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In this thesis, a method for finding the

parameters to model interference prob-
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ALOHA model, is presented. For extrac-

tion of the model parameters, an algo-

rithm which relies on a recording of in-

terference in the wireless channel is pro-

posed. The algorithm computes and seg-

ments the recording spectrograms to ex-

tract the parameters of individual trans-

mission and clusters these to find the dom-

inating interference sources in the chan-

nel. Using simulated data the param-

eter estimate errors are found in differ-

ent congestion scenarios. For 2% conges-

tion 92.41%, 57.57% and 15.31% of the

interference transmissions is found with

power levels −60dBm/Hz, −75dBm/Hz

and −90dBm/Hz respectively. The frac-

tion of mid and low powered transmissions

found depends on the level of congestion in

the channel. Finally, a test on real-world

data quantifies the amount of interference

that the algorithm is capable of extract-

ing.
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Preface

This report has been compiled by project group SPC-1075 as a Master thesis under the main theme

Signal Processing and Computing at the Department of Electronic Systems at Aalborg University,

spring 2020.

This paper is indexed in chapters chronologically numbered after the order in which they appear.

Sections and subsections in chapters are numbered likewise, while sub-subsections are without index

numbers. Figures, tables and equations are also indexed in numbers equivalent to the chapter and

chronological order in which they appear, appendixes are lettered in alphabetical order in which they

appear.

For the purpose of simulations conducted in this project, Python 3.7.4 has been used as the main

simulation tool.

The Python scripts used for analysis of the spectrum recordings and a single spectrum recording are

attached in a .zip file.
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Introduction 1
1.1 Interference in wireless communication

When transmitting wireless messages, interference from other transmissions is always a risk.

Interference can cause transmitted information to be lost and may require the information to be

transmitted several times. Depending on the communication protocol, several similar transmissions

can be sent to ensure that one of the transmissions is received or two-way communication with

acknowledgement can be used to ensure that a transmission is successfully received and decoded.

Either way, for battery driven applications this will cause higher energy consumption and lower

expected life-time, given the same number of unique transmissions.

Several parts of the frequency spectrum are unlicensed where transmission does not require prior

approval as long as the transmissions comply with standards set by the relevant authorities. A list of

frequency spectrum allocation in Europe has been published by the ECC [1].

In recent years, Internet-of-Things(IoT) devices have provided devices with network access and, among

other things, enabled automatic reading of utility meters without any human involvement. IoT

applications makes extensive use of the unlicensed ISM 868-868.6MHz spectrum [2, 3] and as the

number of IoT devices increases[4], the probability of interference in unlicensed bands are likely to

increase as well.

Figure 1.1: Spectrogram 868MHz to 868.6MHz.

In figure 1.1 a spectrogram of the 868.0-868.6MHz ISM band spectrum in downtown Aarhus is seen.

The snapshot is a short time fourier transform(STFT) of the in-phase and quadrature signals captured
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1. Introduction Group SPC-1075

by a spectrum analyser sampling at 10MHz.

When a receiver decodes a transmission, it requires a certain signal to inference and noise ratio(SINR)

and a higher level of interference will decrease the probability of successful decoding of a transmission.

Some of the activity observed in the spectrum will cause interference and transmitting on frequencies

with less load will increase the probability for achieving the required SINR. If given a spectrum

recording, it would be beneficial to extract information about how interference sources are distributed,

their bandwidth, center frequency, transmission time and duty cycle. With this information, the

probability of interference for a transmission can be calculated and the channel with the least

probability for interference can be chosen. The probability for interference can also be used in

applications without two-way communication to determine the number of identical transmissions

needed in order to obtain a sufficiently high probability of decoding success.

In this thesis, short range devices such a smart meters operating in the 868-868.6MHz ISM band

are of special interest. The project is proposed by Kamstrup A/S, which is a manufacturer of smart

meters for water, heating, cooling and electricity. To better understand how to efficiently transmit in

unlicensed bands, an algorithm to model interference is needed. This model can be used to extract

information which is used to control transmission parameters based on the observed environment.

Having a transmitter adapt to its environment is termed cognitive radio [5] or adaptive protocols,

which is an active field of research. The main challenge is to enable wireless transmitters to observe,

adapt, reason and learn [6].

Developing algorithms to learn and reason from a given data set will be the main focus of this thesis, in

order to enable a better understanding of the interference in an environment and design transmission

protocols which best utilize the available spectrum. The adaption part of cognitive radio will not be

considered however it is intended that the algorithms developed can eventually be used in commercial

transmitters.

1.1.1 Machine learning in wireless communication

Intelligent learning algorithms can be applied to estimate the interference distributions, such as

bandwidth, center frequency, transmission time and duty cycle. By finding similar transmission and

clustering them into groups, a deeper understanding of the interference in a spectrum at a certain

location can be obtained. Well-known machine learning algorithms can be used to both estimate the

density of interference, and clustering similar transmission into groups. Since no prior information is

available for interference in the spectrum, a natural choice for learning the interference distributions

is using unsupervised learning algorithms. When similar transmissions are grouped, these can be

extracted from the data set, and supervised classification algorithms can be used to identify modulation

scheme and eventually identify which IoT technology is transmitting to further enhance the insight

into spectrum interference. This however, will not be a part of the thesis.

In a similar project [7], it was found that supervised machine learning algorithms performs well when

only one transmission is considered, but as soon as more than one transmissions are active at a given

time(As an example, see figure 1.2), the classification accuracy decreases significantly. However, before

it is possible to separate similar transmission from the rest it is necessary to learn how the interference

is distributed in the spectrum.
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1. Introduction Aalborg University

Figure 1.2: Simultanous transmissions in the spectrum

1.2 Problem statement

Based on the need to identify and model interference in a frequency spectrum, the following problem

statement is formulated for this thesis.

• How can probability for interference be modelled and how can the model parameters be

estimated?

• How can intelligent learning algorithms be used to find, separate and cluster similar transmissions

in a spectrum recording to identify the parameters needed for modelling interference?

1.3 Delimitations

To make this thesis feasible, several assumptions and delimitations has to be made.

• It is assumed that the interference on the 868.0-868.6MHz ISM band is static such that the

interference patterns does not change from day to day. However, this is a simplification since

some interferers will transmit with the same pattern continuously and some may change. An

example can be alarms that are triggered or devices which only transmit once every day or

every week. As stated in section 1.1, more and more IoT devices are installed, which will also

contribute to a change in the interference patterns. A justification for this assumption is that

IoT devices are more stationary being based in buildings as alarms, meters etc. compared to

mobile devices carried around by people.

