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Nomenclature

Symbols

θ Neural network internal parameters. [-]

δ Small constant for numerical stability. [-]

ṁ Mass flow rate. [kg/s]

ε Learning rate for Adam. [-]

εrough Internal surface absolute roughness. [m]

η Learning rate for SGD. [-]

b Layer bias vector. [-]

g Switching device gate signals. [-]

W Layer weight matrix. [-]

µ Statistical mean. [-]

µavg Average dynamic viscosity. [kg/(m·s)]

ωre f Reference rotor speed. [rad/s]

ρ1 First moment estimate decay rate of the Adam optimizer. [-]

ρ2 Second moment estimate decay rate of the Adam optimizer. [-]

ρR Density of air at the inlet conditions. [kg/m3]

σ Sigmoid function. [-]

θ Rotor angle. [rad]

a Neuron activation. [-]
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x Nomenclature

C Covariance matrix. [-]

C1 Module thermal capacitance. [J/K]

C2 Heat sink thermal capacitance. [J/K]

cp Specific heat capacity. [J/(kg·K)]

D Diameter. [m]
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EON Turn-on device switching losses. [J]
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iabc Three-phase current. [A]

Icond Conducting current of a single device. [A]

id Direct-axis current. [A]

iq Quadrature-axis current. [A]

J Cost function. [-]

k Thermal conductivity. [W/(m· K)]

Nu Nusselt number. [-]

Pcond Power loss during to device conduction. [W]

Ploss Total power loss. [W]

Pr Prandtl number. [-]

Q Heat flow rate. [W]

qR Volumetric air flow rate. [m3/s]

Qa Heat flow absorbed by the ambient. [W]

Qconv Heat flow due to convection. [W]

Qloss Heat flow due to the module losses. [W]

R1 Thermal resistance between the heat sink and the ambient. [K/W]
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R1 Thermal resistance between the module and the heat sink. [K/W]

rp,P Ratio of fan static pressure rise. [-]

S Surface. [m2]

Ta Ambient temperature. [T]

Th Heat sink temperature. [T]

Tj Device junction temperature. [T]

Tre f Reference machine torque. [Nm]
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Abbreviations
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Chapter 1

Introduction

Artificial intelligence (AI) has been a fundamental part of many research break-
throughs in recent years. By making use of machine learning, a subset of artificial
intelligence, computers can be made to solve challenging problems without any
task-specific programming. Through machine learning, processes such as data
analysis and system modelling can be automated with highly accurate results.
Given enough data and processing capacity, systems based on machine learning
can replicate the behavior of any arbitrarily complex system.

Modeling physical systems to predict potential failures can be a daunting task
to perform through more traditional modeling techniques: failures can occur and
interact in many different ways, and are often multi-domain in nature [1]. Machine
learning can be used to develop such prediction models based on data rather than
on explicit rules, allowing for accurate rules to be learnt implicitly.

1.1 Problem analysis

The reliability of power electronic converters is an important concern in industrial
applications. According to [2], active cooling systems are the most common and
effective solution to improve converter reliability, as temperature is one of the most
significant stress factors in components [3]. However, this means that the reliability
of the cooling system itself also becomes an important concern. Inadequate cooling
can lead to the premature failure of power electronic components. One way to
ensure that the cooling system of a power converter remains healthy is through the
use of condition-based maintenance, which can drive down maintenance costs by

1



2 Chapter 1. Introduction

predicting when faults will occur and thus enabling operators to act accordingly.

Most approaches to the condition monitoring of cooling systems require additional
sensors. Among others, the condition monitoring of cooling fans (and rotating
machines in general) is often based on vibration data analysis This is currently
a barrier for implementation in industrial applications, due to the increased cost,
size, and complexity that such a solution would introduce. As such, the goal of the
present project is to develop an approach to monitor the condition of the cooling
system of an industrial drive that does not require any additional sensors. To do
so, artificial intelligence techniques—more specifically, neural network models—
are used to obtain similar performance without making use of additional sensors.

1.2 State of the art

The degradation of cooling systems can be broadly classified into two main cat-
egories: failures in the cooling fan and failures in the thermal interface material.
The metallic heat sink should be robust enough to only fail in very extreme cases,
and as such hard failures in this element will not be considered in this project.

The traditional method for cooling system fault detection, still widely in use, in-
volves human diagnosticians performing periodic inspections based on warning
signs such as increased temperature, smell or acoustic noise, or decreased per-
formance [4]. However, these physical symptoms are prone to being unreliable.
A potentially more reliable and less costly approach is to automate the task by
replacing such physical inspections by signal processing techniques.

Such techniques are commonly based on fan vibration, speed, current, voltage,
acoustic emission, and, more recently, stray flux signals [5]. Out of these, the most
widespread method for cooling fans, and rotary machines in general, is vibration
signal analysis [6] [7]. Acquiring data for accurate diagnosis of the thermal inter-
face material can be more challenging. Current methods can be classified into two
kinds: direct observation of the degradation by making use of transparent mate-
rials, and estimating the thermal resistance of the interface based on temperature
measurements [8].

Visual inspection of the thermal interface material is often not a real possibility in
industrial applications, and therefore temperature measurements are more com-
monly used. If accurate measurements of both heat sink and switching device
temperatures can be obtained, as well as reliable estimates of device power losses
(which is often challenging), the calculation of thermal resistance becomes trivial.
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Otherwise, assuming that the condition of the cooling fan is known, a degradation
of the overall cooling system performance can be safely attributed to degradation
in the thermal interface material.

The condition of the cooling system or either of its subsystems can be quantified
using a generalized health indicator. Such an indicator should be as simple as
possible in order to be easily interpretable. Distance metrics are most common,
as they can be used to represent the status of the whole system as a single scalar
value. Euclidean distance is often unfit for such a task, making other metrics such
as Mahalanobis distance [9] or K-nearest neighbor distance [5] more commonly
favored. In essence, these methods are used to find the distance between collected
data samples and their global centroid.

Distance metrics applied on their own can usually not be used to directly infer the
condition of a given system, as the metric would reflect parameters of the system
uncorrelated with health status. Therefore, such methods require feature selection
and engineering to ensure that the distance metric correlates with the health status
of the system. More details on generalized health indicator metrics are provided
in Chapter 2.

In this context, artificial intelligence can be used to predict health indicator val-
ues where part of the used data is missing. In a more direct approach, AI can
automate the feature engineering or directly predict the health status of the sys-
tem. This allows for increased flexibility in determining distance metrics, as AI can
automatically find nonlinear combinations of features that correlate with system
health but would not be considered in manual feature engineering.

A common approach is to extract the most significant features from measured
data by making use of autoencoders, a type of neural network topology. This has
been demonstrated in, among others, the papers by Sun et al. [10], in the context
of induction machine fault classification, and by Roy et al. [11], which applies
autoencoder-based feature selection to achieve a reported 100% accuracy in the
NASA bearing health data set.

Direct approaches to health status predictions can be found in publications such
as the papers by Jin et al. [12], where a support vector machine is used to predict
the remaining life of fan bearings, or by Tallam et al. [13], where a deep neural
network is used to detect a type of induction machine fault.

Another more empirical approach is to analyze the transient behavior of the system
to estimate health indicators that would not be easily obtainable during normal
operation. For example, the 2019 paper by Zhang et al. [8] involves measuring
the time it takes for a power converter system to cool down after it is shut down
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from normal operation to estimate the natural frequency of the thermal network.
This parameter can reportedly be used to reliably assess the health condition of
the cooling system, but cannot be directly predicted from real-time measurements
during steady-state operation, requiring extensive testing instead.

Another common approach to condition monitoring is, rather than finding a sin-
gle global health metric, predicting future values of measurable parameters of the
system, building what is commonly called a surrogate model or digital twin. This
predictions can then be compared to the real measurements, with their difference
providing information on the health of the system. For example, in a cooling sys-
tem, a surrogate model can be built to predict heat sink temperature in healthy
operation. If measured temperature became significantly higher than the one pre-
dicted by the healthy surrogate model, it could be concluded that the cooling sys-
tem would be experiencing degradation.

Such a surrogate model could be based on known mathematical descriptions (such
as state-space models), on statistical models (such as linear regression, curve fit-
ting, or autoregressive models), or on artificial intelligence models. The latter have
the advantage of being able to represent arbitrarily complex relationships in data,
both linear and nonlinear, time-dependent and time-independent. On the other
hand, training a complex AI model will often require large amounts of data and
computational resources.

Some publications demonstrating this approach are the papers by Xie et al. [14],
where an autocorrelation-based model is used to evaluate cooling fan vibration
data, by Venkatesan et al. [15], where several metrics of a permanent magnet syn-
chronous machine are predicted using an artificial neural network and fuzzy logic,
or by Su and Chong [16], where a neural network-based surrogate model is used
to predict induction machine vibration data.

1.3 Problem statement and methodology

The main goal of this project is to develop machine learning-based models that
can be used to monitor the condition of the active cooling system of an industrial
motor drive.

To do so, a model of the drive and its cooling system was developed, in order
to obtain a deeper understanding of the system. This model was developed in
the Matlab/Simulink environment. Due to the multi-domain nature of the system,
which contains electrical, rotating, air flow, and thermal elements, the Simscape
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library of Simulink was used extensively. Simulation results were then used as a
starting point to develop artificial intelligence models.

These models were developed in Python 3, after performing data analysis and pro-
cessing. Two approaches were considered. The first involves training models to
predict the future temperature values of the system using only data from healthy
operation. By observing deviations between the predictions made by such a model
and the behavior of the monitored system, the condition of the cooling system can
be evaluated. Thresholds for these deviations can be determined based on exper-
imental data. The second approach involves determining performance labels for
healthy and unhealthy operation, and training an AI model to make predictions on
this label. In its simplest form, a binary indicator can be used as this performance
label, training the model to classify measurements as falling into either healthy or
faulty operation.

The implementation of neural networks is based on the Keras API, in turn based on
the Tensorflow backend. The models were tuned to obtain adequate performance
metrics on simulation data. There is a large degree of freedom in the design of
neural network models, mostly involving their internal structure. The developed
models make use of simple fully-connected layers and of recurrent layers, which
are typically able to obtain better performance on time-dependent data.

Experimental tests were then ran on a test setup at Danfoss, in Gråsten, with data
being gathered in real time through an internet of things (IoT) device. Experiments
were performed both for healthy and degraded operation of the cooling system.

This experimental data was then used to validate the simulation model and to
train the developed neural network models. Finally, the performance of the neural
network models was evaluated using data obtained in tests excluded from the
training data sets.

1.4 Scope

The scope of this project has been influenced by the closing of Danish universities
due to the 2020 COVID-19 outbreak. Initially, experimental measurements were
planned to be collected early in the development process on an experimental setup
at Aalborg University. Instead, experiments had to be ran at a Danfoss laboratory
in Gråsten, at a later date than originally intended.

The experimental validation of the condition monitoring techniques developed in
this project is limited to the test setup provided by Danfoss. As such, it is not
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guaranteed that these techniques can be applied to other systems without loss of
performance.

1.5 Project outline

The contents of this report are structured as follows:

• Chapter 1 aims to provide the motivation for this project, as well as summa-
rize the current state of the art in the condition monitoring of cooling systems.
It also includes a brief description of the process behind the development of
this project.

• Chapter 2 includes a simplified description of the drive system, with special
attention being given to its cooling system. The reader is assumed to be
versed in the field of power electronics and drives; the bulk of the chapter
is therefore focused on thermal modelling, which is in a closer relationship
with the goals of this project. This is followed by an introduction to the
development of quantitative health indicator metrics.

• Chapter 3 aims to provide a theoretical background in the field of artificial
neural networks, describing their main components and training process. Be-
sides the simpler deep fully-connected feedforward neural networks, recur-
rent neural networks are also introduced, as they are specially well-suited to
processing time-series data, the type of data collected in this project.

• Chapter 4 provides details on the more practical parts, summarizing the pro-
cess of data collection, the two suggested approaches to condition monitor-
ing, and the training process of the artificial intelligence models.

• Chapter 5 summarizes the main difficulties found in the project and the com-
promises that have had to be taken, as well as the insights gained from these.

• Chapter 6 presents the main conclusions to be drawn from the obtained re-
sults.

• Chapter 7 aims to suggest future research possibilities based on the insights
gained in the present project.



Chapter 2

System modelling

The first step towards developing a reliable method to monitor the condition of
the drive cooling system is to acquire a deeper understanding of both the system
itself and of how its health status can be evaluated. This chapter aims to provide
this information, by including a general overview of the target system, of how its
internal cooling process can be modelled, and of how system health is commonly
quantified in approaches that do not involve artificial intelligence.

