
Maciej Janiszkiewicz

Aalborg, 22.05.2020

OPTIMIZATION OF HYDRAULIC SHAPES
WITH APPLICATION OF CFD, GENETIC ALGORITHM

AND META MODELLING

2

3

T it le:

Opt imizat ion of hydraul ic shapes with Abst ract:

appl icat ion of CFD, genet ic a lgor i thm

and meta-model ing

Project:

Master Thesis

Project durat ion:

01.02.2020 – 28.05.2020

Project group:

TEPE4-1012

Project Member:

Maciej Janiszkiewicz

Supervisors:

Torsten Berning

Szymon Beczkowski

Number of pages (incl . appendix) : 58

Number of appendix pages: 0

The aim of the project is to evaluate the

per formance of the genet ic a lgor i thm and a

specif ic type of metamodel ing (cal led kr ig ing)

in an engineer ing opt imizat ion. An automated

environment for the CFD analys is is bui l t and

connected with several types of opt imizat ion

st rategies . The key is to f ind an opt imal

genet ic a lgor i thm ’s setup, which means a

good t rade-of f between acquired results and

the opt imizat ion t ime. Final ly , the

per formance of several opt imizat ion

techniques is compared.

4

TABLE OF CONTENTS

TABLE OF CONTENTS . 4

1. INTRODUCTION.. 6

1.1 Motivation . 6

1.2 Cooperation with Grundfos . 6

1.3 The purpouse of the project . 7

1.4 Limitation of research . 7

1.5 Methodology . 7

2. COMPUTATIONAL FLUID DYNAMICS . 10

2.1 Init ial Assumptions . 10

2.1.1 In i t ia l assumpt ions of the f i rs t case………………………………………………………………….10

2.1.2 In i t ia l assumpt ions of the second case……………………………………………………………..11

2.2 General procedure of CFD . 11

2.3 Mesh independency studies . 14

2.3.1 Mesh independency studies - the f i rs t case……………………………………………………….1 5

2.3.2 Mesh independency studies - the second case…………………………………………………..1 7

2.4 Boundary Conditions . 18

2.4.1 Boundary condit ions – the f i rst case…………………………………………………………………18

2.4.2 Boundary condit ions – the second case…………………………………………………………….19

2.5 Postprocessing – init ial solution . 20

2.5.1 Postprocessing - the f i rs t case……………………………………………………………………….. 20

2.5.2 Postprocessing - the second case…………………………………………………………………… 22

3. GENETIC ALGORITHM STUDY . 24

3.1 Basics of genetic algorithm . 25

5

3.2 Advanced features of genetic algorithm……………………………………………….2 5

3.2.1 Sampling type…………………………………………………………………………………………2 5

3.2.2 Crossover………………………………………………………………………………………………2 6

3.2.3 Selector…………………………………………………………………………………………………28

3.2.4 Mutat ion………………………………………………………………………………………………..29

3.3 Python Platypus optimization……………………………………………………………….29

3.3.1 The algor i thm bui l t in P latypus……………………………………………………………………2 9

3.3.2 Results of opt imizat ion…………………………………………………………………………….. 30

3.2.2.1 Results of opt imizat ion – the f i rs t case……………………………………………………..30

3.2.2.2 Results of opt imizat ion – the second case………………………………………………….33

3.4 Optislang optimization . 36

3.4.1 The setup bui l t in Opt is lang……………………………………………………………………………3 6

3.4.2 Sensit iv i ty analys is………………………………………………………………………………………3 7

3.4.2.1 Sensit iv i ty analys is – the f i rs t case………………………………………………………………37

3.4.2.2 Sensit iv i ty analys is – the second case………………………………………………………….38

3.4.3 Opt is lang opt imizat ion and results …………………………………………………………..………3 9

4. METAMODELING . 41

4.1 The purpouse of metamodeling . 41

4.2 The Kriging . 41

4.2.1 The basics of Kr ig ing………………………………………………………………………………….. 41

4.2.2 Results obtained through Kr ig ing a nd the accuracy of predict ion……………………………42

4.2.3 Implementat ion of the Kr ig ing in genet ic a lgor i thm ……………………………………………..42

4.2.3.1 Implementat ion of Kr ig ing in genet ic a lgori thm – the f i rs t case……………………………47

4.2.3.2 Implementat ion of Kr ig ing in genet ic a lgori thm – the second case……………………….49

5. ANALYSIS OF OPTIMIZATION RESULTS.. 51

5.1 Analys is of opt imizat ion results – the f i rs t case…………………………………………………….51

5.2 Analys is of opt imizat ion results – the second case………………..……………………….……..53

6. DISCUSSION………………………………………………………………………………………57

7. BIBLIOGRAPHY.. 57

6

1. INTRODUCTION

1.1 MOTIVATION

Nowadays, computer sc ience is one of the most quick ly developing branch of the modern

indust ry. Figure 1 shows the Moore’s Law, which predicts the increase o f computat ional power

of an average computer over years. I t can be seen that the power computers may offer near ly

doubles every 18 months.

The computat ional power is widely used in engineer ing, especial ly in s imulat ions. This is

especial ly v is ib le in f lu id mot ion science, where the Computat ional Flu id Dynamics (CFD) is

considered to be a v iable and trustwor thy method of research. [2]

In i t ia l ly , the CFD was a very t ime-consuming process. Further development of computat ional

resources and the appl icat ion of paral le l comput ing al lowed to per form i t quicker and examine

more and more sophist icated cases . Nowadays, CFD is widely used in stat ic s imulat ion, which

gives an informat ion about a non-changing geometry.

However , larger computat ional resources al low to f ind more appl icat ions for th is k ind of

research. One of them is to connect CFD with optimizat ion techniques, where a created scr ipt

is able to per form simulat ions on i ts own and bui ld opt imal shapes independent ly . This

approach means large number of indiv idual s imulat ions per formed, which makes i t very t ime

consuming. Because of that , ex ist ing techniques should be invest igated to f ind a setup of

genet ic a lgor i thm, which al lows to per form automat ed CFD opt imizat ion both quick ly and

accurately. I f both of these condit ions could be met , ar t i f ic ia l inte l l igence might be considered

a power ful tool in solv ing f lu id mot ion related problems.

Fi gu re 1. Gro wt h of co mp ut at i on p ow er ov er ye ars [1]

1.2 COOPERATION WITH GRUNDFOS

Grundfos is one of the biggest pump develo per wor ldwide. The cooperat ion with i t means both

the access to specif ic type of opt imizat ion and CFD sof tware, and to the internal network of

the company. The invest igat ion wi l l be car r ied on s imple pipe systems to decrease the t ime

required to per form a s ingle s imulat ion. These shapes are a Y- junct ion (1 s t case) and a baf f led

bend (2n d case).

7

1.3 THE PURPOSE OF THE PROJECT

The aim of th is project is to examine the performance of d i f ferent genet ic a lgor i thm features

and evaluate the v iabi l i t y of the metamodel ing in the process of genet ic a lgor i thm per formance

improvement. The v iabi l i t y between the connect ion of CFD, genet ic opt imizat ion and

metamodel ing wi l l be tested.

1.4 LIMITATION OF RESEARCH

In both examined pipe systems the amount of dynamical geometry i s l imited. Only specif ic

areas in the pipes might change. While the impact of analys is and these changes wi l l be

examined, CFD is assumed a fu l ly - t rustworthy method of analys is and the accur acy of i t wi l l

be not examined, no physical model wi l l be bui l t . Fur thermore, because of a large number of

s imulat ion cal ls , mesh independency studies wi l l be l imited only to the in i t ia l cases.

Only few features of the genet ic a lgor i thm wil l be examined and results wi l l be based most ly

on low number of runs. According to the fact that the genet ic a lgor i thm is an opt imizat ion

technique with high amount of randomness, the results cannot be t reated as a general t rend.

Fur thermore, the opt imizat ion factors l ike types of sampling or selectors wi l l be only cursor i ly

explained. In many cases, default values of specif ic factors wi l l be used to avoid too in -depth

approach.

Final ly , only factors related to f lu id mot ion are examined. The mater ia l s t rength of a baff le and

the possibi l i t y of i ts creat ion in physical wor ld is out of th e scope of th is research.

1.5 METHODOLOGY

The project consist of several s teps, which wi l l be later connected into a fu l ly -work ing

s imulat ion and opt imizat ion environment . In general, a l l of these steps wi l l be appl ied in two

cases.

• In the f i rs t case, the Y- junct ion connects two st reams: Hot and cold, tackl ing each

other with di f ferent velocit ies. The goal is to model the shape of baff le ins ide and the

angle between pipes to achieve the best trade -off between pressure loss and the

uniformity of a temperature prof i le at the out let .

• The second case is a baff le model ing ins ide of a pipe’s bend – The goal is to opt imize

baf f le shape to achieve a good t rade-off between a pressure loss increase caused by

the baff le and the uniformity of velocity prof i le at the out let .

8

Fi gu re 2. T he sh a pes o f exa m i ne d cas es

These steps are l is ted below:

1. First , an automated meshing tool has to be created. The key to obtain that is an

opensource CAD sof tware cal led “Salome” , which al lows to expor t a modif iable scr ipt .

This f i le can be changed easi ly to create many dif ferent geometr ies, which is especial ly

useful when those changes are per formed automat ical ly , for example by a programmed

scr ipt .

Instead of just constant values, several var iables wi l l be int roduced into i t , a l lowing to

steer geometry creat ion by changing values of these var iables. The geometry wi l l be

passed to an OpenFOAM-based mesher.

When the mesh is done, the CFD analys is wi l l be conducted. Bo th the in i t ia l condit ions

and other s imulat ion parameters (l ike t he convergence cr i ter ia etc.) w i l l not change

over the ent ire process.

At the end, postprocessing wi l l be conducted and calculated values (pressure loss,

temperature distr ibut ion and velocity d ist r ibut ion) wi l l be saved in a text f i le.

Ent ire process desc r ibed in point 1 wi l l be gathered in a s ingle scr ipt , cal led a

“scr ipt1”.

