
Go to ToC

TRAFFIC LIGHT CONTROL USING DEEP
REINFORCEMENT LEARNING AT AN

ISOLATED INTERSECTION WITH
PEDESTRIANS

Master’s Thesis

June 3, 2020
Linebreak

Daniel Rytter Sørensen - Nicolai Tandal Danielsen
Aalborg University

Mathematics - Economics

Go to ToC

This page is intentionally left blank.

ii

Go to ToC

Faculty of Engineering and Science
Mathematics-Economics
Aalborg University
https://www.en.engineering.aau.dk/

Title:
Traffic Light Control Using Deep Re-
inforcement Learning At An Isolated
Intersection With Pedestrians

Theme:
Deep Reinforcement Learning

Project period:
Februrary 3, 2020 - June 3, 2020

Project group:
3.222a

Group members:
Daniel Rytter Sørensen
Nicolai Tandal Danielsen

Supervisor:
Inkyung Sung
Mohamed El Yafrani

Co-supervisor:
Peter Nielsen

Number printed: 6 Pieces

Report number of pages: 30

Appendix number of pages: 2

Total number of pages: 34

Abstract:

The cost of traffic congestion is large, estimated
to be roughly 110 billion euros in the EU alone.
The best way to reduce this cost while utilizing
the road infrastructure that is already in place,
is to optimize traffic light control. An approach
that has received a lot of attention is reinforcement
learning based traffic light control. It has been
widely researched, and many researchers have
proposed methods that show promising results.
However, most of the research focuses on traffic
light control solely for motorized traffic and neglects
the non-motorized aspect of the traffic. In
this thesis we train a dueling double deep Q-
network reinforcement learning algorithm with
prioritized experience replay using a simulation
of an isolated intersection with pedestrians. We
compare its performance to a fixed-time strategy
and a heuristic based on the idea of a police
officer directing the traffic. We also investigate how
this reinforcement learning algorithm compares to
an identical algorithm trained in an environment
without pedestrians. We test both of these
algorithms in the same simulated test environment
with pedestrians, and compare their behavior and
performance.

iii

https://www.en.engineering.aau.dk/

Go to ToC

Go to ToC

Preface

This report has been written as a Master’s thesis on the 10th semester of Mathematics-
Economics at the Faculty of Engineering and Science at Aalborg University in spring 2020.

References appear throughout the thesis and the sources used are listed in the last section
of the thesis. The source reference used in the thesis is the Harvard method, which has the
following structure: [Surname, year, page number]. If there are several sources published by
the same person in the same year, then these sources are named in the following structure:
[Surname, year(letter), page number].

The references direct the reader to the bibliography, where books are specified by author,
title, edition, ISBN, and publishers, while web pages are specified by author, title,
institution, and date. Figures, tables, definitions, theorems, examples, equations, etc.
are numbered according to chapter. For example, the first figure in Chapter 1 is numbered
Figure 1.1. The descriptions of the figures and tables are to be found under the given
figure or table.

All programming in this thesis has been done in Python and R. Code for the
algorithm used throughout the thesis can be found here: https://www.dropbox.com/
sh/8otups4x2jexwvz/AACAzgaKNElR2k5Y_0lq6mYsa?dl=0

Finally, we express gratitude for the guidance and constructive criticism of Inkyung Sung,
Mohamed El Yafrani and Peter Nielsen.

Daniel Rytter Sørensen
<dsaren15@student.aau.dk>

Nicolai Tandal Danielsen
<ndanie15@student.aau.dk>

v

https://www.dropbox.com/sh/8otups4x2jexwvz/AACAzgaKNElR2k5Y_0lq6mYsa?dl=0
https://www.dropbox.com/sh/8otups4x2jexwvz/AACAzgaKNElR2k5Y_0lq6mYsa?dl=0

Go to ToC

Go to ToC

Table of Contents

1 Introduction 1
1.1 Problem Formulation . 2

2 Reinforcement Learning 3
2.1 Deep Q-learning . 3

2.1.1 Double Deep Q-learning . 4
2.1.2 Dueling Deep Q-learning . 5

2.2 Prioritized Experience Replay . 5

3 System Setup and Configuration 7
3.1 Traffic Simulation . 7
3.2 Reinforcement Learning Model . 10
3.3 Reinforcement Learning Implementation . 11

4 Experiments with Pedestrians 15
4.1 Preliminary Experiment . 15
4.2 Main Experiment . 18
4.3 Testing Against Benchmarks . 19

5 Impact of Excluding Pedestrians 23
5.1 Experiment Without Pedestrians . 23
5.2 Comparing Dueling Double Deep Q-Networks 24

6 Discussion 27

7 Conclusion 29
7.1 Future Research . 29

A Comparison 31

Bibliography 33

vii

Go to ToC

Go to ToC

1

Introduction

Improving traffic light control is one of the main ways of improving traffic conditions
and reducing congestions in urban areas. Better traffic light control leads to higher traffic
throughput, which means less delay and thus higher quality of life for a commuting citizen.
Furthermore, the cost of traffic congestion in the EU alone is estimated to be 1% of EU’s
GDP [Christidis and Rivas, 2012, p. 1], which is roughly 110 billion euros annually.
Because of the complex nature of the traffic system, improving traffic light control remains
a difficult task. In recent years traffic light control based on reinforcement learning (RL)
has received increasing attention because of its success in other fields.

Early works [Abdulhai et al., 2003] focused on a single-agent case with an isolated
intersection. They used a simple state space and a sort of tabular Q-learning algorithm
that requires storing the Q-values in hash-tables. Later, [LA and Bhatnagar, 2011]
used reinforcement learning with function approximation in a traffic control setting, and
according to the authors, they were the first paper that was able to incorporate high-
dimensional full-state representation.

In [Mannion et al., 2016] they design a multi-agent experiment, using queue length, current
green light phase, and elapsed time of the current phase, as the state definition. They find
that their RL algorithm outperforms the commonly used fixed-time strategy when the
traffic flow is random. Other papers, such as [Gao et al., 2017], use vehicular position and
speed as state information and also find promising results.

With the rapid advancements within deep learning, more recent works have been using deep
neural networks to approximate the value function. In [Liang et al., 2018] they combine
deep neural networks with multiple state-of-the-art techniques from reinforcement learning
and find that a dueling double deep Q-network (DDDQN) with prioritized experience
replay (PER) performs best in their single-agent traffic control problem.

However, in none of the aforementioned papers pedestrians are included. The vast majority
of the research within this field has focused on traffic light control for motorized traffic and
neglected non-motorized traffic. Only a few papers include pedestrians in their simulation
or otherwise focus on the non-motorized perspective rather than motorized traffic. In [Yin
and Menendez, 2019] they include pedestrians, using ADP instead of deep reinforcement
learning, and find that their approach outperforms a fixed-time strategy and a longest-
queue-first strategy for average vehicle wait time, but fails to outperform longest-queue-first
for average pedestrian wait time. [Xie et al., 2014] uses schedule-driven traffic control in
an attempt to balance the wait times of pedestrians and vehicles in a weighted manner
and achieves a weighted wait time significantly lower than that of a fixed-time strategy.

When including pedestrians in the reinforcement learning algorithm, the objective function
becomes conflicted, as vehicles are now halted by crossing pedestrians. If we prioritize
vehicles, we force the pedestrians to wait. Conversely, giving the pedestrians priority
results in a longer waiting time for vehicles. Hence, including pedestrians introduces a
new aspect to consider when defining how to reward the RL algorithm.

