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The aim of the project  is  to  evaluate the 

per formance of  the genet ic  a lgor i thm and a 

specif ic  type of metamodel ing (cal led kr ig ing)  

in an engineer ing opt imizat ion.  An automated 

environment  for  the CFD analys is is  bui l t  and 

connected with several types of  opt imizat ion 

st rategies . The key is  to f ind an opt imal 

genet ic  a lgor i thm ’s setup,  which means a 

good t rade-of f between acquired results  and 

the opt imizat ion t ime.  Final ly ,  the 

per formance of  several opt imizat ion 

techniques is  compared. 
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1. INTRODUCTION 

 

1.1 MOTIVATION 

 

Nowadays,  computer  sc ience is  one of the most quick ly developing branch of  the modern 

indust ry.  Figure 1 shows the Moore’s Law,  which predicts  the increase o f computat ional power  

of  an average computer over years. I t  can be seen that the power computers may offer  near ly  

doubles every 18 months.   

 

The computat ional power  is  widely used in engineer ing,  especial ly  in s imulat ions.  This is  

especial ly  v is ib le in f lu id mot ion science,  where the Computat ional Flu id Dynamics (CFD) is  

considered to be a v iable and trustwor thy method of  research. [ 2 ]  

 

In i t ia l ly ,  the CFD was a very t ime-consuming process.  Further  development  of  computat ional 

resources and the appl icat ion of  paral le l  comput ing al lowed to per form i t  quicker  and examine 

more and more sophist icated cases .  Nowadays,  CFD is widely used in stat ic  s imulat ion,  which 

gives an informat ion about  a non-changing geometry.  

 

However ,  larger  computat ional resources al low to f ind more appl icat ions for th is  k ind of 

research. One of  them is to connect CFD with optimizat ion techniques,  where a created scr ipt 

is  able to  per form simulat ions on i ts own and bui ld opt imal shapes independent ly .  This 

approach means large number  of  indiv idual s imulat ions per formed, which makes i t  very t ime 

consuming.  Because of  that , ex ist ing techniques should be invest igated to f ind a setup of 

genet ic  a lgor i thm,  which al lows to per form automat ed CFD opt imizat ion both quick ly and 

accurately.  I f  both of  these condit ions could be met ,  ar t i f ic ia l  inte l l igence might  be considered 

a power ful tool in solv ing f lu id mot ion related problems. 

 

 
Fi gu re  1.  Gro wt h of  co mp ut at i on  p ow er  ov er  ye ars [ 1 ]  

 

1.2 COOPERATION WITH GRUNDFOS 

 

Grundfos is  one of  the biggest  pump develo per  wor ldwide.  The cooperat ion with i t  means both 

the access to specif ic  type of  opt imizat ion and CFD sof tware, and to the internal network of 

the company.  The invest igat ion wi l l  be car r ied  on s imple pipe systems to decrease the t ime 

required to per form a s ingle s imulat ion.  These shapes are a Y- junct ion (1 s t case)  and a baf f led 

bend (2n d  case).  
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1.3 THE PURPOSE OF THE PROJECT 

 
The aim of th is  project is  to examine the performance of  d i f ferent genet ic  a lgor i thm features 

and evaluate the v iabi l i t y  of  the metamodel ing in the process of genet ic  a lgor i thm per formance 

improvement.  The v iabi l i t y  between the connect ion of  CFD,  genet ic  opt imizat ion and 

metamodel ing wi l l  be tested.  

1.4 LIMITATION OF RESEARCH 

 

In both examined pipe systems the amount of dynamical geometry i s  l imited.  Only  specif ic  

areas in  the pipes might  change.  While the impact  of analys is and these changes wi l l  be 

examined,  CFD is assumed a fu l ly - t rustworthy method of analys is and the accur acy of  i t  wi l l  

be not  examined,  no physical model  wi l l  be bui l t .  Fur thermore, because of  a large number  of 

s imulat ion cal ls ,  mesh independency studies wi l l  be l imited only  to the in i t ia l  cases.  

Only few features of the genet ic  a lgor i thm wil l  be  examined and results  wi l l  be based most ly  

on low number  of  runs.  According to  the fact that the genet ic  a lgor i thm is  an opt imizat ion 

technique with high amount of  randomness,  the results  cannot  be t reated as a general t rend. 

Fur thermore, the opt imizat ion factors l ike types of  sampling or  selectors wi l l  be only  cursor i ly  

explained.  In many cases, default  values of  specif ic  factors wi l l  be used to avoid too in -depth 

approach. 

 

Final ly ,  only factors related to f lu id mot ion are examined.  The mater ia l  s t rength of  a baff le and 

the possibi l i t y  of  i ts  creat ion in physical wor ld is  out  of th e scope of th is  research.  

 

1.5 METHODOLOGY 

 

The project  consist of  several s teps,  which wi l l  be later  connected into a fu l ly -work ing 

s imulat ion and opt imizat ion environment .  In general,  a l l  of  these steps wi l l  be appl ied in two 

cases.   

 

•  In the f i rs t case, the Y- junct ion connects two st reams: Hot  and cold,  tackl ing each 

other  with di f ferent velocit ies.  The goal is  to model the shape of  baff le ins ide  and the 

angle between pipes to achieve the best trade -off between pressure loss and the 

uniformity of  a temperature prof i le at  the out let .  

 

•  The second case is  a baff le model ing ins ide of  a pipe’s bend  – The goal is  to opt imize 

baf f le shape to achieve a good t rade-off  between a pressure loss increase caused by 

the baff le and the uniformity of velocity  prof i le at  the out let .  
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Fi gu re  2.  T he  sh a pes  o f  exa m i ne d  cas es  

 

 

 

These steps are l is ted below:  

 

1.  First ,  an automated meshing tool has to be created.  The key to obtain that  is  an 

opensource CAD sof tware cal led “Salome” , which al lows to expor t a modif iable scr ipt .  

This f i le can be changed easi ly  to create many dif ferent  geometr ies, which is  especial ly  

useful when those changes are per formed automat ical ly ,  for  example by a programmed 

scr ipt .   

 

Instead of  just  constant values,  several var iables wi l l  be int roduced into i t ,  a l lowing to 

steer  geometry creat ion by changing values of  these var iables.  The geometry wi l l  be 

passed to an OpenFOAM-based mesher. 

 

When the mesh is  done,  the CFD analys is wi l l  be  conducted. Bo th the in i t ia l  condit ions 

and other  s imulat ion parameters ( l ike t he convergence cr i ter ia etc. ) w i l l  not  change 

over  the ent ire process.  

 

At  the end,  postprocessing wi l l  be conducted and calculated values (pressure loss,  

temperature distr ibut ion and velocity  d ist r ibut ion) wi l l  be saved in a text f i le.  

Ent ire process desc r ibed in point  1 wi l l  be gathered in a s ingle scr ipt ,  cal led a 

“scr ipt1”.  

 

 
Fi gu re  3.  P er f or ma nce o f  Sc r i p t 1  

 

2.  At  the second step,  an opt imizat ion  process wi l l  be int roduced.  Apply ing a Python-

based l ibrary  cal led “Platypus” ,  a specif ic  type of genet ic  a lg or i thm “NSGAII I”  wi l l  be 

used and named as “Scr ipt2” . The Scr ipt1 wi l l  be passed to the Scr ipt2. 
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Scr ipt2 wi l l  be able to create a geometry “guess”  and invoke Scr ipt1 to perform the 

CFD analys is.  Postprocessed values wi l l  be passed to the Scr ipt2,  which wi l l  use them 

to calculate values of object ive funct ions ( in term s of  genet ic  opt imizat ion,  of ten cal led 

“ f i tness funct ions” ) .  This way, a genet ic  opt imization might  be performed using the CFD 

as a “shape-evaluat ion”  tool.  

 
Fi gu re  4.  P er f or ma nce o f  Sc r i p t 2  

 

3.  Next ,  results of th is  opt imizat ion  wi l l  be used in a second type of genet ic  opt imizat ion, 

car r ied in an Opt is lang sof tware.  An another s imulat ion environment  wi l l  be bui l t  and 

the genet ic  opt imizat ion wi l l  be conducted.  

4.  Final ly ,  the metamodel ing wi l l  be int roduced.  Based on values computed by CFD,  the 

kr ig ing wi l l  t ry  to mimic i ts per formance in s ignif icant ly  reduced amount of  t ime. I ts  

accuracy wi l l  be evaluated.   

 

 

 

 
 

                                    F i g ur e 5.  T h e p er f or ma nce o f  mo d el  bu i l t  i n  O pt is l a ng  
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       2.   COMPUTATIONAL FLUID DYNAMICS 

 

The nomenclature for th is  chapter  is  l is ted below: 

 

𝑝 – pressure 

𝑢, 𝑣, 𝑤 – velocit ies in specif ic  car tesian coordinat ion  

𝜏𝑖𝑗  – v iscous st ress 

e0  – energy (usual ly  expressed as temperature)  

𝑥, 𝑦, 𝑧 – direct ion of the f low 

𝜌 – density 

q  – energy input  

𝜙 – researched f low proper ty 

t  – t ime 

𝜏𝑖𝑗  – v iscous st ress 

𝜇 – molecular  v iscosity 

𝑆𝜙 – source term 

𝜏 – t ime constant  of turbulence  

𝜈𝑡 – k inemat ic v iscosity 

k  – turbulent  energy 

ω – turbulent  d iss ipat ion  

𝛿𝑘/𝛿𝜔 –  constants for descr ipt ion of  k  and ω 

y+  -  d imensionless distance to the wal l  

u+  -  d imensionless velocity  

𝜏𝜔 – wal l  shear  stress 

uT  – f r ic t ion velocity 

K  – Von Karman constant  

 

2.1 INITIAL ASSUMPTIONS 

 

A computat ional f lu id dynamics (CFD) approach was used to explore the f low pat tern ins ide 

both of cases.  