Fi gu re 3. P er f or ma nce o f Sc r i p t 1

2. At the second step, an opt imizat ion process wi l l be int roduced. Apply ing a Python-

based l ibrary cal led “Platypus” , a specif ic type of genet ic a lg or i thm “NSGAII I” wi l l be

used and named as “Scr ipt2” . The Scr ipt1 wi l l be passed to the Scr ipt2.

9

Scr ipt2 wi l l be able to create a geometry “guess” and invoke Scr ipt1 to perform the

CFD analys is. Postprocessed values wi l l be passed to the Scr ipt2, which wi l l use them

to calculate values of object ive funct ions (in term s of genet ic opt imizat ion, of ten cal led

“ f i tness funct ions”) . This way, a genet ic opt imization might be performed using the CFD

as a “shape-evaluat ion” tool.

Fi gu re 4. P er f or ma nce o f Sc r i p t 2

3. Next , results of th is opt imizat ion wi l l be used in a second type of genet ic opt imizat ion,

car r ied in an Opt is lang sof tware. An another s imulat ion environment wi l l be bui l t and

the genet ic opt imizat ion wi l l be conducted.

4. Final ly , the metamodel ing wi l l be int roduced. Based on values computed by CFD, the

kr ig ing wi l l t ry to mimic i ts per formance in s ignif icant ly reduced amount of t ime. I ts

accuracy wi l l be evaluated.

 F i g ur e 5. T h e p er f or ma nce o f mo d el bu i l t i n O pt is l a ng

10

 2. COMPUTATIONAL FLUID DYNAMICS

The nomenclature for th is chapter is l is ted below:

𝑝 – pressure

𝑢, 𝑣, 𝑤 – velocit ies in specif ic car tesian coordinat ion

𝜏𝑖𝑗 – v iscous st ress

e0 – energy (usual ly expressed as temperature)

𝑥, 𝑦, 𝑧 – direct ion of the f low

𝜌 – density

q – energy input

𝜙 – researched f low proper ty

t – t ime

𝜏𝑖𝑗 – v iscous st ress

𝜇 – molecular v iscosity

𝑆𝜙 – source term

𝜏 – t ime constant of turbulence

𝜈𝑡 – k inemat ic v iscosity

k – turbulent energy

ω – turbulent d iss ipat ion

𝛿𝑘/𝛿𝜔 – constants for descr ipt ion of k and ω

y+ - d imensionless distance to the wal l

u+ - d imensionless velocity

𝜏𝜔 – wal l shear stress

uT – f r ic t ion velocity

K – Von Karman constant

2.1 INITIAL ASSUMPTIONS

A computat ional f lu id dynamics (CFD) approach was used to explore the f low pat tern ins ide

both of cases.

In order to shorten s imulat ion t ime, the process is assumed steady, which means that there is

no var iat ion in f low propert ies over t ime. Fur thermore, the f lo w is considered v isc id and

turbulent . This turbulence was model led instead of resolv ing, which compr ises the s imulat ion

t ime and accuracy.

In both cases, CFD analys is wi l l be car r ied out only in 2 dimensions. This is re lated to t he

purpose of th is analys is – dur ing the opt imizat ion phase the process of CFD wil l be repeated

hundreds of t imes.

2.1.1 In i t ia l assumpt ions of the f i rs t case

In terms of 1st case, the sought features are:

• The pressure loss between the middle of larger pipe’s in let and the out let

• The var iat ion of temperature at the out let (how wel l was the mix ing per formed)

11

The baf f le was placed in the system of p ipes (Y- junct ion) . The working f lu id is water in normal

atmospher ic pressure, pumped with di f ferent , uniform velocity through both of the pipes. Both

in lets provide the system with a f lu id of d i f ferent temperature . Al l the proper t ies of f lu id which

were used in fur ther research are related to th ese condit ions.

2.1.2 In i t ia l assumpt ions of the second case

In terms of 2nd case, the researched features are:

• The pressure loss between the middle of a pipe and the out let

• The velocity prof i le at the out let

The baf f le was placed into a pipe bend of the L-shape. The baff le ’s ro le is to steer the f lu id

and achieve the most un iform velocity d ist r ibut ion at the out let whi le also decreasing the

pressure loss.

2.2 GENERAL PROCEDURE OF CFD

CFD al lows to model f lu id f low with a numer ical analys is, which al lows to research

sophist icated f lu id behaviors. According to the Euler ian f rame of ref erence, the ent ire f low

area may be div ided into a f ixed number of small volumes, for which the propert ies of f lu id wi l l

be examined. For three – dimensional , t ime - independent phenomena, th is approach may be

expressed as [2]:

𝜙 = 𝜙(𝑥, 𝑦, 𝑧, 𝑡)

Af ter d iv is ion of the f low domain to a computat ional mesh, a numer ical solver solves

the conservat ion equat ions for f low features. Depending on the chosen sof tware and i ts

proper t ies, a l is t of conservat ion equat ions must be sat is f ied for the ent ire f low domain. These

values are computed sequent ia l ly for every s ingle cel l , whi le the solut ions are considered as

an input to subsequent equat ions. This process is repeated, and every repet i t ion is cal led an

“ i terat ion” .

Computat ional Flu id Dynamics (CFD) is the s imulat ion of f lu ids engineer ing systems using

model ing (mathemat ical physical problem formulat ion) and numer ical methods. The governing

equat ion of CFD are Navier -Stockes equat ions. They are basic equat ion of mot ion for v iscous,

heat conduct ing f lu id.

General ly , the term “Navier -Stockes equat ion” re lates to three equat ions w hich descr ibe the

conservat ion rules for cont inuity , momentum and energy.

1) Cont inuity equat ion:

𝜕𝑝

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑗] = 0 1.

2) Momentum conversat ion:

𝜕

𝜕𝑡
 (𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑗𝑖] = 0 2.

I t can be seen that the change in accelerat ion equals to the sum of gravity term, pressure term

and velocity d i f fus ion term, represented by the v iscosity . However , i t can be also descr ibed in

more general form, which comes direct ly from the force balance on a s ingle f lu id element .

12

Somet imes the energy equat ion is s olved for as wel l in order to calculat e the temperature

dist r ibut ion, e.g. in cases where heat t ransf er p lays a role. The conservat ion equat ion for

energy is :

3) Energy conservat ion:

𝜕

𝜕𝑡
 (𝜌𝑒𝑜) +

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑗𝑒𝑜 + 𝑢𝑗𝑝 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗] = 0 3.

The equat ions l is ted above may be completed into equat ion 4 – The General form of NS-

equat ion. The sum of pressure gradient and v iscous term (r ight s ide) is equal to the change of

local accelerat ion and convect ive term.

4) General form of NS-equat ion

𝜌 [
𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑥
 (𝑢2)+

𝜕

𝜕𝑦
 (𝑢𝑣) +

𝜕

𝜕𝑧
 (𝑢𝑤)] = −

𝜕𝑝

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
 +

𝜕2𝑢

𝜕𝑧2
] 4.

According to Stokes hypothesis, the v iscous stress 𝜏𝑖𝑗 may be considered as a product of

molecular v iscosity 𝜇 and local ve locity gradients cal led st ra in rates.

𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) 5.

Especial ly in CFD, the ent ire set of equat ion may be expres sed as:

𝜌
𝜕𝜙

𝜕𝑡
+ 𝜌 𝑑𝑖𝑣(𝑢 ⃗⃗ ⃗𝜙) = 𝑑𝑖𝑣(Г𝑔𝑟𝑎𝑑𝜙) + 𝑆𝜙 6.

This approach al lows to resolve the main f low. However , the key to get a real is t ic s imulat ion

of the f low is to model a turbulence. In th is approach , turbulence was model led with RANS.

First , the mean velocity is int roduced:

𝑢 ̅ =
1

𝜏
 ∫ 𝑢(𝑡) 𝑑𝑡

𝜏

0
 7.

Then, the total velocity of f lu id element is represented by a sum of t ime - invar iant main f low

velocity and random f luctuat ions, expressed as 𝑢’, 𝑣’,𝑤’ (for a three-dimensional f low) .

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 ̅ (𝑥, 𝑦, 𝑧) + 𝑢′ (𝑥, 𝑦, 𝑧, 𝑡) 8.

Put t ing i t into the Navier – Stokes equat ions y ie lds:

𝜌 [
𝜕

𝜕𝑥
 (𝑢̅2 + 𝑢′2̅̅ ̅̅) +

𝜕

𝜕𝑦
 (𝑢̅𝑣̅ + 𝑢′𝑣′̅̅ ̅̅ ̅) +

𝜕

𝜕𝑧
 (𝑢̅𝑤̅ + 𝑢′𝑤′̅̅ ̅̅ ̅̅)] = −

𝜕𝑝̅

𝜕𝑥
+ 𝜇 [

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
 +

𝜕2𝑢

𝜕𝑧2
] 9.

In th is approach, shear st resses relate to f luctuations which al lows to model the main f low in

turbulence. However , one of the most chal lenging par t of turbulence model l ing is near -wal l

region. To solve th is, the 𝑘 − 𝜔 𝑆𝑆𝑇 model was appl ied.

𝑘 − 𝜔 𝑆𝑆𝑇 is a model of turbulence which connects the advantages of k – 𝜖 and k – 𝜔

approaches. While k – 𝜖 focuses on problems wit h large distance from the wal l , k – 𝜔 excels in

13

models where the distance f rom the wal l is smaller . I t consists of two separate equ at ion for k,

which is turbulence k inet i c energy and omega, which is turbulent energy diss ipat ion .

Kinet ic energy:

𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝑃 − 𝛽𝑘𝜔 +

𝜕

𝜕𝑥𝑗
 [(𝜈 + 𝛿𝑘𝑘𝜈𝑡)

𝜕𝑘

𝜕𝑥𝑗
] 10.

Turbulence diss ipat ion:

𝜕𝜔

𝜕𝑡
+ 𝑈𝑗

𝜕𝜔

𝜕𝑥𝑗
= 𝛼𝑆2 − 𝛽𝜔2 +

𝜕

𝜕𝑥𝑗
 [(𝜈 + 𝛿𝜔𝑘𝜈𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2(1− 𝐹1)𝜔2

+
1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
 11.