• It is assumed that the time bandwidth product of transmissions is constant for a given symbol

rate. Hence, the amount of information transmitted with transmission time T = 2s and

bandwidth BW = 1kHz does not change if the parameters are changed to T = 1s and

BW = 2kHz. The type of modulation, transmission protocol and many other factors may affect

this, however this generalization is used when determining the optimal transmission parameters.
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1.4 Prior work

In a study of the occupancy in the 868MHz ISM band in Erlangen and Nuremberg in Germany [8]

the average and maximal power spectral density was measured to estimate the overall occupancy of

the frequency bands. They concluded that overall the occupancy was 3% but that certain frequency

sub-ranges had a far greater occupancy. They measured the energy for a 20kHz channel centered at

868.9MHz to estimate the inter-arrival times between transmissions and the length of the transmission

to model the interference at a single channel. This supports the idea that some frequency ranges

in a spectrum will be more suitable for transmission than others. In a related study, a model for

interference is proposed [9]. Here, a frequency and time range termed ”playgrounds” is populated with

transmission by a Poisson point process. A number of transmission classes with different bandwidth,

transmission time and inter-arrival times, found as described in [8], was used to emulate various

interference scenarios. These ”playgrounds” were used for simulation of interference to estimate the

probability of transmission success. By finding the sources of interference in a spectrum, this method

can be used to simulate real-world testing of wireless systems in a lab.

A similar approach is used in a Danish study were the interference is assumed to be distributed

independently in both time and frequency [10]. Here, the probability for interference is calculated based

on the interference exceeding a threshold. Inspired by [10], a German study [11] aims to find a more

suitable model for the distribution of interference in the 868MHz ISM band. They compute the signal

spectrogram of I/Q samples, and set an energy level threshold to detect transmission and calculate

the bandwidth, transmission time, center frequency and inter-arrival times for the interference

transmissions. By manually clustering the transmissions based on transmission parameters, they

find the transmissions most likely to appear and estimate their bandwidth, transmission time, center

frequency and inter-arrival times. Using these estimates, they calculate the probability for interference

by using a method similar to the ALOHA model [12].

This thesis aims to continue were [11] finishes, finding intelligent thresholds for determining the

presence or absence of an interference transmission. Furthermore, well-known machine learning

algorithms will be used for clustering the interference transmissions, instead of manually clustering

them, to estimate the transmission parameters of the interference transmissions most likely to appear.

4
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In this chapter, methods for computing the probability of interference are described and compared. A

naive brute-force method, which can be used to compute transmission interference probability given

a set of transmission parameters, is presented. However, this method does not help to model the

interference in the spectrum. The probability is also modelled using the binomial distribution similar

to the method used by researchers from Aalborg [10]. This method assumes that interference is

distributed individually in time and frequency, which may not always be the case.

To model the spectrum interference without assuming that interference is distributed independent

across time and frequency, the individual transmitters in the spectrum is assumed to use the ALOHA

access protocol[12], where transmissions occur at random times. For this model, several parameters

of the spectrum interference has to be estimated.

Given an I/Q data signal, a spectrogram as seen in figure 2.1 can be computed. Here, 3

simultaneous frequency modulated transmissions(2FSK) are simulated, each with a duty cycle of

0.5 and transmission time T = 0.25s. The transmissions are modulated at 1kHz, 10kHz and 20kHz.

Using this simulated data, the probability for interference can be computed using several methods.

This simulated data set will be used as an example when discussing the different methods to estimate

the interference probability. By using a simple simulated data set instead of a real data set, it is easier

sanity check results.

Figure 2.1: Spectrogram 868MHz to 868.6MHz with 3 simulated 2FSK signals.

The spectrogram is computed with a fixed ∆f and ∆t. One data point in the spectrogram covering

5



2. Modelling interference probability Group SPC-1075

an area of ∆f · ∆t will be referred to as an interference unit. When the level of interference in an

interference unit is above a threshold determined by the receivers required SINR1, the interference unit

is marked as being interfered. A transmission covers a certain number of interference units, depending

on the bandwidth and transmission time. A transmission with BW = 2kHz and T = 2s will cover 4

interference units when ∆f = 1kHz and ∆t = 1s. This definition of interference units is similar to the

one found in [10].

In eq. (2.1) a formal definition of interference is seen. A unit is interfered when rm = 1. Here, Im is

the power of interference unit m in dBm, PR is the received power from a desired transmission in dBm

and SINR is the required signal to noise plus interference ratio required for successful decoding of the

transmission. In this section, an arbitrary threshold for adequate of PSINR +PR = −105dBm similar

to [13] is used. It is possible to combine the method described here with a distribution of received

power if desired.

rm =

{
1 Im ≥ PR − PSINR
0 else

(2.1)

When one interference unit in a transmission is marked interfered, the whole transmission is marked

as interfered. It is unlikely that a transmission cannot be decoded when only one interference unit

is marked interfered, especially if ∆f and ∆t are small relative to BW and T of the transmission.

However, as soon as a desired transmission is overlapping an interference transmission it will be marked

as interfered since it convenient for modelling. The models presented in section 2.3 and 2.4 both uses

this as the criteria for interference .

1The required SINR varies with each receiver and finding the required SINR is not a part of this thesis.
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2. Modelling interference probability Aalborg University

2.1 Computing the spectrogram

In wireless communication, the spectral properties of a signal often does not match the spectral

properties of the communication channel and a frequency translated version of the signal is

transmitted. This is known as a band pass modulated version of the signal [14]. The base band

signal is a low pass signal which contains the information transmitted using a wireless channel. An

example of both is seen in figure 2.2.

Figure 2.2: Base band and band pass signal

Given a base band signal as real-valued in-phase and imaginary quadrature components, a spectrogram

can be constructed. When sampling the spectrum, a spectrum analyzer is used to shift the band pass

signal to the base band representation. To represent the base band signal xl(t) as an oscillating wave

with a given frequency and phase the in-phase and quadrature components are used(see eq. (2.3)).

The notation can be factored to separate phase and frequency as seen in eq. (2.2).

xl(t) = ej2πft+φ = ej2πft · ejφ (2.2)

xl(t) = xi(t) + jxq(t) (2.3)

(2.4)

When the baseband signal is quantized by the spectrum analyzer at a sampling interval Ts, it is

expressed as xl[n] = xl(n · Ts)

A spectrogram is a time-frequency representation of a time series, where the entire spectrum is

computed at a fixed interval. The frequency spectrum is computed as a STFT such that for every N

samples a new spectrum is computed.

