
Noname manuscript No.
(will be inserted by the editor)

Topology Optimization of General Structures with Anisotropic
Fatigue Constraints

Asbjørn Olesen · Sebastian Hermansen

Received: date / Accepted: date

Abstract Additively manufactured metals are special
in that they behave close to isotropic in elasticity and
monotonic strength, however their fatigue behavior is
anisotropic and the fatigue strength is degraded. De-
signs generated by topology optimization have com-
monly been used as inspiration rather than realizing
the actual design, primarily due to restrictions of the
manufacturing methods. However, with additive man-
ufacturing, it is possible to manufacture the highly
complex designs common in topology optimization.
An increased focus is therefore placed on design for
manufacture, and for this purpose a novel smooth-
ing approach is developed. Assuming isotropic stiff-
ness and monotonic strength, the topology optimiza-
tion is formulated as an extension to existing fatigue
constraint functions using density-based topology op-
timization. An improved formulation for the fatigue
damage is proposed to achieve a good combination
of accuracy and computational efficiency, which has
caused problems in previously published literature.
These approaches and methods are demonstrated by
solving both 2D and 3D problems, and the designs are
subsequently verified using commercial finite element
software.
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1 Introduction

Best use of material for load-carrying structures is a
long-standing objective in engineering and several math-
ematical optimization methods have been developed
to achieve this (Christensen and Klarbring, 2009). As
computational power has increased, the preferable ap-
proach has become optimization in a Finite Element
(FE) formulation (Lund, 1994). The earliest approach
taken was sizing optimization, which concerns struc-
tures parameterized by common dimensions (typically
thickness or cross sectional area). To be able to treat
more complex problems and achieve better designs,
shape optimization was developed, which allows finer
control in generation of design, e.g. the shape of a
curve (Haftka and Grandhi, 1986). Although the de-
sign freedom has increased with the introduction of
shape optimization, the resulting geometry is how-
ever still restricted by the parameterization, as topo-
logical features are persistent - a hole may change
shape, but cannot be removed. Topology optimization
(TO) is the generalization of this, having no depen-
dence on an input geometry, instead focusing on dis-
tributed functions in a fixed domain and optimal lay-
out of material (Bendsøe and Sigmund, 2003). Solv-
ing these functions is typically done by FE discretiza-
tion of the domain and finding an optimal distribu-
tion of void and solid elements. This 0-1 problem is
however an arduous affair due to the discrete nature
of the problem and the number of elements inher-
ent to FE solutions. TO was originally introduced in
Bendsøe and Kikuchi (1988), where a homogeniza-
tion approach is taken to define continuous equivalent
material properties of the 0-1 domain. The method
is virtually abandoned today as more effective meth-
ods have been developed. Many exist (Sigmund and
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Maute, 2013), yet the most popular is a density-based
approach with stiffness penalization (Bendsøe, 1989;
Stolpe and Svanberg, 2001) and level-set approaches
(Allaire et al., 2002; Wang et al., 2003; Allaire et al.,
2004). In this work the density-based method Solid
Isotropic Material with Penalization (SIMP) method
is applied due to its simple, yet effective, formulation.

A consistent issue in material layout problems is
the illposedness of geometric scale and non-existence
of solutions for the continuous problem, leading to
mesh dependent designs in FE formulations (Cheng
and Olhoff, 1981). Regularization is done to ensure
mesh independent convergence, typically by filtering
techniques such as sensitivity (Sigmund, 1994) or den-
sity filtering (Bruns and Tortorelli, 2001; Bourdin, 2001).
Most often, density filtering is adopted as sensitivity
filtering heuristically alters the problem sensitivities,
whereby the actual descent direction is not correctly
represented, which is problematic for line search based
optimization algorithms and may prohibit convergence
to the optimum (Sigmund, 2007). However, density fil-
tering has a substantial downside in that it introduces
a gradient of intermediate density around structural
members. Intermediate density is undesirable in the
optimized domain, because it does not have an as-
sociated physical interpretation. Many regularization
schemes have been proposed (Sigmund, 2007), yet the
method that seem to garner the most use is projec-
tion filtering. First introduced in Guest et al. (2004) as
a method to project all intermediate densities to fully
solid material using a relaxed version of the Heaviside
step function, it has since been reformulated for many
purposes. It also deals with the concept of introduc-
ing a minimum length scale, i.e. strict control over ge-
ometric dimension, which is now definable, however
only for the solid phase. Being able to define a mini-
mum length scale is very important considering man-
ufacturability of the design. Sigmund (2007) reformu-
lated the filter such that a minimum length scale can
be guaranteed on the void phase instead of the solid.
Neither of these filters are volume preserving, which
led to the development of the volume preserving pro-
jection filter by Xu et al. (2010). This is more generally
termed threshold filtering, where a threshold is intro-
duced to define a value around which densities are
projected to either void or solid.

To account for uncertainties in the manufacturing
process, the robust method was introduced in Sig-
mund (2009), based on projection methods from Guest
et al. (2004) and Sigmund (2007). The robust method
makes use of three FE problems defined by projec-
tions of densities. The projections are based on im-
age morphology operators erode and dilate, and are

used to create an eroded, intermediate, and dilated
designs. Ensuring that each design is feasible also im-
poses minimum length scale on both void and solid
material phases. In Wang et al. (2011), the robust method
formulation is improved by using the threshold fil-
ter to define the three designs, which allows for bet-
ter defining a desired minimum length scale. Other
methods to achieve minimum length scale have also
been proposed, in particular noteworthy is the for-
mulation of geometric constraints (Zhou et al., 2015),
which imposes an explicit requirement for minimum
length scale on the design. Similar to the geometric
constraints for minimum length scale, geometric con-
straints imposing maximum length scale has also been
developed (Lazarov and Wang, 2017). Another issue
related to minimum length, specifically violation of
minimum length at domain edges, stemming from
poor definition of filtering boundary conditions, was
solved in Clausen and Andreassen (2017), by use of
domain extension, such that accurate boundary con-
ditions are achieved in the design domain.

Computation of the density filter may be quite ex-
pensive for large models in its discrete form, as it
involves determining weighting functions for all el-
ements in the neighborhood defined by a filter ra-
dius of each element. Instead the filter can be for-
mulated and solved as a Helmholtz partial differen-
tial equation (Lazarov and Sigmund, 2011). Using this
formulation of the filter, the extensive search for defin-
ing element weight functions is removed, which in-
creases efficiency and reduces the amount of memory
required to store the element weighting relations. Fur-
ther, this formulation allows for better parallelization
between the computer cores, such that they all con-
tribute in computing the filter. Including projection fil-
ters with this formulation has also been investigated,
see Kawamoto et al. (2011). The topic of parallelization
has in general been the subject of much attention, such
that the TO can be performed as efficiently as possi-
ble. Parallelization aspects are discussed in detail in
Aage and Lazarov (2013) and a fully parallel frame-
work based on this is provided in Aage et al. (2015).
The necessity of parallelization for large problems is
highlighted in Aage et al. (2017), where the frame-
work is used to solve an impressively large problem
consisting of one billion finite elements.

1.1 Local Constraint Function

In the pursuit of generating optimized designs with
adequate structural integrity, commonly occurring fail-
ure phenomena have been considered for TO, namely
those based on stress. Inclusion of stress criteria in an
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optimization context is tedious due to its local defini-
tion and the appearance of singular optima (Duysinx
and Bendsøe, 1998). Early work on stress constrained
optimization of truss structures was done in Sved and
Ginos (1968), where the problem of singular optima
was encountered. Singular optima occur when an op-
timum belong to a degenerate subspace that is un-
reachable due to the stress constraints, which prohibit
the design variables from reaching the optimum us-
ing conventional sensitivity-based optimizers (Kirsch,
1990). The issue translates to TO and is solved by re-
laxation, typically by either the ε-method (Cheng and
Guo, 1997) or qp-method (Bruggi, 2008; Le et al., 2010),
whereby the constraints constitute a less strict feasible
design domain.

Another issue is that an intractable number of con-
straint functions is required to capture the local na-
ture of stress, which largely depends on distribution
of nearby material. Constraining the maximum stress
is desired, but the straightforward implementation is
nondifferentiable and thus aggregation functions are
introduced to give a continuous approximation of the
largest value, such as the P-norm function (Duysinx
and Sigmund, 1998; Le et al., 2010). Local control is
however lost as the maximum and its function neigh-
borhood cannot be accurately represented by aggre-
gation functions. In Le et al. (2010) two solutions were
discussed: (1) regional constraints, where the domain
is divided into sections, each with an aggregation func-
tion, thus lowering the inaccuracy, and (2) normalized
global stress or adaptive constraint scaling, where a
scalar factor is determined for each iteration, scaling
the aggregation function to the true maximum. More
lately, in da Silva et al. (2019) the local constraints
are treated in an augmented Lagrange formulation. In
this work, manufacturing uncertainties for stress con-
strained TO are also considered via the robust method,
where resultant geometries are analyzed with higher
accuracy using a body fitted mesh as a step along the
way to manufacturability.

Fatigue is an important consideration in general
structural design and stress-based fatigue criteria re-
ceive increasing interest in TO. Fatigue TO has all
the difficulties of stress optimization, which are ex-
acerbated by the exponential dependence on stress.
In Holmberg et al. (2014) a decoupled fatigue analy-
sis determined a maximum stress from a given load
spectrum, using SN-curves and Palmgren-Miner lin-
ear damage accumulation. Optimization was then per-
formed with a principal stress criterion. Jeong et al.
(2015) included fatigue in the optimization for a con-
stant proportional load amplitude and mean, using
the signed von Mises measure to account for the mul-

tiaxial stress state and a variety of mean stress cor-
rections, specifically Goodman, Gerber and Söderberg
criteria. These methods were generalized to an arbi-
trary proportional load history in Oest and Lund (2017),
wherein a logarithmic function is used to reduce the
non-linearity of Basquin’s approximation of the SN-
curve. A method for considering non-proportional load-
ing was presented by Zhang et al. (2019), also intro-
ducing a linearization of Basquin’s approximation.

1.2 Additive Manufacturing

As the methods of TO have matured, an increased in-
terest is placed on design for manufacture, with Ad-
ditive Manufacturing (AM) being a prime candidate
(Clausen, 2016). AM allows for near-total design free-
dom as no tool-paths must be considered, which is the
main obstacle in conventional subtractive manufactur-
ing due to the complex geometries typical of TO. AM
however brings new challenges in design, as fatigue
properties of AM metals are degraded as compared to
wrought material (Yadollahi and Shamsaei, 2017) and
variations are highly dependent on process parame-
ters (Fatemi et al., 2020). Surface quality most obvi-
ously depends on process parameters such as mate-
rial deposition rates and heat input, but also has a ge-
ometric aspect, as the orientation during building can
lead to inconstant surface roughness (Yadollahi and
Shamsaei, 2017). An apparently unavoidable aspect of
AM is internal defects, leading to cracks not necessar-
ily initiating at the surface (Fatemi et al., 2020) and a
print-direction dependent orientation of these defects,
leading to anisotropic fatigue (Yadollahi et al., 2017).
Processes to improve fatigue properties include hot
isostatic press (HIP) (Leuders et al., 2014) and surface
peening (Bag et al., 2020; Hackel et al., 2018), which
yield good results, but do not entirely resolve the is-
sue of anisotropic fatigue behavior occurring in AM
components (Yadollahi et al., 2017; Fatemi et al., 2020).
Further, the results achieved are material dependent,
in particular for HIP which, if applied to a material
retaining a reasonable amount of ductility after print-
ing, will have the opposite effect and reduce the fa-
tigue strength (Yadollahi and Shamsaei, 2017).

Designing via TO for manufacture presents a range
of issues that is often overlooked in purely theoretical
approaches. In Langelaar (2016) the problem of over-
hanging details are treated by introducing a TO filter
to exclude unprintable designs, i.e. entirely without
support material, whereas Langelaar (2019) presents
a formulation for designing the support structure si-
multaneously with the component in the TO.
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The intersection of TO, fatigue, and AM is rela-
tively unexplored, as implementations of fatigue con-
strained TO assume isotropic behavior, which inevitably
converge to a suboptimal design as the lowest fatigue
strength must be used to avoid failure. The objective
of this work is to develop a continuous anisotropic
fatigue criterion from an outset in proportional high
cycle fatigue (HCF) of AM metals. The criterion is im-
plemented for both two- and three-dimensional cases.
TO designs are commonly used for design inspiration
rather the realizing the actual generated design. As
such regularization and post-processing is given in-
creased attention to improve manufacturability, specif-
ically by introduction of manufacturing constraints by
the robust method and development of a novel frame-
work for smoothing three-dimensional TO models. Ex-
amples are presented as both density-based models
and as body fitted meshes to illustrate adequate con-
trol over local behavior related to stress concentrations
for both two- and three-dimensional cases.

The paper is structured as follows. In section 2
general fatigue modeling is presented and the aniso-
tropic fatigue model is developed. Section 3 covers
formulation of the TO problem, necessary relaxations
and regularization. Analytical expressions of problem
sensitivities are derived in section 4, with explicit terms
listed in appendix A. Examples using the described
methods in two and three dimensions are given in
section 5, wherein properties and behavior is also dis-
cussed. The 3D example is verified in a commercial
FE-program using a post-optimization smoothing scheme
described in appendix B. Section 6 gives concluding
remarks.

2 Anisotropic Fatigue Analysis

The anisotropic fatigue model, presented in the fol-
lowing, takes offset in elasticity and static strength
properties of AM materials behaving close to isotropic
(Tolosa et al., 2010; Yadollahi and Shamsaei, 2017),
while fatigue does not. For this reason isotropic density-
based interpolation schemes, namely SIMP, are not
precluded by the introduction of anisotropic fatigue.
Consequently, the fatigue model is developed as an
extension to the existing density-based approach to
TO.

2.1 Classical Stress-based Fatigue Analysis

Estimating fatigue failure is difficult as it is influenced
by many parameters - one of which is the loading con-
dition. The present implementation is limited to pro-

portional loading, i.e. when principal directions are
constant throughout the load history. Thus, a given
time dependent element stress σ(e)(t) is determined
through a scaling c(t) of the reference stress σ̂(e):

σ(e)(t) = c(t) σ̂(e) (1)

whereby only a single FE problem is solved to find
the entire stress history. The scaling constant is then
sectioned into amplitude and mean contributions as
illustrated in Fig. 1. Combination of amplitude and
mean at a time in the discretized load history is termed
load combination. Nonproportional loading implies a
substantial increase in computational effort as a new
equilibrium has to be solved for each unique com-
bination of loads in the load history. Given an ar-
bitrary dizcretized load history, a consistent method
is needed to determine the combinations of ampli-
tude and mean loads: a popular choice is the Rainflow
counting algorithm (Stephens et al., 2001).

Only HCF is considered for this model, thus the
stress-life method to fatigue is adequate. For more
general application, the strain-life method, which is
also able to capture low-cycle fatigue behavior, can
be implemented instead. Strain-life models are also
better for modeling crack propagation behavior, and
should therefore also be adopted if extending the model
to include fracture mechanical aspects. In the stress-
life method the amplitude and mean stress contribu-
tions then have to be converted to an equivalent fully
reversed uniaxial stress amplitude such that it is relat-
able to the material SN curve. Many different criteria
have been proposed, which vary in accuracy and com-
putational effort as well as also depend on the load
case. A criterion may be classified as either multiaxial
or equivalent uniaxial: thorough assessment of these

c(t)

t

c(i−1)
m , c(i−1)

a c(i)m , c(i)a c(i+1)
m , c(i+1)

a

t(i−2)
t(i)t(i−1) t(i+1)

c(i)m =
c(t(i−1) + c(t(i))

2
, c(i)a =

|c(t(i−1) − c(t(i))|
2

Fig. 1 Discretization of load history into combinations of mean

and amplitude factors c(i)m and c(i)a .
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is given in Papuga (2011) and Papuga (2012), respec-
tively. This implementation uses the signed von Mises
method with Morrow mean stress correction as basis:

σ
(e,i)
N f =

c(i)a σ
(e)
VM σf

σf − sgn(c(i)m σ
(e)
h ) c(i)m σ

(e)
VM

(2)

where σ
(e,i)
N f is the element equivalent stress ampli-

tude causing fatigue failure, σ
(e)
VM is the element von

Mises stress, σ
(e)
h is the element hydrostatic stress for

element e, σf is the fatigue strength of the material,

and c(i)a and c(i)m are scaling factors for amplitude and
mean, respectively, at load combination i. The element
von Mises stress is computed in terms of the stress
vector components as:

σVM =
1√
2

√√√√(σx − σy)
2 + (σy − σz)

2 + (σx − σz)
2

+6(τ2
xy + τ2

yz + τ2
xz)

(3)

The hydrostatic stress is the mean of the normal stress
components:

σh =
σx + σy + σz

3
(4)

The amount of reversals until failure is then deter-
mined from the SN-curve, approximated using Basquin’s
equation:

σ
(e,i)
N f = σf

(
2N(e,i)

)b
(5)

where N(e,i) is the element life time and b is the Basquin
exponent. From this, the element damages D(e) are
computed wrt. the imposed number of reversals n(i).
To accumulate damage from multiple load combina-
tions, the linear Palmgren-Miner rule is used:

D(e) =
Nlc

∑
i=1

n(i)

N(e,i)
≤ Dlim (6)

where Nlc is the number of load combinations. The
damage fraction limit Dlim is defined based on the
circumstances of the problem, e.g. for a very harsh
environment, it should be set conservative. Here it is
simply defined as Dlim = 1, commonly used for many
steel structures.

2.1.1 Damage Scaling

Solving a fatigue constrained optimization problem
is tedious. The convergence is oscillatory due to the
nonlinear expressions and the problem is likely to be-
come highly infeasible during the optimization and

0 1 2
0

1

2

No scaling
Basquin factor scaling
P-mean scaling

D(e)

D(e)
s

Fig. 2 Damage scaling functions. No scaling refers to the un-
scaled damage computed from the Palmgren-Miner expression
of Eq. (6), Basquin factor scaling is Eq. (7) and P-mean scaling is
Eq. (8) i.e. where c1 = c2. The Basquin factor is b = −0.156, and
P = 8 is used for aggregation in the P-mean scaling.

may diverge as a consequence. To make the problem
tractable Zhang et al. (2019) suggests scaling the dam-
age using the Basquin factor b:

Ds =
(

D(e)
)b

(7)

However, this essentially changes the damage mea-
sure of the model for all element damages not equal
to 1, see Fig. 2. The figure also illustrates why the
Basquin factor scaling alleviates the nonlinearity in
that after the damage becomes infeasible (i.e. >1) the
scaled formulation restricts the variation between it-
erations stabilizing the measure. The Basquin factor
scaled measure is conservative, which is good for re-
alizing the design following optimization, however, as
the goal is to minimize the volume as much as possi-
ble, a more accurate measure is desired. Specifically,
it is desired to somehow combine the accuracy of the
damage from the unscaled formulation with the sta-
bility and speed of the Basquin factor scaled formula-
tion. This is achieved by using the P-norm mean for-
mulation of the weighted sum, to aggregate these two
formulations. The P-norm mean is chosen as it exactly
represents the intersection of two functions. This im-
plies that the aggregation is exact when the damage is
0 and 1, and increasingly accurate with increasing P
elsewhere. The scaled damage is then computed as:

D(e)
s =




c1

(
D(e)

)b P
+ c2

(
D(e)

)−P

c1 + c2




− 1
P

(8)

where c1 and c2 are weighting functions. Considering
Fig. 2 it is observed that close to the linear behavior
is achieved, while also the drop-off at infeasibility is
present preventing large variation in the measure.
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σN f

N
σN f , ‖

σN f ,⊥

σf , ‖

σf ,⊥ b

α(θpσ1 ) σN f

σN f

Fig. 3 SN curve interpolation of fatigue strengths varying due
to orientation of applied load.

2.2 Modeling Anisotropy

The AM metals behavior will depend on the print ori-
entation, as it governs the orientation of the imposed
defects. In Basquin’s approximation, if the exponent b
can be assumed constant for all orientations of load-
ing wrt. print orientation (which mostly agrees with
published experimental data (Yadollahi et al., 2017)),
the stress level will be proportional for all N:

σN f ,⊥ ∝ σN f , ‖ (9)

Here, ⊥ indicates perpendicularity between a print
plane normal and the load direction, and ‖ indicates
parallelity. With these proportional SN-curves, see Fig.
3, an interpolation is made for angles between ⊥ and
‖. If only the fatigue strength is affected by the orien-
tation on the print plane, the proportionality is uniquely
given by a factor α:

σN f ,⊥ = σf ,⊥(2N)b = ασN f , ‖ = ασf , ‖(2N)b

⇒ α =
σf ,⊥
σf , ‖

(10)

Best utilization of the material is achieved in the
direction where it has the highest fatigue strength, this
direction should therefore be aligned with the direc-
tion of the critical load. The critical load is decided
by considering fracture mechanics. Fatigue damage
progression is characterized in two phases; crack ini-
tiation and crack propagation until complete failure.
Defects in AM materials are slit-shaped and mostly
small (though for as-built components may be as large
as 1mm (Fatemi et al., 2020)), and may therefore be
treated as cracks. However, their presence means that
the crack initiation is effectively skipped. It is well es-
tablished that cracks initiate along the plane of maxi-
mum shear (Fatemi et al., 2019; Stephens et al., 2001),
but grows as a mode I crack normal to the maximum
principal stress direction. By considering the mechan-
ics of a mode I crack, if the component is oriented
such that the major-axis of the slit-shaped defects is

nσ1

np

θpσ1

y

x
z

Print plane

Fig. 4 Angle θpσ1 between print plane normal np and first prin-
cipal stress direction nσ1 .

perpendicular to the principal direction, the effective
stress on the crack is minimized. This is accomplished
in the model by taking the print plane orientation
(specifically the orientation of its normal) into account,
by which an associated angle is defined, see Fig. 4. The
strength interpolation variable α may therefore be ex-
pressed as:

α(θpσ1) = 1 + βp
1 + cos 2θpσ1

2
, (11)

where βp =
σf ,⊥
σf , ‖

− 1

The expression of βp is used as its value gives an in-
tuitive measure for the degree of anisotropy, in partic-
ular βp = 0 for isotropy. The angle θpσ1 is found from
the dot product:

θpσ1 = cos−1 np · nσ1

|np||nσ1 |
(12)

where np is the print plane normal and nσ1 is the
principal direction of the maximum principal stress.
The vectors are assumed normalized, such that their
lengths are unity, and the expression is inserted into
Eq. (11), where it is further rewritten using the equal-
ity:

cos
(

2 cos−1(np · nσ1)
)
= 2(np · nσ1)

2 − 1 (13)

Reinserting results in the simple expression:

α = 1 + βp (np · nσ1)
2 (14)

where the print plane normal np is defined for two
dimensions as:

np(θ) =

[
cos θ
sin θ

]
(15)

For three dimensions it is defined using rotation
matrices. In this case, the normal is assumed to be
placed in the z-direction, whereby Bryan z-y-x trans-
formation is effectively used as the initial z-rotation
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θ

np

x

y

θ

np

xy

Print plane

Fig. 5 Relation between orientations of the TO coordinate system (left) and the printing process (right). Printing starts with a
horizontal slice of the lowest part of the geometry on the right and proceeds with slices in the direction of np. Support structure is
neglected here. The illustrated geometry is an optimized L-beam, see Section 5.

may be disregarded as it corresponds to a drilling ro-
tation not affecting the placement of the plane:

np(θ) = Ry (Rx z) =




cos θx sin θy
− sin θx

cos θx cos θy


 (16)

The angle(s) θ describing the print plane orienta-
tion may be defined before optimization, if the intent
is to orient the component in a predetermined way,
or they can be included in the optimization as design
variables to find an optimized print plane orientation.
The print plane normal is related to the geometry co-
ordinate system and actual manufacturing print plane
as illustrated in Figure 5.

2.3 Criterion Formulation

Having established that the defects propagate in the
maximum tensile direction and by assuming that com-
pressive stress does not contribute to the fatigue dam-
age, the equivalent stress is computed from the maxi-
mum principal stress. Contributions from amplitude
and mean stress are included through the Morrow
correction expression as:

σN f = α
ca σ1 σf ,⊥

σf ,⊥ − cm σ1
(17)

Including the anisotropy variable α in this expression
increases the damaging stress proportional to the de-
crease in fatigue strength. For realizing a design opti-
mized with this measure a stress constraint is required
in the optimization as static failure due to compressive
stress is not accounted for in criterion.

3 Topology Optimization Approach

The density-based approach to TO has been success-
fully applied for performing optimization of many
different structural problems and is also used to solve
the presented fatigue problem. For this reason, mod-
eling is restricted to FE simulation of linear elasticity
and static structures, and structural problems are dis-
cretized using linear quadrilateral or hexahedral ele-
ments. The governing state equation for this problem
is:

K(ρ)U = F (18)

Here K is the global stiffness matrix, ρ is a vector of
design variables, U is the global displacement vector
and F is the load vector. The load is assumed inde-
pendent of the design variables however this is not
always the case, see e.g. Chen and Kikuchi (2001). The
stiffness design variable dependence enters through
the SIMP method used for density interpolation with
stiffness penalization, performed here by the modified
SIMP expression (Sigmund, 2007):

Ē = Emin + ρp(E− Emin) (19)

where Ē is the penalized material stiffness, E is the
material stiffness, Emin is a small number introduced
to prevent numerical issues when solving the FE prob-
lem, ρ is the density variable and p is the penaliza-
tion factor. Stress relaxation is performed using the
qp-approach (Bruggi, 2008) as:

σ̄(e) =
(

ρ(e)
)q

E(e)B(e)u(e) (20)

Here σ̄(e) is the relaxed element stress measure, E(e)

is the unpenalized material constitutive matrix, B(e) is
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ρ

x

x = p = 3
x = q = 0.5

ρ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6 Penalization and relaxation with commonly used expo-
nents for stiffness and stress calculations.

the element strain-displacement matrix, u(e) is the el-
ement displacement vector and q is the relaxation fac-
tor. Stress is always computed in the superconvergent
Gauss integration point in the element center.

How the SIMP model penalizes and relaxes is il-
lustrated in Fig. 6. The purpose is make intermediate
density uneconomical, such that either void or solid
density is favorable. In Bendsøe and Sigmund (1999)
the micromechanical implications of SIMP stiffness pe-
nalization are investigated. Whereas the method be-
forehand was labeled as ”fictitious material interpola-
tion”, the paper clarified that in many cases it actually
falls within the framework of microstructurally-based
models. In particular for materials with a Poisson’s ra-
tio of ν = 0.3 it was shown that p ≥ 3 is appropriate
for penalization of intermediate density stiffness as it
falls within the Hashin-Strikmann bounds. The stress
relaxation factor q is defined slightly differently to the
introductory paper of the qp-method (Bruggi, 2008).
It follows the definition in Oest and Lund (2017), such
that the bounds are defined as 0 < q ≤ 1. In Bruggi
(2008), the same measure is defined as p− q. Choosing
q < 1 allows for further penalization of intermediate
density, which makes the qp-method favored over the
ε-method of Cheng and Guo (1997).

3.1 Regularization

Density filtering is used to regularize the illposed TO
problem, with a two-fold purpose when using linear
finite elements. Because of the inability of linear el-
ements to model bending deformation correctly, the
density in the optimized solution will be distributed
in a checkerboard pattern (Dı́az and Sigmund, 1995).
This represents nonconvergence of the FE problem
and is therefore not an optimized solution. Regular-
ization may also be achieved by sensitivity filtering,

where problem sensitivities are heuristically altered.
Consistency between expressions before and after fil-
tering is however lost, whereas the density filter is ap-
plied directly to the design variables and therefore in-
cluded in all expressions. Sensitivity filtering is thus
not considered further.

The density filter defines the filtered density ρ̃ as a
weighted mean of surrounding densities:

ρ̃(j) =

Nelem
∑

e=1
H(j,e) v(e) ρ(e)

Nelem
∑

e=1
H(j,e) v(e)

(21)

where v(e) are element volumes and H(j,e) is a linear
weighting function defined as:

H(j,e) = max(0, R− |c(j) − c(e)|) (22)

Here, R is a filter radius defining the set of elements
included for averaging and c is the position of jth and
eth element centers. The use of total number of ele-
ments Nelem implies looping over all elements in the
model to check if they are within the filter radius of
each filtered element. A more efficient formulation
is to consider only elements in the neighborhood of
the filtered element, though this requires an efficient
identification scheme. The filtered density variables ρ̃
should replace the design variables ρ when solving
the structural problem, computing sensitivities and
visualization as these represent the physical structure
with the design variables being restricted to optimiza-
tion variables only (Sigmund, 2007).

For defining a minimum length scale the robust
method as formulated by Wang et al. (2011) is im-
plemented. As this formulation uses threshold projec-
tion of densities, increased discreteness of the design
can also be attained. A continuous formulation of the
threshold projection is presented by Wang et al. (2011)
as:

¯̃ρ =
tanh(βη) + tanh(β(ρ̃− η))

tanh(βη) + tanh(β(1− η))
(23)

where ¯̃ρ is the threshold filtered density, η is the thresh-
old value and β controls the sharpness of projection.
Although the expression is not strictly equivalent to
the original expression by Xu et al. (2010), a similar
projection is attained and as β → ∞ both expres-
sions converge to the Heaviside step function. The ro-
bust designs are formulated by using the threshold
filter for three different threshold values, i.e. [ηe, ηi, ηd]
which define eroded, intermediate and dilated designs,
respectively. A FE problem is then solved and con-
straints are formulated for each design. Optimization
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may then be performed by considering only the worst
case design. A minimum length scale is then guaran-
teed on the intermediate design, if the three designs
have equivalent topology. In Qian and Sigmund (2013)
an analytical expression for the imposed minimum
length scale is derived from the erode threshold ηe:

le
R

=

{
2− 2

√
1− ηe, ηe ∈ [0.75, 1]

2
√

ηe − 1/2, ηe ∈ [0.5, 0.75]
(24)

where le is the minimum length scale.
Ideally, a projection filter should always be appended

to the linear density filtered variables to remove inter-
mediate densities, introduced as part of the density
gradient resulting from the linear filter formulation,
which do not have a physical interpretation. However,
increasing the discreteness introduces a new problem
in relation to stress-based optimization, namely stress
singularities in jagged mesh boundaries. Because the
optimized mesh layout is likely to contain stair-case
like jagged edges, the sharp corners between elements
will erroneously increase the stress of the structure.
Solutions to the problem available in literature are
stress extrapolation (Svärd, 2015) or allowing some
gradient of density (da Silva et al., 2019). The latter is
determined based on a simple expression for choosing
the appropriate amount of discreteness in the filter. It
is defined as:

βlim =
2R
L(e)

(25)

This should be used together with numerical studies
of relaxed stress behavior to ensure that the limit is
low enough to avoid singularities. da Silva et al. (2019)
developed the measure for use with the ε-method and
suggest redoing the numerical study if implementa-
tion is made for the qp-method; similar results are
therefore not expected here. Yet it provides a simple
first estimate for the allowed discreteness, and imple-
mentations are therefore based on this measure.

A solution to poor surface definition (and often a
required step for design verification with body-fitted
mesh) is to apply some form of surface extraction and
smoothing post-optimization. A method focusing on
accurate treatment of density is presented here. The
method revolves around interpolation of a surface at
the element level based on information about nodal
density values and design domain boundaries, such
that boundary geometry is preserved. The method is
described in detail in Appendix B, where Fig. 14 can
be consulted for an overview.