Where P, F 1 , F2 , β are c losure coeff ic ients dependent on k and omega, and 𝜈𝑡 is k inemat ic

eddy v iscosity – a parameter calculated also direct ly f rom k and omega values and the

distance f rom the wal l .

To model the f low near the wal l , i t is necessary to int roduce a standard wal l funct ion

approach. In f lu id dynamics, the law of the wal l s tates that turbulent f low’s average velocity is

propor t ional to the logar i thm of the distance from that point to the wal l . Fur thermore, the area

of the f low may be div ided into an area of v iscous sublayer , where the v iscous forces play

impor tant ro le in f lu id behavior and the buffer layer , which represents an area of t ransit ion

between v iscous region and “ f ree-stream” f low. To separate these areas, values of y+ and u+

are used. [2]

𝑢+ =
1

𝐾
ln 𝑦+ + 𝐶 12.

𝑦+ = 𝑦𝑢𝑇/𝑣 13.

𝑢𝑇 = √
𝜏𝜔

𝜌
 14.

𝑢+ =
𝑢

𝑢𝑇
 15.

To resolve the v iscous sublayer proper ly with wal l funct ion approach, i ts necessary to achieve

y+ values between 20 and 500. This value gives a hint to the research of computat ional m esh

s ize. [2]

According to the schema, the values of velocity achieved through momentu m equat ion are

used as star t ing guesses of pressure. While the values of pressure and velocity depend o n

each other, only the correct values of pressure may result in fu l f i l led set of equat ions. I f the

convergence cannot be reached after a l l the computat io ns, the values for a pressure are

updated with “ results” obtained v ia the velocity computat ion and the ent ire algor i thm i terates

again.

The CFD sof tware calculates the dif ference between specif ic conservat ion equat ions in

succeeding i terat ions. This value is cal led a “residual” . General ly , in a proper ly set s imulat ion

the value of residuals should decrease with the number of i terat ions. When the normalized

dif ference is low enough, the i terat ion procedure stops, and received values may be

considered as a result of the ent ire process. To enhance the abi l i t y to converge, an under -

relaxat ion factor is implemented. I ts a ppl icat ion al lows to use only a part of values achieved i n

previous i terat ions, which increases the number of i terat ions required to obtain converged

14

solut ions but reduces the residuals in order to keep the s imulat ion stable. When the s ize of

i terat ions cross a f ixed value, the s imulat ion breaks, and i ts results cannot be considered

t rustworthy.

Depending on the solver and sof tware, conservat ion equat ions may vary. However , they

always deal with several “basic” f low proper t ies – velocity , pressure, tempera ture and

turbulence.

In th is research, a solver named “s impleFoam” and “buoyantSimpleFoam” was used. They work

with four var iables descr ib ing velocity in car tesian coordinat ion system, one var iable for

pressure, one for temperature and – depending of chosen turbulence model – a set of

var iables descr ib ing turbu lence.

First , the solver at tempts to solve momentum equat ion. I t assumes that dur ing the f low, t he

ent ire mass is conserved, which means that no creat ion and no destruct ion of mass occurs. In

a constant-density f low, th is means that f lowrate must be const ant . Once is solved, th is

equat ion del ivers a velocity f ie ld 𝑢 ∗, which is considered as a guess – i t does not sat is fy

cont inuity equat ion.

Next , the cont inuity and momentum equat ions are used to bui ld an equat ion for the pressure.

Solut ion of th is equat ion gives access to pressure f ie ld pn . Inser ted into momentum equat ion,

a cor rected f ie ld of veloci ty 𝑢 is calculated.

Af ter that, s impleFoam (case 2) or buoyantSimpleFoam (case 1) at tempts to sol ve turbulence

and considers the velocity f ie ld u as an input to th is process. In th is case, the turbulence is

model led with Reynolds-averaged Navier–Stokes equat ions (RANS) with feature cal led “Wall

funct ion” .

2.3 MESH INDEPENDENCY STUDIES

The purpose of mesh independency studies is to f ind the smallest s ize of mesh which gives

t rustworthy results . In i t ia l ly , a mesh made of low number of cel ls is ref ined as lon g, as the

results obtained through fur ther ref inement does not change by a s ignif icant amount .

Mesh independency studies were performed for both in i t ia l geometr ies. In a c lassical CFD

approach, the mesh independency should al low to reveal the smallest s ize of a mesh which

al lows to obtain proper results . However , th is approach does not work in th is case. This is

caused by the fact that dur ing the appl icat ion of genet ic a lgor i thm, the amount of chan ge

per formed might s ign if icant ly a f fect the character of the f low, inc luding the values of

velocit ies, pressure and others. This was of ten leading to instabi l i t y of opt imizat ion algor i thm

per formance. To address the problems, the in i t ia l mesh s ize was ref ined unt i l one opt imizat ion

run was successful ly executed.

Dur ing the execut ion, the value of 𝑦 + was recorded. Depending on the geometry shape, i ts

value could either increase or decrease dramat ical ly , so the mesh was ref ined as long as the

average value for 𝑦 + could be keep with in an interval of 20>y+>500 to keep proper turbulence

model l ing. While the average 𝑦 + returns general ly al l the t ime the same value, there are some

areas where 𝑦 + can be either very high or very low.

To achieve t rustwor thy results with the the 𝑘 − 𝜔 Wall- funct ion model, the value of 𝑦 + should

be kept between 20 and 500. [2]

15

2.3.1 Mesh independency studies – the f i rs t case

Fi gu re 6. y + v a l u es ob t a i n ed i n t he f i r s t cas e

While the minimum 𝑦 + value might be too low sometimes (in small number of regions),

average 𝑦 + is around 130 and maximum 𝑦 + never cross the value of 500.

For th is specif ic case consist ing of 13 972 cel ls , the convergence of pressure is shown at

Figure 7.

Fi gu re 7. Co nv er ge nc e of f i r s t c ase i n t er ms of p ress u re

Fi gu re 8. Co nv er ge nc e of f i r s t c ase ’s i n i t i a l ge o met ry in t er ms of t e mpe ra tu re d is t r i b ut io n at t h e o ut le t

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

y+
 v

al
u

e

Number of design

y+ values in 1st case

Maximum y+ value Mean y+ value Minimum y+ value

-1,50E+07

-1,00E+07

-5,00E+06

0,00E+00

5,00E+06

T
o
ta

l
p
re

s
s
u
re

 l
o
s
s
 [

P
a
]

Number of iteration

Convergence of pressure

16

Figure 9 shows the y+ value dist r ibut ion over the r ibbon of the shape. I t might be seen that the

vast major i ty of cel ls is kept between 30>y+>200 value, whi le some areas (f . ex. surroundins

of the smaller in let , the bottom of the larger pipe) are exposed for larger values (up to 390).

Figure 9. y+ value distr ibut ion of the f i rst case

Fi gu re 10 . M esh co nve rg e nce s t ud i es of t he f i r s t cas e b ase d o n pr essu re

Fi gu re 11 . M esh co nve rg e nce of t he f i r s t cas e bas e d on t e mpe ra tu re d is t r i b ut io n

6,2

6,4

6,6

6,8

7

6247 10153 13972 26424

P
re

s
s
u
re

 l
o
s
s
 x

 1
0
^5

[P

a
]

Number of cells

Mesh convergence study based of
pressure (case 1)

4,1

4,15

4,2

4,25

4,3

2011 4096 8195 16040

P
re

s
s
u
re

 l
o
s
s
 [
P

a
]

Number of cells

Mesh independency studies based
on pressure loss (case 2)

17

2.1.2 Mesh independency studies – the second case

In terms of 2 n d Case, 𝑦 + is held most of the t ime at the very low values (between 0 and 50),

but there are some areas (most ly arou nd the in let) where red color (which means values

around 350) may be seen. Addit iona l ly , the low number of cel ls a l low to per form one

s imulat ion over several seconds. In com par ison to that, more t ime consuming is the process of

mesh creat ion , so the ent ire i terat ion takes around one minute. To keep the high f lex ib i l i t y of

an in i t ia l mesh, i t was left in th is state.

Fi gu re 12 . M esh co nve rg e nce of 2 n d in i t i a l cas e bas e d o n pr essu re l oss

Fi gu re 13 . M esh co nve rg e nce of 2 n d in i t i a l cas e bas e d o n th e ve loc i ty pr of i le a t th e o ut l e t

Fi gu re 14 . y + d is t r i b ut io n a t th e i n i t i a l s t a ge o f 2 n d ca se

0,00E+00

5,00E+00

1,00E+01

1,50E+01

2,00E+01

P
re

s
s
u
re

 l
o
s
s
 [

P
a
]

Number of iterations

Convergence of pressure loss

4,00E+00

5,00E+00

6,00E+00

7,00E+00

8,00E+00

R
a
n
g
e
 o

f
v
e
lo

c
it
y
 a

t
th

e
 o

u
tl
e
t
[m

/s
]

Number of iterations

Convergence of velocity profile

18

Fi gu re 15 . Aver a ge y+ va l ue f or 2 n d c ase

The results for velocity , pressure and temperature are considered converged when the

residuals are not h igher than 10 - 1 , whi le the convergence cr i ter ia for turbulence related

residuals (k and omega) were set to 10 - 5 . Addit ional ly , the maximum number of i terat ions was

f ixed at 1000 (case 1) and 500 (case 2), respect ively. This means that i f the s imulat ion is not

converged t i l l th is point , I t wi l l be automat ical ly f in ished .

I f the s imulat ion cannot meet the convergence cr iter ia, a f inal value of pressure loss and

either temperature of velocity prof i le wi l l be calculated based on the mean of last 100

i terat ions.

In terms of mesh independency, i t is impor tant to ment ion that depending on the geometry,

f luctuat ions may increase, but because of the large number of s imulat ions the ef fect of those

var iat ion cannot be examined in detai l .