 

In order to shorten s imulat ion t ime,  the process is  assumed steady,  which means that  there is  

no var iat ion in f low propert ies over  t ime. Fur thermore, the f lo w is  considered v isc id and 

turbulent .  This turbulence was model led instead of  resolv ing,  which compr ises  the s imulat ion 

t ime and accuracy.  

 

In both cases, CFD analys is wi l l  be car r ied  out only in 2 dimensions.  This is  re lated to t he 

purpose of th is  analys is – dur ing the opt imizat ion phase the process of  CFD wil l  be repeated 

hundreds of t imes. 

 

2.1.1 In i t ia l  assumpt ions of the f i rs t case 

 

In terms of  1st  case,  the sought  features are:  

 

•  The pressure loss between the middle of  larger  pipe’s in let  and the out let  

•  The var iat ion of  temperature at the out let  (how wel l  was the mix ing per formed)  
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The baf f le was placed in the  system of  p ipes  (Y- junct ion) .  The working f lu id is  water  in normal 

atmospher ic pressure,  pumped with di f ferent , uniform  velocity  through both of the pipes. Both 

in lets provide the system with a f lu id of  d i f ferent  temperature . Al l  the proper t ies of f lu id which 

were used in fur ther research are related to th ese condit ions.  

 

2.1.2 In i t ia l  assumpt ions of the second case  

 

In terms of  2nd case, the researched features are:  

 

•  The pressure loss between the middle of a pipe and the out let  

•  The velocity  prof i le at  the  out let  

 

The baf f le was placed into a pipe bend  of the L-shape.  The baff le ’s  ro le is  to steer the f lu id 

and achieve the most un iform velocity  d ist r ibut ion at  the out let whi le also decreasing the 

pressure loss.  

2.2 GENERAL PROCEDURE OF CFD 

 

CFD al lows to model f lu id f low with a numer ical analys is,  which al lows to research 

sophist icated f lu id behaviors.  According to the Euler ian f rame of  ref erence,  the ent ire f low 

area may be div ided into a f ixed number  of small  volumes,  for  which the propert ies of f lu id wi l l  

be examined.  For  three – dimensional ,  t ime -  independent  phenomena,  th is  approach may be 

expressed as  [2]:  

 

𝜙 = 𝜙(𝑥, 𝑦, 𝑧, 𝑡)  

                                                                                                              

Af ter  d iv is ion of  the f low domain to a computat ional mesh,  a numer ical solver  solves            

the conservat ion equat ions for  f low features.  Depending on the chosen sof tware and i ts 

proper t ies,  a l is t  of conservat ion equat ions must  be sat is f ied for  the ent ire f low domain.  These 

values are computed sequent ia l ly  for  every s ingle cel l ,  whi le the solut ions are considered as 

an input  to subsequent  equat ions.  This process is  repeated,  and every repet i t ion is  cal led an 

“ i terat ion” .  

 

Computat ional Flu id Dynamics (CFD) is  the s imulat ion of  f lu ids engineer ing systems using  

model ing (mathemat ical physical problem formulat ion)  and numer ical methods.  The governing 

equat ion of  CFD are Navier -Stockes equat ions.  They are basic equat ion of  mot ion for  v iscous,  

heat  conduct ing f lu id.  

General ly ,  the term “Navier -Stockes equat ion”  re lates to three equat ions w hich descr ibe the 

conservat ion rules for  cont inuity ,  momentum and  energy. 

 

1)  Cont inuity  equat ion:  

 
𝜕𝑝

𝜕𝑡
+ 

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑗] = 0                                                                                                               1. 

 

2)  Momentum conversat ion:  

 
𝜕

𝜕𝑡
 (𝜌𝑢𝑖) +  

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑗𝑖] = 0                                                                                         2. 

 

I t  can be seen that the change in accelerat ion equals to the sum of  gravity  term,  pressure term 

and velocity  d i f fus ion term, represented by the v iscosity .  However , i t  can be also descr ibed in 

more general form, which comes direct ly  from the force balance on a s ingle f lu id element .  
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Somet imes the energy equat ion is  s olved for  as wel l  in order  to calculat e the temperature 

dist r ibut ion,  e.g. in cases where heat t ransf er p lays a role. The conservat ion equat ion for  

energy is :  

 

3)  Energy conservat ion:  

 
𝜕

𝜕𝑡
 (𝜌𝑒𝑜) + 

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑗𝑒𝑜 + 𝑢𝑗𝑝 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗] = 0                                                                                  3. 

 

The equat ions l is ted above may be  completed into equat ion 4 – The General form of  NS-

equat ion.  The sum of pressure gradient and v iscous term ( r ight  s ide ) is  equal to the change of  

local accelerat ion and convect ive term.  

 

4)  General form of  NS-equat ion 

 

𝜌 [
𝜕𝑢

𝜕𝑡
+ 

𝜕

𝜕𝑥
 (𝑢2)+

𝜕

𝜕𝑦
 (𝑢𝑣) +

𝜕

𝜕𝑧
 (𝑢𝑤)] =  −

𝜕𝑝

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
 +

𝜕2𝑢

𝜕𝑧2
]                                                         4. 

 

According to Stokes hypothesis, the v iscous stress 𝜏𝑖𝑗  may be considered as a product of 

molecular  v iscosity  𝜇 and local ve locity  gradients cal led st ra in rates.  

 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑥
 )                                                                                                                5. 

 

 

Especial ly  in CFD,  the ent ire set  of  equat ion may be expres sed as: 

 

𝜌
𝜕𝜙

𝜕𝑡
+ 𝜌 𝑑𝑖𝑣(𝑢 ⃗⃗  ⃗𝜙) = 𝑑𝑖𝑣(Г𝑔𝑟𝑎𝑑𝜙) + 𝑆𝜙                                                                                         6. 

 

This approach al lows to resolve the main f low.  However ,  the key to get  a real is t ic  s imulat ion 

of  the f low is  to model a turbulence.  In th is  approach ,  turbulence was model led with RANS.  

First ,  the mean velocity  is  int roduced:  

 

𝑢 ̅ =  
1

𝜏
 ∫ 𝑢(𝑡) 𝑑𝑡

𝜏

0
                                                                                                                7. 

 

Then,  the total  velocity  of  f lu id element  is  represented by a sum of t ime - invar iant main f low 

velocity  and random f luctuat ions,  expressed as  𝑢’, 𝑣’,𝑤’ (for  a three-dimensional f low) .  

 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡 )  =  𝑢 ̅ (𝑥, 𝑦, 𝑧) + 𝑢′ (𝑥, 𝑦, 𝑧, 𝑡)                                                                                      8. 

 

Put t ing i t  into the Navier  – Stokes equat ions y ie lds:  

 

𝜌 [ 
𝜕

𝜕𝑥
 (𝑢̅2 + 𝑢′2̅̅ ̅̅ ) +

𝜕

𝜕𝑦
 (𝑢̅𝑣̅ + 𝑢′𝑣′̅̅ ̅̅ ̅) +

𝜕

𝜕𝑧
 (𝑢̅𝑤̅ + 𝑢′𝑤′̅̅ ̅̅ ̅̅ )] =  −

𝜕𝑝̅

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
 +

𝜕2𝑢

𝜕𝑧2
]                                      9. 

 

In th is  approach,  shear  st resses relate to  f luctuations which al lows to model the main f low in 

turbulence.  However , one of  the most  chal lenging par t of  turbulence model l ing is  near -wal l  

region.  To solve th is,  the 𝑘 − 𝜔 𝑆𝑆𝑇 model was appl ied.  

 

𝑘 − 𝜔 𝑆𝑆𝑇 is  a model of  turbulence which connects  the advantages of k  – 𝜖 and k – 𝜔 

approaches.  While k – 𝜖 focuses on problems wit h large distance from the wal l ,  k  – 𝜔 excels in 
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models where the distance f rom the wal l  is  smaller .  I t  consists of two separate equ at ion for  k,  

which is  turbulence k inet i c  energy and omega, which is  turbulent  energy diss ipat ion .  

 

Kinet ic  energy:  

 
𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝑃 − 𝛽𝑘𝜔 + 

𝜕

𝜕𝑥𝑗
 [(𝜈 + 𝛿𝑘𝑘𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑗
]                                                                               10. 

 

Turbulence diss ipat ion:  

 

𝜕𝜔

𝜕𝑡
+ 𝑈𝑗

𝜕𝜔

𝜕𝑥𝑗
=  𝛼𝑆2 − 𝛽𝜔2 + 

𝜕

𝜕𝑥𝑗
 [(𝜈 + 𝛿𝜔𝑘𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1− 𝐹1)𝜔2

+ 
1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
                                               11. 

 

Where P, F 1 ,  F2 ,  β are c losure coeff ic ients dependent  on k and omega,  and 𝜈𝑡 is  k inemat ic 

eddy v iscosity  – a parameter calculated also direct ly  f rom k and omega values and the 

distance f rom the wal l .  

 

To model the f low near  the wal l ,  i t  is  necessary to  int roduce a standard wal l  funct ion 

approach.  In f lu id dynamics,  the law of  the wal l  s tates that turbulent f low’s average velocity  is  

propor t ional to the logar i thm of the distance from that point  to the wal l .  Fur thermore, the area 

of  the f low may be div ided into an area of  v iscous sublayer ,  where the v iscous forces play 

impor tant ro le in f lu id behavior  and the buffer layer ,  which represents an area of  t ransit ion 

between v iscous region and “ f ree-stream” f low.  To separate these areas, values of y+ and u+ 

are used. [ 2 ] 

 

𝑢+ =
1

𝐾
ln 𝑦+ + 𝐶                                                                                                               12. 

 

𝑦+ = 𝑦𝑢𝑇/𝑣                                                                                                                    13. 

 

𝑢𝑇 = √
𝜏𝜔

𝜌
                                                                                                                       14. 

 

𝑢+ =
𝑢

𝑢𝑇
                                                                                                                         15. 