2.1 The drive system

In a simplified way, the drive system to be modelled can be represented as the block
diagram shown in Figure 2.1. This block diagram shows information signals—i.e.
control and measurement—in black. Physical signals are shown in different colors:
blue for electrical, orange for thermal, and purple for air flow. For the purposes of
this project, a thermal signal refers to a heat flow dominated by conduction, while
an air flow signal models a mostly convective one. Arrows point in the direction
of the flows expected during normal operation.

The first block of the model is the controller of the inverter, which is tasked with
synthesizing the inverter gate signals that allow the load to be driven according
to desired commands. Although industrial implementations are typically more
complex, the controller can be considered to be a field-oriented one, in order to
simplify the modelling process. Such a controller takes as its input measurements
(or estimates) of the rotor position of the driven machine (θmeas), the three-phase
inverter output current (iabc,meas), DC-link voltage (VDC,meas), as well as either a

7
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Field-oriented
controller

θmeas

iabc,meas

VDC,meas

ωre f or Tre f

Three-phase
inverter

Gate signals Load
(motor)

Heat sink

Power losses

Cooling fanAir inlet Air outlet

Fan
controller Cooling system

Figure 2.1: General block diagram of the drive system.

speed reference (ωre f ) or a torque reference (Tre f ), depending on which of these
two variables is to be controlled.

A block diagram showing how field-oriented control (FOC) can be implemented
is shown in Figure 2.2. It is based on the fact that AC synchronous and induction
motors produce torque due to the component of stator magnetic field aligned per-
pendicularly with that of the rotor. This flux is directly proportional to the stator
currents. Therefore, by making use of the Park and Clarke transformations, and
controlling the d-axis and q-axis current components, FOC is able to achieve high
dynamic performance. Space vector pulse-width modulation (SVPWM), or a dif-
ferent PWM scheme, can be used to obtain the switch gate signals that correspond
to the desired voltages. Field-oriented control typically requires measurements or
estimates of the stator currents, rotor position, and rotor speed, as well as refer-
ences for torque or speed and d-axis current. After PWM, its output are each of
the gate signals g.

The gate signals are then used to drive the switching devices of a three-phase
inverter, which typically uses rectified voltage as its power source. The output of
the inverter is then used to drive an electrical machine or another type of load.
Loading the inverter generates switching losses every time that a switching device
changes its state, and conduction losses while current flows through the devices
and conductors. These power losses flow conductively through a thermal interface
that connects the devices to a heat sink, thus cooling down the devices. The heat
sink is in turn cooled by means of a fan, which forces air to flow from an inlet to
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Speed
controller

ωref Current
controller

Inverse Park
transformation

iq,ref vq,ref

Space vector
PWM

g

Clarke
transformation

Park
Transformation

Current
controller

θ

vd,ref
vβ,ref

vα,ref

ia

ib

ic

θ

ω

id,ref

iα

iβ

iq

id

Figure 2.2: Block diagram of field-oriented control.

an outlet, interfacing with the heat sink in this process. For low-to-medium power
drives, this fan is typically moved by a small DC motor, which is controlled by
monitoring the system temperature of the system.

The main object of this project is the cooling system of the drive, and therefore
most of the analysis and modelling is centered around it. More in-depth analysis
of the inverter and motor systems is thus omitted from this report.

2.2 Modelling thermal losses and heat flow

A power module is formed by a switching device—typically an IGBT or MOSFET—
and a freewheeling diode. Its power losses can be divided into conduction losses
and switching losses.

Conduction losses are relatively straight-forward to calculate, as they can be found
from the product between conducting current Icond and on-state saturation voltage
Vsat, typically given as a function of temperature in data sheets. The average dis-
sipated power due to conduction losses over a period of time T can be calculated
as:

Pcond,avg =
∫ T

0

(
Vsat(t)Icond(t)

)
dt (2.1)

Vsat will have different values for diodes and for switching devices. Conduction
losses therefore depend mostly on load current, duty cycle, and junction tempera-
ture. Switching losses, on the other hand, do not depend on the duty cycle, instead
being directly proportional to switching frequency and DC-link voltage.

The typical behavior of switching device voltage and current is shown in Figure 2.3.
Switching losses occur during turn-on (EON) and turn-off (EOFF) of the device. Due



10 Chapter 2. System modelling

to the internal capacitances of the device and the free-wheeling diode, switching
transients are not ideal, instead showing periods during which there is both non-
zero voltage and current, resulting in power losses.

t

t

Icond(t)

VCE(t)

Ploss(t)EON EOFF

Figure 2.3: Waveforms of switching device current (blue), collector-emitter voltage (red), and instan-
taneous power losses (black).

Typically, the values of EON and EOFF are provided in manufacturer data sheets,
as functions of conducting current and device temperature. This data can then
be introduced directly to device models in simulation software such as PLECS or
Simscape.

Once the power losses of the power module are known, they are transmitted to
the outside environment to maintain the temperature of the devices within an
adequate range. The thermal network linking the power losses of the module with
the external environment can be represented as shown in Figure 2.4.

Qloss Qa

Tj Th Ta

C1 C2

R1 R2

Module and thermal interface Heat sink and fan

Figure 2.4: Circuit diagram of the cooling system thermal network.

Qloss corresponds to the heat flow provided by the module losses, with device
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junction temperature Tj. The parallel thermal capacitance C1 represents the heat
storage capability of the module, while the resistor R1 is determined by the resis-
tivity of the thermal interface material that connects the module to the heat sink.
In turn, the thermal capacitance of the heat sink is represented by C2, with temper-
ature Th. Another thermal resistor R2 represents the thermal resistance between
the heat sink and the external environment, which is modelled with a heat source
extracting Qa from the system and with a constant temperature Ta.

It should be noted that every component of this thermal network is variable, as
all of them are at least temperature-dependent. This is especially true of R2, as
it models the performance of the cooling fan, heat-sink design, and air flow as a
single parameter. R2 is, for example, inversely proportional to fan speed, as higher
cooling fan speeds allow for a larger flow rate of air and thus of heat dissipation.

In a way analogous to electric circuits, the heat flow between two nodes A and B
connected by a thermal resistor is given by Fourier’s law, as follows:

Q = R(TA − TB) (2.2)

R = k
A
D

(2.3)

Where Q is the heat flow from A to B, R is the thermal resistance, TA, TB are the
temperatures of the nodes, k is the thermal conductivity of the material linking
the nodes, A is the area perpendicular to the direction of heat flow, and D is the
distance between the nodes.

For two nodes connected by a thermal capacitance, heat flow is given by:

Q = c ·m dT
dt

(2.4)

Where c is the specific heat of the thermal mass material, and m is its mass. Every
parameter of the thermal circuit can be considered to remain constant for modeling
purposes, except for R2. In place of a simple thermal resistance, the heat exchange
between the heat sink and the air flow driven by the cooling fan. The heat exchange
modeling is based on the dynamics of pipe flow as described in [17]. A simple
diagram showing the model of the heat exchange process is shown in Figure 2.5.

Four nodes are defined to describe the behavior of the heat exchange: the two
ends of the pipe A and B (the sides of the heat sink perpendicular to air flow), an
internal node I, and the surface of the pipe H (receiving the heat sink heat flow
signal). Analysis is based on mass, energy, and momentum balance. The total heat
transfer between the pipe wall and the internal gas surface—between the heat sink
walls and the air flow—is found by adding together the conductive and convective
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A B

H

Cooling fan

Inlet Environment

Heat sink

I

Figure 2.5: Model of the heat exchange process between the heat sink and the external environment.

flows:

QH = Qconv +
k ISsur f

Dh
(TH − TI) (2.5)

Where QH is the heat flow rate at port H, Qconv is the convective heat transfer, k I is
the internal thermal conductivity, Ssur f is the equivalent pipe surface area, Dh is the
equivalent hydraulic diameter of the pipe, and TH, TI are the temperatures at ports
H and I, respectively. Assuming an exponential temperature distribution along the
pipe—the length of the heat sink—heat transfer due to convection is given by:

Qconv = |ṁavg|cp,avg(TH − Tin)(1− exp
Ä hcoe f f Ssur f

|ṁavg|cp,avg

ä
) (2.6)

Where ṁavg = (ṁA− ṁB)/2 is the average mass flow rate between the inlet and the
outlet, Tin is the inlet temperature (port A in the configuration shown in Figure 2.5),
and cp,avg is the specific heat of the fluid (air) evaluated at its average temperature.
The heat transfer coefficient hcoe f f is defined as:

hcoe f f = Nu
kavg

Dh
(2.7)

Where kavg is the thermal conductivity evaluated at the average temperature. The
Prandtl number evaluated at the average temperature Pravg can be considered con-
stant, with a value of around 0.71 for air. The Nusselt number Nu depends on the
flow regime. For forced, laminar flow, it can be considered to be a constant depen-
dant on the geometry of the surface perpendicular to the flow—for a circular pipe,
it has a value of 3.66. For turbulent flow, it can be found using:

Nu =

fDarcy
8 (Reavg − 1000)Pravg

1 + 12.7
√

fDarcy
8 (Pr2/3

avg − 1)
(2.8)

Where the Darcy friction factor fDarcy is given by:

fDarcy =

ñ
− 1.8 log

Ç
6.9

Reavg
+

Ç
εrough

3.7Dh

å1.11åô−2

(2.9)
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With the constant εrough being internal surface absolute roughness. The Reynolds
number evaluated at the average temperature can be found using:

Reavg =
|ṁavg|Dh

Ssur f µavg
(2.10)

Where µavg is the average dynamic viscosity of the fluid. The Reynolds number
also determines the type of flow, usually from substance-dependent limits: an
upper-limit for purely laminar flow and a lower limit for purely turbulent flow.
If the Reynolds number lies in-between these thresholds, the flow is considered
to be mixed, and its Nusselt number can be approximated by assuming a smooth
transition between the two types of flow.

The modeling of the fan is carried out as a look-up table according to specifications.
Specifically, the tabulated data used in simulations is volumetric flow rate and total
efficiency against shaft speed and static pressure ratio. The mass flow rate ṁ is
obtained through:

ṁ = ρRqR (2.11)

Where ρR is the density of air at the inlet fan conditions, and qR is the volumetric
flow rate, computed from tabulated data using the ratio of static pressure rise to
its maximum rated value rp,P, as well as angular fan speed ω:

qR = q(ω, rp,P) (2.12)

Fan speed ω is given by a DC motor driven by the fan controller, which can be
modeled as having ideal dynamics.

2.3 Quantifying system health

The simplest approach to defining system health is to use a binary indicator, i.e. to
attach a value of 1 to samples taken where the system is known to be healthy and of
0 to samples where it is unhealthy, or vice versa. This is a valid strategy to employ
for data collection in controlled environments, both physical and simulated, where
faults in the system are either present or missing. Such a binary indicator can be
sufficient for some tasks, but may prove too simplistic for others, where compo-
nent degradation can degrade system performance without necessarily causing a
complete fault.

A common approach to increase the robustness of such a health indicator with-
out unnecessarily increasing complexity is to assess the condition of the system
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through a single distance metric. The main intuition behind this is that by join-
ing available information into a single scalar value, ranges can be defined for both
healthy and unhealthy operation. This method is illustrated in Figure 2.6.
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Figure 2.6: Intuition behind the use of distance-based metrics in condition monitoring.

Figure 2.6 shows the values taken by a distance metric in two hypothetical time-
series of data taken during healthy operation (in blue) and unhealthy operation
(in orange). A constant distance metric threshold (in black) is defined to separate
both types of data. The more data that is used to define this threshold, the more
confidently it can be determined. It is important to note, however, that in this
case the distinction between healthy and unhealthy condition is not a strict binary.
Deterioration can be observed through trends that bring the distance metric closer
to unhealthy operation, before every sample necessarily falls within the unhealthy
region.

Two main challenges must be overcome when developing a distance metric-based
condition monitoring method. Firstly, if every feature—measurement—is consid-
ered equally when calculating the metric, it will likely not reflect the condition of
the system. In such a way the metric would be prone to over-represent certain
features: as an example, the switching frequency of a power converter is typically
much larger in magnitude than phase current amplitude, which would make the
former hold a much larger influence over the generalized health indicator. This
problem can be solved, or at least mitigated, by normalizing measurements be-
fore including them in the calculation of the metric. Even so, there would be no
guarantee that the distance metric would reflect the health status of the system.
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To achieve this, feature engineering and extraction are to be performed. Com-
monly, the first step is to obtain transformations of the available data. For example,
instantaneous phase current values are not likely to help quantify the condition of
the system, but using the Fourier transform to find the amplitude of certain har-
monics could prove very useful. Values that are normally stationary, such as am-
plitude or RMS values can also be significant. After this feature engineering phase,
feature selection is performed to extract the most valuable parameters. Methods
for feature extraction are often based on the selection of parameters that show the
largest absolute correlation with the previously defined binary health indicator.
Some more specific methods are kurtosis analysis [5] and minimum redundancy,
maximum relevance (mRMR) analysis [6].

