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Abstract:

This project is an extension of the work
presented in [22], where a MPC con-
trol was designed for a water distribu-
tion network. In this project a non-
linear optimal control system is de-
signed for the water distribution net-
work. The three main objectives of
the project are design of nonlinear op-
timal control control, design of con-
sumer demand predictor and stability
analysis the local flow control of the
pumps by PI controller. The water net-
work considered in this project con-
sist of two pumping stations, two con-
sumers and an elevated reservoir. For
optimal control, a control structure is
developed with NMPC as the super-
visory control and a PI controller for
local flow control of the pumps. The
objectives of the NMPC are defined to
be minimizing the operation cost and
pressure variations at the consumer
end. For the prediction of consumer
demand a Kalman filter based predic-
tor is developed, which predicts the
future consumer demands based on
pressure measurements of the elevated
reservoir. The NMPC along with the
predictor is implemented and tested
on a simulated plant model and a labo-
ratory setup, and performance is com-
pared with the results of [22]. For the
stability analysis, first Lyapunov sta-
bility of the delay-free nonlinear model
is analysed and then the stability of
linearized model with delay is anal-
ysed.
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Preface

This report was written by Saruch Satishkumar Rathore, under the guidance of
Carsten Skovmose Kallesøe and Jorge Val Ledesma, as Master’s thesis in 4th semester
of Master’s in Control and Automation at Aalborg university. The project has been
executed in the period February to first week of June 2020. This report will be cen-
tered around the topic of nonlinear optimal control in water distribution network
with an elevated reservoir. This is an extension of the work presented in [22].

Reader’s guide In order to read and understand the report, basic knowledge of
hydraulic networks, state space modelling, estimators and predictive control is a
prerequisite. Throughout the report, reference to sources will be provided. These
sources are available at the end of the report and are written according to the IEEE
standard. A source in the text is referred by the use of [x] with x being a number.
This number indicates which number in the reading list the source has. As a basis,
all sources are given under the format [author, publisher, month and year of use].
If the used source is a book, the title is included; if the source is a website, a URL
is included along with the last date the URL was accessed on. Figures and tables
are numbered in accordance with the chapter in which they appear. For instance,
the first figure in chapter 1 is named figure 1.1. A caption is provided for each
illustration, as well as an explanation. All graphical elements in the report have
been made by the author, otherwise a reference to the source has been assigned to
the label of the figure.
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Chapter 1

Introduction

The chapter first presents the motivation behind the project and then a briefly
describes a typical water distribution network and its components. The chapter
also presents the project description including the objectives of the project and also
previous work in the area of the project. Lastly, outline of the report is presented.

1.1 Motivation

Water is imperative for existence of human life as well as economic growth and
development, but unfortunately it is also scarce natural resource. Global demand
of water is steadily increasing with increase in population and infrastructure de-
velopment[20]. It is also predicted that with the current scenario the world might
face 40% global water deficit by 2030[19]. With these conditions leakages in a water
distribution cannot be afforded. High pressure in the pipelines are one of the major
reason for water leakages in a water distribution network[11]. Therefore, efficient
pressure management is essential in control of a water distribution network. A
network should always have a sufficiently high positive pressure in the pipes such
that consumer flow demands are met, nonetheless it should not be unnecessary
high and thereby cause pipe bursts. So the idea is to maintain a constant sufficient
minimum pressure while maintaining consumer satisfaction.

An efficient water distribution control system is also to be cost effective. Energy
cost can account for up to 80% of water transportation and treatment cost[27]. This
provides a great incentive for the design of a control system to potentially save
on the operational cost of the water distribution network. In Europe, the average
cost of electricity production from fossil fuels is expected to increase in the future,
whereas production from renewable sources is expected to decrease [5]. However,
the supply of electricity from renewable sources is variable and intermittent and
consequently the prices are also variable, also called dynamic pricing. Dynamic
pricing may also include lower prices for consumption in off-peak hours. With
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2 Chapter 1. Introduction

this dynamic pricing model, the control system is expected to operate the pumps
during these low price periods in order to save on the operating cost.

To summarise, the main motivation behind the project is to design a control
system for efficient pressure management and minimization the operational cost
of a water distribution network. Detailed objectives and description of the water
distribution network considered in this project are presented in section 1.3.

1.2 Water distribution network

Water distribution network is a hydraulic network formed of different components
such as pipes, pumps, valves, elevated reservoirs. The purpose of a water distri-
bution network is to transport water from a water production facility to the end
consumers.

Figure 1.1: A typical ring-type water distribution network with two pumping stations, multiple
consumers and an elevated reservoir

Figure 1.1 presents a typical ring-type water distribution network, to be found
in a town with well-planned streets and roads. A water distribution network could
have loops and branches similar to an electrical network. The pipes are the ex-
oskeleton of the water network connecting different components of the network.
Pipes are the elements carrying the water from one point in the network to other.

There are two pumping stations depicted in the figure 1.1. Pumping stations
consist of pumps connected in parallel, supplying water from the water production
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facility to the network with a positive pressure. The rotational speed of the pumps
are controlled to regulate the flow and pressure in the network. Typically a water
distribution network would consist of more than one pumping station, that is to
ensure uninterrupted supply to consumer in case of break downs.

A water distribution network will have some consumers as well. The con-
sumers might be divided into sets or zones. Two set of consumers are depicted in
the figure 1.1. In a water network model consumers can be considered as a end
valves open to atmosphere consuming water from the network. The zoning can be
based on the elevation of the consumer point or how far is the consumer from the
pumping station. With higher elevation the water pressure drops and similarly the
farther the consumer is from the pumping station the pressure drop increases. For
large water distribution network with multiple zones, booster pumps and pres-
sure regulating valve are installed in the network to maintain desired pressure in
different zones, to avoid high pressure to the low ground consumers and insuffi-
cient pressure to the high ground consumers. For a small scale water network the
pressure can be maintained by the means of an elevated reservoir in the network.

In the figure 1.1, an elevated reservoir is also connected to the network. An el-
evated reservoir serve two purposes in a water distribution network, first as men-
tioned before is to maintain pressure in the network and the second is to store
water for emergency usage. When the demand is low and pressure of the network
is higher than the reservoir, the water flows into the reservoir. When the demand
is higher, the water flows from the reservoir to the network. With this the elevated
reservoir absorbs the impact on network pressure due to variation in demand.
Also, a minimum water level is maintained in the reservoir for emergency usage.

1.3 Project description

From the motivation the first objective of the project is derived, and that is to design
an nonlinear optimal control system, for a water distribution network, to minimize
the operational cost and the pressure variation at the consumer node. The input
in a water distribution network are the pumps and electricity cost of running the
pumps is the main component in the operational cost of the network[21]. There-
fore, the designed nonlinear optimal control system controls the operation of the
pumps in the water network.

The water network considered in this project is a grid-type network with an el-
evated reservoir. The nonlinear optimal control system consist a supervisory con-
trol layer with a Nonlinear Model Predictive Control(NMPC). NMPC is designed
based on a simplified water network model which is developed discarding the
pipe dynamic, considering a elevated reservoir is connected to the network. MPC
as a supervisory control has been previously used in [23] for control of refrigera-
tion system. The NMPC aims to exploit the dynamics of the elevated reservoir to
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achieve its objectives. Through the day the electricity prices varies, when the elec-
tricity prices are low the NMPC runs the pumps and fills the reservoir, and when
the prices are high the pumps are stopped and the consumer demands are met by
the reservoir. Similar work in the optimal control of water distribution network is
presented in [14, 2].

This project is an extension of the work in [22], therefore the objective on the
optimal control and the network considered is the same. In [22] the supervisory
optimal control considered is a linear MPC, and in this work a comparison between
the results of the two has also been made. The NMPC is developed on a nonlinear
model of the water network, which is valid globally, whereas the linear MPC is
developed on a linearized model of the water network, which is valid only close to
the operating point.

For the NMPC to make optimal decision on the pump operation, it needs to
consider future prices of electricity and consumer demands. In this work only the
peak and off-peak hour rates are considered, i.e. the electricity prices are consid-
ered to be lower during the night hours compared to day hours, as it would in real
life [15]. Prediction of consumer demands bring out the second objective of this
project, which is to develop a consumer demand predictor. The consumer demand
predictor developed in this project is a Kalman filter based predictor which takes
in the measurement of the reservoir pressure and predicts the future consumer de-
mand. In [22] both the electricity prices and the consumer demand were assumed
to be known.

The NMPC in the supervisory control layer only gives the optimal flow com-
mands for the pumps, a local control layer is implemented to regulate the pump
speed to the control the pump flow at the desired optimal value. The local control
layer consists of a PI controller. In [22], oscillatory behavior of the pump flows
in the laboratory test setup was observed and it was concluded that a potential
reason could be coupling of the local PI controller is the inner(local) closed-loop
system. This provided the motivation for stability analysis in this project. There-
fore, analysing the stability of the inner closed-loop is the third objective of this
project. First Lyapunov stability of the delay-free nonlinear closed loop system is
analysed and then stability of the linearised system, around an equilibrium point,
with delay is analysed. The water network model used for the stability analysis
takes into account the pipe dynamics as well.

The nonlinear optimal controller developed is first tested on a simulated non-
linear network model of the water distribution network. Similar water network is
emulated in a smart water laboratory with different modules for pumping stations,
consumer stations and elevated reservoir. The nonlinear optimal controller is then
test on this laboratory setup.
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1.4 Report outline

The rest of the report is organised as follows:

Chapter 2 presents the water network model based on graph theory. Two types
of model are presented, a simplified model for nonlinear optimal control design
and a detailed model for stability analysis. This chapter also presents the water
distribution network considered in the project.

Chapter 3 presents the overall control structure of the project. It also presents the
idea behind NMPC, and single and multiple shooting methods to convert NMPC
problem to nonlinear programming(NLP) problem. Then the NMPC optimization
problem for the project is presented. Finally, the chapter is concluded with stability
analysis of the inner closed-loop system.

Chapter 4 presents a Kalman filter based consumer demand predictor. The only
available measurement to the predictor is the reservoir pressure measurement, and
based on it the predictor estimates the current consumer demand and predict the
future consumer demand. The chapter also presents an updated control struc-
ture with the predictor output given to the NMPC, for solving the optimization
problem.

Chapter 5 presents the smart water laboratory, its modular structure and differ-
ent modules to emulate different components of a water distribution network. It
also presents the water network setup in the laboratory to emulate the network
considered in the simulation. Then the communication network and the control
implementation in the laboratory is presented.

Chapter 6 first presents the test details and the parameters of the NMPC, the
Kalman filter based predictor and the local PI controller used for simulation and
laboratory tests. Then the results for both the simulation and laboratory tests for
NMPC with the predictor are presented. For comparison test results for an on/off
controller are also presented.

Chapter 7 presents a discussion on the performance of the NMPC and the predictor
for simulation and laboratory test. It also presents a comparison between results of
this work and [22], where a linear model was used for MPC design and the future
consumer demands were assumed to be known. Finally, comments on the stability
of the inner closed-loop system is also presented

Chapter 8 presents the objectives achieved in the work and conclusion of the
project.

Chapter 9 presents the scope of improvement in the project and future work.





Chapter 2

System modelling

In this chapter a mathematical model for the water distribution network is pre-
sented. Foremost, some basic concept of graph theory is presented. Then, models
of different components of a water distribution network are presented from pre-
vious work of [18, 22]. As mentioned in chapter 1, the water network considered
in this project consists an elevated reservoir, for that network two different mod-
els developed using graph theory are presented. The first model is a simplified
model, in which the network components are only pipes and a tank, and also pipe
dynamics have be overlooked. This model is used in the project to developed, im-
plement and test supervisory nonlinear optimal controller. The second model is
a detailed model which includes pipe dynamics and also includes modelling all
the components, including pumps and valves, of the network. This model is used
for stability analysis of the system with a local PI controller. Finally, the water
distribution network considered in this project is also presented.

2.1 Preliminaries: Basics of graph theory

In this section some basic definitions and matrices of graph theory are introduced,
which would be helpful for the readers to understand graph theory as a tool for
modeling of a water distribution network.

Definition 2.1.1 Graphs A graph G = (V, E) consist of a set of vertices or nodes, V =

{v1, .., vn}, and a set of edges, E = {e1, ..., em}, where each edge is associated to a vertex
pair (vi, vj), i, j ∈ {1, ..., n}[6].

Definition 2.1.2 Circuit or Loop Circuit or loop of a graph is a closed trail with distinct
vertices except the end vertices[25].

Definition 2.1.3 Spanning Tree A tree is a connected graph with no loops. A tree T
of a connected graph G = (V, E) is a spanning tree, if it is a sub-graph of a graph, G
containing all the vertices[6].

7



8 Chapter 2. System modelling

Definition 2.1.4 Chord A connected sub-graph is a tree if and only if by adding one edges,
exactly one loop is formed. The loop formed by adding the edges is called a fundamental
loop and the edge is called chord.

Incidence matrix, H, for a graph with n nodes and m edges, is a matrix with n
and m columns and is defined as H = [hij], where the element hij is defined as[25]

hij =


−1, if the jth edge is entering the ith node

0, if jth edge is not connected to the ith node

1, if jth edge is leaving the ith node

(n− 1) rows of the incidence matrix H contains all the information of H and
therefore any one row can be removed[25]. Removed node is refereed as reference
node and the remaining matrix is refereed as reduced incidence matrix, H̄. Re-
duced incidence matrix can be partitioned into reduced incidence matrix for chord
edges, H̄C, and reduced incidence matrix for tree edges as below.

H̄ =
[
H̄C H̄T

]
(2.1)

where,
H̄C is reduced incidence matrix for the chord edges of the graph
H̄T is reduced incidence matrix for the tree edges of the graph

Loop matrix, B = [bij], is a matrix to represent loops in a graph, with rows
equal to number of loops or chords and columns equal to number of edges. The
direction of the loop is defined to be same as the direction of the corresponding
chord and the elements bij are defined as,

bij =



−1, if the jth edge is in the ith loop and it’s direction does not agree
with the loop direction

0, if the jth edge is not in the ith loop

1, if the jth edge is in the ith loop and it’s direction does agree
with the loop direction

Loop matrix, B, can also be partitioned by chord edges and tree edges as below.

B =
[
BC BT

]
(2.2)

And furthermore, from known properties of graph matrices B can be repre-
sented in terms of reduced incidence matrix as[6],

B =
[
I −H̄T

C H̄−T
T

]
(2.3)
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2.2 Component model

A water distribution network is composed of different hydraulic components such
as pipes, pumps, valves and tanks. Developing a mathematical model for the
water distribution network using graph theory, the two terminal components of
the network are represented by edges of the graph and the connection point of the
components are represented by nodes of the graph. In the mathematical model the
two terminal component can be characterised by two variables, the flow through
the component and the differential pressure across the component. Model for kth

two terminal component of the network is given as [22],[
∆pk
qk

]
=

[
pi − pj

qk

]
(2.4)

where,
∆pk is the pressure difference across the kth component [bar]
qk is the flow of water through the kth component [m3/h]
pi, pj is the absolute pressure at the two end of the kth com-

ponent
[bar]

2.2.1 Pipe model

Dynamic model for pipes in the water distribution network, as presented in [18],
is given by,

∆pk = Jk q̇k + λk(qk)− ∆zk (2.5)

where,
∆pk is the drop in pressure across the kth pipe [Pa]
qk is the flow of water through the kth pipe [m3/s]
Jk is the mass inertia of water in the kth pipe [kg/m4]
λk(qk) is the drop in pressure due to friction in the kth pipe [Pa]
∆zk is the drop in pressure due to geodesic level difference

across the terminals of the kth pipe
[Pa]

The diameter of the pipe is assumed to be constant throughout the pipe’s length
and the flow is assumed to be uniform along it’s cross section.

The mass inertia of water in the pipe can be given by [18],

J =
Lρ

A
(2.6)
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where,
L is the pipe length [m]
ρ is the density of the water [kg/m3]
A is the cross sectional area to the pipe [m2]

The pressure drop due to friction in the pipe is due to surface resistance,h f , and
the form resistance,hm. The surface resistance is given by Darcy-Weisbach equation
(2.7) [24].

h f = f
8Lq2

π2gD5 (2.7)

where,
h f is the surface resistance head loss [m]
f is the pipe friction factor [·]
D is the pipe diameter [m]
g is the gravitational acceleration [m/s2]

Considering turbulent flow, the friction factor of the pipe is given by [24],

f = 1.325
[

ln
(

ε

3.7D
+

5.74
R0.9

)]−2

(2.8)

where,
ε average height of roughness projection in the pipe [m]
R is Reynolds number and for turbulent flow (R ≥ 4000) [·]

The form resistance or minor losses can be given by (2.9) [24].

hm = k f
8q2

π2gD4 (2.9)

where,
hm is the form resistance head loss [m]
k f is the coefficient of form loss [·]

The drop in pressure due to geodesic level difference can be given by [22],

∆zk = ρg∆hk (2.10)

where,
∆h is geodesic level difference across the terminals of the

pipe
[m]

Substituting equations (2.6), (2.7), (2.9), (2.10) into (2.5) gives complete pipe
model as,
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∆pk =
Lkρ

Ak
q̇k +

(
f

8Lρ

π2D5 + k f
8ρ

π2D4

)
|qk|qk − ρg∆h (2.11)

Representing the pipe model with flow in [m3/h] and pressure in [bar], the
pipe model is given as[18, 22],

∆pk =
Lkρ

Ak10536002 q̇k +

(
f

8Lρ

π2D510536002 + k f
8ρ

π2D410536002

)
|qk|qk −

ρg∆h
105

(2.12)
In this project the form losses are assumed to be same as the surface resistance,

similar assumptions are made in [22]. Also, the water distribution network consid-
ered includes an elevated reservoir (or tank). The tank dynamics are exceedingly
slow compared to the pipe dynamics and therefore are dominant in the system. In
this project the dynamics of the pipes are only considered in the stability analysis
and not in the supervisory nonlinear optimal control problem. Therefore for the
nonlinear optimal control problem the pipe model is given by,

∆pk = λk(qk)− ∆zk (2.13)

∆pk =

(
f

8Lρ

π2D510536002 + k f
8ρ

π2D410536002

)
|qk|qk −

ρg∆h
105 (2.14)

2.2.2 Valve model

In this project the valves modelled in the network are valves with variable open-
ing degree (OD). The variation in the opening degree regulates the pressure drop
across the valve. As presented in [18] the model for valve can be given as,

∆pk = µk(qk, ODk) =
1

kv(ODk)2 |qk|qk (2.15)

where,
µk(qk, ODk) is a function representing pressure drop in

the kth valve
[bar]

kv(ODk) is the conductive function of the kth valve
ODk is the opening degree of the kth valve ODk ∈ [0, 100]

Assuming a valve with a linear kv function, kv value can be represented in terms
of Kvs, which is value of conductivity function at (OD=100%).

kv(ODk) = Kvs,kODk (2.16)

Substituting linear kv function, eq. (2.16), into valve model, eq. (2.15),
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∆pk = µk(qk, ODk) =
1

(KvsODk)2 |qk|qk (2.17)

2.2.3 Pump model

The pumps considered in this project are centrifugal pumps which deliver a pos-
itive pressure into the water distribution network. The pressure delivered by the
pumps depends on two variables, the rotational speed of the pumps and the flow
through the pumps. The model for the pump, as derived in [12] and also presented
in [18], can be given as,

∆pk = αk(qk, ωk) = −ah2,k|qk|qk + ah1,kqkωk + ah0,kω2
k (2.18)

where,
αk(qk, ωk) is a function representing positive pres-

sure delivered by the kth pump
[bar]

ah2,k, ah1,k, ah0,k are the pump constants of the kth pump
ωk is the rotational speed of the kth pump ωk ∈ [0, 100]

Discarding ah1,kqkωk term also provides a good approximation of the pump
curve, therefore the pump model is reduced to eq. (2.19)

∆pk = αk(qk, ωk) = −ah2,k|qk|qk + ah0,kω2
k (2.19)

2.2.4 General two terminal component model

From all the different two terminal components model in a water distribution net-
work, pipe (2.12), valve (2.17) and pump (2.19), a general two terminal components
model can be given by (2.20).