The STFT for for the baseband signal xl[n] in the range n = [0,N − 1] can be computed as seen in eq.

(2.5) [15], where the discrete Fourier transform is used. To compute a spectrogram, the STFT should

be computed at fixed intervals over the quantized signal.

X[k] =
N−1∑
n=0

xl[n]e−j
2π
N
kn (2.5)

The time resolution of the spectrogram depends how many samples from the quantized signal is used

for each STFT. Given a signal length K ·N samples, where K ∈ R and N is the number of samples

7



2. Modelling interference probability Group SPC-1075

used for each STFT, the spectrogram will consist of K individual spectrums. The time resolution for

the STFT is ∆T = Ts ·N .

The frequency resolution is determined by eq. (2.6). Using zero-padding of the signal, the frequency

resolution is increased such that more frequency bins are computed over the same range of frequencies.

∆f =
N

fs
= N · Ts (2.6)

When computing the spectrogram, it is important to consider the characteristics of the baseband

signal. If a signal contains small bursts with duration T = 1ms then a time resolution of ∆T = 1s for

the spectrogram will result in a poor time-frequency representation of the signal. Likewise, in a signal

with several waves placed close in frequency, it may not be possible to distinguish the signals using

a high ∆f to compute the spectrogram. Hence, careful consideration of the signal characteristics is

necessary when choosing ∆f and ∆T . For every N samples used to compute the STFT, a window

such as a Hanning window can be applied to lessen spectral leakage. The samples used to compute the

STFT’s may overlap, to make sure that the parts of the signal attenuated by the window, is present

with close to 0dB gain in another window.

8



2. Modelling interference probability Aalborg University

2.2 Brute force computation of interference probability

To find the probability for interference, given transmission bandwidth, center frequency and time, a

simple brute force method can be applied. A window with fixed height(Time) and width(Frequency)

segmented into interference units is slided over the computed spectrogram in steps of ∆f and ∆t. Each

of the interference units in the transmission window is evaluated against the SINR threshold. When

the window overlaps an interference transmission, it is said to be interfered. The average number of

times the window is interfered at a given frequency is then evaluated across the spectrum.

The definition of interference probability is seen in eq. (2.7). If any of the m interference units is

above the threshold, the transmission is interfered and the probability is set to 1.

P (Im) =

{
1 rm = 1 for any m

0 else
(2.7)

A window is slided across the spectrogram in steps of ∆f and ∆t which gives L seperate probabilities.

L = SBW−∆f
∆f · ST−∆t

∆t , where SBW is the spectrogram bandwidth and ST is the spectrogram time. The

probability averaged over all time indexes, for every center frequency, is computed as seen in eq. (2.8)

which yields the probability for intererence when transmitting at a given center frequncy. Here, Ifc is

the set of interference units which belongs to frequency bin fc.

Pavg(fc) =
1

ST /∆t

ST /∆t∑
l=0

P (Im) Im ∈ Ifc (2.8)

For the spectrogram generated from simulated data, as seen in figure 2.1, the computed brute

force probability can be seen in figure 2.3. The transmission length is set to the lowest possible

of T = ∆t = 1ms to compute the probability for interference at any given time.

Figure 2.3: Interference probability 868MHz to 868.6MHz for a transmission with BW = 10kHz and
T = 1ms.
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2. Modelling interference probability Group SPC-1075

When transmitting in the vicinity of the three simulated transmissions in figure 2.1 it is expected that

probability for interference will be 50%, since the duty cycle of the signals are 0.5. As seen in figure

2.3 this is also the value found by the brute for method.

The probability for at least one interference unit in the transmission to be interfered for all L points

in the spectrogram with center frequency from fc = 868MHz + 10kHz/2 to fc = 868.6MHz− 10kHz/2

and transmission start time from Tstart = 0s to Tstop = 1s− 0.001s is seen in figure 2.4.

Figure 2.4: Probability for interference overlap for a transmission with BW = 10kHz and T = 1ms.

In figure 2.5 the computed probability for a transmission with T = 200ms is seen. Here the probability

for interference is 74.9%. As expected it is higher, since the inter-transmission time is 250ms which

leaves a small margin for transmitting the 200ms long transmission.

Figure 2.5: Interference probability 868MHz to 868.6MHz for a transmission with BW = 10kHz and
T = 200ms.

10



2. Modelling interference probability Aalborg University

Given a fixed ratio V = T · BW of transmission parameters, the optimal transmission bandwidth

can be found by running the simulation for a range of BW while keeping V constant. However, to

compute the probability of interference at a single BW requires L windows to be evaluated which

require evaluation of L · T∆t ·
BW
∆f interference units, for every single bandwidth. Given ∆t = 1ms,

∆f = 100Hz, SBW = 600kHz, ST = 30s, this amounts to more than 160 · 109 operations. For larger

recordings, where several parameters are varied, this becomes infeasible.

11
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2.3 Binomial computation of interference probability

If the interference is assumed to be independently distributed in time and frequency, the binomial

distribution can be used to calculate the probability for interference as shown by researchers from

Aalborg University[10]. The probability of one interference unit in the spectrogram to be above the

interference threshold is calculated from the total spectrogram with L interference units. This is seen

in eq. (2.9).

pB =
1

L

L−1∑
m=0

rm (2.9)

To calculate the probability that k interference units in a transmission covering N interference units

are interfered, the Binomial distribution is used, see eq. (2.10).

P (I = k) =

(
N

k

)
· pkB(1− pB)N−k (2.10)

When k = 0 no interference units are marked interfered, and the probability for one or more

interference units to be interfered is P (I > 0) = 1− P (I = 0).

To calculate the probability that less than k interference units are interfered, the Binomial cumulative

distribution is used and conversely, the probability that more than k interference units are interfered

can be calculated as P (I > k) = 1− P (I ≤ k).

P (I ≤ k) =
k∑

h=0

(
N

h

)
· phB(1− pB)N−h (2.11)

Eq. (2.9) is used to calculate the interference probability pB = 4.35% from the spectrogram seen

in figure 2.1. The probability for one or more interferers in a transmission with BW = 10kHz and

T = 1ms can be calculated as seen in eq. (2.12), where the number of trials is N = 100 since
BW
∆f = 10kHz

100Hz = 100 and T = ∆t.