The "Predictive Maintenance Toolbox" of the Matlab software [18], and more specif-
ically its "Diagnostic Feature Designer" application can be used to accelerate the
data processing and feature mining processes. The toolbox includes resources to
automate the extraction of metrics based on the available data. These metrics can
be classified into three main categories, for which some examples are provided
here:

• Time-domain features: mean, standard deviation, skewness, kurtosis, root-
mean-square values.

• Frequency-domain features: mean frequency, power bandwidth, peak values,
peak frequencies, harmonics.

• Time-frequency-domain features: spectral kurtosis, spectral entropy. This
type of features are useful to characterize changes that occur over time in the
frequency spectrum of a signal.

The second main challenge is the choice of the distance metric itself: this metric
should aggregate relevant extracted features into a single value. A first approach
would be to simply use Euclidean distance between each sample and the centroid
of all samples, which in the present context could be defined as follows:

Dj(xj, µ) =
»

(xj,1 − µ1)2 + (xj,2 − µ2)2 + · · ·+ (xj,n − µn)2

=

√
n

∑
i=1

(xj,i − µi)2
(2.13)

Where Dj is the Euclidean distance associated with the j-th data sample, xj =

(xj,1, xj,2, · · · , xj,n) are the features (variables) of the sample, µ = (µ1, µ2, · · · , µn)
are the arithmetical means of each feature, or centroid vector, and n is the number
of features of each sample. Directly calculating this distance between each sample
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and the centroid of the features will, however, usually lead to misleading results.
To illustrate this, consider the example provided in Figure 2.7.
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Figure 2.7: Euclidean distance to the centroid of a distribution with two features, when these are
uncorrelated (left) and correlated (right).

Figure 2.7 shows two different distributions of sets of data with two features, which
are represented as the axes of the figure. Points that are known to belong to
these distributions are shown in green, with their centroid represented as a black
circle. The two distributions are very different from each other: on the left, the two
features are uncorrelated, whereas on the right, there is a clear correlation between
them. Consider then the results that the previous definition of Euclidean distance
would provide in such a context for two data samples, shown in blue and orange.
The Euclidean distance between these points and the centroid are the same for
both distributions, which implies that both points are equally likely to belong to
them. This is true for the case on the left, with uncorrelated features, but it seems
clear that on the right the blue dot should be much more likely to belong to the
data distribution than the orange one.

In the context of condition monitoring, it is almost always the case that several
features show strong correlations between them: consider e.g. switching device
and heat sink temperatures. Moreover, in real applications more than two variables
are usually analyzed, which increases the chances of some of them being correlated
with one another.

A common distance metric that is often used to overcome this problem is Maha-
lanobis distance (MD), which can be formulated as:

MDj(xj, µ) =
»

(xj − µ)TC−1(xj − µ) (2.14)
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Where MDj is the Mahalanobis distance corresponding to the j-th sample, and C is
the covariance matrix. Mahalanobis distance is a multi-dimensional generalization
of the common idea in statistics of measuring how many standard deviations away
a sample lies from the mean of a distribution [19]. By introducing the inverse of the
covariance matrix in the distance calculation, the distance metric becomes unitless
and scale invariant, and is made to take into consideration the correlations of fea-
tures within the data set. Another notable aspect of MD is the fact that when every
feature is uncorrelated with every other one, their associated covariance matrix is
the identity matrix (assuming normalized features). In such a case, it can be seen
that Equation 2.14 is equivalent to Equation 2.13, which translates to Mahalanobis
distance being equivalent to Euclidean distance.

Going back to the example in Figure 2.7, the Euclidean distance metric remains
constant for both added samples and both distributions, at around

√
2. Calculating

MD, on the other hand, results in values around 5 for both samples on the left,
while on the right the blue point shows a Mahalanobis distance of around 1.5 and
the orange one is around 12. This example shows that MD is much better suited to
the task of predicting whether a sample belongs to a distribution.

One shortcoming of Mahalanobis distance is that it makes the assumption that data
follows Gaussian distributions, which may hinder its performance in situations
where the data is distributed in a much different way. Some metrics, such as k-
nearest neighbor distance, can be successfully applied in such situations [5].





Chapter 3

Artificial neural networks

Artificial intelligence (AI) can be broadly defined as the set of techniques that aim
to autonomously interpret data, learn from it, and use these learnings to solve spe-
cific tasks. Many statistical learning algorithms fall under this definition, such as
decision trees, support vector machines, or Kalman filters. The main strength of
AI methods is their ability to solve tasks for which explicit algorithms either do
not exist, are not known, or not enough information is available for one to be de-
veloped. Many tasks that would be extremely complex to describe algorithmically
have been successfully solved by AI.

To illustrate this, consider the classic example of recognizing handwritten digits
given as images. This task would be trivial for a human, but writing a program
that can solve such a problem is not a simple goal. One approach could be to
attempt to detect edges and use their shapes and relative positions to make a
guess on the digit’s value, but this would at best result in low accuracy and long
processing time. This is currently one of the most common examples to solve as an
introduction to AI classification techniques, which shows how seemingly complex
tasks can be made comparatively trivial by making use of machine learning. The
current state of the art of AI regarding image pattern recognition is far beyond this,
consider e.g. real-time video data analysis for autonomous driving.

A very flexible and widely used approach to AI is that of artificial neural networks
(ANN), which also fall under the category of statistical learning methods. Most of
the AI techniques developed in this project are based on ANN structures. As such,
this chapter aims to provide a theoretical background on the principles of artificial
neural networks.

19
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3.1 Motivation

Artificial neural networks have proven to be a fundamental part of many research
breakthroughs in recent years, especially in fields such as computer vision, speech
recognition, machine translation, and data analysis. ANNs possess several proper-
ties that can set them apart from other AI methods and motivate their widespread
use [20]:

• Artificial neural networks are universal function approximators, as proven
formally in 1989 by Hornik, Stinchcombe, and White [21]. Any arbitrarily
complex function, be it linear or nonlinear, can be accurately approximated
by an artificial neural network containing at least one hidden layer and mak-
ing use of non-polynomial activation functions. More details on these con-
cepts can be found in Section 3.2.

• The highly parallel structure of artificial neural networks allows for process-
ing at a higher speed than many other AI algorithms. They are computation-
ally very cheap, which enables complex structures to be executed in short
processing times.

• Different ANN structures have been developed with the intention of fine-
tuning their performance to specific tasks. Most notably, convolutional neu-
ral networks (CNN) are currently achieving state of the art results in image
pattern recognition, while recurrent neural networks (RNN) are used with
similar results in natural language processing, machine translation, and—
relevantly to the present project—time series data analysis [22]. There is
currently great research interest in the field of artificial neural networks,
which makes resources to develop ANN-based models widely accessible and
rapidly improving.

• In the same manner as many—but not all—AI techniques, training an ANN
does not require any external information other that the training data itself.
As an example of methods that do not fulfill this property, many adaptive
algorithms that can be considered to be AI, such as state observers, require
previous knowledge of the general rules governing the system they model,
and only modify the parameters attached to these rules to fit observations.

Considering these properties together, the advantages provided by artificial neural
networks are quite clear: they are able to model arbitrarily complex relationships in
data in an accurate and computationally efficient way, and have a large community
supporting their development.
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On the other hand, the main shortcoming of artificial neural networks is their
lack of interpretability. More traditional statistical learning methods such as curve
fitting, autorregressive, or moving average models, have parameters serving func-
tions that can be understood by their engineer. Neural networks, however, are of-
ten formed by large amounts of parameters in constant interaction with each other
and include nonlinear transformations, which often makes their internal operation
hard to interpret—although certainly not impossible.

ANNs are thus usually considered to be black boxes, as understanding their inter-
nal operation does not necessarily provide any insights on the process they model.
However, neural network structures can hardly be properly designed unless their
engineer knows where their strengths and weaknesses lie, and which design deci-
sions result in which benefits and shortcomings. Because of this, the fundamentals
of ANNs, including their basic operation and training process, will be covered
here.

3.2 Neurons and layers

Artificial neural networks are loosely based on the biological neural networks
forming the brains of animals. They are constituted by interconnected units com-
monly referred to as artificial neurons. To illustrate the general structure of a
fully-connected ANN, an example graph is shown in Figure 3.1.
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y2
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Input layer
(Features)
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(Labels)

Hidden layers

Figure 3.1: General diagram of the layout of a fully-connected ANN with two hidden layers.

Fully-connected ANNs are a common structure where each neuron is connected to
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every neuron in their previous layer. In this sense, the input layer of the network re-
ceives some input data (often called features), denoted here as x = (x1, x2, · · · , xn).
This data is then transferred to the neurons in the following layer. Since neither the
inputs or the outputs of these intermediate layers are known beforehand, they are
often referred to as hidden layers. Each neuron then performs a transformation on
its inputs. Due to its simplicity, the most common transformation is a multivariate
linear function:

xl,k = wl,k · xl−1 + bl,k (3.1)

Where xl,k is the state of the k-th neuron in layer l, wl,k is the weight vector linking
the neuron with the states of the previous layer xl−1, and bl,k is called the bias
of the neuron. In this way, each of the states of the previous layer is scaled by
some weight coefficient, the results of this scaling are added together, and a bias is
finally added to the value of the state. Using simple matrix algebra, the states of a
whole layer can be computed at once, assuming the states of the previous layer to
be known:

xl = Wl · xl−1 + bl (3.2)

In this way, the weight vector wl,k becomes a matrix Wl describing the connections
of all neurons in the layer, and the scalar bias bl,k becomes a bias vector bl . The
fact that computing the states of each layer requires knowledge of the states of the
previous one makes this type of neural network often be referred to as feedforward
ANN. Equation 3.2 already suggests how evaluating a neural network is computa-
tionally very efficient: it can be reduced to simple linear algebra operations, which
can be very well optimized in most hardware implementations.

The goal of training an artificial neural network is then to obtain the combination
of weight matrices Wl and bias vectors bl for each of its layers l that minimizes the
error between the states of its output layer y = (y1, y2, · · · , yn) and their targets.
As such, training data must be structured in such a way that every combination of
inputs x has one or several labels y attached to them.

Such a model has, however, an important limitation. As every layer performs a
linear mapping of the states of its previous one, only linear input–output relation-
ships can be learnt by the neural network, which makes its capability equivalent to
that of simple multivariate linear regression. By far the most common solution to
overcome this is to apply an element-wise nonlinear function to the state of each
unit. This function is commonly called an activation function. In this way, neural
networks become able to represent nonlinear and complex relationships in data.

However, this also means that the training process of a neural network almost
always becomes a non-convex optimization problem, which means that obtaining
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the values of weights and biases that best fit a given task is not a problem that can
be solved explicitly. Therefore, numerical optimization approaches—commonly
gradient-based—must be used, where convergence to the global optimum point is
not guaranteed.

Activation functions

For an artificial neural network to possess universal function approximator prop-
erties its activation functions must be non-polynomial, as proven formally in [23].
If the ANN is to be trained using gradient-based methods, as it is most often the
case, its activation functions should also be continuous and differentiable.

Two similar and commonly used activation functions are the logistic curve or sig-
moid function:

g(x) = σ(x) =
1

1 + e−x =
ex

ex + 1
(3.3)

And the hyperbolic tangent function:

g(x) = tanh (x) =
ex − e−x

ex + e−x (3.4)

In both cases, the values of x would be the states of the units in a given layer,
with the functions being applied element-wise. Graphs of these two functions are
shown in Figures 3.2 and 3.3.
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Figure 3.2: The sigmoid function.
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Figure 3.3: The hyperbolic tangent function.

The sigmoid and hyperbolic tangent function have traditionally been favored over
other activation functions, as their saturating behavior has long been considered to
be biologically plausible, especially in the case of the sigmoid function—although
this is currently a point of debate. In artificial neural networks, the hyperbolic
tangent is often preferred over the sigmoid, as its behavior near the zero point very



24 Chapter 3. Artificial neural networks

closely resembles the identity function, which can lead to improvements during
training.

However, both of these functions present a property commonly referred to as the
vanishing gradient problem. For values of x that fall away from the 0-point, their
shape becomes increasingly flat, rapidly reaching saturation. Evaluating the gra-
dient of the function at such points yields vanishingly small values, which can
greatly hinder gradient-based learning.