∆pk = Jk q̇k + λk(qk) + µk(qk, ODk)− αk(qk, ωk)− ∆zk (2.20)

where,

Jk =
Lkρ

Ak10536002 (2.21a)

λk(qk) =

(
f

8Lρ

π2D510536002 + k f
8ρ

π2D410536002

)
|qk|qk (2.21b)

µk(qk, ODk) =
1

(KvsODk)2 |qk|qk (2.21c)

αk(qk, ωk) = −ah2,k|qk|qk + ah0,kω2
k (2.21d)

∆zk =
ρg∆h
105 (2.21e)
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In the general two terminal component model if
kth component is pipe then by default µk = 0 and αk = 0
kth component is valve then by default Jk = 0, λk(qk) = 0, ∆zk = 0 and

αk = 0
kth component is pump then by default Jk = 0, λk(qk) = 0, ∆zk = 0 and

µk = 0

2.2.5 Elevated reservoir model

Elevated reservoir (or tank) is modelled as a node in the graph. The pressure of the
node connected to the tank is the pressure at the bottom of the tank. Model for the
tank, assuming a constant cross sectional of the tank along the height as presented
in [3, 22], can be given as,

ṗi = −τiqi (2.22)

where,
pi is the node pressure where the tank is connected [Pa]
τi is the tank parameter dependent on the cross sectional

area, τi > 0
[Pa/m3]

qi is the flow in or out of the tank, with qi > 0 flow is out
of the tank and qi < 0 flow is into the tank

[m3/s]

The tank parameter,τi, can be given by eq. (2.23)

τi = ρg
1

Aer,i
(2.23)

where,
Aer,i is the cross sectional area to the tank [m2]

The tank model with pressure unit [bar] and flow unit [m3/h] is given by,

ṗi = −
τi

105
qi

3600
(2.24)

2.3 Graph theory based network model

A water distribution network can be represented as a directed graph in which two
terminal components are represented as edges of the graph and the connection
points are represented as nodes of the graph. A water distribution network with m
two terminal components and n connections translates to a connected graph with m
edges and n nodes. Graph theory as a tool can be used to develop a mathematical



14 Chapter 2. System modelling

model for a water distribution network. Graph can be represented in form of
matrices, and because of known properties of graph and matrix algebra, graph
theory makes a convenient tool for modelling water distribution networks. In this
project the water distribution network considered is a open hydraulic network, i.e.
the water can flow in and out of the network from nodes.

Further sections present two models for a water distribution network, both de-
veloped using graph theory. As mentioned before, the first model is the simplified
model and the second model is the detailed model.

2.3.1 Simplified water network model

In this model the network is assumed to be only formed of pipe components. As
a tank is connected to the water distribution network the pressure of the network
would be governed by the tank. With this the pumps and consumer flows are
modelled as independent flow of water in and out of the water network, this can
be imagined to be equivalent to a current source in an electrical network. This
model with assumption of independent flow is befitting for design of supervisory
nonlinear optimal control strategy.

In the graph these independent flows are represented as nodal demands, di, at
the nodes connected to pumps or consumer valves. The flow in and out of the tank
is also represented as a nodal demand. In the case of tank flow the direction of flow
depends on the difference in flow from the pumps and flow to the consumers, if
the flow from the pumps is more then the water flows into the tank and conversely
when the flow to the consumers is more then the water flows out of the tank.

For a water distribution network Kirchhoff’s node law can be given as,

Hq = d (2.25)

where,
H ∈ Rn×m is incidence matrix of the graph
q ∈ Rm is the flow vector in the edges
d ∈ Rn is the vector of of forced flows at the nodes(also called

nodal demands), with di > 0 when flow is into node i
and di < 0 when flow is out of the node

The nodal demands for the nodes connected to consumer will always be nega-
tive, di < 0, and nodal demands for the nodes connected to the pumps will always
be positive, di > 0. The nodal demand at the nodes connected to the tank will be
positive when the flow of water is into the network from the tank and negative
when the flow of water is into the tank from the network.

In a graph with n nodes, there are only (n− 1) independent nodal demands,
this is due to mass conservation of water in the network, i.e. at any given point the
water out of the network must be equal to water into the network.
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dn = −
n−1

∑
i=1

di (2.26)

The mass conservation of water in the network can also be expressed in terms
of the incidence matrix by following lemma [13].

Lemma 1 Let T be a directed tree with the incidence matrix HT and reduced incidence
matrix H̄T (without loss of generality assuming that the last row of HT has been deleted
to obtain H̄T). The reduced incidence matrix is invertible since a tree is a connected graph
with n-1 edges[6]. Then the following holds,

HT H̄−1
T =

[
In−1

−1T

]
(2.27)

where,
1 is a vector of ones
In−1 is an identity matrix of n-1

The vector q ∈ Rm of flows through all the edges in the water distribution
network is characterised by the following lemma [13].

Lemma 2 Let q ∈ Rm be the vector of flows through the edges in a flow network with
underlying graph G and let n be the number of vertices in G. With T denote a particular
spanning tree of G and qc ∈ Rl=m−n+1 the vector of flows through the chords of T with
respect to G. Finally, let H̄T be the reduced incidence matrix of T and d̄ ∈ Rn−1 the vector
of demands out of the non-reference nodes. Then the following is true

q = BTqC +

[
0lxn−1

H̄−1
T

]
d̄ (2.28)

The nodal demands for the nodes other than nodes connected to pump, con-
sumer valves and tank would always be zero. Therefore, the vector of all nodal
demands can be represented in terms of vector for non-zero nodal demands, i.e.
pump nodal demands, dp, consumer nodal demands, dc, and tank nodal demands,
dτ.

d = FT
p dp + FT

c dc + GT
τ dτ (2.29)
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where,
d ∈ Rn n is the total number of nodes in the graph
dp ∈ Rnp np is the number of nodes connected to pumps
dc ∈ Rnc nc is the number of nodes connected to consumers
dτ ∈ Rnτ nτ is the number of nodes connected to tanks
Fp ∈ Rnp×n is a matrix to extract dp from d in the form[

Ip 0 0 0
]

Fc ∈ Rnc×n is a matrix to extract dc from d in the form[
0 Ic 0 0

]
Gτ ∈ Rnτ×n is a matrix to extract dτ from d in the form[

0 0 Iτ 0
]

Furthermore, the vector of non-reference nodal demands can be represented
in terms of vector for non-reference pump nodal demands, d̄p, consumer nodal
demands, d̄c, and tank nodal demands, d̄τ.

d̄ = F̄T
p d̄p + F̄T

c d̄c + ḠT
τ d̄τ (2.30)

where,
F̄p is reduced Fp matrix with the reference node row removed
F̄c is reduced Fc matrix with the reference node row removed
Ḡτ is reduced Gτ matrix with the reference node row removed

Substituting eq. (2.30) into (2.28)

q = BTqC +

[
0lxn−1

H̄−1
T

] [
F̄T

p d̄p + F̄T
c d̄c + ḠT

τ d̄τ
]

(2.31)

The flow vector can be partitioned into flow in chord edges and flow in tree
edges as, [

qC
qT

]
= BTqC +

[
0lxn−1

H̄−1
T

] [
F̄T

p d̄p + F̄T
c d̄c + ḠT

τ d̄τ
]

(2.32)

where,
qC is the flow vector for the chord edges of the graph
qT is the flow vector for the tree edges of the graph

Substituting eq. (2.3) into (2.32)[
qC
qT

]
=

[
I

−H̄−1
T H̄C

]
qC +

[
0lxn−1

H̄−1
T

] [
F̄T

p d̄p + F̄T
c d̄c + ḠT

τ d̄τ
]

(2.33)

Consequently, expression for qT can be given as,
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qT = −H̄−1
T H̄CqC + H̄−1

T F̄T
p d̄p + H̄−1

T F̄T
c d̄c + H̄−1

T ḠT
τ d̄τ (2.34)

As for this model the water distribution network only consists of pipe compo-
nents, therefore the vector for pressure drop across the edges, ∆p ∈ Rm, can be
given by eq. (2.35) using eq. (2.13)

∆p = λ(q)− ∆z (2.35)

where,
λ(q) =

[
λ1(q1) · · · λm(qm))

]T

∆z =
[
∆z1 · · · ∆zm

]T

Kirchhoff’s mesh law for hydraulic network can be represented by following
equations,

B∆z = 0 (2.36a)

B∆p = 0 (2.36b)

Using equations (2.36), eq. (2.35) can be reduced to,

Bλ(q) = 0 (2.37)

λ(q) can also be partitioned into λC(qC) λT(qT),

B
[

λC(qC)

λT(qT)

]
= 0 (2.38)

Substituting B from eq. (2.3) gives,

λC(qC)− H̄T
C H̄−T

T λT(qT) = 0 (2.39)

where,
λC(qC) is the vector of drop in pressure due to friction across chord

edges of the graph
λT(qT) is the vector of drop in pressure due to friction across tree edges

of the graph

Substituting qT from eq. (2.34) into eq. (2.39).

λC(qC)− H̄T
C H̄−T

T λT(qC, dp, dc, dτ) = 0 (2.40)

where,
λT(qC, dp, dc, dτ) ≡ λT(−H̄−1

T H̄CqC + H̄−1
T F̄T

p d̄p + H̄−1
T F̄T

c d̄c + H̄−1
T ḠT

τ d̄τ)
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The differential pressure across the edges can be given as,

∆p = HT p (2.41)

and the level difference across the edges can be given as,

∆z = HTz (2.42)

The differential pressure ∆p can also be partitioned into differential pressure
across chord edges, ∆pC, and tree edges, ∆pT.[

∆pC
∆pT

]
=

[
HT

C
HT

T

]
p (2.43)

where,
∆pC is the vector of drop in pressure across chord edges of the graph
∆pT is the vector of drop in pressure across tree edges of the graph

Consequently,

HT
T p = ∆pT = λT(qT)− ∆zT (2.44)

⇒ HT
T p = ∆pT = λT(qT)− HT

T z (2.45)

where,
∆zT is the vector of drop in pressure due to geodesic level difference

across tree edges of the graph

With Lemma 1 eq. (2.45) gives,

H̄−T
T HT

T p = p̄− 1p0 = H̄−T
T λT(qT)− (z̄− 1z0) (2.46)

where,
p̄ is the pressure vector for the non-reference nodes
p0 is the reference node pressure
z̄ is the vector of pressure due to level at the non-reference nodes
z0 is the pressure due to level at the reference node

⇒ p̄− 1p0 = H̄−T
T λT(qT)− (z̄− 1z0) (2.47)

⇒ p̄ = H̄−T
T λT(qT)− (z̄− 1z0) + 1p0 (2.48)

With eq. (2.34), eq. (2.48) can be represented as,

p̄ = H̄−T
T λT(qC, dp, dc, dτ)− (z̄− 1z0) + 1p0 (2.49)
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where,
λT(qC, dp, dc, dτ) ≡ λT(−H̄−1

T H̄CqC + H̄−1
T F̄T

p d̄p + H̄−1
T F̄T

c d̄c + H̄−1
T ḠT

τ d̄τ)

In this project the network only consist one elevated tank and this model is to
be used for designing of supervisory control, therefore it is convenient to choose
tank node as the reference node , as the tank pressure can easily be measured by a
sensor at the bottom of the tank. Therefore eq. (2.49) can now be written as,

p̄ = H̄−T
T λT(qC, dp, dc, dτ)− (z̄− 1z0) + 1pτ (2.50)

With eq. (2.22), the model for nodes connected to the tank can be given by,

ṗτ = −T dτ (2.51)

where,
pτ is the vector of pressure nodes connected to the tank
T = diag(τi)

With Euler’s method eq. (2.51) can be discretized.

pτ(k + 1) = pτ(k)− T dτts (2.52)

where,
ts is the sampling time of discretization

Furthermore as mentioned previously, the tank node is chosen as the reference
node, the flow in the tank node can be given as,

dτ = −
(
∑ dc(k) + ∑ dp(k)

)
(2.53)

Therefore model equations (2.40), (2.50) and (2.52) can be written as,

λC(qC)− H̄T
C H̄−T

T λT(qC, dp, dc) = 0 (2.54)

p̄ = H̄−T
T λT(qC, dp, dc)− (z̄− 1z0) + 1pτ (2.55)

pτ(k + 1) = pτ(k) + T
(
∑ dc(k) + ∑ dp(k)

)
ts (2.56)

Equations (2.54), (2.55) and (2.56) form the simplified model for a water distri-
bution network with an elevated tank. With this model for the water distribution
network, presented in section 2.4, supervisory nonlinear optimal control is devel-
oped which is presented in chapter 3.
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2.3.2 Detailed water network model

In the detailed network model, apart from pipes, pumps and valves are also mod-
elled as edges. The pipe dynamics have also been considered in this model, as
the model is used in the stability analysis. Derivation of this model follows model
derived in [10]. In this model the nodal demands are at inlet node of the pump
edge, outlet node of the consumer valves and at the node connected to the tank.
Also, the nodal demands are not considered as independent flows in and out of
the network, but are dependent on system states and inputs.

The nodal demand is non-zero only for the nodes open to atmosphere, i.e.
pump inlets and valve outlets, and the nodes connected to the tank. Therefore,
instead of the vector of all nodal demands, d, in terms of pump, consumer and
tank nodes, it can directly be represented in terms of nodal demands for nodes
open to atmosphere, d f , and tank nodal demand, dτ only.

d = FT
f d f + GT

τ dτ (2.57)

where,
d ∈ Rn n is the total number of nodes in the graph
d f ∈ Rnp n f is the number of nodes open to atmosphere
dτ ∈ Rnτ nτ is the number of nodes connected to tanks
Ff ∈ Rnp×n is a matrix to extract d f from d in the form

[
I f 0

]
Gτ ∈ Rnτ×n is a matrix to extract dτ from d in the form

[
Iτ 0

]
Similar to (2.30), the vector of non-reference nodal demands can now be given

as,

d̄ = F̄T
f d̄ f + ḠT

τ d̄τ (2.58)

where,
F̄f is reduced Ff matrix with row corresponding to reference node

removed
Ḡτ is reduced Gτ matrix with row corresponding to reference node

removed

Substituting eq. (2.58) into eq. (2.28) gives,

q = BTqC +

[
0

H̄−1
T

] [
F̄T

f d̄ f + ḠT
τ d̄τ
]

(2.59)

With eq. (2.3), eq. (2.59) can also be written as,

q =

[
I 0 0

−H̄−1
T H̄C H̄−1

T F̄T
f H̄−1

T ḠT
τ

] qC
d̄ f
d̄τ

 (2.60)
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⇒ q = BT
n qn (2.61)

where,

Bn =

I −H̄T
C H̄−T

T
0 F̄f H̄−T

T
0 ḠτH̄−T

T

 (2.62)

qn =

qC
d̄ f
d̄τ

 (2.63)

Consequently, eq. (2.34) is now to be given as,

qT = −H̄−1
T H̄CqC + H̄−1

T F̄T
f d̄ f + H̄−1

T ḠT
τ d̄τ (2.64)

Also, using eq. (2.59), expression for q̇ can be given as,

q̇ = BT q̇C +

[
0

H̄−1
T

] [
F̄T

f
˙̄d f + ḠT

τ
˙̄dτ
]

(2.65)

And from eq. (2.64), expression for q̇T can be given as,

q̇T = −H̄−1
T H̄C q̇C + H̄−1

T F̄T
f

˙̄d f + H̄−1
T ḠT

τ
˙̄dτ (2.66)

The vector for pressure drop across all the edges of the graph can given using
general two terminal component model, eq. (2.20),

∆p = J q̇ + λ(q) + µ(q, OD)− α(q, ω)− ∆z (2.67)

where,
J = diag(

[
J1 · · · Jm

]
)

λ(q) =
[
λ1(q1) · · · λm(qm))

]T

µ(q, OD) =
[
µk(q1, OD1) · · · µk(qm, ODm)

]T

α(q, ω) = =
[
α1(q1, ω1) · · · αm(qm, ωm)

]T

∆z =
[
∆z1 · · · ∆zm

]T

Using Kirchhoff’s mesh law for hydraulic network, eq. (2.36) over eq. (2.67)
gives,

B∆p = BJ q̇ + B(λ(q) + µ(q, OD)− α(q, ω))− B∆z (2.68)

⇒ 0 = BJ q̇ + B(λ(q) + µ(q, OD)− α(q, ω)) (2.69)
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⇒ BJ q̇ = −B(λ(q) + µ(q, OD)− α(q, ω)) (2.70)

Substituting q̇ expression from eq. (2.65) into eq. (2.70).

BJ BT q̇C + BJ
[

0
H̄−1

T

] [
F̄T

f
˙̄d f + ḠT

τ
˙̄dτ
]
= −B(λ(q) + µ(q, OD)− α(q, ω)) (2.71)

Furthermore, J can also be partitioned as,[
JC 0
0 JT

]
(2.72)

where,
JC is the sub-matrix of J consisting chord edges of the graph
JT is the sub-matrix of J consisting tree edges of the graph

Also, substituting expression for B, eq. (2.3), into eq. (2.71) gives,

BJ BT q̇C +
[
I −H̄T

C H̄−T
T

] [JC 0
0 JT

] [
0

H̄−1
T

] [
F̄T

f
˙̄d f + ḠT

τ
˙̄dτ
]
=

− B(λ(q) + µ(q, OD)− α(q, ω)) (2.73)

⇒ BJ BT q̇C − H̄T
C H̄−T

T JT H̄−1
T

[
F̄T

f
˙̄d f + ḠT

τ
˙̄dτ
]
=

− B(λ(q) + µ(q, OD)− α(q, ω)) (2.74)

⇒ BJ BT q̇C − H̄T
C H̄−T

T JT H̄−1
T F̄T

f
˙̄d f − H̄T

C H̄−T
T JT H̄−1

T ḠT
τ

˙̄dτ =

− B(λ(q) + µ(q, OD)− α(q, ω)) (2.75)

Furthermore, with the expression of qT, eq. (2.64), eq. (2.75) can be written as,

BJ BT q̇C − H̄T
C H̄−T

T JT H̄−1
T F̄T

f
˙̄d f − H̄T

C H̄−T
T JT H̄−1

T ḠT
τ

˙̄dτ =

−B(λ(qC, d̄ f , d̄τ) + µ(qC, d̄ f , d̄τ, OD)− α(qC, d̄ f , d̄τ, ω))
(2.76)

Similar to eq. (2.46), partitioning ∆p and using Lemma 1 on eq. (2.67) gives,

H̄−T
T HT

T p = p̄− 1p0 = H̄−T
T JT q̇T + H̄−T

T (λT(qT) + µT(qT, )− αT(qT, ωT))

− (z̄− 1z0) (2.77)
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where,
ODT is a vector of opening degree of valves for tree edges of the graph
ωT is a vector of angular speed of pumps for tree edges of the graph

Multiplying eq. (2.77) by F̄f gives,

F̄f ( p̄− 1p0) = F̄f H̄−T
T JT q̇T + F̄f H̄−T

T (λT(qT) + µT(qT, ODT)− αT(qT, ωT))

− F̄f (z̄− 1z0) (2.78)

F̄f extracts non-reference nodes which are open to atmospheric pressure from
vector of all non-reference nodes. Deliberately choosing one of the nodes which
are open to atmosphere as the reference node. Subtracting reference node pressure,
i.e. atmospheric pressure from the pressure at the nodes open to atmosphere leads
to L.H.S of eq. (2.78) being zero.

0 = F̄f H̄−T
T JT q̇T + F̄f H̄−T

T (λT(qT) + µT(qT, ODT)− αT(qT, ωT))

− F̄f (z̄− 1z0) (2.79)

⇒ F̄f H̄−T
T JT q̇T = −F̄f H̄−T

T (λT(qT) + µT(qT, ODT)− αT(qT, ωT))

+ F̄f (z̄− 1z0) (2.80)

Substituting expression for q̇T, eq. (2.66), into eq. (2.80).

