that adding beam loading to the Kalman input does not
effect stability of the system. However this test further confirms that including an
estimate of the beam loading in Kalman input reduces the deviation from reference
significantly and makes the correction happen almost instantaneously. This is the
ideal case where the exact beam loading is known, and the exact time it occurs,
which makes the deviations presented in table 6.1 the best case scenario.
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Figure 6.1: Responses of the cavity model in simulation varying the integral and state feedback gain
to test the stability. It can be seen increasing the integral gain without increasing the state feedback
leads to a faster response but also in some cases oscillations and even makes the system unstable.
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Table 6.1: Overview of the 25 gain combinations tested for stability investigations. The gains together
with the Root Mean Squared Error (RMSE) of the response both with beam loading included in
Kalman input and without. The RMSE is shown as both as values and as combined horisontal bar
graph.

State feedback
Gain

Integral
Gain

RMSE
w/ beam

RMSE
w/o beam

RMSE visualised

Ks = −4.85 Kint = 0.071 714 V 1783 V
Ks = −4.85 Kint = 0.142 669 V 1208 V
Ks = −4.85 Kint = 0.215 878 V 1298 V
Ks = −4.85 Kint = 0.286 Unstable Unstable N/A
Ks = −4.85 Kint = 0.357 Unstable Unstable N/A
Ks = −9.70 Kint = 0.071 568 V 2600 V
Ks = −9.70 Kint = 0.142 416 V 1549 V
Ks = −9.70 Kint = 0.215 372 V 1143 V
Ks = −9.70 Kint = 0.286 377 V 965 V
Ks = −9.70 Kint = 0.357 435 V 925 V
Ks = −14.7 Kint = 0.071 557 V 3367 V
Ks = −14.7 Kint = 0.142 379 V 2031 V
Ks = −14.7 Kint = 0.215 309 V 1469 V
Ks = −14.7 Kint = 0.286 277 V 1177 V
Ks = −14.7 Kint = 0.357 263 V 998 V
Ks = −19.6 Kint = 0.071 573 V 3995 V
Ks = −19.6 Kint = 0.142 382 V 2471 V
Ks = −19.6 Kint = 0.215 300 V 1796 V
Ks = −19.6 Kint = 0.286 257 V 1432 V
Ks = −19.6 Kint = 0.357 232 V 1200 V
Ks = −24.4 Kint = 0.071 595 V 4516 V
Ks = −24.4 Kint = 0.142 397 V 2876 V
Ks = −24.4 Kint = 0.215 307 V 2107 V
Ks = −24.4 Kint = 0.286 258 V 1684 V
Ks = −24.4 Kint = 0.357 227 V 1410 V
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6.2 Model Parameter Variation

This section will investigate the stability of the designed controllers in cases where
the model of the cavity does not represent the real cavity well. This is tested
by varying the model parameters Ql and R/Q to investigate how the responses
changes if the model used for control design varies from the actual cavity. Like
in the case of the controller gain stability, 5 different values for both Ql and R/Q
were chosen and tested. Both parameters vary up to ±50% of the actual cavity
parameters. The tested values for Ql and R/Q is presented in the following arrays:

Ql =
[
5700 8550 11400 14520 17100

]
R/Q =

[
2852 4277 5703 7129 8555

]
The stability of the system when the model parameters vary also depend on the
tuning of the controller running in the cavity loop. As the controller gains them-
selves can cause instability as shown in the previous section, this section tests the
same model parameter variations on three different sets of tuned controllers.

The first parameter variation test was done using the controller design with the
least deviation from reference. The first parameter variation test is shown in fig-
ure 6.2. It can be seen that the system only becomes unstable in cases where Ql in
reality is between 25-50% smaller than the model used for control design, and in
cases where R/Q is mostly higher than expected. In this case it seems R/Q is the
most sensitive parameter as for all values of Ql the smallest value of R/Q is able
to stabilise the system.

The second parameter variation test used a slightly less aggressive controller tune
and the resulting responses are shown in figure 6.3. As expected with a less ag-
gressive tune, there are less cases of the system becoming unstable. The same
behaviour is seen here where the system becomes unstable if R/Q is higher than
the value used for control design and/or Ql is significantly lower than expected.