3.2 Problem Formulation

The optimization problem is performed exclusively
as volume V minimization subject to structural con-
straints g. In standard formulation, the problem solved
is:

minimize
(ρ)

V(ρ)

subject to
g(ρ)
glim

− 1 ≤ 0

ρ ∈ [ρmin, 1]

(26)

Here g is a constraint function and glim an associated
limit. Multiple constraint function may be included in
the case of the robust method or if including a stress
constraint to ensure static structural integrity. A min-
imum of density ρmin is necessary to avoid singular
terms in the sensitivities as a consequence of the stiff-
ness interpolation derivative (see Appendix A for the
explicit expression). Formulation is done using the
nested analysis and design (NAND) approach such
that state equations of Eq. (18) are implicitly included
in the structural constraint functions. Normally when
the state variables are independent of the design vari-
ables the state equation has to be included as a con-
straint in the optimization problem, thereby solving
the optimization problem and state problem simulta-
neously. However, as the state variables (in this case
the displacements) are unique defined from a set of
design variables, the two may be decoupled such that
solution to the state equations is obtained before op-
timization - this is the NAND approach (Christensen
and Klarbring, 2009).

The volume objective function is formulated as a
sum of all element volumes v:

V =
Nelem

∑
e=1

ρ(e)v(e) (27)

To formulate the problem constraints, the local mea-
sures are aggregated using the P-norm scalarization
function:

gΨ =

(
Nelem

∑
e=1

(
g(e)
)P
) 1

P

(28)

Here gΨ represents the aggregated measure and P is
an exponent governing how accurately the aggrega-
tion approximates the maximum function value. If us-
ing the P-norm expression alone a high value of P
is required for accurate representation, increasing the
nonlinearity of an already highly nonlinear problem,
and thus increases the difficulty of achieving a solu-
tion. To solve this problem, the adaptive constraint
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scaling method is used (Le et al., 2010), where a factor
c, computed based on iteration history data, is multi-
plied the aggregated measure. For damage, the factor
is defined as:

c(k) =
max

(
D(k)

)

g(k)Ψ

(29)

for iterations k = 1, 2. For subsequent iterations, it is
updated as:

c(k) = α(k)
max

(
D(k−1)

)

g(k−1)
Ψ

+ (1− α(k)) c(k−1) (30)

Here, α is a damping parameter preventing the scal-
ing factor from oscillating, D is a vector of all element
damages and index k refers to iteration number. The
use of the max operator in the expression implies the
function becomes nondifferentiable. However, as the
problem converges, the measure becomes better dis-
tributed in the design, and thus the maximum is bet-
ter approximated by the P-norm function alone. The
factor therefore converges along with the problem re-
ducing the nondifferentiability. For implementational
aspects, see Le et al. (2010). This implementation uses
the same values for α as defined in Oest and Lund
(2017).

Two fatigue constraints are defined: the anisotro-
pic and an isotropic, using signed von Mises (Eq. (2))
for comparison. The isotropic fatigue constraint func-
tion is defined as:

gD(ρ) = c(k) gΨ

(
Ds

(
σN f (ρ)

))
(31)

where Ds is all element damages scaled according to
P-mean scaling of Eq. (8) and σN f is all signed von
Mises equivalent stresses from Eq. (2). The signed von
Mises is used despite it poorly capturing mean stress
effects (Papuga, 2012), as it is simple and computa-
tionally efficient. Another criteria may be substituted
for better accuracy.

The anisotropic fatigue constraint, including print
plane orientation variables θ, becomes:

gDα(ρ,θ) = c(k) gΨ

(
Ds

(
σN f (α(ρ,θ),ρ)

))
(32)

where α refers to all element fatigue strength inter-
polations from Eq. (14) and σN f is equivalent stresses
from Eq. (17).

Additionally, a constraint related to von Mises stress
is introduced, primarily to restrict compressive stress.
The constraint is defined by:

gσ(ρ) = c(k) gΨ (σVM(ρ)) (33)

where σVM refers to Eq. (3). The adaptive constraint
scaling factor c(k) is calculated for maximum stress
here, rather than damage.

4 Design Sensitivity Analysis

The TO problem is efficiently solved using sensitivity-
based optimization algorithms, presuming the sensi-
tivities can be computed efficiently. This is achieved
by analytical derivative expressions of the optimiza-
tion functions. The individual explicit partial deriva-
tive terms that compose the sensitivity expression are
derived in Appendix A.

4.1 Volume Function

The derivative of the volume function is the element
volume multiplied the physical density derivative:

dV
dρ(j)

= v(e)
∂ρ̃(e)

∂ρ(j)
(34)

4.2 Fatigue Function

The sensitivity of the fatigue function is composed of
the following derivatives:

dDΨ

dρ(e)
=

∂DΨ

∂D(e)
∂D(e)

∂σ̄(e)
∂σ̄(e)

∂ρ(e)
(35)

Within this equation term are multiple function de-
pendencies resulting in many partial derivatives. Fur-
thermore, as the constraint is formulated using the
NAND approach, the total derivative will contain deriva-
tives of the state equation:

D = D(ρ, U(ρ)) (36)

Direct differentiation of these will require solving an
equation per design variable in the optimization. Due
to the application of aggregation functions to scalar-
ize the many local constraints, the adjoint method is
the preferable choice for computing these derivatives
as it involves solving an equation per constraint. The
adjoint method entails defining an adjoint vector to be
able to easily obtain a solution for derivatives of the
state equation of Eq. (18). The state equation deriva-
tives ∂u(e)

∂ρ(e)
enter through the stress partial derivative,

which is:

∂σ̄(e)

∂ρ(e)
= q

(
ρ(e)
)q−1

EB(e)u(e)

−
(

ρ(e)
)q

EB(e) ∂u(e)

∂ρ(e)

(37)
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The global version of the term, i.e. ∂U
∂ρ(e)

, is determined

by differentiating the governing equation:

K
∂U

∂ρ(e)
+

∂K
∂ρ(e)

U =
∂F

∂ρ(e)
(38)

In case of the load being design independent, the load
vector derivative is zero, and the displacement deriva-
tive is thereby isolated as:

∂U
∂ρ(e)

= K−1
(
− ∂K

∂ρ(e)
U
)

(39)

which is inserted into Eq. (37). The adjoint vector is
then defined as:

λT =

(
∂g
∂U

)
K−1 (40)

where g is the considered function. The stiffness ma-
trix is symmetric and as such Eq. (40) is transformed
to the linear system:

Kλ =

(
∂g
∂U

)T
(41)

from which solutions can efficiently obtained for each
function. Inserted into Eq. (35) yields:

dDΨ

dρ(e)
=

∂DΨ

∂D(e)
∂D(e)

∂σ̄(e)
q
(

ρ(e)
)q−1

EB(e)u(e)

− λT
D

∂K
∂ρ(e)

U
(42)

Denoting λD as the adjoint vector of the damage func-
tion, which is computed by solving a set of linear
equations (corresponding to Eq. (41)), with the follow-
ing right hand side:

KλD =

(
∂gD
∂U

)T
=

(
Nelem

∑
e=1

∂DΨ

∂D(e)
∂D(e)

∂σ̄(e)

(
ρ(e)
)q

EB(e)L(e)

)T (43)

where L(e) is a bookkeeping matrix handling local-to-
global transformation of the element strain-displacement
matrices B(e).

Considering the angle design variable, the expanded
total derivative is:

dDΨ

dθ
=

Nelem

∑
e=1

∂DΨ

∂D(e)




NRF

∑
i=1

∂D(e,i)

∂N(e,i)
∂N(e,i)

∂σ̄
(e,i)
N f

∂σ̄
(e,i)
N f

∂α

∂α

∂np

∂np

∂θ




(44)

The computation of this is more straightforward as
there is no implicit dependence of the state equations.

4.3 Stress Function

The sensitivity of the stress function is derived sim-
ilarly to the fatigue function. It is composed of the
following derivatives:

dσ̄Ψ

dρ(e)
=

∂σ̄Ψ

∂σ̄(e)
∂σ̄(e)

∂ρ(e)
(45)

The ∂σ̄(e)

∂ρ(e)
term is the same as used in the fatigue ex-

pression, see Eq. (37). As a consequence the same steps
are taken in defining the adjoint vector, which expres-
sion become:

Kλσ =

(
∂gσ

∂U

)T
=

(
Nelem

∑
e=1

∂σ̄Ψ

∂σ̄(e)
∂σ̄(e)

∂ρ(e)

(
ρ(e)
)q

EB(e)L(e)

)T (46)

Inserted, the stress sensitivity is:

dσ̄Ψ

dρ(e)
=

∂σ̄Ψ

∂σ̄(e)
q
(

ρ(e)
)q−1

EB(e)u(e)

− λT
σ

(
∂K

∂ρ(e)
U
) (47)

5 Numerical Examples

This section presents implementation aspects regard-
ing the presented problem. Examples are then demon-
strated, which illustrate the implications of the de-
veloped models. Three optimization problems are de-
fined for this purpose; P1: volume minimization sub-
ject to a fatigue constraint formulated using regular
signed von Mises, P2: volume minimization subject to
an anisotropic fatigue constraint and P3: volume min-
imization subject to an anisotropic fatigue constraint
and a von Mises stress constraint. These are defined
as:

P1 =





min
(ρ)

V(ρ)

s.t. gD(ρ)− 1 ≤ 0
ρ ∈ [ρmin, 1]

(48)

P2 =





min
(ρ)

V(ρ)

s.t. gDα(ρ,θ)− 1 ≤ 0
ρ ∈ [ρmin, 1]

(49)



12 A. Olesen, S. Hermansen

P3 =





min
(ρ)

V(ρ)

s.t. gDα(ρ,θ)− 1 ≤ 0
gσ(ρ)

σlim
− 1 ≤ 0

ρ ∈ [ρmin, 1]

(50)

5.1 Implementation

The optimization problems are solved using the Method
of Moving Asymptotes (MMA) (Svanberg, 1987, 2007).
In order to increase stability of the optimization, a
small change is made to the settings for how the mov-
ing asymptotes are updated. The default increase and
decrease factors are reduced to 1.05 and 0.65, respec-
tively, as also done in Oest and Lund (2017). Besides
the moving asymptotes, external move limits of 5%
are applied to the design variables as well to further
ensure stability.

The continuous density-based formulation of the
optimization problem is non-convex, which when us-
ing sensitivity-based methods is likely to converge to
a local optimum (Lund, 2018). Using initial high fac-
tors in the SIMP method enforces this, as the con-
straints increasingly restrict the design domain. This
is especially evident in case of the stress relaxation,
where the singular optima may be closed-off entirely
by the constraints. To be able to find a good optimum
continuation can be applied to the SIMP exponents
by starting off with a small amount of penalization,
such that the design space is more open in the begin-
ning of the optimization and then gradually closed by
increasing the exponents. This approach was used to
be able to solve the large-scale problem in Aage et al.
(2017), where the stiffness penalty factor is slowly in-
creased from 1 to 3. An increase in solution time how-
ever follows by using continuation, as essentially the
problem formulation is changed for each continuation
step whereby convergence to a new optimum is re-
quired.

In this work, no continuation is applied to the stiff-
ness and stress exponents, which are kept constant at
p = 3 and q = 0.75 for all presented examples. In-
stead, application is made to β of the threshold filter,
and to the scaling factors c1 and c2 of Eq. (8). The spe-
cific continuation strategy applied to the examples are
described in detail for each problem.

The reason for applying continuation on β is not
directly related to achieving a strong optimum. Thresh-
old filtering should only increase discreteness of the
design - not alter the topology. However, the discrete

formulation is nonlinear and immediate application
using large values of β is likely to result in divergence.
Preemptive application may also cause unintentional
convergence to a local minimum. The optimization is
therefore much more stable if keeping β low until a
good minimum has been found, where after it can be
increased by continuation. This however implies fur-
ther increase on the solution time, especially if contin-
uation is applied to the stiffness or stress exponents
beforehand. To alleviate this Guest et al. (2011) pro-
poses adjusting the initial MMA asymptote variables,
initially setting them quite conservative. Although the
concepts of the method seems promising, it is not
adopted for this work, mainly since it does not work
well with the robust method, as it forces the eroded
and dilated designs to fully void and solid (depend-
ing on the starting density) immediately, where they
may get stuck.

All designs assume all element densities are ρ(0) =
0.5 as the starting guess. To measure the degree of
black- and whiteness in the design a measure of nondis-
creteness (Sigmund, 2007) is defined as:

Mnd =

Nelem
∑

e=1
4ρ̃(e)(1− ρ̃(e))

Nelem
× 100% (51)

where ρ̃ is the physical density obtained by either
linear density or projection filtering. The measure of
nondiscreteness is defined to be 0% at a density value
of 0 or 1 and 100% at a density value of 0.5, i.e. the
most intermediate density possible.

5.2 L-beam Problem and Settings

The L-beam example is a commonly used benchmark
problem for TO problems involving stress. Its reen-
trant sharp corner, see Fig. 7, is a notorious stress
concentration site, which should be alleviated when
exposed to an optimization with stress-based crite-
ria. To avoid issues with violation of minimum length
scale near the boundaries, the domain extension ap-
proach (Clausen and Andreassen, 2017) is applied, ex-
tending the domain in all directions (except at bound-
ary condition locations). This method solves issues
with filtering boundary conditions, where unmodified
boundaries act as Neumann conditions, imposing an
assumed symmetry in the filter. This in turn means
that the minimum length scale would be halved at the
boundaries.

A simple repeated load case is used to illustrate
effects of fatigue, such that a reference load P = 50
kN is repeated for n = 2 × 106 reversals at a single
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Fig. 7 Plane stress L-beam problem with domain extension.
Plate thickness is 20 mm.

load combination of cm = ca = 0.5, corresponding to
zero-based load history.

Material used is AISI 1020, i.e. characteristic val-
ues are E = 203 GPa and ν = 0.3. Regarding fatigue
behavior, the Basquin factor is b = −0.156 and best
case fatigue strength is σf⊥ = 1384 MPa. The aniso-
tropic fatigue factor is assumed to be βp = 1, such
that fatigue strength is halved in the σf ‖-case.

Filtering is restricted to a linear density filter of ra-
dius R = 0.025 m. This value is also used for domain
extension, i.e. dext = R. The domain is discretized us-
ing 57,600 elements with design variables and 15,525
elements for domain extension.

5.3 Effects of Damage Scaling

To illustrate the importance of proper damage scaling
in terms of accuracy and computational time required
to converge, two examples are solved, using P1 and
best case fatigue strength σf⊥. First, pure Basquin fac-
tor scaling (Eq. (7)) is used. This is then compared to
results from a continuation approach to P-mean scal-
ing (Eq. (8)), where c1 is initially 1 and reduced by 0.2
every 50 iterations, starting at the 400th iteration, and
c2 = 1− c1. Results are illustrated in Fig. 8.

The pure Basquin factor scaling has fast and sta-
ble convergence, achieving 0.2174, but fails to use all
available fatigue strength. Applying the P-mean scal-
ing, convergence is equivalent until iteration 400, where
the Basquin factor scaling is gradually changed to an
unscaled formulation. This allows more accurate rep-
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Fig. 8 Fatigue optimized designs of P1 achieved by Basquin fac-
tor scaling (left) and P-mean scaling (right). The continuation
approach is observed in the convergence plot when the con-
straint function oscillates. Resultant volume fractions are 0.2174
(top) and 0.2035 (bottom).

resentation of damage and thus better distribution and
lower volume fraction (0.2035).

5.4 Anisotropic Fatigue Optimization

Problem P3 is solved, setting σlim = 262 MPa. With
the introduction of anisotropic fatigue, continuation
of c1 and c2 = 1− c1 is delayed to start at the 550th

iteration for stability. The starting guess for the angle
design variable is θ(0) = π/2. Results are presented in
Fig. 9.

The anisotropic fatigue criterion only considers the
first principal stress and the damage distribution re-
flects this. Considering the geometry as a truss struc-
ture, where only uniaxial stress may be transferred in
a structural member, the fully damaged section corre-
sponds to first principal stress (tension) aligning with
the axis of the local geometry and the second princi-
pal disappearing. For the undamaged section corre-
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Fig. 9 Fatigue optimized designs of P3, with resultant volume fraction 0.2433 and optimized print plane normal angle θ = 0.3160.
The orientation is illustrated next to the design (left most figure).

sponds to the opposite, being primarily in compres-
sion.

The distribution of σVM illustrates the effect of the
α parameter. Geometry aligning with the print plane
normal are stressed the least, as expected, since the
fatigue strength here should be close to σf ‖. Similarly,
geometry not aligning have higher stress, as the fa-
tigue strength approaches σf⊥. A constant stress dis-
tribution is observed for the compressed section, since
only the stress constraint is active here.

With the anisotropic fatigue model a volume frac-
tion of 0.2433 is obtained. Had the anisotropic model
not been available and an isotropic model (e.g. Eq.
(2)) was used instead, worst case fatigue strength σf ‖
should be used to ensure the design would not fail in
fatigue, which would lead to higher volume.

5.5 3D L-Beam Problem

For the general 3D case, the geometry and loads of
the L-beam are updated, see Fig. 10. The loads are de-
fined as Py = Pz = 1350 kN. Linear density filtering is
used with at filter radius of 0.045 m, which size corre-
sponds to a 3x3x3 filter. The considered problem P2 is
solved using robust method for minimum length scale
control. This is required for the surface interpolation,
as it performs poorly for low density, single element
thickness geometry. The threshold variables are de-
fined as [ηe, ηi, ηd] = [0.25, 0.5, 0.75] for the eroded, in-
termediate and dilated designs respectively. A contin-
uation approach is applied to the discreteness variable
β, starting at 1, and then at 400 iterations it doubles for
each 150 iteration, ending with βlim = 16 at 850 itera-
tions. Starting guess for both angle design variables is
θ = −π/10 q is kept constant at 0.75 for the first 100
iterations, then decreased to 0.5 to help further penal-
ize intermediate density. The resulting intermediate
design is illustrated with the optimized orientation of
the print plane and convergence in Fig. 11.

A quite significant reduction in volume is achieved
for every design due to the geometry being hollow.
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Fig. 10 Domain dimensions and boundary conditions for the
three dimensional problem.

The resulting volume fraction is 0.286. This very well
illustrates the potential of TO for these three-dimensional
design, where placement of material is not at all intu-
itive. The design is highly discrete as a result of the
penalization and threshold filtering through the ro-
bust method with Mnd = 6.111%.

The damage distribution of each design is illus-
trated in Fig. 12. Only the erode design achieves a
good distribution of damage. This is due to the in-
crease in thickness of the solid phase of the interme-
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Fig. 12 Damage distribution in the erode (left), intermediate (middle) and dilate (right) designs. The highest damaged element in
each design is 0.9999, 0.9011, and 0.3875, respectively.

diate and dilate designs. Damage depends exponen-
tially on the stress, such that even small changes re-
sults in drastically different damage distribution. The
highest damage of the intermediate and dilate designs
is observed to appear very locally in the stress con-
centration area. This is caused by the discreteness im-
posed by the threshold filter, such that no density gra-
dient remains around these elements, creating stress
singularities. Due to the use of only maximum princi-
pal stress in the fatigue criterion formulation no dam-

age is predicted in the part of the structure that is
stressed in compression, see Fig. 13 for the stress plots.

Using the surface interpolation method described
in Appendix B, a solid geometry is extracted for a
cutoff value ρcut = 0.5. This geometry is then used
to define a body fitted mesh with smoother surface
representation and evaluated in ANSYS using 26,927
quadratic tetrahedral elements, with an average as-
pect ratio of 2.8785. Distribution of σ1 and σ3 for this
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Fig. 13 Stress distribution of P2 for the intermediate design, illustrating both TO model and ANSYS result using a post processed
body fitted mesh.

model are illustrated in Fig. 13 alongside the TO re-
sults. Stresses are very similar between the two mod-
els, even so far as minor stress concentrations occur-
ring in consistent locations. A difference in the mod-
els is the accuracy of stress calculation leading to very
high stresses around the fixed ANSYS geometry, which
are not seen in the TO models.

6 Conclusion

In this work, a continuous anisotropic fatigue crite-
rion focusing on additively manufactured (AM) met-
als has been formulated, which can be applied with
the widely used density-based approach to solve fa-
tigue topology optimization (TO) problems. The crite-
rion assumes that the considered metals behave close
to isotropic in stiffness and monotonic strength, such
that anisotropy only occurs in fatigue strength, and is
derived via an interpolation of SN-curves relating AM
printing direction to directional fatigue strength. An-
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alytic expressions of sensitivities are derived from the
nested analysis and design problem, using the adjoint
method.

Previous published works on fatigue constrained
TO have struggled with achieving both fast and ac-
curate convergence of the fatigue problem due to its
inherent nonlinearity. In this work a scaling method
is developed, which by the use of continuation is able
to ensure efficient convergence, initially using a scaled
measure and subsequently recovering the original dam-
age formulation once convergence has been achieved.

For achieving manufacturing-ready designs from
the TO, the state-of-the-art regularization methods have
been considered, in particular the robust TO method,
to impose a minimum length scale on the design. To
make a non voxel-based 3D model, a novel smoothing
method is presented which uses only existing infor-
mation from the finite element density mesh.

Examples are finally shown, demonstrating the ca-
pabilities and implications of the presented methods.
The generated designs have a good distribution of
damage throughout the geometry and stable conver-
gence as a result of the new scaling method. The 3D
design is verified using commercial finite element soft-
ware and shows good agreement with stress distribu-
tions in TO models.

A Sensitivity Terms

This appendix contains the partial derivatives used for
computing the optimization function sensitivities.

First the damage sensitivity is considered. For ref-
erence, the full sensitivity is found in Eq. (35). By ex-
pansion of the aggregation damage term by the chain
rule the following is achieved:

∂gΨ

∂D(e)
=

∂gΨ

∂D(e)
s

∂D(e)
s

∂D(e)
(52)

The derivative of the P-norm function of Eq. (28) is:

∂gΨ

∂g(e)
=

(
Nelem

∑
l=1

(
g(l)
)P
) 1

P−1 (
g(e)
)P−1

(53)

where g(e) = D(e)
s when using damage scaling. If Basquin

factor scaling of Equation (7) is used, the derivative
wrt. damage is found as:

∂D(e)
s

∂D(e)
= −b

(
D(e)

)−b−1
(54)

For the P-mean scaling, see Equation (8), the deriva-
tive is computed as:

∂D(e)
s

∂D(e)
=

(
1

c1 + c2

)− 1
P

×
−b
(

c1 D(e)
)bP−1

+
(

c2 D(e)
)−P−1

((
c1 D(e)

)bP
+
(
c2 D(e)

)−P
) 1

P +1

(55)

The element damage partial derivative term is expanded
as follows:

∂D(e)

∂σ̄(e)
=

Nlc

∑
i=1

∂D(e,i)

∂N(e,i)
∂N(e,i)

∂σ̄
(e,i)
N f

∂σ̄
(e,i)
N f

∂σ̄(e)
(56)

The damage fraction of Eq. (6) differentiated wrt. num-
ber of reversals is:

∂D(e,i)

∂N(e,i)
= − n(i)

(
N(e,i)

)2 (57)

Number of reversals, computed through Basquin’s ap-
proximation of Eq. (5), differentiated wrt. equivalent
stress is:

∂N(e,i)

∂σ̄
(e,i)
N f

=
1

2σf b


 σ̄

(e,i)
N f

σf




1
b−1

(58)

The stress derivative term of Eq. (56) is further ex-
panded. For the anisotropic criterion of Eq. (17), it
takes the form:

∂σ̄
(e,i)
N f

∂σ̄(e)
=

∂σN f

∂σ̄
=

∂σN f

∂σ1

∂σ1

∂σ̄
+

∂σN f

∂α

∂α

∂nσ1

∂nσ1

∂σ̄
(59)

Here, the derivative of equivalent stress wrt. principal
stress is:

∂σN f

∂σ1
=

ca α

(1− cm
S f

σ1)2 (60)

The derivative of the equivalent stress wrt. α is simply
the Morrow correction:

∂σN f

∂α
=

ca σ1

1− cm
S f

σ1
(61)

and the derivative of α wrt. the principal direction is:

∂α

∂nσ1

= 2βp (np · nσ1) nT
p (62)

Deriving the sensitivity terms of the anisotropic
criterion involves finding analytical expressions of the
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stress eigenvalue and -vector derivatives. This is a non-
trivial task and for completeness it is presented here.
Following Nelson (1976) and further assuming that a
stress matrix σ is real and symmetric, such its right
and left eigenvectors are equal, the eigensystem is de-
scribed as:

σnσ = nσλ (63)

where nσ is the eigenvector matrix and λ is a diagonal
matrix containing the eigenvalues. Performing differ-
entiation of the system of equations wrt. an entry of
matrix σ and rewriting yields a system Fm:

Fm = (σ − λmI)
∂nσm

∂σpq
= −

(
∂σ

∂σpq
− ∂λm

∂σpq
I

)
nσm (64)

where I is the identity matrix with size equal to σ.
The sensitivity of the eigenvalue is found by premulti-
plying the above expression with nT

σm . By considering
Eq. (63) for a single eigenvalue and -vector:

nT
σm(σ − λmI) = 0T (65)

the left hand side of Eq. (64) become zero as nT
σm nσm is

the Kronecker delta, see Eq. (69). It then reduces to:

∂σ
(e)
m

∂σ
(e)
pq

=
∂λm

∂σpq
= nT

σm

∂σ

∂σpq
nσm (66)

which is the eigenvalue sensitivity.
Assuming there are no repeated eigenvalues, it is

observed from Eq. (64) that the sensitivity for each
eigenvector may be uniquely determined as a linear
combination of all eigenvectors as the eigenvectors
form a linearly independent orthogonal basis:

∂nσm

∂σpq
= ∑

n 6=m
cmn nσn (67)

By substituting Eq. (67) into Eq. (64) and by premulti-
plying xT

n an expression for the constants cmn is deter-
mined:

cmn =
Fm · nσn

λn − λm
, n 6= m (68)

The equation in the presented formulation is simpli-
fied such that xn is no longer transposed. As the eigen-
vectors form an orthonormal basis, the dot product
yields:

nσm · nσn =

{
0, m 6= n
1, m = n

(69)

which cancels out the eigenvalue derivative terms of
Eq. (64). By insertion of the remainder of Eq. (64), the
expression of cmn is:

cmn =

(
∂σ

∂σpq
nσm

)
· nσn

λm − λn
, n 6= m (70)

Insertion into Eq. (67) yields the eigenvector sensitiv-
ity:

∂n(e)
σm

∂σ̄
(e)
pq

=
∂nσm

∂σ̄pq
= ∑

n 6=m

(
∂σ

∂σpq
nσm

)
· nσn

σm − σn
nσn (71)

Thus, Eqs. (66) and (71) are used in Eq. (59).
For formulating the element stress measure, von

Mises stress is used exclusively in this work. Expand-
ing the stress derivative of Eq. (37) in terms of von
Mises yields:

dσ̄Ψ

dρ(e)
=

∂σ̄Ψ

∂σ̄
(e)
VM

∂σ̄
(e)
VM

∂σ̄(e)
∂σ̄(e)

∂ρ(e)
(72)

The derivatives of the von Mises stress of Eq. (3) wrt.
the stress components are:

∂σ̄
(e)
VM

∂σ̄
(e)
x

=
1

2σ̄
(e)
VM

(2 σ̄
(e)
x − σ̄

(e)
y − σ̄

(e)
z ) (73)

∂σ̄
(e)
VM

∂σ̄
(e)
y

=
1

2σ̄
(e)
VM

(2σ̄
(e)
y − σ̄

(e)
x − σ̄

(e)
z ) (74)

∂σ̄
(e)
VM

∂σ̄
(e)
z

=
1

2σ̄
(e)
VM

(2σ̄
(e)
z − σ̄

(e)
x − σ̄

(e)
y (75)

∂σ̄
(e)
VM

∂τ̄
(e)
xz

=
3

σ̄
(e)
VM

τ̄
(e)
xz (76)

∂σ̄
(e)
VM

∂τ̄
(e)
yz

=
3

σ̄
(e)
VM

τ̄
(e)
yz (77)

∂σ̄
(e)
VM

∂τ̄
(e)
xy

=
3

σ̄
(e)
VM

τ̄
(e)
xy (78)

The partial derivative of the density filtered vari-
able of Eq. (21) wrt. the design variable is:

∂ρ̃(e)

∂ρ(j)
=

H(j,e)

Nj

∑
l=1

H(j,l)

(79)

where Nj is the set of elements enclosed by the filter.
This derivative expression is independent of the de-
sign variables and does therefore not change through
the optimization. It is therefore precomputed before
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starting the optimization. As sensitivities from all el-
ements in Nj contribute to the filter sensitivity, com-
putation of sensitivities which are not included in the
optimization itself, in the case of using domain exten-
sion, is required.

Introducing a projection filter results in another
term being added to the function derivative by the
chain rule:

∂ f
∂ρ(j)

=

Nj

∑
e=1

∂ f
∂ ¯̃ρ(e)

∂ ¯̃ρ(e)

∂ρ̃(e)
∂ρ̃(e)

∂ρ(j)
(80)

Using the continuous approximation of the threshold
filter, i.e. Equation (23), the intermediate derivative
term is found as:

∂ ¯̃ρ(e)

∂ρ̃(e)
=

β sech2(β(ρ̃(e) − η))

tanh(βη) + tanh(β(1− η))
(81)

The derivative of the stiffness matrix is:

∂k(e)

∂ρ(e)
=

∂Ē
∂ρ(e)

k(e)
0 (82)

where k(e)
0 is the unit stiffness matrix. The partial deriva-

tive of the SIMP expression, appearing in the above
equation, is:

∂Ē
∂ρ(e)

= p
(

ρ̃(e)
)p−1

(E− Emin) (83)

Note that the minimum stiffness term is removed lead-
ing to the minimum density requirement in order to
avoid singularity problems when solving the state equa-
tion. Note that most partial derivatives from the ex-
pression have already been derived in the previous.

The partial derivative terms regarding the print
plane orientation angle are now presented. For ref-
erence, the full derivative is given in Eq. (44). The
derivative of α wrt. the normal vector is:

∂α

∂np
= 2βp (np · nσ1) nT

σ1
(84)

The direction vectors are then differentiated wrt. the
angle design variable. For the two and three dimen-
sional cases, the derivatives are respectively:

∂np

∂θ
=

[− sin θ
cos θ

]
(85)

and

∂np

∂θ
=



− sin θx sin θy cos θx cos θy
− cos θx 0

− sin θx cos θy − cos θx sin θy


 (86)

B Post-optimization Density Interpolation

The interpolation scheme revolves around finding the
surface of the entire structure on a per-element basis
and is split into three steps:

1. Global operations
Data of neighboring elements is collected, such that
computations with a single element also considers
surrounding element data - specifically this is find-
ing nodal density values and element faces that lie
on the outside of the design domain (these would
be the outermost faces visible, including domain
extension).

2. Element interpolation
Using the above data, the density is interpolated
and points are found which will eventually de-
scribe the surface. A density gradient vector is also
determined. Isoparametric finite element expres-
sions used are inspired by Cook et al. (2002).

3. Surface description
Using the density gradient as an approximate sur-
face normal, the points are sorted and used to gen-
erate a surface.

An illustrated overview of element interpolation and
surface description is presented in Fig. 14.

Nodal density is found by simple nodal averaging:

ρ
(n)
n =

1
N(n) ∑

e∈ S(n)

ρ(e) (87)

where ρ
(n)
n and ρ(e) are nodal and element densities,

respectively, N(n) is the total number of elements con-
nected to node n and S(n) is the set of elements con-
nected to the node. Note that no calculations for the
density interpolation use element density.

Outer faces of the domain are found by compari-
son of global node numbers - if faces of different ele-
ments share all nodes, then neither is an outer face. In
explicit terms, this is done by a series of loops, see the
pseudo code of Algorithm 1.