 

To resolve the v iscous sublayer  proper ly  with wal l  funct ion approach, i ts  necessary to achieve 

y+ values between 20 and 500.  This value gives a hint  to the research of  computat ional m esh 

s ize. [ 2 ]  

 

According to the schema,  the values of  velocity  achieved through momentu m equat ion are 

used as star t ing guesses of  pressure.  While the values of  pressure and velocity  depend o n 

each other,  only the correct  values of  pressure may result  in fu l f i l led set  of  equat ions. I f  the 

convergence cannot be reached after  a l l  the computat io ns,  the values for  a pressure are 

updated with “ results”  obtained v ia the velocity  computat ion and the ent ire  algor i thm i terates 

again.  

 

The CFD sof tware calculates the dif ference between specif ic  conservat ion equat ions in 

succeeding i terat ions.  This value is  cal led  a “residual” .  General ly ,  in a proper ly  set  s imulat ion 

the value of residuals should decrease with the number  of  i terat ions.  When the normalized 

dif ference is  low enough,  the i terat ion procedure stops,  and received values may be 

considered as a result  of the ent ire process. To enhance the abi l i t y  to converge, an under -

relaxat ion factor is  implemented.  I ts a ppl icat ion al lows to use only a part  of values achieved i n 

previous i terat ions,  which increases the number of  i terat ions required to obtain converged 
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solut ions but  reduces the residuals in order  to keep the s imulat ion stable.  When the s ize of  

i terat ions cross a f ixed value,  the s imulat ion breaks,  and i ts results  cannot  be considered 

t rustworthy.  

 

Depending on the solver  and sof tware,  conservat ion equat ions  may vary.  However , they 

always deal with several “basic”  f low proper t ies – velocity ,  pressure, tempera ture and 

turbulence.  

 

In th is  research, a solver named “s impleFoam” and “buoyantSimpleFoam” was used.  They work 

with four  var iables descr ib ing velocity  in  car tesian coordinat ion system, one var iable for  

pressure, one for  temperature and – depending of  chosen turbulence model – a set  of  

var iables descr ib ing turbu lence.  

 

First ,  the solver  at tempts to solve momentum equat ion.  I t  assumes that  dur ing the f low,  t he 

ent ire mass is  conserved,  which means that  no creat ion and no destruct ion of  mass occurs. In 

a constant-density  f low,  th is  means that  f lowrate must be const ant .  Once is  solved,  th is  

equat ion del ivers a velocity  f ie ld 𝑢 ∗,  which is  considered as a guess – i t  does not  sat is fy 

cont inuity  equat ion.  

 

Next ,  the cont inuity  and momentum equat ions are used to  bui ld an equat ion for the pressure.  

Solut ion of  th is  equat ion gives access to pressure f ie ld pn .  Inser ted into momentum equat ion,  

a cor rected f ie ld of veloci ty  𝑢 is  calculated.  

 

Af ter  that,  s impleFoam (case 2)  or  buoyantSimpleFoam (case 1) at tempts to sol ve turbulence 

and considers the velocity  f ie ld u as an input  to th is  process.  In th is  case, the turbulence is  

model led with Reynolds-averaged Navier–Stokes equat ions (RANS) with feature cal led “Wall  

funct ion” .  

 

2.3 MESH INDEPENDENCY STUDIES 

 

The purpose of mesh independency studies is  to f ind the smallest  s ize of mesh which gives 

t rustworthy results .  In i t ia l ly ,  a mesh made of  low number  of  cel ls  is  ref ined as lon g,  as the 

results  obtained through fur ther  ref inement does not  change by a s ignif icant  amount .  

 

Mesh independency studies were performed for  both in i t ia l  geometr ies.  In a c lassical CFD 

approach,  the mesh independency should al low to reveal the smallest  s ize of  a mesh which 

al lows to obtain proper  results . However ,  th is  approach does not  work in th is  case. This is  

caused by the fact  that  dur ing the appl icat ion of  genet ic  a lgor i thm,  the amount of  chan ge 

per formed might  s ign if icant ly  a f fect  the character of  the f low, inc luding the values of  

velocit ies,  pressure and others.  This was of ten leading to instabi l i t y  of  opt imizat ion algor i thm 

per formance. To address the problems, the in i t ia l  mesh s ize was ref ined unt i l  one opt imizat ion 

run was successful ly  executed. 

 

Dur ing the execut ion, the value of  𝑦 + was recorded. Depending on the geometry shape, i ts  

value could either  increase or decrease dramat ical ly ,  so the mesh was ref ined as long as the 

average value for 𝑦 + could be keep with in an interval of  20>y+>500 to keep proper  turbulence 

model l ing.  While the average 𝑦 + returns general ly  al l  the t ime the same value,  there are some 

areas where 𝑦 + can be either  very high or very low.  

 

To achieve t rustwor thy results  with the the 𝑘 − 𝜔 Wall- funct ion model, the value  of  𝑦 + should 

be kept  between 20 and 500. [ 2 ] 
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2.3.1 Mesh independency studies – the f i rs t case 

 

 
 

Fi gu re  6.  y + v a l u es  ob t a i n ed  i n  t he  f i r s t  cas e  

 

While the minimum 𝑦 + value might  be too low sometimes ( in small  number  of  regions),  

average 𝑦 + is  around 130 and maximum 𝑦 + never cross the value of  500.  

 

For  th is  specif ic  case consist ing of 13 972 cel ls ,  the convergence of pressure is  shown at 

Figure 7. 

 

 
Fi gu re  7.  Co nv er ge nc e of  f i r s t  c ase  i n  t er ms  of  p ress u re  

 

 
Fi gu re  8.  Co nv er ge nc e of  f i r s t  c ase ’s  i n i t i a l  ge o met ry  in  t er ms  of  t e mpe ra tu re  d is t r i b ut io n at  t h e o ut le t  

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

y+
 v

al
u

e

Number of design

y+ values in 1st case  

Maximum y+ value Mean y+ value Minimum y+ value

-1,50E+07

-1,00E+07

-5,00E+06

0,00E+00

5,00E+06

T
o
ta

l 
p
re

s
s
u
re

 l
o
s
s
 [

P
a
]

Number of iteration

Convergence of pressure



 

 

16 

 

Figure 9 shows the y+ value dist r ibut ion over  the r ibbon of  the shape.  I t  might  be seen that  the 

vast  major i ty of cel ls  is  kept  between 30>y+>200 value,  whi le some areas ( f .  ex. surroundins 

of  the smaller  in let ,  the bottom of the larger  pipe) are exposed for larger  values (up to 390).  

 

 
Figure 9.  y+ value distr ibut ion of  the f i rst  case 

 

 
Fi gu re  10 .  M esh  co nve rg e nce  s t ud i es  of  t he  f i r s t  cas e  b ase d o n pr essu re  

 

 

 
Fi gu re  11 .  M esh  co nve rg e nce  of  t he  f i r s t  cas e bas e d on  t e mpe ra tu re  d is t r i b ut io n  
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2.1.2 Mesh independency studies – the second case 

 

In terms of  2 n d Case,  𝑦 + is  held most  of  the t ime at the very low values (between 0 and 50),  

but  there are some areas (most ly  arou nd the in let)  where red color  (which means values 

around 350)  may be seen. Addit iona l ly ,  the low number  of  cel ls  a l low to per form one 

s imulat ion over  several seconds.  In com par ison to that,  more t ime consuming is  the process of  

mesh creat ion ,  so the ent ire  i terat ion takes around one minute.  To keep the high f lex ib i l i t y  of  

an in i t ia l  mesh,  i t  was left  in th is  state.  

 

 

 
Fi gu re  12 .  M esh  co nve rg e nce  of  2 n d  in i t i a l  cas e bas e d  o n pr essu re  l oss  

 

 
Fi gu re  13 .  M esh  co nve rg e nce  of  2 n d  in i t i a l  cas e bas e d  o n th e  ve loc i ty  pr of i le  a t  th e  o ut l e t  

 

 
Fi gu re  14 .  y + d is t r i b ut io n  a t  th e i n i t i a l  s t a ge  o f  2 n d  ca se  
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Fi gu re  15 .  Aver a ge  y+  va l ue  f or  2 n d  c ase  

 

 

The results  for  velocity , pressure and temperature are considered converged when the 

residuals are not  h igher than 10 - 1  ,  whi le the convergence cr i ter ia for turbulence related 

residuals (k and omega)  were set to 10 - 5 .  Addit ional ly ,  the maximum number of i terat ions was 

f ixed at  1000 (case 1)  and 500 (case 2),  respect ively.  This  means that i f  the s imulat ion is  not 

converged t i l l  th is  point ,  I t  wi l l  be automat ical ly  f in ished .  

 

I f  the s imulat ion cannot meet  the convergence cr iter ia,  a f inal value of  pressure loss and 

either  temperature of velocity  prof i le wi l l  be calculated based on the mean of last  100 

i terat ions.  

In terms of  mesh independency,  i t  is  impor tant to ment ion that  depending on the geometry, 

f luctuat ions may increase, but  because of the large number of  s imulat ions the ef fect  of those 

var iat ion cannot  be examined in detai l .   