2.4 BOUNDARY CONDITIONS

2.4.1 Boundary condit ions – the f i rst case

Fi gu re 16 . Bo u nd ar i es of t he f i r s t cas e

In let1:

• In i t ia l temperature: 290K Dir ichlet condit ion

• In i t ia l Velocity : Fixed volumet r ic f low rate 0.0001 m 3 /s achieved with openfoam ’s

boundary condit ion f lowRateInletVelocity (f ixed volumet r ic f low in the direct ion of the

vector normal to given surface)

40
42
44
46
48

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

y+
 v

al
u

e

number of iteration

Average y+ value

19

• k and omega: Star t ing guess based on the 𝑘 − 𝜔 equations 16-19

k = 0.0026

ω = 0.672

• In i t ia l pressure: 0, Neumann condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

In let2:

• In i t ia l temperature: 310K

• In i t ia l Velocity : Fixed volumet r ic f low rate 0.00005 m 3 /s achieved with openfoam

boundary condit ion 𝑓𝑙𝑜𝑤𝑅𝑎𝑡𝑒𝐼𝑛𝑙𝑒𝑡𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (f ixed volumetr ic f low in the direct ion of the

vector normal to given surface)

• k and omega: Star t ing guess based on the 𝑘 − 𝜔 equations 16-19

k = 0.0048

ω = 0.892

• In i t ia l pressure: 0, Neumann condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

Out let :

• Fixed pressure: 0, Dir ichlet condit ion

• Al l other f ie lds calculated based on other inputs

• k and omega: The same values as on in let1

Walls and baf f le:

• Velocity f ixed at 0: No-s l ip condit ion

• Turbulence: k -omega wal l funct ions , internal f ie ld with start ing guesses k = 0.003,

ω = 0.7

• Pressure 0, Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

• Other f ie lds calculated based on inputs

2.4.2 Boundary condit ions – the second case

Fi gu re 17 . Bo u nd ar i es of t he sec on d cas e

In let :

• In i t ia l velocity : 3 m/s Dir ichlet condit ion

• In i t ia l pressure: 0 Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

• k and omega: Star t ing guess based on the 𝑘 − 𝜔 equations 16-19

k = 0.3, ω = 0.7

20

Out let :

• Velocity : 0 , Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

• Pressure: 0, Dir ichlet condit ion

• k and omega: Star t ing internal f ie ld k = 0.3, ω = 0.7

Walls and baf f le:

• Velocity f ixed at 0: No-s l ip condit ion

• Pressure: 0, Neuman condit ion 𝑧𝑒𝑟𝑜𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

• k and omega: Star t ing internal f ie ld k = 0.3, ω = 0.7

In terms of k and ω values, OpenFoam is not that much sensit ive sof tware [2] . Even a roughly

proper star t ing guess leads to the convergence and whi le the s ize of be nd is the same in both

cases, in i t ia l values for k and ω were just copied f rom the previous case.

k and omega in i t ia l guesses were calculated based on equat ions shown below:

Turbulence length sca le:

𝑙 = 0.038 𝑑ℎ 16.

Turbulence intensity :

𝐼 = 0.16 𝑅𝑒𝑑ℎ

−1/8
 17.

Turbulence k inet ic energy:

𝑘 =
3

2
 (𝑈𝐼)2 18.

Specif ic d iss ipat ion rate:

𝜔 = √𝑘 𝑙⁄ 19.

In i t ia l guess for k inemat ic eddy v iscosity was set to 0.0001 just to avoid computat ional

d i f f icult ies. Al l of the cel ls were also specif ied with an in i t ia l guess of 0.0001 for every

boundary condit ion because of the same reason. This proc ess enhanced the abi l i t y to obtain

convergence.

 2.5. POSTPROCESSING – INITIAL SOLUTION

2.5.1 Postprocessing – the f i rs t case

While the valve ’s presence enhances the f lu id mix ing, i ts presence increases the pressure

necessary to pump water through i t . According to f igure 18, whi le the streams approach each

other , mix ing is per form ed. I t can be seen that water changes i ts temperature quick ly, and

approaches the out let at near ly uniform temperature .

Temperature dist r ibut ion of the 1 s t case is s im ilar to the velocity d ist r ibut ion, where i t is

v is ib le that both of the streams lose the velocity at the encounter and the out let d is t r ibut ion is

near ly uniform.

21

In terms of the pressure, I t might be noted that the largest pressure loss occurs around the

area of in i t ia l mix ing, where the pressure behind i t is more uniform.

Fi gu re 18 . Te mp er at ur e d is t r ib ut i on o f th e i n i t i a l 1 s t c ase

Fi gu re 19 . Pr essur e d is t r ib ut i on of t he f i r s t cas e

22

Fi gu re 20 . Ve l oc i ty d is t r i bu t i o n fo r t h e 1 s t C ase

2.5.2 Postprocessing – the second case

In the second case, the baff le inf luences the f low, al low ing to achieve more uniform velocity

d ist r ibut ion at the cost of h igher pressure loss.

I t can be seen that presence of baf f le separates two areas of h igh and low pressure of the

bend, whi le the biggest losses are v is ib le at the bot tom of the bend and at the beginning of

the baff le.

Fi gu re 21 . Ve l oc i ty d is t r i bu t i o n of t h e in i t i a l 2 n d c ase

23

Fi gu re 22 . Pr essur e d is t r ib ut i on of t he i n i t i a l 2 n d cas e

24

 3. GENETIC ALGORITHM STUDY

3.1 BASICS OF GENETIC ALGORITHMS

The genet ic a lgor i thm is an opt imiza t ion st rategy which t r ies to mimic the process of an

evolut ion in a micro scale. Unl ike a gradient -based opt imizat ion, the genet ic a lgor i thm

approach does not require to compute der ivat ives or to have any deeper ins ight into a funct ion

designing the per formance of the process. Because of that, they may be connected with the

CFD sof tware to look over a pool of geometr ies and f ind the best shape [3]

In the most s imple approach, GA starts from creat ion of a random pool of designs, descr ibed

by a given number of var iables. Every specif ic design is cal led a “chromosome” and contains

a f ixed number of genes. Every gene represents a specif ic var iable , which descr ibes a

physical parameter of the invest igated design [3] .

In the nature, chromosomes may mix in the process of crossover. T wo chromosomes

disassemble into four par ts, which mix later in a random way. In th is process, two new

chromosomes are created. The point where chromosomes disassemble is cal led “point of

crossover” and in the most basic approach, there is just one of i t .

I t is impor tant to real ize that new designs are bui l t only f rom avai lable genes, which means

that no new genes can be cr eated though crossover (New “blocks” cannot be inser ted into a

gene pool) [3] .

Fi gu re 23 . A s i mp le c ross ove r

To change the value of specif ic gene (expand the gene pool) , i t is necessary to per form a

mutat ion. In i ts most basic vers ion, a mutat ion is a purely random process which changes one

gene value by a random amount . An appl icat ion of mutat ion (the mutat ion chance higher than

a zero) has both pos it ive and negat ive consequences: [3]

The posit ives are:

• I t may al low to f ind a f i t design quick ly

• Expands the gene pool

The negat ives are:

• I t might dest roy f i t designs

• I t might s low down the convergence or dest roy the convergence completely

• I ts per formance is hard to predict

25

Fi gu re 24 . A s i mp le mu ta t i o n

Before the round of crossover and mutat ion, the select ion is per formed. Al l the genes are

tested and their f i tness funct ion value is calculated. Higher value of f i tness funct ion increase s

the probabi l i t y that a specif ic design wi l l be selected into a “crossover -mutat ion” step. This

k ind of approach al lows to assume, that the chance of get t ing a “more f i t” of fspr ing pool

through genet ic operat ions is h igher than 50%. This fact is mathemat ical ly proven [3] .

Af ter select ion, crossover and mutat ion , the ent ire process i terates further . A higher number of

i terat ions al lows to improve the result of opt imizat ion as the algor i thm should converge at

some point , showing most ly f i t designs [3] .

3.2 ADVANCED FEATURES OF GENETIC ALGORITHM

To decrease the amount of randomness, basic genet ic a lgor i thms were improved and se veral

new features were int roduced. Apply ing them, an algor i thm’s abi l i t y to converge and f ind

opt ima might be enhanced.

3.2.1 Sampling type

The f i rs t factor in genet ic a lgor i thm opt imizat ion which has a crucial inf luence on the algor i thm

per formance is the type of an in i t ia l pool sampling [4] . Depending on a sampling type, the

algor i thm may be fed with ei ther a lready f i t designs or many k inds of point d istr ibut ion, which

al lows to ei ther look into very t ight or very wide spect ra of solut ions. The f i rs t approach is s

good decis ion i f there are any guesses or previous surveys avai lable, the second – when there

is no access to previously gathered data of the specif ic case [3] .

In th is project , the second approach was used. Two sampling types were int roduced. First , the

uniform sampling, which div ides the interval into given number of equal ly spaced subintervals.

Second is the Lat in Hypercube Sampling, which is considered wel l – per forming type of

sampling for many k inds of genet ic a lgor i thm appl icat ion [5] .

Lat in Hypercube Sampling works s imilar way to the uniform dist r ibut ion but i t is more f lex ib le.

First , for every var iable the research interval is div ided into n subintervals. From every of

these subintervals, a given number of point s is drawn. Af ter the specif ic point has been drawn,

i t is removed f rom the search pool, which means that i t cannot be re -drawn. Depending on the

dimensional i ty of the case, th is process is repeated for every gene at the chromosome. The

thus found values are connected into genes.

26

Lat in Hypercube Sampling provides more avai lable values for the start ing pool.

Fi gu re 25 . C o mpa r is on of s a mpl in g ty pes

3.2.2 Crossover

The second feature added is a l igned to the crossover type. Instead of per forming a one-point

crossover (which means bui ld ing a chromosome out of 2 parts excluded f rom “parents -

chromosomes”), more than two parents may be inc luded into breeding an offspr ing

chromosome. This approach may result in a larger var iety of an offspr ing generat ion, however ,

th is can reduce the abi l i t y to convergence.

To steer the process of crossover, d i f ferent k ind of var iators were invented. Their ro le is to

decide which gene out of the given “crossover poo l” wi l l be f inal ly p laced into newly created

gene. Depending on an opt imizat ion type, the most commo n approach is to ei ther create an

of fspr ing very s imilar to parents (according to the fact that the most f i t designs are chosen) or

rather di f ferent than paren ts (th is k ind of approach may expand the search) . There is a lso a

midpoint solut ion, where a “cen ter of the mass” for pool of chromosomes is being calculated

and breed offspr ing is in the “middle” . Nowadays, many types of var iators are present in

modern genet ic a lgor i thms.