Once nodal densities and outer element faces are
found, individual elements are considered. Three things
must be found to determine a surface:

– points vi along element edges
– a center point v0
– an approximate normal n to the surface, pointing

away from the inferred solid

A surface constructed from these is illustrated in Fig.
15. The element is considered in its natural coordi-
nates, rather than global Cartesian coordinates, such
that a point v is given by:

v =
[
ξ η ζ

]
where − 1 ≤ {ξ, η, ζ} ≤ 1 (88)



20 A. Olesen, S. Hermansen

ξ

η

ζ

1+

4+

2+

3+

5+

6−

7−

8+

Face A

Face B

Face C

(a) (b) (c)

(d) (e)x

y

z

Fig. 14 Overview of element interpolation and surface description. (a): For an element it is found that all nodal densities are above
the cutoff value except 6 and 7, and that faces A (nodes 1,5,8,4), B (nodes 3,4,8,7) and C (nodes 5,6,7,8) are outside faces. (b): It is
determined that the surface consists of nodes 1,3,4,5,8 and interpolated points on edges between nodes (3,7), (6,8), (7,8), and (5,6).
(c): Individual faces and the element intersection are considered; center points and approximate normals are calculated. (d): Using
the center point and normals, non-overlapping triangular facets are found. (e): The facets are transformed from natural to Cartesian
coordinates, normals are recalculated and the data is written to an .STL file. Process is repeated for all elements.
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Fig. 15 Information required to describe a surface: center point
v0, corner points vi, and a surface normal n.

By doing this, elements can be considered as vox-
els and then generalized to an arbitrary distortion -
or even collapsed into a tetrahedral element, if some
additional bookkeeping is done. This means that the
method is general for any linear solid element mesh.

The interpolated surface is found by locating points
corresponding to a cutoff density value. To simplify
consistency with neighbouring elements, corner points

vi are found exclusively along the edges of an ele-
ment, such that only the nodal densities which are
shared between elements are needed. The points that
do not coincide with an element node are found by
interpolating along the element edge:

vi =
[

ρnb−ρcut
ρnb−ρna

ρcut−ρna
ρnb−ρna

] [ca
cb

]
, ρna < ρcut < ρnb (89)

where ρna and ρnb are nodal densities and ca and cb
are nodal coordinates, with subscripts a and b indi-
cating the node at either end of the edge. The center
point is found as a mean coordinate of vi:

v0 =
1

Nv

Nv

∑
i=1

vi (90)

where Nv is the number of corner points.
The entire element is not considered at once, but

as element faces first, followed by the element interior.
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Algorithm 1: Determination of outer faces.
Data: Nodal numbers n, element numbers e, local node

numbers belonging to face f
Result: Boolean matrix O containing state of all

element faces, with True for outer faces, False
for inner.

Initialization;
O = False;
for e1 ← 1 to Nelem do

for e2 ← 1 to Nelem do
if e1 6= e2 then

for f ∈ e1 do
if n( f ) /∈ n(e2) then

O(e1, f ) = True
end if

end for
end if

end for
end for
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Fig. 16 An element where an outer face contains node numbers
{3; 4; 7; 8}. If all relevant nodal densities are above a cutoff, a
full surface is generated (left). If only some are above cutoff, a
partial surface is generated (right). Blue crosses indicate corners
of the surface, which are the points that must determined. The
superscript sign indicates whether the node density is above the
cutoff (+) or below (-).

Program-wise, this means considering 7 potential sur-
faces: 6 element faces and an interior intersection. By
treating the element faces separately, it is possible to
describe flat surfaces as required near boundary con-
ditions, one of the things lost by naive smoothing. This
also involves differences in computation of vi and n,
elaborated in the following.

A surface must be generated on the element face,
if two conditions are fulfilled: it is an outer face and
at least one node has a nodal density ρ

(n)
n higher than

or equal to a chosen cutoff value ρcut. The number of
nodes where ρ

(n)
n ≥ ρcut decides how the surface is

made. If all nodes making up the given face are above
the cutoff, the full face is the surface - otherwise, it is
a partial surface, see Fig. 16.

Given that the isoparametric element is axis par-
allel in natural coordinates, the normal vector can be
described as a positive or negative basis vector, e.g. for
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Fig. 17 Isoparametric element intersection.

the surface in Fig. 16 the normal would be:

n = η̂ =
[
0 1 0

]T (91)

where η̂ is a coordinate basis vector.
The element interior is then considered. The ele-

ment is intersected if nodal densities are to both sides
of the cutoff value, i.e. if

ρcut

{
< ρ

(n1)
n

> ρ
(n2)
n

, n1 ∪ n2 = n (92)

where n is the set of node numbers. Again, corner
points are only found on element edges according to
Eq. (89), however they are not restricted to a single
element face, see Fig. 17.

The approximate normal is taken as the negative
density gradient, such that the normal points away
from the solid, as required:

n = −∇ρ = −B ρn (93)

where ∇ρ is the linear gradient vector, B is the first
derivative of shape functions evaluated at the element
center, and ρn is a vector containing all nodal densi-
ties.

The end result of the interpolation scheme is an
.STL file, which provides a convenient way of describ-
ing a surface geometry. The surface is described as a
set of triangular facets, each consisting of three ver-
tices and a normal vector, see Fig. 18. The descrip-
tion of the individual facet must follow certain con-
ventions:

– The normal must point outwards, away from the
model.

– The normal must be unit length.
– All vertex coordinates must be positive.
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Fig. 18 Components of a single .STL facet.

– Vertex numbering must follow right hand rotation
wrt. the normal.

The information needed for the .STL file is deter-
mined from that found in the previous section. Specif-
ically, a group of points must be found to describe a
surface of facets, with no overlaps. The local point co-
ordinates are then transformed to global Cartesian co-
ordinates and an exact normal is determined for each
facet.

The grouping of points is done by considering the
surface as a set of triangles/facets, all connected at the
center point, see Fig. 19. The points needed to make
each facet is found by a sorting algorithm, using the
angles between vectors from v0 to vi.
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v5

v3v4

v2

v0

{1; 2; 3; 4; 5}

v1

v5

v3v4

v2

v0

{1; 2; 4; 3; 5}
Fig. 19 Order of corner points must be correct for facets to rep-
resent the surface completely and with no overlaps.

Because the points are rarely perfectly in a com-
mon plane, inconsistencies can occur in the angle cal-
culation. The angle calculation and sorting are there-
fore done wrt. the approximate normal n. First, vec-
tors ri, lying in the plane to which n is normal, are
found as the rejection from n. The rejection vector is
the complement to the vector (vi − v0) projected onto

n, see Fig. 20, and is found as vector subtracted by
projection:

ri = (vi − v0)−
(vi − v0) · n

n · n n (94)

As ri are all in the same plane, the sum of angles
between vectors is exactly 2π for a non-overlapping
surface. A right-hand convention is then introduced
when calculating the angles, see Fig. 20.
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v2

r3

v3
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r2

r3 r1θ1,3

θ1,2

ζ

ξ
η

ξ

η

Fig. 20 Top: rejection vectors ri all lie in a plane normal to n. Bot-
tom: Angles between vectors are calculated by right-hand rule
wrt. n, which is pointing outwards here.

The sorting is then done as follows:

– Select a vector ri.
– Calculate angle θi,k = ri 6 rk to all other rk.
– Select the vector that satisfies (ri × rk) 6 n = 0 and

minimizes θi,k
– Save the index k in a list and add angle θk,i and

restart from vector rk, unless ∑ θ = 2π, then stop

When the sorting is complete, the list of indices is
used to select and group the original points vi, such
that a facet is always made up of vertices v0, vI(k), and
vI(k+1), in that order as required by the .STL format.

The points are converted to Cartesian coordinates
as:
[
x y z

]
= Nvi

[
x y z

]
−
[
xmin ymin zmin

]
(95)

The vector of minimum values is subtracted to en-
sure that all coordinates are positive, again required in
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the STL format. Finally, the actual unit normal vector
is found for each facet:

n =
vI(k) × vI(k+1)

|vI(k) × vI(k+1)|
(96)

Note that due to the sorting using a strict right-hand
rule, the direction of the normal is preserved, i.e. it
points away from the solid material.
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Resume
Denne kandidatafhandling omhandler udvikling og implementering af topologioptimeringsme-
toder til optimering af generelle 3D-printede metalkonstruktioner. Der gøres brug af en den-
sitetsbaseret formulering, som sammenkobles med en lineær elastisk, statisk elementmetode-
model til analyse. Løsninger til topologioptimeringsproblemer i densitetsformulering er ikke
veldefinerede og skal gøres geometrisk konsistente. Til dette formål benyttes filtrering, en
metode oprindeligt brugt til signalbehandling. Typisk benyttes et sensitivitetsfilter eller et
densitetsfilter - i den givne implementering foretrækkes densitetsfilteret. Filtermetoden ud-
bygges ved brug af projektionsfiltre, der skal sikre en højere grad af diskretisering i designet.
Disse anvendes efterfølgende til implementering af en metode til robust topologioptimering,
som anvendes til at påtvinge produktionsbibetingelser i form af en veldefineret mindstestør-
relse af de strukturelle detaljer. Ydermere forlænges elementdomænet for at tage højde for
randbetingelsernes ukorrekte effekter på filtrering og mindstestørrelse.

Optimeringskoncepter relaterende til spændingsanalyse diskuteres med særlig fokus på
de medfølgende problemer; spændingers lokale definitioner og forekomsten af singulære
optimum. Som løsning på disse problemer præsenteres henholdsvis aggregatfunktioner til at
definere et globalt spændingsmål, som efterfølgende normaliseres med adaptiv skalering af
bibetingelsen for at opnå højere nøjagtighed, og relaksering af spændingerne ved qp-metoden.
Singulariteter kan fejlagtigt opstå i geometrien grundet skarpe kanter mellem elementerne, og
løsningsmetoder hertil diskuteres.

Formålet med at gennemgå spændingsaspekter er, at de skal bruges til at formulere en
udmattelsesbetingelse til optimeringen. Generelle udmattelsesmodellering og -aspekter
præsenteres. Udmattelses-optimeringsproblemer er komplicerede at løse grundet den ulineære
formulering, og hertil præsenteres en effektiv skaleringsmetode, der sikrer høj nøjagtighed
of hurtig optimering. Dette efterfølges af et grundigt studie af udmattelsesegenskaber for
3D-printede metaller, hvor det viser sig, at disse er væsentlig forringet sammenlignet med
et tranditionelt fremstillet metal. Derudover forekommer der også anisotropisk opførsel i
udmattelse som en bivirkning af processen. Dette benyttes til at udvikle en kontinuert funktion,
der tager højde for den anisotropiske opførsel af det 3D-printede metal.

Til at løse problemet benyttes førsteordens sensitivitetsbaserede metoder, hvilket anses som en
effektiv løsning til disse komplekse optimeringsproblemer. Sensitiviteterne findes ved brug
af adjoint design-sensitivitetsanalyse, hvilket er fordelagtigt når der er få bibetingelser - dette
opnås ved brug af aggregatfunktioner.

Efter præsentation af disse metoder løses flere eksempler, i både to og tre dimensioner, for at
vise implikationerne ved brug og kombination af de forskellige metoder.
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only when the function is defined, e.g. a function defined as f (x) is later always referred to as
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1 | Introduction
Achieving optimal use of material for load carrying structures is a long-standing goal in
engineering. This has spiked an ever-increasing interest in using mathematical optimization
methods to design complex and high performing solutions at low cost. Around its introduction,
the application of mathematical optimization to solve complex problems was limited by the
lack of computational power available, as it involves solving problems iteratively by use of
a programming algorithm. As computational power improved substantially during the late
20th century, these solution schemes were made viable and the preferable approach has since
become optimization in a Finite Element (FE) formulation [Lund, 1994].

The first approach taken was sizing optimization, which concerns structures parameterized
by common dimensions such as thickness or cross sectional area. To be able to treat more
complex problems, shape optimization was developed, which allows finer control in generation
of design, e.g. the shape of a curve [Haftka and Grandhi, 1986]. In Bendsøe and Kikuchi [1988]
shape optimization was generalized to what is now known as topology optimization (TO). TO
is concerned with material layout in a fixed domain and unlike shape optimization, is able
to change the occurrence of structural details, such as holes, providing almost total freedom
within the design space, resulting in synthesis of highly complex designs, near impossible to
derive based on intuition.

During the 1990’s the field gained much academic attention and evolved at a high pace as
a consequence. A compact MATLAB implementation was provided in Sigmund [2001] to
educate engineers in TO, which further allowed the field to develop in many directions. The
method has since been applied to solve many different challenging problems [Eschenauer and
Olhoff, 2001][Bendsøe et al., 2005]. An impressive example of TO is the optimization of an
entire airplane wing by Aage et al. [2017], which meant solving an very large-scale problem
consisting of one billion finite elements. Being able to solve such complex problems have also
caused an increasing interest from industry to be able to incorporate TO to improve their
products. This project is a good example of this, as it is conducted with pump manufacturer
Grundfos as an industrial partner. The industrial relevance has also lead to implementation in
many commercially available FE programs such as ABAQUS, ANSYS, and COMSOL, making
TO available to a broad audience outside of academia.

Despite the academic and industrial attention problems persist, preventing application to
attractive areas. In relation to the theme of this thesis is in particular the combination of
additive manufacturing (AM) and TO. Beforehand, a major limiting factor to realizing TO
designs was the capability of the manufacturing methods available. As AM builds components
from the bottom up it does not suffer from accessibility constraints, which is the significant
restriction of conventional subtractive manufacturing methods. Some factors must be taken
into account regarding the AM-process and works have been published regarding including
this in TO, see Clausen [2016], Langelaar [2016] and [Langelaar, 2019]. However, ensuring
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structural integrity of metal AM components against common failure criteria has not been
given too much attention. Being able to take fatigue damage into account for dynamically
loaded AM components is in particular important. Studies indicate that the fatigue strength of
AM metals is degraded as a result of the process, whereas in comparison the static strength
is in general comparative or in some cases better than a wrought counterpart [Yadollahi and
Shamsaei, 2017]. How much the strength is degraded differs for each considered material.
The effectiveness of applying post-treatment to recover some of the fatigue strength is also
material dependent, and may actually for some materials reduce the fatigue strength even
further. Furthermore, because the direction in which the component is built induces anisotropy
in the fatigue formulation, accurate modeling is non-trivial.

1.1 State of the Art of Topology Optimization

Although the method of TO was introduced in Bendsøe and Kikuchi [1988], the homogenization
approach used to define material properties of the solid-void structure herein is all but
abandoned today. Instead either a density-based method with stiffness penalization [Bendsøe,
1989][Stolpe and Svanberg, 2001a] or a level set method [Allaire et al., 2002][Wang et al.,
2003][Allaire et al., 2004] is used. Especially the Solid Isotropic Material with Penalization
(SIMP) approach to penalize stiffness has been widely used due to its simplicity and
effectiveness. For an overview of less used methods and discussion of their uses see Sigmund
and Maute [2013].

Efficient solution of optimization problems is typically achieved by first order sensitivity-based
programming. These involve computing sensitivities through a Design Sensitivity Analysis
(DSA). Analytical sensitivities are preferable as these are computed most efficiently using either
the direct differentiation or an adjoint formulation. The most popular method for solving TO
problems is the Method of Moving Asymtotes (MMA) by Svanberg [1987].

A consistent issue in material layout problems is the illposedness of geometric scale and
non-existence of solutions for the continuous problem, leading to mesh dependent designs in
FE formulations. Regularization is done to ensure mesh independent convergence, typically
by filtering techniques such as sensitivity [Sigmund, 1994] or density filtering [Bruns and
Tortorelli, 2001][Bourdin, 2001]. Linear density filtering is the most popular choice since the
sensitivity filter alters the problem sensitivities such that they are inconsistent with the other
expressions in the optimization, which causes problems for line search based optimization
algorithms such that convergence to the optimum may be prohibited [Sigmund, 2007].

However, the linear density filter leaves a gradient of intermediate density around structural
members. Intermediate densities in the optimized domain are undesirable as there is no
physical interpretation associated with them. Although effort has been placed on formulating
a nonlinear density filter, e.g. by replacing the linear expression with a Gaussian probability
function [Bruns and Tortorelli, 2003] to achieve a more crisp transition between solid and void,
no advantage of using this formulation has been observed [Sigmund, 2007].
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In Guest et al. [2004] an alternative solution to the problem was proposed, entailing appending
a projection filter to the linear density filter. The proposed projection filter would force all
intermediate densities to fully solid material. Besides being able to increase the discreteness
of the design, the method is also able to introduce a minimum length scale on the structural
members, albeit only on the solid phase. The concept of minimum length scale, i.e. strict
control over geometric dimension, has for a while been in focus due to considerations of
manufacturing constraints. Sigmund [2007] reversed the presented projection filter formulation
to be able to introduce a minimum length scale on the void phase instead, yet a scheme for
defining minimum length scale on both phases simultaneously is desirable. Such control has
been achieved by using multiple projections of density as in the robust method [Sigmund,
2009][Wang et al., 2011] or by inclusion of geometric constraints [Zhou et al., 2015]. Similar
geometric constraints may be introduced for defining a maximum length scale in the optimized
design [Lazarov and Wang, 2017].

Another issue related to minimum length, specifically violation of minimum length at domain
edges, stemming from poor definition of filtering boundary conditions, was solved in Clausen
and Andreassen [2017], by use of domain extension, such that accurate boundary condition are
achieved in the design domain.

Computation of the linear density filter is time consuming especially for larger models.
Parallelization is desirable, as it allows for distributing the computational burden to multiple
cores for faster computation, however the standard formulation of the density filter is not
suitable for this purpose. Instead, the filter may be defined implicitly as a solution of a
Helmholtz partial differential equation [Lazarov and Sigmund, 2011][Kawamoto et al., 2011],
which is better suited for parallelization. A framework was presented in Aage and Lazarov
[2013] and a PETSc implementation in Aage et al. [2015], focusing on parallelization of the
Helmholz filter and MMA routines, which is what allowed the solution of the large-scale
problem in Aage et al. [2017].

Early work on structural TO is primarily restricted to global criteria such as volume, compliance
or eigenfrequency [Bendsøe and Sigmund, 2003]. Within the last decade, the focus has shifted to
more commonly occurring failure criteria, in particular stress and fatigue. These are notoriously
difficult to handle as they inherent complex issues, namely their local definition and singular
optima [Duysinx and Bendsøe, 1998]. The former is typically solved by aggregation using
a scalarization function [Duysinx and Sigmund, 1998] with normalization by the adaptive
constraint scaling method [Le et al., 2010]. More lately, the problem has also been solved by
reformulating the problem using an augmented Lagrangian formulation [da Silva et al., 2019].
The singular optima problem is treated by relaxation techniques, usually either the ε-approach
[Cheng and Guo, 1997] or the qp-approach [Bruggi, 2008] is adopted. Implementation of these
procedures has been successfully done for stress-constraint TO in many published studies,
e.g. Le et al. [2010], Holmberg et al. [2013] and da Silva et al. [2019]. However, the inclusion
of fatigue functions is quite more tedious. Fatigue is dependent on multiple factors and its
behavior is highly nonlinear making the combination of high accuracy and efficiency in the
modeling difficult to achieve. Oest and Lund [2017] provided a framework for including finite-
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life fatigue constraints for variable amplitude loading in the optimization for the proportional
load case. The model was extended to nonpropotional loading in Zhang et al. [2019], where
also a scaling method to reduce the nonlinearity of the fatigue damage measure is introduced.

A different problem, present for both stress and fatigue, is the handling of artificial stress
singularities emanating from jagged edges of highly discrete designs. Using a linear density
filter to smooth these removes the singularities, however the stress measure is not coherently
defined in intermediate densities leading to an erroneous measure, worsened by the nonlinear
dependence in fatigue problems. Solutions include stress extrapolation [Svärd, 2015b] or
leaving a small density gradient for reducing the impact of jagged edges [da Silva et al., 2019].

1.2 Objectives

This work concerns development of methods for performing TO on AM metal components.
AM metals are substantially affected by the process, which degrades their fatigue properties.
Anisotropic fatigue behavior appears and the degree hereof varies for each material and process
method, making modeling quite challenging. To be able to accomplish this optimization, a
continuous function describing the fatigue damage as a function of the fatigue strength
reduction from the induced anisotropy is required. Complex TO problems, such as fatigue,
are in general difficult and time consuming to solve. Efficiency is therefore an important
consideration, when choosing the approach for solving the problem. For this purpose,
sensitivity-based methods with analytically derived sensitivities are essential, but they are only
applicable if continuous and differentiable expression can be obtained.

The design resulting from an optimization should be at the limit of the material’s capacity. If
the design is altered post-optimization, there is no guarantee that the structural integrity is
maintained - at least not wrt. the model used. TO geometry have therefore commonly been
used as inspiration for a final design instead of realizing the actual geometry. Because of the
high capabilities of AM the complex geometries are now manufacturable, which makes it even
more relevant to be able to directly manufacture a generated TO design.

The motivation from the industrial partner Grundfos is to be able to achieve better designs for
AM by using TO. It is therefore further desired to extend the methods presented to general
three-dimensional cases for use in generating designs for industrial products.

In conclusion, the following objectives are specified:

• Develop a continuous anisotropic fatigue model for performing TO of AM metals.
• Develop a TO scheme capable of generating designs ready for AM with minimal post-

processing.
• Develop an effective method to generate solid material models from density distributions.
• Implement all presented routines for solving general three-dimensional problems.
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2 | Topology Optimization
The following chapter will present the density-based approach to topology optimization of finite element
problems. Benchmark problems are established, which are used to illustrate the effect of the implemented
methods throughout the report. Filtering is introduced as a regularization technique. Several methods of
filtering are discussed and used to define a robust topology optimization scheme. The effects associated
with filtering are discussed and solutions are presented.

2.1 Problem Setting

Analysis of general structures (i.e. structures of any shape and size) is most commonly done
using the Finite Element (FE) method. FE is a numerical method based on discretizing the
governing partial differential state equations to a set of linear algebraic equations. For the
linear elastic static structural case, the discretized governing equation is:

KU = F (2.1)

where K is the global stiffness matrix, U is the global displacement vector and F is the load
vector. The structure is usually discretized into a mesh of many finite elements to increase
accuracy of the analysis. Many element formulations are available [Cook et al., 2002] and the
choice hereof depends on the problem considered, the desired accuracy and efficiency.

Topology optimization (TO) of general structures takes outset in the FE formulation and the
standard optimization problem is stated as:

minimize
(ρ)

f (ρ)

subject to g(ρ) ≤ 0

ρ ∈ [ρmin, 1]

(2.2)

where f is the objective function, g is a constraint function, ρ is a vector of design variables and
ρmin is a small number introduced to avoid numerical issues in solving the FE problem. The
simplest definition of a TO problem in a FE form is by assigning elements a design variable
with one of two values, deciding whether a given element should contain material or not.
Alternatively, design variables could be assigned to nodes, as done in Guest et al. [2004],
however the element approach is sufficient for this implementation and is adopted for this
work.

The governing equation in Equation (2.1) becomes dependent on the design variables in the
optimization, where the global stiffness matrix K becomes dependent of the contribution
from each element. The load vector F is assumed constant and design-independent, although
this may not always be the case, see e.g. Chen and Kikuchi [2001]. If the state variables are
independent of the design variables, the governing equation has to be included as a constraint
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function in Equation (2.2), such that the governing equation is solved simultaneously with
the TO problem - this is termed the simultaneous formulation. However, in the case of static
structural problems, the state variables U are uniquely defined for a given set of design
variables. The FE problem may therefore be solved a priori, as the state variables are implicitly
included in the optimization functions (e.g. f (ρ, U(ρ))) - this is termed the nested formulation
[Christensen and Klarbring, 2009].

2.2 Density-based Approach

The FE formulation implies solving an integer optimization problem, using an indicator
function to determine whether a given element should be assigned material (i.e. non-zero
element stiffness) or not. This is usually designated by 0 for no material and 1 for material,
or simply void and solid, respectively. Solutions are then the 0-1 distribution of the indicator
function in the FE domain. The discrete formulation is however cumbersome, as solving
an integer programming problem becomes exponentially more expensive as the amount of
design variables in the model increase using the solution methods available at present, e.g.
branch-and-bound methods or genetic algorithms [Sigmund, 2011].

To improve efficiency of the solution, the problem is relaxed by making design variables
continuous and allowing element stiffness to take intermediate values. Continuity is desirable as
it allows for computation of sensitivities (typically first order derivatives) and thus much more
efficient optimization (given that sensitivities can be computed efficiently). The continuous
design variables, henceforth called density variables, are an artificial measure in that it is
inconsistent with physics and therefore it needs to be removed during the optimization. This
motivated the development of the Solid Isotropic Material with Penalization (SIMP) method
by Bendsøe [1989]. The SIMP method was initially branded as a "fictitious" method, favoring
efficient and simple implementation at the cost of accuracy, with many studies preferring the
homogenization method of Bendsøe and Kikuchi [1988] around its introduction. However,
studies by Bendsøe and Sigmund [1999] on the SIMP method’s micromechanical implications
demonstrated that the method satisfies the Hashin-Shtrikman bounds, whereby the SIMP
method is a valid and physically meaningful method for density interpolation.

The SIMP method introduces penalization of intermediate stiffness with respect to the density
measure through a power law:

Ē = ρpE (2.3)

where Ē is the penalized elastic modulus of the material, p is the penalization factor, ρ is the
density variable, and E is the unmodified elastic modulus. For higher penalization factor p, the
stiffness becomes more costly for elements with intermediate density, graphically represented
in Figure 2.1, such that density is forced towards fully void or solid.

A modified version of the SIMP method [Sigmund, 2007] is expressed as:

Ē = Emin + ρp(E− Emin) (2.4)
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where Emin indicates a minimum stiffness term to avoid a singular stiffness matrix. This
formulation is preferable for regularization purposes [Sigmund, 2007][Andreassen et al., 2011],
see Section 2.4.

Another stiffness penalization method was presented in Stolpe and Svanberg [2001a] termed
the Rational Approximation of Material Properties (RAMP):

Ē = Emin +
ρ

1 + p(1− ρ)
(E− Emin) (2.5)

This method similarly includes a penalization factor p, however the degree of penalization
differs from the SIMP method, see Figure 2.1. The method was introduced in order to alleviate
the non-concavity of the SIMP function and thus ensure convergence for compliance problems
[Stolpe and Svanberg, 2001b]. RAMP has a finite, non-zero derivative at zero density, which is
an advantage over SIMP, and the RAMP method therefore sees much use in TO areas such as
the discrete material optimization method for laminated composites, see e.g. Lund [2018]. The
RAMP method does however not achieve the same degree of penalization as the SIMP model
for highly nonlinear problems, leading to slower convergence [Olesen and Hermansen, 2019].

ρ

Ē

SIMP, p = 1
RAMP, p = 1
SIMP, p = 2
RAMP, p = 2
SIMP, p = 3
RAMP, p = 6
SIMP, p = 5
RAMP, p = 30

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1. Effect of penalization for SIMP and RAMP interpolation methods.

2.3 Benchmark Problems

Two structural problems are defined for use in this work. Both are commonly used in TO
literature to benchmark developed methods. The material will be AISI 1020 HR steel for all
examples with properties as defined in Table 2.1.

The first problem is the MBB-beam, see Figure 2.2. The MBB-beam is equivalent to a three
point bending setup. Symmetry conditions are applied at the center of the beam to reduce
problem size.
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Young’s modulus E 203 GPa
Poisson’s ratio ν 0.3
Yield strength Sy 262 MPa
Ultimate tensile strength SUt 441 MPa
Fatigue strength σf 1384 MPa
Basquin’s parameter b -0.156

Table 2.1. Material data for AISI 1020 HR steel [Stephens et al., 2001].

P

Ly

Lx

P = 50 kN
Lx = 1 m
Ly = Lx/3
t = 20 mm

Figure 2.2. MBB-beam definition and default values. t is thickness.

The second problem is the L-beam, see Figure 2.3. The L-beam has a reentrant corner, creating
a large stress concentration, whereby stress effects become more pronounced than in the
MBB-beam and thus stress-based designs become more distinct from those not considering
stress.

Ly2

Lx1

P

Lx2

Ly1

P = 50 kN
Lx1 = 1 m
Lx2 = 0.4 m
Ly1 = 1 m
Ly2 = 0.4 m
t = 20 mm

Figure 2.3. L-beam definition and default values.

Volume and structural compliance are used as objective and constraint functions for illustrations
in this chapter. Volume V is defined:

V =
Nelem

∑
e=1

ρ(e)v(e) (2.6)

where e is the element index, Nelem is the total amount of elements in the design domain and
v(e) are reference element volumes. Note that ρ(e) refers to the density variable used for the
physical design, as density is changed via regularization (explained in Section 2.4). Compliance
C is defined as:

C = UTF = UTKU (2.7)
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The general implementation of the compliance problem follows Andreassen et al. [2011]. The
geometry is represented by a pixel-based mesh of regular linear Q4 elements. Regularity of the
elements makes the isoparametric formulation unnecessary, and as such the element stiffness
matrix is found analytically in Cartensian coordinates. For solving the problems, the optimality
criteria method used in Andreassen et al. [2011] is replaced with a sensitivity-based method
termed the Method of Moving Asymptotes. This is done as optimality criteria can not be
defined for more complex problems such as stress and fatigue, which are treated later in this
paper. The Method of Moving Asymptotes is discussed further in Chapter 5.

General nomenclature of geometric components used throughout the report is illustrated on a
compliance optimized MBB-beam in Figure 2.4.

Structural m
em

ber

Connection

Structural width

Figure 2.4. Nomenclature used highlighted on an optimized MBB beam. "Structural members" refer
to the members that compose the structure, "structural width" their width, and where they
connect are termed "connections".

2.4 Regularization

Structural TO problems are in general ill-posed, as solving the same problem with an increasing
resolution of the FE mesh will result in solutions with increasingly fine detail of the structural
members within the design domain [Cheng and Olhoff, 1981][Sigmund, 1994], see Figure 2.5.
Refinement of the mesh should only result in more accurate modeling, not changes to geometry,
and as many elements are usually required to properly capture derivative field quantities such
as stress, the resulting optimized solution may contain unmanufacturable details. In order to
achieve manufacturing-ready designs the problem must be regularized by removing the mesh
dependency and introducing a minimum length scale on the structural details.

60x20 120x40 240x80

Figure 2.5. Ill-posedness of the TO problem (MBB-beam). Increasing the amount of elements in the FE
model (indicated by the numbers above as elements in horizontal and vertical directions)
without changing the problem leads to new geometry.
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Another problem arises when using linear FE, as is often done for computational efficiency.
It is observed that the optimized density variables will alternate between solid and void, see
Figure 2.6. This form of material distribution is termed a checkerboard pattern.

Figure 2.6. Checkerboard pattern formation when solving the MBB problem.

Checkerboard patterns are caused by artificially high stiffness introduced through linear
elements’ inability to properly capture bending deformation [Díaz and Sigmund, 1995].
Mathematically, the appearance of such a pattern represents non-convergence of the FE
problem [Sigmund and Petersson, 1998]. A solution containing a checkerboard pattern does
therefore not represent an optimized distribution of material, but instead numerical instability
in the computational procedure. It is possible to remove the problem by using elements of
higher order, such as quadratic elements, which are not affected by spurious stiffness. However,
a regularization scheme is still preferred, as higher order elements do not remove the mesh
dependency of the solution. Furthermore, higher order elements increase the computational
expense, especially for three-dimensional analysis, which encourages a method to allow for the
use of linear elements.