1

Go to ToC

While some work has been done to include pedestrians, it is not using recent reinforcement
learning techniques, such as DDDQNs. To the best of our knowledge, no paper has included
both pedestrians and DDDQNs with PER. It is not unrealistic to think that the optimal
policy obtained in an environment without pedestrians is not necessarily the optimal policy
when pedestrians are present, since pedestrians may block cars from turning. Hence, in this
thesis we examine how (if) the optimal policy changes when accounting for pedestrians,
and examine if the DDDQN with PER approach still outperforms other methods such
as the fixed-time method. If the policy changes significantly, it is a clear indication that
pedestrians should be included in the simulation when training the agent. Otherwise,
traffic light control may be suboptimal and vehicle throughput is likely lower than expected,
possibly causing congestions.

We choose to focus on the impact of considering pedestrians in an isolated intersection
during rush hour. While most intersections are part of a traffic network with multiple
adjacent intersections, we argue that, if pedestrians impact the policy of an isolated
intersection, they are also likely to impact an intersection that is part of a larger network.
For this reason, and due to time limitations, we choose to focus on the isolated intersection
case. Furthermore, we focus on rush hour, as it is during rush hour that the largest
congestions occur, and therefore the rush hour situation is the most interesting case to
study.

1.1 Problem Formulation
How does the behavior of a dueling double deep Q-network reinforcement learning
algorithm with prioritized experience replay change when including pedestrians in an
isolated intersection traffic light control problem during rush hour, compared to excluding
pedestrians? And is it still able to outperform simple traffic light control strategies when
including pedestrians in the traffic simulation?

2

Go to ToC

2

Reinforcement Learning

Before we introduce our implementation of the DDDQN, we briefly go over the necessary
theory.

The reinforcement learning approach is based on how many scientists believe humans learn:
by interacting with an environment and observing how our actions affect the state of the
environment, cf. [Sutton and Barto, 2015, Chapter 1]. For example, consider a young
child playing with a sorting box, in which blocks with a certain shape has to go through
matching holes in the box. While the child has no explicit teacher, he eventually learns
what blocks go through which hole by interacting with the blocks and the sorting box. The
idea in reinforcement learning is much the same; an agent interacts with the environment
and learns by evaluating how good that interaction was. In order to evaluate its action,
the agent receives a numerical reward based on how its action affected the environment.
In the context of the sorting box scenario, the reward could be 1 when a block matches
the hole and 0 otherwise. The learning process can be described as a loop:

• The agent observes state st ∈ S from the environment.

• Based on state st the agent takes an action at ∈ A.

• The action at causes the environment to transition to a new state, st+1 ∈ S.

• The agent receives reward rt from the environment.

S is the state space and A is the action space. The goal of the agent is then to maximize
the cumulative reward it receives. The cumulative reward at step t is given by:

Rt = rt + γrt+1 + γ2rt+2 + . . .

=

∞∑
k=0

γkrt+k,
(2.1)

where γ is the discount factor that determines the present value of future rewards.

The described learning process and cumulative reward are used in the DDDQN. At its
core, DDDQN is a Q-learning algorithm, but with extensions to either adapt to a more
complex setting or improve performance.

2.1 Deep Q-learning
Q-learning, proposed by [Watkins and Dayan, 1992], is a model-free reinforcement learning
algorithm. In its first version, what is referred to as tabular Q-learning, it was used to
efficiently solve a Markov Decision Process (MDP).

The goal is to determine the best action to take, such that the cumulative reward, given
by (2.1), is maximized. To measure the value of an action, we use the Q-function. The

3

Go to ToC

function takes state and action as input, and returns the expected cumulative reward of
all future rewards given that the agent is in that state and takes that action:

Q(st, at) = E[Rt|st, at].

For each possible action at a given state, we calculate the Q-value using the Q-function
and choose the action with the highest Q-value.

However, in the case of a large or infinite state space or action space, tabular Q-learning
is infeasible as it then would be impossible to learn the value of each state-action pair. To
overcome this issue, deep Q-learning networks (DQN) were introduced. In DQN, a neural
network is used to approximate the Q-value function. The current state is given as input,
and the Q-values of all possible actions in that state are returned as the output. In DQN,
we update the weights, θ, of the neural network, such that the difference between the
current estimate of the Q-value and the real Q-value is reduced. However, we do not know
the real Q-value, and thus need to estimate it, which we do using the following equation:

yt = r(st, at) + γmax
a

Q(st+1, a; θt).

That is, the reward of the chosen action in our current state plus the discounted best Q-
value of the next state. We refer to this value as the Q-target, and the difference between
the current estimate of the Q-value and the Q-target is referred to as the temporal difference
error (TD error):

δt = yt −Q(st, at; θt).

The weights of the neural network are then updated using the TD error in combination with
a gradient descent method and a learning rate. Some popular gradient descent methods
include stochastic gradient decent and ADAM.

2.1.1 Double Deep Q-learning
At the beginning of training, we do not have much information about the best action
to take. Therefore, taking the maximum Q-value as the best action can lead to an
overestimation of a non-optimal action. To handle this problem, double DQN was
introduced by [van Hasselt et al., 2015]. When calculating the Q-target, we now use two
networks; one network, denoted the primary network, is used to choose the best action
to take for the next state, while a second network, called the target network, is used to
calculate the Q-value of taking that action. Thus, the Q-target is now calculated in the
following way:

yt = r(st, at) + γQ(st+1, argmax
a

Q(st, a; θ
P
t); θ

T
t)

where θPt are the weights of the primary network and θTt are the weights of the target
network at step t. The weights of the target network are generally updated using one of
two approaches: Either the target weights are set to be equal to the primary weights after
k steps, or the target weights are updated each step using the following equation:

θTt = (1− τ)θTt−1 + τθPt , (2.2)

4

Go to ToCChapter 2: Reinforcement Learning

where τ , 0 < τ < 1, is a hyperparameter.

2.1.2 Dueling Deep Q-learning
Dueling DQN, [Wang et al., 2015], introduces a new architecture of the DQN that
accelerates learning and results in better performance. Intuitively, the value of Q(s, a)

reflects how good it is to be in state s and take action a at that state. We can decompose
the Q-value into the sum of:

• V (s): The value of being at state s

• A(s, a): The advantage of taking action a at state s, that is, how much better it is
to take action a than any other possible action.

The idea in dueling DQN is to separately estimate these two values in the neural network
and in the end combine them to calculate the Q-values. Thus, we now have a stream that
estimates the state value, V (s), and a stream that estimates the advantage of each action,
A(s, a). These two streams pass through an aggregation layer to get an estimate of Q(s, a).
By splitting the estimation of Q(s, a) up into two streams we can learn which states are
valuable, without having to learn the effect each action has at each state.

The Architecture of a Dueling Deep Q-Network
In Figure 2.1 we illustrate the architecture of a dueling DQN. First, the inputs are passed
through 1 or more dense (fully connected) layers. The network is then split into the value
and advantage streams. The streams are then combined in the aggregation layer to obtain
the Q-values of each state-action pair using the following equation:

Q(s, a) = V (s) +A(s, a)− 1

n

n∑
i

A(s, ai),

where n is the number of actions.

Input Dense

Value
dense

V(s)

Adv
dense

A(s,a1)

A(s,a2)

A(s,an)

Aggregation

Q(s,a1)

Q(s,a2)

Q(s,an)

Figure 2.1: The architecture of a dueling deep Q-network.

2.2 Prioritized Experience Replay
In decision-making under uncertainty, such as reinforcement learning, consecutively
sampled data points (st, at, rt, st+1) are heavily correlated, and not independently and

5

Go to ToC

identically distributed as we often assume in traditional machine learning. That is, (st, at)
heavily influences (st+1, at+1). This correlation worsens the convergence and results in
slower learning [Pol, 2016, p. 10]. To break this correlation and improve the learning, we
use experience replay, first introduced by [Lin, 1992]. In experience replay we store past
experiences in a replay memory in the form of experience tuples (st, at, rt, st+1). Instead of
using the most recent experience to update the network, the agent now samples a batch of
experiences from the memory. In addition to breaking the correlation, this sampling also,
in theory, lets the agent learn from the same experience multiple times. However, using
experience replay means more hyperparameters must be estimated, specifically the size of
the replay memory and the batch size.