In order to mitigate this problem, the rectified linear unit function, often short-
ened to ReLU, is becoming increasingly widespread. The ReLU function can be
expressed as:

g(x) = ReLU(x) = max(0, x) =

{
0, x < 0

x, x ≥ 0
(3.5)

Put into words, the ReLU function returns its input value for all positive inputs
and 0 for negative ones, as shown in Figure 3.4.
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Figure 3.4: The rectified linear unit (ReLU) function.

The similarity between the ReLU function and the identity function makes training
neural networks that make use of it more efficient than those with other activation
functions, as its gradient can be simply defined as 1 for all positive values of x and
0 otherwise. The ReLU function is then not strictly differentiable, as its derivative
contains a jump discontinuity at x = 0. When performing numerical optimization,
this can be overcome by arbitrarily defining the gradient at this point as either 1,
0, or 0.5.

Activation functions can also be used to shape the outputs of a neural network
in order to improve its performance. For instance, if an ANN is used to make
predictions on a variable that cannot take negative values, such as temperature (in
degrees Kelvin), a ReLU activation function can be applied to the output layer of
the network. The sigmoid function is very often applied to the output of neural net-
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works performing binary classification tasks—where they are to predict whether
a set of input data either belongs to a certain class or it does not. Such a model
would then output values within the continuous range between 0 and 1, which
can be interpreted as the confidence of the network in either a negative or a pos-
itive prediction. In principle, an adequately trained ANN model would still be
able to learn such relationships regardless of its output activation function, but
properly selecting it will improve performance and eliminate potential physically
impossible outputs, which could occur for some input outliers.

Many other activation functions have been proposed in literature and successfully
applied in practice, with this being an active area of research. Many of these, how-
ever, are modifications to the sigmoid, hyperbolic tangent, and ReLU functions,
and offer only slight performance increases over their more basic versions. Most
state of the art results in classification problems are obtained using ANNs making
use of the ReLU function in their hidden layers, together with a sigmoid output
for binary classification or a softmax—a multivariate generalization of the sigmoid
function—for multi-class classification [24].

3.3 Back-propagation

Up to this point, this chapter has been concerned with forward-propagation: that
is, how a neural network obtains the states of its output layer from known inputs.
During training, a cost function is introduced to penalize deviations between the
predictions made by the neural network and its desired outputs. Back-propagation
[25] is an algorithm that allows this information to flow backwards from the net-
work’s output layer towards its input, computing the gradients of cost with respect
to each of its internal parameters (weights and biases).

More formally, back-propagation obtains the gradient of a cost function J with
respect to the network’s internal parameters θ (formed by the weight matrices and
bias vectors). The goal of back-propagation is then to obtain the values of this
gradient, which can be expressed as:

∇J(θ) =
Ä ∂J

∂θ1
,

∂J
∂θ2

, · · · ,
∂J

∂θn+m

ä
=
Ä ∂J

∂w1
, · · · ,

∂J
∂wn

,
∂J
∂b1

, · · · ,
∂J

∂bm

ä
(3.6)

Where n is the total number of weight and m the total number of bias parameters.
Once these gradients are known, they can be used in numerical optimization algo-
rithms to update the parameters of the ANN in a way that minimizes the deviation
between predictions and desired outputs (labels). As such, back-propagation forms
the backbone of gradient-based training of neural networks, which is currently the
most widespread approach.
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3.3.1 Cost functions

The choice of a cost function largely depends on the particular task that the neural
network is to perform. This project is centered on two types of problem: regression
(making predictions on the future values of one or several variables, such as tem-
perature) and binary classification (predicting whether or not a system is operating
in a faulty manner).

Mean squared error (MSE) and mean absolute error (MAE) are two of the most
common loss functions for regression problems. Mean squared error can be de-
fined for a single variable as:

MSE =
1
N

N

∑
i=1

(yi − ŷi)2 (3.7)

Similarly, mean absolute error would be:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (3.8)

In both cases, N is the number of samples from which error is calculated, yi is the
known target value of the variable y of the i-th sample, and ŷi is the corresponding
prediction made by the ANN. To compare these two very similar functions, both
are plotted in Figure 3.5.
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Figure 3.5: The mean squared error (MSE) and mean absolute error (MAE) cost functions.

Figure 3.5 shows a simple example where the cost functions are evaluated for a
single sample with a target y1 = 0. The graph shows how MSE is lower than MAE
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for deviations from the target between -1 and 1, while MSE is larger for all other
values. This means that MSE is more sensitive to outliers, while MAE is more sen-
sitive to accumulated small errors. As such, MSE should be chosen for regression
problems where the main priority is to remove single large prediction errors, giv-
ing more weight to outlier samples, whereas MAE is preferable in situations where
fine tuning predictions is more important than large errors on single outliers.

Both of them share two important properties: a completely accurate prediction
would yield a cost value of 0, while—theoretically—an infinitely large error would
also result in an infinite cost.

For binary classification the most common cost function is cross-entropy loss (also
called logistic loss or log loss). For a single sample, binary classification implies
that it either belongs to the target class or it does not. Binary cross-entropy (BCE)
can therefore be calculated from a single value using complimentary probability,
following its basic definition [26]:

BCE = −∑
i

pi log qi = −y log ŷ− (1− y) log
(
1− ŷ

)
(3.9)

Where pi = {y, 1− y} denotes each possible target value, where y is either 0 or
1, and qi = {ŷ, 1− ŷ} denotes each possible prediction, with ŷ being interpreted
as the predicted probability of the sample belonging to the class. In the context of
machine learning, cost functions are often evaluated from batches of samples. For
this purpose, binary cross-entropy is defined as the average cross-entropy loss:

BCE = − 1
N

N

∑
i=1

(yi log ŷi + (1− yi) log
(
1− ŷi

)
) (3.10)

Where N is the number of samples used to find the loss. This function is shown in
Figure 3.6 for a single positive-class sample (y1 = 1), as a function of the predicted
probability ŷ1.

Figure 3.6 illustrates how binary cross-entropy fits with binary classification: a
completely accurate prediction results in a cost of 0, while a completely wrong
prediction would yield infinite cost.

3.3.2 Obtaining gradients

As introduced above, the goal of back-propagation is to obtain the values of the
gradient vector of the cost function with respect to each of the parameters of the
ANN. These gradients are then to be used in an optimization algorithm to update
the parameters in such a way that cost is made to decrease. It must be kept in mind
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Figure 3.6: The binary cross-entropy (BCE) cost function.

that back-propagation is only concerned with the computation of these gradients,
and is a separate process from the optimization of the network.

In order to simplify notation, the back-propagation algorithm developed in this
section will be attached to a single training sample, as generalization to batches—
the most common way to train ANNs—is relatively straightforward. Let J denote
the cost function, and wi,j denote the weight connecting the i-th neuron in layer
L− 1 and the j-th neuron in layer L. The gradient of the cost function with respect
to such a weight can then be found using the chain rule of calculus:

∂J
∂wij

=
∂xj

∂wij

∂aj

∂xj

∂J
∂aj

(3.11)

Where xj denotes the state of the j-th unit before its activation function g has
been applied, and aj = g(xj) denotes the state of the j-th unit after applying this
activation. The goal of back-propagation is then to obtain the values of every
derivative in the right-hand side of Equation 3.11. Therefore, from Equation 3.1:

∂xj

∂wij
=

∂

∂wij

Ä n

∑
k=1

wkjak + bj

ä
=

∂

∂wij
(wijai) = ai (3.12)

Where k = (1, 2, · · · , n) denotes each neuron in the layer L− 1. The next term in
Equation 3.11 depends on the chosen activation function for the j-th neuron. For a
rectified linear unit activation function, the term becomes:

∂aj

∂xj
= g′(xj) = ReLU′(xj) =

{
1 xj > 0

0 xj < 0
(3.13)
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In software implementations, the undefined gradient at xj = 0 is instead set at 0,
0.5 or 1, rather than raising an error. For the other two activation functions used
in this project, the sigmoid and hyperbolic tangent functions, their gradients are,
respectively:

∂aj

∂xj
= g′(xj) = σ′(xj) = σ(xj)(1− σ(xj)) (3.14)

= tanh′(xj) = 1− (tanh2(xj)) (3.15)

From these three equations, it is clear that all three activation functions have easily
computable gradients, which translates to faster ANN training processes. The last
gradient in Equation 3.11 depends on the choice of activation function. Assume
first that the layer L, to which the j-th unit belongs, is the output layer of the
network, and consider a mean squared error cost function:

∂J
∂aj

=
∂

∂aj
(yj − aj)2 = 2(aj − yj) (3.16)

With yj being the label attached to aj. For a mean absolute error cost function, the
gradient would be:

∂J
∂aj

=
∂

∂aj
|yj − aj| =

{
−1 yj > aj

+1 yj < aj
(3.17)

Similarly to the ReLU activation function, software implementations of this gradi-
ent do not maintain its undefinedness when yj = aj, and instead return a value
of 1, 0, or -1. Finally, the gradient corresponding to binary cross-entropy can be
found to be:

∂J
∂aj

= − ∂

∂aj
(yj log aj + (1− yj) log

(
1− aj

)
) = −

yj

aj
+

1− yj

1− aj
(3.18)

These expressions have been developed assuming that the unit j belongs to the
output layer. If j is instead set to belong in an arbitrary layer, this derivation is
less straightforward. Every gradient in Equation 3.11 remains the same except for
∂J/∂aj. To derive it, consider first the cost function J(aj) to be a function of every
neuron belonging to the next layer (L + 1) that is connected to j. The gradient of
J is then given by the total derivative of the cost function with respect to each of
these neurons.

∂J
∂aj

= ∑
l∈L+1

Ä ∂J
∂al

∂al

∂xl

∂xl

∂aj

ä
= ∑

l∈L+1

Ä ∂J
∂al

∂al

∂xl
wjl

ä
(3.19)

The gradient ∂al/∂xl depends on the activation function of neuron l, and can be
found as developed above. Equation 3.19 means that the gradient ∂J/∂al can be
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found assuming that the gradients have already been obtained for every neuron
in the layer immediately closer to the output. This is where the algorithm gets
its name from, as gradients propagate backwards from the network’s output layer
towards its input.

At this point, every gradient on the right-hand side of Equation 3.11 can be found
for any layer in a fully connected ANN, and thus the goal of the algorithm—the
partial derivative of the cost function with respect to each weight—can be obtained.
To obtain this gradient with respect to a bias instead of a weight, only a simple
change must be applied to Equation 3.11, resulting in:

∂J
∂bj

=
∂xj

∂bj

∂aj

∂xj

∂J
∂aj

(3.20)

Where the only different gradient on the right-hand side is:

∂xj

∂bj
=

∂

∂bj

Ä n

∑
k=1

wkjak + bj

ä
=

∂

∂bj
(bj) = 1 (3.21)

Combining these expressions, the values of the complete gradient vector ∇J(θ)
can be computed. This gradient can then be used in an optimization algorithm
to update the weights and biases of the ANN in a way that decreases cost. In a
general way, the back-propagation algorithm can be summarized as:

Algorithm 1: The back-propagation algorithm for a fully-connected ANN.

Require: ANN parameters at iteration k, θk.
Require: Number of ANN layers NL.
Require: Activation functions g of each unit.
Require: Cost function J.
Require: Batch of training input data z and its attached labels y.
Compute the neural network’s predictions ŷ from θk, g, and z.
Evaluate the loss attached to the batch using J, y, and ŷ.
Initialize a layer counter l = NL.
while l > 0 do

Compute the gradients of the cost function with respect to each
parameter in layer l: ∇k

l J(θk).
Move one layer closer to the input: l = l − 1.

end
return ∇k J(θk), the gradients attached to every parameter in the ANN.
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3.4 Optimization algorithms

Once every gradient is known for a given training iteration, an optimization algo-
rithm must be used to update the parameters of the neural network. For example,
using a simple steepest descent algorithm, the parameter update step would be:

θk+1 = θk − η∇k J(θk) (3.22)

Typically, the optimization—training—of a neural network is performed on batches
of data. This means that the true gradient ∇k J(θk is often unknown, and is instead
estimated for each batch. Using all the available training data at once in every
training step would result in an accurate calculation of the gradient vector, but this
is often undesirable. By using smaller batches of data, a certain degree of ran-
domness is introduced in the training process, which in many cases prevents the
optimization process from stopping at globally high local minima. It is important,
however, that the estimate of the gradient remains unbiased: for this reason, the
samples used in each batch should be chosen randomly. For this reason, optimiza-
tion algorithms applied in this context become stochastic.

In general, the larger the batch size, the faster the training, as fewer steps of the
back-propagation and optimization algorithms need to be computed. On the other
hand, smaller batch sizes introduce more stochasticity to the process, which can
lead to convergence to better cost function minima.