In th is project , three types of var iators are examined:

• UNDX is the abbrevia t ion for an Unimodal Normal Dist r ibut ion Crossover . This type of

mult iparent var iator chooses at least three parents to create a given number of

of fspr ing (one by default) . According to the normal d ist r ibut ion, the created chi ldren

wi l l be descr ibed most l ikely by values f rom the center of d is t r ibut ion (around the so

cal led “center of mass”), which is calculated separately for every s ingle var iable. In

theory, the biggest advantage of th is var iator is a good per formance on low in i t ia l

populat ion s ize. I ts abi l i t y to converge is rather weak, which means that UNDX should

const ruct more generat ions than other methods to get converged. [6]

27

Fi gu re 26 . Th e UND X V ar i a t or [6]

• The Simplex Crossover (SPX) makes use of a uniform dist r ibut ion, where al l the

designs have s imilar chance of being created. The only l imitat ion is a previously

predef ined area f rom where values for every specif ic var iable may be drawn. This area

is def ined based on the parents pool.

Fi gu re 27 . Th e SP X Var i a t or [6]

28

Fi gu re 28 . Th e PC X V ar i a t or [6]

• PCX (Parent Centr ic Crossover) assigns a higher probabi l i t y for an of fspr ing to remain

c loser to the parents than away f rom parents. I t might be assumed that parents which

were chosen in a “ f i tness compet i t ion” are actual ly h igh-qual i ty ones and their features

should be st rengthen in t he populat ion. In terms of that i t is a reasonable approach to

const ruct offspr ing s imilar to the parents. This approach works wel l when looking for

local opt ima [6] .

3.2.3 Selector

The selector ro le is to choose which of the parents wi l l be chosen for the crossover-mutat ion

pool. The most impor tant factors of a specif ic selector are the abi l i t y to improve convergence

behavior and increase “preservat ion” of valuable genes in a gene pool. Somet imes a very f i t

gene is locked in an unf i t chromosome. The genet ic a lgor i thm checks the value of a specif ic

design based only on the f i tness funct ion, which means that i t might remove a valuable gene

dur ing the removal of an unf i t design. “Preservat ion” means that some un f i t designs are keep

in the populat ion just to prevent th is k i nd of scenar io.

I f the computat ional cost of a s ingle design is low, i t is reasonable to keep some value of unf i t

designs to achieve a bet ter g lobal opt imum. Otherwise, an selector tuned for a faster

convergence might be a bet ter idea. In th is project , two types of selectors are examined:

• L inear selector

L inear selector calculates the mean of f i tness value for every s ingle created chromosome.

From this pool, the chance of choosing specif ic design s is calculated as rat io of i ts f i tness to

average f i tness. This means that a l l the designs from a pool have a chance to reproduce,

however , some of them wil l be ext remely unl ikely to do that . [3]

• Tournament selector

As the name suggest , tournament select or organizes a tournament between chromosomes,

choosing only the best design for the next generat ion. This means that only one chromosome

f rom a gene pool wi l l surv ive, which means focusing on the f i tness at the cost o f abi l i t y to

preserve genes. The gene pool is usual ly reduced over i terat ions, i ts convergence abi l i t y is

improved.

Increasing the tournament s ize, the abi l i t y to converge should grow [3] .

29

3.2.4 Mutat ion

In terms of mutat ion, there are many dif ferent st rategies, and the most recognizable factor is

i ts probabi l i t y and st rength. To l imit mutat ion ’s random character, i t might be set e i ther to 100,

0 or a very l i t t le percent . The f i rs t “very - l ikely-mutat ion” approach assumes a common

mutat ion whose value is l imited by a normalized factor . The sampling o f the mutat ion value

might be done according to di f ferent k ind of d ist r ibut ion, where normal d ist r ibut ion is in

common use [3] . The default value of change is descr ibed around 10% for every var iable, where

the value of 5% has the largest chance of being dra wn.

Zero chance for mutat ion means that the algor i thm works steadi ly unt i l i t reaches an opt imum

on the given gene pool whi le i t cannot expand i t . This k ind of approach is used most ly in

discrete types of opt imizat ion, where a cer ta in var iable can represe nt only f in i t e amount of

numbers [3] .

The last approach – low mutat ion rate – is a trade-of f between the abi l i t y to improve global

opt imum and high convergence abi l i t y .

3.3 PLATYPUS BASED OPTIMIZATION

Platypus is a library of programming language python, which allows to use a wide variety of evolutionary algorithms.

From this package, a NSGAIII optimization algorithm was used. This kind of a solution works best for two and more

objective functions where at least four variables are used. NSGAIII shows good performance in many kinds of

engineering optimizations, working with or without constraint and its enhanced ability to converge is mathematically

proven.[13] [14]

For this optimization, the used setup was:

• Initial population size of 10, 15, 20 (First case) and 15, 22 and 30 (Second case). In terms of population size,

there is an rule of thumb which assumes that initial population size depends on number of variables. It should

be around 3 to 10 times bigger than number of variables used, which was 4 and 5 for specifically case 1 and

case 2 – this is a rule of thumb. [8]

Especially for CFD, It might be good idea to choose a value from a lower part of this interval to decrease the

number of iterations.

• Sampling type – Uniform sampling

• Crossover type – Multipoint, based on chosen variator

• Variator type - UNDX, SBX, PCX

• Mutation chance – 1% (Default value), Mutation value default

• Selector type – Tournament selector with Tournament size of 10. The maximum value for tournament is the

size of the initial population and the minimal value is two. This means that a value around the middle results

in a fair trade-off between ability to preserve genes and achieve convergence.

• Convergence criteria – at least 10 succeeding designs whose fitness value difference is not bigger than one.

Maximum number of iterations set for every population size. In the second case, the convergence criteria

was changed due to higher fluctuations of fitness value to 5 iterations.

30

3.3.1 The algorithm built in platypus

The environment built to perform this genetic algorithm study is presented at Figure 24. First, the genetic

algorithm creates a set of variables which is exported to a file. This file is read by a mesh generator and a specific

mesh is created.

In the next step, CFD analysis is performed. As soon as it ends, the results acquired by postprocessing are

gathered and directed back into the genetic algorithm. The fitness function is calculated and next iteration of

genetic algorithm starts.

Figure 29. Platypus optimization scheme

Optimized variables are:

a) In the first case:

• X – the length of a baffle in the X plane

• Y – the length of a baffle in the Y plane

• P – the location of a baffle – while the minimum is directly at the outlet, and maximum – at the joint of pipes

• C – the angle between the pipes connection – from -20 to 85 degrees

b) In the second case:

• X1 – the location of a baffle inside the pipe (y coordination)

• X2 – the first point creating the baffle’s curvature (x coordination)

• X3 – the second point creating the baffle’s curvature (x coordination)

• X4 – the third point creating the baffle’s curvature (x coordination)

• X5 – the fourth point creating the baffle’s curvature (x coordination)

3.3.2 Results of the optimization

3.2.2.1 Results of optimization – First case

The first round of optimization allows to compare the performance of all chosen kind of variators while the rest of the

genetic algorithm factors does not change (including population size, sampling type, crossover, mutation etc.).

The fitness function for the first case is expressed as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑛𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑒𝑡 [𝐾]) ∗ 10

+ (𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑛 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑎𝑛 𝑜𝑢𝑡𝑙𝑒𝑡) ∗ 0.00001

31

This fitness function has to be minimized.

The weights were set to promote temperature distribution at the outlet over the pressure loss. While the amount of

mixing might improve the temperature difference by roughly 2-3 Kelvins, the pressure loss can change significantly –

from around 1.7*105 Pa to 1.3*105 Pa. Because of that, a weight of 0.00001 was added before the pressure loss term

and the weight of 10 was added to the temperature term.

While small increases in pressure loss will not affect fitness function value by a large amount, this approach will

protect the algorithm from converging at designs where pressure loss is extremely high.

Figure 30. Comparison of results obtained with initial population of 10

All of these optimizations start from exactly the same initial population. All of the variators got converged. It might be

seen that different kind of variators have large impact on GA’s performance. First, there is a small difference in terms

of found optima.

• The UNDX found the optimum at 33.6 and required 97 iterations to converge. According to the figure, it is

significantly more than the rest of variators. Additionally, it might be seen that the fluctuation of fitness value

are the largest while using this variator.

• The PCX performed a lot worse than the rest of variators, finding an optimum of 40.2 at 72 iterations. The

optimum value is around 20% higher (which means worse) compared to the rest of variators. It might be

seen that this variator is the most “conservative”, which means the smallest fluctuations over the pool of

chosen variators.

• The SBX needed only 61 iterations to find an optimum, which is 32.8. This is the best result in terms of both

optimization time and quality of optima.

While the results found by SBX and UNDX are similar, PCX performed unexpectedly bad – probably because of the

small initial population pool. To examine the effect of initial population on the optimization performance, the

optimization was repeated with larger initial population pool – 15 and 20, respectively.

0

50

100

150

200

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Fi
tn

es
s

V
al

u
e

Number of iteration

Runs with initial population of 10

PCX SBX UNDX

32

Figure 31. Comparison of results obtained with initial population of 15

The results of optimization with the starting pool of 15 are shown at Figure 31.

• Over 101 iterations, the SBX found an optimum at 26.3.

• The UNDX found an solution at 26.3 which required 86 iterations.

• The PCX found an optimum at 26.3 over just 40 iterations.

It might be seen that expanding the starting pool increased the effectiveness of the simulation. All the variators found

the same optimum of 26.3, while the number of iterations required to do that is not the same in every case. At the

graph, the most recognizable is PCX performance, which required only 40 simulations to find an optimum. It might be

seen that this value on the graph is preceded by a sudden peak in the fitness value. The unexpectedly quick minimum

might be just the result of a lucky, very fit mutation or crossover. In this population size, the worst performance is

provided by UNDX, which requires as much as 101 iterations to find an optimum value.