2.4.1 Basic Filtering

Filtering is a common method for regularization and removing checkerboard patterns due to
the method’s effectiveness and ease of implementation [Sigmund, 2007]. Filtering is a noise-
reduction technique adopted from the field of signal processing [Sigmund, 1994], notably used
in digital image processing, in which the pixel-based domain is similar to the FE domain used in
TO. A structural checkerboard pattern can be interpreted as noise, similar to the noise appearing
in digital images. The method used here to filter this noise is based on convolutions, where
some appropriate function is used to modify the density function, producing a smoothing of
the density distribution. The operation is exemplified in Figure 2.7, where a discrete Heaviside
function is convolved with a linear hat function.
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Linear hat function (g)Step function ( f )
Step function
Linear hat function
Convolution result

Convolution ( f ∗ g)

Figure 2.7. Convolution of two functions; a step function ( f ) and a linear hat function (g). "∗" is the
convolution operator.

In TO, filtering is most commonly applied using one of two methods; sensitivity filtering
or density filtering. In this work, only density filtering is considered. Sensitivity filtering
heuristically alters the problem sensitivities as a weighted sum of sensitivities from the
neighboring elements [Sigmund and Petersson, 1998]. This change makes the sensitivities
inconsistent with the problem and may prohibit convergence to the optimum when using line
search based optimization algorithms [Sigmund, 2007]. The density filter is applied directly
to the design variables and sensitivities are subsequently computed, ensuring consistency
between the expressions.

2.4.2 Density Filtering

The density filter was introduced in Bruns and Tortorelli [2001] and convergence to an optimized
solution was proven in Bourdin [2001]. The density filter modifies the density of an element as
a weighted average of the density of neighboring elements:

ρ̃(j) =

Nelem

∑
e=1

H(j,e) v(e) ρ(e)

Nelem

∑
e=1

H(j,e) v(e)
(2.8)

where ρ̃(j) is the filtered design variable, v(e) is the element volume and H(j,e) defines the
weighting function between design variable j and element e for all Nelem. The element volume
is included in the expression in order to account for elements having different shapes and sizes
in an unstructured FE mesh. The simplest weighting function is linear, which is defined as:

H(j,e) = max(0, R− |c(j) − c(e)|) (2.9)

where R is the filter radius, c(e) is the position of the centroid of an element in Nelem and
c(j) is the position of the centroid of the element being filtered. Application of this linear
operation and the resulting filtered density are equivalent to the example shown in Figure 2.7.
An optimized solution with a density filtering is illustrated in Figure 2.8.
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Figure 2.8. Result of a volume minimization of the MBB beam problem subject to a compliance constraint.
The problem is regularized using a linear density filter. Three elements are included in the
filter radius.

It should be noted, that when using a density filter, the design should be visualized using
the filtered density variables ρ̃ and not the original design variables ρ, which lose physical
meaning when the filter is applied and are only used as intermediate variables for mathematical
treatment [Sigmund, 2007]. The filtered variables are therefore termed physical variables.

Using Nelem in the formulation implies comparison of all elements. A more efficient formulation
is to check the set of elements N only in the neighborhood of the filtered element, i.e.

N = { j | |c(j) − c(e)| ≤ R} (2.10)

The amount of elements included in the neighborhood depends on the size of the filter radius.
Generating this set may however be even more expensive if no good way of identifying
neighbouring elements is available.

To further decrease computational effort, storage required and allow for parallel computation,
the filter may be solved using a Helmholtz partial differential equation (PDE) instead of
explicitly solving the convolution integral [Lazarov and Sigmund, 2011]. The implementations
in this work take offset in the explicit solution to the convolution integral, i.e. Equation (2.8).
Implementation of the PDE formulation is left for further work, see the discussion in Chapter
7.

w < 2Rw > 2R

w

R

w

R

ρ̃ ρ̃

x x

ρ = 1 = ρ̃max ρ = 1
ρ̃max

Figure 2.9. Difference in density distribution of features with width larger than the filter diameter (left)
and less than filter diameter (right).
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The density filter is able to ensure a minimum length scale in the design and prevent
checkerboard formation, however solutions will contain gradients of intermediate density
around structural members. The size of the gradient around a structural member will decay
similarly to a Gaussian distribution function (Figure 2.7, right), and its size will depend on
the filter radius. Furthermore, the minimum length scale dictated by the filter can cause areas
consisting entirely of artificial intermediate density in cases where the feature width w is lower
than the filter diameter 2R, see Figure 2.9.

To improve the discreteness of the design, Bruns and Tortorelli [2003] suggested replacing
the linear weighting function by a more complicated function (in their case a Gaussian bell
function) to enforce less density gradient, however Sigmund [2007] observed no advantage of
using this formulation of the weighting function.

As intermediate density is a pure mathematical manipulation, the optimized design is usually
made manufacturable by removing elements with intermediate density below a cutoff value
(often ρ̃ < 0.5) from the model and considering the remaining as full density elements. This
simple postprocessing strategy however changes the optimized design and introduces jagged
geometry, which is undesirable (for further discussion hereof see Subsection 3.1.4).

An improved post-processing for generating smooth surfaces is presented in Appendix A,
based on converting to nodal densities and then interpolating a surface on an element level.
An overview of the element process is given in Figure A.12 (repeated here).
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ξ

η

ζ

1+

4+
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3+

5+

6−

7−

8+

Face A

Face B

Face C

(a) (b) (c)

(d) (e)x

y

z

Figure A.12. Overview of element interpolation and surface description. (a): For an element it is found
that all nodal densities are above the cutoff value except 6 and 7, and that faces A (nodes
1,5,8,4), B (nodes 3,4,8,7) and C (nodes 5,6,7,8) are outside faces. (b): It is determined that
the surface consists of nodes 1,3,4,5,8 and interpolated points on edges between nodes
(3,7), (6,8), (7,8), and (5,6). (c): Individual faces and the element intersection are considered;
center points and approximate normals are calculated. (d): Using the center point and
normals, non-overlapping triangular facets are found. (e): The facets are transformed from
natural to Cartesian coordinates, normals are recalculated and the data is written to an
.STL file. Process is repeated for all elements.

2.4.3 Heaviside Projection Filters

In order to achieve more discrete designs, a projection scheme is appended to the linear
density filter. The TO problem then becomes a three-field formulation consisting of the design
variables ρ, the filtered variables ρ̃ and the projected variables ¯̃ρ with the latter becoming
the new physical variables. The projection schemes are based on the Heaviside step function
to force intermediate densities to 0 or 1. In order to keep the filter differentiable and allow
for sensitivity-based optimization methods, the Heaviside filter is usually implemented as a
relaxed step function, allowing for a degree of non-discreteness in the design. Guest et al. [2004]
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proposed projecting intermediate densities to 1 through the following relaxed formulation of
the Heaviside function:

¯̃ρ(j) = 1− exp
(
−βρ̃(j)

)
+ ρ̃(j) exp(−β) (2.11)

where β is a tuning parameter for adjusting the degree of relaxation, such that as β→ ∞, the
Heaviside step function is approached. Alternatively, Sigmund [2007] proposed projecting the
intermediate densities to 0 through reformulation of Equation (2.11):

¯̃ρ(j) = exp
(
−β[1− ρ̃(j)]

)
− [1− ρ̃(j)] exp(−β) (2.12)

The filters are illustrated in Figure 2.10. Although regularization is ensured and the
checkerboard patterns are removed, neither projection filter formulation guarantees minimum
length scale of both solid and void phases. The original projection filter of Equation (2.11) will
ensure minimum length scale on the solid region and the modified filter of Equation (2.12) on
void. Neither of the filters are volume preserving, i.e. volume of the structure is not the same
before and after filtering, which is problematic if using a volume constraint. It should be noted
that, if the standard SIMP formulation is employed, a lower bound on the physical densities ¯̃ρ
is needed to avoid numerical issues. However, if using the modified SIMP, this it not necessary
due to the explicitly included minimum stiffness term.
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Figure 2.10. Left to right: Original Heaviside projection of Equation (2.11) and modified Heaviside
projection of Equation (2.12).

Threshold Projection

A way to preserve volume using the Heaviside filtering method is by reformulating the
Heaviside function using a threshold value η. Instead of forcing all densities towards either
solid or void, a transition point is defined where densities below are forced toward void and
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above toward solid. The original formulation given by Xu et al. [2010] is:

¯̃ρ =





η[exp(−β{1− ρ̃/η})− (1− ρ̃/η) exp(−β)], 0 ≤ ρ̃ < η

η, ρ̃ = η

(1− η)[1− exp(−β{(ρ̃− η)/(1− η)})
+(ρ̃− 1) exp(−β)/(1− η)] + η,

η < ρ̃ ≤ 1

(2.13)

The threshold filter is illustrated in Figure 2.11.
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Figure 2.11. Threshold projections using Equation (2.13) with η = 0.3 (left) and η = 0.5 (right).

Instead of using exponential terms, Wang et al. [2011] presents a continuous formulation that
makes use of the hyperbolic tangent function to achieve a similar smoothing of the Heaviside
function:

¯̃ρ =
tanh(βη) + tanh(β(ρ̃− η))

tanh(βη) + tanh(β(1− η))
(2.14)

By removing the exponential functions and by having a continuous expression, computational
efficiency is improved. This formulation is not equivalent to the expression of Equation (2.13)
and some discrepancy between the projected densities will exist at lower values of β. This is
especially obvious when η 6= {0, 0.5, 1} where projection happens around densities not equal
to the threshold value, see Figure 2.12. As β→ ∞ the two expressions however yield the same
result.

The threshold value η is in principle input by the user. Note that if η = 0 is chosen, the original
Heaviside filter of Equation (2.11) is recovered and likewise for the modified Heaviside filter of
Equation (2.12) if η = 1. However, if it is desired to preserve volume, the value of η can not be
arbitrarily chosen. Preservation of volume is fulfilled if the volume before and after filtering is
unchanged. For the Heaviside filter, this is stated by the following condition:

Nelem

∑
e=1

¯̃ρ(e)v(e) =
Nelem

∑
e=1

ρ̃(e)v(e) (2.15)
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Figure 2.12. Threshold projections using η = 0.3 of Equation (2.13) (left) and Equation (2.14) (right).
With the continuous approximation this threshold value implies that the transition point
between projection to solid or void happens elsewhere than ¯̃ρ, e.g. for β = 10 it occurs at
approximately ¯̃ρ = 0.5. At β = 50 it is observed, that the projections of the two functions
are almost the same.

It is then possible to solve this equation for the value of η. The value of η is found using
a one-dimensional search, e.g. Golden Section (see e.g. Arora [2016]), by minimizing the
volume residual before and after filtering. It is however observed that eta is approximately 0.5
throughout optimization, thus it is reasonable to assume volume is preserved by keeping η

constant at 0.5. The change in threshold value is illustrated in Figure 2.13 for the MBB problem
with a discreteness parameter gradually increasing to β = 100.
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Figure 2.13. Change in threshold value η to ensure volume preservance. The value is found by solving a
least squares minimization problem using MATLAB’s fminbnd optimizer.

Unlike the original Heaviside filter of Equation (2.11) and modified Heaviside filter of Equation
(2.12), the threshold filter with intermediate η does not impose a minimum length scale on
void nor solid phases.
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Minimum Length Scale

The inability of all the presented regularization approaches to impose a minimum length
scale on both phases is quite significant for realizing the TO design. If no length scale control
is included, the generated designs may contain small solid and void details impossible to
manufacture. Assuming regularization has been performed by linear density filtering as
defined in Figure 2.9, the inability of imposing a minimum length scale is explained as follows.

If a structural feature of width w is filtered by a linear density filter with filter diameter 2R, the
maximum density in the area or volume of the feature will depend on the ratio between w and
R. By filtering the solid phase with a filter diameter 2R ≤ w, it is ensured that the maximum
of the filtered density ρ̃max is equal to the value of the design variable ρ. Opposite, if 2R > w,
the maximum filtered density is less than the design variable density since void is included in
the filter, resulting in pure intermediate density of the filtered area. A similar relation exist for
the void phase - most importantly if 2R > w the minimum of the filtered void phase ρ̃min is
equal or larger than the density of the design variable ρ.

As only densities above the threshold value are projected towards solid, and the remaining
densities towards void, it is not possible to define a minimum length scale due to the presence
of intermediate densities and due to the distribution hereof differing for each problem. Thus,
for a given problem, it is unknown if an arbitrary combination of projection thresholds and
filter radii will result in a definite minimum length scale for all solid and void areas and its size
is not determinable a priori. The effect is exemplified in Figure 2.14 for a given filter radius
and linear density filtered feature.

The relation between maximum filtered density of the solid and void phases and the ratio
of width w to filter diameter 2R is plotted in Figure 2.15. As illustrated in Figure 2.14, if the
projection threshold is greater than the maximum of the solid phase (ρ̃max), the density is
projected to void with no associated length scale on this phase. Similarly, if the threshold is
less than the maximum of the void phase (ρ̃min), the density is projected to solid also with no
length scale. This corresponds to the values above the solid line for the solid phase, and the
dashed line for the void phase in Figure 2.15.

2.4.4 Robust Topology Optimization

The robust method to TO is introduced in order to account for manufacturing constraints
and to ensure a minimum length scale on the three-field problem [Sigmund, 2009]. This
is accomplished by solving three FE problems - defined based on the image morphology
operators erosion and dilation. Erosion makes the considered element void if any element
in its neighborhood is void. Conversely, dilation makes the considered element solid if any
neighboring elements are solid. In discrete form they correspond to min and max operators,
respectively (a relaxed implementation is required for sensitivity-based optimization, however).
A FE problem is defined and solved for the erosion-based (eroded) design, for an intermediate
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Figure 2.14. Effect of applying threshold projection to an area of intermediate density. The choice of the
threshold variable significantly affects the size of the projected structural member’s width.
The bottom figure illustrates the filtered width and the resulting length scale attained for
different values of η. Note that no length is associated with η = 0.75, since the maximum
filtered density is less than the threshold value.

design and for the dilation-based (dilated) design. Optimization is subsequently performed
as minimization/maximization of the worst case and subject to constraints for each of these
designs. Constraining the problem for all three designs defines allowable tolerances on
the blueprint design (i.e. the intermediate design), which ensures that uncertainties of the
manufacturing process is taken into account.
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Figure 2.15. Illustration of the boundaries where densities are projected to solid in the case of η > ρ̃max
or void if η < ρ̃min.

In Sigmund [2009] the robust TO problem is formulated with the intermediate design consisting
of the original design variables ρ, the dilated design using the original Heaviside filter of
Equation (2.11) and the eroded design using the modified Heaviside filter of Equation (2.12).
Wang et al. [2011] presented a modified approach, where the threshold filter of Equation (2.14)
is used to formulate the designs. The eroded and dilated designs are formulated based on
associated threshold values ηe and ηd, respectively. To remove computational instabilities
appearing, when using the unfiltered design variables, the intermediate design is reformulated
as a three-field formulation, using a threshold value of ηi = 0.5.

Using this formulation, it is possible to guarantee a definable minimum length scale on the
intermediate design if the three designs share the same topology. If this requirement is fulfilled,
the solid phase minimum length of the intermediate design is bound by the eroded design
and for the void phase it is bound by the dilated design. If a feature is not in the dilated and
eroded design, the projection is not controlled in the intermediate design cf. Figure 2.15.

In Qian and Sigmund [2013] an analytical expression for the minimum length scale is derived
for use in conjunction with robust TO. The minimum length scale is governed by filter radius
R, minimum length le and the eroded threshold value ηe:

le

R
=

{
2− 2

√
1− ηe, ηe ∈ [0.75, 1]

2
√

ηe − 1/2, ηe ∈ [0.5, 0.75]
(2.16)

As the robust formulation does not enforce equivalent topology between the designs some
parameter tuning on the threshold values and filter radius may be required to ensure a
minimum member length. This is required in the case of ηe ≥ ρ̃max, where the eroded
projection will result in a purely void feature, see Figure 2.14. An example of robust TO is
solved and the three designs are shown in Figure 2.16.
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Figure 2.16. Results of minimizing volume subject to a compliance constraint on the MBB-beam using
robust TO. From left: eroded (η = 0.75), intermediate (η = 0.5) and dilated (η = 0.25)
designs.

The robust method is inherently computationally expensive as it entails solving the three FE
problems - especially for large scale models or in case of using higher order finite elements.
If the sole purpose of using the robust method is to enforce a minimum length scale on the
problem, geometric constraints [Zhou et al., 2015] may be used as an alternative. The geometric
constraints explicitly enforce a minimum length scale, requiring only a solution of a single FE
problem. In this work, focus is placed on using the robust method due to the other associated
benefits, mainly because the method introduces robustness of the design against changes made
in subsequent postprocessing. Implementation of geometric constraints is therefore left for
further work, see Chapter 7.

2.4.5 Boundary Effects

Filter boundary effects are often neglected when performing TO and Neumann boundary
conditions are implicitly used, perhaps unintentionally. This however imposes undesirable
effects leading to poor geometry in the optimized solution. These effects are in Clausen and
Andreassen [2017] classified as:

1: Minimum length scale is not satisfied at boundaries.
2: Structural edges are forced to become perpendicular to the domain boundary.
3: The structure tends to "stick" to the domain boundary.

These issues are illustrated in Figure 2.17.

Filter

Minimum length
1

2

3

2

3

Figure 2.17. Highlight of the effect of the issues presented on a MBB-problem with volume minimization
objective and subject to a compliance constraint. Because the Neumann boundary conditions
act as symmetry conditions, issue 1 is especially apparent at the bottom structural member,
which thickness is only half of the prescribed minimum length scale. At the top right
corner of the optimized beam, issue 2 is observed as the geometry is forced to become
perpendicular to the domain edges. Issue 3 is observed everywhere the geometry is in
contact with the domain boundary, but it is especially obvious at the occurrence of issue 2.
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The implicit Neumann condition occurs because only elements in the domain are considered,
thus each element in a half circle around a boundary element has double importance in the
filter weighting, see Figure 2.18. This is functionally the same as assuming element density
symmetry at the boundaries which explains the occurrence of issues 1 and 2. Issue 3 is caused
by two factors. The first is issue 2 by which structural edges must be perpendicular to the
domain boundaries and thus the geometry cannot smoothly curve away from the edges. The
second is that the filter is only applied inside the domain and elements at the structural edges
are not filtered with void, whereby no density gradient exists at the boundary and the required
quantity of material is achieved with less geometric width.

R R R

Figure 2.18. As the considered point approaches the domain boundary, the filter effectively changes
shape. The relative weightings of the filter, illustrated as the height, increase to maintain
consistent averaging in the filter.

Domain Extension Approach

An elegant solution to the three issues is proposed by Clausen and Andreassen [2017] termed
the domain extension approach. Here, the FE domain is extended at least one filter radius in all
directions by a distance dext, i.e. dext ≥ R. The extension is performed at all boundaries, except
where boundary condition are applied to the FE problem, see Fig 2.19. The erroneously defined
Neumann boundary conditions are thereby moved to the boundary of the extended domain
instead of at the design domain, such that they do not affect the problem. The elements added
via the extended domain are used as those in the original domain, with the exception that
while the new elements have density, the density variable is not updated in optimization, only
through filtering (i.e. the new elements have a density variable but not a design variable). As a
consequence, the linear density model will exceed the design domain boundaries if no explicit
constraint is formulated. If applying the robust method with projection thresholds larger than
zero, the boundary violation will be reduced, as some of the density gradient is projected
to void. One way to ensure the no boundary violation is to introduce an upper limit on the
density values in the extension region. If the limit chosen is lower than the threshold value,
the entire gradient of density will be projected to void by the threshold filter. This approach
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Figure 2.19. The MBB and L-beam problems reformulated with extended FE domains.

is however artificial, and minimum length scale control is lost at the boundaries. Results are
illustrated in Figure 2.20, which show a side-by-side comparison of the MBB-beam problem
solved as normally and with domain extension.

m = 0.3973 m = 0.4779

Minimum length

Figure 2.20. Left: MBB-beam problem solved without domain extension. Right: Using domain extension
and accounting for boundary effects, the geometry is notably different. The consistent
enforcement of minimum length scale via domain extension can incur more material, which
causes the difference of volume.
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3 | Fatigue Function Formulation
This chapter presents the fatigue modeling used to develop the optimization functions. The concepts of
stress-based optimization are revisited as the inherent problems must also be accounted for in fatigue
optimization. An isotropic stress-life fatigue model is presented. AM and relevant fatigue characteristics
are subsequently presented and discussed with respect to the published literature on the topic. From this
an anisotropic fatigue criterion is formulated.

3.1 Concepts of Stress-based Topology Optimization

In developing the fatigue model and criteria based on an equivalent stress measure, stress-based
TO has to be considered as its associated problems translate directly to fatigue optimization.
Stress-based TO was introduced to achieve designs with structural integrity against common
local failure mechanisms, where structural compliance is inadequate. The most obvious
example is yielding, particularly wrt. geometric stress concentrations. The area has been the
subject of much research and many solutions to its inherent issues have been proposed.

3.1.1 Stress Criteria

In the context of FE analysis, stress is computed on the element level. For the linear elastic
case, the penalized stress vector σ̄ is computed from element displacements using Hooke’s
constitutive law:

σ̄(e) = Ē(e)B(e)u(e) (3.1)

where Ē(e) is the penalized constitutive matrix, B(e) is the strain-displacement matrix and u(e)

is the element displacement vector. The explicit penalization follows the formulation of the
standard SIMP formulation:

σ̄(e) =
(

ρ̃(e)
)p

E(e)B(e)u(e) (3.2)

where ρ̃ indicates the regularized density measure and E(e) is the unmodified material
constitutive matrix. If RAMP is used for stiffness penalization, the RAMP expression is
inserted for Ē(e) instead.

To formulate the stress function for optimization, the stress has to be related to the material
strength. For ductile materials the von Mises reference stress measure σVM can be used:

σ̄VM =
1√
2

√
(σ̄x − σ̄y)2 + (σ̄y − σ̄z)2 + (σ̄x − σ̄z)2 + 6(τ̄2

xy + τ̄2
yz + τ̄2

xz) (3.3)

For a brittle material, the first principal stress σ1 can be used, given here for plane stress:

σ̄1 =
σ̄x + σ̄y

2
+

√(
σ̄x − σ̄y

2

)2

+ τ̄2
xy (3.4)
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If compressive stresses are of interest, the minimum principal plane stress is defined as:

σ̄2 =
σ̄x + σ̄y

2
−
√(

σ̄x − σ̄y

2

)2

+ τ̄2
xy (3.5)

For the general case the principal stresses may be found either by Mohr’s circle equations or as
eigenvalues of the stress tensor.

3.1.2 Singular Optima

When solving optimization problems there may exist unreachable optima due to degenerate
subspaces or regions of the design domain being closed off by the constraint equations. This
problem is known to cause issues in stress-based structural optimization in general and was
highlighted in Sved and Ginos [1968], where mass minimization of a three-truss system subject
to stress constraints was considered. The optimized solution would contain all three trusses,
however the analytical solution to the problem showed that the actual optimal solution is a
two-truss system. Investigation of the solution space of the three-truss problem was done in
Kirsch [1990], where it was clarified that the problem occurs due to the true optimum being
located in a degenerate subspace. This is termed a singular or degenerate optimum. For the
truss problem, this corresponds to the inability to remove the redundant truss, because of the
presence of the stress constraint associated with this specific truss. Similarly for the general
FE problem, the optimizer may converge to a sub-par solution because it is not able to reach
singular optima. Illustrative examples of how the design space is affected are shown in Bruggi
[2008] and Olesen and Hermansen [2019].

To reach these singular optima, the problem is relaxed. By relaxation it is possible to expand
the feasible design domain to include the singular optima. Two methods are primarily used:
ε-relaxation and qp-relaxation. Both are developed by considering truss-problems, but are
applicable for the general continuum case. In the ε-relaxation [Cheng and Guo, 1997] an
adequately small number ε is introduced on the right hand side of the constraint function f ,
allowing a small violation:

f
flim
− 1 ≤ ε (3.6)

where flim is the constraint limit, e.g. the material yield stress Sy. This small value of ε must
be chosen such that the design space is opened to include the singular optimum without
deteriorating the accuracy of the constraint function. Choosing the ε value is heuristic and
finding the adequate value may be rather time consuming, especially for large models. Typically
a continuation approach is applied to ε where it is gradually decreased in order to end up in a
good optimum. Continuation approaches are described further in Chapter 5.

An alternative relaxation scheme is the qp-relaxation method [Bruggi, 2008]. Here, relaxation
is introduced by implementing a relaxation factor q replacing p:

σ̄(e) =
(

ρ̃(e)
)q

E(e)B(e)u(e) (3.7)
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The benefit of the qp-method is that the stress measure is formulated to further penalize
intermediate densities. This is achieved by defining the relaxation factor in the interval
0 < q ≤ 1. Note that this definition of q is different from that of Bruggi [2008], which uses p− q
to define the same measure. For elements with intermediate density the stress measure will be
higher, thereby making either fully void or solid density the most economical choices for the
optimizer, see Figure 3.1. It should be emphasized that relaxation is purely a mathematical
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Figure 3.1. Illustration of the relaxation (q = 0.5) compared to stiffness penalization (p = 3).

manipulation applied in order to be able to solve the problem. As such, stresses for 0 < ρ̃ < 1
do not have an exact physical interpretation. Ultimately, the sought solution is however a
design which does not contain intermediate densities, since these are not physically consistent
either. Thus, if intermediate densities are successfully penalized to void and solid states, the
stress measure will again be coherent. This increases the attractiveness of using the qp-method,
due to the increased penalization of the densities.

3.1.3 Global Aggregation

Using element stresses to define constraints results in Nelem functions, which makes the op-
timization problem inherently large, as many elements are desired for accuracy. In order
to efficiently make use of sensitivity-based methods, it is desired to reduce the amount of
constraints while still having a continuous and differentiable expression. This is accomplished
by using an aggregation function to scalarize the constraints, e.g. by the P-norm [Duysinx and
Sigmund, 1998], the P-norm mean (P-mean) or the Kreisselmeier-Steinhauser (KS) functions
[Martins and Poon, 2005]. The functions are given in equations (3.8), (3.9) and (3.10).
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P-norm: fΨ =

(
Nelem

∑
e=1

(
f (e)
)P
) 1

P

(3.8)

P-mean: fΨ =

(
1

Nelem

Nelem

∑
e=1

(
f (e)
)P
) 1

P

(3.9)

KS: fΨ = max(f ) +
1
P

ln

[
Nelem

∑
e=1

exp
{

P ( f (e) −max(f ))
}]

(3.10)

Here, f (e) is the element function value, f is a vector with all function values, fΨ is the
aggregated measure and P is a factor governing the accuracy of the aggregation. The
aggregation functions aims at approximating the maximum value of the functions which is
approached as P→ ∞. In general a rather large value of P is needed to accurately capture the
maximum. Each function aggregates values differently and the resulting function trajectories
are therefore different. How aggregation is performed by these functions and the accuracy
attained with different values of P are illustrated in Figure 3.2. The aggregation functions are
studied in detail in Olesen and Hermansen [2019], where it is concluded that if an adequate
P-value is chosen combined with adaptive constraint scaling (presented in the following),
all aggregation methods achieve good results. As the P-norm method has the most simple
formulation, it will be used exclusively for local constraint aggregation in this work.

Adaptive Constraint Scaling

Adaptive constraint scaling [Le et al., 2010] is introduced in order to achieve higher accuracy
from the aggregation functions, when used to define constraints in the optimization problem,
allowing for the use of lower values of P thereby decreasing the nonlinearity of the expression.
The method is based on defining a scaling factor c by normalizing the aggregated value with the
maximum function value from previous iterations. The function is then defined by multiplying
the aggregated value with the scaling factor. Computation of the adaptive scaling factor for
iteration k is shown in Algorithm 1.

Because of the max-operator used in defining the scaling factor the function becomes
discontinuous and thereby non-differentiable. However, as the problem converges, the local
measure becomes better distributed in the design, and thus the maximum is more accurately
approximated by the P-norm function alone. The factor therefore converges along with the
problem reducing the nondifferentiability. The α variable is a damping parameter defined in
order to prevent oscillation in the scaling factor. This is necessary due to the scaling factor’s
discontinuous nature as the maximally stressed element may change between iterations.
Algorithm 1 is presented with the same values for reducing and increasing the α-parameter as
is used in Oest and Lund [2017], but these can be changed depending on the behavior of the
problem.
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Figure 3.2. Comparison between three aggregation functions. Note the difference in scale between top
and bottom. Bottom right aggregation is done at a constant penalty factor P = 8. Figure
from Olesen and Hermansen [2019].

3.1.4 The Problem of Jagged Edges

In academia, TO is often performed using a pixel- or voxel-based mesh. The high level of
discreteness as a result of projection filters, see Subsection 2.4.3, causes a problem when
solving FE-problems involving stress. For these formulations, the problem is conspicuous in
all non-axis parallel geometry, which will contain jagged geometry. The same effect will occur
for a body-fitted mesh, which is used in commercial FE software, particularly from distorted
elements, as sharp edges hereof may protrude from the geometry in the optimized layout. If
a linear density filter is used, this effect is removed by the density gradient, smoothing the
sharp transition of the jagged edges. However if a Heaviside-based filter is applied to increase
discreteness, the corners of jagged elements will reappear and will impose stress singularities
in the model. These effects are seen in Figure 3.3, where the jagged edges cause an increase
of the stress, such that it exceeds the set limit (262 MPa), despite densities primarily being
projected toward solid due to the filter formulation applied To compensate for the increase in
stress, even more material will be required in this design, resulting in a higher final volume of
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Algorithm 1: Calculation of adaptive constraint scaling factor. k = 0 initially as three
function values are required to determine oscillation.
Data: Iteration history.
Result: Computation of c(k).
Initialization;
if iteration k ≤ 2 then

c(k) =
max

(
f (k)

)

f (k)Ψ
α(k) = 1

else
if function oscillates then

α(k) = max(0.5, 0.8 α(k−1))
else

α(k) = min(1, 1.2 α(k−1))
end if

c(k) = α(k)
max

(
f (k−1)

)

f (k−1)
Ψ

+ (1− α(k))c(k−1)

end if

the optimized structure.
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Figure 3.3. Results of a stress-based optimization of the L-beam with plots of the stress for linear
density variables (left) and for projected density variables using a threshold filter (right)
with η = 0.05, i.e. similar to the filter of Equation (2.11), yet with a low threshold to avoid
projection of very low density elements. The problem is solved with the settings of Section
2.3, except for the load which is increased to 75 kN.

The stress in the interior structure (i.e. in elements that are located away from the structures
edges) is of a similar level for the two filters, as it is not affected by the concentration near
jagged edges. To remove the stress singularities, Svärd [2015b] proposed a framework for
performing an extrapolation of the stress from the interior elements in the mesh to the boundary
elements termed Interior Value Extrapolation (IVE). The stress measure is thereby determined
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in a part of the model, where the stress measure is correct. The concepts of this method are
similar to computing improved FE stresses through extrapolation from the superconvergent
element Gauss points, see e.g. Cook et al. [2002].

Another approach is to accept a small gradient of intermediate density around the boundary
of the structure. The size of this gradient is controlled by the discreteness parameter β of the
projection filter. This is utilized in da Silva et al. [2019], which determines the allowable size of
the density gradient for a given problem by considering the slope of the threshold filter and
numerical studies of the relaxation parameter chosen (in this case the ε-relaxation approach).
The analytical expression for the maximum β-value is:

βlim =
2R
L(e)

(3.11)

where L(e) is the element length size. This should be used together with numerical studies of
relaxed stress behavior to ensure that the limit is low enough to avoid singularities. da Silva
et al. [2019] developed the measure to be used along with the ε-method and suggests redoing
the study if using the qp-method. Similar results as those achieved by the authors of the
expression are therefore not expected. Yet, the expression is simple and easy to apply and
implementations in this work are therefore based on this method. However, the IVE-method
and its associated concepts seem promising and is an interesting topic for further investigation,
as it would allow for using larger values of β in the threshold filters resulting in more discrete
designs, see Chapter 7 for further discussion.

