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1. INTRODUCTION

1.1 MOTIVATION

Nowadays, computer science is one of the most quickly developing branch of the modern
industry. Figure 1 shows the Moore’s Law, which predicts the increase of computational power
of an average computer over years. It can be seen that the power computers may offer nearly
doubles every 18 months.

The computational power is widely used in engineering, especially in simulations. This is
especially visible in fluid motion science, where the Computational Fluid Dynamics (CFD) is
considered to be a viable and trustworthy method of research.[?]

Initially, the CFD was a very time-consuming process. Further development of computational
resources and the application of parallel computing allowed to perform it quicker and examine
more and more sophisticated cases. Nowadays, CFD is widely used in static simulation, which
gives an information about a non-changing geometry.

However, larger computational resources allow to find more applications for this kind of
research. One of them is to connect CFD with optimization techniques, where a created script
is able to perform simulations on its own and build optimal shapes independently. This
approach means large number of individual simulations performed, which makes it very time
consuming. Because of that, existing techniques should be investigated to find a setup of
genetic algorithm, which allows to perform automated CFD optimization both quickly and
accurately. If both of these conditions could be met, artificial intelligence might be considered
a powerful tool in solving fluid motion related problems.
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Figure 1. Growth of computation power over years!?!

1.2 COOPERATION WITH GRUNDFOS

Grundfos is one of the biggest pump developer worldwide. The cooperation with it means both
the access to specific type of optimization and CFD software, and to the internal network of
the company. The investigation will be carried on simple pipe systems to decrease the time
required to perform a single simulation. These shapes are a Y-junction (15! case) and a baffled
bend (2" case).



1.3 THE PURPOSE OF THE PROJECT

The aim of this project is to examine the performance of different genetic algorithm features
and evaluate the viability of the metamodeling in the process of genetic algorithm performance
improvement. The viability between the connection of CFD, genetic optimization and
metamodeling will be tested.

1.4 LIMITATION OF RESEARCH

In both examined pipe systems the amount of dynamical geometry is limited. Only specific
areas in the pipes might change. While the impact of analysis and these changes will be
examined, CFD is assumed a fully-trustworthy method of analysis and the accuracy of it will
be not examined, no physical model will be built. Furthermore, because of a large number of
simulation calls, mesh independency studies will be limited only to the initial cases.

Only few features of the genetic algorithm will be examined and results will be based mostly
on low number of runs. According to the fact that the genetic algorithm is an optimization
technique with high amount of randomness, the results cannot be treated as a general trend.
Furthermore, the optimization factors like types of sampling or selectors will be only cursorily
explained. In many cases, default values of specific factors will be used to avoid too in-depth
approach.

Finally, only factors related to fluid motion are examined. The material strength of a baffle and
the possibility of its creation in physical world is out of the scope of this research.

15 METHODOLOGY

The project consist of several steps, which will be later connected into a fully-working
simulation and optimization environment. In general, all of these steps will be applied in two
cases.

. In the first case, the Y-junction connects two streams: Hot and cold, tackling each
other with different velocities. The goal is to model the shape of baffle inside and the
angle between pipes to achieve the best trade-off between pressure loss and the
uniformity of a temperature profile at the outlet.

* The second case is a baffle modeling inside of a pipe’s bend — The goal is to optimize
baffle shape to achieve a good trade-off between a pressure loss increase caused by
the baffle and the uniformity of velocity profile at the outlet.



the shape of 1st case the shape of second case

Figure 2. The shapes of examined cases

These steps are listed below:

1.

2.

First, an automated meshing tool has to be created. The key to obtain that is an
opensource CAD software called “Salome”, which allows to export a modifiable script.
This file can be changed easily to create many different geometries, which is especially
useful when those changes are performed automatically, for example by a programmed
script.

Instead of just constant values, several variables will be introduced into it, allowing to
steer geometry creation by changing values of these variables. The geometry will be
passed to an OpenFOAM-based mesher.

When the mesh is done, the CFD analysis will be conducted. Both the initial conditions
and other simulation parameters (like the convergence criteria etc.) will not change
over the entire process.

At the end, postprocessing will be conducted and calculated values (pressure loss,
temperature distribution and velocity distribution) will be saved in a text file.
Entire process described in point 1 will be gathered in a single script, called a
“script1”.

|| SALOME

geometry is created and
exported in form of script

|| OPENFOAM

CFD analysis is conducted. After
postprocessing, researched values are

available

RESULT FILE

Figure 3. Performance of Scriptl

At the second step, an optimization process will be introduced. Applying a Python-
based library called “Platypus”, a specific type of genetic algorithm “NSGAIII” will be
used and named as “Script2”. The Scriptl will be passed to the Script2.



Script2 will be able to create a geometry “guess” and invoke Scriptl to perform the
CFD analysis. Postprocessed values will be passed to the Script2, which will use them
to calculate values of objective functions (in terms of genetic optimization, often called
“fitness functions”). This way, a genetic optimization might be performed using the CFD
as a “shape-evaluation” tool.

<|::| PLATYPUS SAMPLER <:
SALOME

CREATED GUESSES GUESSES ABOUT
ARE PASSED THE INCOMING

geometry is created GENERATION ARE
geometry is exported __> CREATE GENERATION PASSED

FITNESS
FUNCTION 0

OPENFOAM —
PASSED GA OPERATIONS
CFD analysis is conducted. After
postprocessing, researched values are g
available

RESULT FILE | RESULTS OF OPTIMIZATION

Figure 4. Performance of Script2

Next, results of this optimization will be used in a second type of genetic optimization,
carried in an Optislang software. An another simulation environment will be built and
the genetic optimization will be conducted.

Finally, the metamodeling will be introduced. Based on values computed by CFD, the
kriging will try to mimic its performance in significantly reduced amount of time. Its
accuracy will be evaluated.

SENSITIVITY ANALYSIS

A

GENETIC ALGORITHM

{

KRIGING

Figure 5. The performance of model built in Optislang



2. COMPUTATIONAL FLUID DYNAMICS

The nomenclature for this chapter is listed below:

p — pressure

u,v,w— velocities in specific cartesian coordination
7;; — viscous stress

eo — energy (usually expressed as temperature)
x,y,z — direction of the flow

p — density

g — energy input

¢ — researched flow property

t — time

7;; — viscous stress

u — molecular viscosity

S¢ — source term

T — time constant of turbulence

v, — kinematic viscosity

k — turbulent energy

w — turbulent dissipation

6yl 8, — constants for description of k and w
y* - dimensionless distance to the wall

u* - dimensionless velocity

7, — wall shear stress

ut — friction velocity

K — Von Karman constant

2.1 INITIAL ASSUMPTIONS

A computational fluid dynamics (CFD) approach was used to explore the flow pattern inside
both of cases.

In order to shorten simulation time, the process is assumed steady, which means that there is
no variation in flow properties over time. Furthermore, the flow is considered viscid and
turbulent. This turbulence was modelled instead of resolving, which comprises the simulation
time and accuracy.

In both cases, CFD analysis will be carried out only in 2 dimensions. This is related to the
purpose of this analysis — during the optimization phase the process of CFD will be repeated
hundreds of times.

2.1.1 Initial assumptions of the first case

In terms of 1st case, the sought features are:

* The pressure loss between the middle of larger pipe’s inlet and the outlet
* The variation of temperature at the outlet (how well was the mixing performed)
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The baffle was placed in the system of pipes (Y-junction). The working fluid is water in normal
atmospheric pressure, pumped with different, uniform velocity through both of the pipes. Both
inlets provide the system with a fluid of different temperature. All the properties of fluid which
were used in further research are related to these conditions.