P (I > 0) = 1−
(

100

0

)
· (0.0435)0(1− 0.0435)100−0 = 98.83% (2.12)

This probability of interference is far from the value found in section 2.2, which is due to the fact

that the interference is not distributed independently in time and frequency as the Binomial model

assumes. This is shown by generating a spectrogram with interference units having P = 4.35% chance

being above the required threshold and computing the probability for interference using the brute force

method from section 2.2. The experiment yields a 98.82% chance for interference with transmission

parameters BW = 10kHz and T = 1ms similar to the probability computed with the Binomial

method. These findings highlights the need for a better model for the interference distribution.

12
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2.4 Pure ALOHA model for interference

In a given frequency range F = [fc−BW/2, fc+BW/2] the average number of transmissions is observed

every millisecond. By assuming pure ALOHA spectrum access for all interference source, where

transmissions arrive independently in time with the constant rate λ = r · t transmissions/millisecond,

the probability thatK transmissions occurs in t seconds can be modelled as an Poisson distribution[12],

see eq. (2.13). Here r is the observed rate of events, with unit transmissions/ millisecond and t is the

time interval [16].

P (K = k|F ) =
(r · t)ke−r·t

k!
(2.13)

Let TI be the random variable modelling the time between now and the next interference transmission,

if TI > t there will be no transmissions before time t which is equal to K = 0, and as seen in eq.

(2.14) the probability that no event occur until time t follows an exponential distribution. Hence, the

time between events in a Poisson distribution is exponentially distributed.

P (TI > t|F ) = P (K = 0|F ) =
(r · t)0e−r·t

0!
= e−r·t (2.14)

To get the probability that an event occur before time t, the complement is used as seen in eq. (2.15).

P (TI ≤ t|F ) = 1− P (TI > t|F ) = 1− e−r·t (2.15)

The time interval t has to account for both the length of the desired transmission and the average

length of interference transmissions in the channel. Given a spectrum with interference source TX1

which has transmission length T1 and a desired transmission TX2 with length T2, the time interval is

t = TP = T1 + T2 to ensure that no interference transmission is active at transmission start and that

no interference transmission occur while transmitting. This is illustrated in figure 2.6

�2

�1 �1

TX1

TX2

��

Time

Figure 2.6: Poisson transmission time parameter.
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By assuming pure ALOHA access in a channel, the probability for interference can be calculated for

different transmission parameters center freqnecy(fc), transmission time(T ) and bandwidth BW .

As an example of this, consider the spectrogram in figure 2.7 where three 2FSK signals modulated at

10kHz is simulated spaced apart by 20kHz. Here transmitting with center frequency fc = 868.3MHz is

constrained by transmissions to each side of the center frequency. By inspecting the spectrogram, an

estimate would be that the optimal transmission parameters is a bandwidth low enough to fit between

the two interferers at 868.26MHz and 868.32MHz, and a transmission time short enough to avoid the

middle interferer at 868.3MHz.

Figure 2.7: Spectrogram 868MHz to 868.6MHz with 3 simulated alternating 2FSK signals.

With a ratio between bandwidth and transmission time equal to 2500 = BW · T the following three

bandwidths are considered, BW = 50kHz, BW = 10kHz and BW = 5kHz.

Below the transmission rates and the required time interval Tp is calculated for each frequency range.

• Transmission 1 - fc = 868.3MHz and BW = 50kHz: In this range 6 transmissions occur, hence

r = 6 transmissions/second. Four transmissions with length 0.4s and two with length 0.1s yields

an average length of 0.3s. This yields a time interval of Tp = 0.3s + 0.05s = 0.35s.

• Transmission 2 - fc = 868.3MHz and BW = 10kHz: In this range 2 transmissions occur, hence

r = 2 transmissions/second. Two transmissions with length 0.1s occur. This yields a time

interval of Tp = 0.3s + 0.025s = 0.55s.

• Transmission 3 - fc = 868.3MHz and BW = 5kHz: In this range 2 transmissions occur, hence

r = 2 transmissions/second. Two transmissions with length 0.1s occur. This yields a time

interval of Tp = 0.3s + 0.5s = 0.8s.

The probability for interference P (TI ≤ t) is seen in table 2.1.

Interference probability T = 0.05s, BW = 50kHz T = 0.25s, BW = 10kHz T = 0.5s, BW = 5kHz

P (TI ≤ t) 87.75% 66.71% 79.81%

Table 2.1: Interference probabilities
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The results in table 2.1 show that the optimal transmission parameters are BW = 10kHz and

T = 0.25s.

Using the brute force method to evaluate the transmission parameters reveals that the optimal

parameters are indeed BW = 10kHz and T = 0.25s as seen in table 2.2. With a time between

interferers of TI = 0.325s and ≈ 10kHz free bandwidth between the side interferers, this is

expected to be the optimum among the three options. Inspecting figure 2.7 it is clear that the

two other transmissions will always overlap another transmission, hence they will always be marked

as interferred.

fc = 868.3MHz T = 0.05s, BW = 50kHz T = 0.25s, BW = 10kHz T = 0.5s, BW = 5kHz

Brute-force 100% 53.35% 100%

Table 2.2: Interference probabilities - Brute force

To use ALOHA for modelling interference, it is important to estimate the average transmission rate

and transmission length in a frequency range. This requires an algorithm to extract individual

transmissions in the spectrum, group similar transmissions and estimate their bandwidth, center

frequency and transmission time.
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Identifying interference
transmissions 3

To use the ALOHA inderference model discussed in section 2.4, the interference sources in a spectrum

have to be found and their transmission parameters estimated. In order to estimate the source

parameters, it is necessary to first detect interference transmissions in the spectrum. When the

transmissions has been detected, the center frequency, transmission time and transmission bandwidth

can be estimated. In this chapter, a signal model for the interference transmissions is presented

to gain a better understanding of the signal statistics which is used to detect the transmissions.

Furthermore, an algorithm for separating the interference transmission from background noise is

proposed. Using this algorithm it is possible to estimate the transmission parameters seen in figure

3.1; center frequency(fc), transmission time(T ) and transmission bandwidth(BW ).

Frequency [Hz]

Ti
m

e 
[ s

]

��1

��2

�1

�2

��1 ��2

Figure 3.1: Transmission parameters.

3.1 Signal model

Consider the baseband representation of a signal with a given frequency and phase, seen in equation

(3.1).

xl(t) = ej2πft+φ (3.1)

17
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This signal is transmitted through a wireless channel with additive white Gaussian noise(AWGN) and

a complex channel gain α [12], no attenuation, fading or multi-path propagation is considered. The

received signal will be the sum of the transmitted signal and the Gaussian noise as seen in eq. (3.2)

where the Gaussian noise is limited by the bandwidth of the receiver and denoted nl(t).

r(t) = αxl(t) + nl(t) = αej2πft+φ + nl(t) (3.2)

If no interferers are present in the spectrum, the received signal will only consist of the noise component

in eq. (3.2), r(t) = nl(t). The noise is modelled as a random variable Nl and is assumed to be

distributed as a circularly-symmetric complex Gaussian such that Nl ∼ CN (µ, σ2) with the real and

imaginary part being independently distributed.