The results of optimization with the starting pool of 20 are shown at Figure 32.

Figure 32. Comparison of results obtained with initial population of 20

0

50

100

150

200

1 6 1
1 16 2
1

2
6

3
1

3
6 41 4
6

5
1

5
6

6
1 66 7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

Fi
tn

es
s

va
lu

e

Number of iteration

Runs with initial population of 15

SBX UNDX PCX

0

50

100

150

200

1 7 1
3

1
9

2
5

3
1 37 4
3

4
9

5
5

6
1

6
7 73 7
9

8
5

9
1

9
7

10
3

10
9

11
5

12
1

Fi
tn

es
s

va
lu

e

Number of iteration

Runs with initial population of 20

PCX SBX UNDX

33

• The UNDX requires 106 iterations to find an optimum at 26.6.

• The PCX finds optimum at 26.4 in 121 iterations

• The SBX finds optimum at 26.3 during 66 iterations.

It might be seen that a further expansion of the initial population size worsens the quality of results. Not only are the

resulting optima worse than in the previous case, but also the number of iterations increased. Only the SBX

performance is improved – it found the same optimum in lesser number of iterations compared to the previous run.

The comparison of results is listed in Table 1.

 Initial population of 10 Initial population of 15 Initial population of 20

Optimum Number of

iterations

Optimum Number of

iterations

Optimum Number of

iterations

PCX 40.2 72 26.3 40 26.4 121

SBX 32.8 61 26.3 101 26.3 66

UNDX 33.6 97 26.3 86 26.6 106

Table 1. Comparison of results of 1st case optimization achieved by Platypus

From the table, it is visible that SBX is the best choice for a variator in this specific case. Regardless on the initial

population size, it always find the best value for the solution. On the other hand it might be seen that regardless of

variator type, found optima are usually similar – only the number of iteration required to achieve it varies.

On the other hand, UNDX performs worse than the rest of variators, mostly because of its fluctuating nature which

does not allow to achieve quick convergence.

3.2.2.2 Results of optimization – Second case

In the second case, the Fitness function is expressed as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑎𝑛 𝑜𝑢𝑡𝑙𝑒𝑡 [𝑃𝑎])

+ (𝑇ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑚𝑜𝑑𝑢𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑒𝑡 [
𝑚

𝑠
]) ∗ 100

This fitness function has to be minimized.

Again, the role of fitness function is to promote mixing over pressure loss. It might be seen that in the most of the

iterations, pressure loss fluctuates usually between 50 and 100 Pa. While the velocity difference is 5.5 m/s for an

unoptimized shape, the baffle optimization might reduce this value by roughly 1-2 m/s. This means that the range of

pressure loss values is around 100 times wider than the range of velocity difference, thus a weight of a 100 was

added to the pressure term.

34

Figure 33. Comparison of results obtained with initial population of 15

The results of optimization with the starting pool of 15 is shown at Figure 33.

• PCX converges with the value of 516.1 over 309 iterations

• SBX converges with the value of 516 over 183 iterations

• UNDX converges at the value of 511.9 after 148 iterations

Figure 34. Comparison of results obtained with initial population of 22

The results of optimization with the starting pool of 22 is shown at Figure 34.

• PCX converges with the value of 511 over 190 iterations

• SBX converges with the value of 516.1 over 198 iterations

• UNDX finds the value of 510.9, while it cannot obtain convergence over more than 650 iterations

500

550

600

650

700

750

1 1
4

2
7

4
0 53 66 7
9

9
2

1
0

5
1

1
8

1
3

1
1

4
4

1
5

7
1

7
0

1
8

3
1

9
6

2
0

9
2

2
2

2
3

5
2

4
8

2
6

1
27

4
28

7
30

0

Fi
tn

es
s

va
lu

e

Number of iterations

The starting pool of 15 - comparison

PCX SBX UNDX

500

550

600

650

700

750

1 3
2

6
3 94 12
5

15
6

18
7

21
8

24
9

28
0

31
1

34
2

37
3

40
4

43
5

46
6

49
7

52
8

55
9

59
0

62
1

65
2

Fi
tn

n
es

s
va

lu
e

Number of iteration

The starting pool of 22 - comparison

PCX SBX UNDX

35

In terms of convergence, it might be seen that the results vary significantly over the variator type. However, this might

be caused by very strict convergence criteria which assumes convergence as a change of parameter less than one. If

these requirement was relaxed to less than five, the result might be considered converged at 75th iteration in terms of

SBX and 195th iteration in the PCX. UNDX cannot achieve the convergence, however there might be found some fit

results over the fluctuations. The difference between the found optima is less than 1%.

The results of optimization with the starting pool of 30 is shown at Figure 35.

Figure 35. Comparison of results obtained with initial population of 30

• UNDX does not converge over 500 iterations, while the most fit value found is 510.9

• PCX converge after 339 iterations with fitness value 510.9

• SBX converges in 214 iterations with fitness value of 517.1. This value does not decrease over more than 30

iterations.

It might be seen that the initial pool of 30 does not result in better optima. However, it drastically increases the number

of required iterations. The UNDX does not converge and fluctuates over its entire spectrum, however, it still finds the

optimum value of 510.9, which is the best value found in this optimization.

 Initial population of 15 Initial population of 22 Initial population of 30

Optimum Number of

iterations

Optimum Number of

iterations

Optimum Number of

iterations

PCX 516.1 309 511 190 510.9 339

SBX 516 183 513.1 198 517.1 214

UNDX 511.9 148 510.9 unconverged 510.9 unconverged

Table 2. Comparison of results of 2nd case optimization achieved by Platypus

500

550

600

650

700

750

800

1 1
9

3
7 55 7
3

9
1

1
0

9

1
2

7

14
5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

28
9

3
0

7

3
2

5

3
4

3

3
6

1

Fi
tn

es
s

va
lu

e

Number of iteration

The starting pool of 30 - comparison

UNDX SBX PCX

36

It seems that an optimum value for initial size population in second case is 22. Not only this size achieves the best

result in terms of optimization but also does it in the smallest amount of iterations. The difference is found optima is

small – around 1%.

3.4 OPTISLANG OPTIMIZATION

3.4.1 The setup built in Optislang

OptiSLang is a software platform for CAE-based sensitivity analysis, multi-disciplinary optimization (MDO) and

robustness evaluation. It is developed by Dynardo GmbH and provides a framework for numerical Robust Design

Optimization (RDO) and stochastic analysis by identifying variables which contribute most to a predefined optimization

goal. This includes also the evaluation of robustness, i.e. the sensitivity towards scatter of design variables or random

fluctuations of parameters.[15]

To perform an optimization in Optislang, a sequence of systems was built. Each of these systems consists of the

same blocks. Blocks contain commands written in either bash or python programming language, which built entire

optimization environment. One of these systems “Kriging” was presented at Figure 36.

In every single block, there are 5 scripted sub-blocks:

• “Initialize” – loads all the modules required to the simulation, including specific python version and

opensource CFD software, OpenFOAM

• “Create input file” – reads the values sampled by Optislang and converts them into a file, which is further

exported to the location where CFD will be performed

• “Create Geometry” - runs the python-based CAD software “Salome” in the batch mode using a previously

generated script. Application of specific python library “pickle” allows to connect both the exported input file

and geometry script to create an unique CAD model, described by specific inputs.

• “Perform CFD” – the geometry is loaded to an automatic meshing tool (CfMesh). After the mesh is created,

OpenFOAM performs a CFD analysis, calculating the pressure loss between specific point (an inlet and an

outlet of pipe) and either temperature or velocity distribution at the outlet.

• “Gather results” – gathers the values of both distributions and pressure loss and calculates the mean of

them. They are used to calculate objective function value and passed to the Optislang.

Figure 36. Example of a single system built in Optislang

From these kinds of blocks, three types of systems were built:

• Sensitivity systems – create input variables with specific type of sampling and checks the relation between

parameters, especially the linear correlation between sampled input points and between input and output

values

• Evolutionary Algorithm systems – perform a genetic algorithm study. Must be either fed with a points created

previously or do independent sampling.

• AMOP systems – try to perform several types of metamodeling and check the accuracy between them and

models created by CFD. Creates a visual 3D prediction of the function surface based on both metamodels

and points used to create metamodel pool. [7]

37

Having these three kind of systems, three models were built:

1) Sensitivity systems -> Evolutionary Algorithm systems

2) Sensitivity systems -> AMOP systems -> Evolutionary Algorithm systems

3) Sensitivity systems -> Evolutionary Algorithm systems -> AMOP systems -> Evolutionary Algorithm systems

-> AMOP systems -> Evolutionary Algorithm systems

Models 2) and 3) will be described in Chapter 4 Metamodeling.

3.4.2 Sensitivity analysis

One of the Optislang feature is the sensitivity analysis, which allows to check the influence of given variables on the

fitness function performance. Based on sampled initial points, the influence of specific variables was checked.

3.4.2.1 Sensitivity analysis – the first case

In terms of 1st case, it might be seen that the fitness function changes by a large amount especially based on two

specific variables. They are:

• the angle of the pipes connection

• the length of a baffle

Figure 37. The shape of problem surface in the 1st case

According to Figure 38, to achieve the optimal shape of flow system, algorithm will try to maximize the angle (up to 90

degrees) and lengthen the baffle. Additionally, the value of “c” (which is the distance of baffle from the connection of

pipes) will be rather low, which means that the baffle should be placed close to the pipes connection. However, both

variables describing the baffle (c and y) are not as much influential as baffle length and angle of pipes connection.

38

Figure 38. Linear correlation between input variables and the fitness function

3.4.2.1 Sensitivity analysis – the second case

It might be seen that the surface is a lot more flat compared to case one. This is right – objective function in terms of

second case is a lot more stable (varies from around 520 to 650, compared to 20 and 200 in the first case). According

to Figure 40 it might be seen that variables x2, x3, x4 and x5 have quite similar influence on the objective function.

Indeed, they describe the x-coordination of point from which baffle is created. However, one variable shows a totally

different trend than the rest – x1. This variable describes the vertical baffle coordination.