The third and last parameter variation test was done using a very slow response
tune of the controller, and the resulting responses is shown in figure 6.4. With this
slower tune, all the responses are stable. It is also clear, that when Ql increases,
the dynamics of the system is smoothed out and becomes slower. Whereas the
opposite is the case with R/Q making the responses sharper and faster when the
value increases.

In all three tests inputting the beam loading into the Kalman filter does not affect
stability of the system, and as in all previous tests shows mostly vast improvements
in performance compared to not including it.
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Figure 6.2: Stability of the system simulating cases where the model differs the ’real’ cavity. The test
used an aggressively tuned controller and shows cases of instability when Ql is lower than expected
and mostly when R/Q is higher than expected.
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Figure 6.3: Stability of the system simulating cases where the model differs the ’real’ cavity. The test
used a moderately tuned controller and shows cases of instability only when Ql is 50% lower than
expected and mostly when R/Q is higher than expected.
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Figure 6.4: Stability of the system simulating cases where the model differs the ’real’ cavity. The test
used a slow tuned controller and shows no cases of instability.

Overall it was found that the parameters for the real cavity has to vary a somewhat
large amount from the model used to design control strategies, before the system
becomes unstable. Generally it was found that the R/Q parameter which has to
do with the shape of the cavity, is the most sensitive parameter. The region of
instability depends on the design of the controller, but is generally where the value
of Ql in reality is lower than the model, and where R/Q in reality is mostly higher
than the model. From the three stability variation tests done in this thesis, it can
be concluded that as long as the parameters vary less than 25% from reality, the
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system is stable. Worth noting however is that this is only stability in terms of the
cavity itself, and the Klystron supplying the power to the cavity might have lower
stability thresholds, potentially causing the complete system to become unstable
before the cavity does.
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Evaluation

7.1 Conclusion

This thesis set out to explore ways to optimise cavity control loops for CERNs
newest linear particle accelerator - the LINAC4. The concept of beam loading was
introduced as charged particles absorb energy stored in an RF cavity to accelerate.
This results in the voltage in the cavity dropping, and ultimately causes the quality
of the beam to decrease as the individual particles in a bunch gets accelerated
differently and uneven.

It was analysed and found that most linear particle accelerators used around the
world are modelled as a first order low pass filter, and uses either PI or LQ Regula-
tors to correct for beam loading. This thesis modelled the cavity both as a first and
second order system for comparison. The second order model proved to be a more
precise representation of the dynamics of an RF accelerating cavity, and deviates
71.6% less from the real cavity response during beam loading and 8.2% less during
the transient response.

The second order model was chosen as the superior representation and control
design was based on this. The voltage in the cavity can be measured, but with a
large time delay (29 time steps on the CCDTL7 cavity). A Kalman observer was
designed to estimate the voltage in the cavity at the current time instance based on
delayed output measurements. The Kalman estimator was verified, and concluded
that including beam loading in the input to the Kalman estimator gave the most
fitting estimation.

LQR controllers was designed based on the output estimate V̂n of the Kalman
estimator. Combined with integral action the LQR controller was able to correct
for beam loading as intended, and several different designs were tested in terms of
how fast the control system responds to beam loading. It was here also investigated
what effect including the beam loading in the Kalman estimator input had on the
control response. It was found, that including an estimate of the beam loading
in the Kalman estimator, greatly improved the response to be both faster and to
deviate much less than not including it. Depending on the estimated beam loading
size, and simulated measurement delay, including it in the Kalman input reduced

79



80 Chapter 7. Evaluation

the deviation from reference with a factor between 1.57 to 3.76 compared to not
including the estimate.

Lastly a stability analysis was made investigating the stability of the designed
closed loop system. Firstly varying controller feedback and integral gains were
simulated. This was mainly done as it can be used by CERN to see how much
the gains can be tweaked before the system becomes unstable. It was found that
mostly a high integral gain coupled with a low feedback gain causes instability.

More interestingly stability was investigated in terms of possible parameter vari-
ation. The main idea was to probe how robust the system is to differences in the
model parameters compared to the actual cavity. This was simulated in a Monte
Carlo type simulation varying the model parameters while keeping the controller
parameters constant. It was found that depending on how aggressive the con-
troller is tuned, the model parameters can be varied a large amount before the
system becomes unstable. With the tested scenarios it was seen that one of the
model parameters had to vary at least 25% before the system became unstable. It
was here also concluded that the R/Q-parameter was the most sensitive parameter
to variations.