When an interfering transmitter transmits a signal, the received power can be calculated as seen in

eq. (3.3). If no signal is transmitted the received power can be expressed as in eq. (3.4).

Ps(t) = |r(t)|2 = |xl(t) + nl(t)|2 (3.3)

Pn(t) = |nl(t)|2 (3.4)

The magnitude of the complex Gaussian Nl will be Rayleigh distributed [14], Pn(t) ∼ Rayleigh(σ).

The probability density function of the Rayleigh distribution is found in eq. 3.5.

fRayleigh(x|σ) =
x

σ2
· e−x2/2σ2

x, σ > 0. (3.5)

When a signal is transmitted(eq. (3.3)) the non-zero magnitude will cause the circularly-symmetric

complex Gaussian to have a non-zero mean, hence the signal will follow a Rice distribution Ps(t) ∼
Rice(v, σ), see eq. 3.6, which, as the magnitude increases, will approximate a Gaussian distribution

[12]. In eq. 3.6, I0(z) is a modified Bessel function of the first kind with order zero.

fRice(x|v, σ) =
x

σ2
· e−(x2+v2)/2σ2 · I0

(xv
σ2

)
x, v,σ > 0. (3.6)

Recalling the signal recording shown in figure 1.1, a histogram is computed for the first 100ms of the

spectrogram to estimate the received power distribution. The estimated distribution can be seen in

figure 3.2. Since the majority of the values in a spectrogram will be caused by noise, the histogram

will be heavily biased towards the low values if it is calculated in the linear domain. For calculating

the histogram, the power values on a logaritmic scale is used as seen in figure 3.2.
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Figure 3.2: Received power distribution based on spectrum recording seen in figure 1.1.

Figure 3.2 shows a distribution which could be composed of a Rayleigh distribution(On a logarithmic

scale) and several Rice distributions. It is assumed that the lowest cluster of power values belongs to

the circularly-symmetric complex Gaussian noise.

3.2 Clustering of received power based on clustering algorithms

To separate the interference transmissions and noise, the received power transmissions are clustered.

The signal histogram in 3.2 shows that the received power is found in varying densities, as expected

when considering the signal model in section 3.1. The different interference sources will likely form

their own cluster of received power levels, hence, clustering should be able to find a cluster for each

interference source with an unique transmission power level.

In this section, two clustering algorithms for classifying noise and interference transmissions in

spectrum snapshots are presented and tested. The tests will aim to verify that the clustering algorithms

can segment signal chunks into clusters as would be expected when considering the histogram of the

signal.

3.2.1 K-Means clustering

K-Means clustering is a common clustering algorithm in unsupervised machine learning. Compared

to other clustering algorithms it is simple to implement and computationally inexpensive.

K-Means clustering algorithm

Given a group of samples {x1,x2..,xN} with N observations in M dimensions it is possible to separate

the samples into K groups. The similarity of the samples are measured as their euclidean distance to

a common reference point, the cluster center, and each sample is then assigned to one of K clusters.

Given that the number of clusters K in the data set is known, the clusters should be placed such that

the sum of squares from each sample to its assigned cluster center µk is minimized [17].

The sample xn has a set of corresponding binary indicators which describes the samples association

with a cluster k, rnk ∈ {0, 1}, where k = 1,..,K are the index of each of the K clusters. If sample xn
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is assigned to cluster k, then rnk = 1 otherwise it is 0. The objective function to be minimized is seen

in eq. (3.7)

J =
N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3.7)

Eq. (3.7) should be minimized with respect to rnk and µk which is done by iterations in a two step

algorithm.

1. Choose random means µk to represent the cluster centers

2. Assign each sample xn to the cluster k which minimizes ||xn − µk||2.

3. For every k, compute a new cluster center µk by using eq. (3.8).

4. If the cluster centers µk are moved more than some constant ε go to step 2, otherwise terminate.

µk =
1

N

N∑
n=1

rnkxn (3.8)

The algorithm will converge to some minimum which may not be the global minimum depending on

the starting position of the means [17].

K-Means clustering algorithm test

To test the K-Means algorithm for segmentation of received power levels, a simulated signal with

three 2FSK modulated signals is used. This is a short version of the signal used in section 2.4. The

spectrogram of the signal is seen in figure 3.3.

Figure 3.3: Spectrogram 868MHz to 868.6MHz with 3 simulated 2FSK signals.
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The power distribution of all the interference units in figure 3.3 is seen in figure 3.4. For this test the

number of clusters is K = 2 since the distribution seems to have two main clusters at ≈ −120dBm

and ≈ −90dBm.

Figure 3.4: Spectrogram power distribution.

After running the K-Means clustering algorithm on the interference units, the cluster centers seen in

table 3.1 are found. The first cluster represents the large amount of samples around −120[dBm/Hz]

and the last cluster represents the seconds of the two tops seen in figure 3.4.

Cluster 1 Cluster 2

Cluster center -121.1 [dBm/ Hz] -89.9 [dBm/ Hz]

Table 3.1: Cluster centers

By clustering the interference units according to those two clusters, the noise is clearly separated from

the signal, as seen in figure 3.5.
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Figure 3.5: Spectrogram segmented into clusters.

A similar test is performed on the signal sampled in downtown Aarhus. In figure 3.6 the spectrogram

for the first 100ms in the frequency range 868MHz to 868.04MHz is seen.

Figure 3.6: Aarhus data set spectrogram 100ms.

The distribution of the spectrogram is found in figure 3.7. Here one distinct cluster is seen at

≈ −130[dBm/Hz] and one or two is seen at ≈ −90[dBm/Hz]. For this test the number of clusters is

set to K = 3 to see if the clustering algorithm is able to separate the noise from the different levels of

received signal.
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Figure 3.7: Aarhus data set spectrogram segmented into clusters.

The resulting clusters are seen in table 3.2 and, as expected, a cluster is found at ≈ −130[dBm/Hz]

representing the noise and two clusters are found at ≈ −105.3[dBm/Hz] and ≈ −83.2[dBm/Hz] which

represents the two other less distinct peaks.