Figure 39. The shape of 2nd case function’s surface

39

Figure 40. Linear correlation between input variables and the fitness function

3.4.3 Optislang optimization and results

Optimization parameters used in Optislang was changed since the Platypus optimization. First, the Optislang does not

allow to choose type of variator while it leaves more space in terms of mutation and crossover manipulation. The

optimal initial population size was preserved from Platypus and reused.

The optimization criteria was:

• Initial population size: 15 (for case 1.) and 22 (for case 2.)

• Sampling type – Latin Hypercube Sampling

• Crossover type – Multipoint with three crossover points (default value)

• Variator type - No variator

• Mutation chance – 98% chance for a mutation. The mutation mechanism adds or subjects a random value

from interval (0, 0.1𝑥), where 𝑥 is actual variable value. The draw follows the rules of normal distribution,

which means that the value of 0.05𝑥 has the largest chance of being chosen.

• Selector type – Tournament selector with Tournament size of 10. The maximum value for tournament is the

size of initial population and the minimal value is two. This means that a value around the middle results in a

fair trade-off between ability to preserve genes and achieve convergence.

• Convergence criteria – Maximum number of iteration or an improvement of the fitness value in relation to the

results obtained by the Python Platypus

The results of Optislang optimization was presented in Figure 41 and Figure 42.

40

Figure 41. Genetic optimization of the 1st case done in Optislang

Figure 42. Genetic optimization of the 2nd case done in Optislang

It might be seen that the Optislang allows to perform a lot smoother optimization which finds the optimum value a lot

quicker than the Platypus.

In terms of first case, fitness value was also improved (19.6 compared to 26.3 in python library), while in the second

case the found optimum is worse by around 0,2% (511 compared to 510).

41

4. METAMODELLING

4.1 THE PURPOSE OF METAMODELING

Metamodels, called often surrogate models or low-fidelity models, are designs created from high-fidelity models (in

this case, results of CFD analysis) which predict the value of fitness function for entire spectrum of variables. The

topic of metamodeling is often related to the Machine Learning, where the computer tries to build a continuous

function out of given discrete values. There are many kinds of metamodeling and for a specific problem, there is

usually a type which outperforms the rest of them. [8]

The results of CFD analysis are generally hard to predict, however the topic of metamodeling optimization is getting a

lot of attention in the industry due to the reason, that constructed metamodels can expand both initial population pool

and generation size, which allow to spare time previously used to compute high-fidelity designs.

According to scientific research, depending on the case, properly set metamodeling environment can shorten the

optimization time by a large amount (even several dozen of percent).[9]

According to the previous scientific work[8], the most promising type of metamodeling for CFD optimization is Kriging,

Artifical Neural Network and Response Surface Approximation. In this project, Kriging was chosen as the

metamodeling type because of its decent performance on low starting pool cases. [8]

4.2 THE KRIGING

4.2.1 The basics of Kriging

The kriging, called also Gaussian Regression, is a type of interpolation primary introduced to geostatistical sciences,

where its purpose was to predict the location of gold vein from the fixed amount of non-uniformly scattered, low

number of boreholes. [10]

The idea of kriging is to predict the value of an unknown function at a given point by the computation of weighted

average of the know values of this function in enough close neighborhood. In terms of that, Kriging is similar to

regression analysis.

As an interpolation technique, Kriging is a covariance-based type of prediction, where all the found values lies directly

at the found function’s neighborhood, where the distance depends on random number achieved from sampling of

either normal or different kind of distribution.

The most basic type of kriging may be expressed with given formula:

𝑍(𝑠𝑥) = 𝛴𝜆𝑍(𝑠𝑖) [9]

Where:

𝑍(𝑠𝑥) – value of fitness function in a surveyed location

𝑍(𝑠𝑖) – value of fitness function in a previously-known location

𝜆 – weight parameter

Which means that the prediction of function value is just the sum of weighted values found in the neighborhood.

However the method of weight coefficient computation may be often complicated. Removing the weighted sum value,

kriging may be expressed with Formula:

𝑦(𝑥) = 𝑝(𝑥) + 𝑍(𝑥) [9]

42

Where:

𝑦(𝑥) – value of fitness function in surveyed location

𝑝(𝑥) – value of fitness function in a known location

𝑍(𝑥) – a random bias sampled with some kind of distribution or other sampling strategy

The 𝑍(𝑥) is the realization of a Gaussian random process, with the mean of zero, variance of σ2 and non-zero

covariance. While the 𝑝(𝑥) reflect so-called “global” approximation, 𝑍(𝑥) stands for a “local” deviation which expresses

the effect of N point used to approximation. [9]

In a one-dimensional case, Kriging may be expressed with the approach similar to the one shown at Figure 43. At the

figure, z stands for function value and x is an input variable.

Figure 43. A simple 1D Kriging example [11]

The red point shows the values computed or measured (high-fidelity model). They are connected with some type of

curve (depending on kriging type) and for every two point (which are neighbors) there is an area of uncertainty, which

is expressed by normal distribution (only in the most basic approach; values closer to the curve have higher chance of

being drawn). After the Z values are computed, the new “prediction” curve is computed and unknown values

predicted. [12] In terms of that, Kriging may be an iterative process with the ability to improve itself.

In terms of this project, a four-dimensional and five-dimensional kriging is used.

4.2.2 Results obtained through Kriging and the accuracy of prediction

To improve genetic algorithm performance, Kriging was used as a generator of additional designs. This allows to

expand gene pool and give the genetic algorithm a guess where it should look for an optimum.

Optislang generated kriging points based on one initial population of samples gathered with Advanced Hypercube

Sampling. This means 15 points in terms of first case and 22 point in terms of the second case. Both of these were

shown at the graphs.

43

Figure 44. Kriging done in Optislang on 22 initial points (First case) and its accuracy

Figure 45. Kriging done in Optislang on 22 initial points (Second case) and its accuracy

It might be seen that the kriging can predict values with good accuracy basing on initial population of genetic

algorithm. Figures 46 and 47 shows comparison of results between objective function values obtained by CFD and the

metamodeling. In the first case, the relative error of kriging might be either very little (less than 1%) or quite large

(around 16%). However, most of the predictions achieved shows rather good fit and the mean value of the relative

error achieved is equal to 3,41%.

According to second case, Kriging performs even better than in the first one. While the approximation may produce

some highly biased designs (maximum relative error higher than 23%), most of the values are very similar to the

results obtained via CFD. The mean error of approximation is equal to 2,51%.

Based on that it might be good approach to use kriging as an intermediate step for genetic algorithm performance but

certainly not in an independent analysis. Relative error fluctuates and there is no visible trend, so the quality of an

individual metamodel is hard to predict without comparison to CFD analysis.

44

Figure 46. Relative error of Kriging approximation in created designs (First case)

Figure 47. Relative error of Kriging approximation in created designs (Second case)

On the other hand, Kriging can also result in achieving very unfit solutions, which may disrupt the simulation

performance. On the Figure 48 a result of Kriging done on the initial population size of 100 might be seen, where large

amount of the predictions is just a nonsense. This figure was created with a different software called Dakota. While

Kriging is a sophisticated metamodeling which is described by many inputs, it can be seen that the good accuracy

could not be achieved with this specific software.

Figure 48. Kriging performed on large initial pool

This issue was partially resolved by lowering the initial design pool to 20. However, the relative error was still huge

compared to results obtained by the optislang.

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52R
el

at
iv

e
er

ro
r

o
f

ap
p

ro
xi

m
at

io
n

[%

]

Number of design

Relative error of Kriging
approximation

0

10

20

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49R
el

at
iv

e
er

ro
r

o
f

ap
p

ro
xi

m
at

io
n

[%

]

Number of design

Relative error of kriging
approximation

45

Figure 49. Kriging performed on small initial pool of 25 designs with Dakota

Figure 50. Relative error obtained by Kriging approximation in Dakota

It is clearly seen that low-fidelity models achieved by Optislang are a lot more accurate than those produced by

Dakota. This is caused mostly by the black-box character of Optislang, where it can optimize its predictions based on

previous models and change its own guesses the iterative way. Additionally, the software allows to choose the

maximum amount of iterations where optislang is allowed to perform improvement of created models. Because of this,

Dakota was discarded in further work.

In the next step, a second round of Kriging approximation was performed. The results of first Kriging was connected

with initial pool of solutions created by CFD analysis. The next Kriging was performed based on values randomly

chosen out of this pool – 15 in the first case and 22 in the second case. The results obtained are presented at Figures

51 and 52. It can be seen that the relative error of approximation is similar to the first round of Kriging.

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19 21 23 25

R
el

at
iv

e
er

ro
r

o
f

ap
p

ro
xi

m
at

io
n

 [
%

]

Number of design

Relative error in Kriging achieved
by Dakota

46

Figure 51. 2nd round of Kriging approximation in the first case

Figure 52. 2nd round of the Kriging approximation relative error (first case)

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

R
el

at
iv

e
er

ro
r

o
f

ap
p

ro
xi

m
at

io
n

 [
%

]

Number of design

Relative error in 2nd stage of Kriging [%]

47

Figure 53. 2nd round of Kriging approximation in the second case

Figure 54. Relative error of the 2nd round of Kriging approximation (second case)

4.2.3 Implementation of Kriging in genetic algorithm

4.2.3.1 Implementation of Kriging in genetic algorithm – the first case

Created metamodels was used as an initial population for genetic algorithm in both case 1 and 2. Obtained results

was shown at Figure 55 and Figure 56.

In the first step, results of Kriging was passed to the genetic algorithm, so the initial population size was expanded by

generated metamodels. According to figure 55, It might be seen that obtained metamodels does not increase the

effectiveness of genetic algorithm performance. The optimum was found after 41 iterations (compared to 40 iterations

of “raw” genetic algorithm) while the found optimum is nearly the same as before (less than 0,1% difference). While

the kriging passed some good guesses into the algorithm (point 1 is nearly as fit as the found optimum with the value

48

of 21.1), their lack of accuracy slowed down the convergence. The discontinuities in the graph line are caused by

mesh breaks.