Overall the thesis succeeded in modelling an RF accelerating cavity as a 2nd order
system, designing a Kalman estimator to handle time delays, designing a regulator
to correct for beam loading and analysing the closed loop stability of the designed
system.

7.2 Future Work

The derived 2nd order model deemed to be a better fit to a cavity than a first
order model, and therefore implementing the Kalman estimator using the 2nd
order on LINAC4 may improve the voltage estimation, and thereby the closed
loop response. This would have to be implemented in the LINAC4 firmware. As
the order increases so does the computational complexity and the benefit in the
voltage estimation need to be big enough for this to happen, but might be worth
investigating.

What definitely is worth adding computational complexity is finding a way to
include beam loading in the Kalman estimator input, as it showed to have great
effect on the speed and settling time of the responses. This would involve making
an estimator of the expected voltage drop in the cavity due to beam loading, and
inputting it at the correct time to the Kalman filter.

In terms of stability of the system, it was in this thesis investigated by Monte Carlo
simulations. If a more specific stability margin was to be needed, a Lyapunov
stability analysis could be conducted. This is the analytical approach to stability
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analysis by introducing polyhedral parametric uncertainty. Here it would be ob-
vious to also include modelling of the non-linear Klystron supplying power to the
RF cavity, and thereby analysing stability of the whole system.
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Interfacing with LINAC4

This chapter explains the general methods of interfacing with LINAC4 controls
software for setting up, monitoring and tuning RF Cavities.

A.1 Introduction to Interfacing with CERNs

Accelerators

As CERN is a high profile research facility, it is also a popular target for hack-
ers. Obviously a lot of damage can be done if parameters are set wrongly, and
CERNs machines can therefore only be accessed through virtual machines, with
no internet access. When using a virtual machine on the CERN technical network
(TN), operational and control panels can be launched through the Common Con-
sole Manager (CCM). In figure A.1 it is shown where to find and launch the cavity
loop panel for the CCDTL7 cavity.
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Figure A.1: CCM panel and navigating the menu to find the Cavity loops panel.

Opening up the cavity loop panel, all the important parameters can be accessed,
as shown in figure A.2. The voltage set point, LQG feedback and Kalman settings,
diverse filters and data acquisition can be accessed from this panel. In the “Kalman
state” panel the LQG and Kalman vectors can be modified. However it is usually
better to write the new settings to the FESA class using the FESA navigator or via
a Python API (PyJAPC) explained in the following section A.2.



86 Appendix A. Interfacing with LINAC4

Figure A.2: CCDTL7 cavity loop panel.

In the CCM, global status and voltage data acquisition can also be found for all the
cavities at once for better overview as shown in figure A.3 and A.4 respectively.

Figure A.3: LINAC4 global status panel showing state of all the cavities and feedback loops.
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Figure A.4: LINAC4 global acquisition panel showing the voltage in all the cavities.

A.2 FESA Classes, PyJapc and Navigators

The CCM panels shown in the previous section is a great way of visually getting
an overview of the state of the machine, cavities or make small adjustments. A
more convenient way of changing multiple parameters and getting a collection of
the parameters is through the underlying Front-End Software Architecture (FESA)
classes. Via FESA classes, parameters of specific devices can be accessed and writ-
ten. Using a FESA navigator and accessing the cavity loop of the CCDTL7 device,
the Kalman properties is graphically viewed as shown in figure A.5.



88 Appendix A. Interfacing with LINAC4

Figure A.5: CCDTL7 Kalman settings in the FESA navigator

Here all the parameters regarding the cavity loop can be set such as model param-
eters a, delaySelect and g. Also the LQG integratorGain, state feedback vector k and
the Kalman gain vector l.

The FESA classes parameters can also be accessed through a Python API called
“PyJapc” [25]. It is easy to use, and is often the preferred choice to automate the
parameter setting. An example of the usage can be seen in the following python
code snippet of initialising PyJapc and getting/setting parameters.