− F̄f H̄−T
T JT H̄−1

T H̄C q̇C + F̄f H̄−T
T JT H̄−1

T F̄T
f

˙̄d f + F̄f H̄−T
T JT H̄−1

T ḠT
τ

˙̄dτ =

− F̄f H̄−T
T (λT(qT) + µT(qT, ODT)− αT(qT, ωT)) + F̄f (z̄− 1z0) (2.81)

Again, with the expression of qT, eq. (2.64), eq. (2.81) can be written as,

−F̄f H̄−T
T JT H̄−1

T H̄C q̇C + F̄f H̄−T
T JT H̄−1

T F̄T
f

˙̄d f + F̄f H̄−T
T JT H̄−1

T ḠT
τ

˙̄dτ =

−F̄f H̄−T
T (λT(qC, d̄ f , d̄τ) + µT(qC, d̄ f , d̄τ, OD)− αT(qC, d̄ f , d̄τ, ω)) + F̄f (z̄− 1z0)

(2.82)
Now, multiplying eq. (2.77) by Ḡτ gives,

Ḡτ( p̄− 1p0) = ḠτH̄−T
T JT q̇T + ḠτH̄−T

T (λT(qT) + µT(qT, ODT)− αT(qT, ωT))

− Ḡτ(z̄− 1z0) (2.83)
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Ḡτ extracts non-reference nodes which are connected to tank from vector of all
non-reference nodes, therefore eq. (2.83) gives,

( p̄τ − 1p0) = ḠτH̄−T
T JT q̇T + ḠτH̄−T

T (λT(qT) + µT(qT, ODT)− αT(qT, ωT))

− Ḡτ(z̄− 1z0) (2.84)

⇒ ḠτH̄−T
T JT q̇T = −ḠτH̄−T

T (λT(qT) + µT(qT, ODT)− αT(qT, ωT))

+ Ḡτ(z̄− 1z0) + ( p̄τ − 1p0) (2.85)

Again, substituting expression for q̇T, eq. (2.66), into eq. (2.85).

− ḠτH̄−T
T JT H̄−1

T H̄C q̇C + ḠτH̄−T
T JT H̄−1

T F̄T
f

˙̄d f + ḠτH̄−T
T JT H̄−1

T ḠT
τ

˙̄dτ =

− ḠτH̄−T
T (λT(qT) + µT(qT, ODT)− αT(qT, ωT)) + Ḡτ(z̄− 1z0) + ( p̄τ − 1p0) (2.86)

Again, with the expression of qT, eq. (2.64), eq. (2.86) can be written as,

−ḠτH̄−T
T JT H̄−1

T H̄C q̇C + ḠτH̄−T
T JT H̄−1

T F̄T
f

˙̄d f + ḠτH̄−T
T JT H̄−1

T ḠT
τ

˙̄dτ =

−ḠτH̄−T
T (λT(qC, d̄ f , d̄τ) + µT(qC, d̄ f , d̄τ, OD)− αT(qC, d̄ f , d̄τ, ω))

+Ḡτ(z̄− 1z0) + ( p̄τ − 1p0)

(2.87)

Tank model can again be given by eq. (2.51) as,

ṗτ = −T dτ (2.88)

where,
pτ is the pressure vector at the nodes connected to the tank
T = diag(τi)

With equations (2.76), (2.82), (2.87) and (2.88), model for the water distribution
network is given. This model can also be presented in a shorthand notation as[10],

BnJ BT
n q̇n = −Bn(λ(qC, d̄ f , d̄τ) + µ(qC, d̄ f , d̄τ, OD)− α(qC, d̄ f , d̄τ, ω))

+N (z̄− 1z0) + I(pτ − 1p0) (2.89a)

ṗτ = −T dτ (2.89b)
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where,

N =

 0
F̄f
Ḡτ

 (2.90a)

I =

0
0
I

 (2.90b)

Stability analysis on this model with a local PI control is presented in section
3.4.

2.4 Modelling of the water distribution network considered
in this project

In this section the water distribution network considered in this project is pre-
sented. Along with the network, equivalent graphs as per network models pre-
sented in sections 2.3.2 and 2.3.1 are also given.

Figure 2.1: Grid topology water distribution network with an elevated reservoir

The water distribution network considered in this project is presented by figure
2.1. The network is a grid type water network composed of pipes, C2, C4, C5, C6,
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C7, C8 and C10. Two pumps, C1 and C11, are connected to the network, supplying
water to the network. There are two consumers, represented by valves, C3 and C9,
are at an elevation of 0.9m. An elevated tank, C12, is also connected to the network
which is at an elevation of 3m. The inlet of pump is assumed to be an infinite
reservoir of water at atmospheric pressure. The outlet of the valves are considered
to be open to atmosphere. The network parameters are presented in tables 2.2, 2.1,
2.3 and 2.4.

Table 2.1: Pump parameters

Pump ah2 ah0

C1 0.0367 7.335 · 10−05

C11 0.0367 7.335 · 10−05

Table 2.2: Pipe parameters

Pipe Length [m] Diameter [mm] Roughness height [mm]
C2 10 25 0.05
C4 20 25 0.05
C5 20 20 0.05
C6 15 15 0.05
C7 10 25 0.05
C8 10 20 0.05
C10 25 25 0.05

Table 2.3: Valve parameters

Valve Kvs

C3 1
C9 1

Table 2.4: Parameters of the elevated tank

Tank Diameter [m] Height [m] Cross sectional area
[m2]

Capacity [m3]

C12 0.6 0.706 0.283 0.2 (200 l)

Figure 2.2 presents a graphical representation of the water distribution network
presented in figure 2.1. In this graph, as per modelling method presented in section
2.3.1, only pipes in the network are modelled as edges. The pump flows are repre-
sented by independent nodal demands d1 and d6. Similarly consumer demands are
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represented by d2 and d5. Based on this graph, network model is developed and
used to design and test the supervisory control, and the test results are presented
in chapter 6.

Figure 2.2: Graphical representation of network in figure 2.1 as per modelling method presented in
section 2.3.1

Figure 2.3: Graphical representation of network in figure 2.1 as per modelling method presented in
section 2.3.2
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Figure 2.3 presents a graphical representation of network in figure 2.1 as per
modelling method presented in section 2.3.2. In this graph all the two terminal
components are present in the network are modelled as edges. The nodal demands
are at inlet nodes of pump, d1 and d10, and outlet nodes of valves, d4 and d7. These
nodal demands are not independent but depends on state of network and input.
Using this graph, network model is developed to study the stability of the system
which is presented in section 3.4.



Chapter 3

Control formulation

In this chapter first the control structure developed in this project is presented
which consist of a NMPC. The idea behind NMPC, it’s objective, constraints and
implementation is also presented in this chapter. The chapter then presents stabil-
ity analysis of the inner closed-loop system, which includes Lyapunov stability of
delay-free system and stability analysis of linearised system with output delay.

3.1 Control structure and NMPC

The control problem for the project is defined to be nonlinear optimal control of
pumps in a water distribution network, with a elevated reservoir, and the pro-
posed solution is presented in fig 3.1, i.e. the control structure exercised in this
project. The water distribution network control is divided into two layers, the
outer supervisory control layer and the inner local control layer, a similar structure
is presented in [22]. The supervisory control layer consists of a Nonlinear Model
Predictive Control (NMPC), whose task is to provide optimal control commands.
NMPC takes the future price of electricity (Pe), future consumer demands (dc) and
the feedback of tank pressure (pτ) as an input and solves an optimization problem
to provide with optimal pump flow (d∗p) commands. An optimization problem de-
fined as minimizing certain objectives subject to some constraints. The objectives
and constraints for this projects are,
Objectives:

• Minimizing the cost of operation

• Minimizing the pressure variations at the consumer node

Constraints:

• System (or network) model and dynamics

29
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Figure 3.1: The control structure exercised in this project [22]

• Operational constraints of the actuators

• Physical constraints of the tank

The knowledge of the the future price of electricity and the future consumer
demand is imperative for the optimization problem. In this project the future price
of electricity is assumed to be known, whereas the consumer demand is predicted
using a Kalman filter, which is presented in section 4.2. Also, the tank pressure
measurements and pump flow measurements are assumed to be available from
sensors.

The local control layer consists of PI (Proportional Integral) controller, whose
task is to regulate the flow from the pumps at desired optimal flow set-points,
provided by the NMPC. The PI control takes feedback of the pump flows and
manipulates the pump flows accordingly.

The supervisory control layer operates at a sampling time 60 sec, whereas the
local control layer operates at a sampling time of 1 sec. The NMPC is provided
with an average of the consumer demand and the price of electricity over 60 sec
as a constant for those 60 sec, based on that it computes optimal pump flow set-
points for the next 60 sec. The PI control aims to control the pump flows at the
provided set-point for next 60 sec, and after that NMPC provides new optimal flow
set-points for next 60 sec.

For the simulation tests there is only supervisory control layer, as the nonlinear
model for simulation test directly has pump flows as an input and therefore there
is no need for a PI control. On the other hand in the laboratory setup, the pump
flow are to be controlled by manipulating the pump speed and therefore the local
control layer is implemented for laboratory testing, presented in section 6.3.

3.1.1 Nonlinear model predictive control

In this project the requirement is to satisfy more than one objective in control of
a system with multi-variable interactions. Model predictive control (MPC) is a
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advance process control method capable of handling control of such multi-input
multi-output (MIMO) systems [17].

The basic idea in MPC is at time instance k solve an optimization problem to
compute a sequence of optimal control input, u∗, for the period [k, k + Hp], where
Hp is prediction horizon. From this sequence of control input only the first input,
u∗(k), is applied to the system. At next time instance, k+ 1, the horizon is moved by
one step and again the optimization problem is solved to compute new a sequence
of optimal control inputs. A nonlinear MPC is a variant of MPC, where the system
model is nonlinear or the objective function is nonlinear, or both are nonlinear. In
a NMPC the optimization problem is defined as,

min
U k
Vmpc(X k,U k) = min

U k

Hp−1

∑
i=0
J (u(k+i|k), x(k+i|k)) (3.1)

subject to,

x(k+i+1|k) = f (x(k+i|k), u(k+i|k)) (3.2a)

gmpc(x(k+i|k), u(k+i|k)) 6 0 (3.2b)

for a dynamical system defined by difference equation,

x(k+1) = f (x(k), u(k)) (3.3)

where,
Vmpc(·) is the objective function over the prediction horizon of the NMPC
u is the input vector
x is the state vector
U k is stacked vector of u from time k to k + Hp − 1
X k is stacked vector of x from time k to k + Hp

gmpc(·) is a function defining inequality constraints of the MPC problem
f (·) is state transition function

The constraints, (3.2), are over the entire prediction horizon, therefore there
would be Hp dynamic constraints and Hp inequality constraints.The objective func-
tion over the prediction horizon Vmpc(·) is minimized with respect to U k. The
optimization is subjected to the system dynamics and constraints which can be
actuator limits or physical limits of the system. k represents the current time in-
stance, and i represents the index increment(future time). The notation (k + i|k)
represents predicted value at k + i time instance based on available knowledge at
current time instance, k.

A nonlinear programming (NLP) problem is a optimization problem where
the objective function and/or the constraints are nonlinear and in general form
represented as,
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min
w

Θ(w) (3.4)

subject to,

g1(w) 6 0 (3.5a)

g2(w) = 0 (3.5b)

where,
w is the optimization variable of the NLP
Θ(·) is the objective function of the NLP
g1(·) is a function defining equality constraints of the NLP
g2(·) is a function defining inequality constraints of the NLP

To solve the NMPC optimization problem, using solvers (software programs)
available for NLP, the optimization problem, (3.1) and (3.2), needs to be converted
to a NLP problem. This can be accomplished by two methods, viz. single shooting
or multiple shooting. In single shooting method the objective function and con-
straints are reduced to functions of just the optimization variable and the (known)
initial value of the states. For the NMPC problem this reduction is done using the
system dynamic equation,(3.3).

min
U k
Vmpc(X k,U k)

x(k+1)= f (x(k),u(k))−−−−−−−−−−→ min
U k
Vnlp(xk,U k) (3.6a)

g(x(k+i|k), u(k+i|k)) 6 0
x(k+1)= f (x(k),u(k))−−−−−−−−−−→ gnlp(xk,U k) 6 0 (3.6b)

The NMPC optimization problem, presented by eq. (3.1) and (3.2), in form of
NLP problem using single shooting, can be defined as,

min
U k
Vnlp(xk,U k) (3.7)

subject to

gnlp(xk,U k) 6 0 (3.8)

where,
U k is stacked vector of u, which is the optimization variable
xk is the initial condition of the states at the start of the optimization

problem
gnlp(·) is a function of U k and xk, defining inequality constraints of the

NMPC optimization problem

In multiple shooting, the states along with the inputs are considered as the
optimization variables. Accordingly the objective function of the NMPC problem is
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minimized with respect to X k and U k both, and that is the main difference between
single shooting and multiple shooting. The system dynamics over the prediction
horizon, eq. (3.2a), are considered to be equality constraints for the NLP problem
as,

x(k+i+1|k) = f (x(k+i|k), u(k+i|k)) (3.9a)

⇒ x(k+i+1|k) − f (x(k+i|k), u(k+i|k)) = 0 (3.9b)

⇒ g2nlp(X k,U k) = 0 (3.9c)

the inequality constraints, (3.2b), and the objective function, (3.1), remains the same
but can be represented in form,

gmpc(x(k+i|k), u(k+i|k)) 6 0 (3.10a)

⇒ g1nlp(X k,U k) 6 0 (3.10b)

Vnlp(X k,U k) = Vmpc(X k,U k) (3.11)

The NMPC optimization problem in form of NLP problem, using multiple
shooting, can now be defined as,

min
X k ,U k

Vnlp(X k,U k) (3.12)

subject to

g1nlp(X k,U k) 6 0 (3.13a)

g2nlp(X k,U k) = 0 (3.13b)

where,
g1nlp(·) is a function of U k and X k, defining inequality constraints
g2nlp(·) is a function of U k and X k, defining equality constraints

The main drawback of single shooting is nonlinearity propagation, for NMPC
problems with long prediction horizon the NLP optimization problem becomes
highly nonlinear. This high nonlinearity may result into poor performance of NLP
solvers. Whereas, with multiple shooting the number of optimization variables
increases but the degree of nonlinearity does not increase. In this project multi-
ple shooting method is used to convert the NMPC optimization problem to NLP
problem and implement as a controller.
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3.2 Nonlinear MPC for water distribution network

The control problem or the NMPC problem in this project is multi-objective. The
objective being minimizing the cost of operation and minimizing the pressure vari-
ations at the consumer end. The cost of operation can be quantified using energy
consumption of the pumps and can be given as [22],

Pm =
di pi

ηpηm1031053600

= di pikη

(3.14)

where,

kη =
1

ηpηm1031053600
(3.15)

where,
Pm is the ith pumping station’s power consumption [kW]
di is the ith pumping station’s flow [m3/h]
pi is the ith pumping station’s pressure developed [bar]
ηp is the pump’s efficiency [.]
ηm is the motor’s efficiency [.]

The efficiency of pumps and motors at all the pumping stations is assumed to
be same and constant. In reality, the efficiency is dependent of flow and pressure
being delivered by the pump [22].

Now the cost of pumps operation can be give as,

E = PmTsPe

= di pikηTsPe
(3.16)

where,
E is the pumping station operational cost [DKK]
Ts is the sampling time [minute]
Pe is the unit price of electricity [DKK/kW

minute]

Now the part of objective function with respect to operational cost can be de-
fined as,

J1 = dT
pP ppkηTs (3.17)



3.2. Nonlinear MPC for water distribution network 35

where,
dp is the vector of flows from the pumping station

nodes
[m3/h]

pp is the vector of pressures at pumping station
nodes

[bar]

P is a 2× 2 diagonal matrix of unit price of elec-
tricity

[DKK/kW
minute]

The pump flow is the input to the system, therefore here after dp will be repre-
sented as u. Also, pp is represented in form of p̄.

J1 = uTP(F̄p p̄)kηTs (3.18)

The second objective in the NMPC problem is to minimize the pressure varia-
tion at the consumer end, and that can be quantified using variance of the pressure
at the consumer end.

J2 = (pc − µp,c)
T(pc − µp,c) (3.19)

where,
pc is vector of pressure at consumer nodes [bar]
µp,c is vector of arithmetic mean pressure at consumer nodes [bar]

Equation (3.19) can be further written as,

J2 = (F̄c( p̄− µ p̄))
T(F̄c( p̄− µ p̄)) (3.20)

With equations (3.18) and (3.20), the complete objective function for the NMPC
problem can be given as,

J = J1 + J2

= uTP(F̄p p̄)kηTs + (F̄c( p̄− µ p̄))
T(F̄c( p̄− µ p̄))

(3.21)

The objective function over the prediction horizon can now be given as,

V k =
Hp−1

∑
i=0
J

=
Hp−1

∑
i=0

(
(u(k+i|k))TQP (k+i|k)(F̄p p̄(k+i|k))kηTs

+
(

F̄c( p̄(k+i|k) − 1
Hp

Hp−1

∑
j=0

p̄(k+j|k))
)T
R
(

F̄c( p̄(k+i|k) − 1
Hp

Hp−1

∑
j=0

p̄(k+j|k))
))

(3.22)
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where,
Q is weight on the operational cost minimization with Q > 0
R is weight on the pressure variation minimization with R > 0

The weights Q and R are to penalise respective objectives in the objective function.

3.2.1 Constraints

Actuator constraints

The pumps can only deliver water with certain maximum limit in pressure and
flow, this introduces inequality constraints into the NMPC optimization problem.

0 6 F̄p p̄k 6 pmax
p (3.23)

0 6 uk 6 dmax
p (3.24)

Physical limits of the tank

The dimensions of the tank are fixed and therefore the water in the tank can only be
filled up to a certain maximum limit. Also, for emergency purposes the water level
in the tank needs to be maintained above a certain threshold. This maximum and
minimum limits introduces an inequality constraint into the NMPC optimization
problem.

pmin
τ 6 pk

τ 6 pmax
τ (3.25)

With the objection function, (3.22), system model, eq. (2.54), (2.55) and (2.56),
and the inequality constraints, (3.23), (3.24) and (3.25), the complete NMPC opti-
mization problem can be defined as,

min
U k
V k = min

U k

Hp−1

∑
i=0

(
(u(k+i|k))TQP (k+i|k)(F̄p p̄(k+i|k))kηTs

+
(

F̄c( p̄(k+i|k) − 1
Hp

Hp−1

∑
j=0

p̄(k+j|k))
)T
R
(

F̄c( p̄(k+i|k) − 1
Hp

Hp−1

∑
j=0

p̄(k+j|k))
))
(3.26)

subject to

λC(qk
C)− H̄T

C H̄−T
T λT(qk

C, uk, dk
c) = 0 (3.27a)

p̄k = H̄−T
T λT(qk

C, uk, dk
c)− (z̄− 1z0) + 1pk

τ (3.27b)
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pk+1
τ = pk

τ + T
(
∑ dk

c + ∑ uk
)

Ts (3.27c)

0 6 F̄p p̄k 6 pmax
p (3.28a)

0 6 u 6 dmax
p (3.28b)

pmin
τ 6 pk

τ 6 pmax
τ (3.28c)

Similar MPC optimization problem with linear system model is presented in
[22], whereas in this project nonlinear system model is considered. This NMPC
optimization problem can be converted into NLP problem with optimization vari-
ables being U k, qC, p̄ and pτ, i.e. the objective function of the NMPC problem is
to be minimized with respect to all these variables. The system model equations,
(3.27), are presented as equality constraints and the inequality constraints, in eq.
(3.28) remains the same in the NLP problem.

Solving the NLP problem yields a optimal set of control inputs, U ∗, and corre-
sponding values of q∗C, p̄∗ and p∗τ over the prediction horizon.