Steepest descent becomes mini-batch stochastic gradient descent, or stochastic gra-
dient descent (SGD) for short. Pseudo-code for this is provided in Algorithm 2
[26].

Algorithm 2: Stochastic gradient descent (SGD)
Require: Learning rate η.
Require: Initial parameters θ.
while stopping criterion not met do

Sample a batch of m examples from the training set {x1, . . . , xm} with
their corresponding targets {y1, . . . , ym}.

Compute gradient estimate ĝ using the back-propagation algorithm.
Apply update: θ = θ− ηĝ.

end

As convergence criteria can be hard to define in the context of ANN training,
stopping criteria are usually defined in terms of the number of iterations to be
performed. As this number typically takes on very large values, iterations are
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commonly grouped in epochs, which are defined as the optimization process with
sampling in batches of all of the available training data a single time.

The main challenge present in using stochastic gradient descent is tuning the learn-
ing rate parameter η. The learning rate must be a positive scalar, as decreasing the
value of the cost function requires updating the parameters of the network in the
direction opposite to the one given by the gradient vector. It should also be smaller
than one, as otherwise gradients would tend to become indefinitely large. More-
over, a single scalar learning rate might be too simplistic for many situations, as
cost is often highly sensitive to changes in some directions of the parameter space,
and highly insensitive to others.

This type of algorithms commonly follow a simple underlying rule: if the partial
derivative of the loss with respect to a parameter maintains the same sign during
consecutive iterations, its attached learning rate should increase; if it changes sign,
the learning rate should decrease.

Algorithm 3: The Adam algorithm [27]
Require: Learning rate ε (suggested default: 0.001).
Require: Exponential decay rates for moment estimates, ρ1 and ρ2

(suggested defaults: 0.9 and 0.999 respectively).
Require: Small constant δ, for numerical stabilization.
Require: Initial parameters θ.
Initialize 1st and 2nd moment variables s = 0, r = 0.
Initialize time step k = 0.
while stopping criterion not met do

Sample a batch of m examples from the training set {x1, . . . , xm} with
their corresponding targets {y1, . . . , ym}.

Compute gradient estimate ĝ using the back-propagation algorithm.
k← k + 1.
Update biased first moment estimate: s← ρ1s + (1− ρ1)ĝ.
Update biased second moment estimate: r← ρ2r + (1− ρ2)ĝ� ĝ.
Correct bias in first moment: ŝ← s

1−ρk
1
.

Correct bias in second moment: r̂← r
1−ρk

2
.

Compute update: ∆θ← −ε ŝ
δ+
√

r̂
(element-wise operations).

Apply update: θ← θ+ ∆θ.
end

A wide range of adaptive learning rate algorithms have been proposed and ap-
plied successfully to the training of ANNs, with some algorithms outperforming
others in different situations. Some of the most popular optimization algorithms
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actively in use are SGD with and without momentum, RMSProp with and without
momentum, AdaDelta, and Adam; but there is no consensus on whether a sin-
gle best algorithm exists [26]. Typically, SGD allows ANNs to converge to better
optimum points than other algorithms, provided that the choice of learning rate
and batch size is sufficiently adequate. However, since SGD keeps its learning rate
constant, it is also among the slowest algorithms to converge, requiring a much
larger number of iterations than adaptive learning rate algorithms. Adam [27],
one such algorithm, is among the fastest, while also providing good performance
and requiring little hyperparameter tuning. Pseudocode for Adam is provided in
Algorithm 3.

Adam incorporates both first and second moment estimates. The first order mo-
ment is obtained by accumulating the gradient estimate ĝ in an exponentially de-
caying rate. The second moment is calculated in a similar manner, but using ĝ� ĝ,
i.e. the element-wise square of the gradient vector. Using the suggested default
parameters, much more weight is given to the previous value of the moment esti-
mates than to the gradient terms, especially for the second moment. This allows
their values to remain more stable and less sensitive to sharp gradient changes.

These moment estimates are bias-corrected, to account for their initialization at
zero. The parameter update is calculated as the ratio between the first moment
estimate and the square root of the second, with a small constant δ included to
prevent division by zero.

3.5 Recurrent neural networks

Recurrent neural networks, or RNNs, are a family of neural networks specialized
for sequential data processing. They are based on one of the early ideas found in
machine learning and statistical models of the 1980s: sharing parameters across
different parts of a model [26]. Recurrent networks can also process sequences
of variable length, by being able to account for both time-dependent and time-
independent relationships in data. As such, they have been successfully used in
time-series modeling and in language processing.

The application of RNNs to language processing can be used to illustrate the ad-
vantages that this type of neural network provides over the simpler feedforward
ANNs described up to this point. As an example, consider the two sentences "I
moved to Denmark in 2018" and "In 2018, I moved to Denmark". If a machine learn-
ing model is trained to extract the year in which the narrator moved to Denmark,
2018 should be recognized regardless of its position. A traditional fully-connected
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Figure 3.7: Comparison between how fully-connected ANNs and RNNs treat data.

feedforward network would have separate parameters for each position in the se-
quence of words, and so would have to learn all of the rules of the language sepa-
rately for each word input, requiring a complex internal structure. An RNN model
would instead apply the same calculations across different steps, learning to find
the desired information regardless of its position.

In the context of this project, RNNs would be able to detect changes in parameters
in a time independent-way. This means, for example, that a recurrent neural net-
work could learn to interpret a change in heat sink temperature in an equivalent
way regardless of the time in which this change occurs.

Figure 3.7 shows how fully-connected feedforward ANNs interpret data in a dif-
ferent way than recurrent neural networks do. Time series data is structured in
a three-dimensional way, following the structure (samples, time steps, features).
A fully-connected ANN requires unidimensional input data: this means that time-
series data must be flattened to have a shape (samples, time steps * features) before
it can be fed to the ANN. An RNN instead processes the data at each time step,
making use of the similarities and differences between time steps to make its pre-
dictions. In this way, each member of the output of a recurrent layer is a function
of the previous inputs, and is produced using the same update rule applied to
the previous outputs. Recurrent neural networks usually incorporate fully con-
nected layers as well as recurrent ones, to enable the model to find patterns in
time-dependent data in a more efficient way.
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3.5.1 Internal structure

The units of a recurrent layer make use of their previous values to obtain their
current state. The states h(t) of a recurrent layer at time step t can thus be generally
defined as [26]:

h(t) = f (h(t−1), x(t); θ) (3.23)

Where f is the transformation applied by the layer, a function of its previous states
h(t−1), current inputs x(t), and internal parameters θ. In order to better understand
how calculations are performed in a recurrent neural network, a computational
graph of a recurrent layer is shown in Figure 3.8.
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Figure 3.8: Unfolding the computational graph of a simple recurrent neural network.

The computational graph of Figure 3.8 shows two equivalent ways of representing
a basic recurrent layer. On the left, its structure is given in a more compact way
by making use of a delay block, shown as a black square. In this way, an input x
is mapped to the state h of the layer using a weight matrix U. This state is then
stored through another weight matrix W and the delay block. Finally, the output
o is obtained using the weight matrix V. The state h at a time step t can then be
found through:

h(t) = g(b + Wh(t−1) + Ux(t)) (3.24)

Where g is the layer’s activation function. Unfolding this graph removes the need
for a delay block. This helps illustrate the paths through which information flows
by providing a exact description of the computations to perform. The unfolded
graph can also be used to show how back-propagation is performed in a recurrent
neural network. Here, gradients are not only back-propagated from the output
to the input of the network, but also from the last time step to the first. At the
final time step τ, the gradient of the cost function J (attached to the output o) with
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respect to the current state h(τ) is given by:

∇h(τ) J = VT∇o(τ) J (3.25)

Iterations can then be performed from t = τ − 1 down to t = 1, noting that h(t)

influences both o(t) and h(t+1). Therefore:

∇h(t) J =

Ç
∂h(t+1)

∂h(t)

åT

(∇h(t+1) J) +

Ç
∂o(t)

∂h(t)

åT

(∇o(t) J) (3.26)

= WT(∇h(t+1) J)Jg + VT(∇o(t) J) (3.27)

Where Jg indicates the Jacobian matrix of the layer’s activation function at time
t + 1. For a hyperbolic tangent activation function, for example, its Jacobian would
be the diagonal matrix containing the elements 1− (h(t+1)

i )2, where i indicates each
hidden unit of the layer. The rest of the gradients can then be computed using the
same back-propagation algorithm used for deep fully-connected networks.

This simple formulation of a recurrent layer has an important shortcoming in the
form of the vanishing gradient problem. The more layers a fully-connected net-
work has, the more prone to vanish are its gradients, as gradients close to the
input are scaled down by the ones in outer layers. In an analogous way, for a
simple recurrent layer, gradients close to the initial time step of a series are scaled
down by the ones in later steps, resulting in them tending to vanish. For this rea-
son, the simple layer shown in Figure 3.8 is very hard to train for long sequences,
and would rarely be applied in practice.

3.5.2 Long short-term memory layers

To mitigate this problem, Hochreiter and Schmidhuber presented the long short-
term memory (LSTM) model [28], which has since been found to be very successful
in many applications. The core idea behind this type of layer is to introduce ad-
ditional self-loops through which gradients can flow over long durations. This is
implemented by making use of an additional internal loop besides the one de-
scribed for a simple recurrent layer. The flow of information within each LSTM
cell is controlled by a forget gate, an input gate, and an output gate, which allow
gradients attached to relevant information to remain stored in the cell for longer
times by removing unnecessary information.

A block diagram of an LSTM cell is shown in Figure 3.9. Each sigmoid (σ) and
hyperbolic tangent (tanh) block have a weight matrix and bias vector attached to
them, applied to their input before the corresponding nonlinear transformation.
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Figure 3.9: Internal structure of an LSTM cell at time step t.

These parameters are learnt through back-propagation in the same way as those
belonging to other layers.

The inputs of the cell i at time t are the current layer input vector x(t)
i , the previous

hidden layer vector h(t−1)
i , and the previous state vector s(t−1)

i ; while its outputs
are the current hidden layer vector h(t)

i and state vector s(t)
i . Initially, x(t)

i and h(t−1)
i

are concatenated and used as the inputs of the three gates of the cell: the forget
gate (with output f(t)

i ), the input gate (i(t)
i ), and the output gate (o(t)

i ). Each of this
gates applies a sigmoid operation to force the values of its output vector to range
between 0 and 1. In this way, element-wise multiplication involving these vectors
results in a scaling that is able to remove information (multiplying by 0) or preserve
it. During training, the weights associated to each gate will converge to values that
result in relevant information being favored over time and irrelevant information
being discarded.

The forget gate controls which information from the previous cell state is conserved
into the current one, based on the previous hidden layer vector and the current
input vector. The input gate determines how the previous hidden layer vector
and current input vector are stored into the current state. Finally, the output layer
uses this same information to determine which information from the current state
vector will constitute the current hidden layer vector.

By adding these gating operations, LSTM cells are able to maintain the flow of rel-
evant gradients for longer times than basic recurrent layers, making their training
significantly easier and thus improving their performance. Many modifications
on the LSTM structure have been proposed in literature, usually with the goal of
simplifying the topology to obtain improvements in the training process. One such
type of cell, the gated recurrent unit (GRU) presented in 2014 [29] appears to be
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gaining interest, as it is often able to reach comparable results to LSTM with lower
training requirements.



Chapter 4

Implementation

Having provided a basic theoretical framework for the considered drive system
and for general neural network models, this chapter aims to describe the process
followed to implement the proposed condition monitoring schemes. Its first section
describes the steps taken for data collection and processing, followed by details on
the two main considered AI approaches: developing a surrogate model of the
cooling system and directly predicting the health status of the system.

4.1 Data acquisition

Experimental tests were carried out at the Danfoss facilities in Gråsten, Denmark,
in order to collect data from a physical drive setup for use in this project. The
testing setup consisted of an induction motor with the following nominal specifi-
cations:

• Input voltage (three-phase, rms): 400 V.

• Input current (three-phase, rms): 8.6 A.

• Line frequency: 50 Hz.

• Mechanical power: 4 kW.

• Torque: 26 Nm.

• Speed: 1475 rpm.

39



40 Chapter 4. Implementation

This motor was powered by a Danfoss VLT®FC302 drive, with the following spec-
ifications:

• Output power: 4 kW.

• Maximum output current (three-phase, rms): 16 A.

• Nominal output current (three-phase, rms): 10 A.

• Nominal switching frequency: 4 kHz.

Figure 4.1: Photograph of the FC302 drive as used in experiments.