1 import pyjapc
2
3 p = pyjapc . PyJapc ( )
4
5 p . setSelector ( " " )
6
7 print ( p . getParam ( " { device }/ KalmanSettings " ) )
8
9 p . setParam ( " { device }/ KalmanSettings " , data_to_set )
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This is used in the following chapter, where a description of how a Python Control
toolbox was made to tune the LQG and Kalman gains for the cavities.
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Python Control Toolbox

This chapter is included from the internship project [1] to support the theory and
design of the Kalman observer and LQR controller in the thesis. This chapter
explains how the algorithms for calculating the Kalman Gain vector and the LQR
gains were implemented in python for automated setup and tuning of the cavities.

The LQG controllers designed in section 4.3 and simulated in section 3.2 will in
this section be tested on several actual cavities. First section B.1 and B.2 will de-
scribe the implementation of a python control toolbox developed to automatically
calculate the LQG and Kalman gains. This was previously done using Matlab, but
as CERN is no longer considered as an educational institute, the cost of licenses
have gone up drastically. Therefore the need for a a custom in-house toolbox arose,
and it was chosen to make a python implementation of well-known Matlab control
algorithms. Also, the previous Matlab-Python implementation was not reliable.
The matlab code was wrapped in a python container, where the python code was
designed to start Matlab execute the control algorithms, write the Kalman and LQ
gains to a text file, that can then be retrieved in python afterwards. The time re-
quired to startup matlab is not constant, and sometimes it would take too long,
and the python code would time out. A flowchart of the python-matlab implemen-
tation can be seen in figure B.1. The first part of this chapter will explain how a
python control toolbox will replace the blue matlab box.
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Figure B.1: Flowchart of the Python-Matlab implementation of calculating the LQ and Kalman gains
and writing them to the cavity FESA class.

After the description of this implementation, testing the control schemes on several
real cavities and a comparison between a full state feedback and a single state
feedback controller will be presented in section 3.3.

B.1 Implementation of a Python Toolbox for

Calculating Kalman Gain

A Kalman filter consist of mainly 6 equations presented in section 4.1. The two
steps include an apriori prediction, and given some measurement data, the predic-
tion is thereafter updated. However, as the state estimation is already implemented
in the firmware, only the Kalman gain vector L needs to be calculated and written
to the FESA class through PyJapc as described in A.2. This can be done in “open
loop”, meaning only the model is needed - no actual data to calculate the Kalman
gain. As the system is linear and a linear Kalman filter is used, it is expected that
looping over 4 equations will eventually make the Kalman gain L converge. It was
discovered that Matlab uses a slightly different algorithm than the one presented in
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section 4.1. Matlab has a modified Pn|n−1 where instead of just adding the weight
Qn in the end, it is multiplied (squared) with Γ.

Pn|n−1 = Φ̄nPn−1|n−1Φ̄T
n + ΓQnΓT

Sn = H̄nPn|n−1H̄T
n + Rn

Ln = Pn|n−1H̄T
n S−1

n

Pn|n =
(

I − LnH̄n
)

Pn|n−1

(B.1)

Programmatically this is done by initialising the equations to:

Pn|n−1 = 1 + ΓQnΓT

Sn = H̄nPn|n−1H̄T
n + Rn

Ln = Pn|n−1H̄T
n S−1

n

Pn|n =
(

I − LnH̄n
)

Pn|n−1

Secondly a variable Lold is introduced. This variable will be used in a while loop
to check if the Kalman gain Ln has converged. Lold is initialised to Lold = c + Ln,
where c is some constant to make sure that Lold is significantly different to Ln. The
process itself of finding the converged gain L, is found in a while loop defined
to iterate as long as the norm of Ln varies more than 0.01% different than the
previous iteration. Lold is the Kalman gain of the previous iteration. When the gain
has converged to within 0.01% of its previous value, the function will return L just
like the Matlab implementation kalman. The code can be seen in the appendix in
section B.3.

B.2 Implementation of a Python Toolbox for

Calculating LQ Controller Gain

The implementation of an algorithm for calculating the discrete LQ gains is of a
similar structure to the Kalman algorithm presented in the previous section. By
structure, it is meant, that a set of equations are iterated over until the LQ gain
K is found. However, in contrast to the Kalman algorithm where the equations
are iterated over until the gain converges, there are for LQ algorithms mainly two
methods of iterating, namely with either finite or infinite horizon. The infinite horizon
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case is similar to the case of the Kalman gain, where a while loop iterates until the
gain K converges. The f initehorizon is as the name suggests, a loop that iterates
a finite number of times, defined by a prediction horizon N. The equations for
calculating the LQ gain K has previously been presented in section 4.3, and are
outlined below.