U ∗k =


u(k|k)

.

.

.
u(k+Hp−1|k)

 (3.29)

As presented in section 3.1.1, only the first input value, u(k|k) is used for the con-
trol. After that the horizon moves one time instance and the optimization problem
is solved again over the prediction horizon.

3.2.2 Nonlinear MPC with soft constraints

In real life implementation of the NMPC the system might cross the constraints,
due to large disturbances or plant-model mismatch. In such cases with hard con-
straints will lead to NMPC optimization (or NLP) problem being infeasible. To
avoid such situations the hard constraints are ’softened’, and these constraints are
allowed to be violated only when required[17].

The constraint on the pressure in the tank, pτ, can be softened. A slack variable,
ε, is used for this and it is defined such that it is non-zero only if the constraints
are violated and when it is non-zero it is heavily penalised in the cost function[17].
To soften the constraint, ε, in constraint eq. (3.32d) is subtracted from the lower
limit and added to the upper limit of pressure in the tank. NMPC optimization
problem with soft constraint can be given as,
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min
U k ,ε
V k = min

U k ,ε

Hp−1

∑
i=0

(
(u(k+i|k))TQP (k+i|k)(F̄p p̄(k+i|k))kηTs

+
(

F̄c( p̄(k+i|k) − 1
Hp

Hp−1

∑
j=0

p̄(k+j|k))
)T
R
(

F̄c( p̄(k+i|k) − 1
Hp

Hp−1

∑
j=0

p̄(k+j|k))
))

+ $ε

(3.30)

subject to

λC(qk
C)− H̄T

C H̄−T
T λT(qk

C, uk, dk
c) = 0 (3.31a)

p̄k = H̄−T
T λT(qk

C, uk, dk
c)− (z̄− 1z0) + 1pk

τ (3.31b)

pk+1
τ = pk

τ + T
(
∑ dk

c + ∑ uk
)

Ts (3.31c)

0 6 ε (3.32a)

0 6 F̄p p̄k 6 pmax
p (3.32b)

0 6 u 6 dmax
p (3.32c)

(pmin
τ − ε) 6 pk

τ 6 (pmax
τ + ε) (3.32d)

where,
$ is weight on minimization of the slack variable with $ > 0

In the NLP program the optimization variables are now U k, qC, p̄, pτ and ε. $ is
kept high, so that the constraints are not violated unless its is absolutely required.

3.3 Nonlinear MPC implementation and simulation test re-
sults

The NMPC problem presented by equations (3.30), (3.31) and (3.32) is converted
into a NLP problem using multiple shooting and implemented in CasADi [1] in
MATLAB (ver. R2019b). The CasADi code defining the NMPC problem is pre-
sented in appendix A. As stated in section 3.1.1, with multiple shooting the states
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along with the inputs are optimization variable, therefore in water distribution
control problem the input u and the states qC, p̄, pτ, over the prediction horizon
become the optimization variables. Also, when using the soft constraints the slack
variable ε becomes the optimization variable.

In the CasADi code all the optimization variables over the prediction horizon
are defined in symbolic form and using a for-loop the objective function and the
constraints are formulated. The NMPC problem is defined only once in symbolic
form, and parameters such as consumer demand, dc, the price of electricity, P ,
and initial tank pressure, p0

τ, are passed to obtain optimal value of input over
the prediction horizon, U ∗. As states are also optimization variables, the optimal
values of states can also be obtained while solving the optimization problem, but
in this project they are not being used.

3.3.1 NMPC control results

The NMPC optimization problem weight and system constraints used in the sim-
ulation test are presented below:

• Weights in the cost function

Q =

[
5.5 · 1010 0

0 5.5 · 1010

]
(3.33)

R =

[
1 0
0 1

]
(3.34)

$ = 1 · 105 (3.35)

• Constraints
0 6 ε (3.36)

0 6 M̄+
p p̄k 6 0.6 (3.37)

0 6 u 6 0.3 (3.38)

(0.0098− ε) 6 pk
τ 6 (0.0391 + ε) (3.39)

Figures 3.2, 3.3 and 3.4 presents simulation results for the NMPC control test.
The NMPC control with aforementioned parameters is implemented on a nonlinear
plant model of the water distribution network presented in section 2.4. In the
simulation 1 minute is a representation of 1 hour is real life, therefore 2 days of real
life is represented with 48 minute of simulation run time. In this simulation test
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Figure 3.2: Consumer nodal demand flows and NMPC simulation results for pressure at consumer
end

the future consumer demands are assumed to be known and provided to NMPC
for solving the optimization problem.

Figure 3.2 presents the consumer demand pattern, for the two consumers,
throughout the simulation period. The consumer demand is periodic over a period
of 24 minute. In the simulation the consumer demand curve is chosen to reflect
a real life scenario, where the consumer demands are expected to be high during
morning and evening hours compared to afternoon and night hours. The figure
also presents the pressure changes at the consumer ends, which is due to pump
control by NMPC.

The NMPC is also provided with unit price of electricity over the simulation
period. The varying electricity price in simulation is presented by figure 3.3. Again,
the price curve is periodic with a period of 24 minute. The prices are low at 0.7
DKK/kW minute from 0 to 6 minute and 20 to 24 minute time instance, compared
to 1.4 DKK/kW minute from 6 to 20 minute time instance, over the 24 minute
period. These are again to reflect real life scenario, where the electricity prices are
expected to be low during the night time compared to day time.

Figure 3.3 also presents the changes in the level of water in the tank throughout
the simulation. The level is increasing when the price of electricity is low and this
evident from the fact that the NMPC controls the pump to run during the time
when the price of electricity is low, and this presented in figure 3.4. During these
periods the pump supplies water to the consumers as well as the tank. During the
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Figure 3.3: Varying unit price of electricity and NMPC simulation results for level of water in the
tank
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Figure 3.4: NMPC simulation results for flow from the pumps and the pressure at pump nodes
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high electricity price period the pumps are stopped and the consumer demands
are met by the tank and that can be observed as the level of water in the tank
decreases when the electricity prices are high. Figure 3.4 also presents the pressure
at the pump nodes, when the pumps are running the pressure is developed by the
pumps and when the pumps are in stopped condition the pressure is developed
due to tank pressure. Further simulation and laboratory tests are presented in
chapter 6.

3.4 Stability analysis

The results from [22], presented a oscillatory behavior of the pump flow when
controlled by the local PI controller in the laboratory setup. Figure 3.5 presents
local flow control of the pumps by a PI controller in the laboratory setup(laboratory
setup is presented in chapter 5). The P and I gain for the PI controller are 3 and 1.1
respectively. A constant flow set-point of 0.3 m3/h is provided to the PI controller
for 16 minute by a on/off supervisory control and the PI control aims to control
the pump flows at the set-point. From the figure it can be observed that even with
a constant set-point for a long duration the pump flows are oscillatory.
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Figure 3.5: Local flow control of the pump flows by a PI controller
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Figure 3.6: Inner closed-loop control structure

To analyse this oscillatory behavior, stability analysis of the inner closed-loop
system is presented in this section. Figure 3.6 presents the inner closed-loop control
structure. The inner closed-loop system consists of water distribution network with
a feedback PI controller. PI controller regulate the speed of the pumps to control
the flow delivered by the pumps.

First, Lyapunov stability of the nonlinear closed-loop system, with no delay,
is inspected, as it allows to understand the global qualitative behaviour of the
system[16]. Then, to analyse stability of the system with delay, the nonlinear water
distribution network model is linearised at an equilibrium point and a closed-loop
state space model is formed with PI control and output delay. To comment on
the stability of the linearised system, eigenvalues of the state transition matrix are
analysed.

3.4.1 Lyapunov stability analysis

In this section stability of a system is to be understood as stability of equilibrium
points in the sense of Lyapunov. Lyapunov stability analysis allows to comment on
qualitative behaviour of a system in the vicinity of an equilibrium point or in some
cases global qualitative behaviour of the system [16]. To begin with, definition
on stability of an equilibrium point and Lyapunov stability theorem is presented.
Thereafter stability of the nonlinear closed loop system, with the water distribution
network model given by eq. (2.89), is analysed.

Lyapunov stability theory

For a system,

ẋ = f (x) (3.40)
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where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn.
A point x̄ ∈ D is an equilibrium point for (3.40) if f (x̄) = 0. For a system any
equilibrium point can be shifted to origin, i.e. x̄ = 0 , with a change of variables
[16]. Henceforth, without loss of generality, the stability definition and theorems
are presented for equilibrium at origin.

The definition for stability of an equilibrium point, as stated in [16], is given by,

Definition 3.4.1 The equilibrium point x = 0 of (3.40) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x‖ < δ⇒ ‖x‖ < ε, ∀t ≥ 0 (3.41)

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ⇒ lim
t→∞

x(t) = 0 (3.42)

Now, Lyapunov’s stability theorem as stated in [16] is given by,

Theorem 3.4.1 (Lyapunov’s stability theorem) Let x = 0 be an equilibrium point for
(3.40) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously
differentiable function such that

V(0) = 0 and V(x) > 0 in D− {0} (3.43)

V̇(x) ≤ 0 in D (3.44)

Then, x = 0 is stable. Moreover, if

V̇(x) < 0 in D− {0} (3.45)

then x = 0 is asymptotically stable.

A continuously differentiable function, V(x), satisfying eq. (3.43) is said to be
a valid Lyapunov function candidate and if it also satisfying (3.44) it is said to
be a Lyapunov function[16]. Lyapunov’s stability theorem’s conditions are only
sufficient and not necessary, that is to say failure to find a Lyapunov function does
not imply that the equilibrium point is not stable[16].

Also defining definiteness of a function, V(x) with V(0) = 0, as stated in [16].

V(x) > 0 (for x 6= 0)→ positive definite

V(x) ≥ 0 (for x 6= 0)→ positive semi-definite

V(x) < 0 (for x 6= 0)→ negative definite

V(x) ≤ 0 (for x 6= 0)→ negative semi-definite
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Furthermore, global asymptotic stability of a equilibrium point, as stated in [16]
is given by,

Theorem 3.4.2 (Barbashin-Krasovskii theorem) Let x = 0 be an equilibrium point
for (3.40). Let V : Rn → R be a continuously differentiable function such that

V(0) = 0 and V(x) > 0 ∀x 6= 0 (3.46)

‖x‖ → ∞⇒ V(x)→ ∞ (3.47)

V̇(x) < 0, ∀x 6= 0 (3.48)

then x = 0 is globally asymptotically stable.

Stability analysis of the nonlinear closed-loop system

As mentioned in section 3.1, a local PI control is designed to control the flow from
the pumps into the water distribution network. Reference pump flow set-points
are provided to the PI control by NMPC and PI control regulates the speed to the
pumps to control the flows at the set-points. The equation for the PI can be given
as,

ζ̇ = −Ki(qp − q∗p) (3.49a)

ω2
p = −Kp(qp − q∗p) + ζ (3.49b)

where,
ζ is the integral state
Ki is a positive definite diagonal matrix of integral gain
Kp is a positive definite diagonal matrix of proportional gain
ωp is a vector of rotational speed of the pumps in the network
qp is a vector of flows through the pump edges of the network
q∗p is a vector of arbitrary equilibrium flows through the pump

edges of the network

Now, flow in the pump edges can be represented as,

qp = Pq (3.50)

where,
P ∈ Rnp×m is a matrix to extract qp from q in the form

[
Ip 0

]
Furthermore, substituting q from eq. (2.61),
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qp = PBT
n qn (3.51)

⇒ qp = Cqn (3.52)

where,

C = PBT
n (3.53)

Similarly, the vector for pressure in the pump edges can be extracted from the
vector of pressure in all edges, corresponding to pump model(eq. (2.19) as,

αp(qp, ωp) = Pα(q, ω) (3.54)

From the pump model, eq. (2.19), the pressure from the pumps in vector form
can be given as,

αp(qp, ωp) = −Ah2|qp| ◦ qp + Ah0ω2
p (3.55)

where,
|qp| ◦ qp represents Hadamard product or element wise multiplica-

tion of vectors
Ah2 ∈ Rnp×np is a positive definite diagonal matrix with pump constant

ah2,k
Ah0 ∈ Rnp×np is a positive definite diagonal matrix with pump constant

ah0,k

The dynamics of the tank is extremely slow compared to the flow dynamics in
the network, that is to say during a small period of time where the flows would
have changed the tank pressure would be near constant. Therefore, in the stability
analysis only the flow dynamics have been considered and the tank pressure is
assumed to be constant. The dynamic model for the flows in the network is given
by eq. (2.89a), can also be presented in terms of qn as,

BnJ BT
n q̇n = −Bn(λ(BT

n qn) + µ(BT
n qn, OD)− α(BT

n qn, ω))

+N (z̄− 1z0) + I(pτ − 1p0) (3.56)

Furthermore, for simplification consumer valve’s opening degrees are also as-
sumed to be constant.

BnJ BT
n q̇n = −Bn(λ(BT

n qn) + µ(BT
n qn)− α(BT

n qn, ω)) +N (z̄− 1z0) + I(pτ − 1p0)

(3.57)
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Equation (3.57) can also be written as,

Jnq̇n = − f (qn) + Bnα(qn, ω)) +N (z̄− 1z0) + I(pτ − 1p0) (3.58)

where,

Jn = BnJ BT
n (3.59)

f (qn) = Bn(λ(BT
n qn) + µ(BT

n qn)) (3.60)

Furthermore, using the extraction matrix P α(·) can be represented in terms of
αp(·), eq. (3.54).

Jnq̇n = − f (qn) + BnPTαp(qp, ωp)) +N (z̄− 1z0) + I(pτ − 1p0) (3.61)

Using eq. (3.52), qp can be represented in terms of qn,

Jnq̇n = − f (qn) + BnPTαp(Cqn, ωp)) +N (z̄− 1z0) + I(pτ − 1p0) (3.62)

⇒ Jnq̇n = − f (qn) + BnPTαp(qn, ωp)) +N (z̄− 1z0) + I(pτ − 1p0) (3.63)

Now, the closed-loop system model of the water distribution network (eq.
(3.63)) with the PI control (eq. (3.49)) can be given as,

Jnq̇n = − f (qn) + BnPTαp(qn,−Kp(qp − q∗p) + ζ) +N (z̄− 1z0) + I(pτ − 1p0)

(3.64a)

⇒ Jnq̇n = − f (qn) + BnPTαp(qn, Kp, ζ) +N (z̄− 1z0) + I(pτ − 1p0) (3.64b)

ζ̇ = −Ki(qp − q∗p) (3.64c)

Furthermore, using eq. (3.52), eq. (3.64) can be written as,

Jnq̇n = − f (qn) + g(qn, Kp, ζ) +N (z̄− 1z0) + I(pτ − 1p0) (3.65a)

ζ̇ = −KiC(qn − q∗n) (3.65b)

where,
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g(qn, Kp, ζ) = BnPTαp(qn, Kp, ζ) (3.66)

The objective is to analyse closed loop system stability at an arbitrary equilib-
rium point but the Lyapunov’s stability theorem 3.4.1 is only defined for equilib-
rium point at origin. The equilibrium point of the original system can be shifted
to origin by change of variables and transforming the original system to an incre-
mental system.

Consider the equilibrium point q∗n, and at the equilibrium point,

q̇n = 0 (3.67)

ζ̇ = 0 (3.68)

qn = q∗n (3.69)

Therefore, eq. (3.65a) at equilibrium point is given as,

0 = − f (q∗n) + g(q∗n, Kp, ζ∗) +N (z̄− 1z0) + I(pτ − 1p0) (3.70)

With the change of variables, the states and the function for incremental model
can be defined as,

q̃n = qn − q∗n
⇒ qn = q̃n + q∗n

(3.71)

ζ̃ = ζ − ζ∗

⇒ ζ = ζ̃ + ζ∗
(3.72)

f̃ (q̃n) = f (qn)− f (q∗n)

⇒ f (qn) = f̃ (q̃n) + f (q∗n)
(3.73)

g̃(q̃n, Kp, ζ̃) = g(qn, Kp, ζ)− g(q∗n, Kp, ζ∗)

⇒ g(qn, Kp, ζ) = g̃(q̃n, Kp, ζ̃) + g(q∗n, Kp, ζ∗)
(3.74)

Substituting from equations (3.71),(3.72),(3.73) and (3.74) into the closed-loop
system eq. (3.65).

Jn ˙̃qn = − f̃ (q̃n)− f (q∗n) + g̃(q̃n, Kp, ζ̃) + g(q∗n, Kp, ζ∗) +N (z̄− 1z0) + I(pτ − 1p0)

(3.75a)
˙̃ζ = −KiCq̃n (3.75b)

Using the condition that at equilibrium point eq. (3.70) is zero, eq. (3.75) is
reduced to,
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Jn ˙̃qn = − f̃ (q̃n) + g̃(q̃n, Kp, ζ̃) (3.76a)

˙̃ζ = −KiCq̃n (3.76b)

For the incremental system the equilibrium point would always be origin, irre-
spective of the desired equilibrium of the original system. Now for the incremental
system candidate Lyapunov function is proposed in eq. (3.77), similar to Lyapunov
function proposed for a closed hydraulic network in [26].

Vwn(q̃n, ζ̃) =
1
2

q̃T
nJnq̃n +

1
2

ζ̃T AT
h0K−1

i ζ̃ (3.77)

The proposed Lyapunov function is zero at origin and positive definite other-
wise due to it’s quadratic form for both the terms. Therefore condition (3.43) is
satisfied and Vwn(q̃n, ζ̃) is a valid Lyapunov function candidate.

Vwn(0, 0) = 0 (3.78a)

Vwn(q̃n, ζ̃) =
1
2

q̃T
nJnq̃n +

1
2

ζ̃T AT
h0K−1

i ζ̃ > 0 ∀(q̃n, ζ̃) 6= 0 (3.78b)

Calculating the time derivative of the Lyapunov function candidate (3.77),

V̇wn(q̃n, ζ̃) = q̃T
nJn ˙̃qn + ζ̃T AT

h0K−1
i

˙̃ζ (3.79)

Substituting system dynamics from eq. (3.76),

V̇wn(q̃n, ζ̃) = q̃T
n (− f̃ (q̃n) + g̃(q̃n, Kp, ζ̃)) + ζ̃T AT

h0K−1
i (−KiCq̃n) (3.80)

⇒ V̇wn(q̃n, ζ̃) = − q̃T
n f̃ (q̃n)︸ ︷︷ ︸

#1

+ q̃T
n g̃(q̃n, Kp, ζ̃)︸ ︷︷ ︸

#2

− ζ̃T AT
h0Cq̃n︸ ︷︷ ︸
#3

(3.81)

For the ease of understanding of the readers, each term in (3.81) is simplified
separately. Term (#1), (#2) and (#3) are denoted by V̇(#1)

wn , V̇(#2)
wn and V̇(#3)

wn respec-
tively. The final comments on the definiteness of V̇wn(q̃n, ζ̃) is provided at the end.

Foremost, term (#2), V̇(#2)
wn is simplified.

V̇(#2)
wn = q̃T

n g̃(q̃n, Kp, ζ̃) (3.82)

Substituting from eq. (3.74) and expanding g̃(·),

V̇(#2)
wn = q̃T

n (g(qn, Kp, ζ)− g(q∗n, Kp, ζ∗)) (3.83)

Substituting from eq. (3.66)
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V̇(#2)
wn = (qn − q∗n)

TBnPT(αp(qp, Kp, ζ)− αp(q∗p, Kp, ζ∗)) (3.84)

Substituting the pump model, (3.55), for αp(·) and also using (3.51), (3.84) can
be given as,

V̇(#2)
wn = (qp − q∗p)

T(−Ah2|qp| ◦ qp + Ah0(−Kp(qp − q∗p) + ζ)

+ Ah2|q∗p| ◦ q∗p − Ah0(−Kp(q∗p − q∗p) + ζ∗)) (3.85)

⇒ V̇(#2)
wn = (qp − q∗p)

T(−Ah2|qp| ◦ qp + Ah2|q∗p| ◦ q∗p)

+ (qp − q∗p)
T(−Ah0Kp(qp − q∗p))

+ (qp − q∗p)
T(Ah0ζ − Ah0ζ∗) (3.86)

⇒ V̇(#2)
wn = − (qp − q∗p)

T Ah2(|qp| ◦ qp − |q∗p| ◦ q∗p)︸ ︷︷ ︸
#a

− (qp − q∗p)
T Ah0Kp(qp − q∗p)︸ ︷︷ ︸

#b

+ (qp − q∗p)
T Ah0(ζ − ζ∗)︸ ︷︷ ︸

#c

(3.87)

Now, simplifying term (#3), V̇(#3)
wn from (3.81).