Cluster Cluster 1 Cluster 2 Cluster 3

Cluster center -130.5 [dBm/ Hz] -105.3 [dBm/ Hz] -83.2 [dBm/ Hz]

Table 3.2: Cluster centers K-Means

In figure 3.8 the segmented interference units are seen. Inspecting figure 3.6 reveals that the two first

transmissions has a higher power than the last which is also seen in the segmentation.

Figure 3.8: Aarhus data set spectrogram segmented into clusters.
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Inspecting figure 3.7, it can be argued that the three clusters in figure 3.7 would be better described

by Gaussian’s than by simple means, hence a test with mixed Gaussian models i conducted.

3.2.2 Gaussian Clustering

Using a linear superposition of Gaussian’s to represent the distribution may yield a better result than

using K-Means. This method is called Gaussian Mixture models(GMM). The algorithm used to fit

the Gaussian’s to the data will be presented and a number of small tests are performed to verify that

GMM is a valid clustering method for this problem.

GMM clustering algorithm

As with K-Means, a group of samples x = {x1,x2..,xN} with N observation in M dimensions is given.

The distribution of the data set is modelled as seen in eq. (3.9)[17].

p(x) =
K∑
k=1

πkN (x|µk,Σk) (3.9)

A K-dimensional binary random variable Z where the k’th element zk is one and all other is 0 is used

to model the scaling factor πk. The vector has K possible states, and the probability that it takes the

value p(zk = 1) is the prior probability assigned to each Gaussian, such that p(zk = 1) = πk.

Each Gaussian is a conditional probability, conditioned on zk, hence the probability that each member

of x belongs to cluster k is seen in eq (3.10).

p(x|zk = 1) = N (x|µk,Σk) (3.10)

Multiplying p(z) by the conditional probability yields the joint probability p(x, z). Summing over all

possible values of z gives marginal probability p(x) as seen in eq. (3.11)

p(x) =
∑
z

p(z) · p(x, z) =
K∑
k=1

πkN (x|µk,Σk) (3.11)

To find the best representation of the given data x with a predefined number of clusters k, the log

likelihood seen in eq. (3.12) has to be maximized.

ln p(x|π, µ,Σ) =

K∑
k=1

ln

(
πkN (x|µk,Σk

)
(3.12)

Maximizing the log likelihood function utilizes the Expectation-Maximization algorithm(EM). This

algortihm is outlined in the following steps.
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1. Initialize random means µk, covariances Σk and scaling coeffecients πk.

2. Given the parameters π µ Σ, compute the log likelihood ln p(x|π, µ,Σ).

3. Assign each sample to the cluster which are the most likely to have generated it. If sample n is

assigned to cluster k, the binary indicator variable rnk will take on the value 1 otherwise it will

be 0.

4. For every sample assigned to a cluster compute new values for µk, Σk and πk using eq. (3.13),

(3.14) and (3.15) respectively.

5. If the parameters µk, Σk and πk change less than some constant ε terminate, otherwise go to

step 2.

µk =
1

N

N∑
n=1

rnkxn (3.13)

Σk =
1

N

N∑
n=1

rnk(xn − µk)2 (3.14)

πk =
1

N

N∑
n=1

rnk (3.15)

GMM clustering algorithm test

The GMM clustering algortihm is tested on the spectrogram generating the distribution seen in figure

3.7 and produces the clusters seen in table 3.3 which have means nearly identical to the clusters

produced by the K-Means algorithm. Hence, the segmentation of the spectrogram will be almost

identical to the one seen in figure 3.8. In this example the added complexity of using the GMM

algorithm is not justified.

Cluster Cluster 1 Cluster 2 Cluster 3

Cluster center -130.6 [dBm/Hz] -105.5 [dBm/Hz] -83.4 [dBm/Hz]

Cluster variance 165.66 [dBm2/Hz2] 166.62 [dBm2/Hz2] 165.39 [dBm2/Hz2]

Table 3.3: Cluster centers GMM

Using a larger part of the spectrogram obtained from the Aarhus data set as seen in figure 3.9 another

test is conducted to display the benefits of using GMM instad of K-Means.
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Figure 3.9: Aarhus data set 0.5s spectrogram.

The distribution of received power from figure 3.9 is seen in figure 3.10. Here the peaks are less

distinct.

Figure 3.10: Aarhus data set 0.5s spectrogram segmented into clusters.

Both GMM and K-Means is tested here to see if GMM has any advantage, the number of clusters is

still k = 3. The cluster parameters for both K-Means and GMM is seen in table 3.4.

26



3. Identifying interference transmissions Aalborg University

Cluster Cluster 1 Cluster 2 Cluster 3

Cluster center K-Means -132.2 [dBm/Hz] -119.2 [dBm/Hz] -94.5 [dBm/Hz]

Cluster center GMM -130.4 [dBm/Hz] -112.8 [dBm/Hz] -93.1 [dBm/Hz]

Cluster variance GMM 184.66 [dBm2/Hz2] 182.65 [dBm2/Hz2] 184.90 [dBm2/Hz2]

Table 3.4: Cluster centers K-Means and GMM

For K-Means, the segmentation of the spectrogram is seen in figure 3.11.

Figure 3.11: Aarhus data set 0.5s spectrogram segmented into clusters by K-Means.

The GMM segmentation is seen in figure 3.12.

Figure 3.12: Aarhus data set 0.5s spectrogram segmented into clusters by GMM.

27



3. Identifying interference transmissions Group SPC-1075

By inspecting figure 3.11 and figure 3.12 it becomes clear that the GMM method yields a segmentation

with less variation. K-Means has difficulty separating background noise from the different signal levels

which GMM seems to handle better.

The two segmentation methods will be tested on a data set with known distribution in section 3.5 to

see which is better for segmenting power levels.

3.3 Silhouette score

So far, the number of clusters is found by inspecting the distribution and guessing how many clusters

the distribution is composed of. However, the process of choosing an appropriate number of clusters

can be automated by using a measurement of how well the clusters matches the samples in a data set.

A common method is to test several values of k, compute a metric of fit and then choose the value k

that yields the best fit.

One metric for evaluating how well a clustering algorithm fits a data set is the ”silhouette score”[18].

It assigns a score in the range [−1, 1] of how well a sample matches its own cluster compared to other

clusters. Negative or low values indicates the data set is not well represented by the k clusters and

that the number of clusters may be too high or too low.