Ks =
(

R + Γ̄TSn+1Γ̄
)−1

Γ̄TSn+1Φ̄ (B.2)

Sn = Q + Φ̄TSn+1Φ̄− KT
s Γ̄TSn+1Φ̄ (B.3)

First Sn is initialised to be equal to the weight matrix Q, the first iteration of K and
S is calculated before entering the loop of calculating the gain. For the infinite case,
the function returns a single K, specifically the one that converged. The finite case
returns a vector K of N length. The code of the implementation can be seen in the
appendix section B.4.

B.3 Kalman Gain Code

1 def _kalman ( Phi , Gamma , H , Q , R ) :
2
3 P_k_p = 1 + mul ( mul ( Gamma , Q ) , Gamma . transpose ( ) )
4 S_k = mul ( mul (H , P_k_p ) , H . transpose ( ) ) + R
5 S_k_inv = np . linalg . inv ( S_k )
6 L_k = mul ( mul ( P_k_p , H . transpose ( ) ) , S_k_inv )
7 P_k_k = mul ( ( np . eye ( L_k . shape [ 0 ] )−mul ( L_k , H ) ) , P_k_p )
8
9 L_old = (10 + L_k )

10
11 while np . linalg . norm ( L_k−L_old ) > 0 . 0 0 0 1 * np . linalg . norm ( L_k ) :
12
13 L_old = L_k
14
15 P_k_p = mul ( mul ( Phi , P_k_k ) , Phi . transpose ( ) ) + mul ( mul ( Gamma , Q ) , Gamma .

↪→transpose ( ) )
16
17 S_k = mul ( mul (H , P_k_p ) , H . transpose ( ) ) + R
18
19 S_k_inv = np . linalg . inv ( S_k )
20
21 L_k = mul ( mul ( P_k_p , H . transpose ( ) ) , S_k_inv )
22
23 P_k_k = mul ( ( np . eye ( L_k . shape [ 0 ] )−mul ( L_k , H ) ) , P_k_p )
24
25 re turn L_k , P_k_k

B.4 LQ Gain Code
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1 def _infinite ( Phi , Gamma , Q , R ) :
2
3 S = Q # Initial value of the solution to the discrete algebraic ricatti

↪→equation ( DARE )
4
5 K_old = −1 # Initial value of the previous gain . ( only used in the first

↪→iteration )
6
7 # Calculate first iteration of gain ( K ) and solution ( S ) to DARE
8 K = mul ( mul ( mul ( np . linalg . inv ( R + mul ( mul ( Gamma . transpose ( ) , S ) , Gamma ) ) , Gamma

↪→ . transpose ( ) ) , S ) , Phi )
9

10 S = Q + mul ( mul ( Phi . transpose ( ) , S ) , Phi ) − mul ( mul ( mul ( K . transpose ( ) , Gamma .
↪→transpose ( ) ) , S ) , Phi )

11
12 # loop until K gain stabilises to within 0.01% of its previous value .
13 while np . linalg . norm (K−K_old ) > 0 . 0 0 0 1 * np . linalg . norm ( K ) :
14
15 K_old = K
16
17 K = mul ( mul ( mul ( np . linalg . inv ( R + mul ( mul ( Gamma . transpose ( ) , S ) , Gamma ) ) ,

↪→Gamma . transpose ( ) ) , S ) , Phi )
18
19
20 S = Q + mul ( mul ( Phi . transpose ( ) , S ) , Phi ) − mul ( mul ( mul ( K . transpose ( ) ,

↪→Gamma . transpose ( ) ) , S ) , Phi )
21
22 return K , S , ’ i n f i n i t e ’
23
24
25 def _finite ( Phi , Gamma , Q , R , N ) :
26
27 n = Phi . shape [ 0 ] # Number of rows in Phi
28 p = Gamma . shape [ 1 ] # Number of columns in Gamma
29
30 # Initial value of the solution to the discrete algebraic ricatti equation (

↪→DARE )
31 S = Q
32
33 # Calculate first iteration of gain ( K ) and solution ( S ) to DARE
34 Kp = mul ( mul ( mul ( np . linalg . inv ( R + mul ( mul ( Gamma . transpose ( ) , S ) , Gamma ) ) ,

↪→Gamma . transpose ( ) ) , S ) , Phi )
35 S = Q + mul ( mul ( Phi . transpose ( ) , S ) , Phi ) − mul ( mul ( mul ( Kp . transpose ( ) , Gamma .