V̇(#3)
wn = ζ̃T AT

h0Cq̃n (3.88)

Expanding ζ̃ and q̃n using eq. (3.71) and (3.72) respectively.

V̇(#3)
wn = (ζ − ζ∗)T AT

h0C(qn − q∗n) (3.89)

Using eq. (3.52), qp is extracted from qn.

V̇(#3)
wn = (ζ − ζ∗)T AT

h0(qp − q∗p) (3.90)

Substituting V̇(#2)
wn from (3.87) and V̇(#3)

wn from (3.90) back into eq. (3.81).



3.4. Stability analysis 51

V̇wn(q̃n, ζ̃) = −q̃T
n f̃ (q̃n)

− (qp − q∗p)
T Ah2(|qp| ◦ qp − |q∗p| ◦ q∗p)

− (qp − q∗p)
T Ah0Kp(qp − q∗p)

+ (qp − q∗p)
T Ah0(ζ − ζ∗)

− (ζ − ζ∗)T AT
h0(qp − q∗p) (3.91)

⇒ V̇wn(q̃n, ζ̃) = −q̃T
n f̃ (q̃n)

− (qp − q∗p)
T Ah2(|qp| ◦ qp − |q∗p| ◦ q∗p)

− (qp − q∗p)
T Ah0Kp(qp − q∗p) (3.92)

Equation (3.92) can also be written as,

V̇wn(q̃n, ζ̃) = − q̃T
n f̃ (q̃n)︸ ︷︷ ︸

#x

− (qp − q∗p)
T Ah2(h(qp)− h(q∗p))︸ ︷︷ ︸

#y

− (qp − q∗p)
T Ah0Kp(qp − q∗p)︸ ︷︷ ︸

#z
(3.93)

where
h(qp) = |qp| ◦ qp (3.94)

Equation (3.93) presents time derivative of the Lyapunov function candidate,
eq. (3.81), in a simplified form.

For term (#x), f̃ (q̃n) can be expanded using eq. (3.73).

q̃T
n f̃ (q̃n) = q̃T

n ( f (qn)− f (q∗n)) (3.95)

Furthermore, substituting f (·) from eq. (3.60),

q̃T
n f̃ (q̃n) = q̃T

n Bn(λ(BT
n qn) + µ(BT

n qn)− λ(BT
n q∗n)− µ(BT

n q∗n)) (3.96)

Substituting q̃n from eq. (3.71)

q̃T
n f̃ (q̃n) = (qn − q∗n)

TBn(λ(BT
n qn) + µ(BT

n qn)− λ(BT
n q∗n)− µ(BT

n q∗n)) (3.97)

Using relation (2.61), (3.97) can be written as,

q̃T
n f̃ (q̃n) = (q− q∗)T(λ(q) + µ(q)− λ(q∗)− µ(q∗)) (3.98)
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⇒ q̃T
n f̃ (q̃n) = (q− q∗)T(λ(q)− λ(q∗)) + (q− q∗)T(µ(q)− µ(q∗)) (3.99)

λ(·) and µ(·) are vector form of λk(·), (2.21b), and µk(·), (2.21c), which are
strictly increasing functions and also zero at zero argument. Therefore, q̃T

n f̃ (q̃n) is
positive definite ∀q̃n 6= 0.

In term (#y), Ah2 is a positive definite diagonal matrix and function h(·), (3.94),
is a strictly increasing function by definition. Therefore, term (#y) is positive defi-
nite ∀q̃p 6= 0 and with the relation (3.52) positive semi-definite ∀q̃n 6= 0.

In the term (#z), Ah0 and Kp are positive definite diagonal matrices, therefore
because of it’s quadratic form term it is positive definite ∀q̃p 6= 0 and again with
the relation (3.52) positive semi-definite ∀q̃n 6= 0.

To summarize term (#x) is positive definite, (#y) and (#z) are positive semi-
definite ∀q̃n 6= 0. Consequently, V̇wn(q̃n, ζ̃) is negative definite ∀q̃n 6= 0. But,
V̇wn(q̃n, ζ̃) is only negative semi-definite ∀(q̃n, ζ̃) 6= 0, as from eq. (3.93), V̇wn(q̃n, ζ̃)

is not a function of ζ̃. Therefore, only (3.43) and (3.44) conditions are satisfied
and, from this it can be concluded that Vwn(q̃n, ζ̃) is a Lyapunov function for the
closed-loop incremental system and the equilibrium point is just stable.

LaSalle-Barbashin-Krasovskii theorem

As stated in [16], LaSalle-Barbashin-Krasovskii theorem can be given as,

Theorem 3.4.3 (LaSalle-Barbashin-Krasovskii theorem) Let x = 0 be an equilib-
rium point for (3.40). Let V : D → R be a continuously differentiable positive definite
function on a domain D containing the origin x = 0, such that V̇(x) ≤ 0 in D. Let
S = {x ∈ D|V̇(x) = 0} and suppose that no solution can stay identically in S, other than
the trivial solution x(t) ≡ 0. Then, the origin is asymptotically stable. Furthermore, if V
is also radially unbounded, then the origin is globally asymptotically stable.

From Theorem 3.4.3, if it could be proven that no solution trajectory can stay
identically at points where V̇wn(q̃n, ζ̃) = 0, except (q̃ = 0, ζ̃ = 0), then the equilib-
rium point is stable.

The incremental closed loop system, eq. (3.76), again stated here,

Jn ˙̃qn = − f̃ (q̃n) + g̃(q̃n, Kp, ζ̃) (3.100a)

˙̃ζ = −KiCq̃n (3.100b)

Expanding f̃ and g̃ using eq. (3.73) and (3.74).

Jn ˙̃qn = − f (qn) + f (q∗n) + g(qn, Kp, ζ)− g(q∗n, Kp, ζ∗) (3.101a)

˙̃ζ = −KiCq̃n (3.101b)
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Expanding g(·) using eq. (2.78) and then expanding α(·) using eq. (3.55).

Jn ˙̃qn = − f (qn) + f (q∗n) + BnPT(−Ah2|qp| ◦ qp + Ah0(−Kp(qp − q∗p) + ζ)

+ Ah2|q∗p| ◦ q∗p − Ah0(−Kp(q∗p − q∗p) + ζ∗)) (3.102a)

˙̃ζ = −KiCq̃n (3.102b)

Now for q̃ = 0, qn = q∗n, also due to (3.52) qp = q∗p. With this relation and eq.
(3.53), eq. (3.102) is reduced to,

0 = CT Ah0(ζ − ζ∗) (3.103a)

˙̃ζ = 0 (3.103b)

Ah0 is a positive definite diagonal matrix and C is a extraction matrix, implying
ζ = ζ∗, (ζ̃ = 0) when q̃ = 0. In conclusion q̃ = 0 implies ζ̃ = 0 and ˙̃ζ = 0,
therefore from theorem 3.4.3 it can be said that the equilibrium point (q̃ = 0, ζ̃ = 0)
is asymptotically stable. Also, Lyapunov function Vwn(q̃n, ζ̃) is radially unbounded
therefore it can be concluded that the equilibrium point (q̃ = 0, ζ̃ = 0) is globally
asymptotically stable. For the system it implies that for any positive definite Kp

and Ki the water network model can be stabilized at an arbitrary equilibrium point
by the PI controller.

3.4.2 Stability analysis on the linearized model with delay and PI con-
trol

Section 3.4.1 concludes that the inner closed-loop system is globally asymptotically
stable at an arbitrary equilibrium point but the results from the laboratory test,
presented in figure 3.5, contradicts this. This could be due to the fact that the
laboratory setup has an output delay, which was not been taken into account in
the Lyapunov stability analysis.

Figure 3.7 presents the delay in the pumps in the laboratory setup. A step input
of 70% pump speed is given to the pump at 5 sec time instance and in the figure it
can be observed that the flow only starts to rise at 9 sec time instance, signifying a
output delay of 4 sec in the water network.

To analyse stability of the closed loop network with the output delay the water
network model is linearised at an equilibrium point. And as [16] points out, qual-
itative behaviour of a nonlinear system near an equilibrium point can be deduced
from it’s linearised system at that point. Again for simplification in the stability
analysis of the linearised system, the consumer valve’s opening degree is assumed
to be constant. The nonlinear dynamic model for the water network is given by eq.
(2.89), again presented here.
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Figure 3.7: Delay in the pumps in the laboratory setup

BnJ BT
n q̇n = −Bn(λ(qC, d̄ f , d̄τ) + µ(qC, d̄ f , d̄τ, OD)− α(qC, d̄ f , d̄τ, ω))

+N (z̄− 1z0) + I(pτ − 1p0) (3.104a)

ṗτ = −T dτ (3.104b)

ω can be represented in terms of ωp and eq. (3.104) can also be written as,

q̇n = (BnJ BT
n )
−1(−Bn(λ(qn) + µ(qn)− α(qn, ωp)) +N (z̄− 1z0) + I(pτ − 1p0))

(3.105a)
ṗτ = −T dτ (3.105b)

Equation (3.105) can be represented in form,

ẋ = fc(x, ωp) (3.106)

where,

x =

[
qn

pτ

]
(3.107)

fc =

[
(BnJ BT

n )
−1(−Bn(λ(qn) + µ(qn)− α(qn, ωp)) +N (z̄− 1z0) + I(pτ − 1p0))

−T dτ

]
(3.108)
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The states in the model, (3.106), are qn, pτ and the input to the model is ωp. The
nonlinear model can be linearised using Taylor series expansion at an equilibrium
point, (x∗,ω∗p),

fc(x, ωp) ≈ fc(x∗, ω∗p) +
∂ fc

∂x

∣∣∣∣
(x∗,ω∗p)

x̃ +
∂ fc

∂ωp

∣∣∣∣
(x∗,ω∗p)

ω̃p (3.109)

where,

x̃ = x− x∗ (3.110a)

ω̃p = ωp −ω∗p (3.110b)

For the water distribution network presented in section 2.4, an operating point
for the input, ωp, is chosen and the equilibrium point for the system is calculated.
Linearised model can be represented in a form as,

˙̃x = Asys x̃ + Bsysω̃p (3.111a)

y = q̃p = Csys x̃ (3.111b)

where,
qp is a vector of flows through the pump edges of the network

Equilibrium point calculation and linearised model matrices are presented in
appendix B.

A delay in a system in Laplace transform is given as e−Tds, which can be ap-
proximated using Padé approximant as,

e−Tds =
1− (Tds/2)
1 + (Tds/2)

(3.112)

where,
Td is the delay time

The transfer function for delay can be represented in state space form as,

ẋd = Adxd + Bdud (3.113a)

yd = q̃p,d = Cdxd + Ddud (3.113b)

where,
xd is the state of the delay model
ud is the input to the delay model
yd is the output of the delay model
qp,d is the delayed pump flow measured by the sensors
Ad, Bd, Cd and Dd are the state space matrices of the delay model
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Figure 3.8: Complete delayed water distribution network model

Figure 3.8 presents complete delayed water distribution network model. The
delayed model consist of water network model,(3.111), to which the input is ω̃p

and the output is q̃p, and the delay model, (3.113), to which the input is q̃p and the
output is q̃p,d. Equivalent delayed water distribution network model, with input
ω̃p and output q̃p,d can be given as,

ẋcd = Acdxcd + Bcdω̃p (3.114a)

yd = q̃p,d = Ccdxcd (3.114b)

where,

xcd =

[
x̃
xd

]
(3.115a)

Acd =

[
Asys 0

BdCsys Ad

]
(3.115b)

Bcd =

[
Bsys

0

]
(3.115c)

Ccd =
[
DdCsys Cd

]
(3.115d)

Again, values of all the system matrices are presented in appendix B. To this
delayed linearised system model, (3.114), a feedback PI control is applied. The
aim of the PI control is to regulate pump speeds to control pump flows at given
set-point. The equation for PI control can be given as,

ζ̇ = −Ki(q̃p,d − q̃∗p) (3.116a)

ω̃p = −Kp(q̃p,d − q̃∗p) + ζ (3.116b)

where,
ζ is the integral state
Ki is a positive definite diagonal matrix of integral gain
Kp is a positive definite diagonal matrix of proportional gain
q̃∗p is a vector of pump flows set-point
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With network model (3.114) and the PI control (3.116), the closed loop system
model can be given as,

ẋcl = Aclxcl + Bcl q̃∗p (3.117a)

yd = q̃p,d = Cclxcl (3.117b)

where,

xcl =

[
xcl
ζ

]
(3.118a)

Acl =

[
Acd − BcdKpCcd Bcd
−KiCcd 0

]
(3.118b)

Bcl =

[
BcdKp

Ki

]
(3.118c)

Ccl =
[
Ccd 0

]
(3.118d)

Qualitative behaviour of this linear closed-loop delayed system model can be
determined by analysing the eigenvalues of the state transition matrix Acl . From
the elements of Acl it can be observed that the eigenvalues, ergo the closed-loop
system behaviour is dependent on the delay and the PI gains. Eigenvalues of Acl ,
assuming a 4 sec delay and various PI gains is presented below,

• Kp= 3, Ki= 1.1

eig(Acl) =



−38.1027
−23.8710

−0.1893 + 0.4848j
−0.1893− 0.4848j
−0.2176 + 0.2991j
−0.2176− 0.2991j

−0.0001
−0.2908 + 0.0236j
−0.2908− 0.0236j
−0.3117 + 0.0209j
−0.3117− 0.0209j



(3.119)

Figure 3.9 presents the local flow control of the pumps by PI control with PI
gains Kp= 3, Ki= 1.1 for both the pumps. The oscillations in the flow can be
accounted for the imaginary part of the eigenvalues in (3.119).
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Figure 3.9: Local flow control of the pump flows by a PI controller with PI gains Kp= 3, Ki= 1.1

• Kp= 1.7, Ki= 0.7

eig(Acl) =



−38.2777
−23.9393

−0.2825 + 0.2869j
−0.2825− 0.2869j

−0.0001
−0.2285 + 0.1222j
−0.2285− 0.1222j
−0.3158 + 0.0583j
−0.3158− 0.0583j
−0.3322 + 0.0303j
−0.3322− 0.0303j



(3.120)

Figure 3.10 presents the local flow control of the pumps by PI control with
PI gains Kp= 1.7, Ki= 0.7 for both the pumps. Comparing the flow behaviour
in 3.10 with 3.9, the oscillations are to a smaller extent, this is because the
imaginary part of the eigenvalues in (3.120) is smaller. Also, due to small PI
gain values the system behaviour is slow as it takes longer time to even reach
the set-point, which is also not desirable.
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Figure 3.10: Local flow control of the pump flows by a PI controller with PI gains Kp= 1.7, Ki= 0.7

• Kp= 1.7, Ki= 0.7 with delay of 6 sec

eig(Acl) =



−38.2797
−23.9406
−0.0001

−0.1259 + 0.2462j
−0.1259− 0.2462j
−0.1231 + 0.1667j
−0.1231− 0.1667j

−0.4753
−0.4345
−0.2665
−0.3073



(3.121)

The eigenvalues of the system with an increased delay of 6 sec and PI gains
of Kp= 1.7, Ki= 0.7 for both the pumps are given by (3.121). It can be seen
that with increased delay the imaginary part in the eigenvalues are larger,
and this could result in higher oscillations in the system.

To summarize the stability analysis of the closed-loop system of the water dis-
tribution network flow control by a PI controller, it can be said that the system
is globally asymptotically stable when the system does not have any delay. The
oscillations observed in the laboratory test could be due to output delay in the
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laboratory setup. Higher the delay in the system the oscillations are higher. Low
PI gains can result in lower oscillations but they slow down the system behaviour
resulting in longer time to reach the set-point. With a sampling time of 1 minute
for the supervisory control a fast response is required from the inner closed-loop
system, therefore for the testing of supervisory control in the laboratory setup, Kp=
3, Ki= 1.1, PI gains were selected. Supervisory control test results in the laboratory
setup are presented in chapter 6.



Chapter 4

Consumer demand prediction using
Kalman filter

In this chapter a predictor for consumer demand prediction will be presented.
Foremost a Fourier series model of the periodic consumer demand has been de-
veloped. Then, the developed model along with tank pressure measurements are
used in a Kalman filter for estimation of the consumer demands. Furthermore,
a Kalman filter based predictor is developed for prediction of future consumer
nodal demands to be used along with NMPC for the control of water distribution
network.

4.1 Fourier analysis

Any arbitrary periodic signal can be modelled as a weighted combination of sines
and cosines using Fourier series as presented below[7],

yF(t) = a0 +
N

∑
n=1

(
ancos(nω0t) + bnsin(nω0t)

)
(4.1)

where,

ω0 = 2π f0 (4.2)

f0 is the fundamental frequency of the periodic signal
an is weight of the cosine components of the nth harmonic in the

periodic signal
bn is weight of the sine components of the nth harmonic in the pe-

riodic signal

Instead of representing the Fourier series in terms of fundamental frequency
and it’s harmonics, it can also be represented with only the L dominant frequencies

61
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and the other frequencies can be disregarded. With this form number of terms
to be used to represent the Fourier series reduces. Taking into account only the
L dominant frequencies of the signal, the Fourier series in eq. (4.1) can also be
presented as,

yF(t) = a0 +
L

∑
l=1

(
alcos(ωlt) + blsin(ωlt)

)
(4.3)

The discretized Fourier series can now be presented as,

yk
F = a0 +

L

∑
l=1

(
alcos(ωlkTs) + blsin(ωlkTs)

)
for k = 1, ..., K (4.4)

where,
K is the total number of data samples
yk

F is the signal value at kth instance
Ts is the sampling time

4.1.1 State space representation of Fourier series model

The Fourier series model can also be represented in discrete time state space form
of

xk+1 = φxk + Γuk (4.5a)

yk
F = Cxk + Duk (4.5b)

where,
xk is the state vector
uk is the input vector
φ is the state transition matrix
Γ is the input matrix
C is the output matrix
D is the feed-through matrix

A representation in a discrete time state space form allows predicting the val-
ues of the next state and output, based on knowledge of current state and input
values assuming a perfect model. Initially, considering there is only one dominant
frequency.

yk
F = a0 + a1cos(ω1kTs) + b1sin(ω1kTs)

= xk
1 + xk

2

(4.6)
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with

xk =

 a0

a1cos(ω1kTs) + b1sin(ω1kTs)

−a1sin(ω1kTs) + b1cos(ω1kTs)

 (4.7)

where,
Ts is the sampling time

Now, the state value at time instance (k + 1) can be given in form of state value
at time instance k as,

xk+1
1 = a0

= xk
1

(4.8)

xk+1
2 = a1cos(ω1(k + 1)Ts) + b1sin(ω1(k + 1)Ts)

= a1cos(ω1kTs + ω1Ts) + b1sin(ω1kTs + ω1Ts)

= cos(ω1Ts)(a1cos(ω1kTs) + b1sin(ω1kTs)) + sin(ω1Ts)(−a1sin(ω1kTs) + b1cos(ω1kTs))

= cos(ω1Ts)xk
2 + sin(ω1Ts)xk

3

(4.9)

Similarly,

xk+1
3 = −sin(ω1Ts)xk

2 + cos(ω1Ts)xk
3 (4.10)

With equations (4.6), (4.8), (4.9) and (4.10) state space matrices can be given as,

φ =

1 0 0
0 cos(ω1Ts) sin(ω1Ts)

0 −sin(ω1Ts) cos(ω1Ts)

 (4.11)

Γ = 0 (4.12)

C =
[
1 1 0

]
(4.13)

D = 0 (4.14)

Complete state space model can be presented as,

xk+1 =

1 0 0
0 cos(ω1Ts) sin(ω1Ts)

0 −sin(ω1Ts) cos(ω1Ts)

 xk (4.15a)
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yk
F =

[
1 1 0

]
xk (4.15b)

Now considering L dominant frequencies in the signal, the output equation can
given by eq. (4.4) and the state vector can be given as,

xk =



a0

a1cos(ω1kTs) + b1sin(ω1kTs)

−a1sin(ω1kTs) + b1cos(ω1kTs)

a2cos(ω2kTs) + b2sin(ω2kTs)

−a2sin(ω2kTs) + b2cos(ω2kTs)
...

aLcos(ωLkTs) + bLsin(ωLkTs)

−aLsin(ωLkTs) + bLcos(ωLkTs)


(4.16)

With equations (4.4) and (4.16), the state space model matrices can now be given
as,

φ =


1 0 0 · · · 0
0 φ1 0 · · · 0
0 0 φ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · φL

 (4.17)

φi =

[
cos(ωiTs) sin(ωiTs)

−sin(ωiTs) cos(ωiTs)

]
(4.18)

Γ = 0 (4.19)

C =
[
1 1 0 1 0 · · · 1 0

]
1×(2L+1) (4.20)

D = 0 (4.21)

Complete state space model for the periodic signal considering L dominant
frequencies can given as,

xk+1 =


1 0 0 · · · 0
0 φ1 0 · · · 0
0 0 φ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · φL

 xk (4.22a)

yk
F =

[
1 1 0 1 0 · · · 1 0

]
xk (4.22b)
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The discrete state space model presented in (4.22) with any chosen sampling
time Ts, the periodic signal can be predicted, given initial condition of the states.