The load torque of the driven motor is provided by another electrical machine. The
drive is placed in a cooling chamber in order to monitor and control its ambient
temperature. It is connected to a computer through an FS-485 converter, and moni-
tored using the Danfoss VLT®Motion Control Tool (MCT 10) software. The default
sensors of the drive provide readings of internal heat sink temperature and control
card temperature. Additional temperature sensors were installed in the drive to
measure the temperatures of inlet air, outlet air, and the exterior of the heat sink.
The other signals selected for logging are measured switching frequency, output
power, output voltage, output current, motor torque, and motor speed. Addition-
ally, the default software of the control card was modified to allow for access to fan
speed reference readings. The physical drive setup is shown in Figure 4.1.
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The recorded data of the drive is uploaded in real time to the Danfoss Drive-
Pro®Remote Monitoring cloud, from where it can be accessed online. Data can
be accessed manually by logging into the platform and downloading the desired
variables as comma-separated values (.csv) files. Alternatively, the representational
state transfer application programming interface (REST API) can be used to access
the data programmatically using the HTTP protocol. In Python, this can be done
using the Requests library [30]. Each parameter logged in the cloud is attached to a
unique datanode, which can be used in calls to the HTTP request get method. The
get method then returns a JavaScript Object Notation (.json) file that can be parsed
using the json Python library [31], and converted to a DataFrame object using the
pandas library [32]. Formatting the data as DataFrames objects provides access to
many efficient methods for data processing and analysis.

4.1.1 Design of experiments

Experimental setpoints were defined as combinations of some of the available vari-
ables, within the operating limits of the drive and motor:

• Motor speed: 1350 rpm, 1500 rpm.

• Ambient temperature (cooling chamber): 22°C, 30°C.

• Load torque: 0 Nm, 5 Nm, 24 Nm.

• Switching frequency: 4 kHz, 10 kHz.

• Simulated degraded conditions: replicating dust accumulation by placing
cotton on the heat sink, and partially blocking the air passage of the cooling
system. If feasible, some tests can also be performed after removing one or
several of the fan blades. An image of the drive with a partially blocked air
passage is shown in Figure 4.2.

A total of 16 tests were planned to be performed for healthy operation and 16
more for degraded operation, under simulated faulty conditions. This, however,
ended up not being feasible. Each test requires around 10 minutes to reach ther-
mal steady-state equilibrium. Sampling is performed at a frequency of 1 Hz, and
timestamps for the beginning and the end of every test are recorded to be used
for accessing the data. Sampling frequency is chosen in such a way that temper-
ature transients are adequately represented in the recorded data, without placing
much emphasis on electrical and mechanical transients, which are typically much
faster. As the employed temperature sensors have a sensitivity of 1°C, not much
information would be gained from increasing the sampling frequency.
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Figure 4.2: Photograph of the FC302 drive with a partially blocked (slightly under 50%) air passage.

Due to practical limitations, it was not possible to complete all the desired tests
within the available time frame of this project. The recorded experiments are thus
limited to a single type of fault (50% blocked air intake). The testing points were
also modified from the original design, including a wider range of motor speeds,
switching frequencies, and torque loads for healthy operation of the drive. Table
4.1 shows the varying parameters of each recorded test.

The recording of measurements is affected by computational delays that make the
sampling somewhat unreliable. As such, the different measured variables are each
recorded at slightly differing times, with sampling frequencies slightly above or
below 1 Hz. To account for this, the experimental data series are interpolated to
estimate the values of each variable at exact periods of one second.

4.1.2 Data preprocessing

To visualize the shape of the temperature measurements, the recorded values for
two tests are plotted in Figure 4.3. For the degraded test, the air passage of the
setup was blocked by 50%. Both tests were performed at a motor speed of 1350 rpm
and torque of 24 Nm. The healthy test was carried out at a switching frequency of
8 kHz, while the degraded one had its switching frequency reduced to 7 kHz.

The figure shows that heat sink internal (in blue) and external (in green) temper-
atures are very strongly correlated: their Pearson correlation coefficient is over



4.1. Data acquisition 43

Test no. Fault type
Motor speed

(rpm)

Switching
frequency

(kHz)

Torque load
(Nm)

Chamber
temperature

(°C)

1 None 1500 10 0 to 24 22
2 None 1500 4 24 to 0 22
3 None 1350 10 24 22
4 None 0 0 0 22
5 None 1500 10 12 22
6 None 1500 10 17 22
7 None 1100 10 17 22
8 None 1100 6 0 22
9 None 1500 6 0 30
10 None 1500 10 24 30
11 None 1500 4 24 30
12 None 1500 10 17 30
13 None 1500 10 7 30
14 None 1350 10 24 30
15 None 1350 10 17 30
16 50% block 1500 10 0 22
17 50% block 1500 7 24 22
18 50% block 1500 4 24 22
19 50% block 0 0 0 22
20 50% block 1350 7 24 22

Table 4.1: Setpoints of each recorded experimental test.

99% in both experiments. This high level of correlation indicates that, at least
for these two experiments, the added external heat sink sensor does not provide
much additional information on the behavior of the system. However, this addi-
tional measurement could prove very useful to monitor cases where the heat sink
thermal interface material is degraded, as internal heat sink temperature would
increase while external temperature would remain at a similar or lower level. As
expected, these temperatures follow a negative exponential curve, reaching steady-
state equilibrium at typical values between 45°C and 55°C, with internal heat sink
temperatures always staying above external ones.

Control card temperature spikes at the very beginning of operation, where com-
putational load is at its highest, and then decays to equilibrium. For these two
examples, steady-state control card temperature was higher in the degraded test.
As expected, air inlet temperature remains practically constant at the controlled
temperature of 22°C. Air outlet temperature stays a few degrees higher, and also
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appears to remain higher in the degraded test than in the healthy test.
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Figure 4.3: Temperature measurements over the course of two experimental tests.

From these two examples, it would appear that distinguishing between degraded
and healthy operation should be quite straightforward: it would be enough to
compare steady-state temperature measurements, as their values are higher in de-
graded operation than in healthy operation (except for air inlet temperature, which
is expected to remain mostly constant). However, this would be an erroneous con-
clusion.

The temperatures of the drive are subject to many variables besides the condition
of the cooling system: for example, an increase in load would also result in an
increase in drive power losses and thus in temperature—a degraded system with
a lower load could show similar temperature profiles to a healthy system with a
higher load.

This illustrates the need for more complete data. A larger number of variables
made available to the condition monitoring algorithm would improve its ability to
separate the effects on system performance due to degradation from those caused
by other sources. To obtain a reliable monitoring scheme, it is also fundamental to
record data under many possible operating conditions: the more data that is made
available to train the AI algorithm, the better its predictions will be.

Figure 4.4 shows other variables recorded during the same two experiments shown
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in Figure 4.3, with blue lines corresponding to the healthy experiment and orange
ones to the degraded one.
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Figure 4.4: Plots of several recorded variables over the course of two experimental tests.

The speed reference of the cooling fan is given as the ratio between its reference
and maximum speeds. The shape of this variable suggests that this control sig-
nal is proportional to the heat sink temperature measurements, with the cooling
fan running faster at higher temperatures. Switching frequency remains at 8 kHz
during the healthy test and at 7 kHz during the degraded one. In steady-state, the
rest of the shown variables remain constant and at practically equal values for both
tests.

The total list of recorded measurements for use in the training of ANN models is as
follows: internal heat sink temperature (°C), external heat sink temperature (°C),
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control card temperature (°C), air inlet temperature (°C), air outlet temperature
(°C), switching frequency (Hz), fan speed reference (ratio), motor power (W), motor
voltage (V, RMS), motor current (A, RMS), motor torque (Nm), motor speed (rpm),
DC link voltage (V).

To maximize the performance of the condition monitoring algorithm, training data
should not be provided as individual data points, as trends and rates of change of
the recorded variables and their possible combinations might be relevant to assess
the condition of the system. As an example, single sampling points taken during
transient periods will likely not provide enough information to make predictions,
while rates of change of temperature will probably prove to be relevant indicators.
It is important to keep in mind, however, that neural network models are usually
not easily interpretable, as the operations they perform are large combinations
of nonlinear mappings. Therefore, although speculations can be made on which
features the AI scheme could find to be relevant, it will often be impossible to
interpret the transformations learnt by neural network models.

To preserve the time-dependant nature of the data while maximizing the number of
training samples obtained from experimental tests, the recorded measurements are
converted into smaller series of samples. A typical recorded test lasts for around 15
minutes, until the system reaches thermal equilibrium, although each individual
test was recorded for somewhat different durations. At a sampling frequency of
1 Hz, this translates to around 900 data points per test. Such a data set would be
converted, for example, into a set of 850 series with a length of 50 samples each.
On the one hand, series made to contain more samples contain more information,
which the AI model would in principle use to make more accurate predictions. On
the other hand, increasing this length results in computationally more expensive—
and therefore harder to train—models. If the obtained models were to be deployed
in an embedded processor, memory requirements would also potentially limit the
number of data samples that could be fed into the model at each execution step.

When training artificial neural networks, these sets of time series can either remain
in a three-dimensional structure of the form (samples, time steps, features) if they
are to be used to train a recurrent neural network, or they can be flattened into a
two-dimensional structure of the form (samples, time steps * features) for training
fully-connected feedforward networks. Rather than conserving every sample dur-
ing the flattening process, principal component analysis can be applied to reduce
the size of the data while retaining its most relevant features.
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4.2 The surrogate model approach

The first considered approach aims to develop a model that mimics the behavior
of the healthy cooling system as accurately as possible without being too compu-
tationally expensive. The main advantage of this approach is that less data is re-
quired for faulty operation, which means that most measurements can be obtained
from healthy drives without affecting their performance. Some measurement data
obtained from unhealthy drives is still required to adequately tune the evaluation
scheme.

By predicting one or several of the system states and comparing these predictions
to their corresponding measurements, the health of the system can be evaluated.
Ideally, if the measured data comes from healthy operation, predictions should
remain close to measurements. However, since the model is trained to represent
only healthy operation, large deviations can mean that the measurements reflect
degradation or faults in the cooling system.

The system state to be monitored through this surrogate model is selected to be
the internal heat sink temperature, since it appears to experience the most varia-
tions due to system health condition, as shown in the previous section. Fan speed
reference ratio could be another adequate health monitoring variable, but internal
heat sink temperature has the added advantage that its readings are already mon-
itored by default in Danfoss FC302 drives, and are accessible without any software
modifications.

Once the healthy surrogate model has been obtained, it should be used to make
predictions on both healthy and unhealthy data in order to tune the three main
parameters of the scheme:

• Prediction horizon: how far into the future the model makes its predictions.
If the surrogate model is accurate a large prediction horizon may be desir-
able. Changes in the states of the system will tend to accumulate over time,
meaning that differences between predictions and faulty measurements will
be amplified. On the other hand, too large a prediction horizon may make
the predictions unreliable, as the conditions of the drive would be more likely
to change in the period between every prediction and its corresponding mea-
surement.

• Difference threshold: how far apart a prediction and its corresponding mea-
surement should be for their difference to be considered significant. Increas-
ing this threshold will result in the system being less sensitive to small varia-
tions, resulting in fewer false positives (classifying healthy measurements as
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faulty) but also increasing the number of false negatives (classifying faulty
measurements as healthy).

• Prediction time window: how many individual predictions deviating from
their measurements are required to conclude that the health of the system is
degraded. If a single deviation was considered sufficient to conclude degra-
dation, outlier measurements resulting from transients such as load changes
could be incorrectly classified as faults. Therefore, a more reliable approach
is to define a window of a certain number of time periods in which a certain
proportion of data points must be considered to be degraded. The time win-
dow should be long enough to prevent transients corresponding to nominal
operation from being classified as faulty.
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Figure 4.5: Example of the use of a heat sink temperature surrogate model, illustrating some of the
parameters to be tuned for its use in condition monitoring.

Figure 4.5 aims to illustrate what these parameters stand for in the condition moni-
toring scheme, as well as to provide an example showing how the surrogate model-
based condition monitoring scheme may work in practice. In this example, the
model is called at sampling period 5, where it receives information from the previ-
ous five periods. In the figure, only internal heat sink temperature is shown, but in
reality the other recorded parameters would also be given as inputs to the model.
Using this information, the model generates a prediction for the value of heat sink
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temperature at some point in the future. The prediction horizon determines how
far ahead into the future this prediction is made for: in the plot, this parameter is
set to have a value of 5 periods.