↪→transpose ( ) ) , S ) , Phi )
36
37 K = np . zeros ( ( p , n , N−1) )
38
39 f o r k in range (N−1, 0 , −1) :
40
41 Kp = mul ( mul ( mul ( np . linalg . inv ( R + mul ( mul ( Gamma . transpose ( ) , S ) , Gamma ) ) ,

↪→Gamma . transpose ( ) ) , S ) , Phi )
42 S = Q + mul ( mul ( Phi . transpose ( ) , S ) , Phi ) − mul ( mul ( mul ( Kp . transpose ( ) ,

↪→Gamma . transpose ( ) ) , S ) , Phi )
43 K [ 0 : p , 0 : n , k−1] = Kp
44
45 return K , S , ’ f i n i t e ’
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LINAC4 Commisioning

This chapter is included from the internship project [1] to showcase a different task
during the authors stay at CERN.

C.1 Commissioning of LINAC4
This is not considered as part of the report, but it is something the author aided
with during the internship. LINAC4 is the newest linear particle accelerator at
CERN. During the fall of 2019 it had to be commissioned after some hardware
upgrade. The commissioning of LINAC4 took place in various control rooms and
a Farady Cage at CERN. The process involved setting up the cavity loops from
scratch and setting up the Adaptive Feed-Forward (AFF), to correct for beam load-
ing. This chapter will not go into detail with the process, but merely highlight a
few moments during the 2-3 week commissioning process. In figure C.1 the main
building housing all the electronics and amplifiers for LINAC4 can be seen. The
picture shows the radiation area housing all the Klystrons that provide the RF
power to the cavities.
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Figure C.1

Figure C.2 is a picture of the process of setting up the AFF filter, where it is dis-
cussed how well the beam loading is corrected for.
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Figure C.2

Figure C.3 is a picture of the Faraday cage for LINAC4 housing all the sensitive
hardware running the cavity loops, and getting the feedback from the cavities.
Each cavity has its own rack containing various timing and control equipment. In
the foreground to the left a computer with access to the cavities can be seen. These
were used during setup and commissioning of the machine.
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Figure C.3

Figure C.4 is a picture from the RF control room again showing some setup of the
AFF filter on a different cavity.

Figure C.4
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Modelling

This chapter takes a different approach to modelling the RF accelerating cavity as
a 2nd order system, namely keeping the complex terms in the model. The model
derived here is not put on state space form, or used for any control design, but
merely presented as an alternative approach to modelling the system.

D.1 Modelling a Particle Accelerating RF Cav-
ity as a 2nd Order System

The LCR circuit presented forming the basis of the model is of 2nd order as it con-
tains two components to store energy, namely both an inductor and a capacitor.
An assumption was made that the second order term would have little effect as it
is weighted by the inverse squared angular frequency 1

ω2 , and the model therefore
shifted to 1st order. While this might be perfectly adequate for designing control
strategies from a result based engineering perspective, from an academic perspec-
tive, it is interesting to investigate how a second order system potentially differs,
and if there is gains to be made in the control strategies either in performance,
stability or robustness.

This section will therefore derive a 2nd order model by continuing from equa-
tion 2.13, but keeping the second order term. The referenced equation is repeated
below for convenience.