Assuming consumer demand to be periodic, a consumer demand curve can
also be represented as a periodic signal and in turn can be represented by the
Fourier series state space model.

Dk
c = yk

F (4.23)

where,
Dk

c is sum of all consumer demands in the network
at kth instance

Dk
c = ∑ dk

c

yk
F is the output of the Fourier series state space

model

Therefore, given the initial conditions the consumer demand curve can be pre-
dicted using the Fourier series state space model. However, in reality the correct
initial conditions are not known, which might result in incorrect predictions. To
deal with this issue a Kalman filter is to be developed, discussed in section 4.2

4.2 Prediction of the consumer demand curve with Kalman
filter

4.2.1 Kalman filter

Kalman filter is an optimal state estimator for a linear system, which can be used
for prediction or filtering of state data[8]. Given a discrete time state space system
as,

xk+1 = φxk + Γuk + wk (4.24a)

yk = Cxk + vk (4.24b)

where,
wk ∼ N (0, Q) is the process noise at kth time instance
vk ∼ N (0, R) is the measurement noise at kth time instance
Q is the covariance matrix of the process noise
R is the covariance matrix of the measurement noise

In a Kalman filter algorithm the process and measurement noises are assumed
to be white and independent.

At kth time instance given the initial state value, x0, and the measurement,
y0 · · · yk and u0 · · · uk, an optimal estimator provides an optimal estimate for x̂k.
The estimate is optimal in sense that it minimizes the mean square error, i.e. min-
imizing E[(xk − x̂k)T(xk − x̂k)]. This formulation is known as linear minimum
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mean square error (LMMSE) estimator and this requires prior knowledge till time
instance k. Kalman filter is a recursive implementation of the LMMSE estimator,
in which knowledge of state at (kth − 1) time instance and current measurement
is required for optimal estimation. The properties of LMMSE estimator also ap-
plies to Kalman filter and therefore Kalman filter is also an optimal and unbiased
estimator fulfilling the orthogonality principle[8].

The Kalman filter algorithm comprises of a prediction steps and correction step.
In the prediction steps, given the correct state information, x̂k|k, and the current
inputs, uk, the next state value, x̂k+1|k, is predicted. Also, the auto-covariance
of the predicted state estimate error, Pk+1|k is calculated in the prediction steps.
The notation k|k denotes estimate for kth time instance given all the information
till kth time instance, whereas notation k + 1|k denotes estimate for kth + 1 time
instance given all the information till kth time instance. In the correction steps,
given the previously predicted state, x̂k|k−1, and the current measured output, yk,
the optimal state value, x̂k|k, is estimated. Again, auto-covariance of the corrected
state estimate error, Pk|k is calculated in the correction steps. The complete Kalman
filter algorithm as given in [9, 4] is presented below,

Initialization

1. Set appropriate values for Q and R matrices

2. Initialize with a predicted state estimate

x̂0 = xinit (4.25)

3. Set an initial value for auto-covariance of the predicted state estimate error

P0 = Pinit (4.26)

Correction Steps

4. Calculate Kalman Filter Gain, K

Kk = Pk|k−1CT[CPk|k−1CT + R]−1 (4.27)

5. Calculate innovation variable, e

ek = yk − Cx̂k|k−1 (4.28)

6. Calculate the corrected state estimate, x̂k|k

x̂k|k = x̂k|k−1 + Kkek (4.29)
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7. Calculate auto-covariance of corrected state estimate error

Pk|k = [I − KkC]Pk|k−1 (4.30)

Prediction Steps

8. Predict state estimate for the next time instance

x̂k+1|k = φxk|k + Γuk (4.31)

9. Calculate auto-covariance of predicted state estimate error

Pk+1|k = φPk|kφT + Q (4.32)

Repeat steps 4 to 9

4.2.2 Kalman filter for the estimation of the consumer demand

The discretized equation for pressure at the bottom of the elevated reservoir can
be given by (2.52),

pk+1
τ = pk

τ − T dk
τTs (4.33)

where

dk
τ = −

(
∑ dk

c + ∑ uk
)

(4.34)

dk
τ = −

(
Dk

c + Uk
)

(4.35)

where,
T is the tank parameter dependent on the cross

sectional area
[Pa/m3]

Dk
c is sum of all consumer demands in the network

at kth instance
Dk

c = ∑ dk
c

Uk is sum of all flow from the pumps into the net-
work at kth instance

Uk = ∑ uk

Now (4.33) can be written as,

pk+1
τ = pk

τ + T TsDk
c + T TsUk (4.36)

With the consumer demand curve presented as a Fourier series state space
model, in (4.22) and (4.23), the difference equation for pressure at the bottom of
the elevated reservoir can be represented in state space model form, with state
vector being,
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xk =


a0

a1cos(ω1kTs) + b1sin(ω1kTs)
...

−aLsin(ωLkTs) + bLcos(ωLkTs)

pk
τ

 (4.37)

The input to the model is the flow from the pumps, and only measurement
available from the sensor is the pressure at the bottom of the elevated reservoir,
and therefore the input and the output vectors can now defined as,

uk = Uk (4.38)

yk = pk
τ (4.39)

With equations (4.37), (4.38) and (4.39), the state space model matrices can now
be given as,

φ =



1 0 0 0 0 · · · 0 0 0
0 φ1 0 0 0 · · · 0 0 0
0 0 φ2 0 0 · · · 0 0 0
0 0 0 φ3 0 · · · 0 0 0
0 0 0 0 φ4 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · φL 0 0
T Ts T Ts 0 T Ts 0 · · · T Ts 0 1


(4.40)

Γ =



0
0
0
0
0
...
0
T Ts


(4.41)

C =
[
0 · · · 0 1

]
(4.42)

D = 0 (4.43)

The complete state space model can be presented as,
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xk+1 =



1 0 0 0 0 · · · 0 0 0
0 φ1 0 0 0 · · · 0 0 0
0 0 φ2 0 0 · · · 0 0 0
0 0 0 φ3 0 · · · 0 0 0
0 0 0 0 φ4 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · φL 0 0
T Ts T Ts 0 T Ts 0 · · · T Ts 0 1


xk +



0
0
0
0
0
...
0
T Ts


Uk (4.44a)

yk =
[
0 · · · 0 1

]
xk (4.44b)

Using the state space model, presented in eq. (4.44), in Kalman filter along
with tank pressure measurements and pumps flows, all the states can be estimated.
From the estimated states, the consumer demand can be estimated as,

D̂k
c =

[
1 1 0 1 0 · · · 1 0 0

]
x̂k (4.45)

where,
D̂k

c is the estimated consumer demand at kth instance
x̂k is the estimated state vector at kth instance from Kalman filter

The tank pressure measurements from the sensor will also consist of sensor
noise. This sensor noise is also filtered in the Kalman filter and the estimate of the
tank pressure can be given as,

p̂k
τ =

[
0 · · · 0 1

]
x̂k (4.46)

where,
p̂k
τ is the estimated pressure of the tank at kth instance

4.3 Predictor simulation test results

Figure 4.1 presents a simulated consumer demand pattern for the network pre-
sented in section 2.4. The time scale is of 24 minute, to signify 24 hrs of a day, with
a sampling time of 1 sec. The consumer demand presented is the total consumer
demand of the network, i.e. sum of the two consumer demands. For presenta-
tion the consumer demand plotted is negative of the actual consumer demand.
The consumer demand is simulated with a periodic signal function composed of
0.0007 and 0.0014 Hz frequency components.These values were chosen as with
these values the simulated consumer demand represents actual demand pattern in
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a water network, that is demands are high during morning and evening hours and
low during afternoon and night hours.

Using the data from the simulated consumer demand curve, figure 4.1, the
power distribution of various frequency component is calculated using fast Fourier
transform. From the power distribution amplitude spectrum of the consumer de-
mand curve can be plotted, presented in figure 4.2. Amplitude spectrum is square
root of power spectrum, which again represents power distribution of different
frequency components in a signal. From an amplitude spectrum plot dominant
frequencies of signal can be found, i.e. by defining a threshold power and if for a
frequency the power is higher than the threshold it can be considered as a domi-
nant frequency. From the amplitude spectrum plot of the consumer demand curve,
it is observed that the consumer demand curve is composed of two dominant fre-
quency components, i.e L = 2.

ω1 = 2π f1 = 2π(0.0007) = 0.0044 (4.47a)

ω2 = 2π f2 = 2π(0.0014) = 0.0087 (4.47b)

This finding matches with the foreknowledge, as the consumer demand curve
is simulated by the periodic signal function with the same frequencies. This is a
method proposed to fixed dominant frequencies for any given periodic signal and
the results, (4.47), show that the proposed method produces correct results.

From the frequencies given in eq. (4.47) with sampling time Ts = 60 sec, the
state space matrices for the consumer demand curve presented in figure 4.1 can be
given as,

φ =


1 0 0 0 0
0 0.9659 0.2588 0 0
0 −0.2588 0.9659 0 0
0 0 0 0.8660 0.5000
0 0 0 −0.5000 0.8660

 (4.48a)

Γ = 0 (4.48b)

C =
[
1 1 0 1 0

]
(4.48c)

D = 0 (4.48d)

The state space model developed for the consumer demand curve, in eq. (4.48),
can be validated by running an open loop simulation with state space model and
comparing it with the actual consumer demand curve. Figure 4.3 presents compar-
ison of the actual and the predicted consumer demand curve using a state space
model. The initial state values are provided to be same as the actual consumer
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Figure 4.3: Comparison of actual and predicted consumer demand curve from state space model

demand curve, and the state space model, in eq. (4.48), is used for prediction of
the consumer demand curve over 24 minute time period. From the figure 4.3 it
can be seen that given correct initial conditions the state space model developed is
capable of predicting the consumer demand curve and this validates the developed
state space Fourier series model for the consumer demand curve.

However, as discussed before the initial state conditions are not known, there-
fore the state space model for the consumer demand curve, in eq. (4.48), along
with the parameters of the water distribution network presented in section 2.4, the
state space model matrices for the model in eq. (4.44) can be given as,

φ =



1 0 0 0 0 0
0 0.9659 0.2588 0 0 0
0 −0.2588 0.9659 0 0 0
0 0 0 0.8660 0.5000 0
0 0 0 −0.5000 0.8660 0

0.0058 0.0058 0 0.0058 0 1


(4.49a)

Γ =


0
0
0
0

0.0058

 (4.49b)
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Figure 4.4: Open loop simulation test data: Flow from the pumps, consumer demand curve and
level of water in the tank

C =
[
0 0 0 0 0 1

]
(4.49c)

D = 0 (4.49d)

The Kalman filter is tested with a open loop simulation test data for the network
presented in section 2.4. Figure 4.4 presents open loop simulation test data over
a period of 216 minute. The pump flows and the consumer demand curves are
periodic over a period of 24 minute. Over this 24 minute period the pumps are
running intermittently, from 0 to 10 minute and 15 to 20 minute time instances in
each period. When the pumps are running, pump 1 provides a flow of 0.25 m3/h
and pump 2 provides a flow of 0.15 m3/h. When the pumps are running, the
consumer demands are met by the pumps and also the water flows into the tank,
and the level of the tank can be seen to be increasing. When the pumps stop the
consumer demands are met by the tank and the level of the tank can be seen to be
decreasing.

The measurement data, i.e. pressure at the bottom of the tank, and the input
data, i.e. flow from the pumps, is given to the Kalman filter. Gaussian white noise
with 0 mean and covariance of 2.5 · 10−7 is added to the measurement data to sim-
ulate measurement noise in the data. The Kalman filter parameters are presented
below:
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• Initial state estimate
xinit =

[
0 0 0 0 0 0

]
(4.50)

• Initial covariance matrix of the predicted state estimate error

Pinit =



100 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100


(4.51)

• Covariance matrix of process noise

Q = 10−4



0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 1.7 · 10−5


(4.52)

• Covariance of measurement noise

R = 2.5 · 10−7 (4.53)

The Kalman filter aims to estimate total consumer demand in the network.
Figure 4.5 presents a comparison between the actual consumer demand and the
estimated consumer demand. It is to be noted that consumer demand presented
here is the sum of both the consumer demands in the network. The initial estimate
value is 0 and it can be observed that after a period of 25 minute the estimated
consumer demand converges to the actual consumer demand, and later follows it
closely throughout the simulation period.

Figure 4.6 presents a comparison between actual pressure measurements (with
noise) at the bottom of the tank and the Kalman filter estimated pressure. As
mentioned before the Kalman filter is presented with noisy measurements and the
Kalman filter aims to filter the noise. The figure also presents the pressure mea-
surements without noise and it can be observed that the Kalman filter is successful
in estimating the pressure measurements.

From these results it can be concluded that Kalman filter developed could be
used for the prediction of the consumer demand curve.
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Kalman filter
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4.3.1 Kalman filter based consumer demand predictor

Figure 4.7: The structure of consumer demand predictor

Section 4.2.2 presented Kalman filter that can be used for estimation of the con-
sumer demand based on the measurement signals of the pressure in the tank,
whereas the NMPC requires the future prediction of the consumer demand to
solve the optimization problem. The structure of the consumer demand predictor
is presented in figure 4.7. The consumer demand predictor consists of the Kalman
filter estimator, the one presented in section 4.2.2, which takes value of the flow
from the pumps and the tank pressure measurements as an input, and provides
estimate of the states as an output. From the estimated states, the estimates of
the consumer demand and the tank pressure can be calculated using eq. (4.45)
and (4.46). Once the consumer demand at the kth instance is estimated the future
consumer demand till the prediction horizon (k + Hp) can be predicted by using
Fourier series state space model of the consumer demand curve given by eq. (4.48).
At the next time instance (k + 1), with the new measurement signal available, the
estimate of consumer demand is updated and again future consumer demand over
the prediction horizon is predicted.

Figure 4.8 is an extension of the simulation test results presented by figure 4.5
and 4.6, which presents a comparison between actual consumer demand and the
predicted consumer demand. At time instance 215 minute the consumer demand
is estimated using the Kalman filter, and using this value as the initial state in
the consumer demand curve state space model, eq. (4.48), the future consumer
demand is predicted over the prediction horizon till 239 minute time instance.
From the figure it can be observed that even without the measurement signals the
predicted consumer demand curve closely follows the actual consumer demand
curve.
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Figure 4.8: Comparison of the actual consumer demand and the predicted consumer demand from
the consumer demand predictor

The predicted consumer demand from the predictor is sum of all the consumer
demands in the network, whereas the optimization problem in NMPC requires pre-
diction of individual consumer demands of each consumer. Individual consumer
demands of the consumer nodes can be represented as,

dc = vDc (4.54)

where,
dc is a vector of consumer nodal demand flows in the network
Dc is sum of all consumer demand flows in the network
v is distribution vector of total consumer demand among the indi-

vidual consumers. ∑i vi = 1 and vi ∈ [0, 1]

In this project, the distribution vector, v, is assumed to be constant and based on
the prior knowledge of the consumer demand pattern. Also, v can be assumed to
be known as in a real life scenario it can be approximated using consumer billing
data. For the network simulation test presented by figure 4.4, the distribution
vector is found to be,

v =

[
0.5939
0.4061

]
(4.55)

Figure 4.9 presents a comparison between actual consumer demand and the
predicted consumer demand for each node individually. From the prediction of
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Figure 4.9: Comparison of the individual actual consumer demand and the predicted consumer
demand

the total consumer demand, from figure 4.8, using the distribution vector, from
eq. (4.55), individual consumer demands for node d2 and d5 is calculated. Again,
it can be observed that the predicted individual consumer nodal demands closely
follows the actual consumer nodal demands. With the results from this section it
can be concluded that the Kalman filter based predictor developed can be used
for prediction of consumer nodal demands, further to be used in solving NMPC
optimization problem.

Figure 4.10 presents an updated control structure with the consumer demand
predictor. The consumer demand predictor takes in the actual flow from the pumps
to the network and the tank pressure measurements from the sensor as an input.

Figure 4.10: The updated control structure along with the Kalman filter based consumer demand
predictor
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The output from the predictor is the future prediction of the consumer demands,
which is provided to the NMPC. During the initial period when the predictions
are not correct, a upper and lower saturation limits are applied over prediction
based on the knowledge that at any given point the consumer demand would
not be more than a certain value and consumers won’t be supplying water to the
network. The consumer demand predictor also estimates the tank pressure value,
which is also provided to the NMPC for solving the optimization problem. And
again the NMPC and the consumer demand predictor operates at a sampling time
of 60 sec, whereas the PI control operates at a sampling time of 1 sec.

Using the control structure, figure 4.10, simulation and laboratory tests were
carried out and the results are presented in chapter 6.





Chapter 5

Laboratory Setup

This chapter presents the water distribution network setup in the laboratory. First
the modular structure and various modules of the smart water laboratory are pre-
sented. Then the communication network in the laboratory is presented. Then the
network built in the laboratory is presented. Finally, the implementation of the
control structure in a Simulink program for testing of the controller in the labora-
tory is presented.

5.1 Smart water laboratory

The water network presented in section 2.4 is emulated in a smart water laboratory.
The laboratory is a modular type consisting different modules, such as pumping
station module, pipe module, consumer station module, to emulate different parts
of a water distribution network. These modules can be connected to each other by
means of external pipes to form a desired water network.

Figure 5.1 presents a 3-dimensional representation of a one the smart water
laboratory module. The module presented in the figure is a consumer station
module which can be used to emulate a consumer or an elevated reservoir. Each
module is equipped with some actuators and sensor for control and monitoring of
the network. Each module has hand operated exterior valves, to which external
pipes are connected to form a desired water network.

81
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Figure 5.1: 3-dimensional representation of a smart water laboratory module created by Poul Due
Jensen Foundation, Grundfos

5.1.1 Smart water laboratory modules

Pumping station module

Figure 5.2 presents as schematic representation of the pumping station module.
As the name suggests the pumping station module is used to emulate a pumping
station of a water distribution network. The pumping station modules consists a
reservoir tank, which can be considered as a water production facility or an infi-
nite reservoir in a water network. The tank’s bottom valve is connected to a set
of pumps, running in parallel, these pumps are denoted as the primary pumps,
ppri. In this project only one pump from the set has been employed. The outlet
of the pump connects to one of the hand operated exterior valves, which is fur-
ther connected to the water network. The primary pump in the modules is to be
considered as the pumping unit in a water distribution network, and therefore the
function of this pump is to supply water to the network.