At sampling period 10, the predicted value is compared to its corresponding tem-
perature measurement. The difference threshold is used here to assess whether
the difference between these two values can be considered to be significant: if this
difference lies over the threshold, the system would conclude that, for this single
sample, the system is not behaving as it would be expected if it were in a healthy
condition. However, this would not be enough information to conclude that the
system is really degraded, as measurement errors and other outliers could result in
a healthy system performing unexpectedly at single points. This motivates the use
of a prediction time window, determining how many single measurements have to
exceed their prediction difference threshold for a conclusion on the global health
of the system to be made.

4.2.1 Model design and training

The surrogate model was trained to predict heat sink temperature 3 minutes ahead
in time (180 samples ahead) using as inputs the measurements obtained in the
last 10 seconds (10 samples). The model is defined as a fully-connected ANN
consisting of three middle layers formed by 60, 40, and 20 neurons, respectively,
each making use of the ReLU activation function. This configuration appears to
result in accurate predictions without leading to overfitting. The output of the
model is defined as a single unit with a linear activation. Attempts were made to
train recurrent models based on LSTM layers, but the available data appears to not
be extensive enough to adequately train these significantly more complex models.
Therefore, their performance was worse than that of the simpler fully-connected
networks.

Training was performed using the Adam optimizer, with its default learning rate
ε = 0.001, decay rates ρ1 = 0.9 and ρ2 = 0.999, and numerical stability constant
δ = 10−7. The cost function used for training is mean squared error, with mean
absolute error also being recorded for further analysis.

The model was trained on data from tests 1 to 15 as shown in Table 4.1, which
correspond to healthy operation of the drive cooling system. The data obtained
from one or several of these experimental tests was removed from the training data
set, and instead used for model testing. The processed data series were separated
into two sets, training and validation, with the training set consisting on 70% of
the available data and the validation set consisting on the remaining 30%. In total,
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around 12000 samples were used for training and validation, depending on which
experiment/s were removed from the set for use in testing. Each of these samples
consists of a single label point, the heat sink temperature to be predicted, and of
the measurements of the available variables in the corresponding 10 period series.

Only the data belonging to the training set is used to adjust the weights and bi-
ases of the neural network. Predictions on the validation set are evaluated in each
training epoch, to ensure that the model is not overfitting to the training data and
therefore unable to generalize to new data points. The most common way to diag-
nose overfitting is to check that validation and training errors remain close together
during training: a spike in validation error with a low training error will usually
mean that overfitting is occurring. In this way, however, the samples belonging
to the validation set also belong to experimental tests that are represented in the
training test. This is where the testing data set finds its use, to guarantee that the
model can generalize to experimental tests for which none of its data has been
included in the training process.

These design choices were mostly based on trial and error, as there is no completely
reliable method to maximize the performance of neural networks. The main crite-
rion for designing the layers of the model is to minimize error on the training and
validation data sets while avoiding overfitting: a more complex model would be
able to learn more and more complex relationships in the data, but would also be
more prone to overfitting. The training process is very reliant on the quantity and
quality of the available data—a more complex model requires more data for adjust-
ing its internal parameters, and to avoid overfitting, this data should be adequately
spread out over the design space.

The stochastic nature of the training process means that training the same network
with the same data for several times will always result in different models; de-
pending on the aggressiveness of the training, possibly with very different results.
This makes fine-tuning the structure of the model even more unreliable, as a model
may appear to be better fit to a task due to its stochastic training process rather
than because of the model itself.

The number of measurement periods to be used as model inputs and the prediction
horizon of the model were chosen in a similar way: the selected values appeared to
result in adequate predictions without rendering the task trivial, as would happen
if the prediction horizon was made too short. In this case, the model would be
able to make accurate predictions on both healthy and degraded data, as changes
in temperature would be minimal in the considered time frame.

Figure 4.6 shows a performance metric (mean absolute error) over the training
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Figure 4.6: Training process for a temperature predictor surrogate model.

process, for both the training and validation data sets. Error tends to converge in
about 50 epochs to values below 0.8 °C. The graph also shows how the stochasticity
of the training process affects model performance, as oscillations are present in the
error attached to both data sets. Overfitting does not appear to occur in this case,
as validation error remains close to training error for the whole period.

4.2.2 Results

Figure 4.7 shows the results that can be obtained using the trained surrogate model.
The graphs show the measured heat sink temperatures over the course of two ex-
perimental tests, as well as their corresponding predictions made by the ANN
model. Predictions only start 3 minutes into the recorded data, as that is the se-
lected prediction horizon.

Neither test had any of its data included in the training or validation data set: the
model has not been exposed to either one during its training. As expected, the
surrogate model is able to make more accurate temperature predictions for the
healthy data set than for the degraded one, where it consistently predicts lower
temperatures than their corresponding measurements. This can be interpreted as
the model making predictions on how it would expect the system to behave if it
was in a healthy condition, so it seems logical that a healthy system would be able
to achieve lower heat sink temperatures under the same operating conditions.

For the healthy example, the prediction mean absolute error has a value of approx-
imately 0.30 °C, while for the faulty one this value goes up to 1.66 °C. Distinguish-
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Figure 4.7: Comparison between the predictions made by the surrogate model on a healthy and a
degraded test.

ing the health status of the two samples is then, for these two examples, relatively
straightforward. A valid option would be to consider a difference threshold of 1 °C
of absolute error and a prediction time window of 10 minutes, during which most
temperature measurements of the degraded system would exceed the threshold.
On more global terms, over the complete data set of degraded tests, mean absolute
error has a value of 1.19 °C.

Rather than defining the difference threshold in terms of absolute error, squared er-
ror is likely to be a more appropriate metric in this context, as it amplifies absolute
deviations of over 1 °C and reduces deviations of less than 1 °C. With this metric,
error goes down to 0.16 for the healthy test, and up to 2.03 for the degraded data
set, which suggests that squared error facilitates the distinction between operation
modes.

Figure 4.8 illustrates the existing trade-off when tuning the difference threshold.
The figure graphs the proportion of healthy samples that fall within the bounds
defined by the threshold (and are therefore correctly classified as healthy), as well
as the proportion of degraded samples that fall outside of these bounds (and are
then correctly classified as degraded). For each data set, plots are provided for
threshold definitions using both absolute and squared error. An ideal classification
scheme would have at least one value of the difference threshold where both the
degraded and healthy data sets had a correct classification proportion of 1; which
is not the case here. An important caveat of the shown graph is that part of the
healthy data has previously been used in training the model, and may therefore
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Figure 4.8: Number of samples within the degraded data set exceeding different values of the dif-
ference threshold, and samples within the healthy data set that fall underneath this same threshold.
Curves are shown for thresholds defined using absolute and squared error.

present a misleadingly high proportion of correctly classified samples.

A larger value of the difference threshold means that more degraded samples are
classified correctly, but it also means that more healthy samples are classified in-
correctly. The values of difference thresholds that maximize both proportions are
located at the intersections of the curves: at around 0.7 for absolute error and 0.5
for squared error. At this point, around 90% of samples are correctly classified.
However, this might not always be the goal the scheme: in a practical application,
it may be more desirable to minimize the classification of healthy measurements
as degraded, in which case a higher threshold can be selected.

4.3 The health indicator approach

The second considered approach is to train a model that is able to predict the values
of a previously defined health indicator by making use of available data measure-
ments. As introduced in Chapter 2, the most common approach to develop this
health indicator involves processing the available data into synthetic features that
can be used to distinguish degraded from healthy performance in the analyzed
system. These synthetic features can then be combined into a single health indi-
cator using some distance metric, such as Mahalanobis distance, to increase the
reliability of the monitoring scheme.

This approach has proven very successful in monitoring the condition of cooling
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fans, typically through the analysis of fan vibration data sampled at a high fre-
quency. Time-frequency analysis of this data using the wavelet transform allows
for reliable assessment of the health status of the cooling fan.

In this project, however, the available data is of a quite different nature; it does not
include any measurements with periodic oscillations and its sampling frequency
is lower. This means that frequency and time-frequency analysis of the data does
not result in synthetic features that add meaningful information for health moni-
toring. Instead, the condition of the system must be assessed by analyzing broader
trends and interactions between the available variables. This is the main motiva-
tion behind the use of artificial neural networks: the simple parallel structure of
these algorithms allows them to efficiently process large amounts of input data,
while automatically finding nonlinear combinations of features that can be used to
predict the condition of the system.

4.3.1 Model design and training

Figure 4.9 shows the main metrics obtained in the training process of a classifier
to predict the binary health status of each available experimental test. Its y-axis
represents both prediction accuracy and binary cross-entropy loss. In a similar
way to what was done for the surrogate model, measurements from several exper-
iments were excluded from the training and validation data sets. The input data
of the neural network was also defined as batches of 10 consecutive measurement
samples. The trained model was made to be simpler than that of the temperature
predictor: it consists of two hidden layers of 10 and 5 units, and an output layer
with a sigmoid activation. Since the task to be performed by the model is binary
classification, this activation function is equivalent to the softmax function, which
is typically used in multi-class classification.

The available data set is not a balanced one: it contains many more healthy samples
than degraded ones. This explains why at the beginning of the training process
the accuracy of the model was already over 80%. When training the model using
ReLU activation functions in its hidden layers, the model tended to get stuck by
finding a simple solution to the problem: it could achieve a relatively high accu-
racy by always predicting a healthy result. ReLU functions get saturated on their
flat side, resulting in null gradients and preventing further training. This prob-
lem was solved by substituting the ReLU functions by one of their modifications,
leaky ReLU, which maintains a small positive slope (0.1) on the negative side of
its horizontal axis. This function prevents gradients from getting stuck at 0 while
still presenting many of the desirable properties of the ReLU function. Substitut-
ing the ReLU layers by sigmoid or hyperbolic tangent functions also mitigates this
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Figure 4.9: Training process for a health status classifier model.

problem, but their vanishing gradients result in slower training.

This problem is partially caused by the imbalance in the labels of the data set.
Rather than modifying the model to better fit this data, data augmentation could
have been used to improve this balance.

Training was also performed using the Adam optimizer with its default parame-
ters, with categorical cross-entropy as its cost function and recording training and
validation accuracy for analysis. These are the parameters shown in Figure 4.9:
training and validation accuracy reach values of almost 1 relatively fast, and losses
also decay quickly. There also appears to be no overfitting, as loss and accuracy
maintain similar values during every epoch.

4.3.2 Results

On the testing data set, however, results paint a different picture: the model often
predicts the wrong answer for whole experiments, and it does so with very high
confidence. This suggests that the ANN has learnt to find the simplest patterns
to make a binary prediction, and to always make predictions with a high confi-
dence (with output values close to either 1 or 0). The model is therefore unable to
generalize its predictions to tests that it has not been previously shown.

To understand how this is happening, it may be useful to visualize how a human
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could approach this classification task in a simple way. Following Table 4.1 one
may observe, for example, that a switching frequency of 6 kHz always means
that the cooling system is healthy, although this is of course not true outside of
this very reduced context. In this way, each combination of parameters could
simply be memorized, rather than making predictions based on observations of
temperature profiles according to the other relevant conditions. This is not an
exact representation of how neural networks make predictions, but it may serve
illustrate what can be amiss here.

A common solution to overfitting, to attempt to force the model to make general-
izations, is to reduce the complexity of the model, which prevents the model from
"memorizing" the specifics of its training data. In this case, the neural network was
reduced down to a simple perceptron—a neural network containing only an input
layer and a single output neuron—but the same situation persisted. A support vec-
tor machine (SVM) was trained using the same data. Again, however, the classifier
model was unable to extrapolate to tests not included in its training data set.

Another approach to force the model to learn generalizations is to remove vari-
ables from its input space. This was attempted by removing inputs down to only
temperature profiles. However, the obtained results suggest that once the number
of input variables is made small enough, the model becomes unable to make reli-
able predictions and instead finds a local minimum of the cost function by always
predicting that the system is healthy. It appears that with the available data, the
classifier either "memorizes" parameter combinations that seem to correlate with
the health status or is unable to make reliable predictions.

The remaining conclusion is, therefore, that the available data set is not rich enough
to be used in this classification scheme. If experimental tests could be extended to
include a wider range of operating conditions and different types of faults, the
classification method may result in successful results.
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Discussion

This chapter aims to summarize the main issues encountered during the develop-
ment of this project, discussing the reasoning behind the decisions taken to over-
come them. Furthermore, it is intended to provide commentary on the obtained
results and findings.

5.1 Modeling

Rather than attempting to develop a mathematical model of the drive and its cool-
ing system from scratch, the modeling process was based on the Simscape library
included in Simulink. This library has the main advantages of covering a wide
range of physical system domains and being well documented. This documen-
tation [33] often includes mathematical descriptions of its blocks, as well as their
corresponding references, some of which have also been used in Chapter 2 of the
present report. These sources have proven very useful in bridging the author’s
gaps in knowledge regarding thermal systems and fluid dynamics.