2.1.2 Initial assumptions of the second case
In terms of 2nd case, the researched features are:

* The pressure loss between the middle of a pipe and the outlet
« The velocity profile at the outlet

The baffle was placed into a pipe bend of the L-shape. The baffle’s role is to steer the fluid
and achieve the most uniform velocity distribution at the outlet while also decreasing the
pressure loss.

2.2 GENERAL PROCEDURE OF CFD

CFD allows to model fluid flow with a numerical analysis, which allows to research
sophisticated fluid behaviors. According to the Eulerian frame of reference, the entire flow
area may be divided into a fixed number of small volumes, for which the properties of fluid will
be examined. For three — dimensional, time - independent phenomena, this approach may be
expressed as [2]:

¢=¢(xy20)

After division of the flow domain to a computational mesh, a numerical solver solves

the conservation equations for flow features. Depending on the chosen software and its
properties, a list of conservation equations must be satisfied for the entire flow domain. These
values are computed sequentially for every single cell, while the solutions are considered as
an input to subsequent equations. This process is repeated, and every repetition is called an
“iteration”.

Computational Fluid Dynamics (CFD) is the simulation of fluids engineering systems using
modeling (mathematical physical problem formulation) and numerical methods. The governing
equation of CFD are Navier-Stockes equations. They are basic equation of motion for viscous,
heat conducting fluid.

Generally, the term “Navier-Stockes equation” relates to three equations which describe the
conservation rules for continuity, momentum and energy.

1) Continuity equation:

0 a
a—f+—[PuJ-]=0 1.

0x;
2) Momentum conversation:
] ]
50 (pu) + a_xj[puiuj +p6ij — 1] =0 2.

It can be seen that the change in acceleration equals to the sum of gravity term, pressure term
and velocity diffusion term, represented by the viscosity. However, it can be also described in
more general form, which comes directly from the force balance on a single fluid element.
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Sometimes the energy equation is solved for as well in order to calculate the temperature
distribution, e.g. in cases where heat transfer plays a role. The conservation equation for
energy is:

3) Energy conservation:
a a
5 (Peo) + a—xj[pujeo +up+q; —ui‘rij] =0 3.
The equations listed above may be completed into equation 4 — The General form of NS-
equation. The sum of pressure gradient and viscous term (right side) is equal to the change of

local acceleration and convective term.

4) General form of NS-equation

*u | d*u | 9w

a a a a a
pa—?+a(u2)+5(uv)+5(uw)]=—£+u[§+ﬁ+azz 4.
According to Stokes hypothesis, the viscous stress 7;; may be considered as a product of
molecular viscosity u and local velocity gradients called strain rates.

ou v
Ti]' = 5 a 5.
Especially in CFD, the entire set of equation may be expressed as:
paa—f + p div(W'¢) = div(Tgraded) + S, 6.
This approach allows to resolve the main flow. However, the key to get a realistic simulation
of the flow is to model a turbulence. In this approach, turbulence was modelled with RANS.
First, the mean velocity is introduced:
— 1 rT
o =;f0 u(t) dt 7.
Then, the total velocity of fluid element is represented by a sum of time-invariant main flow
velocity and random fluctuations, expressed as v, v,w’ (for a three-dimensional flow).
ulx,y zt) =u (x,y,z)+u (x,y,21t) 8.
Putting it into the Navier — Stokes equations yields:

D (@2 7D+ 2 (a5 4 T + 2 (w4 T = 2By 2 2 0k
p[ax (u + u )+6y (uv+ uv)+az (uw+ uw)]— p [6x2 372 622] 9.

In this approach, shear stresses relate to fluctuations which allows to model the main flow in
turbulence. However, one of the most challenging part of turbulence modelling is near-wall
region. To solve this, the k —w SST model was applied.

k —w SST is a model of turbulence which connects the advantages of k — e and k — w
approaches. While k — € focuses on problems with large distance from the wall, k — w excels in

12



models where the distance from the wall is smaller. It consists of two separate equation for Kk,
which is turbulence kinetic energy and omega, which is turbulent energy dissipation.

Kinetic energy:

ok ok a ok
E-l‘Uja—xj—P—ﬁka)-l‘6—)61'[(V+5kk1/t)a—xj] 10.

Turbulence dissipation:

2

9w _ c2_p,24 0 ) - ———
ac T Uj ax; as® = po + ax; [(V +Oukve) axj] T2 = Fo, ¥ -

w 0x; 0x;

Where P, F1, F2, B are closure coefficients dependent on k and omega, and v, is kinematic
eddy viscosity — a parameter calculated also directly from k and omega values and the
distance from the wall.

To model the flow near the wall, it is necessary to introduce a standard wall function
approach. In fluid dynamics, the law of the wall states that turbulent flow’s average velocity is
proportional to the logarithm of the distance from that point to the wall. Furthermore, the area
of the flow may be divided into an area of viscous sublayer, where the viscous forces play
important role in fluid behavior and the buffer layer, which represents an area of transition
between viscous region and “free-stream” flow. To separate these areas, values of y+ and u+
are used.[?]

u+=%1ny++(3 12.

+ —

vyt =yur/v 13.

ut == 15.
ur

To resolve the viscous sublayer properly with wall function approach, its necessary to achieve
y+ values between 20 and 500. This value gives a hint to the research of computational mesh
size.!?

According to the schema, the values of velocity achieved through momentum equation are
used as starting guesses of pressure. While the values of pressure and velocity depend on
each other, only the correct values of pressure may result in fulfilled set of equations. If the
convergence cannot be reached after all the computations, the values for a pressure are
updated with “results” obtained via the velocity computation and the entire algorithm iterates
again.

The CFD software calculates the difference between specific conservation equations in
succeeding iterations. This value is called a “residual”. Generally, in a properly set simulation
the value of residuals should decrease with the number of iterations. When the normalized
difference is low enough, the iteration procedure stops, and received values may be
considered as a result of the entire process. To enhance the ability to converge, an under-
relaxation factor is implemented. Its application allows to use only a part of values achieved in
previous iterations, which increases the number of iterations required to obtain converged
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solutions but reduces the residuals in order to keep the simulation stable. When the size of
iterations cross a fixed value, the simulation breaks, and its results cannot be considered
trustworthy.

Depending on the solver and software, conservation equations may vary. However, they
always deal with several “basic” flow properties — velocity, pressure, temperature and
turbulence.

In this research, a solver named “simpleFoam” and “buoyantSimpleFoam” was used. They work
with four variables describing velocity in cartesian coordination system, one variable for
pressure, one for temperature and — depending of chosen turbulence model — a set of
variables describing turbulence.

First, the solver attempts to solve momentum equation. It assumes that during the flow, the
entire mass is conserved, which means that no creation and no destruction of mass occurs. In
a constant-density flow, this means that flowrate must be constant. Once is solved, this
equation delivers a velocity field u*, which is considered as a guess — it does not satisfy
continuity equation.

Next, the continuity and momentum equations are used to build an equation for the pressure.
Solution of this equation gives access to pressure field p". Inserted into momentum equation,
a corrected field of velocity u is calculated.

After that, simpleFoam (case 2) or buoyantSimpleFoam (case 1) attempts to solve turbulence
and considers the velocity field u as an input to this process. In this case, the turbulence is
modelled with Reynolds-averaged Navier—Stokes equations (RANS) with feature called “Wall
function”.

2.3 MESH INDEPENDENCY STUDIES

The purpose of mesh independency studies is to find the smallest size of mesh which gives
trustworthy results. Initially, a mesh made of low number of cells is refined as long, as the
results obtained through further refinement does not change by a significant amount.