 

2.4 BOUNDARY CONDITIONS 

 

2.4.1 Boundary condit ions – the f i rst  case 

 

 
Fi gu re  16 .  Bo u nd ar i es  of  t he  f i r s t  cas e  

 

In let1:   

 

•  In i t ia l  temperature: 290K Dir ichlet  condit ion  

•  In i t ia l  Velocity :  Fixed volumet r ic  f low rate 0.0001 m 3 /s achieved with openfoam ’s 

boundary condit ion f lowRateInletVelocity  ( f ixed volumet r ic  f low in the direct ion of the 

vector  normal to given surface)  
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•  k  and omega:  Star t ing guess based on the 𝑘 − 𝜔 equations 16-19 

k = 0.0026 

ω = 0.672 

•  In i t ia l  pressure:  0,  Neumann condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

 

In let2: 

 

•  In i t ia l  temperature: 310K 

• In i t ia l  Velocity :  Fixed volumet r ic  f low rate 0.00005 m 3 /s achieved with openfoam 

boundary condit ion 𝑓𝑙𝑜𝑤𝑅𝑎𝑡𝑒𝐼𝑛𝑙𝑒𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ( f ixed volumetr ic  f low in the direct ion of  the 

vector  normal to given surface)  

•  k  and omega:  Star t ing guess based on the 𝑘 − 𝜔 equations 16-19 

k = 0.0048 

ω = 0.892 

•  In i t ia l  pressure:  0,  Neumann condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

Out let :  

 

•  Fixed pressure: 0,  Dir ichlet  condit ion 

•  Al l  other  f ie lds calculated based on other  inputs  

•  k  and omega:  The same values as on in let1  

 

Walls  and baf f le:  

 

•  Velocity  f ixed at  0: No-s l ip condit ion  

•  Turbulence:  k -omega wal l  funct ions ,  internal f ie ld with start ing guesses k = 0.003,       

ω = 0.7 

•  Pressure 0, Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

•  Other f ie lds calculated based on inputs  

 

 

2.4.2 Boundary condit ions – the second case 

 

 
Fi gu re  17 .  Bo u nd ar i es  of  t he  sec on d  cas e  

In let :  

•  In i t ia l  velocity :  3 m/s Dir ichlet  condit ion 

•  In i t ia l  pressure:  0 Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

•  k  and omega:  Star t ing guess based on the 𝑘 − 𝜔 equations 16-19 

k = 0.3,  ω = 0.7 
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Out let :  

•  Velocity :  0 ,  Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

•  Pressure:  0,  Dir ichlet  condit ion  

•  k  and omega:  Star t ing internal f ie ld k = 0.3,  ω = 0.7 

 

Walls  and baf f le:  

•  Velocity  f ixed at  0: No-s l ip condit ion 

•  Pressure:  0,  Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

•  k  and omega:  Star t ing internal f ie ld k = 0.3,  ω = 0.7 

 

In terms of  k  and ω values, OpenFoam is not  that much sensit ive  sof tware [ 2 ] .  Even a roughly 

proper  star t ing guess leads to the convergence and whi le the s ize of  be nd is  the same in both 

cases,  in i t ia l  values for  k and ω were just copied f rom the previous case.  

 

k  and omega in i t ia l  guesses were calculated based on equat ions shown below: 

 

Turbulence length sca le:  

 

𝑙 = 0.038 𝑑ℎ                                                                                        16.  
 

Turbulence intensity :  

 

𝐼 = 0.16 𝑅𝑒𝑑ℎ

−1/8
                                                                                    17.  

 

Turbulence k inet ic  energy:  

 

𝑘 =
3

2
 (𝑈𝐼)2                                                                                         18.  

 

Specif ic  d iss ipat ion rate:  

 

𝜔 =  √𝑘 𝑙⁄                                                                                            19.  
 

In i t ia l  guess for  k inemat ic eddy v iscosity  was set  to 0.0001 just  to avoid computat ional 

d i f f icult ies.  Al l  of  the cel ls  were also specif ied with an in i t ia l  guess of  0.0001 for  every 

boundary condit ion because of the same reason.  This proc ess enhanced the abi l i t y  to  obtain 

convergence.  

            2.5.    POSTPROCESSING – INITIAL SOLUTION 

 

2.5.1 Postprocessing – the f i rs t  case 

 

While the valve ’s presence enhances the f lu id mix ing,  i ts  presence increases the pressure 

necessary to pump water through i t .  According to f igure 18, whi le the streams approach each 

other , mix ing is  per form ed.  I t  can be seen that water  changes i ts  temperature quick ly,  and 

approaches the out let  at  near ly  uniform temperature . 

 

Temperature dist r ibut ion of the 1 s t  case is  s im ilar  to the velocity  d ist r ibut ion, where i t  is  

v is ib le that  both of the streams lose the velocity  at  the encounter and the out let d is t r ibut ion is  

near ly  uniform. 
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In terms of  the pressure, I t  might  be noted that  the largest  pressure loss occurs around the 

area of in i t ia l  mix ing,  where the pressure behind i t  is  more uniform.  

 

 
Fi gu re  18 .  Te mp er at ur e d is t r ib ut i on  o f  th e  i n i t i a l  1 s t  c ase  

 

 
Fi gu re  19 .  Pr essur e d is t r ib ut i on  of  t he  f i r s t  cas e  
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Fi gu re  20 .  Ve l oc i ty  d is t r i bu t i o n fo r  t h e 1 s t  C ase  

 

 

 

 

2.5.2 Postprocessing – the second case 

 

In the second case,  the  baff le inf luences the f low,  al low ing to achieve more uniform velocity  

d ist r ibut ion at  the cost of h igher  pressure loss. 

 

I t  can be seen that presence of  baf f le separates two areas of h igh and low pressure of the  

bend,  whi le the biggest  losses are v is ib le  at  the bot tom of the bend and at  the beginning of  

the baff le.  

 

 
Fi gu re  21 .  Ve l oc i ty  d is t r i bu t i o n of  t h e in i t i a l  2 n d  c ase  
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Fi gu re  22 .  Pr essur e d is t r ib ut i on  of  t he  i n i t i a l  2 n d  cas e  
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     3.     GENETIC ALGORITHM STUDY 

3.1  BASICS OF GENETIC ALGORITHMS 

 

The genet ic  a lgor i thm is an opt imiza t ion st rategy which t r ies to mimic the process of an 

evolut ion in a micro scale.  Unl ike a gradient -based opt imizat ion,  the genet ic  a lgor i thm 

approach does not  require to compute der ivat ives or  to have any deeper ins ight  into a funct ion 

designing the per formance  of  the process.  Because of  that,  they may be connected with the 

CFD sof tware to look over a pool of  geometr ies and f ind the best  shape [ 3 ] 

 

In the most  s imple approach,  GA starts  from creat ion of  a random pool of  designs,  descr ibed 

by a given number  of  var iables.  Every specif ic  design is  cal led a “chromosome” and contains  

a f ixed number  of genes. Every gene represents a specif ic  var iable ,  which descr ibes a 

physical parameter of  the invest igated design [ 3 ] .  

 

In the nature,  chromosomes may mix in the process of  crossover.  T wo chromosomes 

disassemble into four par ts,  which mix later  in a random way. In th is  process,  two new 

chromosomes are created.  The point  where chromosomes disassemble is  cal led “point  of  

crossover” and in the most  basic approach, there is  just one of  i t .   

I t  is  impor tant to real ize that new designs are bui l t  only f rom avai lable genes,  which means 

that  no new genes can be cr eated though crossover  (New “blocks”  cannot be inser ted into a 

gene pool)  [ 3 ] .   

 
Fi gu re  23 .  A  s i mp le  c ross ove r  

 

To change the value of  specif ic  gene (expand the gene pool) ,  i t  is  necessary to per form a 

mutat ion. In i ts  most  basic vers ion,  a mutat ion is  a purely random process which changes one 

gene value by a random amount .  An appl icat ion of  mutat ion ( the mutat ion chance higher  than  

a zero) has both pos it ive and negat ive consequences:  [ 3 ]  

 

The posit ives are:  

 

•  I t  may al low to f ind a f i t  design quick ly  

•  Expands the gene pool  

 

The negat ives are:  

 

•  I t  might  dest roy f i t  designs 

•  I t  might  s low down the convergence or  dest roy the convergence completely  

•  I ts  per formance is  hard to predict  
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Fi gu re  24 .  A  s i mp le  mu ta t i o n  

 

Before the round of  crossover and mutat ion, the select ion is  per formed.  Al l  the  genes are 

tested and their  f i tness funct ion value is  calculated.  Higher  value of f i tness funct ion increase s 

the probabi l i t y  that a specif ic  design wi l l  be selected  into a “crossover -mutat ion”  step.  This 

k ind of  approach al lows to assume,  that  the chance of  get t ing a “more f i t”  of fspr ing pool  

through genet ic  operat ions  is  h igher  than 50%.  This fact  is  mathemat ical ly  proven [ 3 ] .  

 

Af ter  select ion, crossover  and mutat ion ,  the ent ire process i terates further .  A higher  number of  

i terat ions al lows to improve the result  of opt imizat ion as the algor i thm should converge at 

some point , showing most ly  f i t  designs [ 3 ] .  

 

3.2 ADVANCED FEATURES OF GENETIC ALGORITHM 

 

To decrease the amount  of  randomness,  basic genet ic  a lgor i thms were improved and se veral 

new features were int roduced.  Apply ing them,  an algor i thm’s abi l i t y  to converge and f ind 

opt ima might be enhanced. 

 

3.2.1 Sampling type 

 

The f i rs t factor  in genet ic  a lgor i thm opt imizat ion which has a crucial  inf luence on the algor i thm 

per formance is  the type of an in i t ia l  pool sampling [ 4 ] .  Depending on a sampling type,  the 

algor i thm may be fed with ei ther a lready f i t  designs or  many k inds of  point  d istr ibut ion,  which 

al lows to ei ther  look into very t ight or  very wide  spect ra of  solut ions.  The f i rs t approach is  s  

good decis ion i f  there are any guesses or previous surveys avai lable,  the second – when there 

is  no access to previously gathered data of the specif ic  case [ 3 ] .  

 

In th is  project ,  the second approach was used. Two sampling types were int roduced. First ,  the 

uniform sampling,  which div ides the interval into given number  of  equal ly  spaced subintervals. 

Second is  the Lat in Hypercube Sampling,  which is  considered  wel l  – per forming type of 

sampling for  many k inds of  genet ic  a lgor i thm appl icat ion [ 5 ] .  

 

Lat in Hypercube Sampling works s imilar  way to the uniform dist r ibut ion but i t  is  more f lex ib le.  