2Ig(t)− Ib(t) =
1
L

∫
V(t)dt + C

dV(t)
dt

+ V(t)
(

1
R
+

1
Z

)
(2.13 revisited)

As in the previous 1st order model, the derivative and integral of V(t) is to be
found. The derivative of V(t) was found to be:

dV(t)
dt

=

(
iωA(t) +

dA(t)
dt

)
eiωt (2.15 revisited)

The integral of V(t) after a few iterations of integration by parts was found to be:
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∫
V(t)dt =

(
A(t)
iω

+
1

ω2
dA(t)

dt

)
eiωt +

∫ 1
ω2

d2A(t)
dt2 eiωtdt (2.17 revisited)

This is where the 2nd order model will differ from the 1st order progression. An-
other iteration of integration by parts is needed to keep the second order term:

∫
V(t)dt =

(
A(t)
iω

+
1

ω2
dA(t)

dt

)
eiωt +

1
iω3 eiωt d2A(t)

dt2 −
∫ 1

iω3
d3A(t)

dt3 eiωtdt

=

(
A(t)
iω

+
1

ω2
dA(t)

dt
+

1
iω3

d2A(t)
dt2

)
eiωt −

∫ 1
iω3

d3A(t)
dt3 eiωtdt

(D.1)

The last integral term containing the third derivative term, can be neglected, mainly
due to the system only being second order, but also that the third order derivative
weighted by the inverse angular frequency cubed is expected to be a very small
number. Therefore the final integral of V(t) can be defined as:

∫
V(t)dt =

(
A(t)
iω

+
1

ω2
dA(t)

dt
+

1
iω3

d2A(t)
dt2

)
eiωt (D.2)

Inserting the new expression for
∫

V(t) and the expression for dV(t)
dt into equa-

tion 2.13 yields:

2Ig(t)− Ib(t) =
1
L

(
A(t)
iω

+
1

ω2
dA(t)

dt
+

1
iω3

d2A(t)
dt2

)
eiωt

+C

(
iωA(t) +

dA(t)
dt

)
eiωt + A(t)eiωt

(
1
R
+

1
Z

) (D.3)

As in the first order model, according to [12] all variables including Ig(t) and Ib(t)
are proportional to eiωt. By therefore dividing by eiωt results in:

2Ig(t)− Ib(t) =
1
L

(
A(t)
iω

+
1

ω2
dA(t)

dt
+

1
iω3

d2A(t)
dt2

)
+ C

(
iωA(t) +

dA(t)
dt

)

+ A(t)
(

1
R
+

1
Z

)
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Multiplying out the parentheses to put A(t), dA(t)
dt and d2 A(t)

dt2 outside parentheses:

2Ig(t)− Ib(t) =
A(t)
Liω

+
1

Lω2
dA(t)

dt
+

1
Liω3

d2A(t)
dt2 + CiωA(t)

+ C
dA(t)

dt
+

A(t)
R

+
A(t)

Z

2Ig(t)− Ib(t) =
(

1
Liω

+ Ciω +
1
R
+

1
Z

)
A(t) +

(
1

Lω2 + C
)

dA(t)
dt

+

(
1

Liω3

)
d2A(t)

dt2

Just like the 1st order model case, restructuring the equation a bit helps introduce
cavity specific relations later on.

2Ig(t)− Ib(t) =
(
− i

Lω
+ Ciω +

1
R
+

1
Z

)
A(t) + C

(
1

LCω2 + 1
)

dA(t)
dt

+ C
(
− i

LCω3

)
d2A(t)

dt2

2Ig(t)− Ib(t) =

(
Ciω

(
1− 1

ω2LC

)
+

1
R
+

1
Z

)
A(t) + C

(
1

ω2LC
+ 1
)

dA(t)
dt

+ C
(
− i

ω3LC

)
d2A(t)

dt2

(D.4)

In resonant parallel circuits, there exists a relation ω0 = 1√
LC

, and therefore: [17]

LC =
1

ω2
0

Using this relation will therefore transform equation D.4 into:
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2Ig(t)− Ib(t) =

Ciω

(
1− ω2

0
ω2

)
+

1
R
+

1
Z

 A(t) + C

(
1 +

ω2
0

ω2

)
dA(t)

dt

+ C

(
− iω2

0
ω3

)
d2A(t)

dt2

2Ig(t)− Ib(t) =

(
Ciω− Ciω2

0
ω

+
1
R
+

1
Z

)
A(t) + C

(
ω2

ω2 +
ω2

0
ω2

)
dA(t)

dt

− C

(
iω2

0
ω3

)
d2A(t)

dt2

2Ig(t)− Ib(t) =

(
Ci

(ω2 −ω2
0)

ω
+

1
R
+

1
Z

)
A(t) +

(
C
(ω2 + ω2

0)