Mesh independency studies were performed for both initial geometries. In a classical CFD
approach, the mesh independency should allow to reveal the smallest size of a mesh which
allows to obtain proper results. However, this approach does not work in this case. This is
caused by the fact that during the application of genetic algorithm, the amount of change
performed might significantly affect the character of the flow, including the values of
velocities, pressure and others. This was often leading to instability of optimization algorithm
performance. To address the problems, the initial mesh size was refined until one optimization
run was successfully executed.

During the execution, the value of y+ was recorded. Depending on the geometry shape, its
value could either increase or decrease dramatically, so the mesh was refined as long as the
average value for y + could be keep within an interval of 20>y+>500 to keep proper turbulence
modelling. While the average y + returns generally all the time the same value, there are some
areas where y+ can be either very high or very low.

To achieve trustworthy results with the the k —w Wall-function model, the value of y + should
be kept between 20 and 500.[2

14



2.3.1 Mesh independency studies — the first case

y+ values in 1%t case
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Figure 6. y+ values obtained in the first case

While the minimum y + value might be too low sometimes (in small number of regions),
average y+ is around 130 and maximum y + never cross the value of 500.

For this specific case consisting of 13 972 cells, the convergence of pressure is shown at
Figure 7.

Convergence of pressure
5,00E+06

0,00E+00
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Figure 7. Convergence of first case in terms of pressure
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Figure 8. Convergence of first case’s initial geometry in terms of temperature distribution at the outlet
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Figure 9 shows the y+ value distribution over the ribbon of the shape. It might be seen that the
vast majority of cells is kept between 30>y+>200 value, while some areas (f. ex. surroundins
of the smaller inlet, the bottom of the larger pipe) are exposed for larger values (up to 390).

— 0.0e+00

Figure 9. y+ value distribution of the first case
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Figure 10. Mesh convergence studies of the first case based on pressure
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Figure 11. Mesh convergence of the first case based on temperature distribution
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2.1.2 Mesh independency studies — the second case

In terms of 2"d Case, y + is held most of the time at the very low values (between 0 and 50),
but there are some areas (mostly around the inlet) where red color (which means values
around 350) may be seen. Additionally, the low number of cells allow to perform one
simulation over several seconds. In comparison to that, more time consuming is the process of
mesh creation, so the entire iteration takes around one minute. To keep the high flexibility of
an initial mesh, it was left in this state.

Convergence of pressure loss
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> 5,00E+00 W
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Figure 12. Mesh convergence of 2" initial case based on pressure loss

Convergence of velocity profile
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Figure 13. Mesh convergence of 2" initial case based on the velocity profile at the outlet
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Figure 14. y+ distribution at the initial stage of 2"¢ case
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Average y+ value
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Figure 15. Average y+ value for 2"% case

The results for velocity, pressure and temperature are considered converged when the
residuals are not higher than 10!, while the convergence criteria for turbulence related
residuals (k and omega) were set to 10 -5. Additionally, the maximum number of iterations was
fixed at 1000 (case 1) and 500 (case 2), respectively. This means that if the simulation is not
converged till this point, It will be automatically finished.

If the simulation cannot meet the convergence criteria, a final value of pressure loss and
either temperature of velocity profile will be calculated based on the mean of last 100
iterations.

In terms of mesh independency, it is important to mention that depending on the geometry,
fluctuations may increase, but because of the large number of simulations the effect of those
variation cannot be examined in detail.

2.4 BOUNDARY CONDITIONS

2.4.1 Boundary conditions — the first case

inlet2

Figure 16. Boundaries of the first case
Inletl:
* Initial temperature: 290K Dirichlet condition
- Initial Velocity: Fixed volumetric flow rate 0.0001 m?3/s achieved with openfoam’s

boundary condition flowRatelnletVelocity (fixed volumetric flow in the direction of the
vector normal to given surface)
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Inlet2:

k and omega: Starting guess based on the k—w equations 16-19
k = 0.0026

w =0.672

Initial pressure: 0, Neumann condition zeroGradient

Initial temperature: 310K

Initial Velocity: Fixed volumetric flow rate 0.00005 m3/s achieved with openfoam
boundary condition flowRatelnletVelocity (fixed volumetric flow in the direction of the
vector normal to given surface)

k and omega: Starting guess based on the k—w equations 16-19

k = 0.0048

w =0.892

Initial pressure: 0, Neumann condition zeroGradient

Fixed pressure: 0, Dirichlet condition
All other fields calculated based on other inputs
k and omega: The same values as on inletl

Walls and baffle:

Velocity fixed at 0: No-slip condition

Turbulence: k-omega wall functions, internal field with starting guesses k = 0.003,
w=20.7

Pressure 0, Neuman condition zeroGradient

Other fields calculated based on inputs

2.4.2 Boundary conditions — the second case

Inlet:

Figure 17. Boundaries of the second case

Initial velocity: 3 m/s Dirichlet condition

Initial pressure: 0 Neuman condition zeroGradient

k and omega: Starting guess based on the k—w equations 16-19
k=0.3 w=0.7

19



Outlet:

*« Velocity: 0, Neuman condition zeroGradient

« Pressure: 0, Dirichlet condition

* k and omega: Starting internal field k = 0.3, w = 0.7
Walls and baffle:

« Velocity fixed at 0: No-slip condition

* Pressure: 0, Neuman condition zeroGradient

* k and omega: Starting internal field k = 0.3, w = 0.7
In terms of k and w values, OpenFoam is not that much sensitive softwarel?l. Even a roughly
proper starting guess leads to the convergence and while the size of bend is the same in both
cases, initial values for k and w were just copied from the previous case.

k and omega initial guesses were calculated based on equations shown below:

Turbulence length scale:
[l =0.038d, 16.

Turbulence intensity:
I=0.16Re;"® 17.
h
Turbulence kinetic energy:
3 2
k =2 un 18.
Specific dissipation rate:

w = Vk/I 19.

Initial guess for kinematic eddy viscosity was set to 0.0001 just to avoid computational
difficulties. All of the cells were also specified with an initial guess of 0.0001 for every
boundary condition because of the same reason. This process enhanced the ability to obtain
convergence.

2.5. POSTPROCESSING - INITIAL SOLUTION

2.5.1 Postprocessing — the first case

While the valve’s presence enhances the fluid mixing, its presence increases the pressure
necessary to pump water through it. According to figure 18, while the streams approach each
other, mixing is performed. It can be seen that water changes its temperature quickly, and
approaches the outlet at nearly uniform temperature.

Temperature distribution of the 15t case is similar to the velocity distribution, where it is

visible that both of the streams lose the velocity at the encounter and the outlet distribution is
nearly uniform.
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In terms of the pressure, It might be noted that the largest pressure loss occurs around the
area of initial mixing, where the pressure behind it is more uniform.

295+02

Figure 18. Temperature distribution of the initial 1% case
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Figure 19. Pressure distribution of the first case
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Figure 20. Velocity distribution for the 1%' Case

2.5.2 Postprocessing — the second case

In the second case, the baffle influences the flow, allowing to achieve more uniform velocity
distribution at the cost of higher pressure loss.

It can be seen that presence of baffle separates two areas of high and low pressure of the
bend, while the biggest losses are visible at the bottom of the bend and at the beginning of

the baffle.
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Figure 21. Velocity distribution of the initial 2"¢ case
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Figure 22. Pressure distribution of the initial 2" case
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3. GENETIC ALGORITHM STUDY
3.1 BASICS OF GENETIC ALGORITHMS

The genetic algorithm is an optimization strategy which tries to mimic the process of an
evolution in a micro scale. Unlike a gradient-based optimization, the genetic algorithm
approach does not require to compute derivatives or to have any deeper insight into a function
designing the performance of the process. Because of that, they may be connected with the
CFD software to look over a pool of geometries and find the best shape!(®!