In eq. (3.16) the mean distance a between a sample i ∈ Ck and all the other samples assigned to

cluster k is calculated. Nk is the number of samples in cluster Ck. A low value indicates that the

sample well assigned to the cluster.

ai =
1

Nk − 1

∑
j∈Ck,i 6=j

||xi − xj ||2 (3.16)

The dissimilarity of a sample to some cluster is defined as seen in eq. (3.17). It is defined as the

mean of the distance to all samples in the neighbouring cluster k which i is not a member of. A high

value indicates that the sample is far away from the neighbouring cluster, hence its assignment to its

current cluster is appropriate.

bi = min
k 6=i

1

Nk

∑
j∈Ck

||xi − xj ||2 (3.17)

The silhouette score is defined as eq. (3.18).

si =
bi − ai

max{ai, bi}
(3.18)

A more transparent way of expressing eq. (3.18) is seen in (3.19). When ai < bi the mean distance of

the sample i to each other sample in the cluster is low, and the distance to the nearest neighbouring
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cluster is high and the score goes to 1. Conversely, when ai > bi the score goes to −1.

si =


1− a1/bi, ai < bi

0 a1 = bi,

a1/bi − 1, ai > bi

(3.19)

The silhouette score can be used to determine the optimal value of cluster by using the algorithm

below.

1. Chose a range of k = 1,..,K to evaluate.

2. Use a clustering algorithm to fit k clusters to the data.

3. Evaluate the silhouette score si for each value of k.

4. Use k = argmin
k

si to represent the data.

To show that the silhouette scores can be used to find an optimum value k when fitting clusters to

the received power distribution obtained from the spectrogram seen in figure 3.9, the silhouette scores

are evaluated for the range k = [2,7]. In this case the GMM algorithm is used but it might as well

have been K-Means or some other clustering algorithm. In figure 3.13 a plot of the silhouette scores

is seen. An optimum is found at k = 3 where the score is si ≈ 0.58. This is the same number used in

the segmentation seen in figure 3.12, which shows that k = 3 is a sensible choice for segmenting the

power levels.

Figure 3.13: Silhouette scores for the Aarhus data set 0.5s

In the following sections and chapters, the number of clusters k will be determined by the algorithm

outlined above to ensure optimal number of custers are used given a certain clustering algorithm.

29



3. Identifying interference transmissions Group SPC-1075

3.4 Detection of transmissions

In section 3.2, a method to segment the power levels in a spectrogram is presented. The transmissions

still needs to be identified and their center frequency, bandwidth and transmission time need to be

estimated. From a spectrogram segmented into different power levels, this is a two step process. First,

the segmented power levels are smoothed, and second an algorithm is used to find the parameters of

each separate transmission in a power level cluster.

3.4.1 K-Nearest neighbours post-processing of clustering

The segmentation of power levels in figure 3.15 and 3.17 contains a lot of noise, which can cause

problems when estimating the parameters of an interference transmission. To eliminate some of

that noise, a k-NN post-processing algorithm is used. Other methods for smoothing the results

exists, however the k-NN algorithm is chosen due to low computational complexity and ease of

implementation.

Typically the k-NN algorithm is used for regression or classification[17] as shown in the following

example. Consider the example in figure 3.14. Here, a sample is the center of a volume containing k = 5

classified samples. In this volume, the probability for a sample belonging to class i is p(Ci|x) = Ni
N

where Ni is the number of samples belonging to class i in the volume and N is the total number of

samples in the volume. Hence, the probability of mis-classification is minimized by assigning sample

xn to the same class as the k nearest neighbours, which are the samples contained by the volume.

�1
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�2

�1

�1

�?

k = 5
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Figure 3.14: K-Nearest neighbour algorithm example.

For each interference unit in figure 3.15 and 3.17 it is assumed that no information is available about

which cluster it belongs to. The probability that an interference unit belongs to one of the clusters

is evaluated with k = 24. The interference unit is then classified as class Ci based on the posterior

probability p(Ci|x) = Ni
N . As seen in the spectrogram in figure 3.9, the interference power levels

groups into interference transmissions which indicates that an interference unit is likely to belong to

the same group as it’s neighbours.

In figure 3.16 and figure 3.18 the output of the k-NN classification is seen. Comparing to the

spectrogram in figure 3.9, a more coherent segmentation is obtained where neighbouring interference

units belongs to the same class.
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Figure 3.15: K-Means segmentation Figure 3.16: K-Means segmentation smoothed

Figure 3.17: GMM segmentation Figure 3.18: GMM segmentation smoothed
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3.4.2 Estimation of transmission parameters

To estimate the transmission parameters of each interference transmission, one or more of the power

levels can be used. In figure 3.19, the cluster with the largest power of figure 3.12 is plotted. To

illustrate how the transmission parameters is extracted, only the maximum power cluster is used.

Figure 3.19 consists of several groups of neighbouring interference units which are neighbours belonging

to the same cluster. Each of these groups should be located and their transmission time(height),

bandwidth(width) and center frequency(center coordinate) estimated.

Figure 3.19: Maximum power cluster.

An algorithm to find the borders of each grouping in the cluster is used to estimate the parameters.

The algorithm is outlined below.

1. Initialize maximum xmax = 0, ymax = 0, xmin =∞ and ymin =∞
2. Find first non-zero entry in cluster.

3. Save x-y coordinates as start coordinates.

4. Initialize direction vector as [x = 0, y = 1].

5. Go to neighbour interference units, test possible neighbours in ascending order. Use first valid

option.

a) Rotate direction by 90° and take one step ahead.
b) Take one step ahead.
c) Rotate direction by −90° and take one step ahead.
d) Rotate direction by 180° and take one step ahead.

6. Update xmax, ymax, xmin and ymin
7. If start position is reached, terminate. Otherwise go to next non-zero entry in cluster not part

of [xmin, xmax] and [ymin, ymax].

This algorithm aims to find and follow the border of the transmission in a counter-clockwise manner.

The coordinate xmax, ymax, xmin and ymin is used to find the transmission time(eq. (3.20)),

bandwidth(eq. (3.21)) and center frequency(eq. (3.22)).
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T = (ymax − ymin) ·∆t (3.20)

BW = (xmax − xmin) ·∆f (3.21)

fc = BW/2 + xmin ·∆f (3.22)

To illustrate how the algorithm finds the borders of a transmission, consider figure 3.20. Here the

transmission area is updated every time a new maximum or minimum coordinate is found.

Transmission area

1 2 3 4

Figure 3.20: Transmission bounds algorithm.