Instead of sampling uniformly from the replay memory as is done in regular experience
replay, prioritized experience replay (PER), proposed by [Schaul et al., 2015], samples
experiences from the replay memory based on their TD error. The idea is that the
experiences with a high TD error are the experiences the agent can learn the most from.
By sampling the experiences with high TD errors more frequently, our agent is able to learn
more efficiently. However, instead of using a greedy approach, in which we always sample
the experiences with the highest TD errors, we use proportional prioritization. First, we
convert the TD error into a priority:

pt = (|δt|+ ε)α , (2.3)

where ε is a small positive number that ensures no experience has zero priority and α

is a hyperparameter. This priority is then transformed into a probability. For the t-th
experience, the probability is computed as:

P (t) =
pt∑
k pk

.

If α = 1 greedy prioritization is used, while α = 0 results in uniform sampling. In addition
to the experience tuples, we must now also store the priority for each experience in the
memory.

Furthermore, since we are now using prioritized sampling, we introduce bias towards
experiences with high priorities, since they will be selected more often. Hence, if we
update the weights in the neural network normally, we risk overfitting to the experiences
with high priorities. We correct this bias by using importance sampling (IS) weights:

wt =

(
1

N
· 1

P (t)

)β
.

If β = 1, the IS weights fully compensates for the non-uniform probabilities of being
sampled. We then update the network weights by using wtδt instead of δt. In practice, β
often starts at an initial value β0 and linearly increases to 1 as the learning progresses. This
approach is used since correcting the bias in the update of the weights is most important
near convergence, and a small bias in the beginning of the learning can be neglected due
to the non-stationary nature of the process. Lastly, after training on a sampled batch of
experiences, the priorities of the sampled experiences are updated.

6

Go to ToC

3

System Setup and Configuration

In this chapter we describe the dynamics of the simulated intersection, the reinforcement
learning model, and the implementation of the intersection and the reinforcement learning
algorithm.

Note that while some commercial traffic simulation software has the option to include
pedestrians, we choose to make the simulation ourselves as it lets us fully control how the
simulation works.

3.1 Traffic Simulation
We choose to base our simulation on an intersection in Aalborg, Denmark; the intersection
between Hadsundvej and Humlebakken. This intersection has the layout depicted in Figure
3.1.

Figure 3.1: Intersection layout.

We choose a real intersection to make the setting somewhat realistic and choose this specific
intersection as it makes it convenient to gather data and establish a light cycle, as it is
located close to Aalborg University main campus. Furthermore, this intersection is often

7

Go to ToC

highly congested during rush hour, which makes it a fitting location to implement more
efficient traffic light control.

By observing the intersection, we find that the traffic light follows the following cycle:

(L1, L2, L6, L7, C2, C4) → (L1, L5, L6, L10) → (L3, L4, L5, L8, L9, L10, C1, C3).

That is, a phase for the north-south lanes and crosswalks, a phase to clear some of the turn
lanes, and a phase for the east-west lanes and crosswalks. Henceforth we refer to these
phases as phase 1, phase 2, and phase 3, respectively.

Light Dynamics
The pedestrian lights turn red a few seconds before the traffic lights. Between each phase
the light is red for approximately five seconds to clear the intersection. However, when
phase 1 ends, lanes 1 and 6 remain green since they are also green in phase 2.

Furthermore, we do not include yellow light, since the purposes of yellow and red lights
are much the same; to make sure no new object enters the intersection such that the
intersection is clear before the next green light begins. Instead, we combine the two lights
into a slightly longer red light phase for simplicity.

Pedestrian Dynamics
We assume pedestrians at crosswalks 1 and 3 take 7 seconds to cross as these crosswalks are
the shortest and pedestrians at crosswalks 2 and 4 take 9 seconds. For pedestrians crossing
from a side where the exit lane is the closest, we assume pedestrians block vehicles going
to that exit lane for the first 3.5 seconds after they start crossing. Conversely, pedestrians
starting from the other side of the crosswalk is assumed to block the vehicles for the last
3.5 seconds of their crossing. For example, a pedestrian crossing crosswalk 1 from the left
side blocks the exit lane for the first 3.5 seconds of his crossing, while a pedestrian crossing
from the right side blocks the exit lane for the last 3.5 seconds of his crossing.

At some intersections cyclists also have a lane in each direction, located at the right-most
side, allowing cyclists to either go straight forward or turn right. Thus, cyclists is another
element that can halt vehicle throughput. However we do not choose an intersection layout
that includes this aspect, and instead argue that cyclists going straight will dismount the
bicycle and use the crosswalk, acting as a pedestrian and cyclists turning right does not
interfere with the traffic.

Vehicle Dynamics
Since vehicles in lanes 2 and 7 can choose to either drive forward or turn right, we assign a
probability of turning right at these lanes. We have no data to estimate these probabilities,
and simply choose 0.3 as the probability for lane 2 and 0.2 for lane 7.

A vehicle is only able to enter the intersection if it has green light and no other vehicle
from the same lane is in the intersection. While in the intersection, the vehicle checks that
there are no oncoming traffic or pedestrians at the moment, or within the next x seconds,
blocking the exit lane. x corresponds to the required time for the vehicle in question to

8

Go to ToCChapter 3: System Setup and Configuration

reach the exit lane and get clear of the intersection and thus depends on which lane is
considered and the flow of that lane.

Lane Flow
If there is flow in the considered lane, the vehicle is able to cross faster than when the
traffic is stop and go. For example, consider a scenario in which the light for lane 2 turns
green and the first four vehicles in the queue all wants to go straight forward, but the fifth
vehicle wants to turn right. The first vehicle has to accelerate from complete stop at the
stop line, whereas the second vehicle is already in motion when he reaches the stop line.
Hence the second vehicle crosses the intersection slightly faster than the first vehicle. The
same goes for the third and fourth vehicle. However, when the fifth vehicle reaches the
intersection, he may have to brake if there are pedestrians on the crosswalk. In such a
case, the flow is broken since the vehicles have come to a complete stop. A description of
the flow types can be found in Table 3.1.

Flow type When activated

No flow For the first vehicle after green light, and when
a vehicle is blocked by oncoming traffic or pedestrians.

Semi-flow Only relevant for lanes 2 and 7. Activated only when a vehicle
is going straight forward after the most recent vehicle turn right.

Flow

When the vehicle is not the first to cross after a no flow has been
activated and the vehicle is not blocked by oncoming traffic or pedestrians.

Table 3.1: Description of flow types.

We choose to include an option called semi-flow, as we believe the flow of the lane is
decreased when the vehicle in front is turning and the next vehicle is going straight, but
not enough to classify it as no flow.

In Table 3.2, we list the time it takes for a vehicle to cross the intersection depending on
which direction the vehicle is going and what the flow is. In the turning lanes, we assume
vehicles drive into the intersection while waiting for either oncoming traffic or pedestrians
to pass, rather than waiting at the stop line. Hence, no flow has two values in the table,
depending on the situation. Furthermore, the times have slightly different interpretations.
The no flow times reflect how long it takes for the vehicle to exit from its current position
(at the stop line or in the intersection). However, the semi-flow and flow times reflect
the time between the vehicle in front exits the intersection and the current vehicle exits.
These interpretation differences are a result of the implementation choice of having max
one vehicle from each lane in the intersection at all times.