In the most simple approach, GA starts from creation of a random pool of designs, described
by a given number of variables. Every specific design is called a “chromosome” and contains
a fixed number of genes. Every gene represents a specific variable, which describes a
physical parameter of the investigated design!3l.

In the nature, chromosomes may mix in the process of crossover. Two chromosomes
disassemble into four parts, which mix later in a random way. In this process, two new
chromosomes are created. The point where chromosomes disassemble is called “point of
crossover” and in the most basic approach, there is just one of it.

It is important to realize that new designs are built only from available genes, which means
that no new genes can be created though crossover (New “blocks” cannot be inserted into a
gene pool) [3],

— E ->

X3=4

x4=4

Figure 23. A simple crossover
To change the value of specific gene (expand the gene pool), it is necessary to perform a
mutation. In its most basic version, a mutation is a purely random process which changes one
gene value by a random amount. An application of mutation (the mutation chance higher than
a zero) has both positive and negative consequences: [3]

The positives are:

e It may allow to find a fit design quickly
e Expands the gene pool

The negatives are:
e It might destroy fit designs

e It might slow down the convergence or destroy the convergence completely
e Its performance is hard to predict
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Figure 24. A simple mutation

Before the round of crossover and mutation, the selection is performed. All the genes are
tested and their fitness function value is calculated. Higher value of fitness function increases
the probability that a specific design will be selected into a “crossover-mutation” step. This
kind of approach allows to assume, that the chance of getting a “more fit” offspring pool
through genetic operations is higher than 50%. This fact is mathematically proven(sl,

After selection, crossover and mutation, the entire process iterates further. A higher number of
iterations allows to improve the result of optimization as the algorithm should converge at
some point, showing mostly fit designs(3l,

3.2 ADVANCED FEATURES OF GENETIC ALGORITHM

To decrease the amount of randomness, basic genetic algorithms were improved and several
new features were introduced. Applying them, an algorithm’s ability to converge and find
optima might be enhanced.

3.2.1 Sampling type

The first factor in genetic algorithm optimization which has a crucial influence on the algorithm
performance is the type of an initial pool sampling!*l. Depending on a sampling type, the
algorithm may be fed with either already fit designs or many kinds of point distribution, which
allows to either look into very tight or very wide spectra of solutions. The first approach is s
good decision if there are any guesses or previous surveys available, the second — when there
is no access to previously gathered data of the specific casel3l.

In this project, the second approach was used. Two sampling types were introduced. First, the
uniform sampling, which divides the interval into given number of equally spaced subintervals.
Second is the Latin Hypercube Sampling, which is considered well — performing type of
sampling for many kinds of genetic algorithm application(®l,

Latin Hypercube Sampling works similar way to the uniform distribution but it is more flexible.
First, for every variable the research interval is divided into n subintervals. From every of
these subintervals, a given number of points is drawn. After the specific point has been drawn,
it is removed from the search pool, which means that it cannot be re-drawn. Depending on the
dimensionality of the case, this process is repeated for every gene at the chromosome. The
thus found values are connected into genes.
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Latin Hypercube Sampling provides more available values for the starting pool.

UNIFORM DISTRIBUTION LATIN HYPERCUBE SAMPLING
1 2 a a 5 6 1 2 3 4 5 6
S i s S -
1 2 3 a 5 6 1 2 3 4 5 6
i

Figure 25. Comparison of sampling types

3.2.2 Crossover

The second feature added is aligned to the crossover type. Instead of performing a one-point
crossover (which means building a chromosome out of 2 parts excluded from “parents-
chromosomes”), more than two parents may be included into breeding an offspring

chromosome. This approach may result in a larger variety of an offspring generation, however,
this can reduce the ability to convergence.

To steer the process of crossover, different kind of variators were invented. Their role is to
decide which gene out of the given “crossover pool” will be finally placed into newly created
gene. Depending on an optimization type, the most common approach is to either create an
offspring very similar to parents (according to the fact that the most fit designs are chosen) or
rather different than parents (this kind of approach may expand the search). There is also a
midpoint solution, where a “center of the mass” for pool of chromosomes is being calculated

and breed offspring is in the “middle”. Nowadays, many types of variators are present in
modern genetic algorithms.

In this project, three types of variators are examined:

e UNDX is the abbreviation for an Unimodal Normal Distribution Crossover. This type of
multiparent variator chooses at least three parents to create a given number of
offspring (one by default). According to the normal distribution, the created children
will be described most likely by values from the center of distribution (around the so
called “center of mass”), which is calculated separately for every single variable. In
theory, the biggest advantage of this variator is a good performance on low initial
population size. Its ability to converge is rather weak, which means that UNDX should
construct more generations than other methods to get converged.!(®l
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Qthe first parent's gene

the center of mass

the second parent’s gene

Figure 26. The UNDX Variator!®!

The Simplex Crossover (SPX) makes use of a uniform distribution, where all the
designs have similar chance of being created. The only limitation is a previously

predefined area from where values for every specific variable may be drawn. This area
is defined based on the parents pool.

Figure 27. The SPX Variator!®!
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Figure 28. The PCX Variator!®!

e PCX (Parent Centric Crossover) assigns a higher probability for an offspring to remain
closer to the parents than away from parents. It might be assumed that parents which
were chosen in a “fitness competition” are actually high-quality ones and their features
should be strengthen in the population. In terms of that it is a reasonable approach to
construct offspring similar to the parents. This approach works well when looking for
local optimal®l,

3.2.3 Selector

The selector role is to choose which of the parents will be chosen for the crossover-mutation
pool. The most important factors of a specific selector are the ability to improve convergence
behavior and increase “preservation” of valuable genes in a gene pool. Sometimes a very fit
gene is locked in an unfit chromosome. The genetic algorithm checks the value of a specific
design based only on the fitness function, which means that it might remove a valuable gene
during the removal of an unfit design. “Preservation” means that some unfit designs are keep
in the population just to prevent this kind of scenario.

If the computational cost of a single design is low, it is reasonable to keep some value of unfit
designs to achieve a better global optimum. Otherwise, an selector tuned for a faster
convergence might be a better idea. In this project, two types of selectors are examined:

e Linear selector

Linear selector calculates the mean of fitness value for every single created chromosome.
From this pool, the chance of choosing specific designs is calculated as ratio of its fitness to
average fitness. This means that all the designs from a pool have a chance to reproduce,
however, some of them will be extremely unlikely to do that. [3]

. Tournament selector

As the name suggest, tournament selector organizes a tournament between chromosomes,
choosing only the best design for the next generation. This means that only one chromosome
from a gene pool will survive, which means focusing on the fitness at the cost of ability to
preserve genes. The gene pool is usually reduced over iterations, its convergence ability is
improved.

Increasing the tournament size, the ability to converge should grow(3l,
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3.2.4 Mutation

In terms of mutation, there are many different strategies, and the most recognizable factor is
its probability and strength. To limit mutation’s random character, it might be set either to 100,
0 or a very little percent. The first “very-likely-mutation” approach assumes a common
mutation whose value is limited by a normalized factor. The sampling of the mutation value
might be done according to different kind of distribution, where normal distribution is in
common usel®l, The default value of change is described around 10% for every variable, where
the value of 5% has the largest chance of being drawn.

Zero chance for mutation means that the algorithm works steadily until it reaches an optimum
on the given gene pool while it cannot expand it. This kind of approach is used mostly in
discrete types of optimization, where a certain variable can represent only finite amount of
numbers(®l,

The last approach — low mutation rate — is a trade-off between the ability to improve global
optimum and high convergence ability.