When transitioning from the FE model to a design the geometry has to be smoothed to remove
the jaggedness of the boundaries. For the two-dimensional case, this is performed simply
by drawing a contour around the structure using a defined cut off value. In case of the
general three-dimensional case this is not a trivial task. The problems are discussed in detail in
Appendix A, where a geometric density-interpolation method is developed and presented.

3.2 Fatigue Analysis

This section is based on Stephens et al. [2001].

Fatigue is one of the most important criteria in structural design, as fatigue failure accounts for
50-90% of all mechanical failures in machinery. As compared to more traditional criteria in TO,
such as compliance, buckling and stress, fatigue is not an intrinsic result of the linear elastic
problem, but relies on additional external factors, e.g. load history, surface quality, geometric
size of material and operating temperature.

Specifically, fatigue analysis entails quantifying the lifetime of a component under repeated
loading. This is done using one of two approaches; the stress-life (SN) approach or the strain-
life (εN) approach. The latter is in general considered the better option, as each point on the
stress-strain curve is uniquely defined for a given strain. This is especially beneficial when
considering low-cycle fatigue (LCF), which is defined in the interval 1− 103 cycles, see Figure
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3.5, and the primary mechanism of failure is plastic deformation. For high-cycle fatigue (HCF),
defined in the interval 103 − 106 cycles, the governing failure mechanism is elastic deformation.
In this case the SN-approach is sufficient, however the εN-method is just as effective. Only HCF
is considered in this work and as stress data is more prevalent in literature, the SN-approach
will be used exclusively. In terms of modeling AM materials, see Section 3.4, the εN-approach
has some distinct benefits, as considerations of fracture mechanics can be included to model
defects. Inclusion of this model is discussed further in Chapter 7.

3.2.1 Characterizing Load History

Repeated loading is separated into two types: proportional and nonproportional. The
proportional case occurs when the loading is in-phase, i.e. principal directions are constant
everywhere for the entire load history, and nonproportional covers all other cases. The
implications of proportional loading are particularly evident in the context of FE, in which a
proportional load may be expressed as:

F(t) = c(t) F̂ (3.12)

where F(t) is the load vector at some time t in the load history and c(t) is a scalar function
describing the load history by scaling a constant reference load vector F̂. For linear elastic
problems, the load vector is directly proportional to the stress vector, and thus it can be shown
via equations (2.1) and (3.1) that the same scaling applies to element stress, such that:

σ(e)(t) = c(t) σ̂(e) (3.13)

where σ̂(e) is the reference element stress. Because the stress state for the entire history is
determined from the reference load, it follows that solving only a single FE problem is required.
This scalar relationship does not apply to nonproportional loading, where the stress state must
be calculated individually for any point in the load history (i.e. the FE problem must be solved
for a new load vector), which immensely increases the computational effort required to solve
a problem with a nontrivial load history. In the present work, only proportional loading is
considered. For taking non-proportional loading into account in the optimization, see Zhang
et al. [2019].

If variable amplitude loading is present, a counting method must be used to consistently count
loads. One commonly used is rainflow counting, once the load history has been discretized
into peaks and valleys. In the case of proportional loading, application of rainflow counting
yields a scaling factor for amplitude and mean stress for each load combination:

σ
(e,i)
a = c(i)a σ̂(e) and σ

(e,i)
m = c(i)m σ̂(e) (3.14)

where σ(e,i)
a is the amplitude stress, σ(e,i)

m is the mean stress, c(i)a and c(i)m are the scaling factors
for amplitude and mean respectively, and σ̂(e) is the reference relaxed element stress - as well
as having e indicate the element and i indicate the load combination. The load combination
refers to the combination of amplitude and mean for a point in the discretized load history,
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2

Figure 3.4. Discretization of load history into combinations of mean and amplitude factors c(i)m and c(i)a .

see Figure 3.4. In some of the published literature considering fatigue TO, a random load
history is generated in order to illustrate the use of counting methods in a TO context, see
e.g. Oest and Lund [2017] and Zhang et al. [2019]. Here in the present work, only constant
amplitude loading is considered, as it makes design interpretation more comprehensible and
results replicable, although functions are defined to include an arbitrary set of loads.

3.2.2 The Stress-life Approach for Metals

The SN-approach is based on describing a SN-curve, which describes the cyclic behavior of
the material, as illustrated in Figure 3.5 for a generic metal. The SN-curve is generated from

S′e

LCF HCF

log
(

N(e,i)
)

1 103 106 109

log
(
σN f

)

SUt

S′f

Figure 3.5. Generic SN-curve for a metal with the distinct regions of LCF, HCF and fatigue limit (S′f )

highlighted. This third region on the SN-curve occurs at 106 cycles, after which the slope is
drastically reduced (dotted line). For steel the area is termed endurance limit (S′e), and it is
assumed that the fatigue strength is not reduced any further during loading.

experiments for a specimen of the considered material loaded in rotational bending, with a
diameter d ≤ 8mm, having smooth surfaces, at ambient temperature and with a reliability (risk
of failure) of 50%. For designing for other cases than this, the fatigue limit is adjusted using
corrections factors [Norton, 2014]:

S f = Cload Csur f Csize Ctemp Creliab S′f (3.15)

where S f is the corrected fatigue limit strength, S′f is the uncorrected fatigue limit strength
determined from experiments, and the C factors corrects the strength wrt. load, surface quality,
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size, temperature and reliability.

The HCF area of the SN-curve is approximated using Basquin’s equation:

σ
(e,i)
N f = σf

(
2N(e,i)

)b
(3.16)

where σ
(e,i)
N f is the equivalent amplitude stress resulting in failure at number of reversals N(e,i),

for element e and load combination i. σf is the true fracture strength of the metal and b is the
exponent or slope of the SN curve, see Figure 3.6. The fatigue limit region is not accounted for

S′e

LCF HCF N(e,i)

1 103 106 109

σ
(e,i)
N f

σf

b

Figure 3.6. Illustration of the curve generated by Basquin approximation.

during optimization. If it is desired to design components for lifetimes above 106 cycles, the
optimization will produce overly conservative designs, due to the break in the curve not being
accounted for. For steel, Zhang et al. [2019] and Oest and Lund [2017] explain that endurance
limit area is problematic when calculating sensitivities, as the curve has no slope and thus
these become zero. If it is desired to include this region in the optimization, a small slope has
to be added to the curve. Alternatively, Zhang et al. [2019] suggested solving a stress-based TO
problem constrained by the endurance limit strength.

The SN-curve by itself only takes into account the amplitude stress. This is sufficient for the
fully-reversed loading case, but for any other case, a nonzero mean stress is present, which
also must be included in the analysis. Methods for mean stress correction include modified
Goodman or Morrow corrections, see Figure 3.7. Modified Goodman is the more conservative
of the two as it is calculated from the ultimate material tensile strength SUt:

σ
(e,i)
N f = σ

(e,i)
a

SUt

SUt − σ
(e,i)
m

(3.17)

The Morrow correction uses the true fracture strength of the material σf :

σ
(e,i)
N f = σ

(e,i)
a

σf

σf − σ
(e,i)
m

(3.18)

The choice of method depends on the desired safety margin. Goodman and Morrow methods
are widely used because they are conservative. More complex corrections methods exist,
such as Smith-Watson-Topper method [Smith et al., 1970], which provides higher accuracy in
evaluation of the mean stress effects [Papuga et al., 2018]. The implementation in this work
considers only the linear Goodman and Morrow expressions as they are presented in equations
(3.17) and (3.18), i.e. the cut off, as illustrated in Figure 3.7, is not taken into account.
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σ
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Figure 3.7. Illustration of how the modified Goodman and Morrow correct the equivalent stress. If the
methods should account for both yielding and fatigue, a cut off should be made when the
lines intersect the yield line (Sy − Sy). Compressive mean stress is in general beneficial to
fatigue strength, however a conservative estimate is to not account for this and assume that
compressive mean stress does not affect fatigue life (the dashed line).

3.2.3 Multiaxial Stress Criteria

As SN-curves and the methods for mean stress correction only apply to uniaxially loaded
specimens, a criterion is needed to correlate the multiaxial loads of a general structure to the
uniaxial strength data in order to be able to apply them. An option is to use the signed von
Mises criterion [Zhang et al., 2019]. Here, the von Mises stress is used for computing both
amplitude and mean stresses, where the sign of the hydrostatic stress is used to determine the
sign of the mean stress:

σ
(e,i)
a = c(i)a σ

(e)
VM (3.19)

σ
(e,i)
m = sgn

(
c(i)m σ

(e)
h

)
c(i)m σ

(e)
VM (3.20)

where the hydrostatic stress σh used for determining the sign is:

σh =
σx + σy + σz

3
(3.21)

The equivalent stress is then computed by insertion into e.g. Morrow, Equation (3.18), or
modified Goodman correction, Equation (3.17). Other, more complex, criteria can also be
implemented, which will increase the accuracy of the fatigue model. Papuga [2011] provides a
comprehensive overview and performance evaluation of many available methods for many
different load cases. It is here concluded that critical plane methods (CPM) perform the best in
predicting fatigue damage, however its use in an optimization context is limited as analytical
sensitivities can not be derived, prohibiting the use of effective methods for sensitivity analysis.
CPM is discussed further in Chapter 7.
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3.2.4 Palmgren-Miner Linear Damage Accumulation

For all load combinations, Palmgren-Miner’s damage accumulation rule is used to sum up the
damage contributions:

D(e) =
Nc

∑
i=1

n(i)

N(e,i)
≤ Dlim (3.22)

Here, D(e) is the accumulated damage for the element e, n(i) is the number of reversals counted
for a given load combination i, Nc is the amount of counted load combinations and Dlim is
the allowed damage fraction. The rule is such that D = Dlim is the expected crack formation,
which is typically considered failure in most components. Dlim varies depending on the given
case and is usually defined with respect to a standard or user experience. This work is not
concerned with a single given situation, and therefore Dlim = 1 is used.

To use Palmgren-Miners rule the load history must be random, which excludes sequences and
non-linear effects. The method is simple, however it appears to be as accurate as any other
cumulative damage rule regardless of complexity.

To achieve a single expression for the damage, the element damages are aggregated using
the P-norm method, i.e. Equation (3.8), and the adaptive constraint scaling method is used to
achieve better approximation of the maximum damage in order to avoid using large exponents
in the P-norm expression. Algorithm 1 is used to compute the adaptive constraint scaling
factor - as was done for the stress function. Explicit constraint functions are given in Section
3.6.

3.3 Fatigue Function Scaling

Due to the high degree of nonlinearity in the formulation of the fatigue function, the problem
is notoriously difficult to solve. In particular Basquin’s formulation of the SN-curve, Equation
(3.16), is highly sensitive to changes in stress level and can lead to very unstable problems.

Regional stress measures were introduced in Le et al. [2010] and París et al. [2010] to reduce
the volatility of aggregated local constraints, by sectioning the design domain into several
constraint functions, such that aggregation is done where the local measure is of a similar
level. This was developed for stress constraints, but would also work for fatigue formulations
[Holmberg et al., 2014]. Fatigue specific methods were later introduced to scale the element
accumulated damage and reduce the nonlinear dependence of the stress levels, either by a
logarithmic function [Oest and Lund, 2017] or a linearization by scaling the damage with the
Basquin factor [Zhang et al., 2019]. The Basquin factor scaling is done by:

D(e)
s =

(
D(e)

)−b
(3.23)

where D(e)
s is the scaled damage, D(e) is the accumulated damage from Palmgren-Miner, and

b is the Basquin factor. Studies in the scaling functions in Olesen and Hermansen [2019]
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concluded that the Basquin factor scaling method is preferable to logarithmic scaling and the
latter is therefore not considered any further. It was also concluded that both methods have
trouble converging to a fully damaged design, especially the Basquin factor scaling method.

An improved method is therefore proposed in order to have better damage distribution in the
final design. It is based on using the P-norm mean function to approximate the minimum of
unscaled and Basquin factor scaled damage:

D(e)
s =




c1

(
D(e)

)b P
+ c2

(
D(e)

)−P

c1 + c2




− 1
P

(3.24)

where c1 and c2 are weighting factors and P is a penalty term similar or equal to that in
Equation (3.8). This P-mean scaling is illustrated in comparison to no scaling and Basquin
factor scaling in Figure 3.8.

0 1 2
0

1

2

No scaling
Basquin factor scaling
P-mean scaling

D(e)

D(e)
s

Figure 3.8. Damage scaling functions. No scaling refers to the unscaled damage computed from the
Palmgren-Miner expression of Equation (3.22), Basquin factor scaling is Equation (3.23) and
P-mean scaling is Equation (3.25) i.e. where c1 = c2. The Basquin factor is b = −0.156, and
P = 8 is used for aggregation in the P-mean scaling.

From Figure 3.8 it is also evident why Basquin factor scaling is not able to converge to a fully
damaged design. No scaling is of course entirely accurate, but the eventual constraint function
is very sensitive and may change several orders of magnitude between iterations. Conversely,
with Basquin factor scaling, the function will change more or less linearly with stress and
convergence is relatively fast. However, any scaling of damage introduces an error in damage
calculation and the Basquin factor scaling is inaccurate for damage that is not exactly 0 or
1, severely overestimating otherwise feasible damage (i.e. D ≤ 1). The new scaling tries to
remedy this by instead approximating no scaling for feasible damage, such that Ds ≤ 1 is
accurate while Ds > 1 has fast and stable convergence. As Basquin factor scaling is only
approximated some penalty to convergence speed incurs, but the P-mean scaling is still much
faster and much more stable than no scaling.
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Equation (3.25) can be tuned to accommodate a specific behaviour. Using the same P as the
aggregation function, i.e. as in the P-norm of Equation (3.8), and c1 = c2 the function reduces
to:

D(e)
s =




(
D(e)

)b P
+
(

D(e)
)−P

2




− 1
P

(3.25)

Resulting damage distribution when using this formulation of the P-mean scaling examined
in-depth in Section 5.3.

3.4 Additive Manufacturing

This section is based on Yadollahi and Shamsaei [2017].

TO allows for a high level of freedom in design exploration unlike any other synthesis method
available and is capable of generating designs with many complex features, see e.g. Aage
et al. [2017]. Given this, the limiting factor for the final design is often the capability of the
manufacturing method. Considering single-operation methods, they can be classified as either
subtractive or additive methods. Subtractive methods are based on gradually removing material
from a bulk piece to make a desired shape. One of the most common subtractive methods is
CNC milling, where the operation is set up using computer programming. The process is in
general fast, but as components become more complex the milling tool may be restricted from
some areas of the geometry, in particular interior features and voids [Gibson et al., 2016]. Even
if it is possible to manufacture the component by subsequent manual treatment or in multiple
parts, the implications hereof increase the total lead time of component.

The other option, additive methods, refers to manufacturing components by adding material.
This implies less restrictions on the geometric details in the part as the process has no
accessibility constraints. It is thereby possible to shape a component in one operation, and
although the operation is slower than the CNC milling process, the lead time may be reduced
as the need for subsequent operations is reduced. Furthermore, much research is being devoted
to improving the AM operation, implying that the technology will become increasingly capable.
For metal components, the methods available are Powder Bed Fusion (PBF) methods and Direct
Laser Deposition (DLD), see Figure 3.9. For classification of the AM methods and materials for
which they should be used, see e.g. Clausen [2016].

When building a component, a support structure must be included if the design includes
overhanging details. The reason for this is twofold; accounting for thermal and mechanical
effects [Calignano, 2014]. Unfused powder provides higher insulation, so a melt-pool with
little connection to surrounding fused material will become too large as the concentration of
heat increases, which creates dross and poorly controlled geometry, see Figure 3.10. Further,
because solidification happens between layer depositions, a support structure must be present
to fix the component to the printing plate to prevent warping from residual thermal stresses.
The necessity of this supporting material implies that more material is required to manufacture,
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Figure 3.9. The process of Selective Laser Melting (SLM) - a PBF method (left) and DLD (right). Figures
from Yadollahi et al. [2017] and Bian et al. [2015] respectively.

which increases build time, and post-treatment is required to remove the support material after
printing. Optimization of this support structure to minimize material used is therefore almost
given and works have been published on the subject, see e.g. Langelaar [2019].

Figure 3.10. Effects of increased overhang; (b) and (c) illustrate a titanium and aluminum part respectively,
with overhang radii of 9 mm. (d) and (e) illustrate the parts of the same respective materials
with the overhang radii increased to 15 mm. Figure from Calignano [2014].

Alternatively, constraints for the degree of overhang can be implemented such that it is possible
to print the design generated through TO entirely support-free. In Langelaar [2016] this is
enforced by inclusion of a AM density filter, where elements not supported wrt. the printing
baseplate are identified and removed during optimization. In the present work, focus is placed
on developing models for fatigue optimization using AM materials with support structure
optimization left for further work, see Chapter 7.
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3.4.1 Additively Manufactured Materials - Properties and Characteristics

Using TO to generate designs for AM therefore seems to be an ideal choice. However,
AM material characteristics are highly dependent on its process parameters. To predict the
mechanical behavior of an AM component, these parameters must be considered.

In terms of static strength properties, the AM material exhibits comparable, or in some cases
even better, properties to the equivalent conventionally manufactured material [Spierings et al.,
2011][Bian et al., 2015][Sistiaga et al., 2016]. This is mainly attributed by the high cooling rate
of the part during the process, which causes a fine microstructure of the component [Spierings
et al., 2013]. The microstructure fineness will however depend on the chosen AM method
[Tolosa et al., 2010].

Conversely, many features existing in printed materials are detrimental to the fatigue
performance of the part. AM materials are prone to the formation of defects and heterogeneities,
leading to anisotropic fatigue [Yadollahi et al., 2017]. The introduced defects will serve as crack
initiation sites by acting as stress concentrations in the material, thereby severely lowering the
fatigue resistance of the material. The presence of defects is especially important in HCF, where
it is assumed that the part spends its entire lifetime in the crack initiation phase of fatigue
failure. Furthermore, the defects are typically slit-shaped. Orientation of the defects wrt. the
load is therefore important, as the crack simulates a mode I crack opening if load is applied
transversely to the defect, see Figure 3.11.

Figure 3.11. Examples of vertically and horizontally built specimens (left) and illustration of how print
orientation aligns defects in relation to the applied load (right). Figures from Yadollahi et al.
[2017].

Location of defects appears to be more important than shape or size, and surface defects are
found to be the most life-limiting. By not accounting for the presence of defects, failure will
occur suddenly and at a lower amount of excited load reversals than will be predicted by
traditional stress-life analysis, where homogeneity is assumed. Spierings et al. [2013] verified
this experimentally, where a reduction of 25% for SS316L and 20% 15-5PH, two stainless steels
commonly used in AM, were observed. This study takes offset in cyclic uniaxial tensile loading,
which is a more severe loading case as compared to traditional rotating bending. The fatigue
strength reduction of a 17-4 PH SS (another stainless steel) with horizontal and vertical print
directions is illustrated on the SN-curve in Figure 3.12 along with anisotropy induced by the
print direction. Due to changes in print velocity, number of components built at a time, and
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σf [MPa] b

Vertical AB 2043 -0.15
Horizontal AB 2100 -0.13
Vertical HT 7002 -0.26
Horizontal HT 8622 -0.26

Figure 3.12. SN-curve of 17-4 PH stainless steel for as-built (AB) and heat treated (HT) specimens printed
in both vertical and horizontal directions (see Figure 3.11 for illustration of the specimens)
compared to wrought specimens. Due to the presence of defects, it is observed that the
fatigue strength in general is worse for AM material regardless of the chosen print direction
as a result of the presence of defects. Figure and data from Yadollahi et al. [2017].

settings for the printer, such as laser power, scanning strategy, etc., each product is printed
differently resulting in each part experiencing a different thermal history. The thermal history
affects the quality of the microstructure, i.e. grain size, morphology and orientation, which
affect the mechanical properties [Yadollahi et al., 2015].

By optimizing the process parameters, it is possible to reduce the degree of anisotropy of the
material by making the microstructure more homogeneous [Clausen, 2016]. However, it is
very difficult or even impossible to achieve complete homogeneity for highly complex parts
given the current state of the technology and Fatemi et al. [2019] observes that even using same
parameters on different machines yields different material characteristics. Yet, it is possible
to take into account the defects by considering the orientation of the component in the print
plane. By choosing a proper orientation, it is possible to control the orientation of these defects
such that they may be aligned in a preferable direction to the imposed load, see Figure 3.11.

In relation to the discussed findings, it should be noted, that some of the current published
research on fatigue of AM materials arrive at contradictory conclusions as outlined in Hackel
et al. [2018] indicating that AM fatigue behavior is not properly characterized yet. As such,
high quality fatigue data is difficult to obtain and to some extent only applies to a specific
geometry produced on a specific machine.

Post-print Heat Treatment

Hot Isostatic Pressing (HIP) is a method commonly used on the post-printed component to
homogenize the microstructure, relieve stress concentrations, and smooth out potential sharp
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angles (e.g. from a slit-shaped defect). Although HIP treatment is very beneficial in some cases,
resulting in fatigue strength equivalent to that of a wrought material, its effects are not general
[Fatemi et al., 2020] and may in some cases result in a lower fatigue strength than that of the
as-built material. This is emphasized by Leuders et al. [2014], where TiAl6V4-titanium and
SS316L-steel parts are treated by HIP and subsequently tested in a uniaxial fatigue test. The
experimental results of the study showed an improvement in fatigue strength for the titanium
specimens, but for the steel specimens, the fatigue strength was reduced. This is explained by
the ductility of the materials, where a highly ductile material is able to reduce the stress near
defects by locally yielding, whereas a material with low ductility would instead fracture. In
general, the ductility of an AM material is lower compared to its wrought counterpart, which
indicates that post-print annealing would be beneficial. However, although reduced, SS316L
still possess a high ductility and thereby high fracture toughness, such that its fatigue strength
depends more on the monotonic strength of the material than defects present [Leuders et al.,
2014]. HIP treatment of a material reduces its monotonic strength [Sistiaga et al., 2016] and
employing it for SS316L is ineffective. Conversely, TiAl6V4 has a lower fracture toughness,
whereby its failure mode is dominated by crack growth at defect locations. Alleviating these
stress concentration sites therefore results in higher fatigue strength. As such, HIP cannot be
assumed to fully homogenize the material or remove anisotropic fatigue behaviour.

Surface Quality

Stress concentration due to surface roughness is a well-known important factor for fatigue
strength of metals [Norton, 2014][Stephens et al., 2001]. For AM components it is especially
important, as parts often contain high surface roughness similar to a staircase-effect, which
happens due to the deposition of discrete layers [Clausen, 2016][Calignano, 2014]. Additionally,
the surface roughness of the part may not be uniform and the degree hereof depends on the
build orientation, see Figure 3.13.

Deposited layers

CAD geometry

Layer
thickness

Building platform

Support

Figure 3.13. The stair case effect as a result of the layer-wise deposition of material (left) and nonuniform
surface quality as a consequence of the build orientation (right). Figures from Calignano
[2014] (slightly modified) and Yadollahi et al. [2017] respectively.

A common way to remove surface roughness of traditionally manufactured parts is to do a
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post-polishing of the surfaces. The attractiveness of AM as a method however stems from
its ability to directly manufacture highly complex parts. Polishing the parts post-print may
therefore be tedious or even impossible and process parameters should therefore be optimized
to achieve the lowest surface roughness possible. If a high surface roughness is unavoidable,
shot- or laser peening may be an attractive option. The peening methods introduce beneficial
compressive residual stresses in the surfaces of the part by plastically deforming them, either
by striking with small particles (shot peening) or laser-induced compression (laser peening),
which increase the tensile stress required to open and propagate a crack. Current research of
the effect of peening AM metals indicates, that the method is able to increase fatigue strength
by introducing beneficial compressive residual stress in the surfaces, refine the microstructure
and remove defects, similar to effects on wrought metals [Bag et al., 2020][Maamoun et al.,
2018][Hackel et al., 2018].

3.5 Anisotropic Fatigue Modeling

The ability to account for existing material anisotropy is essential for optimized designs, to
avoid over- or underdimensioning geometry. Accuracy of fatigue model must be balanced
with computational effort. This is important when choosing the method for computing fatigue
damage, as the criterion must be simple and continuous, whereby sensitivities can be computed
efficiently using analytical design sensitivity analysis. A continuous expression is preferable
for computational efficiency and an anisotropic model based on interpolating SN-curves is
presented here.

It is assumed that the strength varies wrt. to the print plane orientation as observed for
CPM, see Figure 3.14 where the Fatemi-Socie failure index is plotted wrt. the load plane. The
variation of the damage parameter is clearly cyclical wrt. the angle, inspiring the cosinusoidal
simplification developed in the following.
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Figure 3.14. Prediction of damage wrt. the orientation of the load plane by the Fatemi-Socie (FS) CPM
method [Fatemi and Socie, 1988]. The load case imposed on the test specimen is axial-
torsion. The plane orientation angle refers to an analytical plane inserted for CPM to find
its most critical orientation, where the loading is most severe. Figure from Yadollahi and
Shamsaei [2017].
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3.5.1 Anisotropic Equivalent Stress

If all static material characteristics, in particular elasticity and stress, are assumed isotropic,
a model for anisotropic fatigue can be developed as an extension to the fatigue models
discussed previously. From a micromechanical perspective, this assumption follows from
defects being small, such they appear as local stress concentrations but do not appreciably
affect a macroscopic cross section. Thus the orientation of defects will affect very locally
dependent phenomena, in particular crack initiation and growth, which is expressed by the
SN-curve changing depending on a specimen being built vertically or horizontally. In Basquin’s
approximation, if b can be assumed constant (which mostly agrees with the data of Figure 3.12
from Yadollahi et al. [2017]), the stress level will be proportional for all N:

σN f ,⊥ ∝ σN f , ‖ (3.26)

Here ⊥ and ‖ refer to load direction being normal and parallel to the print plane normal,
respectively. Comparing to Figure 3.11, ⊥ corresponds to the vertically built specimen and ‖ to
the horizontally. If only the fatigue strength is changed, the proportionality is uniquely given
by a factor α:

σN f ,⊥ = σf ,⊥(2N)b = ασN f , ‖ = ασf , ‖(2N)b (3.27)

⇒ α =
σf ,⊥
σf , ‖

This relation however only applies to two orientations and only wrt. a uniaxial force. To be
useful in TO, it must be generalized to accept arbitrary orientation and loading condition.
Recall that metal fatigue damage is divided into two distinct stages; crack initiation and
propagation followed by failure. The crack propagation phase may be further classified as
small crack growth (less than 2mm) and long crack growth (larger than 2mm) [Fatemi et al.,
2019]. Fatemi et al. [2019] states that for AM materials, first principal stress is governing in
crack growth, but not necessarily in initiation. If the defects are considered as existing small
cracks, then using the angle between print plane normal and first principal direction, see Figure
3.15, fulfills the required generalizations of arbitrary orientation and loading condition. Thus,

nσ1

np

θpσ1

y

x
z

Print plane

Figure 3.15. Angle θpσ1 between print plane normal np and first principal stress direction nσ1 .
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taking the two fatigue strengths into account, α may be expressed by a cosinusoidal function:

α(θpσ1) = 1 + βp
1 + cos 2θpσ1

2
where βp =

σf ,⊥
σf , ‖

− 1 (3.28)

The expression of βp is used as its value gives an intuitive measure for the degree of anisotropy,
in particular βp = 0 for isotropy, see Figure 3.16. As an example of defining βp, the results
presented in Figure 3.12 for the HT material could be used, yielding:

βp = 8622 MPa/7002 MPa− 1 ≈ 0.23 (3.29)

The 2θpσ1 term is used to describe that np and nσ1 are axes rather than vectors (e.g. np and
−np account for the same behaviour), whereby the largest angle between them is π

2 . A linear
interpolation limited to 0 ≤ θpσ1 ≤ π

2 might seem sufficient, but loses differentiability at the
endpoints.

0
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βp
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2ππ
2 π 3π

2

Figure 3.16. Plot of α(θpσ1), which is used to scale equivalent stress. θpσ1 = 0 corresponds to the ‖-case,
where the material is weak and its perceived equivalent stress σN f should be higher, and
θpσ1 = π

2 corresponds to the ⊥-case, where behaviour is nominal.

The angle between print plane normal and the principal direction is found by the dot product:

θpσ1 = cos−1 np · nσ1

|np||nσ1 |
(3.30)

where np is the print plane normal and nσ1 is the principal direction. It is assumed that the
vectors are normalized such that:

|np| = |nσ1 | = 1 (3.31)

After insertion of equations (3.30) and (3.31) into Equation (3.28), the following is obtained:

α = 1 + βp
1 + cos

(
2 cos−1(np · nσ1)

)

2
(3.32)

The expression is simplified using:

cos
(

2 cos−1(np · nσ1)
)
= 2(np · nσ1)

2 − 1 (3.33)

which after insertion yields α expressed by the dot product of the vectors:

α = 1 + βp (np · nσ1)
2 (3.34)

The relation between SN-curves and α is illustrated in Figure 3.17.
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σN f

N

σN f , ‖

σN f ,⊥

σf , ‖

σf ,⊥ b

α(θpσ1 ) σN f

σN f

Figure 3.17. Log-log plot of SN-curves for an idealized anisotropic material with constant b. An increase
α in stress (up to the σN f ,⊥-curve) is equivalent to a decrease in fatigue strength due to
anisotropy.

Equation (3.34) is then used in the expressions for the equivalent stress with mean stress
correction - in this case Morrow correction. For ductile metals, the signed von Mises stresses,
Equations (3.19) and (3.20), are used:

σN f = α
ca σVM σf ,⊥

σf ,⊥ − sgn (cmσh) cm σVM
(3.35)

Assuming that only tensile stress creates fatigue damage, a more general expression, covering
both brittle and ductile metals, is achieved by using the maximum principal stress:

σN f = α
ca σ1 σf ,⊥

σf ,⊥ − cm σ1
(3.36)

In this case, the anisotropic fatigue model fails to capture compressive stress, risking static
failure. To account for this, a stress constraint is required to enforce a limit on compressive
stresses. It should be noted, that although a wrought material is considered ductile, the AM
counterpart may not be due to the alteration in microstructure, thermal history, and presence
of defects [Fatemi et al., 2019]. The choice of which stress measure is used in the criterion
should therefore depend on experimental tests of the given material manufactured on a given
AM machine.

The cosine interpolation is an idealization, which has not been experimentally tested. However,
if it is demonstrated that the relation is better described by a different function, replacing the
cosine function is quite straightforward as the remaining framework developed is still valid
wrt. to SN-curves.

3.5.2 Optimization of Print-orientation

To get the best utilization of the used material, it is desired to orient the print plane in the most
fatigue tolerant way. This is achieved by including the orientation of np in the optimization. In
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two dimensions, the orientation is expressed by a single variable angle θ:

np(θ) =

[
cos θ

sin θ

]
(3.37)

The print plane normal is related to the geometry coordinate system and actual manufacturing
print plane as illustrated in Figure 3.18.

θ

np

x

y

θ

np

xy

Print plane

Figure 3.18. Relation between orientations of the TO coordinate system (left) and the printing process
(right). Printing starts with a horizontal slice of the lowest part of the geometry on the right
and proceeds with slices in the direction of np. Support structure is neglected here.

In three dimensions, rotational matrices are used. Assuming the normal is initially placed in
the z-direction, rotation around the z-axis is effectively avoided by using z-y-x Bryan angles
(rotation around z-axis corresponds to a drilling rotation of the axis, which do not affect
placement of the print plane). The expression becomes:

np(θ) = Ry (Rx z) =




cos θx sin θy

− sin θx

cos θx cos θy


 (3.38)

with θ = [θx θy]T being the rotations around x- and y-axes respectively, and the rotation
matrices defined as:

Rx =




1 0 0
0 cos θx − sin θx

0 sin θx cos θx


 and Ry =




cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy


 (3.39)

Thus, in two dimensions a single additional design variable is included in the optimization
and in three dimensions two additional design variables are included.