No flow (at stopping line) No flow (in intersection) Semi-flow Flow

Left turn 4 2 - 2
Forward 3 - 2 1

Right turn 3 1 - 1.5

Table 3.2: Time it takes to cross the intersection (in seconds).

9

Go to ToC

3.2 Reinforcement Learning Model
With the traffic simulation designed, we now only need to define the state space, the action
space, and the reward function, in order to implement the RL algorithm.

State Space
In the literature, various different approaches have been used to define the traffic control
probem as a reinforcement learning problem. In [Genders and Razavi, 2016] they define
the state based on the position and speed of the vehicles. They segment the intersection
into a grid, and use a matrix with binary values to store the information. If the grid-section
is occupied by a vehicle, its value is 1, otherwise it is 0. Furthermore, they use a one-hot
vector to indicate which phase is currently active.

Other papers, see [Kwong et al., 2011], use information of the queue lengths in their state
definition as well as a one-hot vector to represent the current phase. While some papers,
e.g. [Liang et al., 2018], argue that this is not sufficient information, we argue that this
approach is more appropriate when considering pedestrians as well. Since pedestrians
are present in our intersection, we would need to segment the intersection into a more
detailed grid than what is usually done in the grid-approach. Normally the intersection is
segmented into a grid such that each grid-section is the size of a vehicle. However, to be
able to distinguish individual pedestrians we would need a much smaller grid-section size,
which would result in a much larger computational cost. Therefore, we choose to define
our state space using the second approach. Thus, the state space is:

S = {QL1 , QL2 , . . . , QL10 , QC1 , . . . , QC4 , p},

where QLi and QCj are the set of possible queue lengths at lane i and crosswalk j,
respectively, and p is the set of possible one-hot vectors that indicate the phase.

Action Space
We choose to have the agent determine the green duration of each phase. Thus, before
each phase begins, a decision is made to determine how long the green period should be
of that phase. To ensure stable learning of the agent, we need to ensure that the agent is
able to explore the entire action space well, before it settles on a policy. This means that
the action space cannot be too large. Therefore, to keep the action space small, we choose
to use increments of 5 from 15 seconds to 45 seconds. Hence, the action space is:

A = {15, 20, 25, 30, 35, 40, 45}

We choose 15 seconds as the shortest green duration as we deem that making the phases
shorter, or completely skipping them, might result in driver confusion and impatience,
which could lead to reckless driving and accidents.

Reward Function
Intuitively, the agent should be rewarded when the waiting time of all vehicles and
pedestrians is decreased and punished when it is increased. Hence, we base our reward

10

Go to ToCChapter 3: System Setup and Configuration

function on the reward function from [Liang et al., 2018], in which they define it as the
increment in cumulative waiting time between two actions:

rt =Wt −Wt+1,

where Wt is the cumulative waiting time of all vehicles and pedestrians in every
lane/crosswalk till phase t. We calculate Wt in the following way:

Wt =

Nt∑
i=1

wi,t

where Nt is the total number of vehicles and pedestrians till the t-th phase and wi,t denotes
the waiting time of object i till the t-th phase. However, preliminary tests using this
reward function did not show stable learning. Nonetheless, we found that slightly altering
the initial reward function by dividing it by the number of vehicles and pedestrians in
the intersection between two states results in stable learning. Thus, the reward function
becomes:

rt =
Wt −Wt+1

Ht
, (3.1)

where Ht is the number of objects in the intersection at the start of phase t plus the
number of objects arriving during phase t.

Note, the objective function of vehicles and pedestrians are conflicting which means that
giving vehicles priority results in longer waiting time for pedestrians, and vice versa. One
could argue that, because vehicles often carries more than one person, the agent should be
rewarded more for getting a vehicle through the intersection than for getting a pedestrian
through. However, in this thesis we choose to treat vehicles and pedestrians as equals, and
therefore the reward function puts no priority on vehicles nor pedestrians.

3.3 Reinforcement Learning Implementation
In Algorithm 1 our implementation of the intersection dynamic is outlined in the form of
pseudo-code. We implement it as a class with two functions: Reset and Step. The Reset
function is used to reset the environment and generate the vehicles and pedestrians. The
Step function is used to “take one step” in the simulation, that is, execute all the events
of the current phase. The Step function takes action as an input, which determines the
green light duration of the phase.

As stated in the introduction, our RL algortihm uses a DDDQN with PER. We outline this
RL algorithm as a pseudo-code in Algorithm 2. Before a simulation, henceforth referred
to as an episode, begins, we reset the environment. While the memory has not reached its
maximum capacity, the agent takes random actions, and the Q-networks are not updated.
Once the memory has been filled, the learning process begins.

When choosing an action, the agent can either take a random action, thus choosing to
explore, or take the action with the highest Q-value, exploiting what it currently knows.
It is common to have the agent explore at the beginning of the learning process, but
gradually make it exploit more, as it becomes more certain of the Q-value estimates. In

11

Go to ToC

Algorithm 1: Intersection environment
1 Class Intersection
2 Initialize:
3 Create the 10 lanes and 4 crosswalks of the intersection
4 Procedure Reset (activates just before an episode begins)
5 Create an event queue to hold events. Initially empty
6 Generate arrival times for vehicles and pedestrians at each lane and crosswalk

for the simulation duration
7 Add arrivals to the event queue
8 Empty all lanes of vehicles and all crosswalks of pedestrians
9 As the first event, queue a green light event for phase 1

10 End procedure Reset
11 Procedure Step (activates whenever an action is taken):
12 Input: Action
13 Green light is activated for the lanes and crosswalks of the current phase,

duration of green light depends on action taken
14 while Not end of phase do
15 Complete next event in event queue
16 Check if end of phase
17 end
18 As the next event, queue a green light event for the next phase
19 End Procedure Step
20 End Class Intersection

our implementation we use the ε-greedy algorithm to determine when to explore and when
to exploit. Initially the exploration rate, ε, is 1 which means that it has a probability of
1 of exploring. As the learning progresses, the exploration rate linearly decays towards a
predetermined minimum value.

After interacting with the environment, the networks of the agent are trained on a batch
of experiences, sampled using PER. The weights of the primary network are updated using
ADAM as the gradient descent method, while the target network weights are updated using
(2.2). ADAM, proposed by [Kingma and Ba, 2014], is an algorithm for efficient gradient-
based optimization that only requires the first-order gradients. The first-order gradients
are used to compute estimates of the first and second moment of the gradients, which are
then used to update the parameters. It is well suited for optimization in high-dimensional
parameter spaces, such as in deep neural networks. It is one of the recommended algorithms
for gradient-based optimization in the literature, according to [Ruder, 2016].

After training, the priorities of the experiences used to train on are updated in the memory,
and the oldest experience in the memory is then replaced with the new experience. Lastly,
the exploration rate is decayed towards its minimum and the bias correction parameter in
PER is increased towards its maximum.