3.3 PLATYPUS BASED OPTIMIZATION

Platypus is a library of programming language python, which allows to use a wide variety of evolutionary algorithms.
From this package, a NSGAIIl optimization algorithm was used. This kind of a solution works best for two and more
objective functions where at least four variables are used. NSGAIll shows good performance in many kinds of
engineering optimizations, working with or without constraint and its enhanced ability to converge is mathematically
proven. 131014

For this optimization, the used setup was:

* Initial population size of 10, 15, 20 (First case) and 15, 22 and 30 (Second case). In terms of population size,
there is an rule of thumb which assumes that initial population size depends on number of variables. It should
be around 3 to 10 times bigger than number of variables used, which was 4 and 5 for specifically case 1 and
case 2 — this is a rule of thumb. [

Especially for CFD, It might be good idea to choose a value from a lower part of this interval to decrease the
number of iterations.

e  Sampling type — Uniform sampling

e Crossover type — Multipoint, based on chosen variator

e Variator type - UNDX, SBX, PCX

e  Mutation chance — 1% (Default value), Mutation value default

e Selector type — Tournament selector with Tournament size of 10. The maximum value for tournament is the
size of the initial population and the minimal value is two. This means that a value around the middle results
in a fair trade-off between ability to preserve genes and achieve convergence.

e Convergence criteria — at least 10 succeeding designs whose fithess value difference is not bigger than one.
Maximum number of iterations set for every population size. In the second case, the convergence criteria
was changed due to higher fluctuations of fitness value to 5 iterations.
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3.3.1 The algorithm built in platypus

The environment built to perform this genetic algorithm study is presented at Figure 24. First, the genetic
algorithm creates a set of variables which is exported to a file. This file is read by a mesh generator and a specific
mesh is created.

In the next step, CFD analysis is performed. As soon as it ends, the results acquired by postprocessing are
gathered and directed back into the genetic algorithm. The fithess function is calculated and next iteration of
genetic algorithm starts.

- ::| PLATYPUS SAMPLER <:

CREATED GUESSES GUESSES ABOUT
ARE PASSED THE INCOMING

geometry is created GENERATION ARE
geometry is exported > | CREATE GENERATION PASSED

FITNESS
FUNCTION 0

|| SALOME

OPENFOAM — |
PASSED GA OPERATIONS
CFD analysis is conducted. After
postprocessing, researched values are &
available

RESULT FILE l RESULTS OF OPTIMIZATION

Figure 29. Platypus optimization scheme

Optimized variables are:

a) Inthe first case:

e X —the length of a baffle in the X plane

e Y —the length of a baffle in the Y plane

e P —the location of a baffle — while the minimum is directly at the outlet, and maximum — at the joint of pipes
e C —the angle between the pipes connection — from -20 to 85 degrees

b) Inthe second case:

e X1 —the location of a baffle inside the pipe (y coordination)

e X2 —the first point creating the baffle’s curvature (x coordination)

e X3 —the second point creating the baffle’s curvature (x coordination)
e X4 —the third point creating the baffle’s curvature (x coordination)

e X5 —the fourth point creating the baffle’s curvature (x coordination)

3.3.2 Results of the optimization
3.2.2.1 Results of optimization — First case

The first round of optimization allows to compare the performance of all chosen kind of variators while the rest of the
genetic algorithm factors does not change (including population size, sampling type, crossover, mutation etc.).

The fitness function for the first case is expressed as:

Fitness = (difference between maximum and minimum temperature at the outlet [K]) * 10
+ (Pressure loss between an inlet and an outlet) * 0.00001
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This fitness function has to be minimized.

The weights were set to promote temperature distribution at the outlet over the pressure loss. While the amount of
mixing might improve the temperature difference by roughly 2-3 Kelvins, the pressure loss can change significantly —
from around 1.7*10° Pa to 1.3*10° Pa. Because of that, a weight of 0.00001 was added before the pressure loss term
and the weight of 10 was added to the temperature term.

While small increases in pressure loss will not affect fithess function value by a large amount, this approach will
protect the algorithm from converging at designs where pressure loss is extremely high.

Runs with initial population of 10
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Figure 30. Comparison of results obtained with initial population of 10

All of these optimizations start from exactly the same initial population. All of the variators got converged. It might be
seen that different kind of variators have large impact on GA’s performance. First, there is a small difference in terms
of found optima.

¢ The UNDX found the optimum at 33.6 and required 97 iterations to converge. According to the figure, it is
significantly more than the rest of variators. Additionally, it might be seen that the fluctuation of fithess value
are the largest while using this variator.

e The PCX performed a lot worse than the rest of variators, finding an optimum of 40.2 at 72 iterations. The
optimum value is around 20% higher (which means worse) compared to the rest of variators. It might be
seen that this variator is the most “conservative”, which means the smallest fluctuations over the pool of
chosen variators.

e The SBX needed only 61 iterations to find an optimum, which is 32.8. This is the best result in terms of both
optimization time and quality of optima.

While the results found by SBX and UNDX are similar, PCX performed unexpectedly bad — probably because of the

small initial population pool. To examine the effect of initial population on the optimization performance, the
optimization was repeated with larger initial population pool — 15 and 20, respectively.
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Runs with initial population of 15
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Figure 31. Comparison of results obtained with initial population of 15

The results of optimization with the starting pool of 15 are shown at Figure 31.

e Over 101 iterations, the SBX found an optimum at 26.3.
e The UNDX found an solution at 26.3 which required 86 iterations.
e The PCX found an optimum at 26.3 over just 40 iterations.

It might be seen that expanding the starting pool increased the effectiveness of the simulation. All the variators found
the same optimum of 26.3, while the number of iterations required to do that is not the same in every case. At the
graph, the most recognizable is PCX performance, which required only 40 simulations to find an optimum. It might be
seen that this value on the graph is preceded by a sudden peak in the fithess value. The unexpectedly quick minimum
might be just the result of a lucky, very fit mutation or crossover. In this population size, the worst performance is
provided by UNDX, which requires as much as 101 iterations to find an optimum value.

The results of optimization with the starting pool of 20 are shown at Figure 32.
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Figure 32. Comparison of results obtained with initial population of 20
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e The UNDX requires 106 iterations to find an optimum at 26.6.
e The PCX finds optimum at 26.4 in 121 iterations
e The SBX finds optimum at 26.3 during 66 iterations.

It might be seen that a further expansion of the initial population size worsens the quality of results. Not only are the
resulting optima worse than in the previous case, but also the number of iterations increased. Only the SBX
performance is improved — it found the same optimum in lesser number of iterations compared to the previous run.

The comparison of results is listed in Table 1.

Initial population of 10 Initial population of 15 Initial population of 20
Optimum Number of Optimum Number of | Optimum Number of
iterations iterations iterations
PCX 40.2 72 26.3 40 26.4 121
SBX 32.8 61 26.3 101 26.3 66
UNDX 33.6 97 26.3 86 26.6 106

Table 1. Comparison of results of 1% case optimization achieved by Platypus

From the table, it is visible that SBX is the best choice for a variator in this specific case. Regardless on the initial
population size, it always find the best value for the solution. On the other hand it might be seen that regardless of
variator type, found optima are usually similar — only the number of iteration required to achieve it varies.

On the other hand, UNDX performs worse than the rest of variators, mostly because of its fluctuating nature which
does not allow to achieve quick convergence.

3.2.2.2 Results of optimization — Second case
In the second case, the Fitness function is expressed as:

Fitness = (Pressure loss between the middle of an inlet and an outlet [Pa])
m
+ (The dif ference between the largest and the smallest velocity module at the outlet [?]) * 100

This fitness function has to be minimized.