3.6 Constraint Functions

To give an overview of the several possible problem formulations presented, strict formulations
are given here.
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The objective in all cases is volume minimization. The volume function given in Equation (2.6)
depends solely on the densities included, such that:

V(ρ) =
Nelem

∑
e=1

ρ̃(e)v(e) (3.40)

Note that the physical densities ρ̃ are used, although the function is still dependent on the
design variables.

A single stress constraint based on von Mises stress σVM is used:

gσ(ρ) = c(k) fΨ(σVM) (3.41)

where c(k) is the adaptive constraint scaling factor (see Algorithm 1) and σVM is all von
Mises stresses, calculated from the relaxed element stresses and implicitly dependent on ρ via
Equation (2.1). Other stress measures are possible by replacing σVM by e.g. σ1 or σ3 to obtain
strictly lower or upper constraints on stress, respectively.

Three fatigue constraints are used: an isotropic criterion based on signed von Mises and
anisotropic criteria with fixed or variable print plane orientation. The isotropic constraint is
defined as:

gD(ρ) = c(k) fΨ(Ds(σN f )) (3.42)

where Ds is all element damages scaled according to P-mean scaling of Equation (3.25) and
σN f is all signed von Mises equivalent stresses from Equations (3.18), (3.19) and (3.20).

The anisotropic fatigue criterion with variable print plane orientation is given by

gDασ1(ρ,θ) = c(k) fΨ(Ds(σN f (α(ρ,θ),σ1(ρ)))) (3.43)

if the principal stress formulation of Equation (3.36) is used, or by

gDασVM(ρ,θ) = c(k) fΨ(Ds(σN f (α(ρ,θ),σVM(ρ)))) (3.44)

if instead Equation (3.35) is used. α refers to all element fatigue strength interpolations from
Equation (3.34). For fixed print plane orientation, θ is no longer a variable and thus the
constraint is expressed by

gDασ1(ρ) = c(k) fΨ(Ds(σN f (α(ρ),σ1(ρ)))) (3.45)

or
gDασVM(ρ) = c(k) fΨ(Ds(σN f (α(ρ),σV M(ρ)))). (3.46)
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4 | Design Sensitivity Analysis
In this chapter the sensitivities for the functions used are derived. The method of analytical adjoint
sensitivity analysis is presented and applied to establish efficient sensitivity expression for the formulated
structural constraints. Each expression contains terms that are depend on the method used. These
individual terms will be derived for the respective methods presented in earlier chapter, and used in the
implementation to solve multiple examples, see more in Chapter 5.

4.1 Analytical Design Sensitivity Analysis

This section is based on Christensen and Klarbring [2009].

The process of obtaining problem sensitivities is termed Design Sensitivity Analysis (DSA).
Different methods exist for performing DSA and the choice hereof depends on the problem
formulation. In this particular work it is inteded to use the Method of Moving Asymptotes
(MMA) to solve the optimization problem, see more in Chapter 5. First order sensitivity
information of the optimization functions is required for the MMA - higher orders are not
considered. They may be obtained by a finite difference scheme, but this quickly becomes
prohibitively expensive for anything but the smallest models, as objective and constraint
functions must be evaluated at least once per design variable per iteration. Analytical DSA
avoid this by only considering optimization functions that are continuous and differentiable,
which implies that an analytical sensitivity can be derived, and this allows for efficient
computation of sensitivities.

Methods for deriving analytical expressions are the direct differentiation method or the adjoint
method. Using the adjoint method is preferable over the direct method when dealing with
the particular combination of many design variables and few functions. This becomes evident
during derivation of the sensitivity which is done in the following.

4.1.1 The Adjoint Method

Recall that for the nested optimization formulation, the functions are implicitly dependent
on the state problem, see Equation (2.2). An optimization function will thus have two
dependencies:

f = f (ρ, U(ρ)) (4.1)

The total derivative of the function is therefore composed of two partial derivative terms due
to the chain rule:

d f
dρ(e)

=
∂ f

∂ρ(e)
+

∂ f
∂U

∂U
∂ρ(e)

(4.2)
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Similarly, the derivative of the state equation, see Equation (2.1), is:

K
∂U

∂ρ(e)
+

∂K
∂ρ(e)

U =
∂F

∂ρ(e)
(4.3)

Assuming design independent load, the partial derivative of the load vector is zero. The ∂U
∂ρ(e)

term is then isolated:
∂U

∂ρ(e)
= K−1

(
− ∂K

∂ρ(e)
U
)

(4.4)

and inserted into Equation (4.2), which yields:

d f
dρ(e)

=
∂ f

∂ρ(e)
+

∂ f
∂U

K−1
(
− ∂K

∂ρ(e)
U
)

(4.5)

Solving this expression directly is the direct differentiation method. It entails solving Equation
(4.4) for each design variable, which becomes computationally expensive if the problem contains
many design variables, which is inherent to TO problems.

Due to the application of aggregation functions there are few functions in the problem
formulation. An adjoint vector is therefore defined as:

λT =
∂ f
∂U

K−1 (4.6)

As the stiffness matrix is symmetric, the equation is rewritten:

Kλ =

(
∂ f
∂U

)T

(4.7)

This is a linear system of equations which may be solved efficiently for each function, in
particular if using a direct solver, since the factored stiffness matrix then can be reused. The
adjoint vector is then inserted into Equation (4.5):

d f
dρ(e)

=
∂ f

∂ρ(e)
− λT ∂K

∂ρ(e)
U (4.8)

This is the adjoint method and is advantageous as it only requires solution of Equation (4.7)
once per function.

4.2 Objective Function Sensitivity

This work will solely consider minimization of volume. The volume of the design depends
linearly on physical density, as expressed in Equation (2.6) restated here:

V =
Nelem

∑
e=1

v(e)ρ̃(e) (2.6)

The volume of a structure is independent of the state equations and no complex method is
required to derive the sensitivity. It is simply the element volume multiplied the derivative of
the density variable:

dV
dρ(j)

= v(e)
∂ρ̃(e)

∂ρ(j)
(4.9)
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The expression for the density derivative term ∂ρ̃(e)

∂ρ(j) depends on which regularization scheme
is applied. Derivation hereof is presented in Section 4.4. If print plane orientation angles are
included in the problem, these do not affect volume and the sensitivities are of course zero.

4.3 Constraint Function Sensitivity

The considered problems will mainly be subject to fatigue constraints, however the fatigue
function is highly associated with the stress function. Furthermore, in some cases a stress
constraint is required to limit the compressive stresses of the considered structure to ensure
static structural integrity. Both fatigue and stress constraints are therefore derived in the
following.

4.3.1 Fatigue

The total derivative of the fatigue function is expanded using the chain rule as:

dDΨ

dρ(e)
=

∂DΨ

∂D(e)

∂D(e)

∂σ̄(e)

∂σ̄(e)

∂ρ(e)
(4.10)

where DΨ refers to the P-norm aggregated damage expression. Within each of these terms
there are multiple function dependencies. The derivative of the aggregated damage depends
on the aggregation function used. In this work P-norm of Equation (3.8) is exclusively used.
Derivative of the P-norm function is given in Section 4.4. The derivative of damage wrt. the
stress vector is expanded as:

∂D(e)

∂σ̄(e)
=

Nlc

∑
i=1

∂D(e,i)

∂N(e,i)

∂N(e,i)

∂σ̄
(e,i)
N f

∂σ̄
(e,i)
N f

∂σ̄(e)
(4.11)

where Nlc is the amount of load combinations. The derivative of the stress vector wrt. the
density is:

∂σ̄(e)

∂ρ(e)
= q

(
ρ(e)
)q−1

EB(e)u(e) −
(

ρ(e)
)q

EB(e) ∂u(e)

∂ρ(e)
(4.12)

An adjoint vector is formulated to be able to efficiently solve the right hand side term ∂u(e)

∂ρ(e)
.

This term is replaced by Equation (4.4), and then, according to Equation (4.6), the right hand
side term is defined as:

∂DΨ

∂U
=

Nelem

∑
e=1

∂DΨ

∂D(e)

∂D(e)

∂σ̄(e)

(
ρ(e)
)q

EB(e)L(e) (4.13)

where L(e) is a bookkeeping matrix used to bring B from local to global level - this can also be
done programmatically by index manipulation. The right hand term is then inserted into the
adjoint equation, i.e. Equation (4.7), yielding:

KλD =

(
Nelem

∑
e=1

∂DΨ

∂D(e)

∂D(e)

∂σ̄(e)

(
ρ(e)
)q

EB(e)L(e)

)T

(4.14)
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Inserting the derived terms and the adjoint vector into Equation (4.10) yields the sensitivity:

dDΨ

dρ(e)
=

∂DΨ

∂D(e)




Nlc

∑
i=1

∂D(e,i)

∂N(e,i)

∂N(e,i)

∂σ̄
(e,i)
N f

∂σ̄
(e,i)
N f

∂σ̄(e)


 q

(
ρ(e)
)q−1

EB(e)u(e) − λT
D

∂K
∂ρ(e)

U (4.15)

All explicit terms in this expression depend on which method is applied to formulate the term,
e.g. σN f may be determined by Sines’ method [Stephens et al., 2001] instead of the signed von
Mises expression. Extending the model in terms of computing new sensitivities through the
adjoint method is therefore straightforward, as the derivative terms are simply replaced in the
full derivative equation. However, note that the expression is written with SIMP penalization

in mind, and if it is desired to use e.g. RAMP instead, the
(

ρ(e)
)q

and q
(

ρ(e)
)q−1

terms
should be replaced by the corresponding RAMP formulations, see Olesen and Hermansen
[2019]. Although the expression is developed with P-norm in mind, the P-norm function only
constitutes a single partial derivative term which is easily replaced by e.g. P-norm mean of
Equation (3.9) or Kreisselmeier-Steinhauser (3.10) [Olesen and Hermansen, 2019].

Considering the angle design variable, the expanded total derivative is:

dDΨ

dθ
=

Nelem

∑
e=1

∂DΨ

∂D(e)




NRF

∑
i=1

∂D(e,i)

∂N(e,i)

∂N(e,i)

∂σ̄
(e,i)
N f

∂σ̄
(e,i)
N f

∂α

∂α

∂np

∂np

∂θ


 (4.16)

The computation of this is more straightforward as there is no implicit dependence of the state
equations.

The non-differentiable adaptive constraint scaling factor c is multiplied the sensitivity to adjust
for the change is constraint measure, yielding the final damage constraint sensitivities:

dgD

dρ(e)
= c

dDΨ

dρ(e)
and

dgD

dθ(e)
= c

dDΨ

dθ(e)
(4.17)

4.3.2 Stress

The stress sensitivity is derived like the fatigue sensitivity, however its derivation is more
comprehensible due to less implicit function dependencies. The total derivative of the stress
aggregation σΨ measure is:

dσ̄Ψ

dρ(e)
=

∂σ̄Ψ

∂σ̄(e)

∂σ̄(e)

∂ρ(e)
(4.18)

The stress terms in the equation depend on which measure is used. In this case, they are
wrt. to either von Mises or a principal stress, derived in Section 4.4. The ∂σ̄(e)

∂ρ(e)
term is exactly

Equation (4.12) for which the adjoint vector is defined. Equivalent to for the fatigue function
the right hand side is defined using Equation (4.6):

∂σΨ

∂U
=

Nelem

∑
e=1

∂σ̄Ψ

∂σ̄(e)

∂σ̄(e)

∂ρ(e)

(
ρ(e)
)q

EB(e)L(e) (4.19)
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which is used to formulate the adjoint equation from Equation (4.7):

Kλσ =

(
Nelem

∑
e=1

∂σ̄Ψ

∂σ̄(e)

∂σ̄(e)

∂ρ(e)

(
ρ(e)
)q

EB(e)L(e)

)T

(4.20)

Insertion of Equation (4.12) and the adjoint vector into Equation (4.18) yields the sensitivity:

dσ̄Ψ

dρ(e)
=

∂σ̄Ψ

∂σ̄(e)
q
(

ρ(e)
)q−1

EB(e)u(e) − λT
σ

(
∂K

∂ρ(e)
U
)

(4.21)

which is then multiplied by the adaptive constraint scaling factor, resulting in the final stress
constraint sensitivity:

dgσ

dρ(e)
= c

dσ̄Ψ

dρ(e)
(4.22)

4.4 Explicit Sensitivity Terms

The relevant individual terms, i.e. those used in the present implementation, for the defined
sensitivities are derived in the following.

4.4.1 P-norm Function

The derivative of the used aggregation function, i.e. the P-norm function of Equation (3.8), is:

∂ fΨ

∂ f (e)
=

(
Nelem

∑
l=1

(
f (l)
)P
) 1

P−1 (
f (e)
)P−1

(4.23)

Note that this derivative is used for both the stress and damage derivative terms in equations
(4.10) and (4.18), as the element damages and stresses can be inserted without affecting the
expression.

4.4.2 Density Filter

An additional term is added to the derivative of the density design variable, due to the
introduction of filtered variables. The total function derivative is found by application of the
chain rule:

∂ f
∂ρ(j)

=
Nj

∑
e=1

∂ f
∂ρ̃(e)

∂ρ̃(e)

∂ρ(j)
(4.24)

where Nj is the set of elements enclosed by the filter. The derivative of the filtered variable ρ̃,
defined in Equation (2.8), wrt. the design variable is:

∂ρ̃(e)

∂ρ(j)
=

H(j,e)

Nj

∑
l=1

H(j,l)

(4.25)
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Note that this expression is independent of the design variables, thus it does not change
through the optimization and may therefore be precomputed. As sensitivities from all elements
in Nj contribute to the filter sensitivity, computation of sensitivities of elements which are not
included in the optimization itself, in the case of using domain extension, is required.

Threshold Filter

Introducing a projection filter results in another term being added to the function derivative by
the chain rule:

∂ f
∂ρ(j)

=
Nj

∑
e=1

∂ f
∂ ¯̃ρ(e)

∂ ¯̃ρ(e)

∂ρ̃(e)
∂ρ̃(e)

∂ρ(j)
(4.26)

Using the continuous approximation of the threshold filter, i.e. Equation (2.14), the intermediate
derivative term is found as:

∂ ¯̃ρ(e)

∂ρ̃(e)
=

β sech2(β(ρ̃(e) − η))

tanh(βη) + tanh(β(1− η))
(4.27)

4.4.3 Stiffness

As the element stiffness matrices and element densities are uniquely associated, the derivative
of global stiffness wrt. the densities may be assembled from a single element:

∂k(e)

∂ρ(e)
=

∂Ē(e)

∂ρ(e)
k(e)

0 ⇒ ∂K
∂ρ(e)

(4.28)

where k(e)
0 is the unit stiffness matrix. The derivative of the modified SIMP expression of

Equation (2.4) is:
∂Ē

∂ρ(e)
= p

(
ρ̃(e)
)p−1

(E− Emin) (4.29)

where ρ̃(e) is used to indicate the physical variable, i.e. it may represent the density filtered by
any operation.

4.4.4 Stress

Expansion of the derivative of the stress aggregation function σ̄Ψ yields:

dσ̄Ψ

dρ(e)
=

∂σ̄Ψ

∂σ̄
(e)
∗

∂σ̄
(e)
∗

∂σ̄(e)

∂σ̄(e)

∂ρ(e)
(4.30)

where σ̄
(e)
∗ refers to a scalar reference stress of the multiaxial stress state, either von Mises σ̄

(e)
VM

or a principal stress (e.g. σ̄
(e)
1 or σ̄

(e)
3 for 3D).
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von Mises

The derivative of the von Mises expression, see Equation (3.3), is found for each element wrt.
the stress components:

∂σ̄
(e)
VM

∂σ̄
(e)
x

=
1

2σ̄
(e)
VM

(2 σ̄
(e)
x − σ̄

(e)
y − σ̄

(e)
z ) (4.31)

∂σ̄
(e)
VM

∂σ̄
(e)
y

=
1

2σ̄
(e)
VM

(2σ̄
(e)
y − σ̄

(e)
x − σ̄

(e)
z ) (4.32)

∂σ̄
(e)
VM

∂σ̄
(e)
z

=
1

2σ̄
(e)
VM

(2σ̄
(e)
z − σ̄

(e)
x − σ̄

(e)
y ) (4.33)

∂σ̄
(e)
VM

∂τ̄
(e)
xz

=
3

σ̄
(e)
VM

τ̄
(e)
xz (4.34)

∂σ̄
(e)
VM

∂τ̄
(e)
yz

=
3

σ̄
(e)
VM

τ̄
(e)
yz (4.35)

∂σ̄
(e)
VM

∂τ̄
(e)
xy

=
3

σ̄
(e)
VM

τ̄
(e)
xy (4.36)

Principal Stresses and Vectors

Principal stress sensitivities are found as sensitivities to an eigenvalue problem. While analytical
derivation can be made from the equations of Mohr’s circle, sensitivities based on Nelson
[1976] are used here, as the formulation applies to both 2D and 3D problems, and is more
robust for near-axis-parallel principal directions. The derivation is presented in general terms
first and the resulting expressions are then subsequently used to formulate the derivatives for
stress.

For abbreviated notation, the derivative of a matrix wrt. its entries is defined as:

δApq ≡
∂A

∂Apq
(4.37)

where A represents a matrix and pq are indices of a given entry. Assuming A is real and
symmetric, its right and left eigenvectors are equal. The eigensystem of the matrix is therefore
given in the form:

Ax = xλ (4.38)

where x is the eigenvector matrix and λ is a diagonal matrix containing the eigenvalues.
Performing differentiation of the system of equations wrt. an entry of matrix A and rewriting
yields the system Fm:

Fm = (A− λmI)
∂xm

∂Apq
= −

(
δApq −

∂λm

∂Apq
I

)
xm (4.39)

55



Group Fib14/23c 4. Design Sensitivity Analysis

where I is the identity matrix with size equal to A. The sensitivity of the eigenvalue is found
by premultiplying the above expression with xT

m. This is found by considering Equation (4.38)
for a single eigenvalue and -vector:

xT
m(A− λmI) = 0T (4.40)

thus, the left hand side of Equation (4.39) is zero due to the appearance of the Kronecker delta
i.e. xTx = δij, see Equation (4.44). The equation thereby reduces to:

∂λm

∂Apq
= xT

m δApq xm (4.41)

If it is assumed that there are no repeated eigenvalues, then from Equation (4.39) it is observed
that the sensitivity for each eigenvector may be uniquely determined as a linear combination
of all eigenvectors as the eigenvectors form a linearly independent orthogonal basis:

∂xm

∂Apq
= ∑

n 6=m
cmn xn (4.42)

By substituting Equation (4.42) into Equation (4.39) and by premultiplying xT
n an expression

for the constants cmn is determined:

cmn =
Fm · xn

λn − λm
, n 6= m (4.43)

The equation in the presented formulation is simplified such that xn is no longer transposed.
As the eigenvectors form an orthonormal basis, the dot product yields:

xm · xn =

{
0, m 6= n
1, m = n

(4.44)

which cancels out the eigenvalue derivative terms of Equation (4.39). By insertion of the
remainder of Equation (4.39), the expression of cmn is:

cmn =

(
δApq xm

)
· xn

λm − λn
, n 6= m (4.45)

Insertion into Equation (4.42) yields the eigenvector sensitivity:

∂xm

∂Apq
= ∑

n 6=m

(
δApq xm

)
· xn

λm − λn
xn (4.46)

Expressed in terms of stress, Equations (4.41) and (4.46) become

∂σ
(e)
m

∂σ̄
(e)
pq

=
(

n(e)
σm

)T
δσ̄

(e)
pq n(e)

σm (4.47)

and

∂n(e)
σm

∂σ̄
(e)
pq

= ∑
n 6=m

(
δσ̄

(e)
pq n(e)

σm

)
· n(e)

σn

σ
(e)
m − σ

(e)
n

n(e)
σn (4.48)
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where

δσ̄
(e)
pq =

∂σ̄(e)

∂σ̄
(e)
pq

(4.49)

Note that the tensor form of σ̄(e) is used here, i.e. Equation (4.49) is a symmetric matrix of
ones and zeros and is exactly equal to Equation (4.37).

4.4.5 Fatigue

By expansion of the aggregation damage term by the chain rule the following is achieved:

∂DΨ

∂D(e)
=

∂DΨ

∂D(e)
s

∂D(e)
s

∂D(e)
(4.50)

The derivative of the damage wrt. reversals until failure N is found by differentiating the
Palmgren-Miner expression of Equation (3.22):

∂D(e,i)

∂N(e,i)
= − n(i)

(
N(e,i)

)2 (4.51)

The derivative Basquin expression of Equation (3.16) wrt. equivalent stress yields:

∂N(e,i)

∂σ̄
(e,i)
N f

=
1

2σf b


 σ̄

(e,i)
N f

σf




1
b−1

(4.52)

Scaled Damage

The derivative of the Basquin factor scaled damage of Equation (3.23) is found as:

∂D(e)
s

∂D(e)
= −b

(
D(e)

)−b−1
(4.53)

For the P-mean scaling, see Equation (3.24), the derivative is computed as:

∂D(e)
s

∂D(e)
=

(
1

c1 + c2

)− 1
P −b

(
c1 D(e)

)bP−1
+
(

c2 D(e)
)−P−1

((
c1 D(e)

)bP
+
(
c2 D(e)

)−P
) 1

P+1
(4.54)

Signed von Mises

The derivative of the signed von Mises expression includes derivative of the Morrow expression
of Equation (3.18) and then subsequently the derivative of amplitude and mean stress terms,
i.e. equations (3.19) and (3.20). The expanded expression is:

∂σ̄
(j,i)
N f

∂σ̄(j)
=


∂σ̄

(j,i)
N f

∂σ̄
(j,i)
a

∂σ̄
(j,i)
a

∂σ̄
(j)
VM

+
∂σ̄

(j,i)
N f

∂σ̄
(j,i)
m

∂σ̄
(j,i)
m

∂σ̄
(j)
VM


 ∂σ̄

(j)
VM

∂σ̄(j)
(4.55)
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The derivative terms related to amplitude stress are:

∂σ̄
(j,i)
N f

∂σ̄
(j,i)
a

=
σf

σf − σ̄
(j,i)
m

=
σf

σf − sgn
(

c(i)m σ̄
(j)
h

)
c(i)m σ̄

(j)
VM

(4.56)

and
∂σ̄

(j,i)
a

∂σ̄
(j)
VM

= c(i)a (4.57)

The terms related to mean stress are:

∂σ̄
(j,i)
N f

∂σ̄
(j,i)
m

= σ̄
(j,i)
a

σf

(σf − σ̄
(j,i)
m )2

= c(i)a σ̄
(j)
VM

σf(
σf − sgn

(
c(i)m σ̄

(j)
h

)
c(i)m σ̄

(j)
VM

)2 (4.58)

and
∂σ̄

(j,i)
m

∂σ̄
(j)
VM

= sgn
(

c(i)m σ̄
(j)
h

)
c(i)m (4.59)

The von Mises derivatives in Equation (4.55) are shown in Equations (4.31)-(4.36).

4.4.6 Anisotropic Fatigue

For the anisotropic fatigue criteria of Equations (3.35) and (3.36), sensitivities must be found for
both the density design variables and the angle design variables θ introduced in Section 3.5 to
determine the print plane orientation. The stress is dependent of the density design variables,
and an expression of the criterion derivative wrt. stress components is thus derived as:

∂σN f

∂σ̄
=

∂σN f

∂σ1

∂σ1

∂σ̄
+

∂σN f

∂α

∂α

∂nσ1

∂nσ1

∂σ̄
(4.60)

Using the maximum principal stress as the stress measure:

∂σN f

∂σ1
=

ca α

(1− cm
S f

σ1)2 (4.61)

If using the signed von Mises, this derivative is equivalent to that derived in the above
multiplied by α. The derivative of the equivalent stress wrt. α is simply the Morrow correction.
Using the maximum principal stress the derivative is:

∂σN f

∂α
=

ca σ1

1− cm
S f

σ1
(4.62)

The derivative of α wrt. the principal direction is:

∂α

∂nσ1

= 2βp (np · nσ1) nT
p (4.63)

The derivative expression for the principal direction vector wrt. the stress components were
derived in Equation (4.48).
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In relation to the full derivative of damage wrt. the print plane angle of Equation (4.16) two
additional terms need to be derived. The derivative of α wrt. the normal vector is:

∂α

∂np
= 2βp (np · nσ1) nT

σ1
(4.64)

The direction vectors are then differentiated wrt. the angle design variable. For the two- and
three-dimensional cases, the derivatives are respectively:

∂np

∂θ
=

[
− sin θ

cos θ

]
or

∂np

∂θ
=



− sin θx sin θy cos θx cos θy

− cos θx 0
− sin θx cos θy − cos θx sin θy


 (4.65)

By the adjoint method, efficient computation of the sensitivities is now possible. These derived
expression are then implemented and used to solve multiple problems in Chapter 5.
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5 | Numerical Examples
This chapter concerns implementation of the proposed methods. General aspects regarding
implementations will be discussed. The method of continuation used to achieve better designs is presented
and strategies implemented are discussed. Numerical examples are then presented, emphasizing the
implemented methods in a fatigue context. Verification of the implemented methods are performed on
both 2D and 3D designs in the commercial FE program ANSYS.

5.1 Implementation

Two implementations of the TO routines presented have been made. The first one is a MATLAB
implementation, developed to solve plane stress benchmark problems in order to test and
verify the methods presented. Most calculations in MATLAB are performed as vectorized
operations rather than loops, leading to fast solution times. The L-beam examples in the
following in general have a per iteration time of 3.0-3.5 seconds for a 330 by 330 mesh of
elements (including elements from domain extension) on a 3.8 GHz Intel i7-7700HQ CPU. For
comparison, a problem of similar size solved with the top88-code of Andreassen et al. [2011]
has an iteration time of 1.8-2.1 seconds on the same CPU, despite only considering compliance.

The second implementation is a TO module for the Fortran95 program MUltidisciplinary
Synthesis Tool (MUST) developed at the Department of Materials and Production, Aalborg
University. Many FE procedures are implemented as part of the MUST library and the program
is therefore used for solving three-dimensional problems.

Settings presented in Table 5.1 are used in all examples, unless otherwise noted for the specific
examples.

All examples solved are discretized with linear elements. The elements used are the bilinear
Q4 elements for two-dimensional plane stress analysis and the linear hexahedral elements for
three-dimensional. The focus of the examples will be on fatigue designs. The signed von Mises
is applied for the examples without anisotropy, despite it poorly capturing mean stress effects
[Papuga, 2012], as it is simple and computationally efficient. Focus is on TO formulations
rather than representation of the physical system, whereby the criterion is deemed sufficient.
Passive elements and domain extension are illustrated in Figure 5.1. Passive elements are used
to simplify bookkeeping, particularly wrt. defining new problems, but are excluded from filter
and DSA computations.

To measure the discreteness of a design, a measure of nondiscreteness Mnd [Sigmund, 2007] is
defined:

Mnd =

Nelem

∑
e=1

4ρ̃(e)(1− ρ̃(e))

Nelem
× 100% (5.1)
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Initial density ρ(0) 0.5
Active design variables NDV 57 600
Total elements Nelem 108 900

Load combinations NRF 1
Mean scaling factor cm 0.5
Amplitude scaling factor ca 0.5
Reversals n 2× 106

Aggregation factor P 16
Stiffness relaxation factor p 3
Stress relaxation factor q 0.75
Damage scaling method Ds P-mean

Move limits ∆ρ 0.05
Filter radius R 0.025 m

Max. no. of iterations 1500

minimize
(ρ)

V(ρ)

subject to g(ρ)− 1 ≤ 0
ρ ∈ [ρmin, 1]

Table 5.1. General settings for the implementation (left) and the optimization problem (right). Note that
g is presented as a vector as multiple constraints may be included in the optimization, e.g.
from the robust method, which defines three of the same type, or an accompanying stress
constraint to ensure static structural integrity.

where ρ̃ is the physical density computed by either linear density or projection filtering. The
measure of nondiscreteness is defined to be 0% at a density value of 0 or 1 and 100% at a
density value of 0.5, i.e. the most intermediate density possible.

ρ(e) = 10−6

0 ≤ ρ(e) ≤ 0.5

0 ≤ ρ(e) ≤ 1

0 ≤ ρ(e) ≤ 0.5

Design variables

Passive, low ρ

Domain extension

1
m

,3
00

el
em

en
ts

1.
1

m
,3

30
el

em
en

ts

Figure 5.1. Sectioning of domain into various element types: 57 600 design variables, 15 525 domain
extension elements, 35 775 passive elements. The large area with passive elements is due
to the way domains are specified in matrix-form in MATLAB, to simplify bookkeeping and
specification of new domains.

62



5.1. Implementation Aalborg University

5.1.1 Method of Moving Asymptotes

The Method of Moving Asymptotes (MMA) [Svanberg, 1987] is used to solve the optimization
problem. MMA is developed with structural optimization in mind, and it has been used
successfully to solve many different TO problems. For an in-detail description of the method
and implementation, reference is made to Svanberg [2007]. In short, the method is based on
rewriting the original problem into an approximating convex subproblem, which is easier to
solve. Formulation of these subproblems is based on sensitivity information of the current
iteration and variables termed "moving asymptotes". These moving asymptotes are in particular
important because they act as adaptive move limits and thereby control the behavior of the
convergence. For iterations k = 1 and k = 2, they are computed as:

l(j,k) = ρ(j,k) − γ(j,k)
(

ρ
(j)
max − ρ

(j)
min

)
(5.2)

u(j,k) = ρ(j,k) + γ(j,k)
(

ρ
(j)
max − ρ

(j)
min

)
(5.3)

where l(j,k) is the lower asymptote, u(j,k) is the upper asymptote, ρ
(j)
max is the upper bound, ρ

(j)
min

is the lower bound for the jth design variable of iteration k and γ(j,k) is a value used to control
the asymptotes. For these first iterations, γ(j,1) = γ(j,2) = 0.5. When k ≤ 3, the asymptotes are
updated as:

l(j,k) = ρ(j,k) − γ(j,k)
(

ρ(j,(k−1)) − l(j,(k−1))
)

(5.4)

u(j,k) = ρ(j,k) + γ(j,k)
(

u(j,(k−1)) − ρ(j,(k−1))
)

(5.5)

Svanberg [2007] assigns the following values for these γ(j,k):

γ(j,k) =





0.7 if
(

ρ(j,k) − ρ(j,(k−1))
) (

ρ(j,(k−1)) − ρ(j,(k−2))
)
< 0

1.2 if
(

ρ(j,k) − ρ(j,(k−1))
) (

ρ(j,(k−1)) − ρ(j,(k−2))
)
> 0

1 if
(

ρ(j,k) − ρ(j,(k−1))
) (

ρ(j,(k−1)) − ρ(j,(k−2))
)
= 0

(5.6)

However, they may be adjusted depending on the behavior of the problem. Oest and Lund
[2017] suggests reducing the increase and decrease of γ to 1.05 and 0.65 respectively to cope
with the nonlinearity in fatigue. This reduction is also used for this implementation.

External Move Limits

When using highly nonlinear problems, the moving asymptotes usually needs to be strict to
prevent divergence. Another way is to use external move limits on the design variables. Here,
implementation is made using a constant move limit strategy:

ρ(j,k) − ∆ρ ≤ ρ(j,k) ≤ ρ(j,k) + ∆ρ (5.7)

where ∆ρ is the chosen move limit. Alternatively, one may use adaptive move limits, where the
move limits are adjusted depending on how well the problem is converging. This process is
similar to how the moving asymptotes operate.
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5.1.2 Continuation Strategies

The continuous density-based formulation of the optimization problem is non-convex, which
when using sensitivity-based methods is likely to converge to a local optimum [Lund, 2018].
Using initial high factors in the SIMP method enforces this, as the constraints increasingly
restrict the design domain. This is especially evident in case of the stress relaxation, where the
singular optima may be closed-off entirely by the constraints as was discussed in Chapter 3.