12

Go to ToCChapter 3: System Setup and Configuration

Algorithm 2: Learning Algorithm
1 Initialize Q-networks with random weights, θP and θT

2 Initialize intersection environment
3 Create empty prioritized experience replay memory of size M
4 for i = 0; i < number of episodes; i++ do
5 t = 0
6 Reset environment
7 while Not end of episode do
8 if experiences in memory < M then
9 Interact with environment:

10 Observe state st
11 Take random action at
12 Receive reward rt
13 Observe new state st+1

14 Define experience priority as absolute value of reward; pt := |rt|
15 Add the experience tuple and priority (st, at, rt, st+1, pt) to the memory
16 end
17 else
18 Interact with environment:
19 Observe state st
20 With probability ε:
21 Take random action at
22 Otherwise:
23 Take greedy action; at = argmaxaQ(st, a; θ

P
t)

24 Receive reward rt
25 Observe new state st+1

26 Train and update networks:
27 Using PER, sample a batch of experiences from memory
28 Calculate new priority for each experience in batch using (2.3)
29 Update the priorities of each experience in batch in the memory
30 Update θP using ADAM
31 Update θT using (2.2)
32 Calculate priority of the new experience using (2.3) and the newly updated

networks
33 Replace the oldest experience in the memory with the new experience
34 Decay ε linearly if ε has not yet reached its minimum
35 Increase β linearly if β has not yet reached its maximum
36 end
37 t = t + 1
38 Check if end of episode
39 end
40 end

13

Go to ToC

Go to ToC

4

Experiments with Pedestrians

In this chapter we put our DDDQN algorithm to use. First we make a preliminary
experiment set in a simple scenario, to determine appropriate values of the algorithm’s
hyperparameters such that the algorithm learns well. In this simple setting we are able to
evaluate whether the policy that our agent finds is good, whereas in a more realistic setting
it would be more difficult to determine. After ensuring that the agent learns well, we test
it in a more realistic scenario, and compares its performance to two simple strategies.

4.1 Preliminary Experiment
In this setting, we assume that only lanes 2 and 7 are open as well as crosswalks 2 and 4,
and that all other lanes and crosswalks are closed. Hence, there are only vehicles arriving
in lanes 2 and 7, and there are only pedestrians arriving at crosswalks 2 and 4. We use
independent exponential distributions with the parameters listed in Table 4.1 to generate
the interarrival times of the vehicles and pedestrians.

λL2 λL7 λC2 λC4

1

5

1

5

1

90

1

90

Table 4.1: Interarrival parameters.

Since only lanes 2 and 7 and crosswalks 2 and 4 are open, the vehicles and pedestrians
can only leave the intersection in phase 1. Thus, the agent should learn to pass through
phases 2 and 3 as fast as possible and often choose a long green light duration for phase 1.

Through testing, we find that the parameter values listed in Table 4.2 yield fast and steady
learning. Thus, we train the agent using these parameter values. Initially, the exploration
rate, ε, is set to 1, which means that the algorithm always takes a random action. Once
the memory is filled, the exploration rate linearly decreases, with ε = 0.01 as it minimum.

The DDDQN we use has the architecture that was illustrated in Figure 2.1, except our
network has two initial hidden layers instead of just one. Moreover, the activation function
used in each hidden layer is the rectifier (ReLU). We use the rectifier as it provides faster
and better learning in deep networks than other activation functions (such as sigmoids and
tanh) [Goodfellow et al., 2016, p 226]. To make sure the agent is learning well, we examine
the average reward and loss per episode. The average reward of the i-th episode with ni
steps is:

ri =
1

ni

ni∑
t=1

rt,

where rt is defined as in (3.1).

15

Go to ToC

Parameter Value

Memory size, M 500,000
Number of episodes 15,000
Duration of an episode 1 hour
Learning rate 0.0001
Batch size 32
Exploration rate, ε 1→ 0.01
Discount factor, γ 0.95
Update parameter for target network weights , τ 0.08
Priority parameter of PER, α 0.6
Bias correction parameter of PER, β 0.4→ 1
Steps until ε reaches its minimum and β reaches its maximum 000 350,000
Number of neurons in each hidden layer of the network 50

Table 4.2: Various parameter values of the simple experiment.

Furthermore, the average loss of the i-th episode is defined as

li =
1

ni

ni∑
t=1

δt,

where δt is the average TD error of the sampled batch in the t-th step. Hence, the average
loss per episode is a measure of how close the estimated Q-values are to the Q-target values
on average during the episode.

The average reward and average loss for each episode can be seen in Figure 4.1. While
we simulate 15,000 episodes, roughly the first 5,000 episodes are spent filling the memory
using random actions, and are not used to train the networks, as described in Algorithm
2. Hence, we only plot the average reward and loss after training begins. Looking at the
average reward, the agent seems to learn well during the exploration phase as the reward
steadily increases. When the exploration rate hits its minimum, the average reward is
stable throughout the rest of the experiment. Additionally, the average loss quickly drops to
a fairly low value and then very slowly keeps decreasing as the exploration rate approaches
its minimum.

The fact that the reward stabilizes is a good sign, since it means that the agent has
determined a policy. However, from the reward alone we cannot tell whether it is a good
policy, since we are unable to determine what a “good” reward looks like. Instead, we
examine the actions of the agent during the exploitation phase. In Figure 4.2, we plot all
the actions of the agent in the episodes after the exploration rate has reached its minimum.
From the plot we see mostly what we expected. For phases 2 and 3 the agent picks the
shortest green light duration possible almost always and rarely picks any other duration.
In the situations when the agents does pick a different duration, it is likely due to the
fact that the minimum value of the exploration rate is 0.01, which means that 1% of the
time the agent picks randomly. Looking at the data, this speculation is supported by the
fact that the number of actions made during phases 2 and 3 that are not the shortest
duration, correspond to 0.56% of all actions. For phase 1, the agent seems to heavily favor
the longest duration possible. However, it also picks shorter durations more often than

16

Go to ToCChapter 4: Experiments with Pedestrians

Exploration rate hits minimum

−30

−25

−20

−15

−10

0 2500 5000 7500 10000
Episode

A
ve

ra
ge

 r
ew

ar
d

(a) Reward function

Exploration rate hits minimum

0

50

100

150

0 2500 5000 7500 10000
Episode

A
ve

ra
ge

 lo
ss

(b) Loss function

Figure 4.1: Average reward and loss.

what is explainable by the exploration rate being 0.01. Nonetheless, if there are only a few
vehicles in queue when the simulation enters phase 1, picking the longest duration possible
may be unnecessary, as less time may be enough to empty the queue.

0

100,000

200,000

15 20 25 30 35 40 45
Action

C
ou

nt

Phase

1

2

3

Figure 4.2: Actions taken for the three phases for all episodes after exploration rate reaches
its minimum.

In conclusion, the agent seems to learn well, as it is able to determine an appropriate
policy. Hence, we move on to a more realistic scenario, in which all lanes and crosswalks
are open.

17

Go to ToC

4.2 Main Experiment
In this experiment we generate the interarrival times of vehicles and pedestrians using the
exponential parameters listed in Table 4.3.

λL1 λL2 λL3 λL4 λL5 λL6 λL7 λL8 λL9 λL10 λC1 λC2 λC3 λC4

1

10

1

10

1

16

1

15

1

13

1

12

1

13

1

18

1

15

1

14

1

35

1

27

1

35

1

27

Table 4.3: Interarrival parameters for the vehicle lanes.

We have no data to base these parameters on, so keep in mind that these values are just
our best guesses of interarrival rates during rush hour. We only change the interarrival
parameters; all other parameters are the same as in the preliminary experiment, see Table
4.2. The network architecture also stays the same. In Figure 4.3 we plot the average
reward and average loss of each episode. Again, the agent seems to learn well during the
exploration phase, as the average reward steadily increases until the exploration rate hits
its minimum. After this point, the average reward stays stable throughout the remainder
of the experiment, albeit more volatile than in the preliminary experiment. This, however,
is expected as the flow of the traffic is more likely to be broken by other objects since all
lanes and crosswalks are open. Furthermore, the average loss decays gradually until the
exploration rate hits its minimum. Hence, both the average reward and the average loss
behaves as well.

Exploration rate hits minimum−20

−15

0 2500 5000 7500 10000
Episode

A
ve

ra
ge

 r
ew

ar
d

(a) Reward function

Exploration rate hits minimum

0

10

20

30

0 2500 5000 7500 10000
Episode

A
ve

ra
ge

 lo
ss

(b) Loss function

Figure 4.3: Average reward and loss.