Again, the role of fithess function is to promote mixing over pressure loss. It might be seen that in the most of the
iterations, pressure loss fluctuates usually between 50 and 100 Pa. While the velocity difference is 5.5 m/s for an
unoptimized shape, the baffle optimization might reduce this value by roughly 1-2 m/s. This means that the range of
pressure loss values is around 100 times wider than the range of velocity difference, thus a weight of a 100 was
added to the pressure term.
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Figure 33. Comparison of results obtained with initial population of 15

The results of optimization with the starting pool of 15 is shown at Figure 33.

PCX converges with the value of 516.1 over 309 iterations
SBX converges with the value of 516 over 183 iterations
UNDX converges at the value of 511.9 after 148 iterations
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Figure 34. Comparison of results obtained with initial population of 22

The results of optimization with the starting pool of 22 is shown at Figure 34.

PCX converges with the value of 511 over 190 iterations
SBX converges with the value of 516.1 over 198 iterations
UNDX finds the value of 510.9, while it cannot obtain convergence over more than 650 iterations
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In terms of convergence, it might be seen that the results vary significantly over the variator type. However, this might
be caused by very strict convergence criteria which assumes convergence as a change of parameter less than one. If
these requirement was relaxed to less than five, the result might be considered converged at 75'" iteration in terms of
SBX and 195" iteration in the PCX. UNDX cannot achieve the convergence, however there might be found some fit

results over the fluctuations. The difference between the found optima is less than 1%.

The results of optimization with the starting pool of 30 is shown at Figure 35.
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Figure 35. Comparison of results obtained with initial population of 30

UNDX does not converge over 500 iterations, while the most fit value found is 510.9

PCX converge after 339 iterations with fitness value 510.9

SBX converges in 214 iterations with fitness value of 517.1. This value does not decrease over more than 30

iterations.

It might be seen that the initial pool of 30 does not result in better optima. However, it drastically increases the number
of required iterations. The UNDX does not converge and fluctuates over its entire spectrum, however, it still finds the
optimum value of 510.9, which is the best value found in this optimization.

Initial population of 15 Initial population of 22 Initial population of 30
Optimum Number of Optimum Number of Optimum Number of
iterations iterations iterations
PCX 516.1 309 511 190 510.9 339
SBX 516 183 513.1 198 517.1 214
UNDX 511.9 148 510.9 unconverged 510.9 unconverged

Table 2. Comparison of results of 2" case optimization achieved by Platypus
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It seems that an optimum value for initial size population in second case is 22. Not only this size achieves the best
result in terms of optimization but also does it in the smallest amount of iterations. The difference is found optima is
small — around 1%.

3.4 OPTISLANG OPTIMIZATION

3.4.1 The setup built in Optislang

OptiSLang is a software platform for CAE-based sensitivity analysis, multi-disciplinary optimization (MDO) and
robustness evaluation. It is developed by Dynardo GmbH and provides a framework for numerical Robust Design
Optimization (RDO) and stochastic analysis by identifying variables which contribute most to a predefined optimization
goal. This includes also the evaluation of robustness, i.e. the sensitivity towards scatter of design variables or random
fluctuations of parameters.[5]

To perform an optimization in Optislang, a sequence of systems was built. Each of these systems consists of the
same blocks. Blocks contain commands written in either bash or python programming language, which built entire
optimization environment. One of these systems “Kriging” was presented at Figure 36.

In every single block, there are 5 scripted sub-blocks:

e ‘“Initialize” — loads all the modules required to the simulation, including specific python version and
opensource CFD software, OpenFOAM

e “Create input file” — reads the values sampled by Optislang and converts them into a file, which is further
exported to the location where CFD will be performed

e “Create Geometry” - runs the python-based CAD software “Salome” in the batch mode using a previously
generated script. Application of specific python library “pickle” allows to connect both the exported input file
and geometry script to create an unique CAD model, described by specific inputs.

o  “Perform CFD” — the geometry is loaded to an automatic meshing tool (CfMesh). After the mesh is created,
OpenFOAM performs a CFD analysis, calculating the pressure loss between specific point (an inlet and an
outlet of pipe) and either temperature or velocity distribution at the outlet.

o “Gather results” — gathers the values of both distributions and pressure loss and calculates the mean of
them. They are used to calculate objective function value and passed to the Optislang.

Kriging |
P -
- reate Geometry Perform CFD !
= » P
P m
initialize Create input file Gather Results

Figure 36. Example of a single system built in Optislang
From these kinds of blocks, three types of systems were built:

e Sensitivity systems — create input variables with specific type of sampling and checks the relation between
parameters, especially the linear correlation between sampled input points and between input and output
values

e Evolutionary Algorithm systems — perform a genetic algorithm study. Must be either fed with a points created
previously or do independent sampling.

e AMOP systems —try to perform several types of metamodeling and check the accuracy between them and
models created by CFD. Creates a visual 3D prediction of the function surface based on both metamodels
and points used to create metamodel pool. /]
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Having these three kind of systems, three models were built:

1) Sensitivity systems -> Evolutionary Algorithm systems

2) Sensitivity systems -> AMOP systems -> Evolutionary Algorithm systems

3) Sensitivity systems -> Evolutionary Algorithm systems -> AMOP systems -> Evolutionary Algorithm systems
-> AMOP systems -> Evolutionary Algorithm systems

Models 2) and 3) will be described in Chapter 4 Metamodeling.
3.4.2 Sensitivity analysis

One of the Optislang feature is the sensitivity analysis, which allows to check the influence of given variables on the
fitness function performance. Based on sampled initial points, the influence of specific variables was checked.

3.4.2.1 Sensitivity analysis — the first case

In terms of 15t case, it might be seen that the fitness function changes by a large amount especially based on two
specific variables. They are:

e the angle of the pipes connection
e the length of a baffle

etis

[ ®  Support points ]

Figure 37. The shape of problem surface in the 1%t case

According to Figure 38, to achieve the optimal shape of flow system, algorithm will try to maximize the angle (up to 90
degrees) and lengthen the baffle. Additionally, the value of “c” (which is the distance of baffle from the connection of
pipes) will be rather low, which means that the baffle should be placed close to the pipes connection. However, both
variables describing the baffle (c and y) are not as much influential as baffle length and angle of pipes connection.
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Figure 38. Linear correlation between input variables and the fitness function

3.4.2.1 Sensitivity analysis — the second case

It might be seen that the surface is a lot more flat compared to case one. This is right — objective function in terms of
second case is a lot more stable (varies from around 520 to 650, compared to 20 and 200 in the first case). According
to Figure 40 it might be seen that variables x2, x3, x4 and x5 have quite similar influence on the objective function.
Indeed, they describe the x-coordination of point from which baffle is created. However, one variable shows a totally
different trend than the rest — x1. This variable describes the vertical baffle coordination.
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Figure 39. The shape of 2" case function’s surface
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Figure 40. Linear correlation between input variables and the fitness function

3.4.3 Optislang optimization and results

Optimization parameters used in Optislang was changed since the Platypus optimization. First, the Optislang does not
allow to choose type of variator while it leaves more space in terms of mutation and crossover manipulation. The
optimal initial population size was preserved from Platypus and reused.

The optimization criteria was:

Initial population size: 15 (for case 1.) and 22 (for case 2.)

Sampling type — Latin Hypercube Sampling

Crossover type — Multipoint with three crossover points (default value)

Variator type - No variator

Mutation chance — 98% chance for a mutation. The mutation mechanism adds or subjects a random value
from interval (0, 0.1x), where x is actual variable value. The draw follows the rules of normal distribution,
which means that the value of 0.05x has the largest chance of being chosen.