The complete drive system is quite complex: it comprises many interconnected
elements belonging to different physical domains, which made its modeling quite
challenging. Many simplifications were made, especially regarding the control
scheme of the drive. Some other assumptions made during modeling were con-
sidering load torque and cooling fan dynamics ideal, as well as simplifying the
interactions between the heat sink and the cooling air flow. Many variables, such
as switching losses, were modeled as comparatively simple look-up tables.

Despite all of these simplifications, the simulation model still turned out to be
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significantly complex, and required very long simulation times. On a laptop with a
3.5 GHz Intel i5-7300HQ CPU, simulations require around 1.5 minutes of real time
for every second of simulation, even after some computational optimizations. This
is due to the fact that every electrical transient must be simulated to a large degree
of precision. Electrical and mechanical behaviors could be simplified to simpler
large-scale energy-based models to simplify calculations, but this was considered
to fall outside of the scope of this project. For the time frames required for the
system to reach thermal steady state (around 15 minutes of simulation time), every
simulation would require around 25 hours of real time.

For this reason, servers were set up in the AAU computational cloud (CLAAUDIA)
to run simulations remotely and on more powerful computers. Using the secure
shell (SSH) communication protocol, simulation files could be sent to Linux-based
systems with an existing installation of Matlab with both Simulink and Simscape,
where simulations could be run and their results sent back to any computer with
access to the server. Although this allowed for simulations to be run remotely, they
were not significantly sped up. This is due to the fact that Simulink simulations
are mostly based on sequential operations. The CPUs contained in the available
server machines mostly scale up their power by having an increased number of
cores rather than by augmenting their sequential processing speed, making paral-
lelizable computations significantly faster but not showing much improvement on
sequential ones. Therefore, simulations still required long times to be completed,
and with no guarantee that the simulation model would accurately reflect the per-
formance of the physical drive (as no experimental data was available yet), no more
effort was allocated to the simulation models.

5.2 Experimental tests

Initially, the planned time schedule for this project consisted on having the physical
drive set up from sent from the Danfoss facilities to Aalborg University. Experi-
mental tests would have been ran in the laboratory facilities of the University, to
gather a large amount of data corresponding to healthy operation and to simulated
degradation of the cooling system. Afterwards, the bulk of the project would con-
sist on the analysis of this data and the development of corresponding condition
monitoring schemes.

However, due to the COVID-19 outbreak, lockdown policies were enforced on Dan-
ish universities starting on March 13, 2020, preventing all access to their laborato-
ries. Consequently, the project’s focus had to be moved from experimental tests to
simulation models. Most of the code used for the analysis of data and the training
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of ANN models was developed based on data from simulations.

The physical drive system was then set up at the Danfoss laboratories in Grásten,
where tests were performed by Yashar Khadem Sabaz and Norbert Hanigovszki,
and their measurement data then made available to the author. However, due
to time limitations and scheduling conflicts, partly due to the measures taken by
Danfoss to prevent the spread of COVID-19, not all of the experimental tests could
be performed as initially planned.

The design of experiments was intended to cover a wide range of operating condi-
tions of the system, both for healthy and degraded operation. Degraded operation
was to be simulated by blocking the cooling air inlet at several levels, as well as
covering the heat sink with cotton and removing one or several blades from the
cooling fan. It would not have been possible to simulate the degradation of ther-
mal interface material between the heat sink and the switching devices in practice,
as this component is not easily accessible. Due to the previously mentioned limita-
tions, degradation tests could only be ran with a single type of fault, a 50% blocked
air passage, with relatively few setpoints. Most of the planned experiments for
healthy operation could be performed without any major issues.

Test setpoints were chosen according to the component specifications of the sys-
tem. Other decisions, such as the chosen sampling frequency of 1 Hz, were made
according to hardware availability and sensor resolution. Each test was ran until
the system reached thermal equilibrium, usually at between 15 and 20 minutes
from the beginning of the test.

Initially, it was intended to make use of the procedures detailed in Chapter 2 to de-
velop a health indicator to be attached to each test. For this purpose, experimental
data was imported in Matlab, for analysis using its Diagnostic Feature Designer ap-
plication. However, it became clear that standard procedures for the development
of a health indicator do not fit well to obtained data: they are typically based on
statistical and frequency analysis of data. These methods are appropriate for mea-
surements such as fan vibration data, sampled at high frequency, where Fourier
and wavelet transforms can be used to extract high frequency subsignals with
clear links to faulty operation. With the larger timeframes considered here, this
approach to develop a health indicator did not prove fruitful. Therefore, rather
than a continuous health indicator, tests were given a binary label representing
whether they were recorded in healthy or in degraded operating conditions.
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5.3 Neural networks

The artificial neural network models presented in this project were designed and
trained using the Python 3 implementation of TensorFlow, making use of the Keras
API. This environment was chosen over the neural network resources included in
Matlab due to the libraries being open-source and more widely used in the ma-
chine learning community, as well as having high-quality documentation readily
available. Python is also a more flexible environment, with many useful libraries
for data analysis, processing, and visualization.

The servers previously set up for running simulations could have been useful for
speeding up the training of neural network models, as computations performed
for this process are highly parallelizable. However, with the relatively small size
of the available data sets (usually under 15000 samples), each training epoch only
required under 5s when ran locally using GPU acceleration on an NVIDIA GTX
1050 GPU. Training an ANN model for 100 epochs therefore only required a little
over 5 minutes of computational time. Running the training on the remote servers
would thus not result in very significant computational time improvements, but
could prove to be useful if the training data set were to increase in size.

The artificial neural networks presented for use as temperature predictors are
shown to perform as intended; however, the ones trained to make predictions on
the value of the binary health indicator do not achieve acceptable levels of perfor-
mance. This illustrates some of the strengths and weaknesses of artificial neural
networks: they require large amounts of diverse enough data to be able to make
generalizations on inputs outside of their training set, otherwise, they are prone
to finding simple patterns that only fit the training set. For this reason, it is fun-
damental to maximize both the quantity and the quality of the available data, in
order to train better models.

Another point to consider is that artificial neural networks are not necessarily the
best fit for the problems at hand: simpler statistical models such as autoregressive
models or AI methods like support vector machines or decision trees could yield
similar results and be less computationally demanding. The most appropriate
solution for each task will be closely tied to the available data and the desired goals
of the model, which makes it hard to extract conclusions on the global performance
of different solutions.



Chapter 6

Conclusion

This chapter documents the main conclusions drawn from the development and
results of this project. As stated in Chapter 1, the main goal of this project was to
study the feasibility of using artificial intelligence to monitor the health condition
of the cooling system of a variable speed drive.

This report documents the steps taken to obtain such AI schemes, and aims to
provide the required theoretical background to understand the principles behind
them.

A simulation model of the drive and its cooling system was developed following its
mathematical description as shown in Chapter 2. Although the model has not been
completely tuned to the specifics of the physical drive used in experimental tests,
it can be expected to perform in a similar manner to the real system. It therefore
allows for observation of parameters that are not recorded in experimental tests,
such as electrical transients, and also for the modification of elements outside of
the bounds placed by the physical system. For example, degradation in heat sink
thermal interface material, which would be hard to reproduce experimentally, can
be represented in simulation by simply increasing the thermal resistance of this
particular element.

The available data does not justify the use of more complex neural network struc-
tures such as LSTM layers, as their large number of parameters makes their train-
ing challenging with the relatively low number of samples that can be used for
training. The trained models were therefore reduced to simpler fully-connected
feedforward neural networks, which, despite their relative simplicity, can be made
to converge to lower error values, as they can be fully trained using the available
data.
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The models appear to perform well when trained as temperature predictors. The
surrogate model scheme is able to separate samples for the two operation modes
in a quite reliable way. However, it is not guaranteed that its promising perfor-
mance would be carried over to predictions on new experimental data, especially
considering the poor performance shown by the health indicator classifier models.
With a richer data set, more conclusive observations could be drawn.

Still, the obtained results show that the proposed approaches to condition moni-
toring using AI-based models, or at the very least the surrogate model approach,
may be developed successfully. By making use of more extensive data for train-
ing and testing, it appears likely that the proposed models would be suitable for
monitoring the condition of the cooling system of drives in practical applications.



Chapter 7

Future work

This chapter aims to catalog some possible modifications, improvements, and ex-
tensions of the presented work that, in the author’s opinion, could prove fruitful
if investigated. The scope of this project can be broadened and its development
process has room for improvement. Some suggestions for future work based on
the present project are listed as follows:

• The performance of models based on machine learning is almost completely
reliant on the quantity and quality of the data that is made available for their
training. The most obvious improvement for any machine learning project
is therefore to obtain more data covering as much ground within the de-
sign space as possible. Improving the available data would result in more
reliable and accurate predictions after the training process. Obtaining data
from more diverse setpoints—with the test setup running under more var-
ied conditions—would serve to ensure that the model is able to generalize
to monitor the drive system under conditions not directly contained in the
training data. With a larger data size, more complex neural networks, such
as recurrent neural networks, may be successfully trained to improve the
capabilities of the develop models.

• By making use of the REST API, data can be streamed directly from the
target system to any computer with access to the internet, allowing for real-
time monitoring of the test setup. Based on this, models could be made to
run in real-time, continuously gathering data and assessing the condition
of the system. This would represent more accurately the way that an AI-
based condition monitoring scheme could be deployed in practice for drives
connected to the IoT. Online training of the models could also become a
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possibility, assuming that faults in the system could be observed, by manually
labeling the streamed data and using it to periodically update the training
status of the AI algorithms.

• Extending the ideas presented in the previous point, models prepared to
be able to run in real-time could be deployed on a microcontroller and in-
stalled in the drive system, to locally monitor the condition of the system.
The TensorFlow library for Python directly supports the deployment of pre-
trained neural network models on microcontrollers, through its sub-library
TensorFlow Lite for Microcontrollers. This library is implemented in C++ and
can be used to convert existing ANN models to C or C++ code with lower
requirements of memory and processing speed. This library is still under
development, and therefore does not yet officially support operations such
as recurrent layers or the training of models. For more powerful devices—
for example, embedded Linux devices like the Raspberry Pi—the standard
TensorFlow Lite library might prove easier to integrate and offer broader func-
tionality.

• The developed neural network models may be streamlined by, rather than
feeding the model every variable as a time-dependent input, selecting the in-
put method of each feature depending on whether or not it remains constant
in steady-state operation. More specifically, variables that are more prone
to change over the considered time periods (such as heat sink temperatures)
could be fed to a recurrent layer and then combined with time-independent
features in a fully-connected or convolutional layer.

• This project has not drawn any conclusions on whether this particular ap-
plication is significantly improved by relatively complex machine learning
models such as artificial neural networks. Simpler statistical models such as
auto regressive moving average (ARMA) or auto regressive integrated mov-
ing average (ARIMA) combined with classification methods such as decision
trees could result in similar performance and be computationally more effi-
cient. Further investigation could be based on developing different models
and comparing their performance. The type of algorithm that performs best
in a given environment is highly dependent on the nature of its available
data, so conclusions on which algorithm is best for a broad type of tasks may
not be reliable. For example, an LSTM-based ANN could perform well in a
classification task with dense time data—with a high sampling frequency—
while a support vector machine could be a better fit for the same task with a
lower frequency.

• Before deployment in industrial applications, the performance of the devel-
oped AI-based condition monitoring schemes should be compared against
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the more traditional approach to monitor the health of cooling fans, based on
vibration data analysis. Vibration data would be expected to result in a more
accurate assessment of the health status of the system, but also have a higher
cost of implementation, as well as raising the additional reliability concerns
attached to adding a vibration sensor.

• By making use of recorded data from laboratory experiments, the simulation
models introduced in Chapter 2 can be tuned to more accurately reflect the
physical system. If the simulation model can be made to closely mirror the
system’s performance, the model can be used to obtain data for training the
condition monitoring models. Using a simulation model for data collection
can be used to obtain data under extreme conditions that would be costly
to reproduce in an experimental setup. Moreover, obtaining data from sim-
ulation models will almost always be less time-consuming than running the
same tests in a laboratory.

• Another approach to the development a condition monitoring scheme would
be to automate the obtention of synthetic features by making use of a type
of ANN known as autoencoder. Such a model is trained to output the same
data that is given to it as input, but inside it data is compressed by mak-
ing use of one or several layers with a lower number of units than the input
layer. In this way, input data is mapped to a lower-dimensional structure
that allows for optimal decompression. This lower-dimensional mapping can
then be extracted and used for obtaining synthetic features, which will re-
tain information of time-dependence and feature interactions. These features
could then be used to develop health indicators for any condition monitoring
algorithm.
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