The tank in the pumping station is assumed to be infinite source of water and
to ensure water availability in the supply reservoir another set of pumps in the
pumping module are operated, these pumps are connected in parallel and denoted
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Figure 5.2: Schematic representation of the pumping station module in the smart water lab[22]

as auxiliary pumps, paux. The auxiliary pumps can be connected to the top valve
of the tank. The purpose of the auxiliary pumps is to transport water from the
consumer station tanks to the pumping station tanks. These pumps are not part
of the water distribution network, they are not modelled and there are merely for
re-circulation of water in the laboratory setup network.

Apart from the pumps, the pumping station module is equipped with flow
sensors to measure the flow by pumps and pressure sensors to measure pressure
supplied by the pumps.

Pipe module

The pipe module is to emulate pipes in a water distribution network. The modules
consist of 4 set of pipes connected to hand operated exterior valves at both ends,
in the figure 5.3 only one such set is presented. Each set is further made of smaller
pipe segments. Each set can be used to form a 3 way connection in a water distri-
bution network. There are on/off valves, V1, V2, V3, inside the module to select the
pipe segments to be included in the laboratory water network setup. The module
is equipped to measure the flow and pressure sensors.
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Figure 5.3: Schematic representation of the pipe module in the smart water lab[22]

Consumer station/ Elevated reservoir module

Figure 5.4: Schematic representation of the consumer station/ elevated reservoir module in the smart
water lab[22]

Figure 5.4 presents schematic representation of module which has two functional-
ity, it can either be used to emulate consumers or an elevated reservoir in the water
network. 3-dimensional representation of this module was presented in figure 5.1.
This module consist a tank to which controllable valves are connected at the bot-
tom and top. When the module is to be used to emulated consumers the top flow
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control, V1, V2, valves come into play, the two valves can be considered to be as
two consumers of the water network. The valve opening degree can be regulated
to emulate variable consumer demand. The bottom valve, V3, is from where the
tank can be emptied, this valve is connected to the auxiliary pump in the pumping
station module, and as mentioned before the water is re-circulated in the network.

When the module is to be used as an elevated reservoir, top valves are closed
and the bottom valve is connected to the network through the hand operated ex-
terior valve. The flow of water in the module is through bottom valve only. The
module also has an air control unit with which the tank can be pressurised to em-
ulate elevation. With the air control unit elevation for both the consumers and the
reservoir can be emulated. A maximum of 5m of elevation can be emulated in the
module with pressurized air. The module is also equipped with flow, pressure and
differential pressure sensors.

5.1.2 Smart water laboratory communication network

Figure 5.5: Smart water laboratory communication network setup[22]

Figure 5.5 presents the smart water laboratory communication network. On the
laboratory modules the sensors and the actuators are connected to data acquisition
(DAQ) input/output modules through field wire, where the communication is
analog. The I/O module converts the analog signal to digital signal. The I/O
modules are further connected to a Raspberry Pi, which is again present on the
laboratory module, and the communication between the two is via EtherCAT. On
the Raspberry Pi a CodeSys run-time system continuously runs in the back-end,
converting the Raspberry Pi into a soft PLC. A HMI screen is also mounted on the
Raspberry Pi, this allows local control of the laboratory module.

All the Raspberry Pi from the laboratory modules are connected to a common
Ethernet switch, to which a Central Control Unit(CCU) is also connected and the
communication is Modbus TCP/IP. The CCU is a desktop PC, from which the
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laboratory modules can be controlled remotely. On the CCU a MATLAB/Simulink
program can be used to implement a controller for the water distribution network
setup.

5.2 Water distribution network setup in the laboratory

Figure 5.6: Representation of laboratory water distribution network setup[22]

Figure 5.6 presents the water distribution network setup in the smart water labora-
tory. This setup is to emulate the water distribution network presented in section
2.4. The water network is setup by connecting different modules, presented in sec-
tion 5.1.1, by means of external pipes which is represented by broken connections
in the figure.

The pipe module is used to emulate the pipes in the water distribution network
and these pipes will generate pressure drop in the network. The pipe lengths and
diameter are mentioned in the figure in the form x/y, where x is the length of the
pipe in meters and y is the diameter of the pipe in millimeters. The network con-
sists of two pumping station modules, Pu1 and Pu2, both having primary pumps
to supply water into the network. The pumping stations also have auxiliary pumps,
re-circulating the water in the network, and as mentioned before these are not part
of the main water network therefore it is represented with a dotted line. The water
network also has an elevated reservoir, which is with the pressurized air elevated
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to 3 m. There are two consumers in the water network, which are both on the
same consumer station module, as consumer station modules has two flow control
valves on the top to represent two consumers.

5.3 Control structure implementation for the laboratory setup

Figure 5.7: Pump block subsystem in the Simulink program[22]

The control of the water network in the laboratory from CCU is through a MAT-
LAB/Simulink program. In the Simulink program there are subsystem blocks for
each module. One of such block is presented in figure 5.7, which is a pumping sta-
tion block. Inside the subsystem block there is ’modbus_read’ and ’modbus_write’
S-function to communicate with the Raspberry Pi, this is presented in figure 5.8.
Programming of these blocks are not part of the project and were already available
in the smart water laboratory.

The IP address of the module are provided to these S-function blocks. Different
ports for different components in the module are defined. The command to be
given to the module is given to ’modbus_write’ block, for example to run the
primary pump, in pumping station module, at a particular speed the command in
percentage will be given to the ’modbus_write’ block at the port designate for the
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Figure 5.8: S-function blocks, ’modbus_read’ and ’modbus_write’, inside the pumping station sub-
system in the Simulink program[22]

Figure 5.9: NMPC and consumer demand predictor implementation using Interpreted MATLAB
function

primary pump. Similarly, to get a sensor reading from the module, the Simulink
program reads from the ’modbus_read’ block.

Figure 5.9 presents implementation of NMPC and consumer demand predictor
using Interpreted MATLAB function. Whenever the Interpreted function is called
a .m file is called from Simulink in which the NMPC problem is defined and
solved using CasADi [1]. The CasADi problem is defined into a optimization object
variable, to which parameters are passed to obtain optimal solutions. The code for
defining the NMPC problem is presented in appendix A. The consumer demand
predictor is also implemented in the same .m file. The predictions of the consumer
demand is used by the NMPC for calculation of optimal flow commands. The
sampling time for the Interpreted function is 60 sec, which is the sampling time
for the NMPC and the predictor. The Interpreted function takes level of the tank
and average of the actual flow from the pumps over 60 sec as an input, and gives
out optimal flow commands from the pumps and the estimates for tank level and
consumer demand.

The optimal flow commands are sent to the PI controllers of each pump, which
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then regulate the pump speed between 0 to 100% to control the flow at desired set-
point by sending commands (between 0 to 100%) to the respective ’modbus_write’
S-function blocks. Apart from flow control of the pumps, another PI control is im-
plemented for control of consumer demand. The consumer demand PI controller
regulates the consumer valve opening degree (between 0 to 100%) to control the
consumer flow to a predefined consumer demand curve.

The test results of the implemented control structure on the laboratory water
distribution network are presented in section 6.3.





Chapter 6

Results

The test results of the NMPC along with the consumer demand predictor are pre-
sented in this chapter. First, the test details and the parameters for the NMPC and
the predictor are presented. Then the test results of the control on a simulated non-
linear network model is presented. Finally, the test results on the water network
setup in the laboratory is presented.

6.1 Test details, NMPC and predictor parameters

The control structure with the consumer demand predictor, presented in section
4.3.1, is implemented in MATLAB/Simulink and first tested on the simulated non-
linear plant model of the water network presented in section 2.4. Then the control
is test on the water network setup in the laboratory, which was presented in section
5.2. The test details, and the parameters for the NMPC and the consumer demand
predictor are presented below. Some of the test details and the NMPC parameters
are same as used in [22].

• Run time: 144 minute (representation of 144 hrs(or 6 days) in real life)

• Consumer demand pattern: Periodic at an interval of 24 minute. 24 minute
are representation of 24 hrs of day in real life, where the consumer demands
are higher during morning and evening hours compared to afternoon and
night hours.

• Plant: For simulation test, nonlinear model for the network presented in sec-
tion 2.4 and for the laboratory test, the water distribution network presented
in section 5.2.

• Control structure: Control structure presented by figure 4.10.The control
structure consists of the NMPC control with optimization problem, presented

91
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in section 3.2.2, implemented in CasADi. The control structure also consists
of the consumer demand predictor presented in section 4.3.1.

• Network parameters and constants used in the test

– Efficiency of pumps: 0.6

– Efficiency of motors: 0.9

– Density of water: 997 kg/m3

– Gravitational constant: 9.81 m/s2

• Noise in consumer demand(for simulation test): w ∼ N (0, 0.01)

• Noise in tank pressure measurement(for simulation test): v ∼ N (0, 0.0005)

• Sampling time for the plant: 1 sec

• Sampling time for NMPC: 60 sec

• Sampling time for consumer demand predictor: 60 sec

• NMPC parameters

– Prediction horizon: 24

– Weight for minimization of operational cost:

Q =

[
5.5 · 1010 0

0 5.5 · 1010

]
(6.1)

– Weight for minimization of pressure variations at consumer nodes:

R =

[
1 0
0 1

]
(6.2)

– Weight for minimization of slack variable:

$ = 105 (6.3)

– Minimum pressure of tank: 0.0098 bar

– Maximum pressure of tank: 0.0391 bar

– Maximum flow from the pumps: 0.3 m3/h

– Maximum pressure from the pumps: 0.6 bar

• Predictor parameters
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– System model used in the Kalman filter

φ =



1 0 0 0 0 0
0 0.9659 0.2588 0 0 0
0 −0.2588 0.9659 0 0 0
0 0 0 0.8660 0.5000 0
0 0 0 −0.5000 0.8660 0

0.0058 0.0058 0 0.0058 0 1


(6.4a)

Γ =


0
0
0
0

0.0058

 (6.4b)

C =
[
0 0 0 0 0 1

]
(6.4c)

D = 0 (6.4d)

– Initial state estimate

xinit =
[
0 0 0 0 0 0

]
(6.5)

– Initial covariance matrix of the predicted state estimate error

Pinit =



100 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100


(6.6)

– Covariance matrix of process noise(for simulation test)

Q = 10−4



0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 1.7 · 10−5


(6.7)
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– Covariance matrix of process noise(for laboratory test)

Q = 10−2



0.12 0 0 0 0 0
0 0.12 0 0 0 0
0 0 0.12 0 0 0
0 0 0 0.12 0 0
0 0 0 0 0.12 0
0 0 0 0 0 4.0 · 10−6


(6.8)

– Covariance of measurement noise(for simulation test)

R = 2.5 · 10−7 (6.9)

– Covariance of measurement noise(for laboratory test)

R = 2.5 · 10−9 (6.10)

– Upper saturation limit on predicted consumer demand: 0 m3/h

– Lower saturation limit on predicted consumer demand: -0.45 m3/h

Note: Some of the parameters of the predictor are different for simulation
test and the laboratory test, this due to the difference in noise that is added
in the simulation test and the actual noise observed in the laboratory setup.

6.2 Simulation test results

6.2.1 NMPC with consumer demand predictor simulation test results

Section 6.2.1 presents result of implementation of NMPC control with consumer
demand predictor on a simulated nonlinear water network model.

Figure 6.1 presents the varying consumer demand for both the consumers over
the period of 144 minute. It also presents the pressure at the consumer nodes
resulting from pump operation by NMPC control.

Figure 6.2 presents the varying price of electricity. The price curve is periodic
over a period of 24 minute, the prices are higher during day hours compared to
night hours. Over the 24 minute period, the prices during the day hours (6 to 20
minute) are 1.4 DKK/kW minute and during night hours (0 to 6 minute and 20
to 24 minute) are 0.7 DKK/kW minute. The figure also presents the varying tank
level over the simulation period. The water flows into the tank when the pumps
are running and the consequently the tank level rises. Similarly, when the pumps
are stopped the tank level decreases.

Figure 6.3 presents the pump operation control by NMPC. During the initial
period of 20 minute the pumps seems to be running without any pattern. After
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Figure 6.1: Consumer nodal demand flows and NMPC simulation results for pressure at consumer
end
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Figure 6.3: NMPC simulation results for flow from the pumps and the pressure at pump nodes

the 20 minute period the pumps mostly only run during the period when the price
of electricity is low, this behavior is discussed in section 7.1.

Figure 6.4 presents a comparison between tank pressure measurement from
the sensor with sensor noise, pressure measurement without sensor noise and the
estimated pressure from the Kalman filter predictor. From the figure it can be
observed that the Kalman filter effectively filters the measurement noise and the
estimate closely follows the pressure measurement without sensor noise.
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Figure 6.4: Comparison of tank pressure measurement from the sensor with sensor noise, pressure
measurement without sensor noise and the estimated pressure from the Kalman filter predictor

Figure 6.5 and 6.6 both presents a comparison between actual consumer de-
mand and the estimated consumer demand from the Kalman filter predictor. Fig-
ure 6.5 presents comparison for the total consumer demand in the network, whereas
figure 6.6 presents comparison for demands of individual consumers which is cal-
culated using predefined demand distribution vector. It can be observed that the
consumer demand estimation is off during the initial period till 20 minute, but
after 20 minute the estimation closely follows the actual demand. From the esti-
mated demand, future consumer demands are predicted to be utilized for solving
NMPC optimization problem.
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Figure 6.5: Comparison of actual consumer demand and the estimated consumer demand from the
Kalman filter predictor
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Figure 6.6: Comparison of the individual actual consumer demand and the predicted consumer
demand from the Kalman filter predictor
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6.2.2 On/off control simulation test results

For comparison of NMPC control results, an on/off control is implemented on
the same water network model. The on/off control is designed to run the pumps
when the level of water in tank goes below 0.1 m and stop the pumps when the
level goes above 0.4 m.

Figures 6.7, 6.8 and 6.9 presents the on/off control simulation results. The
consumer demand pattern is same as the one used in NMPC control simulation
test presented in figure 6.7.
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Figure 6.7: Consumer nodal demand flows and on/off simulation results for pressure at consumer
end

The electricity price curve is also the same with higher prices during the day
compared to night, presented in figure 6.8. Initially the pumps are in stopped con-
dition, when the tank level reaches below 0.1 m at 6 time instance, the pumps starts
to run. At 21 time instance when the tank level goes above 0.4 m the pumps are
again stopped. This cycle repeats throughout the simulation period and presented
in figure 6.9.
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Figure 6.8: Varying unit price of electricity and on/off simulation results for level of water in the
tank
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Figure 6.9: On/off simulation results for flow from the pumps and the pressure at pump nodes
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6.3 Laboratory test results

6.3.1 NMPC with consumer demand predictor laboratory test results

Similar to simulation tests, NMPC with consumer demand predictor was also
tested on the laboratory setup. The results for the laboratory test are presented
by figures 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15.

The desired consumer demand pattern is same as in the simulation tests. The
desired consumer demand is given to a PI controller, the PI controller regulates
the consumer valve’s opening degree to control the consumer demand flow at the
set-point. The PI controller is tuned manually by trial and error. The consumer
demand set-point and the actual demand controlled by PI controller is presented
in figure 6.10.
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Figure 6.10: Consumer nodal demand set-point and the actual demand flow controlled by a PI
controller in the laboratory setup

Figure 6.11 presents the varying price of electricity which is same as in the
simulation tests. The figure also presents changing level of the tank over the test
period. The level of the tank increases when the pumps are running and when
the pumps are not running the tank supplies water to the network and level of the
tank decreases.

Figure 6.12 presents the optimal pump flow set-points provided by NMPC con-
troller and the actual pump flow controlled by a PI controller. As mentioned before,
the PI controller regulates the speed of the pump to control the flow. Again, the
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Figure 6.11: Varying unit price of electricity and NMPC results for level of water in the tank measured
by sensor in the laboratory setup
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Figure 6.12: Pump flow set-point by NMPC and the actual pump flows controlled by a PI controller
in the laboratory setup
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PI controller is tuned manually. The PI control implementation is presented in
appendix D.As discussed in section 3.4, oscillations can be observed in the actual
flow from the pumps.

Figure 6.13 presents a comparison between the the tank pressure measurement
from the sensor and the estimated pressure from the Kalman filter predictor. There
is not much sensor noise and it can be observed that the estimate is exactly follows
the measured tank pressure.
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Figure 6.13: Comparison of tank pressure measurement from the sensor with sensor noise and the
estimated pressure from the Kalman filter predictor in the laboratory setup

Figure 6.14 and 6.15 presents a comparison between the actual consumer de-
mand and the estimated consumer demand from the Kalman filter predictor. The
predicted consumer demand is put through a saturation limit, from the prior
knowledge of the network it is known that the consumer demand would not be
more than 0.45 m3/h and consumers won’t be supplying water to the network.
From figure 6.14, which presents estimation of the total consumer demand in the
network, it can be observed that the estimated consumer demand simply follows
the pattern of the actual consumer demand and not exactly estimates it. The poor
performance of the predictor in the laboratory test, as compared to simulation test,
is discussed in section 7.2 .Similarly, from figure 6.15, which presents estimate of
demands for individual consumer calculates using predefined distribution vector,
it can be observed that the estimated demands follow the pattern of the actual
demands.
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Figure 6.14: Comparison of actual consumer demand and the estimated consumer demand from the
Kalman filter predictor in the laboratory setup
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Figure 6.15: Comparison of the individual actual consumer demand and the predicted consumer
demand from the Kalman filter predictor in the laboratory setup

6.3.2 On/off control laboratory test results

For comparison of the NMPC results on the laboratory setup, an on/off control is
also implemented on the same laboratory setup. The on/off is designed to given
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flow set-point of 0.3 m3/h to pump PI controllers when the tank level goes below
0.1 m and stop the pumps when the tank level goes above 0.4 m. The results of the
on/off implementation are presented in figures 6.16, 6.17 and 6.18.

Same as in the NMPC laboratory implementation, the consumer demand pat-
tern is provided to the consumer PI controllers, which regulate the valve’s opening
degree to control the consumer demand flow. The consumer demand set-point and
the actual demand flow in the test is presented in figure 6.16.
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Figure 6.16: Consumer nodal demand set-point and the actual demand flow controlled by a PI
controller in the laboratory setup

The electricity price pattern is again same as the previous tests and presented
in figure 6.8. Figure 6.8 also presents the changing level of the tank, at 4 minute
time instance the reaches the lower limit of 0.1 m, then the pumps starts and the
level starts to increase. At 20 minute the tank level reaches it upper limit of 0.4 m,
at that point the pumps stop, and this cycle repeats throughout the simulation.

Figure 6.18 presents the pump flow set-points provided by the on/off controller
and the actual pump flow controller by the PI controllers. At 4 minute time instance
when the tank level reaches 0.1 m, the on/off controller gives as set-point of 0.3
m3/h to both the pump PI controllers. And again it can be observed that the actual
flow from the pumps is oscillatory.
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Figure 6.17: Varying unit price of electricity and on/off control results for level of water in the tank
measured by sensor in the laboratory setup
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Figure 6.18: Pump flow set-point by on/off control and the actual pump flows controlled by a PI
controller in the laboratory setup

The results of the simulation test and the laboratory test from this chapter are
discussed in chapter 7.



Chapter 7

Discussion

In this chapter the simulation and the laboratory test results are discussed. The
stability analysis of the inner closed-loop system is also discussed.

7.1 Discussion on simulation test results

• Simulation test results show that during the initial period till 20 minute the
estimate of total consumer demand from the predictor is way-off from the ac-
tual demand. But after this period the estimate closely follows the actual con-
sumer demand. This close estimate of the consumer demand is reasonably
good and is used for prediction of future consumer demand. This predicted
consumer demand is provided NMPC for solving the optimization problem.