Selector type — Tournament selector with Tournament size of 10. The maximum value for tournament is the
size of initial population and the minimal value is two. This means that a value around the middle results in a
fair trade-off between ability to preserve genes and achieve convergence.

Convergence criteria — Maximum number of iteration or an improvement of the fithess value in relation to the
results obtained by the Python Platypus

The results of Optislang optimization was presented in Figure 41 and Figure 42.
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Figure 41. Genetic optimization of the 1% case done in Optislang
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Figure 42. Genetic optimization of the 2" case done in Optislang

It might be seen that the Optislang allows to perform a lot smoother optimization which finds the optimum value a lot
quicker than the Platypus.

In terms of first case, fitness value was also improved (19.6 compared to 26.3 in python library), while in the second
case the found optimum is worse by around 0,2% (511 compared to 510).
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4. METAMODELLING

4.1 THE PURPOSE OF METAMODELING

Metamodels, called often surrogate models or low-fidelity models, are designs created from high-fidelity models (in
this case, results of CFD analysis) which predict the value of fithess function for entire spectrum of variables. The
topic of metamodeling is often related to the Machine Learning, where the computer tries to build a continuous
function out of given discrete values. There are many kinds of metamodeling and for a specific problem, there is
usually a type which outperforms the rest of them. (@

The results of CFD analysis are generally hard to predict, however the topic of metamodeling optimization is getting a
lot of attention in the industry due to the reason, that constructed metamodels can expand both initial population pool
and generation size, which allow to spare time previously used to compute high-fidelity designs.

According to scientific research, depending on the case, properly set metamodeling environment can shorten the
optimization time by a large amount (even several dozen of percent).l!

According to the previous scientific work!®l, the most promising type of metamodeling for CFD optimization is Kriging,
Artifical Neural Network and Response Surface Approximation. In this project, Kriging was chosen as the
metamodeling type because of its decent performance on low starting pool cases. [¢]

4.2 THE KRIGING

4.2.1 The basics of Kriging

The kriging, called also Gaussian Regression, is a type of interpolation primary introduced to geostatistical sciences,
where its purpose was to predict the location of gold vein from the fixed amount of non-uniformly scattered, low
number of boreholes. ¥

The idea of kriging is to predict the value of an unknown function at a given point by the computation of weighted
average of the know values of this function in enough close neighborhood. In terms of that, Kriging is similar to
regression analysis.

As an interpolation technique, Kriging is a covariance-based type of prediction, where all the found values lies directly
at the found function’s neighborhood, where the distance depends on random number achieved from sampling of
either normal or different kind of distribution.

The most basic type of kriging may be expressed with given formula:
Z(sy) = 2AZ(s) ®

Where:

Z(s,) — value of fithess function in a surveyed location

Z(s;) — value of fitness function in a previously-known location

A — weight parameter

Which means that the prediction of function value is just the sum of weighted values found in the neighborhood.
However the method of weight coefficient computation may be often complicated. Removing the weighted sum value,
kriging may be expressed with Formula:

y(x) = p(x) +Z(x)
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Where:

y(x) — value of fitness function in surveyed location

p(x) — value of fitness function in a known location

Z(x) —arandom bias sampled with some kind of distribution or other sampling strategy

The Z(x) is the realization of a Gaussian random process, with the mean of zero, variance of 62 and non-zero
covariance. While the p(x) reflect so-called “global” approximation, Z(x) stands for a “local” deviation which expresses
the effect of N point used to approximation. [

In a one-dimensional case, Kriging may be expressed with the approach similar to the one shown at Figure 43. At the
figure, z stands for function value and x is an input variable.

=2

4 05 05 1

Figure 43. A simple 1D Kriging example 4

The red point shows the values computed or measured (high-fidelity model). They are connected with some type of
curve (depending on kriging type) and for every two point (which are neighbors) there is an area of uncertainty, which
is expressed by normal distribution (only in the most basic approach; values closer to the curve have higher chance of
being drawn). After the Z values are computed, the new “prediction” curve is computed and unknown values
predicted. ['4 In terms of that, Kriging may be an iterative process with the ability to improve itself.

In terms of this project, a four-dimensional and five-dimensional kriging is used.
4.2.2  Results obtained through Kriging and the accuracy of prediction

To improve genetic algorithm performance, Kriging was used as a generator of additional designs. This allows to
expand gene pool and give the genetic algorithm a guess where it should look for an optimum.

Optislang generated kriging points based on one initial population of samples gathered with Advanced Hypercube
Sampling. This means 15 points in terms of first case and 22 point in terms of the second case. Both of these were
shown at the graphs.
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Figure 45. Kriging done in Optislang on 22 initial points (Second case) and its accuracy

It might be seen that the kriging can predict values with good accuracy basing on initial population of genetic
algorithm. Figures 46 and 47 shows comparison of results between objective function values obtained by CFD and the
metamodeling. In the first case, the relative error of kriging might be either very little (less than 1%) or quite large
(around 16%). However, most of the predictions achieved shows rather good fit and the mean value of the relative
error achieved is equal to 3,41%.

According to second case, Kriging performs even better than in the first one. While the approximation may produce
some highly biased designs (maximum relative error higher than 23%), most of the values are very similar to the
results obtained via CFD. The mean error of approximation is equal to 2,51%.

Based on that it might be good approach to use kriging as an intermediate step for genetic algorithm performance but
certainly not in an independent analysis. Relative error fluctuates and there is no visible trend, so the quality of an
individual metamodel is hard to predict without comparison to CFD analysis.
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Figure 46. Relative error of Kriging approximation in created designs (First case)
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Figure 47. Relative error of Kriging approximation in created designs (Second case)

On the other hand, Kriging can also result in achieving very unfit solutions, which may disrupt the simulation
performance. On the Figure 48 a result of Kriging done on the initial population size of 100 might be seen, where large
amount of the predictions is just a nonsense. This figure was created with a different software called Dakota. While
Kriging is a sophisticated metamodeling which is described by many inputs, it can be seen that the good accuracy
could not be achieved with this specific software.
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Figure 48. Kriging performed on large initial pool

This issue was partially resolved by lowering the initial design pool to 20. However, the relative error was still huge
compared to results obtained by the optislang.
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Figure 49. Kriging performed on small initial pool of 25 designs with Dakota
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Figure 50. Relative error obtained by Kriging approximation in Dakota

It is clearly seen that low-fidelity models achieved by Optislang are a lot more accurate than those produced by
Dakota. This is caused mostly by the black-box character of Optislang, where it can optimize its predictions based on
previous models and change its own guesses the iterative way. Additionally, the software allows to choose the
maximum amount of iterations where optislang is allowed to perform improvement of created models. Because of this,
Dakota was discarded in further work.

In the next step, a second round of Kriging approximation was performed. The results of first Kriging was connected
with initial pool of solutions created by CFD analysis. The next Kriging was performed based on values randomly
chosen out of this pool — 15 in the first case and 22 in the second case. The results obtained are presented at Figures
51 and 52. It can be seen that the relative error of approximation is similar to the first round of Kriging.
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Figure 51. 2" round of Kriging approximation in the first case
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Figure 52. 2" round of the Kriging approximation relative error (first case)
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Figure 53. 2" round of Kriging approximation in the second case
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Figure 54. Relative error of the 2™ round of Kriging approximation (second case)

4.2.3  Implementation of Kriging in genetic algorithm
4.2.3.1 Implementation of Kriging in genetic algorithm — the first case

Created metamodels was used as an initial population for genetic algorithm in both case 1 and 2. Obtained results
was shown at Figure 55 and Figure 56.