As for the preliminary experiment, we plot which actions are taken in the 3 phases, to see
if any obvious pattern is present, see Figure 4.4. From the figure, it is apparent that the
shortest green duration is chosen the majority of the time for phases 1 and 2. However, in
phase 3, although the shortest green duration is chosen the most, the longer durations are
also chosen. The behavior in phases 1 and 2 might indicate that vehicles and pedestrians
do not arrive often enough to justify longer green light durations, in which case it may
make sense to allow even shorter green light durations, or entirely skip phases. However,

18

Go to ToCChapter 4: Experiments with Pedestrians

0

100,000

200,000

300,000

15 20 25 30 35 40 45
Action

C
ou

nt

Phase

1

2

3

Figure 4.4: Actions taken for the three phases for all episodes after exploration rate reaches
its minimum.

as mentioned earlier, more frequent light changes and no obvious light cycle may increase
the chances of an accident occurring, hence we choose not to incorporate these changes.

4.3 Testing Against Benchmarks
In this section we compare the performance of the reinforcement learning algorithm to a
fixed-time strategy and a heuristic strategy based on the idea of a police officer directing
the traffic. We choose to compare the reinforcement learning algorithm to these strategies,
as they are simple to implement and still used in practice.

Fixed-time Strategy
In the fixed-time control strategy, we fix the green duration in phases 1 and 3 to 30 seconds,
and to 15 seconds in phase 2. We choose a different fixed time for phase 2 because phase 2
can be considered as a sort of "transition phase", since it consists of two lanes from phase
1 and two lanes from phase 3. Hence, the total green duration of e.g. lane 1 is the duration
of phase 1 plus the duration of phase 2, and as such we deem that the duration of phase
2 does not need to be as long as phases 1 and 3.

Heuristic Strategy
In the police officer strategy, we construct a heuristic that only uses phases 1 and 3, as
a police officer is unable to signal phase 2. As for the other strategies, we only allow the

19

Go to ToC

heuristic to choose green durations between 15 and 45 seconds with increments of 5. The
heuristic uses the following inequality to determine if it should change the phase:

voff + poff ≥ von + pon + c,

where voff and poff are the number of vehicles and pedestrians in the inactive phase,
respectively, and von and pon are the number of vehicles and pedestrians in the active phase.
Furthermore c is a constant that controls how big the difference between the number of
vehicles and pedestrians in the inactive and active phase should be before switching.

When a new phase begins, the heuristic waits for 15 seconds to pass, and then checks the
inequality every 5 seconds. When the inequality is satisfied, or when the current phase
has been active for 45 seconds, all lanes and crosswalks immediately get red light. The
heuristic also changes the phase if there are no vehicles or pedestrians in the active phase
while there are vehicles or pedestrians in the inactive phase waiting for green light. When
the light turns red, the heuristic waits for all objects to leave the intersection, and the next
phase begins.

Comparing the Strategies
To compare the three strategies, we simulate 1000 episodes using the same interarrival
parameters as in Section 4.2 and run the strategies on these episodes. Note, for the DDDQN
strategy, we do not train the network on these episodes. Instead, we simply use the already
trained network to determine which action to take at each step. In Figure 4.5, we plot the
average wait time per episode of the first 100 episodes for all three strategies. Furthermore,
we also include the overall average wait time of all 1000 episodes for each strategy. We only
plot 100 episodes as plotting more episodes makes it difficult to distinguish the strategies.
In Appendix A, a plot of all 1000 episodes can be found.

From the figure, we observe that the DDDQN strategy obtains the lowest overall average
wait time; 11.06% lower than the fixed-time strategy and 13.05% lower than the heuristic.
We also observe that the DDDQN strategy appears to be more stable, as it has notably
less fluctuation in the average wait time per episode than the other two strategies.

In Figure 4.6, we compare the three strategies in terms of the average vehicle wait time,
average pedestrian wait time, and overall average wait time. The vehicle wait time follows
the same pattern as the overall average wait time. However, the heuristic has a significantly
lower average pedestrian wait time than the DDDQN and fixed-time strategies. Since
pedestrians are unable to cross in phase 2, and the heuristic strategy only contains phases
1 and 3, it makes sense that the average pedestrian wait time is lower in this strategy
than in strategies that also contains phase 2. Furthermore, this considerable difference in
the average pedestrian wait time may indicate that it would make sense to allow other
strategies to shorten phase 2, or possibly completely skip it.

20

Go to ToCChapter 4: Experiments with Pedestrians

30

40

50

0 25 50 75 100
Episode

A
ve

ra
ge

 w
ai

t t
im

e

DDDQN

Fixed−time

Heuristic

Figure 4.5: Comparison of the three strategies. The horizontal lines represent the overall
average wait time of the same-colored strategy.

33.39
30.88

27.12

20.95

30.71
29.33

31.5630.86

27.44

0

10

20

30

Vehicles Pedestrians Total

A
ve

ra
ge

 w
ai

t t
im

e

DDDQN

Fixed−time

Heuristic

Figure 4.6: Average vehicle wait time, average pedestrian wait time, and overall average
wait time of the three strategies.

21

Go to ToC

Go to ToC

5

Impact of Excluding Pedestrians

In Chapter 4, we saw that the DDDQN algorithm learned well and was able to outperform
the fixed-time strategy and the heuristic. In this chapter, we examine the impact of not
including pedestrians during training. To this end, we first train a new DDDQN in a
simulation environment where pedestrians do not arrive. We then test this DDDQN in an
environment where pedestrians do arrive and compare it to the DDDQN from Section 4.2
that is trained with pedestrians.

5.1 Experiment Without Pedestrians

To train the DDDQN, we use the same parameters and network architecture as in Section
4.2. A plot of the average reward and loss, can be found in Figure 5.1. The average
rewards seem less volatile and stabilizes at a higher value, compared to the experiment
with pedestrians. The higher average reward is expected as pedestrians no longer halt the
vehicles nor impact the reward function. Furthermore, without pedestrians the simulation
has less randomness, which may cause the decrease in volatility. Looking at the average
loss there is no notable change.

Exploration rate hits minimum

−18

−15

−12

0 2500 5000 7500 10000
Episode

A
ve

ra
ge

 r
ew

ar
d

(a) Reward function

Exploration rate hits minimum

0

10

20

30

0 2500 5000 7500 10000
Episode

A
ve

ra
ge

 lo
ss

(b) Loss function

Figure 5.1: Average reward and loss.

The actions of the agent for each phase can be seen in Figure 5.2. The overall pattern is
similar to that of the experiment with pedestrians in Section 4.2, however the shorter green
durations are now even more favored. This change makes sense as there are no pedestrians
arriving, and therefore the vehicles does not spend time waiting for the pedestrians to
cross. As a result, shorter green light duration is enough to empty the queues.

23

Go to ToC

0

100,000

200,000

300,000

400,000

15 20 25 30 35 40 45
Action

C
ou

nt

Phase

1

2

3

Figure 5.2: Actions taken for the three phases for all episodes after exploration rate reaches
its minimum.

5.2 Comparing Dueling Double Deep Q-Networks
To get a better understanding of the importance of including pedestrians in the training,
we compare the performance of the DDDQN model trained with pedestrians (the DDDQN
from Section 4.2), and the DDDQN model trained without pedestrians (the DDDQN from
Section 5.1). To this end, we simulate 1000 episodes with the same interarrival parameters
as in Section 4.2 and compare the performance of the DDDQNs on these episodes. In
Figure 5.3, we plot the average wait time per episode of both DDDQNs for the first 100
episodes, as well as the overall average wait time of all 1000 episodes for both DDDQNs.
In Appendix A, a plot of all 1000 episodes can be found. From the figures we find that
the DDDQN trained with pedestrians has the lowest overall average wait time; in fact it
is 1.90% lower than that of the DDDQN trained without pedestrians. Thus, including
pedestrians in the simulation when training the DDDQN results in a slightly lower average
wait time of vehicles and pedestrians.