• Estimate of demands for individual consumers is calculated using a distribu-
tion vector, as presented in (4.54). This distribution is assumed to be known
and is calculated based on the prior knowledge of the distribution of con-
sumer demand. From the simulation results it can be observed that the es-
timate of the individual consumer demands also closely follows the actual
demand, but this was expected as the distribution vector is calculated from
the actual consumer demand used in the simulation test. In a real life sce-
nario have knowledge of the distribution vector is a fair assumption as well,
as it can be calculated from yearly billing data of the consumers, giving a
good approximation of the distribution vector.

• During the initial period when the estimate of the consumer demand is incor-
rect, it can be observed that the pump operation by the NMPC control is not
as desired. During this period the pumps are not operated effectively when
the price of electricity is low, resulting in running pumps when the prices are
high. The pumps are running to avoid crossing the lower limit constraint of
the tank level. But this behavior was expected as the incorrect estimation of
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the consumer demand would result in incorrect predictions which are being
used for solving the optimization problem. After the initial period when the
estimates are reasonably correct, it can be observed that the NMPC mostly
only operates the pumps when the prices are low.

• After the initial period when the consumer demand estimates are correct, it
can observed that the tank level rises during the low electricity price period
and drop when the prices are high. The NMPC, based on the predicted
consumer demand, calculates the tank level required at the end of a low
price period to meet the consumer demands when the prices are high without
operating the pumps. Even during the low price period when the pumps are
operated, they are operated at optimal flow to fill the tank only up to the
required level.

• From the results it can be observed that the NMPC sometimes operates the
pump during the high price period at a low flow. NMPC does that to avoid
crossing the lower limit constraint on the tank level, and the pump flow is
only to meet the consumer demands and not fill the tank. This happens due
to slight imprecision in the estimation of the consumer demand. Even when
the tank level goes below the lower limit, the NMPC is able to handle this
violation as it is developed with soft constraints.

• Comparison of NMPC with the on/off controller.
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Figure 7.1: Comparison of accumulated cost of operation over 144 minute between the NMPC and
the on/off controller in simulation test

Figure 7.1 presents a comparison of accumulated cost of operation between



7.2. Discussion on laboratory test results 109

the NMPC and the on/off controller after water network operation of 144
minute (representing 6 days). From the figure it can be observed that the
cost of operation is less in NMPC compared to on/off controller. After 144
minute of operation, there is 43.34% saving with NMPC compared to the
on/off controller.

• Comparison of NMPC with MPC results from [22]
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Figure 7.2: Comparison of accumulated cost of operation over 144 minute between the NMPC and
the MPC from [22] in simulation test

From the figure 7.2 it can be observed that the MPC performance from [22]
is slightly better than NMPC performance from this work, but this can be
accounted to the imprecision in the consumer demand predictor. In [22],
the future consumer demands were assumed to be known and provided to
the MPC, which would not be the case in real life scenario. Considering the
imprecision of the predictor, the performance of the NMPC and the MPC are
fairly equal. MPC results of [22] are presented in appendix C.

7.2 Discussion on laboratory test results

• The laboratory test yields similar results to the simulation test. During the
initial period the estimated consumer demand is way-off the actual consumer
demand. After this period the estimation follows the pattern of the actual
demand, which in this case is acceptable considering the performance of
NMPC. The reason for the predictor not able to estimate the actual demand
closely could be the oscillations in the actual demand.
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• The NMPC implemented for the laboratory setup provides optimal pump
flow commands to the local PI controllers. The PI controllers regulate the
speed of the pumps to control the flows. From the results it can be observed
that the flow is oscillating, comments on this oscillatory behaviour is given
in section 7.3.

• After the initial period when the consumer demand estimates are incorrect, it
can be observed that the NMPC gives command to operate the pumps mostly
only during the low electricity price period. And similar to the simulation
results, when the pumps are operated in the high electricity price period, it
is to avoid crossing the lower limit constraint on the tank level.

• The actual consumer demand flow is also controlled by PI controllers. A
predefined consumer demand curve is given to the PI controllers as set-point
and the PI controllers regulate the opening degree of valves to control the
flow. The consumer demand flow can also be observed to oscillate, this could
be due to oscillating flow from the pumps and delay in the system.

• Even with the oscillating flow from the pumps and consumers, the behav-
ior in the tank level is as expected. The tank level is observed to be rising
when the price of electricity are low and when the prices are high the tank
level decreases, supplying water to the water network and meeting consumer
demands.

• Comparison of NMPC with the on/off controller.
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Figure 7.3: Comparison of accumulated cost of operation over 144 minute between the NMPC and
the on/off controller in laboratory test
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From figure 7.3, it can be observed that the performance of the NMPC is
better than the on/off controller in terms of operational cost. The figure
presents accumulated cost of operation over a period of 144 minute for both
the controllers. There is 13.53% saving in NMPC operation compared to
on/off control operation.

7.3 Discussion on stability analysis of the inner closed-loop
system

• The Lyapunov stability analysis demonstrates that the inner closed-loop sys-
tem, of water network with the PI controller, is globally asymptotically stable.
Global asymptotic stability implies that irrespective of the initial conditions
the solution will tend towards the equilibrium point as time tends to infinity.
In this case, global asymptotic stability implies that for any value of PI gain,
the flow set-point can be reached and the system would be asymptotically
stable.

• The Lyapunov stability analysis does not take into account the output delay in
the system. The output delay in the pumps is a possible cause of oscillations
in the pump flow.

• Stability analysis on the linearised system presents that with higher PI gain
values the imaginary part in the eigenvalues of the closed loop system in-
creases, implying higher oscillations. But with lower PI gain values the sys-
tem response becomes slower which is also not desirable. Therefore for the
NMPC test in the laboratory lower PI gain values were not chosen.





Chapter 8

Conclusion

This project was an extension of work presented in [22], where a MPC control was
designed and implemented on the water distributed network also considered in
this project. The three objectives of this project presented in chapter 1 were,

• Design and development of an nonlinear optimal control system and to com-
pare the performance with the linear optimal control in [22].

• Design and development of a consumer demand predictor for a water distri-
bution network, to be implemented with the nonlinear optimal control sys-
tem.

• Stability analysis of closed-loop system of water distribution network pump
flow control by a PI controller.

To achieve these objectives a water distribution network with an elevated tank is
selected. A simplified and another detailed nonlinear model of the water network
are developed. A control structure was developed with nonlinear model predictive
control (NMPC) as a supervisory controller giving optimal pump flow commands
to a PI controller, controlling the flow of the pumps. The simplified model was used
to design this NMPC control. The objectives of the NMPC optimization problem
were defined to be minimizing the operational cost and the pressure variations at
the consumer node. The constraints on the optimization problem were the physical
operational constraints of the pumps and the operational constraints for the tank.
For the solving the optimization problem knowledge of the future consumer de-
mand is required, therefore a Kalman filter based consumer demand predictor was
also developed. The predictor was designed to take tank pressure measurements
as input and estimate the consumer demand, and based on that predict the future
consumer demands.

The NMPC designed was implemented in CasADi in MATLAB. Then the NMPC
along with the consumer demand predictor was tested on a nonlinear simulated
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network model. The simulation results show a good performance of the predic-
tor and the NMPC. Comparing the performance of the NMPC with an on/off
controller presented a saving of 43.34% in accumulated operational cost after 144
minute of operation. Also, comparing the results with the MPC results from [22],
reveal the performance of NMPC and MPC are fairly equal, although the imple-
mentation of NMPC is computationally expensive compared to MPC. A water dis-
tribution network was also setup in the smart water laboratory for laboratory test of
the nonlinear optimal control system. The laboratory test presented oscillatory be-
havior of pump flows controlled by PI controllers. The Lyapunov stability analysis
revealed that the delay-free inner closed-loop system was globally asymptotically
stable and implying a possible cause of oscillation could be output delay in the
pump flows. Apart from the oscillations the NMPC performance in the laboratory
test was satisfactory and when comparing to an on/off controller, the NMPC had
a saving of 13.53% after 144 minute of operation.



Chapter 9

Future work

Possible improvements in the project and potential future work to this project are
listed below.

• This project included NMPC implementation with the consumer demand
predictor and work in [22] included MPC implementation but without con-
sumer demand predictor. MPC implementation with the consumer demand
predictor could be tested in the further work.

• Lyapunov stability analysis suggests that the delay-free inner closed-loop sys-
tem is globally asymptotically stable and the possible cause of the oscillations
could be delay in the system. Therefore, potential future work in the project
could be design and development of local controller which mitigates the ef-
fect of delay in the system

• In this project, the objectives of the NMPC were minimizing the operational
cost and the pressure variations at the consumer node. An important indica-
tor for water quality is water retention time, which could be included as an
objective of the NMPC in future work

• In this project, weights are assigned manually for the trade-off between the
objectives in the optimization problem. Potential future work could include
implementing some method to quantify this trade-off between the objectives.
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Appendix A

NMPC problem defined using mul-
tiple shooting in CasADi (MATLAB
code)

The NMPC problem is converted to a NLP problem using multiple shooting method
and defined in CasADi. The CasADi is defined in a CasADi object function to
which parameters and initial condition can be passed to obtain optimal solution.
The MATLAB code for the NMPC problem is presented below.

1

2 opti = casadi.Opti(); % Initializing CasADi
3

4 %% Constant and contraint values
5

6 eta_p=0.6; % Efficiency of pumps
7 eta_m=0.9; % Efficiency of motors
8 k_eta=1/(eta_p*eta_m*1e3*1e5*3600); % Constant based on efficiency
9

10 % Limits on different variables
11 h0_min=0.1; % [m] Minimum level in tank
12 h0_max=0.4; % [m] Max level in tank
13 p0_min=h0_min*rho_fluid*g/1e5;
14 p0_max=h0_max*rho_fluid*g/1e5;
15 u_min=[0;0];
16 u_max=[0.3;0.3]; % [m^3/h] Max flow from pumping ...

station
17 p_p_min=[0;0];
18 p_p_max=[0.6;0.6]; % [bar] Max pressure from ...

pumping station
19

20 %% NMPC weights
21
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code)

22 Q_weight=5.5e10*diag([1 1]);
23 R_weight=1*diag([1 1]);
24 Rho_weight=1e5;
25

26 %% Casadi variables
27

28 % Variables in the NLP problem
29 u_var=opti.variable(2,Hp);
30

31 qC_var=opti.variable(2,Hp);
32 p_bar_var=opti.variable(5,Hp);
33 p_0_var=opti.variable(1,Hp+1);
34

35 eps_var=opti.variable(1,Hp);
36

37 % Parameters in the NLP problem
38

39 p_0_par=opti.parameter(1,1);
40

41 dc_par=opti.parameter(2,Hp);
42 C_par=opti.parameter(1,Hp);
43

44 obj=0;
45

46 for k=1:Hp
47

48 % Objective function for NMPC
49

50 C_val=diag([C_par(:,k) C_par(:,k)]); % Diagonal matrix for ...
price of electricity

51 p_p_val=F_p_bar*p_bar_var(:,k); % Extracting pump pressure
52

53

54 obj=obj+u_var(:,k)'*Q_weight*C_val*p_p_val*k_eta*Ts;
55 obj=obj+(F_c_bar*(p_bar_var(:,k)-mean(p_bar_var(:,k))))'...
56 *R_weight*(F_c_bar*(p_bar_var(:,k)-mean(p_bar_var(:,k))));
57 obj=obj+Rho_weight*eps_var(:,k);
58

59 % System constraints for NMPC
60

61 d_tau_val=-(sum(dc_par(:,k))+sum(u_var(:,k)));
62

63 qT_val=-inv(H_T_bar)*H_C_bar*qC_var(:,k)+inv(H_T_bar)*F_p_bar'...
64 *u_var(:,k)+inv(H_T_bar)*F_c_bar'*dc_par(:,k)+inv(H_T_bar)...
65 *F_tau_bar'*d_tau_val;
66

67 q_val=[qC_var(1,k);qT_val(1:2,1);qC_var(2,k);qT_val(3:5,1)];
68

69 lambda_q_val=lambda.*abs(q_val).*q_val;
70

71 st_1=B*lambda_q_val;
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72 st_2=inv(H_T_bar')*lambda_q_val(edge_tree)-(h_bar-h_0)...
73 +ones(n_H-1,1)*p_0_var(:,k);
74 st_3=p_0_var(:,k)-tau*d_tau_val*60;
75

76 opti.subject_to(st_1==0);
77 opti.subject_to(p_bar_var(:,k)==st_2);
78 opti.subject_to(p_0_var(:,k+1)==st_3);
79

80 % Inequality constraints
81

82 opti.subject_to(u_min≤u_var(:,k));
83 opti.subject_to(u_var(:,k)≤u_max);
84

85 opti.subject_to(p_p_min≤p_p_val);
86 opti.subject_to(p_p_val≤p_p_max);
87

88 opti.subject_to((p0_min-eps_var(:,k))≤p_0_var(:,k+1));
89 opti.subject_to(p_0_var(:,k+1)≤(p0_max+eps_var(:,k)));
90

91 opti.subject_to(0≤eps_var(:,k));
92

93 end
94

95 % Constraint on the initial condition
96

97 opti.subject_to(p_0_var(:,1)==p_0_par);
98

99 % Defining options for the solver
100 opts=struct;
101 opts.ipopt.print_level=0;
102 opti.solver('ipopt',opts);
103

104 % Creating a CasADi object function for the NMPC problem
105 opti.minimize(obj);

The parameters and the initial condition are passed through this object function
to obtain optimal values of the NLP problem variables. The NLP problem variables
include the optimal pump flow command.

1

2 % Set value for the parameters
3 opti.set_value(p_0_par,p_esti);
4 opti.set_value(dc_par,dc_Hp);
5 opti.set_value(C_par,C_Hp);
6

7

8 sol = opti.solve(); % Solving the optimization problem with ...
the set parameters

9 u_all= sol.value(u_var); % Obtain optimal pump flow commands





Appendix B

Equilibrium point calculation and
system matrices in the stability anal-
ysis of the linearised model

The nonlinear model of the water distribution network, presented in section 2.4, is
linearised at an equilibrium point. In the network model node 10 is chosen as the
reference node. The operating point for the speed of the pumps is chosen to be,

ω∗p =

[
67
67

]
(B.1)

Using this operating point for the input, the state dynamics are set to zero to
obtain the equilibrium point for the states. The calculated equilibrium point for
the states are given below.

q∗C =

[
0.214
−0.025

]
(B.2a)

d̄∗f =

 0.320
−0.290
−0.291

 (B.2b)

d̄∗τ = 0 (B.2c)

p∗τ = 0.031 (B.2d)

Based on the operating point state space matrices for the linearised model is
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of the linearised model

calculated to be,

Asys =



−0.4146 0 −0.4169 28.6393 0 0 0
0 −0.2409 −0.0219 0 −3.9529 0 −3.6672

−0.1943 0.0050 −0.7858 28.6393 8.2352 0 −1.2224
0.1206 0 0.4169 −38.0979 0 0 −5.6719
0.0806 0.0619 −0.0968 −0.1361 −24.0953 −0.1361 −2.4448
−0.0918 −0.1517 −0.1958 8.8483 3.7352 −0.6104 20.6828

0 0 0 0 0 −0.0001 0


(B.3a)

Bsys =



0.1742 0.0000
0.0120 0.0000
0.2363 0.0000
−0.1742 0
−0.0501 −0.0697
−0.0120 −0.1115

0 0


(B.3b)

Csys =

[
0 0 1 0 0 0 0
0 0 −1 −1 −1 −1 0

]
(B.3c)

The system has an output delay of 4 sec in pumps, considering this the updated
state space matrices with the delay model is calculated to be,

Acd =



−0.4146 0 −0.4169 28.6393 0 0 0 0 0
0 −0.2409 −0.0219 0 −3.9529 0 −3.6672 0 0

−0.1943 0.0050 −0.7858 28.6393 8.2352 0 −1.2224 0 0
0.1206 0 0.4169 −38.0979 0 0 −5.6719 0 0
0.0806 0.0619 −0.0968 −0.1361 −24.0953 −0.1361 −2.4448 0 0
−0.0918 −0.1517 −0.1958 8.8483 3.7352 −0.6104 20.6828 0 0

0 0 0 0 0 −0.0001 0 0 0
0 0 1 0 0 0 0 −0.5 0
0 0 −1 −1 −1 −1 0 0 −0.5


(B.4a)

Bcd =



0.1742 0.0000
0.0120 0.0000
0.2363 0.0000
−0.1742 0
−0.0501 −0.0697
−0.0120 −0.1115

0 0
0 0
0 0


(B.4b)
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Ccd =

[
1 0 0 0 1 0 0 0 0
0 1 0 0 −1 −1 −1 −1 0

]
(B.4c)





Appendix C

MPC simulation test results from
[22]

Figures C.1, C.2 and C.2 presents MPC simulation test results from [22]. The test
conditions and MPC weights are same as in this project. These results are just for
comparison with results obtained in this project.
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Figure C.1: Flow demand from the consumers and the MPC simulation results for the pressure at
consumer end, for varying price of electricity[22]
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Figure C.2: Varying price of electricity and the MPC simulation results for the tank level[22]

0 4 8 12 16 20 24 28 32 36 40 44 48

Time [min]

0

0.1

0.2

0.3

F
lo

w
 [

m
3
/h

]

Flow from the pumps

Pump 1: u
1

Pump 2: u
2

0 4 8 12 16 20 24 28 32 36 40 44 48

Time [min]

0.3

0.31

0.32

0.33

P
re

ss
u

re
 [

b
ar

]

Pressure at the nodes connected to pumps

Pump 1: p
1

Pump 2: p
6
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Appendix D

PI control implementation for the
laboratory setup

Figure D.1: PI control for the pump implemented for the laboratory setup

Figure D.1 presents the implementation of the PI control for the pumps in the
laboratory setup. The PI implementation in Simulink is the same as used in [22]. PI
control is implemented using predefined discrete PI block in Simulink. Saturation
limits on the PI is 40 to 95, also anti-windup is enabled. When the NMPC flow
command is zero, the PI block is bypassed and zero speed command is directly
sent to the pumps, this is to avoid pumps running at low speed when the required
flow is zero. Bypassing the PI would lead to overshoot in the flow at the instances
when the PI block is again taken into line, to avoid this the PI is reset whenever
the NMPC flow command goes from zero to non-zero value.
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Appendix E

Laboratory test results with 240 min-
utes representing 1 day

Another laboratory test of the NMPC was conducted with now 240 minutes repre-
senting 1 day in real life. The sampling time for the NMPC and the predictor was
set to 10 minutes. This test was conducted to provide more time to the PI controller
to stabilize at a given set-point before the set-point is changed.

The constraint of the tank level for this test were changed to 0.2-0.5m from 0.1-
0.4m. The tank’s safety valve closes if the level of the water goes below 0.05m, and
due to oscillation in the pump flow and with the lower limit constraint of 0.1m, the
level would often go below 0.05m and the test needed to be stopped.

Figure E.2 presents the changing price of electricity and the tank level. Consid-
ering the upper limit of constraint on the tank level, the NMPC only fills the tank
just before the prices are about to go high. The NMPC does this considering that
the tank can be filled in that short period of time and by doing so the pumps could
be operated at a lower pressure before that.

Figure E.3 presents the flow control of the pumps. As mentioned before the
NMPC does not fill the tank for a longer period of time in the test and only meets
the consumer demands. Due to this the pumps operate at low flows. As the PI
control was manually tuned for the system to operate at a high flow, running the
pumps at lower low causes much more oscillations.
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Figure E.1: Consumer nodal demand set-point and the actual demand flow controlled by a PI con-
troller in the laboratory setup, where 240 minutes represents 1 day
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Figure E.2: Varying unit price of electricity and NMPC results for level of water in the tank measured
by sensor in the laboratory setup, where 240 minutes represents 1 day
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