In the first step, results of Kriging was passed to the genetic algorithm, so the initial population size was expanded by
generated metamodels. According to figure 55, It might be seen that obtained metamodels does not increase the
effectiveness of genetic algorithm performance. The optimum was found after 41 iterations (compared to 40 iterations
of “raw” genetic algorithm) while the found optimum is nearly the same as before (less than 0,1% difference). While
the kriging passed some good guesses into the algorithm (point 1 is nearly as fit as the found optimum with the value
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of 21.1), their lack of accuracy slowed down the convergence. The discontinuities in the graph line are caused by
mesh breaks.
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Figure 55. Optimization of 1% case with genetic algorithm and one round of Kriging

To strengthen the influence of Kriging in entire optimization, it was introduced twice. Kriging generated by AMOP
systems were first created based on 30 solutions found by 2 generations made by genetic algorithm. Later, both the
results of Kriging and a high-fidelity models were passed to another Evolutionary Algorithm system, where another 2
generations were performed.

The Figure 50 shows the effect of research carried with the last genetic algorithm round — again, locked at two
generations. It might be seen that the graph presents more flat but consistent convergence, which finds out an
optimum at 20.2 (compared to 19,6 its around 3% less fit minimum). However, this kind of approach is very time
inefficient since it required to compute all the previous blocks.

Finally, the cost of entire process was evaluated for 105 iterations (three Evolutionary Algorithm systems with 30

iterations each and Sensitivity system with 15 iterations), which means more than two times longer optimization for a

slightly weaker result.
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Figure 55a. The “two-kriging” method
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Figure 56. Last stage of 1% case optimization with application of genetic algorithm and two rounds of Kriging

4.2.3.2 Implementation of Kriging in genetic algorithm — the second case

The previous procedure was repeated for second case. The only difference made is an increase in maximum number
of iterations permitted in the approach of “two rounds of kriging application”. The purpose of it is to check if higher
number of iterations can obtain fitter solution through kriging.

The result of first optimization was shown at Figure 57.
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Figure 57. Optimization of 2" case with genetic algorithm and one round of Kriging

According to Figure 57, The most fit value was found at 25% iteration — just in the second generation. The expansion
of the initial population size made by Kriging was enough to find an optimum value in a very short time. Compared to
optimization without kriging, the result was obtained 47% quicker (47 compared to 89).

After that, Kriging was introduced twice into the genetic algorithm. The result was shown at Figure 58.

It might be seen that the curve fluctuates and shows no visible trend. It might be explained with the selection, where
genetic algorithm started its optimization from an inaccurate results. Additional input provided with kriging only
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disrupted the convergence. Finally, algorithm finds an optimum after 307 iterations, which is the worst result compared
to the rest of optimizations with the same starting population size.
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Figure 58. Last stage of 2™ case optimization with application of genetic algorithm and two rounds of Kriging

The comparison or Kriging results is shown in Table 3.

Raw genetic algorithm One round of kriging Two rounds of kriging
applied applied
Found Number of Found Number of Found Number of
Optimum iterations Optimum iterations Optimum iterations
Case 1 19.6 55 19.6 56 20.2 105
Case 2 511.3 89 5114 a7 517 307

Table 3. Comparison of optimization results achieved with and without Kriging

It might be seen that application of two kriging rounds resulted in worse performance in both cases. While in the first
case application of kriging caused no positive or negative effect, in the second case kriging application resulted in
large reduction of simulation time (47% compared to no-kriging case in Optislang, 76% compared to Platypus-based
optimization).
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5. ANALYSIS OF OPTIMIZATION RESULTS

5.1 Analysis of optimization results — the first case

It might be seen that the low velocity at the bigger inlet causes the baffle to have a really small effect in pressure
increase compared to the increase coming from the second inlet flow. Additionally, The objective function is tuned to
support mixing more than pressure loss, so the algorithm decides to maximize the baffle size and increase the value
of velocity and which streams encounter each other.

While it increase pressure loss value by around 18%, more uniform distribution of temperature might be achieved.
Sudden contraction result in fluid acceleration when both fluids approached themselves at maximum velocity nearly
countercurrent. This causes a splash after which the velocity decreases followed by pipe expansion which strengthen
this effect.

The temperature distribution at the outlet is compared at the Figure 63.

2909+02

Figure 59. Temperature distribution in unoptimized Y-junction

Figure 59a. Pressure distribution in optimized Y-junction
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Figure 60. Temperature distribution in optimized Y -junction
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Figure 61. Velocity profile of optimized Y-junction
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Figure 62. Comparison of temperature distribution between optimized and unoptimized shape
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Figure 63. Temperature distribution at the outlet of optimized and unoptimized Y-junction

5.2 Analysis of optimization results — the second case

It can be seen clearly that the existence of the baffle improved the uniformity of velocity distribution in the bend.
Moreover, the baffle also reduced the pressure loss over its length by 21%.

It might be seen that algorithm tries to match the shape of baffle to the fluid streamlines. Created object has an
aerodynamical shape, the amount of separation is little.

At the graph, four designs were compared:

e The first one is the most fit result achieved by optislang with fithess value 511.3

e The second one is an unfit solution, which shows that the placement of baffle may be also disturbing if done
incorrectly

e There is also an case of a pipe bend without baffle included which allows to compare the effect.
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Figure 64. Velocity profile of case 2 pipe bend without a baffle (2™ case)
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Figure 65. Velocity profile of optimized 2" case (baffle with a bend, 2™ case)
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Figure 66. Pressure profile of bend without a baffle (2" case)
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Figure 67. Pressure profile of optimized baffle in a pipe bend (2" case)
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Figure 68. Velocity profile of a low-fitness baffle (2" case)
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Figure 69. Pressure distribution of unfit pipe bend with a baffle
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Figure 70. Comparison of velocity profiles of optimized bend and a bend without a baffle
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6. DISCUSSION

It is clearly seen that genetic algorithm can be used as an optimization tool and its accuracy is
good. In most of the cases it could get a convergence, while under the most proper conditions
it can find a solution with really low number of iterations (in examined cases, around 60-80).
This is especially valuable when a sophisticated design is analyzed since no information about
the gradient is required.

The role of metamodeling is mostly to expand initial population and the more it is applied, the
more bias it introduces. On the other hand, even a low number of iterations (around 20 in this
project) might lead to good predictions if the kriging is applied. While usually helpful,
metamodeling might be sometimes very misleading and creates totally nonsense predictions.
Furthermore, its effect is very random while the range of relative error very wide (from less
than 1% till around 20%). There is no trend in relative error size and if not compared to the
results gained by some trustworthy method (like CFD), the information is mostly useless —
especially if only one specific design is examined.

The role of metamodeling is usually to “discover” a function hidden behind a discontinues
data. The more “function-similar” the trend is, the better metamodeling prediction accuracy
should it offer.

To expand this research, It might be good idea to work with bigger number of variables and
more objective functions. According to the research conducted in this project it might be seen
that metamodeling did not really work in case 15t optimization, while improved 2"Y case by a
large amount (in terms of simulation time). However, it should be discussed if and when this
kind of metamodeling is worth the effort. How to predict if metamodeling will strengthen or
destroy the convergence of specific case optimization? The research done in this project does
not answer this question.

However, it might be a rather safe assumption, that a simple expansion of initial population
pool with application of kriging is usually worth the effort (of course, only if the relative error
of kriging approximation is low).

In terms of genetic algorithm and in general genetic optimization, a lot of research is
conducted. There are many types of variators, mutation strategies, selectors etc. The same
rule applies to Kriging and metamodeling types — there are a lot of methods of data prediction
methods which potential in the CFD optimization should be examined.
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