Continuation increases the required time to solve the problem, as the problem formulation
changes and a new optimum must be found every time a variable is changed. Additionally, if
continuation is included in the constraints convergence will be slow in the case that continuation
is done in small steps every iteration; every time a continuation variable is updated, the design
(with active constraints) may become infeasible, and thus optimization tends to favor feasibility
over convergence. The continuation strategy applied (i.e. how, how much, and when a variable
is changed) should therefore be chosen based on a balance between computational efficiency
and desired accuracy as well as studies of the stability of the problem in order to avoid
divergence. Application of continuation on multiple variables should be done with care though,
as simultaneously altering the variables may cause the problem to become unstable or diverge
entirely.

Penalization and Relaxation Continuation

To achieve a good local optimum using the density-based approach, continuation can be applied
to the SIMP method by gradually increasing the penalization (p) and relaxation (q) variables.
The basic idea is that by keeping penalization and relaxation low, the feasible design space will
be larger allowing the search method to more easily find a good minimum. Penalization and
relaxation are then increased, gradually tightening the design domain. This also promotes more
distinctly black/white designs. Starting the optimization with a higher degree of penalization
the optimizer may converge to an unacceptably poor minimum. Using continuation, the
optimizer is able to find a good minimum and subsequently increase discreteness of the design.

In the present implementation, stiffness penalization is kept constant as the designs generated
are deemed sufficient with this penalization. If further penalization is needed, continuation is
applied through relaxation by decreasing the q-variable. When the examples are presented in
the following sections, the accompanying continuation strategy will be described for the given
example. Common for all examples is that the increase is done in constant intervals, e.g. q is
decreased for each 100 iterations.

Projection Filter Discreteness Continuation

Continuation is usually necessary when using a Heaviside-based filter, however its purpose
is slightly different from continuation of penalization and relaxation. The Heaviside-filter

64



5.1. Implementation Aalborg University

ensures more discrete designs with interpretations coherent with developed models. The
optimization problem should therefore be solved with the linear density filter for regularizing
the problem, followed subsequently by application of the Heaviside projection to increase
discreteness. Continuation is therefore applied primarily to keep the convergence stable and
prevent divergence. Preemptive application may also cause unintentional convergence to a
local minimum, which is undesirable.

As the projection filtering should not impact the problem, removal of continuation for the
β-variable is desirable to achieve a higher convergence speed. Guest et al. [2011] proposes a
method for eliminating the continuation, by adjusting the moving asymptotes through γ(j,k)

for iteration k = 1, 2, defining them as:

γ(j,1) = γ(j,2) =
0.5

β + 1
(5.8)

Although it removes the continuation, the generated design will, in general, not be equal
to the one generated by applying continuation, see Figure 5.2. The optimization is highly
unstable in the beginning, resulting in increased computational effort needed by MMA to solve
the problem per iteration. The total amount of iterations is however reduced as a benefit of
avoiding continuation.

Figure 5.2. Left: a volume minimization MBB-problem subject to a compliance constraint solved with
regular continuation of the β-variable. The resulting volume fraction is 0.340 and measure
of nondiscreteness Mnd = 0.004. Right: the same problem solved with adjusted MMA
asymptotes and no continuation. Resulting volume fraction is 0.406 and Mnd = 0.01. The
eventual discreteness parameter is βlim = 256 in both cases, and the volume preserving
threshold filter is used with η = 0.5.

The same degree of volume minimization is not achieved using the method for this example
(volume fraction of 0.406 compared to 0.340 when not applying continuation), most likely
due to the optimizer being stuck in a local minimum. This is a general tendency observed in
multiple examples tested with higher levels of discreteness. Increasing discreteness makes the
problem more difficult to solve. Continuation of the penalization or relaxation variables may
guide the optimizer to a better optimum, however this further increases computational effort.

An interesting observation is made regarding stress-based problems. Performing continuation
of β results in more instability of the optimization, due to the negative impact of sharp jagged
edges, gradually increasing the stress as β is increased. If the problem is solved with a high β,
the jagged edges are accounted for in the optimization from the beginning. Using the adjusted
asymptotes therefore may cause faster convergence and result in a better end design, see
Figure 5.3. Note that this observation is only valid for designs adhering to around the limit
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βlim defined by Equation (3.11). If a larger level of discreteness is used, the singularities will
dominate the problem and will cause divergence.
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Figure 5.3. Stress constrained problem solved with continuation (top) and with the adjusted asymptote
value (bottom). The volume fractions are 0.1708 and 0.1593 respectively and Mnd is 0.08 and
0.07 respectively. The discreteness variable limit is βlim = 15 and the volume preserving
threshold filter is used with η = 0.5.

The method is developed with the approximately volume preserving threshold filter in mind
(i.e. η = 0.5). If using another value of η, such as in the robust method where three different
values are used, the eroded and dilated design will have their densities forced to fully void and
fully solid respectively, and may take unacceptably long to converge or become stuck entirely.
Adjustment of the method may make it useful for this case, but this is left for further work, see
Chapter 7.

5.2 General Distribution of Principal Stress

For the stress and fatigue based criteria used in this work a general tendency of principal
stress aligning with geometry is observed, with the remaining component disappearing, see
Figure 5.4. Additionally, bending stresses are small in the optimized design, meaning that the
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geometry has similarities to a truss structure. This distribution should be expected, as stress
transverse to a structural member does not contribute to load carrying capacity and is thus
not part of an optimal design. This directional preference is beneficial, as fatigue properties
relating to uniaxial load are usable, even though they are non-conservative for the general case
of stress.

σ1

σ2

Figure 5.4. Orientation of principal stresses for a fatigue constrained problem, using isotropic signed
von Mises equivalent stress.

5.3 Effects of Damage Scaling

From the studies done by Olesen and Hermansen [2019] it is evident that using Basquin factor
scaling of Equation (3.23) is not able to generate a fully damaged design. To investigate the
effect of the new P-mean scaling of Equation (3.25), the L-beam problem is solved with each
scaling method, and the density distributions and convergence of the problems are presented
in Figure 5.5. Effects of stress singularities at jagged edges are avoided by using the linear
density filter.

The designs are similar, yet there are some quite significant differences. Firstly, considering
convergence, despite the fine discretization and high nonlinearity of the problem, rapid
convergence is achieved for the Basquin factor scaling method, approximately converging at
400 iterations. Conversely, the P-mean scaling did not converge without continuation of the
relaxation variable, changing q from 1 to 0.5 over 800 iterations (this causes the sharp spikes
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in the damage constraint in the convergence plot). Even with continuation the design did
not manage to fully remove intermediate densities around the connections between structural
members, which is also reflected in the larger final volume and measure of nondiscreteness
of the design. The convergence when using exclusively P-mean with equal weighting seems
to worsen as the amount of elements in the problem increase. However, a much better
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Figure 5.5. Results generated using Basquin factor scaling (top) and P-mean scaling (bottom)
formulations. Volume fractions are 0.2174 and 0.2186 respectively, and measure of
nondiscreteness are 29% and 30% respectively.

damage distribution is achieved for P-mean scaling, see Figure 5.6, as Basquin factor scaling
does not achieve a fully damaged design, but suffers from an apparent stress concentration.
Similar distributions occur for many different cases and settings tested. The implications of
each method are therefore as follows. Scaling the damages with the Basquin factor provides
efficiency and stability for the optimization, but because element damages cannot be 0 or 1
everywhere (which is required for Basquin factor scaling to be accurate, see Figure 3.8), a
sub-par design is achieved. P-mean scaling with equal weighting of the functions yields an
even damage distribution, but convergence is slow.

A continuation approach is applied to the weights of Equation (3.24), such that the optimization
starts with the Basquin formulation and then changes to the unscaled formulation after
adequate convergence has been achieved. Specifically, the weighing factors are set at iterations
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Figure 5.6. Damage distribution using Basquin factor scaling (left) and P-mean scaling (right). Highest
element damages are 1.000 and 0.9974 respectively.

{0, 400, 450, 500, 550, 600} to c1 ={1, 0.8, 0.6, 0.4, 0.2, 0} and c2 ={0, 0.2, 0.4, 0.6, 0.8, 1}. The
problem is solved using the standard settings defined in Table 5.1. The resulting density,
damage and convergence are shown in Figure 5.7. Regarding convergence, the volume function
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Figure 5.7. Design, damage and convergence generated using continuation on the P-mean scaling
formulation. Volume fraction is 0.2035, discreteness is 29% and highest element damage is
1.0001.

has fast descent initially and once it stabilizes, the scaling factor is gradually updated. An
added benefit is that this lowers the volume compared to pure Basquin factor scaling, as the
element damage capacity is better utilized. Convergence is achieved without continuation of q,
the inclusion of which could improve discreteness of the design.

5.4 Robust Optimization

To test the implications of the robust TO method on a fatigue constrained design, the L-beam
problem is solved using the general settings of Table 5.1, using signed von Mises as the multi-
axial criterion (Equation (3.42)). The eroded, intermediate and dilated designs are defined
using threshold-variables of [ηe, ηi, ηd] = [0.75, 0.5, 0.25]. Continuation is applied according
to Table 5.2. The resulting density distributions are illustrated for each design in Figure 5.8.
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Iteration 0 100 200 300 400 500 550 600 650 700 800 1000

β 1 2 4 8
q 1 0.875 0.75 0.625 0.5
c1 1 0.8 0.6 0.4 0.2 0
c2 0 0.2 0.4 0.6 0.8 1

Table 5.2. Continuation of parameters used in the robust optimization example. The limit βlim = 8 is a
bit lower than the maximum predicted by Equation (3.11), to reduce the influence of jagged
edges.

As observed from the figure, high discreteness is achieved by applying the threshold filter
(Mnd = 29% is achieved using linear density filtering). A difference in the level of discreteness
between each design is present as a consequence of using the continuous formulation of the
threshold filter (recall Figure 2.12).

Minimum length

Filter radius

Design Eroded Intermediate Dilated

Volume fraction 0.1625 0.2593 0.3517
Mnd 11.3% 8.7% 10.3%

Figure 5.8. Resulting density distribution for eroded (left), intermediate (middle) and dilated (right)
designs.

The crisp representation of the structural members is a product of successful penalization,
which is achieved by application of continuation of q. A pitfall of projection methods is
observed if intermediate densities have not been penalized properly, as erroneous projection
may happen which can cause gaps in the eroded design not present in the other or oppositely
remove holes in the dilated. A precursor for ensuring minimum length scale on both phases is
equivalent topology between the designs, which is violated in this case.

Considering the damage distribution, see Figure 5.9, it is observed that the intermediate and
dilated designs have a high margin of safety. This is due to the high nonlinearity of the problem
functions making it sensitive to small changes in imposed conditions. However, the problem is
also local in nature, and it has been observed that the highest damage of the dilated design
may exceed that of the intermediate.

The problem has also been solved without continuation of the weighting functions using
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Figure 5.9. Resulting damage distribution for eroded (left), intermediate (middle) and dilated (right)
designs. Highest element damages are 1.000, 0.2348 and 0.1099 respectively.

constant equal weighting i.e. c1 = c2. To illustrate the differences, the eroded design and
damage of this problem is compared to that of the continuation example, see Figure 5.10.
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Figure 5.10. Eroded designs solved without continuation (top) and with continuation (bottom). Resulting
volume fractions are 0.1748 and 0.1625 respectively - approximately 7% reduction in volume.
Similar relative reductions were found for intermediate and dilated designs. Maximum
damage is 0.9997 and 1.000 respectively. Damage is slightly higher for the non-continuation
intermediate and dilated designs.

Both approaches are able to generate designs with good distribution of damage in the eroded
design. The final volume fractions are however higher for the non-continuation designs,
indicating that a no continuation approach has higher risk of being trapped in a poor local
optimum.
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Observing the convergence, see Figure 5.11, the purely linear formulation makes the problem
more volatile for subsequent continuation of the discreteness parameter β. This is evident from
the large peak in the eroded damage constraint at 1000 iterations. In this case the optimizer
was able to return to a feasible design, but such a degree of infeasibilty may cause divergence
in other cases. For increased robustness, a different continuation strategy may be preferable,
e.g. by keeping the weight factor for the Basquin formulation nonzero.
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Figure 5.11. Convergence for the problem with no continuation of P-mean (left) and with continuation
(right).

5.5 2D Optimization with Orientation of Print Plane

Three examples are used to illustrate the effects of the anisotropic criterion: first using no
anisotropy (corresponding to signed von Mises), then with the anisotropic criterion and fixed
print plane angle, and finally with both anisotropy and variable angle.

With outset in AISI 1020 (Table 2.1), a fictitious fatigue behavior is introduced, where the fatigue
strength orthogonal to the print plane normal is double that of parallel, see Table 5.3. For
these examples, influence from surface quality is assumed to be fully explained by the fatigue
strengths of the fictitious material. The degree of anisotropy is large for illustration purposes,
but not unreasonably so if compared to a real value as found in Equation (3.29). These values
belong to a heat treated material, i.e. the defects and by extension fatigue properties should be
improved over the as-built.

Fatigue strength σf⊥ 1384 [MPa]
Fatigue strength σf ‖ 692 [MPa]
Basquin factor b -0.156

Table 5.3. Fictitious anisotropic fatigue properties of AISI 1020 in AM. Compare to Table 2.1.

Problems are solved using P-mean scaling with continuation of weighting parameters as
described in Section 5.3.
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5.5.1 Isotropic Fatigue

If material anisotropy cannot be modeled, the lowest fatigue strength must be used in
combination with the isotropic fatigue constraint gD (Equation (3.42)) to ensure that the
design will not fail. In contrast to the design in Figure 5.7, this naturally means that more
material is needed and that convergence is hindered by the additional restrictions to the design
space, which is precisely what is seen in the solution for low fatigue strength, see Figure 5.12.
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Figure 5.12. Density and convergence for isotropic solution of anisotropic material. Volume fraction is
0.3405.

Damage distribution is reasonable, see Figure 5.13, but the design suffers from poor penalization
of intermediate densities particularly around the stress concentration, likely because the change
toward linear damage scaling is applied too early, which also leads to a small concentration
of damage in the reentrant corner. Stress distribution is even, similar to a stress constrained
design, with slightly higher stresses for areas in compression. This distribution occurs due to
the handling of compressive mean stresses, which are assumed to be beneficial as compared to
tensile mean stresses.
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Figure 5.13. von Mises stress [MPa] (left) and damage (right) for worst case fatigue strength.
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5.5.2 Anisotropic Fatigue with Fixed Print Plane Angle

Introducing anisotropic treatment of damage enables better use of material and better
convergence, see Figure 5.14, as more of the available fatigue strength can be used. For
this example, the print plane normal is arbitrarily selected to be parallel to the y-axis and
damage is constrained by gDασVM(ρ), see Equation (3.46). Due to the direction of the print
plane and principal stress direction in the reentrant corner (see also Figure 5.4), fatigue strength
very close to σf ‖ is observed here, whereby the local intermediate density is difficult to remove.
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Figure 5.14. Density and convergence for anisotropic fatigue constraint gDασVM with fixed print plane
normal. Volume fraction is 0.2819.

The stress distribution is clearly affected by anisotropy; knowing that the principal directions
tend to align with the structural members, high stresses occur in near-horizontal structural
members, corresponding to the σf⊥-case, and low stresses for σf ‖, see Figure 5.15.
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Figure 5.15. von Mises stress [MPa] (left) and damage (right) for anisotropic fatigue constraint gDασVM
with fixed print plane normal.

An important observation here is the treatment of compressive stresses. Due to the α-parameter,
equal damage is obtained for different stress combinations depending on the orientation;
in areas where print plane normal and first principal direction align, the equivalent fatigue
strength is reduced (see Figure 5.16) as intended. However, when using von Mises stress in the
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equivalent stress, compressive stresses are included - contrary to using the first principal stress
and ignoring second/third principal. This means that the assumption that fatigue strength is
only affected when defects are in tension no longer holds, as seen in Figure 5.15 where the
stress in the compressed section is not constant. This results in varying thickness as seen in
Figure 5.14, which is not intended.
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Figure 5.16. Combinations of print plane direction and principal stresses, and the fatigue strength for
the given case. Note that the magnitude of stresses does not influence the fatigue strength.

A solution is to use the principal stress formulation (Equation (3.36)) with a second constraint
gσ (Equation (3.41)), such that compression is entirely ignored in fatigue computations, but still
controlled by the stress constraint. The results of this are illustrated in Figure 5.17, where the
stress limit is set to the yield stress, i.e. σVM ≤ Sy = 262MPa. The most noticeable differences
are those discussed, i.e. the compression side has a more consistent thickness and no damage
is computed for the area in compression. Volume is also improved, since compressive stresses
impose a less strict constraint for this formulation.

5.5.3 Anisotropic Fatigue with Variable Print Plane Angle

If the orientation of print plane is included as a variable, an optimized combination of material
distribution and orientation is found simultaneously. The optimal print plane angle is trivial
for the plane stress case: out-of-plane, such that all loads are orthogonal to the print plane
normal (which is exactly what would be obtained for a similar geometry in three dimensions).
Restricting the angle to be in-plane however admits clearer visualization of stress effects than
the 3D case.

Initial guess of the print plane normal is vertical as in the previous example, i.e. θp = 1
2 π. Due

to the issues using the von Mises expression in equivalent stress, the first principal stress (i.e.
gDασ1 , Equation (3.43)) is also used here. On Figure 5.18 it is seen that the print plane normal
aligns with the structure closest to the load, such that fatigue strength is lowest where the
transferred moment is lowest, and vice versa. The same is seen from the stress distribution in
Figure 5.19.
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Figure 5.17. Top: Density and convergence for anisotropic fatigue constraint gDασ1 with fixed print plane
normal and stress constraint σVM ≤ Sy = 262 MPa. Volume fraction is 0.2736. Bottom: von
Mises stress [MPa] (left) and damage (right) for the problem.

5.5.4 Body-fit Mesh Verification

To verify the implementation, results are compared to a body fitted mesh of an equivalent
geometry in ANSYS. The design generated in Figure 5.18 is extracted using an isocurve for
ρ̃ = 0.5 and imported in ANSYS SpaceClaim, where a minor smoothing of the reentrant corner
was performed to remove high stresses. The ANSYS model is meshed using 6586 second order
quadrilateral elements, with an approximate side length of 5 mm and average aspect ratio of
0.98079.

In Figure 5.20 von Mises and first principal stresses are presented. Similar distributions are
seen for both models, though some bending stress appears in the ANSYS models. Additionally,
stress singularities occur at the fixed edges leading to the maximal high stresses, whereas the
stress elsewhere in the model are always less than 220 MPa.

Comparison of damage is difficult as ANSYS does not allow implementation of the anisotropic
fatigue model, but using the signed von Mises model (as in the isotropic example), see Figure
5.21, demonstrates some trends. In essence, the damage distribution is comparable to the
distribution of von Mises stress, but affected by the sign of hydrostatic stress. Structural
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Figure 5.18. Density and convergence for anisotropic fatigue constraint gDασ1 with variable print plane
normal. Volume fraction is 0.2433 and optimized print plane normal is angled 18.11◦ away
from the x-axis (θp = 0.3160).
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Figure 5.19. von Mises stress [MPa] (left) and damage (right) for anisotropic solution with variable print
plane normal.

members parallel to the print plane normal have low damage, as these are dimensioned via the
low fatigue strength, contrary to the members closer to orthogonal to the print plane normal.

The optimized volumes of the fatigue models are presented in Table 5.4. The introduction of
anisotropic fatigue plainly means more efficient use of material, though only as far as allowed
by the uncertainties of material data.

No anisotropy 0.3405
Anisotropy, θp = 1

2 π 0.2736
Anisotropy, θp = 0.3160 0.2433
ANSYS model 0.2450

Table 5.4. Final volume of the fatigue formulations.
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Figure 5.20. von Mises stress [MPa] (left) and first principal stress [MPa] (right), for anisotropic solution
with variable print plane normal (top) and equivalent ANSYS model with body fitted mesh
(bottom).

Figure 5.21. Damage computed using signed von Mises and low fatigue strength σf ‖ = 692 MPa.

78



5.6. 3D Optimization with Orientation of Print Plane Aalborg University

5.6 3D Optimization with Orientation of Print Plane

To investigate the 3D implementation a modified L-beam problem is solved. Using the existing
definition of the problem will result in the optimized orientation of print plane being placed
exactly in the x-y plane. The problem is modified by adding a force component in the negative
z-direction, see Figure 5.22, making the optimized orientation of the print plane non-trivial.
Note the dimensions have also been changed, mainly to increase geometric resistance in the
z-direction.
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Figure 5.22. The 3D problem. Domain extension adds 0.05 [mm] of thickness around the structure.

For the orientation variables, a starting guess of θx = θy = −π/10 is chosen.

The FE problem is discretized with 35 056 elements, 24 002 of them having design variables.
The mesh is fully structured with element lengths of 0.025m. A load of 1 350 000 N is applied
in both x and z, distributed over 18 nodes along z. Equivalent damage is computed using the
maximum principal criterion, see equations (3.36) and (3.43).

A 3x3x3 density filter using R = 0.045 m is used to regularize the TO problem. The robust
method is applied with the thresholds [ηe, ηi, ηd] = [0.75, 0.5, 0.25]. Continuation is used for the
discreteness variable β, starting at 1, and then at 400 iterations it doubles for each 150 iteration,
ending with βlim = 16 at 850 iterations. q is kept constant at 0.75 for the first 100 iterations,
then decreased to 0.5. Damage scaling is done using the P-mean scaling method with constant
and equal weighting.

The resulting eroded, intermediate and dilated designs are illustrated in Figure 5.23. With this
new load case, the position of the rounding changes location to the corner of the structure
(the closest corner of the left view of Figure 5.23). A quite significant reduction in volume is
achieved for every design due to the geometry being hollow. This very well illustrates the
potential of TO for these three-dimensional designs, where placement of material is not at
all intuitive. Using the robust method with threshold filtering, highly discrete designs are
achieved as reflected by the measure of nondiscreteness.
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Figure 5.23. Resulting 3D design. The designs are illustrated using a density cutoff of ρ ≥ 0.5. Percentage
reduction is wrt. the starting design used in the optimization i.e. where densities are ρ = 0.5.

The convergence of the problem is illustrated in Figure 5.24. In general the problem is sensitive,
having more oscillatory behavior as a consequence of the continuation approach, yet still able
to return to a feasible design in reasonable time and volume is stable when the iteration limit
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is reached. It is observed that changing q at 100 iterations may have been too early, as the
objective function still had a steep slope of descent, and that a better minimum may have been
achieved by delaying the decrease in q. Good penalization is however achieved by using this
approach, indicated by similar topologies of the designs, see Figure 5.23.

The use of the relatively high (for problems involving stress) discreteness factor is arguably
erroneous as the stress singularities become too dominant in the stress measure. Observing the
degree of oscillation at the continuation points in the convergence curve of Figure 5.24, the
most substantial increase in discreteness seems to occur when β is increased to 4. This is related
to the effect of projection lessening as β is increased and not so much the stress singularities.
Recall Figure 2.12, where projections are illustrated. Change in projection intensity is largest
around β = 5 and so higher values of β have diminishing effects on the projected values.
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Figure 5.24. Convergence curve with highlighted points of continuation. Note, the constraint limit
is defined as 1 for this problem, and that the objective function is measured in absolute
volume.

The damage distributions of the designs are illustrated in Figure 5.25. Similar to the two-
dimensional examples with the robust method, high damage is distributed to the entire
geometry of the eroded design, whereas for the intermediate and dilated designs, the general
damage level is significantly less. For this example, it is further observed that high damage is
concentrated in a single element in both the intermediate and dilated designs. This is caused
by the threshold filtering around these elements promoting the stress singularity problem.
Because the relaxed version of the threshold filter is applied, the densities of each design
are projected differently. Inspecting the element densities surrounding the highly damaged
element of both intermediate and dilated designs reveal that while the entire density gradient
is essentially projected to void in the intermediate design, some, albeit not much, intermediate
density is still present in the dilated design, smoothing the sharp edge of the element. As a
result, the local damage is higher in the intermediate design.

In Figure 5.24, the damage constraints for intermediate and dilated designs are approximately
equal until β = 16, where they clearly separate. The dilated design contains more volume
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Figure 5.25. From left to right are the eroded, intermediate and dilated damage distributions. Highest
damage of each design is 0.9999, 0.9011 and 0.3875 respectively.

and is therefore expected to be the geometrically most fatigue resistant design throughout the
entire optimization. There are two contributions as to why this is not the case; the interference
of the stress singularities already discussed, and the nonlinear local nature of the problem.
The increase in thickness causes the radius of the rounding to be smaller, which increases the
geometric stress concentration, and the damage may as a consequence be larger, locally, in
the dilated design in the earlier stages of the optimization. When the design becomes highly
discretized, the singularities instead become dominant causing the separation.

The highly nonlinear dependence of stress is apparent when comparing the damage distribution
of Figure 5.25 with the principal stress distributions of Figure 5.26. Note that like the damage,
the highest element maximum principal stress is concentrated in the same single distinct
element of Figure 5.25.
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Figure 5.26. Stress distribution for the eroded (left), intermediate (middle) and dilated (right) designs.
Maximum element damage is 237 [MPa], 233 [MPa] and 206 [MPa] respectively.

As only the tensile damages are accounted for in the maximum principal criterion, the damage
is low in the lower part of the structure. This is observed in Figure 5.27, where the damage
distribution of the eroded design is plotted from different views. The damage distribution
attained corresponds to that achieved in the two-dimensional examples, see Figure 5.19. No
information about compressive stresses is included in the criterion and these should therefore
be contained by an accompanying stress constraint for realizing the design. This is not unique
to the criterion, and will likewise be needed for e.g. the Sines criterion [Stephens et al., 2001].

The resulting optimized orientation of the print plane is found (in radians) as [θx, θy] = [0.3313,
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Figure 5.27. Damage distribution of the eroded design.

0.2935]. Its placement is illustrated on the geometry in Figure 5.28.

Figure 5.28. Illustration of the optimized orientation of the AM print plane in three-dimensional space.

Bodyfit Mesh Verification

Verification is performed to investigate the structural integrity of the TO design by performing
a high quality FE analysis using the commercial program ANSYS. The verification takes offset
in the intermediate design as this is the blueprint design. Focus will mainly be on comparing
the stress distributions as the anisotropic fatigue model used is not implemented in commercial
programs.

To facilitate the verification, consider the maximum principal stress plots in Figure 5.29, which
are used for comparison.

As was done for the plane stress example, the geometry is interpolated (using the density
interpolation described in Appendix A) and a mesh is fitted to the body in ANSYS. Only the
intermediate density design is presented in these examples. 126 927 quadratic tetrahedral
elements are used to model the geometry, with an average aspect ratio of 2.8785. No smoothing
has been performed on the interpolated geometry to illustrate the quality of the extracted
geometry.

Illustrations of the stress state in several orientations are presented in Figures 5.30 and 5.31 on
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Figure 5.29. von Mises, maximum principal stress and minimum principal stress distributions in the
intermediate design.

the following pages. Distributions are comparable to the TO model with somewhat larger stress
level near concentrations. In particular note the load introduction area with high σ1 caused by
the increased FE discreteness enhancing the significance of boundary condition singularities.
The design however shows a general tendency to distribute the local stress concentrations
similar to the TO model. This indicates that the interpolated design is able to capture the stress
of the TO model fairly well, and the difference between the two models is attributed to the
comparatively poorly discretized FE model used in the TO and the difference in element order.
Interestingly, the stress concentrations seem to occur as a result of the stress singularities of the
TO model (see the left von Mises plot), locally affecting the density distribution. These local
stresses may be alleviated by removing the effect of stress singularities from the optimization.
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Figure 5.30. Stress distribution as computed in ANSYS. Note that values of the color scales differ
between stress representations.
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Figure 5.31. Stress distribution as computed in ANSYS, using a cross section in the x-y plane. Note that
values of the color scales differ between stress representations.
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5.7 "Finely" discretized 3D Example with Discussion

Another 3D problem is solved with results illustrating some important aspects regarding the
interaction of the different methods used, and in particular the effect on post optimization
smoothing.

The geometrical problem solved is that of Figure 5.22, however some changes have been made
to the FE and TO formulations. For the FE problem, the amount of elements has been increased
to 108 099, of which 73 169 have design variables, and the load has been decreased to 1 150 000,
mainly to reduce thickness of the generated members (for reasons that will become evident in
the following discussion). The mesh is still fully structured. The TO problem is formulated
using the threshold filter of Equation (2.14). The same filter radius as the one used in the
previous 3D example is reused here, such that the same width of the density filtered members
should be guaranteed. The limit on the discreteness parameter is reduced to βlim = 8 due to
observations of the singularities influencing the previous result. Also, continuation on the
P-mean scaling is applied for this example, see Table 5.5 for the entire continuation strategy.
The resulting density, maximum principal stress and damage of the TO geometry is visualized
in Figure 5.32.

Iteration 0 100 200 300 400 500 550 600 650 700 800 1000

β 1 2 4 8
c1 1 0.81 0.62 0.43 0.24 0.05
c2 0 0.19 0.38 0.57 0.76 0.95

Table 5.5. Continuation of parameters used in the 3D example. The P-mean constants are not pushed to
the fully linear measure in the end, due to the high instability it imposes on the optimization.

5.7.1 Robustness of Surface Interpolation

The TO geometry is smoothed using the interpolation method of Appendix A. Similar
conclusions can be drawn when performing verification of this smoothed design in ANSYS
in respect to the stress and damage measures as the smoothed design of Section 5.6. This is
however not the case for the smoothing itself. Due to the use of threshold filtering without
the robust method, no minimum length scale is introduced and as such, the void and solid
phases may become impossibly thin. While the surface interpolation generally performs well,
it has one significant shortcoming. Due to how surfaces are generated, specifically using a
single intra-element surface, features with a smallest dimension close to the element size are
very difficult to capture accurately. In these cases, the surface interpolation may fail in one of
two ways: either the geometry is entirely removed or non-manifold geometry is generated,
illustrated in Figure 5.33.

The non-mainfold geometry occurs when more than two interpolated surfaces meet at an edge.
As the filter radius is typically significantly larger than a single element, this failure mainly
occurs in areas of exclusively intermediate density.
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Figure 5.32. Results for the 3D example: density (top), damage distribution (mid) and maximum
principal stress distribution (bottom).

The non-mainfold geometry can subsequently be repaired by something like a shrink wrap
operation, where a new surface is generated from the most prominent features. This does
however not affect the geometry that has been removed, which is only fixed by enforcing
minimum length scale. This further increases the desire to have a clear definition of minimum
length.

These problems are however consistent for other solid body extractions - a more conservative
treatment of intermediate densities may instead assign more thickness, both in problematic
areas, but also elsewhere, removing the design from the determined optimum. Further, in this
specific example, the thin geometry arises due to improper handling of compressive stresses in
the TO formulation and no defined minimum length scale, allowing extremely thin geometry.
In general, thin geometry should be avoided already during optimization as it introduces
issues not controlled for, such as buckling or increased effects of microstructure and surface
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Figure 5.33. Interpolation of surface may fail when insufficient density is present, leading to removed or
invalid geometry.

quality.