First ,  for  every var iable the research interval is  div ided into n  subintervals.  From every of  

these subintervals, a given number  of  point s is  drawn.  Af ter  the specif ic  point  has been drawn, 

i t  is  removed f rom the search pool,  which means that  i t  cannot  be re -drawn.  Depending on the 

dimensional i ty  of  the case,  th is  process is  repeated  for every gene at the chromosome.  The 

thus found values are  connected into genes.  
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Lat in Hypercube Sampling provides more avai lable values for the start ing pool.  

 

 
Fi gu re  25 .  C o mpa r is on  of  s a mpl in g  ty pes  

 

3.2.2 Crossover 

 

The second feature added is  a l igned to the crossover  type.  Instead of  per forming a  one-point 

crossover  (which means bui ld ing a chromosome out  of 2 parts excluded f rom “parents -

chromosomes”),  more than two parents may be inc luded into breeding an offspr ing 

chromosome.  This approach may result  in a larger  var iety of  an offspr ing generat ion,  however , 

th is  can reduce the abi l i t y  to convergence. 

 

To steer the process of  crossover,  d i f ferent  k ind of  var iators were invented.  Their  ro le is  to 

decide which gene out  of the given “crossover  poo l”  wi l l  be f inal ly  p laced into newly created 

gene.  Depending on an opt imizat ion type, the most  commo n approach is  to ei ther create an 

of fspr ing very s imilar  to parents (according to the fact that  the most  f i t  designs are chosen) or  

rather  di f ferent  than paren ts (th is  k ind of  approach may expand the search) .  There is  a lso a 

midpoint  solut ion,  where a “cen ter  of the mass”  for  pool of  chromosomes is  being calculated 

and breed offspr ing is  in the “middle” .  Nowadays, many types of  var iators are present  in 

modern genet ic  a lgor i thms. 

 

 

In th is  project ,  three types of  var iators are examined:  

 

•  UNDX is the abbrevia t ion for an Unimodal Normal Dist r ibut ion Crossover . This type of  

mult iparent  var iator  chooses at  least  three parents to  create a given number  of  

of fspr ing (one by default ) .  According to the normal d ist r ibut ion,  the created chi ldren 

wi l l  be descr ibed most  l ikely by values f rom the center  of  d is t r ibut ion (around the so 

cal led “center  of mass”),  which is  calculated separately  for every s ingle var iable.  In 

theory, the biggest advantage of  th is  var iator is  a good per formance on low in i t ia l  

populat ion s ize.  I ts abi l i t y  to converge is  rather  weak,  which means that UNDX should 

const ruct more generat ions than other methods to get  converged. [ 6 ] 
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Fi gu re  26 .  Th e UND X V ar i a t or [ 6 ]  

 

•  The Simplex Crossover  (SPX) makes use of  a uniform dist r ibut ion,  where al l  the 

designs have s imilar  chance of being created.  The only l imitat ion is  a previously 

predef ined area f rom where values for every specif ic  var iable may be drawn.  This area 

is  def ined based on the parents pool.   

 
Fi gu re  27 .  Th e SP X Var i a t or [ 6 ]  
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Fi gu re  28 .  Th e PC X V ar i a t or [ 6 ]  

 

•  PCX (Parent  Centr ic  Crossover )  assigns a higher  probabi l i t y  for  an of fspr ing to remain 

c loser  to the parents than away f rom parents. I t  might  be assumed that parents which 

were chosen in a “ f i tness compet i t ion”  are actual ly  h igh-qual i ty  ones and their features 

should be st rengthen in t he populat ion.  In terms of  that  i t  is  a reasonable approach to 

const ruct offspr ing s imilar  to the parents.  This approach works wel l  when looking for  

local opt ima [ 6 ] .  

 

3.2.3 Selector  

 

The selector  ro le  is  to choose which of  the parents  wi l l  be chosen for the crossover-mutat ion 

pool.  The most  impor tant factors of  a specif ic  selector  are the abi l i t y  to improve convergence 

behavior  and increase “preservat ion”  of valuable genes in a gene pool.  Somet imes a very f i t  

gene is  locked in an unf i t  chromosome.  The genet ic  a lgor i thm checks the value of  a specif ic  

design based only on the f i tness funct ion,  which means that  i t  might remove a valuable gene 

dur ing the removal of an unf i t  design.  “Preservat ion”  means that  some un f i t  designs are keep 

in the populat ion just to prevent th is  k i nd of  scenar io.  

I f  the computat ional cost of a s ingle design is  low,  i t  is  reasonable to keep some value of  unf i t  

designs to achieve a bet ter g lobal opt imum.  Otherwise,  an selector tuned for a faster 

convergence might be a bet ter  idea.  In th is  project ,  two types of selectors are examined: 

 

•  L inear  selector  

L inear  selector  calculates the mean of f i tness value for every s ingle created chromosome. 

From this pool,  the chance of  choosing specif ic  design s is  calculated as rat io of  i ts  f i tness to 

average f i tness.  This means that  a l l  the designs from a pool have a chance to reproduce,  

however ,  some of them wil l  be ext remely unl ikely  to do that .  [ 3 ] 

 

•  Tournament selector  

As the name suggest ,  tournament select or  organizes a tournament  between chromosomes,  

choosing only the best design for the next  generat ion.  This means that only one chromosome 

f rom a gene pool wi l l  surv ive,  which means focusing on the f i tness at the cost o f  abi l i t y  to 

preserve genes.  The gene pool is  usual ly  reduced over  i terat ions,  i ts convergence abi l i t y  is  

improved. 

Increasing the tournament s ize,  the abi l i t y  to converge should grow [ 3 ] .  
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3.2.4 Mutat ion 

 

In terms of  mutat ion,  there are many dif ferent st rategies,  and the most  recognizable factor is  

i ts  probabi l i t y  and st rength. To l imit  mutat ion ’s random character,  i t  might  be set e i ther  to 100, 

0 or  a very l i t t le percent . The f i rs t  “very - l ikely-mutat ion”  approach assumes a common 

mutat ion whose value is  l imited by a normalized factor . The sampling o f  the mutat ion value 

might  be done according to di f ferent  k ind of  d ist r ibut ion,  where normal d ist r ibut ion is  in 

common use [ 3 ] .  The default  value of  change is  descr ibed around 10% for  every var iable,  where 

the value of 5% has the largest  chance of being dra wn.  

 

Zero chance for  mutat ion means that the algor i thm works steadi ly  unt i l  i t  reaches an opt imum 

on the given gene pool whi le i t  cannot expand i t .  This k ind of  approach is  used most ly  in 

discrete types of opt imizat ion,  where a cer ta in var iable can represe nt only f in i t e amount  of  

numbers [ 3 ] .  

 

The last  approach – low mutat ion rate – is  a trade-of f between the abi l i t y  to improve global 

opt imum and high convergence abi l i t y .  

 

3.3 PLATYPUS BASED OPTIMIZATION 

 

 

Platypus is a library of programming language python, which allows to use a wide variety of evolutionary algorithms. 

From this package, a NSGAIII optimization algorithm was used. This kind of a solution works best for two and more 

objective functions where at least four variables are used. NSGAIII shows good performance in many kinds of 

engineering optimizations, working with or without constraint and its enhanced ability to converge is mathematically 

proven.[13] [14] 

For this optimization, the used setup was: 

• Initial population size of 10, 15, 20 (First case) and 15, 22 and 30 (Second case). In terms of population size, 

there is an rule of thumb which assumes that initial population size depends on number of variables. It should 

be around 3 to 10 times bigger than number of variables used, which was 4 and 5 for specifically case 1 and 

case 2 – this is a rule of thumb. [8] 

Especially for CFD, It might be good idea to choose a value from a lower part of this interval to decrease the 

number of iterations. 

• Sampling type – Uniform sampling 

• Crossover type – Multipoint, based on chosen variator  

• Variator type  - UNDX, SBX, PCX 

• Mutation chance – 1% (Default value), Mutation value default 

• Selector type – Tournament selector with Tournament size of 10. The maximum value for tournament is the 

size of the initial population and the minimal value is two. This means that a value around the middle results 

in a fair trade-off between ability to preserve genes and achieve convergence. 

• Convergence criteria – at least 10 succeeding designs whose fitness value difference is not bigger than one. 

Maximum number of iterations set for every population size. In the second case, the convergence criteria 

was changed due to higher fluctuations of fitness value to 5 iterations. 
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3.3.1 The algorithm built in platypus 

The environment built to perform this genetic algorithm study is presented at Figure 24. First, the genetic 

algorithm creates a set of variables which is exported to a file. This file is read by a mesh generator and a specific 

mesh is created. 

In the next step, CFD analysis is performed. As soon as it ends, the results acquired by postprocessing are 

gathered and directed back into the genetic algorithm. The fitness function is calculated and next iteration of 

genetic algorithm starts. 

 

Figure 29. Platypus optimization scheme 

Optimized variables are: 

a) In the first case: 

• X – the length of a baffle in the X plane 

• Y – the length of a baffle in the Y plane 

• P – the location of a baffle – while the minimum is directly at the outlet, and maximum – at the joint of pipes 

• C – the angle between the pipes connection – from -20 to 85 degrees 

 

b) In the second case: 

• X1 – the location of a baffle inside the pipe (y coordination) 

• X2 – the first point creating the baffle’s curvature (x coordination) 

• X3 – the second point creating the baffle’s curvature (x coordination) 

• X4 – the third point creating the baffle’s curvature (x coordination) 

• X5 – the fourth point creating the baffle’s curvature (x coordination) 

 

3.3.2 Results of the optimization 

3.2.2.1 Results of optimization – First case 

The first round of optimization allows to compare the performance of all chosen kind of variators while the rest of the 

genetic algorithm factors does not change (including population size, sampling type, crossover, mutation etc.). 