We also compare the actions of the two DDDQNs to examine how they behave in more
details, see Figure 5.4. From the figure we see that the actions of the two DDDQNs are
fairly similar for phase 1 and 2. However, for phase 3 their actions differ quite a bit.

These results imply that traffic control agents trained without considering pedestrians
might perform worse than expected in a real setting where pedestrians can cross
the intersection. However, the argument could be made that because we use the
hyperparameters of the DDDQN with pedestrians to also train the DDDQN without
pedestrians, the DDDQN without pedestrians finds a suboptimal policy. Therefore, proper
tuning of the hyperparameters is highly relevant and more work to obtain better values

24

Go to ToCChapter 5: Impact of Excluding Pedestrians

25

27

29

31

0 25 50 75 100
Episode

A
ve

ra
ge

 w
ai

t t
im

e

With
pedestrians
Without
pedestrians

Figure 5.3: Average wait time of a DDDQN trained with pedestrians and a DDDQN
trained without pedestrians.

of the hyperparameters can be done. However, due to time limitation we are unable to
investigate this further.

As a passing remark, we notice that the actions of the DDDQN trained with pedestrians in
Figure 5.4 differ from the actions of the same network during training in Figure 4.4. Despite
our best efforts, we are unable to determine the cause of this difference, but we suspect that
it is because that, even though the exploration rate has reached its minimum, the agent
in Figure 4.4 still explores 1% of the time. Choosing random actions can sometimes lead
the agent into situations where it has to choose suboptimal actions to recover, compared
to when it is allowed to choose the best action all the time.

25

Go to ToC

Pedestrians No pedestrians

15 20 25 30 35 40 45 15 20 25 30 35 40 45

0

20,000

40,000

Action

C
ou

nt

Phase

1

2

3

Figure 5.4: Actions of the DDDQN trained with pedestrians (left) and trained without
pedestrians (right)

26

Go to ToC

6

Discussion

In this thesis we have made experiments without having any data to help estimate essential
values related to the simulation. These values include the various crossing times of vehicles,
explained in Section 3.1, the walking speed of pedestrians, and interarrival times of vehicles
and pedestrians. Under normal circumstances, we would have been able to gather data by
observing the intersection, however the global pandemic made this a risk-filled endeavor.
Furthermore, since most people have been encouraged to stay home, there is little traffic,
making it impossible to estimate interarrival parameters fitting of rush hour. Thus, we
have instead chosen these values using our best guess, and as such, the results and policies
found in this thesis may be different if the proposed framework is applied on actual data.
However, the main conclusions are likely to stay the same, as we believe more realistic
simulation parameters will only shift the numeric results of the algorithms.

DDDQN and PER are relatively new methods to use in traffic control as well as in
general. Hence, there is no formal/common approach to obtaining good values of the
hyperparameters, such as the size of the memory or the number of and sizes of the hidden
layers. We have relied on the parameter values of other practitioners in the field that
obtain good results, and used their parameter values as starting values. We have then
used trial and error to obtain parameter values that yield good results in our problem
setting. As research in the field continues, more general ways of determining fitting values
may be found, which might result in better performance.

As layout of the intersection, we chose a specific intersection located in Aalborg. The layout
is somewhat unique and generalizing our results and policies is therefore problematic,
compared to if a more generic layout had been used. However, we chose a local intersection
as it would have made data gathering possible under normal circumstances.

27

Go to ToC

Go to ToC

7

Conclusion

In this thesis, we investigated how the behavior of a dueling double deep Q-network
reinforcement learning algorithm with prioritized experience replay changes when including
pedestrians in an isolated intersection traffic light control problem during rush hour,
compared to excluding pedestrians. We also examined whether our reinforcement learning
algorithm is able to outperform simpler traffic light control algorithms. To this end, we
created a simulation environment that includes pedestrians, based on a local intersection
in Aalborg, Denmark, and implemented and trained a dueling double deep Q-network used
to determine the green light duration of each traffic phase.

In Section 4.3, we found that the reinforcement learning algorithm was able to outperform
both a fixed-time algorithm and a heuristic based on the idea of a police officer signaling
the traffic, using the average wait time per vehicle/pedestrian as the performance metric.
The reinforcement learning algorithm outperformed the fixed-time algorithm by 11.06%

and the heuristic by 13.05%

In Section 5.1, we trained another dueling double deep Q-network in a simulation
environment where no pedestrians arrives but otherwise with the same parameters. We
compared the actions and performance of this network with the original network that
was trained in a simulation environment where pedestrians did arrive. We found that
the actions of the network trained without pedestrians differs from the actions of the
network trained with pedestrians. By comparing the performance of the two networks in
a simulation environment with pedestrians, see Section 5.2, we found that the network
trained with pedestrians outperformed the network trained without pedestrians by 1.90%

when using the average wait time as performance metric. This result implies that if the
reinforcement learning agent is meant to control the traffic light of an intersection in
which pedestrians are able to cross, it should be trained in such an environment, otherwise
suboptimal performance is likely to be obtained.

7.1 Future Research
In this thesis we use the increment in average time spent in the intersection between two
successive states as the reward function. Since the policy found by a reinforcement learning
agent heavily relies on the reward function, investigating other reward functions could lead
to better performance of the agent.

In the reinforcement learning algorithm we use the ε-greedy algorithm to determine
whether to take a random action or let the agent exploit what it has learned. The ε-
greedy algorithm is fairly naive, and investigating how a more sophisticated algorithm,
such as Thompson sampling, would affect the performance of the reinforcement learning
algorithm could be interesting.

Expanding the action space is also a point of interest. Throughout the experiments we
found that the algorithm favors the shortest duration, implying that allowing for even
shorter durations, or completely skipping a phase, could lead to better performance.

29

Go to ToC

Furthermore, the current green light durations are in increments of 5 seconds as we wanted
to keep the action space small to ensure fast and steady learning. However, the algorithm
might be able to handle an action space where the actions are in increments of 1 second
instead, while still being able to learn in a reasonable time.

While some effort has been put into parameter tuning, we believe better parameter values
can still be found. Furthermore, while we have used some of the newer methods in
reinforcement learning, there are still some extensions to the DDDQN that may improve
performance, such as noisy nets [Fortunato et al., 2017], n-step Q-learning [Mnih et al.,
2016], and distributional reinforcement learning [Bellemare et al., 2017].

To update the network weights, we used the ADAM optimizer, because of its speed and
popularity in the deep learning field. However, an extension of ADAM called stochastic
variance reduction for deep Q-learning (SVR-DQN) has recently been proposed by [Zhao
et al., 2019]. This method incorporates techniques from the stochastic variance reduced
gradient method and supposedly obtains better results, while still retaining some of
the speed of ADAM. Thus, testing the SVR-DQN in our setting could help improve
performance.

30

Go to ToC

A

Comparison

30

40

50

0 250 500 750 1000
Episode

A
ve

ra
ge

 w
ai

t t
im

e

DDDQN

Fixed−time

Heuristic

Figure A.1: Average time spent in intersection of the DDDQN, the fixed-time strategy and
the heuristic.

24

27

30

33

36

0 250 500 750 1000
Episode

A
ve

ra
ge

 w
ai

t t
im

e

With
pedestrians
Without
pedestrians

Figure A.2: Average time spent in intersection of a DDDQN trained with pedestrians and
a DDDQN trained without pedestrians.