Returning to the example in Figure 5.30 and considering areas with adequate thickness in
Figure 5.33, it is observed that the smoothing work quite well. It is also noteworthy that
the despite the relatively crude discretization of the models that application of smoothing
accomplish what is presently done by using mega-voxel discretization or higher, i.e. achieve
smooth representation of the material boundaries.
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6 | Conclusion
This work has detailed modeling and implementational aspects regarding fatigue topology
optimization (TO) of additive manufacturing (AM) metals. The approach is based on using the
density-based method with Solid Isotropic Material with Penalization (SIMP) to interpolate
stiffness properties of finite element (FE) discretized structures. Many regularization techniques
have been presented and their impacts and shortcomings when applied to the model have
been highlighted and discussed continuously throughout the report. The linear density
filter is adopted as baseline and extensions in the form of projection filters are presented.
These projections filters are also used in formulating the problem in a robust setting, which
incorporates manufacturing uncertainties and imposes a minimum length scale on the structure.
Boundary effects and their relation to filtering have until recently been consistently disregarded
in literature. In this work the method of domain extension is used ensure consistency near
these boundaries.

Including stress in TO has historically been a difficult challenge to overcome, due to complex
issues inherent to the formulation, namely their local definition and the appearance of singular
optima. To overcome these problems, the local stress is aggregated to a global measure
using the P-norm scalarization function with adaptive constraint scaling and by introducing
relaxation into the formulation respectively. Treatment of stress singularities imposed by jagged
FE edges in the case of achieving highly discrete designs is also discussed.

A high cycle fatigue (HCF) stress-based fatigue model for metal materials has been presented
with the purpose of determining the damage caused by an arbitrary load condition. Equivalent
stress criteria are used to define a stress measure of the multiaxial stress state that is comparable
to the material’s fatigue strength at a given point in its load history described by the specific
SN-curve. The HCF part of the SN-curve is approximated by Basquin’s expression and the
damage of all load combinations are accumulated using Palmgren-Miner’s rule. Dealing with
fatigue in a TO context is difficult as the function displays a highly unstable behavior due to
the nonlinearity of its formulation. To solve this, the damage is scaled to reduce the degree
of nonlinearity. The implications of this scaling approach is discussed and a new method for
scaling, the P-mean scaling method, is proposed to more accurately characterize the actual
fatigue damage measure. As the purpose of this work is to develop a model for AM fatigue
optimization, a thorough literature study of the mechanical properties regarding fatigue of
AM metals has been done. Based on this, a criterion is developed for including the anisotropy
unavoidable with current AM methods in relation to orientation of the component wrt. a print
plane.

It is desired to be able to solve the problem using first order sensitivity-based optimization
methods. All expressions derived are therefore continuous such that analytical sensitivities can
be derived. The sensitivities are derived using the adjoint design sensitivity analysis (DSA)
method. The problems are solved using the Method of Moving Asymptotes (MMA).
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Implementation has been discussed, herein the settings of the problems and how to make the
problems easier to solve. Continuation is presented as a method to make arriving at a solution
more tractable. Focus of the implementation is on investigating results generated by the
developed anisotropic AM fatigue and to verify it. Both two- and three-dimensional problems
are solved successfully. The P-mean scaling method successfully distributes the damage in the
design as compared to previous methods. It may be combined with a continuation approach
to also achieve good convergence characteristics.

The stress distributions of the TO models are compared to that of smoothed models in a
commercial FE program, which shows good agreement on the distribution of stress in each. A
full framework for performing this smoothing is also presented as part of this work, general
for any mesh of linear elements. It is observed, that the smoothing interpolation struggles
with very thin geometry, where it may create non-manifolds. This observation also enforces
the importance of being able to properly define the optimized result in terms of introducing a
minimum length scale.
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This chapter will discuss subjects relevant for further work. Emphasis is placed on approaches and
methods to improve accuracy of the models, computational efficiency and generality of the methods
implemented. Topics discussed are the FE model, TO routines, the fatigue model and AM related aspects.

7.1 Finite Element Model

The FE procedures implemented in this work has consistently been kept as simple as possible.
Focus has been placed on TO and on the development of the anisotropic fatigue criterion.
Modeling accurate to real-world physics is always essential and improving the FE model is
desirable, particularly as TO is increasingly used in commercial design synthesis.

7.1.1 Improved Element Formulation

Linear elements are prone to exhibit shear locking behavior. Shear locking occurs when an
element is not able to correctly model bending deformation. Instead, the element displays
parasitic shear strains, which absorbs strain energy resulting in a significant underestimation
of displacements [Belytschko et al., 2014]. The problem disappears as the solution converges,
albeit slowly as no bending can be imposed on the individual elements. All presented examples
are subject to bending deformation and a finely discretized mesh is necessary to accurately
capture the deformation state, increasing computational effort.

Multiple solutions exist for the problem, e.g. reduced stiffness matrix integration with hourglass
stabilization, B-bar method, QM6 element formulation or enhanced assumed strain, see Cook
et al. [2002], Belytschko et al. [2014] and de Borst et al. [2012]. All these routines can be
implemented as extensions of the existing element procedures as long as k = Ek0 which is
required for SIMP.

Introduction of improved elements will remove the checkerboard problem allowing for
investigation of other methods for regularization that may be more efficient than the filtering
methods applied, e.g. by application of geometric constraints (discussed in Subsection 7.2.3) to
govern minimum member size.

7.1.2 Density Boundary and Meshing

The approaches to mesh generation considered in this work are structured pixel/voxel-based
and unstructured body-fitted. Most popular in TO is the former as the formulation is convenient
for various TO procedures, especially filter calculation. Solely axis-parallel boundaries of the
FE-domain are however poor approximations of most physical systems, as they are represented
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by jagged edges containing re-entrant corners, which causes artificial stress concentrations
near the FE-boundaries. This is especially problematic as the stress in this area is often the
cause of fatigue failure. Although a body-fitted mesh more accurately captures a given surface
geometry, it will be subject to the same problem if used in a TO context and the problem may
be more pronounced, since the mesh is likely to contain distorted elements and very sharp
corners between elements.

The Interior Value Extrapolation (IVE) method by Svärd [2015b] is able to remedy this problem
by extrapolation of stress from interior elements which are not exposed to singularities.
Elements near the boundaries are identified by generating subsets of the mesh for each element.
The position of the center of gravity is then computed for the subset, and a vector is made from
the given element to the center of gravity. If the element is positioned at the boundary, the
vector should point inward, approximately normal to the boundary. Boundary elements have
then been identified and extrapolation from elements along the inward vector is performed.

Implementation of IVE allows for generation of highly discrete designs without being impaired
by the artificial singularities, however the problem of poor representation of the actual geometry
is not resolved. Here, an extension of FEM termed CutFEM [Burman et al., 2015] presents
an interesting approach that may remove the discussed problems entirely. CutFEM is based
on generating a background of structured mesh and then slicing the mesh at the geometry
boundaries, forming new elements at the boundaries to produce a smooth FE surfaces, see
Figure 7.1. CutFEM also possess advantages over traditional meshing algorithms that try to
fit the entire geometry with elements as this often results in highly distorted elements for
more coarse meshes. This can result in an inefficient mesh-layout that dampens computational
efficiency.

F F F

Body-fitting CutFEM

Figure 7.1. Conceptual mesh generation by body-fitting and CutFEM.

Recently, work has been published on applying CutFEM in a TO context, see e.g. Burman et al.
[2019]. Also in Andreasen et al. [2020] a CutFEM inspired approach is taken to discretization
and parameterization. In this work it is however emphasized that the method has significant
drawbacks in relation to robustness, computational efficiency and ability to achieve the same
quality of results as using classical FE density-based TO. They suggest the CutFEM approach
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as a postprocessing method, which can be applied on an optimized solution achieved from
the regular density-based approach. Nevertheless it is believed by the authors that integration
of the CutFEM approach is one of the most interesting subjects for further work as it is able
to resolve the error of jagged geometry and poor boundary definition, which is a highly
problematic subject in stress and fatigue problems. Further, being able to model the mesh of
a general structure as a pixel- or voxel-based element mesh will increase mesh quality and
reduce computational time needed to solve the problem.

7.2 Topology Optimization

Even though many procedures have been implemented for the TO, there are clear candidates
for improving the implemented methods and designs achieved. Computational efficiency of
TO should always be maximized, as it allows for larger and more accurate model solutions in
reasonable time and inclusion of more accurate and costly criteria directly in the optimization
to generate sufficient and close-to manufacturing ready designs.

7.2.1 Continuation of The Discreteness Parameter

To speed up convergence, it is of much interest to avoid continuation approaches, in particular
of the discreteness variable β used in the projection filters. The objective of the projection filters
is to make the designs more discrete and they should therefore not affect the topology of the
final design.

A method for removing the continuation by tightly restricting the MMA asymptotes, proposed
by Guest et al. [2011], was implemented and tested in this work. Because of the immediate
and "hard" application of projection, all physical densities are forced to either fully solid or
void essentially changing how the optimization problem is solved. The conclusion of the
implementation (Subsection 5.1.2) is that using this approach likely results in a worse final
design as compared to when using continuation.

A small adjustment to the approach of the method, that will emphasize the purpose of the
projection filter, is to allow generation of an initial topology using only the linear density filter
for regularization before the immediate application of the threshold filter and adjustment of
asymptotes. This could be performed after sufficient penalization of intermediate densities
is achieved. It is unclear whether this change will result in faster convergence, but is an
interesting subject for further studies.

7.2.2 Filter Formulation as a Partial Differential Equation

Computation of the density filter in its conventional formulation, Equation (2.8), is tedious
especially for larger models. For efficient computation, program parallelization should be
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performed, but is problematic and inconvenient with the conventional formulation [Lazarov
and Sigmund, 2011]. Further, much memory must be allocated to store filter information.

To improve the formulation, the filter may be solved implicitly as a solution to the Helmholtz
PDE. The method is introduced for linear density filtering in Lazarov and Sigmund [2011]
and for including Heaviside projection filters in Kawamoto et al. [2011]. In a recent paper
[Wallin et al., 2020] an alternative formulation for the PDE-filter is implemented which ensures
consistency at the boundaries, eliminating the need for the domain extension approach.

7.2.3 Geometric Constraints

Using the geometric constraints by Zhou et al. [2015] for defining a minimum length scale
will be highly beneficial in terms of computational efficiency. The present implementation
is only able to ensure a minimum length scale through the robust TO approach, which is
computationally expensive due to the additional two FE problems required. It is not entirely
clear how robust the geometric constraints are in the general case, as artificial relaxation
variables are introduced and must be tuned. Further studies and implementation would clarify
this and what direction should be pursued in relation to defining a minimum length scale.

7.2.4 Uncertainty in Loading

Optimized structures are typically made with a specific load in mind and may as such be
extremely sensitive to changes in the load case. Robustness towards this uncertainty is
important if the design is to be used in realistic conditions and thus a control within the
optimization procedures is advantageous. One approach is to solve the TO problem for several
loads. This however has the same issues as non-proportional fatigue, where a sufficiently large
set of loads leads to low computational efficiency.

In Holmberg et al. [2017] a game theory approach is presented as an alternative, using a
so-called non-cooperative game. This involves finding an equilibrium between two or more
competing objective functions, e.g. minimizing volume by choosing densities and maximizing
volume by choosing worst case load. Once an equilibrium has been found, it is ensured that a
change to the load (within the chosen load domain) does not invalidate the structure, since it is
optimized wrt. the worst case.

7.2.5 Maximum Length Scale

This work presents a method for imposing a minimum length scale through the robust
approach to TO (and suggests investigating geometric constraints for explicit definition), but a
maximum length scale is not discussed. A maximum length scale may be relevant when using
prefabricated substructures, e.g. beams, where an upper limit on length is desired. Nonetheless,
it provides the designer with further control of the features in the final design.
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Two approaches for introducing the maximum length scale are presented in Lazarov and
Wang [2017]. The latter approach presented is based on morphological operators - which are
also used in the robust approach. Using this method, the maximum length scale is imposed
explicitly similarly to the geometric constraints. Results of a compliance optimization of the
MBB-beam problem from the paper is shown in Figure 7.2.

Figure 7.2. Maximum and minimum length scale imposed on both solid and void (left) and on solid
only (right). Figure from Lazarov and Wang [2017].

7.3 Fatigue Model

The present model employs rather simple fatigue modeling, which may be adequate in some
cases, but if better accuracy in the estimations is desired, most of the expressions used in
fatigue computation should be changed. In the following, the areas considered most significant
are discussed.

7.3.1 Two-stage Fatigue Model

The fatigue model in this work is based on the stress-life approach for HCF. If the reversals till
failure is placed in the LCF-regime, a strain-life approach is more appropriate and is in fact
applicable for both LCF and HCF regions. This is therefore a method better suited for general
cases.

An important benefit of strain-life is easier coupling to fracture mechanical fatigue models such
as Linear Elastic Fracture Mechanical (LEFM) models or Elasto-Plastic Fracture Mechanical
(EPFM) models [Stephens et al., 2001]. This is because a plastic zone is generated around a
crack tip and the strain-life method is better at characterizing plastic behavior compared to the
stress-life method. Introducing fracture mechanical methods in the fatigue formulation for AM
materials is desirable due to the presence of defects that propagate similar to a mode I crack.

A starting point for implementation could be introducing LEFM to the formulation. However,
care must be taken in regards to AM materials as LEFM is only valid for long cracks, i.e.
cracks longer than 1-2 mm. For small cracks, LEFM will yield nonconservative estimations
of the fatigue life. Fatemi et al. [2020] shows that some defects of AM materials may belong
in the long cracks category for as-built specimens, although only very few. The size of the
AM defects depends on the material considered and its ductility (materials with high ductility
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will typically not contain long cracks after manufacturing, as the material will yield locally
instead). Furthermore, post-treatments such as HIP may remove large defects. This indicates
that immediate application of LEFM to quantify fatigue life is erroneous for AM materials,
but once a long crack is formed its application becomes desirable. Because AM materials skip
the crack initiation stage the formation of long cracks is expected to happen earlier than in
a wrought counterpart. Experimental evidence is however needed to gain information about
when this occurs for each given component.

Another limitation of LEFM is that it is not viable for treating cracks with large crack tip plastic
zones. Here, EPFM methods must be applied instead. Examples of such are the J-integral [Rice,
1968] or cohesive zone modeling [Alfano and Crisfield, 2001].

7.3.2 Microstructural Modeling

In Yadollahi and Shamsaei [2017] it is proposed to use microstructural sensitive mechanical
models in determining the fatigue behavior. Microstructural models will introduce robustness
in the design as the fatigue behavior of the given AM manufactured component is different as
a result of differences in microstructure. Presently developed models requires a substantial
amount of experimental work as they need to be calibrated for each case and this should be
considered carefully before pursuing this direction.

7.3.3 Multi-axial Fatigue Criteria

Excluding the anisotropic criterion, this work has applied only a common and simple criterion
for characterization of the multi-axial stress state: the signed von Mises criterion. The signed
von Mises criterion is inadequate in evaluating mean stress effects due to the instantaneous
signing of the mean stress in the expression [Papuga, 2012]. Furthermore using the signed
von Mises also requires a mean stress correction method, which also affect the accuracy of the
measure. The two mean stress corrections implemented in this work, modified Goodman and
Morrow corrections, are widely used, but also conservative. An alternative correction method
is the Smith-Watson-Topper, which shows much more promise in predicting mean stress effects
[Papuga et al., 2018].

More accurate criteria have been developed and implementation of these for further work is
therefore almost a given. A multi-axial criterion is either defined as a continuous expression
or as a critical plane method and the choice of method should be chosen based not only on
accuracy, but also on computational efficiency.

Continuous Expressions

A closely-related criterion to the well-known Sines criterion, the Crossland criterion, is an
alternative. The criterion uses the maximum hydrostatic stress instead of the mean hydrostatic
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stress to incorporate mean stress effects. The criterion shows good agreement with experimental
data but only applies to proportional loading and if extension to nonproportional loading is
desired, other criteria should be investigated [Papuga, 2011].

Critical Plane Methods

Critical Plane Methods (CPM) are considered the most accurate approaches to quantifying
multi-axial fatigue for both proportional and nonpropotional loading [Papuga, 2011]. Using
CPM in conjunction with TO has not been investigated in this work as CPM are notorious for
being computationally expensive, as they entail searching for the critical plane of loading in
each element of the FE model.

To make applicability of CPM more realistic, much effort has to be put into making the
implementation as computationally efficient as possible by e.g. vectorization and parallelization.
One method to reduce the computational burden of CPM is proposed by Svärd [2015a], which
entails finding the region of interest and then locally refining this region. The method is
derived for the Findley criterion, but the concepts of the method applies to any CPM criterion.

Another problem with using CPM in an optimization context is the fact that it does not
use continuous expressions. A semi-analytic DSA approach must therefore be adopted for
gradient computation, where finite difference is used for the CPM gradient, in order to use
sensitivity-based methods. Whether it is possible to implement these and solve the problem in
a reasonable time frame is questionable and further research would clarify this.

7.4 Additive Manufacturing Aspects

For metal AM an important subject is generation of support structure. This has not been
accounted for in the present work, but is a prudent and important topic for future work.
Further, experimental studies are essential to validate the proposed methods.

7.4.1 Support Structure Design

In general, three approaches to generating support structure may be adopted. One is to
intuitively build support in locations with overhang. This is not always a good solution,
especially when using optimization to generate designs, as the material is sensitive to small
changes in thermal history. Unnecessary material also increases build time and must be
removed from the finished product, increasing post-processing costs. It is therefore a prime
candidate for optimization. An "optimization" approach is presented in Calignano [2014],
however this method is based on altering the design manually based on experimental data and
should rather be termed an intuitive improvement approach.
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A promising method is the overhang constraint by Langelaar [2016]. It entails enforcing a
constraint on the amount of overhang allowed in the structure, such that support material is
unnecessary. Excluding support entirely however severely limits the design space. In Langelaar
[2019] a method for simultaneous optimization of component and support is presented. Which
method to use will largely depend on the component and influence of overhanging details.

7.4.2 Experimental Studies

This project has been centered on developing computational models for optimizing metal
structures for manufacturing using AM. No experimental validation of AM material modeling
was performed. Due to how the AM process changes the properties for each material and
each geometry, it is desired to test different designs and possibly different materials of varying
ductility. In particular the complex relationship between geometry, thermal history and
eventual local material properties should be investigated, as uniaxial test specimens do not
necessarily capture all effects.

Testing the effect of the optimized print plane orientation is also highly relevant. Both
destructive tests to investigate the fatigue strength but also microscopy tests to validate if the
alignment of defects is as expected and provide the strength predicted. Further, the variation
in fatigue strength between vertical and horizontal printed components is assumed to follow a
cosinusoidal function, which also has to be validated.
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A | Post Optimization Density In-
terpolation

This appendix covers the reasoning for developing a new method for post-processing geometry and
describes the technicalities of interpolating density in a finite element context.

The use of element densities to describe geometry in the optimization setting means that
the geometry cannot be directly exported as a physically meaningful model. To allow for
subsequent post-processing and analysis in other programs, a full density model must somehow
be extracted. In two dimensions this may be done by interpolating an isoline for some density
level, but the problem becomes less tractable in three dimensions.

The simplest method is discrete threshold filtering, selecting some density cutoff value and
removing all elements with densities below, see Figure A.1. This method however creates a
staircase-effect, where lines not parallel to element sides are poorly approximated, leading to
many stress concentrations.

To alleviate the problem of stress concentrations, a smoothing operation may be performed,
see Figure A.2. The filter used is the standard surface smoothing filter in ParaView.

Figure A.1. Elements filtered for ρ ≥ 0.5. Figure A.2. Smoothed geometry of Figure A.1.

This introduces a number of issues; the most obvious being that no information about boundary
conditions is preserved, i.e. areas with fixture and load application are smoothed and lose
definition. Similarly, all information about density gradient is lost in the threshold filter and the
smoothed geometry is not guaranteed to follow the specified density cutoff - this is exemplified
by consecutive smoothing operations changing the thickness of the geometry. In other words,
filtering is not volume-conservative and minimum length scale may be violated for aggressive
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smoothing. A separate issue of threshold filtering and smoothing is non-manifold or zero-
thickness geometry leading to poorly smoothed geometry. This is however related to the fact
that the surface is not re-meshed during smoothing, which would remove this type of artefact.

These issues can be avoided entirely by smoothly interpolating the density field rather than
using a threshold filter. On Figure A.3 an interpolated geometry is shown. The interpolation
makes use of the density gradient to create smooth surfaces and the benefit is seen by the
overlaid geometries - boundary conditions are preserved and more material is present for
concave geometry.

Figure A.3. Left: interpolated surface geometry for ρ = 0.5. Right: detail of interpolated surface (red)
overlayed on the smoothed surface (blue).

The example geometry is based on a relatively finely discretized structured mesh, which is the
best case scenario for smoothing operations. If a coarse non-structured mesh is used instead,
elements with large distortions are likely to reduce the quality of the smoothed surface - this
again is largely avoided by interpolating the gradient.

The smooth geometry interpolation scheme is described in the following.

A.1 Method Overview

The interpolation scheme revolves around finding the surface of the entire structure on a
per-element basis and is split into three steps (elaborated in the next sections):

1. Global operations
Data of neighboring elements is collected, such that computations with a single element
also considers surrounding element data - specifically this is finding nodal density values
and element faces that lie on the outside of the design domain (these would be the
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outermost faces visible, including domain extension).
2. Element interpolation

Using the above data, the density is interpolated and points are found which will
eventually describe the surface. A density gradient vector is also determined.

3. Surface description
Using the density gradient as an approximate surface normal, the points are sorted and
used to generate a surface.

The end result of this procedure is an .STL file, which is a common format and easily
imported in commercial programs. An illustrated overview of element interpolation and
surface description is presented in Figure A.12 at the end of this appendix.

A.2 Global Operations

The interpolation is done on a per-element basis, simplifying the required computations,
although some information must be found on a global scale first, namely nodal density and
outer element faces. All elements are investigated, including those generated for domain
extension.

Nodal density is found by simple nodal averaging:

ρ
(n)
n =

1
N(n) ∑

e∈ S(n)

ρ(e) (A.1)

where ρ
(n)
n and ρ(e) are nodal and element densities, respectively, N(n) is the total number of

elements connected to node n and S(n) is the set of elements connected to the node. Note that
no calculations for the density interpolation use element density. More accurate schemes can
be implemented if higher accuracy is required, particularly in the case of coarse meshing.

Outer faces, see Figure A.4, are found by comparison of global node numbers - if faces of
different elements share all nodes, then neither is an outer face. In explicit terms, this is done by
a series of loops, see the pseudo code of Algorithm 2. This is a rather cumbersome computation
as it involves N2

elem comparisons. It is however constant for a given mesh and the data can be
reused for subsequent interpolations.
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Figure A.4. Outer faces of the design domain, including domain extension. This is the domain used to
generate designs in Figures A.1, A.2, and A.3.

Algorithm 2: Determination of outer faces.
Data: Nodal numbers n, element numbers e, local node numbers belonging to face f
Result: Boolean matrix O containing state of all element faces, with True for outer faces,

False for inner.
Initialization;
O = False;
for e1 ← 1 to Nelem do

for e2 ← 1 to Nelem do
if e1 6= e2 then

for f ∈ e1 do
if n( f ) /∈ n(e2) then

O(e1, f ) = True
end if

end for
end if

end for
end for

A.3 Element Interpolation

The isoparametric finite element expressions in this section are inspired by Cook et al. [2002].

Once nodal densities and outer element faces are found, individual elements are considered.
Three things must be found to determine a surface:

• points vi along element edges
• a center point v0

• an approximate normal n to the surface, pointing away from the inferred solid

A surface constructed from these is illustrated in Figure A.5.
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ξ

η

ζ

v2

v1

v4

v3

v0

n

Figure A.5. Information required to describe a surface: center point v0, corner points vi, and a surface
normal n.

The element is considered in its natural coordinates, rather than global Cartesian coordinates,
such that a point v is given by:

v =
[
ξ η ζ

]
where − 1 ≤ {ξ, η, ζ} ≤ 1 (A.2)

By doing this, elements can be considered as voxels and then generalized to an arbitrary
distortion - or even collapsed into a tetrahedral element, if some additional bookkeeping is
done. This means that the method is general for any linear solid element mesh.

The interpolated surface is found by locating points corresponding to a cutoff density value. To
simplify consistency with neighboring elements, corner points vi are found exclusively along
the edges of an element, such that only the nodal densities which are shared between elements
are needed. The points that do not coincide with an element node are found by interpolating
along the element edge:

vi =
[

ρnb−ρcut
ρnb−ρna

ρcut−ρna
ρnb−ρna

] [ca

cb

]
, ρna < ρcut < ρnb (A.3)

where ρna and ρnb are nodal densities and ca and cb are nodal coordinates, with subscripts
a and b indicating the node at either end of the edge. The center point is found as a mean
coordinate of vi:

v0 =
1

Nv

Nv

∑
i=1

vi (A.4)

where Nv is the number of corner points.

The entire element is not considered at once, but as element faces first, followed by the element
interior. Program-wise, this means considering 7 potential surfaces: 6 element faces and an
interior intersection. By treating the element faces separately, it is possible to describe flat
surfaces as required near boundary conditions, one of the things lost by filtering. This also
involves differences in computation of vi and n, elaborated in the following.

A.3.1 Outer Faces

A surface must be generated on the element face, if two conditions are fulfilled: it is an outer
face and at least one node has a nodal density ρ

(n)
n higher than or equal to a chosen cutoff

value ρcut. The number of nodes where ρ
(n)
n ≥ ρcut decides how the surface is made. If all
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v1
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Figure A.6. An element where an outer face contains node numbers {3; 4; 7; 8}. If all relevant nodal
densities are above a cutoff, a full surface is generated (left). If only some are above cutoff, a
partial surface is generated (right). Blue crosses indicate corners of the surface, which are
the points that must determined. The superscript sign indicates whether the node density is
above the cutoff (+) or below (-).

nodes making up the given face are above the cutoff, the full face is the surface - otherwise, it
is a partial surface, see Figure A.6.

Given that the isoparametric element is axis parallel in natural coordinates, the normal vector
can be described as a positive or negative basis vector, e.g. for the surface in Figure A.6 the
normal would be:

n = η̂ =
[
0 1 0

]T
(A.5)

where η̂ is a coordinate basis vector.

A.3.2 Element Interior

The element interior is then considered. The element is intersected if nodal densities are to
both sides of the cutoff value, i.e. if

ρcut

{
< ρ

(n1)
n

> ρ
(n2)
n

, n1 ∪ n2 = n (A.6)

where n is the set of node numbers. Again, corner points are only found on element edges
according to Equation (A.3), however they are not restricted to a single element face, see Figure
A.7.

The approximate normal is taken as the negative density gradient, such that the normal points
away from the solid, as required:

n = −∇ρ = −B ρn (A.7)
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Figure A.7. Isoparametric element intersection.

where ∇ρ is the linear gradient vector, B is the first derivative of shape functions evaluated at
the element center, and ρn is a vector containing all nodal densities.

Improvement of Center Point

If using the mean coordinate is not accurate enough for the center point, the density gradient
can be used to improve the evaluation:

v∗0 = v0 + d ∇ρ (A.8)

where v∗0 is the improved center point and d is a step along the gradient vector, such that
density coincides with the cutoff. To find d, the intercept between the cutoff density and a
linear function ρ(d) is considered (see also Figure A.8):

ρcut = ρ(d) (A.9)

The function is expressed as:
ρ(d) = ρv0 + d |∇ρ| (A.10)

where ρv0 is the density evaluated at v0 via shape functions Nv0 :

ρv0 = Nv0 ρnodes where Nv0 =
1
8

[
(1± v0, ξ)(1± v0, η)(1± v0, ζ) · · ·

]
(A.11)

Inserting Equation (A.11) into Equation (A.10) and solving for d:

d =
pcut −Nv0 ρn

|∇ρ| (A.12)
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|∇ρ|

d

ρ

ρv0

ρcut

ρ(d)

Figure A.8. Determining intercept for the specified cutoff density ρcut.

A.4 Surface Description

As previously described, the end result of the interpolation scheme is an .STL file, which
provides a convenient way of describing a surface geometry. The surface is described as a set
of triangular facets, each consisting of three vertices and a normal vector, see Figure A.9. The

n

v2

v3

v1

y
z

x

solid
...
facet normal nx ny nz

outer loop
vertex v1x v1y v1z
vertex v2x v2y v2z
vertex v3x v3y v3z

endloop
endfacet
...

endsolid

Figure A.9. An .STL facet and the equivalent plaintext in the file itself. The .STL file begins with the
keyword solid (optionally followed by a space and a name) on the first line, then the
description of each facet and finally ends with keyword endsolid on the last line.

description of the individual facet must follow certain conventions:

• The normal must point outwards, away from the model.
• The normal must be unit length.
• All vertex coordinates must be positive.
• Vertex numbering must follow right hand rotation wrt. the normal.

The information needed for the .STL file is determined from that found in the previous section.
Specifically, a group of points must be found to describe a surface of facets, with no overlaps.
The local point coordinates are then transformed to global Cartesian coordinates and an exact
normal is determined for each facet.

The grouping of points is done by considering the surface as a set of triangles/facets, all
connected at the center point, see Figure A.10. The points needed to make each facet is found
by a sorting algorithm, using the angles between vectors from v0 to vi.

Because the points are rarely perfectly in a common plane, inconsistencies can occur in the
angle calculation. The angle calculation and sorting are therefore done wrt. the approximate
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Figure A.10. Order of corner points must be correct for facets to represent the surface completely and
with no overlaps.

normal n. First, vectors ri, lying in the plane to which n is normal, are found as the rejection
from n. The rejection vector is the complement to the vector (vi − v0) projected onto n, see
Figure A.11, and is found as vector subtracted by projection:

ri = (vi − v0)−
(vi − v0) · n

n · n n (A.13)

As ri are all in the same plane, the sum of angles between vectors is exactly 2π for a non-
overlapping surface. A right-hand convention is then introduced when calculating the angles,
see Figure A.11.

n

r1

v1

r2

v2

r3

v3

v0

r2

r3 r1θ1,3

θ1,2

ζ

ξ
η

ξ

η

Figure A.11. Left: rejection vectors ri all lie in a plane normal to n. Right: Angles between vectors are
calculated by right-hand rule wrt. n, which is pointing outwards here.

The sorting is then done as follows:

• Select a vector ri.
• Calculate angle θi,k = ri ∠ rk to all other rk.
• Select the vector that satisfies (ri × rk) ∠ n = 0 and minimizes θi,k

• Save the index k in a list and add angle θk,i and restart from vector rk, unless ∑ θ = 2π,
then stop

When the sorting is complete, the list of indices is used to select and group the original points
vi, such that a facet is always made up of vertices v0, vI(k), and vI(k+1), in that order as required
by the .STL format.

The points are converted to Cartesian coordinates as:
[

x y z
]
= Nvi

[
x y z

]
−
[

xmin ymin zmin

]
(A.14)
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The vector of minimum values is subtracted to ensure that all coordinates are positive, again
required in the STL format. Finally, the actual unit normal vector is found for each facet:

n =
vI(k) × vI(k+1)

|vI(k) × vI(k+1)|
(A.15)

Note that due to the sorting using a strict right-hand rule, the direction of the normal is
preserved, i.e. it points away from the solid material.

On Figure A.12 the element surface computation is illustrated.

ξ

η

ζ

1+

4+

2+

3+

5+

6−

7−

8+

Face A

Face B

Face C

(a) (b) (c)

(d) (e)x

y

z

Figure A.12. Overview of element interpolation and surface description. (a): For an element it is found
that all nodal densities are above the cutoff value except 6 and 7, and that faces A (nodes
1,5,8,4), B (nodes 3,4,8,7) and C (nodes 5,6,7,8) are outside faces. (b): It is determined that
the surface consists of nodes 1,3,4,5,8 and interpolated points on edges between nodes
(3,7), (6,8), (7,8), and (5,6). (c): Individual faces and the element intersection are considered;
center points and approximate normals are calculated. (d): Using the center point and
normals, non-overlapping triangular facets are found. (e): The facets are transformed from
natural to Cartesian coordinates, normals are recalculated and the data is written to an
.STL file. Process is repeated for all elements.
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