The fitness function for the first case is expressed as: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠  =  (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑒𝑡 [𝐾]) ∗ 10 

+ (𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑛 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑎𝑛 𝑜𝑢𝑡𝑙𝑒𝑡) ∗ 0.00001 
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This fitness function has to be minimized. 

The weights were set to promote temperature distribution at the outlet over the pressure loss. While the amount of 

mixing might improve the temperature difference by roughly 2-3 Kelvins, the pressure loss can change significantly – 

from around 1.7*105 Pa to 1.3*105 Pa. Because of that, a weight of 0.00001 was added before the pressure loss term 

and the weight of 10 was added to the temperature term. 

While small increases in pressure loss will not affect fitness function value by a large amount, this approach will 

protect the algorithm from converging at designs where pressure loss is extremely high. 

 

 

Figure 30. Comparison of results obtained with initial population of 10 

 

All of these optimizations start from exactly the same initial population. All of the variators got converged. It might be 

seen that different kind of variators have large impact on GA’s performance. First, there is a small difference in terms 

of found optima. 

• The UNDX found the optimum at 33.6 and required 97 iterations to converge. According to the figure, it is 

significantly more than the rest of variators. Additionally, it might be seen that the fluctuation of fitness value 

are the largest while using this variator. 

• The PCX performed a lot worse than the rest of variators, finding an optimum of 40.2 at 72 iterations. The 

optimum value is around 20% higher (which means worse) compared to the rest of variators. It might be 

seen that this variator is the most “conservative”, which means the smallest fluctuations over the pool of 

chosen variators. 

• The SBX needed only 61 iterations to find an optimum, which is 32.8. This is the best result in terms of both 

optimization time and quality of optima. 

 

While the results found by SBX and UNDX are similar, PCX performed unexpectedly bad – probably because of the 

small initial population pool. To examine the effect of initial population on the optimization performance, the 

optimization was repeated with larger initial population pool – 15 and 20, respectively. 
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Figure 31. Comparison of results obtained with initial population of 15 

 

The results of optimization with the starting pool of 15 are shown at Figure 31. 

• Over 101 iterations, the SBX found an optimum at 26.3. 

• The UNDX found an solution at 26.3 which required 86 iterations. 

• The PCX found an optimum at 26.3 over just 40 iterations. 

 

It might be seen that expanding the starting pool increased the effectiveness of the simulation. All the variators found 

the same optimum of 26.3, while the number of iterations required to do that is not the same in every case. At the 

graph, the most recognizable is PCX performance, which required only 40 simulations to find an optimum. It might be 

seen that this value on the graph is preceded by a sudden peak in the fitness value. The unexpectedly quick minimum 

might be just the result of a lucky, very fit mutation or crossover. In this population size, the worst performance is 

provided by UNDX, which requires as much as 101 iterations to find an optimum value. 

 

The results of optimization with the starting pool of 20 are shown at Figure 32. 

 

Figure 32. Comparison of results obtained with initial population of 20 
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• The UNDX requires 106 iterations to find an optimum at 26.6.  

• The PCX finds optimum at 26.4 in 121 iterations 

• The SBX finds optimum at 26.3 during 66 iterations. 

 

It might be seen that a further expansion of the initial population size worsens the quality of results. Not only are the 

resulting optima worse than in the previous case, but also the number of iterations increased. Only the SBX 

performance is improved – it found the same optimum in lesser number of iterations compared to the previous run. 

The comparison of results is listed in Table 1. 

 Initial population of 10 Initial population of 15 Initial population of 20 

Optimum Number of 

iterations 

Optimum Number of 

iterations 

Optimum Number of 

iterations 

PCX 40.2 72 26.3 40 26.4 121 

SBX 32.8 61 26.3 101 26.3 66 

UNDX 33.6 97 26.3 86 26.6 106 

Table 1. Comparison of results of 1st case optimization achieved by Platypus 

From the table, it is visible that SBX is the best choice for a variator in this specific case. Regardless on the initial 

population size, it always find the best value for the solution. On the other hand it might be seen that regardless of 

variator type, found optima are usually similar – only the number of iteration required to achieve it varies.  

On the other hand, UNDX performs worse than the rest of variators, mostly because of its fluctuating nature which 

does not allow to achieve quick convergence. 

 

3.2.2.2 Results of optimization – Second case 

In the second case, the Fitness function is expressed as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑎𝑛 𝑜𝑢𝑡𝑙𝑒𝑡 [𝑃𝑎]) 

+ (𝑇ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑚𝑜𝑑𝑢𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑒𝑡 [
𝑚

𝑠
]) ∗ 100 

This fitness function has to be minimized. 

Again, the role of fitness function is to promote mixing over pressure loss. It might be seen that in the most of the 

iterations, pressure loss fluctuates usually between 50 and 100 Pa. While the velocity difference is 5.5 m/s for an 

unoptimized shape, the baffle optimization might reduce this value by roughly 1-2 m/s. This means that the range of 

pressure loss values is around 100 times wider than the range of velocity difference, thus a weight of a 100 was 

added to the pressure term. 
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Figure 33. Comparison of results obtained with initial population of 15 

 

The results of optimization with the starting pool of 15 is shown at Figure 33. 

• PCX converges with the value of 516.1 over 309 iterations 

• SBX converges with the value of 516 over 183 iterations 

• UNDX converges at the value of 511.9 after 148 iterations 

 

 

Figure 34. Comparison of results obtained with initial population of 22 

The results of optimization with the starting pool of 22 is shown at Figure 34. 

• PCX converges with the value of 511 over 190 iterations 

• SBX converges with the value of 516.1 over 198 iterations 

• UNDX finds the value of 510.9, while it cannot obtain convergence over more than 650 iterations 
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In terms of convergence, it might be seen that the results vary significantly over the variator type. However, this might 

be caused by very strict convergence criteria which assumes convergence as a change of parameter less than one. If 

these requirement was relaxed to less than five, the result might be considered converged at 75th iteration in terms of 

SBX and 195th iteration in the PCX. UNDX cannot achieve the convergence, however there might be found some fit 

results over the fluctuations. The difference between the found optima is less than 1%. 

The results of optimization with the starting pool of 30 is shown at Figure 35. 

 

 

Figure 35. Comparison of results obtained with initial population of 30 

 

• UNDX does not converge over 500 iterations, while the most fit value found is 510.9 

• PCX converge after 339 iterations with fitness value 510.9 

• SBX converges in 214 iterations with fitness value of 517.1. This value does not decrease over more than 30 

iterations. 

 

It might be seen that the initial pool of 30 does not result in better optima. However, it drastically increases the number 

of required iterations. The UNDX does not converge and fluctuates over its entire spectrum, however, it still finds the 

optimum value of 510.9, which is the best value found in this optimization.  

 

 Initial population of 15 Initial population of 22 Initial population of 30 

Optimum Number of 

iterations 

Optimum Number of 

iterations 

Optimum Number of 

iterations 

PCX 516.1 309 511 190 510.9 339 

SBX 516 183 513.1 198 517.1 214  

UNDX 511.9 148 510.9 unconverged 510.9 unconverged 

Table 2. Comparison of results of 2nd case optimization achieved by Platypus 
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It seems that an optimum value for initial size population in second case is 22. Not only this size achieves the best 

result in terms of optimization but also does it in the smallest amount of iterations. The difference is found optima is 

small – around 1%. 

 

3.4 OPTISLANG OPTIMIZATION 
 

3.4.1 The setup built in Optislang 

OptiSLang is a software platform for CAE-based sensitivity analysis, multi-disciplinary optimization (MDO) and 

robustness evaluation. It is developed by Dynardo GmbH and provides a framework for numerical Robust Design 

Optimization (RDO) and stochastic analysis by identifying variables which contribute most to a predefined optimization 

goal. This includes also the evaluation of robustness, i.e. the sensitivity towards scatter of design variables or random 

fluctuations of parameters.[15] 

To perform an optimization in Optislang, a sequence of systems was built. Each of these systems consists of the 

same blocks. Blocks contain commands written in either bash or python programming language, which built entire 

optimization environment. One of these systems “Kriging” was presented at Figure 36. 

In every single block, there are 5 scripted sub-blocks: 

• “Initialize” – loads all the modules required to the simulation, including specific python version and 

opensource CFD software, OpenFOAM 

• “Create input file” – reads the values sampled by Optislang and converts them into a file, which is further 

exported to the location where CFD will be performed 

• “Create Geometry”  - runs the python-based CAD software “Salome” in the batch mode using a previously 

generated script. Application of specific python library “pickle” allows to connect both the exported input file 

and geometry script to create an unique CAD model, described by specific inputs. 

• “Perform CFD” – the geometry is loaded to an automatic meshing tool (CfMesh). After the mesh is created, 

OpenFOAM performs a CFD analysis, calculating the pressure loss between specific point (an inlet and an 

outlet of pipe) and either temperature or velocity distribution at the outlet. 

• “Gather results” – gathers the values of both distributions and pressure loss and calculates the mean of 

them. They are used to calculate objective function value and passed to the Optislang. 

 

 

Figure 36. Example of a single system built in Optislang 

From these kinds of blocks, three types of systems were built: 

• Sensitivity systems – create input variables with specific type of sampling and checks the relation between 

parameters, especially the linear correlation between sampled input points and between input and output 

values 

• Evolutionary Algorithm systems – perform a genetic algorithm study. Must be either fed with a points created 

previously or do independent sampling.  

• AMOP systems – try to perform several types of metamodeling and check the accuracy between them and 

models created by CFD. Creates a visual 3D prediction of the function surface based on both metamodels 

and points used to create metamodel pool. [7] 
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Having these three kind of systems, three models were built: 

1) Sensitivity systems -> Evolutionary Algorithm systems 

2) Sensitivity systems -> AMOP systems ->  Evolutionary Algorithm systems 

3) Sensitivity systems -> Evolutionary Algorithm systems -> AMOP systems ->  Evolutionary Algorithm systems 

-> AMOP systems ->  Evolutionary Algorithm systems 

 

Models 2) and 3) will be described in Chapter 4 Metamodeling. 