ω2

)
dA(t)

dt

− Ci

(
ω2

0
ω3

)
d2A(t)

dt2

(D.5)

Detuning can now be introduced ∆ω = ω0−ω, such that the three parts including
ω0 becomes:

(ω2 −ω2
0) = ω2 − (∆ω + ω)2

= ω2 + ∆ω2 −ω2 − 2ω∆ω

= −2ω∆ω

(ω2 + ω2
0) = ω2 + (∆ω + ω)2

= ω2 + ∆ω2 + ω2 + 2ω∆ω

= 2ω2 + 2ω∆ω

ω2
0 = (∆ω + ω)2

= ∆ω2 + ω2 + 2ω∆ω

= ω2 + 2ω∆ω
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As the cavity is expected to be close to in-tune, ∆ω is expected to be small, and
therefore its square, ∆ω2 can be neglected in all of the above cases. Using these
three expressions, and inserting them in equation D.5 results in:

2Ig(t)− Ib(t) =
(
−2i∆ωC +

1
R
+

1
Z

)
A(t) +

(
C

2ω2 + 2ω∆ω

ω2

)
dA(t)

dt

− Ci

(
ω2 + 2ω∆ω

ω3

)
d2A(t)

dt2

2Ig(t)− Ib(t) =
(
−2i∆ωC +

1
R
+

1
Z

)
A(t) + 2C

(
1 +

∆ω

ω

)
dA(t)

dt

− Ci
(

1
ω

+
2∆ω

ω2

)
d2A(t)

dt2

(D.6)

Now as in the first order case C, R and Z has to be expressed in terms of cavity
parameters. Expressions for these, have previously been found to be:

C =
1

ω(R/Q)
(2.28 revisited)

R = Q0(R/Q) (2.30 revisited)

z = Qext(R/Q) (2.31 revisited)

Using these relations equation D.6 becomes:

2Ig(t)− Ib(t) =
(
−2i∆ω

1
ω(R/Q)

+
1

Q0(R/Q)
+

1
Qext(R/Q)

)
A(t)

+2
1

ω(R/Q)

(
1 +

∆ω

ω

)
dA(t)

dt

− 1
ω(R/Q)

i
(

1
ω

+
2∆ω

ω2

)
d2A(t)

dt2

(D.7)
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Ig(t) =
(
−2i

∆ω

ω
+

1
Q0

+
1

Qext

)
A(t)

2(R/Q)
+

(
1

ω(R/Q)
+

∆ω

ω2(R/Q)

)
dA(t)

dt

−
(

i
2ω2(R/Q)

+
2i∆ω

ω3(R/Q)

)
d2A(t)

dt2 +
Ib(t)

2

Just as in the first order case, the cavity is coupled with a transmission line, and a
loaded quality factor QL can be introduced 1

QL
= 1

Q0
+ 1

Qext
[19]:

Ig(t) =
(

1
QL
− 2i

∆ω

ω

)
A(t)

2(R/Q)
+

(
1

ω(R/Q)
+

∆ω

ω2(R/Q)

)
dA(t)

dt

−
(

i
2ω2(R/Q)

+
2i∆ω

ω3(R/Q)

)
d2A(t)

dt2 +
Ib(t)

2

(
Ig(t)−

Ib(t)
2

)
ω(R/Q) =

(
ω

2QL
− i∆ω

)
A(t) +

(
1 +

∆ω

ω

)
dA(t)

dt

−
(

i
2ω

+
2i∆ω

ω2

)
d2A(t)

dt2

V(t) can now be substituted back in for A(t) to end up with the final dynamics:

(
Ig(t)−

Ib(t)
2

)
ω(R/Q) =

(
ω

2QL
− i∆ω

)
V(t) +

(
1 +

∆ω

ω

)
dV(t)

dt

−
(

i
2ω

+
2i∆ω

ω2

)
d2V(t)

dt2

(
i

2ω
+

2i∆ω

ω2

)
d2V(t)

dt2 =

(
ω

2QL
− i∆ω

)
V(t) +

(
1 +

∆ω

ω

)
dV(t)

dt

−
(

Ig(t)−
Ib(t)

2

)
ω(R/Q)

(D.8)

Isolating d2V(t)
dt2 in the above equation would result in the complex 2nd order dy-

namics of the voltage in an RF accelerating cavity.
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