31

Go to ToC

Go to ToC

Bibliography

Abdulhai et al., 2003. Baher Abdulhai, Rob Pringle and Grigoris J. Karakoulas.
Reinforcement Learning for True Adaptive Traffic Signal Control. Journal of
Transportation Engineering, Volume 129 Issue 3 - May 2003, 2003. URL
https://www.researchgate.net/publication/228593853_Reinforcement_
Learning_for_True_Adaptive_Traffic_Signal_Control.

Bellemare et al., 2017. Marc G. Bellemare, Will Dabney and Rémi Munos. A
Distributional Perspective on Reinforcement Learning. CoRR, abs/1707.06887, 2017.
URL http://arxiv.org/abs/1707.06887.

Christidis and Rivas, 2012. Panayotis Christidis and Juan Nicolás Ibáñez Rivas.
Measuring road congestion, European Commission, 2012. URL
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC69961/
congestion%20report%20final.pdf.

Fortunato et al., 2017. Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot,
Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Rémi Munos, Demis Hassabis,
Olivier Pietquin, Charles Blundell and Shane Legg. Noisy Networks for Exploration.
CoRR, abs/1706.10295, 2017. URL http://arxiv.org/abs/1706.10295.

Gao et al., 2017. Juntao Gao, Yulong Shen, Jia Liu, Minoru Ito and Norio Shiratori.
Adaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with
Experience Replay and Target Network, 2017. URL
https://arxiv.org/abs/1705.02755.

Genders and Razavi, 2016. Wade Genders and Saiedeh Razavi. Using a Deep
Reinforcement Learning Agent for Traffic Signal Control, 2016. URL
https://arxiv.org/pdf/1611.01142.pdf.

Goodfellow et al., 2016. Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep
Learning. The MIT Press, 2016. ISBN 0262035618.

Kingma and Ba, 2014. Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization, 2014. URL https://arxiv.org/abs/1412.6980.

Kwong et al., 06 2011. Yit Kwong, Nurmin Bolong, Aroland Kiring, Soo Yang,
Kenneth Tze and Kin Teo. Q-Learning Based Traffic Optimization in Management of
Signal Timing Plan. International Journal of Simulation: Systems, Science and
Technology, 12, 2011. URL
https://www.researchgate.net/publication/264889551_Q-Learning_Based_
Traffic_Optimization_in_Management_of_Signal_Timing_Plan.

LA and Bhatnagar, 2011. P. LA and S. Bhatnagar. Reinforcement Learning With
Function Approximation for Traffic Signal Control. IEEE Transactions on Intelligent
Transportation Systems, 12(2), 412–421, 2011. URL
https://www.researchgate.net/publication/224203001_Reinforcement_
Learning_With_Function_Approximation_for_Traffic_Signal_Control.

33

https://www.researchgate.net/publication/228593853_Reinforcement_Learning_for_True_Adaptive_Traffic_Signal_Control
https://www.researchgate.net/publication/228593853_Reinforcement_Learning_for_True_Adaptive_Traffic_Signal_Control
http://arxiv.org/abs/1707.06887
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC69961/congestion%20report%20final.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC69961/congestion%20report%20final.pdf
http://arxiv.org/abs/1706.10295
https://arxiv.org/abs/1705.02755
https://arxiv.org/pdf/1611.01142.pdf
https://arxiv.org/abs/1412.6980
https://www.researchgate.net/publication/264889551_Q-Learning_Based_Traffic_Optimization_in_Management_of_Signal_Timing_Plan
https://www.researchgate.net/publication/264889551_Q-Learning_Based_Traffic_Optimization_in_Management_of_Signal_Timing_Plan
https://www.researchgate.net/publication/224203001_Reinforcement_Learning_With_Function_Approximation_for_Traffic_Signal_Control
https://www.researchgate.net/publication/224203001_Reinforcement_Learning_With_Function_Approximation_for_Traffic_Signal_Control

Go to ToC

Liang et al., 2018. Xiaoyuan Liang, Xunsheng Du, Guiling Wang and Zhu Han. Deep
Reinforcement Learning for Traffic Light Control in Vehicular Networks. CoRR,
abs/1803.11115, 2018. URL http://arxiv.org/abs/1803.11115.

Lin, 1992. Long-Ji Lin. Self-Improving Reactive Agents Based On Reinforcement
Learning, Planning and Teaching. Machine Learning, 8, 293-321, 1992. URL
https://link.springer.com/content/pdf/10.1007/BF00992699.pdf.

Mannion et al., 05 2016. Patrick Mannion, Jim Duggan and Enda Howley. An
Experimental Review of Reinforcement Learning Algorithms for Adaptive Traffic Signal
Control. pages 47–66, 2016. doi: 10.1007/978-3-319-25808-9_4.

Mnih et al., 2016. Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex
Graves, Tim Harley, Timothy P. Lillicrap, David Silver and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. page 1928–1937, 2016.

Pol, 2016. Elise Van Der Pol. Deep Reinforcement Learning for Coordination in Traffic
Light Control, 2016. URL
http://www.elisevanderpol.nl/papers/vanderpol_mscthesis.pdf.

Ruder, 2016. Sebastian Ruder. An overview of gradient descent optimization
algorithms, 2016. URL https://arxiv.org/abs/1609.04747.

Schaul et al., 2015. Tom Schaul, John Quan, Ioannis Antonoglou and David Silver.
Prioritized Experience Replay, 2015. URL https://arxiv.org/abs/1511.05952.

Sutton and Barto, 2015. Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, 2015.

van Hasselt et al., 2015. Hado van Hasselt, Arthur Guez and David Silver. Deep
Reinforcement Learning with Double Q-learning, 2015. URL
https://arxiv.org/abs/1509.06461.

Wang et al., 2015. Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc
Lanctot and Nando de Freitas. Dueling Network Architectures for Deep Reinforcement
Learning, 2015. URL https://arxiv.org/abs/1511.06581.

Watkins and Dayan, 05 1992. Christopher Watkins and Peter Dayan. Technical Note:
Q-Learning. Machine Learning, 8, 279–292, 1992. doi: 10.1007/BF00992698. URL
https:
//www.researchgate.net/publication/220344150_Technical_Note_Q-Learning.

Xie et al., 2014. X. Xie, S. F. Smith, T. Chen and G. J. Barlow. Real-time traffic
control for sustainable urban living. pages 1863–1868, 2014.

Yin and Menendez, 07 2019. Biao Yin and Monica Menendez. A Reinforcement
Learning Method for Traffic Signal Control at an Isolated Intersection with Pedestrian
Flows. pages 3123–3135, 2019. doi: 10.1061/9780784482292.270.

Zhao et al., 2019. Wei-Ye Zhao, Xi-Ya Guan, Yang Liu, Xiaoming Zhao and Jian Peng.
Stochastic Variance Reduction for Deep Q-learning, 2019. URL
https://arxiv.org/abs/1905.08152.

34

http://arxiv.org/abs/1803.11115
https://link.springer.com/content/pdf/10.1007/BF00992699.pdf
http://www.elisevanderpol.nl/papers/vanderpol_mscthesis.pdf
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
https://www.researchgate.net/publication/220344150_Technical_Note_Q-Learning
https://www.researchgate.net/publication/220344150_Technical_Note_Q-Learning
https://arxiv.org/abs/1905.08152

	Table of contents
	Introduction
	Problem Formulation

	Reinforcement Learning
	Deep Q-learning
	Double Deep Q-learning
	Dueling Deep Q-learning

	Prioritized Experience Replay

	System Setup and Configuration
	Traffic Simulation
	Reinforcement Learning Model
	Reinforcement Learning Implementation

	Experiments with Pedestrians
	Preliminary Experiment
	Main Experiment
	Testing Against Benchmarks

	Impact of Excluding Pedestrians
	Experiment Without Pedestrians
	Comparing Dueling Double Deep Q-Networks

	Discussion
	Conclusion
	Future Research

	Comparison
	Bibliography