3.4.2 Sensitivity analysis 

One of the Optislang feature is the sensitivity analysis, which allows to check the influence of given variables on the 

fitness function performance. Based on sampled initial points, the influence of specific variables was checked. 

3.4.2.1  Sensitivity analysis – the first case 

In terms of 1st case, it might be seen that the fitness function changes by a large amount especially based on two 

specific variables. They are:  

• the angle of the pipes connection  

• the length of a baffle 

 
Figure 37. The shape of problem surface in the 1st case 

According to Figure 38, to achieve the optimal shape of flow system, algorithm will try to maximize the angle (up to 90 

degrees) and lengthen the baffle. Additionally, the value of “c” (which is the distance of baffle from the connection of 

pipes) will be rather low, which means that the baffle should be placed close to the pipes connection. However, both 

variables describing the baffle (c and y) are not as much influential as baffle length and angle of pipes connection. 
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Figure 38. Linear correlation between input variables and the fitness function 

 

3.4.2.1  Sensitivity analysis – the second case 

It might be seen that the surface is a lot more flat compared to case one. This is right – objective function in terms of 

second case is a lot more stable (varies from around 520 to 650, compared to 20 and 200 in the first case). According 

to Figure 40 it might be seen that variables x2, x3, x4 and x5 have quite similar influence on the objective function. 

Indeed, they describe the x-coordination of point from which baffle is created. However, one variable shows a totally 

different trend than the rest – x1. This variable describes the vertical baffle coordination.  

 

 
Figure 39. The shape of 2nd case function’s surface 
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Figure 40. Linear correlation between input variables and the fitness function 

 

3.4.3 Optislang optimization and results 

Optimization parameters used in Optislang was changed since the Platypus optimization. First, the Optislang does not 

allow to choose type of variator while it leaves more space in terms of mutation and crossover manipulation. The 

optimal initial population size was preserved from Platypus and reused. 

The optimization criteria was: 

• Initial population size: 15 (for case 1.) and 22 (for case 2.) 

• Sampling type – Latin Hypercube Sampling 

• Crossover type – Multipoint with three crossover points (default value) 

• Variator type  - No variator 

• Mutation chance – 98% chance for a mutation. The mutation mechanism adds or subjects a random value 

from interval (0, 0.1𝑥), where 𝑥 is actual variable value. The draw follows the rules of normal distribution, 

which means that the value of 0.05𝑥 has the largest chance of being chosen.  

• Selector type – Tournament selector with Tournament size of 10. The maximum value for tournament is the 

size of initial population and the minimal value is two. This means that a value around the middle results in a 

fair trade-off between ability to preserve genes and achieve convergence. 

• Convergence criteria – Maximum number of iteration or an improvement of the fitness value in relation to the 

results obtained by the Python Platypus 

 

The results of Optislang optimization was presented in Figure 41 and Figure 42. 
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Figure 41. Genetic optimization of the 1st case done in Optislang 

 

Figure 42. Genetic optimization of the 2nd case done in Optislang 

It might be seen that the Optislang allows to perform a lot smoother optimization which finds the optimum value a lot 

quicker than the Platypus. 

In terms of first case, fitness value was also improved (19.6 compared to 26.3 in python library), while in the second 

case the found optimum is worse by around 0,2% (511 compared to 510). 
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4.       METAMODELLING 
 

4.1   THE PURPOSE OF METAMODELING 

 

Metamodels, called often surrogate models or low-fidelity models, are designs created from high-fidelity models (in 

this case, results of CFD analysis) which predict the value of fitness function for entire spectrum of variables. The 

topic of metamodeling is often related to the Machine Learning, where the computer tries to build a continuous 

function out of given discrete values. There are many kinds of metamodeling and for a specific problem, there is 

usually a type which outperforms the rest of them. [8] 

The results of CFD analysis are generally hard to predict, however the topic of metamodeling optimization is getting a 

lot of attention in the industry due to the reason, that constructed metamodels can expand both initial population pool 

and generation size, which allow to spare time previously used to compute high-fidelity designs. 

According to scientific research, depending on the case, properly set metamodeling environment can shorten the 

optimization time by a large amount (even several dozen of percent).[9] 

According to the previous scientific work[8], the most promising type of metamodeling for CFD optimization is Kriging, 

Artifical Neural Network and Response Surface Approximation. In this project, Kriging was chosen as the 

metamodeling type because of its decent performance on low starting pool cases. [8] 

4.2 THE KRIGING 

 

4.2.1 The basics of Kriging 

The kriging, called also Gaussian Regression, is a type of interpolation primary introduced to geostatistical sciences, 

where its purpose was to predict the location of gold vein from the fixed amount of non-uniformly scattered, low 

number of boreholes. [10] 

The idea of kriging is to predict the value of an unknown function at a given point by the computation of weighted 

average of the know values of this function in enough close neighborhood. In terms of that, Kriging is similar to 

regression analysis. 

As an interpolation technique, Kriging is a covariance-based type of prediction, where all the found values lies directly 

at the found function’s neighborhood, where the distance depends on random number achieved from sampling of 

either normal or different kind of distribution. 

The most basic type of kriging may be expressed with given formula: 

𝑍(𝑠𝑥) =  𝛴𝜆𝑍(𝑠𝑖) [9] 

Where: 

𝑍(𝑠𝑥) – value of fitness function in a surveyed location 

𝑍(𝑠𝑖) – value of fitness function in a previously-known location 

𝜆 – weight parameter 

Which means that the prediction of function value is just the sum of weighted values found in the neighborhood. 

However the method of weight coefficient computation may be often complicated. Removing the weighted sum value, 

kriging may be expressed with Formula: 

𝑦(𝑥) =  𝑝(𝑥) + 𝑍(𝑥) [9] 
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Where: 

𝑦(𝑥) – value of fitness function in surveyed location 

𝑝(𝑥) – value of fitness function in a known location 

𝑍(𝑥) – a random bias sampled with some kind of distribution or other sampling strategy 

The 𝑍(𝑥)  is the realization of a Gaussian random process, with the mean of zero, variance of σ2 and non-zero 

covariance. While the 𝑝(𝑥) reflect so-called “global” approximation, 𝑍(𝑥) stands for a “local” deviation which expresses 

the effect of N point used to approximation. [9] 

In a one-dimensional case, Kriging may be expressed with the approach similar to the one shown at Figure 43. At the 

figure, z stands for function value and x is an input variable. 

 

Figure 43. A simple 1D Kriging example [11] 

The red point shows the values computed or measured (high-fidelity model). They are connected with some type of 

curve (depending on kriging type) and for every two point (which are neighbors) there is an area of uncertainty, which 

is expressed by normal distribution (only in the most basic approach; values closer to the curve have higher chance of 

being drawn). After the Z values are computed, the new “prediction” curve is computed and unknown values 

predicted. [12] In terms of that, Kriging may be an iterative process with the ability to improve itself. 

In terms of this project, a four-dimensional and five-dimensional kriging is used. 

4.2.2 Results obtained through Kriging and the accuracy of prediction 

To improve genetic algorithm performance, Kriging was used as a generator of additional designs. This allows to 

expand gene pool and give the genetic algorithm a guess where it should look for an optimum. 

Optislang generated kriging points based on one initial population of samples gathered with Advanced Hypercube 

Sampling. This means 15 points in terms of first case and 22 point in terms of the second case. Both of these were 

shown at the graphs. 
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Figure 44. Kriging done in Optislang on 22 initial points (First case) and its accuracy 

 

 

Figure 45. Kriging done in Optislang on 22 initial points (Second case) and its accuracy 

It might be seen that the kriging can predict values with good accuracy basing on initial population of genetic 

algorithm. Figures 46 and 47 shows comparison of results between objective function values obtained by CFD and the 

metamodeling. In the first case, the relative error of kriging might be either very little (less than 1%) or quite large 

(around 16%). However, most of the predictions achieved shows rather good fit and the mean value of the relative 

error achieved is equal to 3,41%. 

According to second case, Kriging performs even better than in the first one. While the approximation may produce 

some highly biased designs (maximum relative error higher than 23%), most of the values are very similar to the 

results obtained via CFD. The mean error of approximation is equal to 2,51%. 

Based on that it might be good approach to use kriging as an intermediate step for genetic algorithm performance but 

certainly not in an independent analysis. Relative error fluctuates and there is no visible trend, so the quality of an 

individual metamodel is hard to predict without comparison to CFD analysis. 
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Figure 46. Relative error of Kriging approximation in created designs (First case) 

 

Figure 47. Relative error of Kriging approximation in created designs (Second case) 

On the other hand, Kriging can also result in achieving very unfit solutions, which may disrupt the simulation 

performance. On the Figure 48 a result of Kriging done on the initial population size of 100 might be seen, where large 

amount of the predictions is just a nonsense. This figure was created with a different software called Dakota. While 

Kriging is a sophisticated metamodeling which is described by many inputs, it can be seen that the good accuracy 

could not be achieved with this specific software. 

 

Figure 48. Kriging performed on large initial pool 

This issue was partially resolved by lowering the initial design pool to 20. However, the relative error was still huge 

compared to results obtained by the optislang. 
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Figure 49. Kriging performed on small initial pool of 25 designs with Dakota 

 

Figure 50. Relative error obtained by Kriging approximation in Dakota 

It is clearly seen that low-fidelity models achieved by Optislang are a lot more accurate than those produced by 

Dakota. This is caused mostly by the black-box character of Optislang, where it can optimize its predictions based on 

previous models and change its own guesses the iterative way. Additionally, the software allows to choose the 

maximum amount of iterations where optislang is allowed to perform improvement of created models. Because of this, 

Dakota was discarded in further work. 