Figure 55. Optimization of 1st case with genetic algorithm and one round of Kriging

To strengthen the influence of Kriging in entire optimization, it was introduced twice. Kriging generated by AMOP

systems were first created based on 30 solutions found by 2 generations made by genetic algorithm. Later, both the

results of Kriging and a high-fidelity models were passed to another Evolutionary Algorithm system, where another 2

generations were performed.

The Figure 50 shows the effect of research carried with the last genetic algorithm round – again, locked at two

generations. It might be seen that the graph presents more flat but consistent convergence, which finds out an

optimum at 20.2 (compared to 19,6 its around 3% less fit minimum). However, this kind of approach is very time

inefficient since it required to compute all the previous blocks.

Finally, the cost of entire process was evaluated for 105 iterations (three Evolutionary Algorithm systems with 30

iterations each and Sensitivity system with 15 iterations), which means more than two times longer optimization for a

slightly weaker result.

Figure 55a. The “two-kriging” method

49

Figure 56. Last stage of 1st case optimization with application of genetic algorithm and two rounds of Kriging

4.2.3.2 Implementation of Kriging in genetic algorithm – the second case

The previous procedure was repeated for second case. The only difference made is an increase in maximum number

of iterations permitted in the approach of “two rounds of kriging application”. The purpose of it is to check if higher

number of iterations can obtain fitter solution through kriging.

The result of first optimization was shown at Figure 57.

Figure 57. Optimization of 2nd case with genetic algorithm and one round of Kriging

According to Figure 57, The most fit value was found at 25th iteration – just in the second generation. The expansion

of the initial population size made by Kriging was enough to find an optimum value in a very short time. Compared to

optimization without kriging, the result was obtained 47% quicker (47 compared to 89).

After that, Kriging was introduced twice into the genetic algorithm. The result was shown at Figure 58.

It might be seen that the curve fluctuates and shows no visible trend. It might be explained with the selection, where

genetic algorithm started its optimization from an inaccurate results. Additional input provided with kriging only

50

disrupted the convergence. Finally, algorithm finds an optimum after 307 iterations, which is the worst result compared

to the rest of optimizations with the same starting population size.

Figure 58. Last stage of 2nd case optimization with application of genetic algorithm and two rounds of Kriging

The comparison or Kriging results is shown in Table 3.

 Raw genetic algorithm One round of kriging

applied

Two rounds of kriging

applied

Found

Optimum

Number of

iterations

Found

Optimum

Number of

iterations

Found

Optimum

Number of

iterations

Case 1 19.6 55 19.6 56 20.2 105

Case 2 511.3 89 511.4 47 517 307

Table 3. Comparison of optimization results achieved with and without Kriging

It might be seen that application of two kriging rounds resulted in worse performance in both cases. While in the first

case application of kriging caused no positive or negative effect, in the second case kriging application resulted in

large reduction of simulation time (47% compared to no-kriging case in Optislang, 76% compared to Platypus-based

optimization).

51

5. ANALYSIS OF OPTIMIZATION RESULTS

5.1 Analysis of optimization results – the first case

It might be seen that the low velocity at the bigger inlet causes the baffle to have a really small effect in pressure

increase compared to the increase coming from the second inlet flow. Additionally, The objective function is tuned to

support mixing more than pressure loss, so the algorithm decides to maximize the baffle size and increase the value

of velocity and which streams encounter each other.

While it increase pressure loss value by around 18%, more uniform distribution of temperature might be achieved.

Sudden contraction result in fluid acceleration when both fluids approached themselves at maximum velocity nearly

countercurrent. This causes a splash after which the velocity decreases followed by pipe expansion which strengthen

this effect.

The temperature distribution at the outlet is compared at the Figure 63.

Figure 59. Temperature distribution in unoptimized Y-junction

Figure 59a. Pressure distribution in optimized Y-junction

52

Figure 60. Temperature distribution in optimized Y-junction

Figure 61. Velocity profile of optimized Y-junction

’

Figure 62. Comparison of temperature distribution between optimized and unoptimized shape

53

Fi gu re 63 . Te mp er at ur e d is t r ib ut i on a t th e o ut l e t o f op t i miz e d a nd u n op t i m iz ed Y - j unc t i o n

5.2 Analysis of optimization results – the second case

It can be seen clearly that the existence of the baffle improved the uniformity of velocity distribution in the bend.

Moreover, the baffle also reduced the pressure loss over its length by 21%.

It might be seen that algorithm tries to match the shape of baffle to the fluid streamlines. Created object has an

aerodynamical shape, the amount of separation is little.

At the graph, four designs were compared:

• The first one is the most fit result achieved by optislang with fitness value 511.3

• The second one is an unfit solution, which shows that the placement of baffle may be also disturbing if done

incorrectly

• There is also an case of a pipe bend without baffle included which allows to compare the effect.

Figure 64. Velocity profile of case 2 pipe bend without a baffle (2nd case)

294

294,5

295

295,5

296

296,5

297

297,5

O
u

tl
et

 t
em

p
er

at
u

re
 [K

]

Temperature profile

Optimized shape Non-optimized shape

54

Figure 65. Velocity profile of optimized 2nd case (baffle with a bend, 2nd case)

Figure 66. Pressure profile of bend without a baffle (2nd case)

Figure 67. Pressure profile of optimized baffle in a pipe bend (2nd case)

55

Figure 68. Velocity profile of a low-fitness baffle (2nd case)

Figure 69. Pressure distribution of unfit pipe bend with a baffle

Figure 70. Comparison of velocity profiles of optimized bend and a bend without a baffle

56

Figure 71. Comparison of velocity profiles

0

2

4

6

8

V
el

o
ci

ty
 m

ag
n

it
u

d
e

[m
/s

]

Comparison of velocity profiles

Design 1 Without Baffle Design 2

57

6. DISCUSSION

I t is c lear ly seen that genet ic a lgor i thm can be used as an opt imizat ion tool and i ts accuracy is

good. In most of the cases i t could get a convergence, whi le under the most proper condit ions

i t can f ind a solut ion with real ly low number of i terat ions (i n examined cases, around 60-80) .

This is especial ly va luab le when a sophist icated design is analyzed s ince no informat ion about

the gradient is required.

The role of metamodel ing is most ly to expand in i t ia l populat ion and the more i t is appl ied, the

more bias i t int roduces. On the other hand, even a low numb er of i terat ions (around 20 in th is

project) might lead to good predict ions i f the kr ig ing is appl ied . While usual ly helpful ,

metamodel ing might be somet imes very mis leading and create s total ly nonsense predict ions.

Fur thermore, i ts ef fect is very random while the range of re lat ive er ror very wide (f rom less

than 1% t i l l around 20%). There is no t rend in re lat ive er ror s ize and i f not compared to the

results gained by some t rust wor thy method (l ike CFD), the informat ion is most ly useless –

especial ly i f only one specif ic design is examined.

The role of metamodel ing is usual ly to “d iscover” a funct ion hidden behind a discont inues

data. The more “funct ion -s imilar ” the trend is , the bet ter metamodel ing predict ion accuracy

should i t of fer.

To expand th is research, I t might be good idea to work with bigger number of var iables and

more object ive funct ions. According to the research conducted in th is project i t might be seen

that metamodel ing d id not real ly work in case 1 s t opt imizat ion, whi le improved 2n d case by a

large amount (in terms of s imulat ion t ime). However , i t should be discussed i f and when this

k ind of metamodel ing is wor th the ef for t . How to predict i f metamodel ing wi l l s t rengthen or

dest roy the convergence of specif ic case opt imizat ion? The research done in th is project does

not answer th is quest ion.

However , i t might be a rather safe assumpt ion , that a s imple expansion of in i t ia l populat ion

pool with appl icat ion of kr ig ing is usual ly wor th the ef for t (of course, only i f the relat ive error

of kr ig ing approximat ion is low) .

In terms of genet ic a lgor i thm and in genera l genet ic opt imizat ion, a lot of research is

conducted. There are many types of var iators, mutat ion strategies, selectors etc. The same

rule appl ies to Kr ig ing and metamodel ing type s – there are a lot of methods of data predict ion

methods which potent ia l in the CFD opt imizat ion should be examined.

58

7. BIBLIOGRAPHY

[1] ht tps: / /www.researchgate.net /f igure/3 -Trend-of -Moores-Law-RD-5_f ig6_259897062

[2] ht tps: / /www.cfd-onl ine.com/

[3] “Genet ic Algor i thms in Search, Opt imizat ion and Machine Learnin g” , 1st Edit ion, David A.

Goldberg

[4] An Introduct ion to Genet ic Algor i thms, Jena Cars, 2014

[5] “Appl icat ion of Lat in Hypercube Sampling in the Immune Genet ic Algor i thm for Solv ing the

Maximum Clique Problem ”, Zhou Benda and Chen Minghua

[6] "Mult i -parental Extension of the Unimodal Normal Dist r ibut ion Crossover for Real -coded

Genet ic Algor i thms," Proceedings of the 1999 Congress on Evolut ionary Computat ion, pp.

1581-1588, 1999, Kita, H. , Ono, I . , and Kobayashi, S. ,

[7] Opt is lang manual

[8] “Design Opt imizat ion of Flu id Machinery: Apply ing Computat ional Flu id Dynamics and

Numer ical Opt imizat ion”, Kwang -Yong Kim, Abdus Samad, Ernesto Benini

[9] “A Kr ig ing Metamodel Assisted Mult i -Object ive Genet ic Algor i thm for Design Opt imizat ion” ,

M .Li , S. L i , S. Azarm

[10] ” "Fif ty Years of Kr ig ing" . Handbook of Mathema t ical Geosciences. ” , Chi lès, Jean-Paul,

Desassis, Nicolas

[11] ht tps: //upload.wik imedia.org/wik ipedia/commons/ f/ f5/Example_of_kr ig ing_

interpolat ion_in_1D.png

[12] “Basic Linear Geostat is t ics ”, Chapter 7 The Theory of Kr ig ing, Margaret Armst rong

[13] ht tps: / /p latypus. readthedocs. io/en/ latest /

[14] ”An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting

Approach”, Part I: Solving Problems With Box Constraints, Kalyanmoy Deb, Himanshu Jain

[15] https:/ /www.dynardo.de/en/sof tware/opt is lang.html