In the next step, a second round of Kriging approximation was performed. The results of first Kriging was connected 

with initial pool of solutions created by CFD analysis. The next Kriging was performed based on values randomly 

chosen out of this pool – 15 in the first case and 22 in the second case. The results obtained are presented at Figures 

51 and 52. It can be seen that the relative error of approximation is similar to the first round of Kriging. 
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Figure 51. 2nd round of Kriging approximation in the first case 

 

Figure 52. 2nd round of the Kriging approximation relative error (first case) 
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Figure 53. 2nd round of Kriging approximation in the second case 

 

 

Figure 54. Relative error of the 2nd round of Kriging approximation (second case) 

 

4.2.3 Implementation of Kriging in genetic algorithm 

4.2.3.1 Implementation of Kriging in genetic algorithm – the first case 

Created metamodels was used as an initial population for genetic algorithm in both case 1 and 2. Obtained results 

was shown at Figure 55 and Figure 56. 

In the first step, results of Kriging was passed to the genetic algorithm, so the initial population size was expanded by 

generated metamodels. According to figure 55, It might be seen that obtained metamodels does not increase the 

effectiveness of genetic algorithm performance. The optimum was found after 41 iterations (compared to 40 iterations 

of “raw” genetic algorithm) while the found optimum is nearly the same as before (less than 0,1% difference). While 

the kriging passed some good guesses into the algorithm (point 1 is nearly as fit as the found optimum with the value 
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of 21.1), their lack of accuracy slowed down the convergence. The discontinuities in the graph line are caused by 

mesh breaks. 

 

Figure 55. Optimization of 1st case with genetic algorithm and one round of Kriging 

To strengthen the influence of Kriging in entire optimization, it was introduced twice. Kriging generated by AMOP 

systems were first created based on 30 solutions found by 2 generations made by genetic algorithm. Later, both the 

results of Kriging and a high-fidelity models were passed to another Evolutionary Algorithm system, where another 2 

generations were performed.  

The Figure 50 shows the effect of research carried with the last genetic algorithm round – again, locked at two 

generations. It might be seen that the graph presents more flat but consistent convergence, which finds out an 

optimum at 20.2 (compared to 19,6 its around 3% less fit minimum). However, this kind of approach is very time 

inefficient since it required to compute all the previous blocks. 

Finally, the cost of entire process was evaluated for 105 iterations (three Evolutionary Algorithm systems with 30 

iterations each and Sensitivity system with 15 iterations), which means more than two times longer optimization for a 

slightly weaker result. 

 

Figure 55a. The “two-kriging” method 
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Figure 56. Last stage of 1st case optimization with application of genetic algorithm and two rounds of Kriging 

 

4.2.3.2    Implementation of Kriging in genetic algorithm – the second case 

The previous procedure was repeated for second case. The only difference made is an increase in maximum number 

of iterations permitted in the approach of “two rounds of kriging application”. The purpose of it is to check if higher 

number of iterations can obtain fitter solution through kriging. 

The result of first optimization was shown at Figure 57. 

 

Figure 57. Optimization of 2nd  case with genetic algorithm and one round of Kriging 

According to Figure 57, The most fit value was found at 25th iteration – just in the second generation. The expansion 

of the initial population size made by Kriging was enough to find an optimum value in a very short time. Compared to 

optimization without kriging, the result was obtained 47% quicker (47 compared to 89). 

After that, Kriging was introduced twice into the genetic algorithm. The result was shown at Figure 58. 

It might be seen that the curve fluctuates and shows no visible trend. It might be explained with the selection, where 

genetic algorithm started its optimization from an inaccurate results. Additional input provided with kriging only 
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disrupted the convergence. Finally, algorithm finds an optimum after 307 iterations, which is the worst result compared 

to the rest of optimizations with the same starting population size. 

 

Figure 58.  Last stage of 2nd  case optimization with application of genetic algorithm and two rounds of Kriging 

The comparison or Kriging results is shown in Table 3. 

 Raw genetic algorithm One round of kriging 

applied 

Two rounds of kriging 

applied 

Found 

Optimum 

Number of 

iterations 

Found 

Optimum 

Number of 

iterations 

Found 

Optimum 

Number of 

iterations 

Case 1 19.6 55 19.6 56 20.2 105 

Case 2 511.3 89 511.4 47 517 307 

Table 3. Comparison of optimization results achieved with and without Kriging 

It might be seen that application of two kriging rounds resulted in worse performance in both cases. While in the first 

case application of kriging caused no positive or negative effect, in the second case kriging application resulted in 

large reduction of simulation time (47% compared to no-kriging case in Optislang, 76% compared to Platypus-based 

optimization). 
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5.     ANALYSIS OF OPTIMIZATION RESULTS 

 
5.1 Analysis of optimization results – the first case 

It might be seen that the low velocity at the bigger inlet causes the baffle to have a really small effect in pressure 

increase compared to the increase coming from the second inlet flow. Additionally, The objective function is tuned to 

support mixing more than pressure loss, so the algorithm decides to maximize the baffle size and increase the value 

of velocity and which streams encounter each other. 

While it increase pressure loss value by around 18%, more uniform distribution of temperature might be achieved. 

Sudden contraction result in fluid acceleration when both fluids approached themselves at maximum velocity nearly 

countercurrent. This causes a splash after which the velocity decreases followed by pipe expansion which strengthen 

this effect. 

The temperature distribution at the outlet is compared at the Figure 63. 

 

 

Figure 59. Temperature distribution in unoptimized Y-junction 

 

Figure 59a. Pressure distribution in optimized Y-junction 
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Figure 60. Temperature distribution in optimized Y-junction 

 

Figure 61. Velocity profile of optimized Y-junction 

’ 

 

Figure 62. Comparison of temperature distribution between optimized and unoptimized shape 
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Fi gu re  63 .  Te mp er at ur e d is t r ib ut i on  a t  th e  o ut l e t  o f  op t i miz e d a nd  u n op t i m iz ed  Y - j unc t i o n  

 

 

5.2 Analysis of optimization results – the second case 

It can be seen clearly that the existence of the baffle improved the uniformity of velocity distribution in the bend. 

Moreover, the baffle also reduced the pressure loss over its length by 21%. 

It might be seen that algorithm tries to match the shape of baffle to the fluid streamlines. Created object has an 

aerodynamical shape, the amount of separation is little. 

At the graph, four designs were compared: 

• The first one is the most fit result achieved by optislang with fitness value 511.3 

• The second one is an unfit solution, which shows that the placement of baffle may be also disturbing if done 

incorrectly 

• There is also an case of a pipe bend without baffle included which allows to compare the effect. 

 

 

Figure 64. Velocity profile of case 2 pipe bend without a baffle (2nd case) 
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Figure 65. Velocity profile of optimized 2nd case (baffle with a bend, 2nd case) 

 

Figure 66. Pressure profile of bend without a baffle (2nd case) 

 

Figure 67. Pressure profile of optimized baffle in a pipe bend (2nd case) 
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Figure 68. Velocity profile of a low-fitness baffle (2nd case) 

 

 

Figure 69. Pressure distribution of unfit pipe bend with a baffle 

 

 

 

Figure 70. Comparison of velocity profiles of optimized bend and a bend without a baffle 
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Figure 71. Comparison of velocity profiles 
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6.        DISCUSSION 
 

I t  is  c lear ly  seen that genet ic  a lgor i thm can be used as an opt imizat ion tool and i ts accuracy is  

good.  In most  of the cases i t  could get  a convergence,  whi le under  the most  proper  condit ions 

i t  can f ind a solut ion with real ly  low number  of  i terat ions ( i n examined cases, around 60-80) . 

This is  especial ly  va luab le when a sophist icated design is  analyzed s ince no informat ion about  

the gradient  is  required.  

 

The role of  metamodel ing is  most ly  to expand in i t ia l  populat ion and the more i t  is  appl ied,  the 

more bias i t  int roduces. On the other hand, even a low numb er  of  i terat ions  (around 20 in th is  

project)  might  lead to good predict ions i f  the kr ig ing is  appl ied .  While usual ly  helpful ,  

metamodel ing might  be somet imes very mis leading and create s total ly  nonsense predict ions. 

Fur thermore, i ts  ef fect is  very random while the range of  re lat ive er ror very wide ( f rom less 

than 1% t i l l  around 20%).  There is  no t rend in re lat ive er ror s ize and i f  not  compared to the 

results  gained by some t rust wor thy method ( l ike CFD),  the informat ion is  most ly  useless – 

especial ly  i f  only one specif ic  design is  examined.  

 

The role of  metamodel ing is  usual ly  to “d iscover” a funct ion hidden behind a discont inues 

data.  The more “funct ion -s imilar ”  the trend is , the bet ter  metamodel ing predict ion accuracy 

should i t  of fer.  

 

To expand th is  research, I t  might  be good idea to work with bigger  number of  var iables and 

more object ive funct ions. According to the research conducted in th is  project  i t  might be seen 

that  metamodel ing d id not  real ly  work in case 1 s t  opt imizat ion,  whi le improved 2n d  case by a 

large amount ( in terms of  s imulat ion t ime).  However ,  i t  should be discussed i f  and when this 

k ind of  metamodel ing is  wor th the ef for t .  How to predict  i f  metamodel ing wi l l  s t rengthen or  

dest roy the convergence of specif ic  case opt imizat ion?  The research done in th is  project  does 

not  answer  th is quest ion.  

 

However ,  i t  might  be a rather  safe assumpt ion , that  a s imple expansion of  in i t ia l  populat ion 

pool with appl icat ion of  kr ig ing is  usual ly  wor th the ef for t  (of course, only i f  the relat ive error 

of  kr ig ing approximat ion is  low) . 

 

In terms of  genet ic  a lgor i thm and in genera l genet ic  opt imizat ion,  a lot  of research is  

conducted.  There are many types of var iators,  mutat ion strategies,  selectors etc. The same 

rule appl ies to Kr ig ing and metamodel ing type s – there are a lot  of methods of  data predict ion 

methods which potent ia l  in the CFD opt imizat ion should be examined.   
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