The algorithm outlined above is run on the interference units in figure 3.19 and the result is seen

in figure 3.21. It is seen how the transmission centered at fc ≈ 868.2MHz if found as well as

the six transmissions centered at fc ≈ 868.32MHz. The transmissions at fc ≈ 868.32MHz contain

harmonics which are classified as signals on their own, although not as consistent as the main part

of the transmission. Smaller areas at fc ≈ 868.26MHz are labelled as transmissions, however a lower

bound on the bandwidth-time product can be considered to prevent classification of signals with

low bandwidth and transmission time. It is seen that for non-overlapping transmission this methods

succeeds in finding the interference transmission borders.
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Figure 3.21: Transmission borders(Red dotted line).
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3.5 Evaluation of clustering in the transmission extraction

algorithm

In this section, the ability of the algorithm to find the transmissions in a spectrogram is evaluated

for K-Means and GMM clustering. Based on the findings here, either K-Means or GMM is chosen

as the main clustering method for the received power levels. Two different transmissions types are

evaluated which can be found in table 3.5. The first type is a random example with a relatively narrow

bandwidth and a long transmission time, whereas the second type has a transmission time close to the

spectrogram resolution and a relatively wide bandwidth. The purpose of using these signals is to see

how the algorithm handles transmissions loading the spectrum differently, i.e. in time or in frequency.

Transmission type BW [kHz] T [ms]

1 10 200

2 50 2

Table 3.5: Transmission types

In each test, a test signal is constructed by addition of several individual transmission spaced evenly

apart. The signals is offset by a random number of samples, and with different duty cycle, such that

the transmissions will drift in time relative to each other. Additive Gaussian noise with a power level

of −130dBm/Hz is added to each separate signal. The sample rate of the signal is fs = 10MHz.

The purpose of the test is to quantify how many transmissions are found at different power levels.

The transmission parameters fc, BW and T are not subject to the test.

3.5.1 Transmission type 1

For the first types of transmissions, a 500s test signal composed of 4 different transmissions is

constructed; the transmission parameters can be found in table 3.6. For each test signal a spectrogram

is computed, which is segmented into power levels and transmissions are located.

# fc [MHz] Offset from fc [kHz] Power level [dBm] BW [kHz] T [ms]

1 868.3 -150 -60 10 200

2 868.3 -50 -75 10 200

3 868.3 50 -90 10 200

4 868.3 150 -105 10 200

Table 3.6: Transmission type 1 parameters.

A spectrogram of the signal is computed with the parameters seen in table 3.7. The spectrogram can

be found in figure 3.22.

∆ T [ms] ∆ f [kHz] Spectrogram overlap [%] Decimation factor

2 100 50 5

Table 3.7: Spectrogram parameters
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Figure 3.22: Transmission type 1 signal spectrogram.

To evaluate how both K-Means segmentation and GMM segmentation performs, both methods will

be tested on the signal as described from section 3.1 to 3.4.

Figure 3.23 shows the transmissions located by using K-Means to segment the power levels.

Figure 3.23: Transmission type 1 - Interference transmission found K-Means.

Figure 3.24 shows the transmission located by using GMM to segment the power levels.
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Figure 3.24: Transmission type 1 - Interference transmission found GMM.

To evaluate the two segmentation types, the percentage of transmissions found for each type is

calculated and the result is seen in table 3.11. The results show that segmentation using GMM

is better for locating low power interference transmissions than K-Means segmentation.

Transmission # 1 2 3 4

Percentage found K-Means [%] 100 59.2 19.2 0

Percentage found GMM [%] 100 100 34.2 0

Table 3.8: Segmentation result K-Means

3.5.2 Transmission type 2

For the second types of transmission, a test signal with duration 20s composed of 4 different

transmissions is constructed, the transmission parameters can be found in table 3.9. For each test

signal, a spectrogram is computed, which is segmented into power levels and transmissions are located.

# fc [MHz] Offset from fc [kHz] Power level [dBm] BW [kHz] T [ms]

1 868.3 -200 -60 50 2

2 868.3 -50 -75 50 2

3 868.3 80 -90 50 2

4 868.3 200 -105 50 2

Table 3.9: Transmission type 2 parameters.

The signal spectrogram is computed and seen in 3.22. The transmission paramerers of the signal is

computed with the parameters seen in table 3.10.
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∆ T [ms] ∆ f [kHz] Spectrogram overlap [%] Decimation factor

2 100 50 5

Table 3.10: Spectrogram parameters

Figure 3.25: Transmission type 2 signal spectrogram.

To evaluate how both K-Means segmentation and GMM segmentation performs, both methods will

be tested on the signal as described from section 3.1 to 3.4.

Figure 3.26 shows the signal located by using K-Means to segment the power levels
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Figure 3.26: Transmission type 2 - Interference transmission found K-Means.

Figure 3.27 shows the signal located by using GMM to segment the power levels.

Figure 3.27: Transmission type 2 - Interference transmission found GMM.

Transmission # 1 2 3 4

Percentage found K-Means [%] 41.6 0 0 0

Percentage found GMM [%] 23.6 0 0 0

Table 3.11: Segmentation result K-Means
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For this test, segmentation using GMM performs worse in terms of finding transmissions. However

both GMM and K-Means finds fewer than half of the −60dB transmission and none of the others.

More stray transmissions are located as seen in figure 3.27, these are not included in the results.

A low percentage of transmissions is located compared to the 10kHz signals, which is likely to be a

consequence of the interference transmission times to be close to the spectrogram time resolution, such

that a transmission will only be represented by a few pixels on the time axis. To accommodate short

transmissions, it may be necessary to change the time resolution, either by decreasing the frequency

resolution or using a lower decimation rate. As a consequence, only transmissions significantly longer

than or equal to the time resolution(T ≥ 5 ·∆t) will be considered in this thesis, in order to maintain

the same time and frequency resolution for the spectrograms.

When the transmission length is well above the spectrogram time resolution, the GMM method finds

a higher fraction of the transmissions located in the spectrogram, therefore it is used in the final

algorithm.
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transmissions 4

In section 3.4.2, an algorithm for extracting transmission parameters is presented. Each transmission

will have an estimated center frequency, transmission time and transmission bandwidth. To determine

which interference transmissions are the most common, clusters in the estimated transmission

parameters are found. Based on the cluster centers, a set of characteristic interference transmissions

for the spectrum is extracted for modelling of interference in the spectrum. Each cluster should ideally

represent an independent transmission source.

Since the number of independent sources may not be known, the number of clusters have to be

determined. As seen in section 3.4.2, the estimated transmission parameters may be noisy and the

algorithm may identify random noise or harmonics as independent transmission. This implies that

some of the data points for clustering may be outliers and the clustering algorithm should be able to

handle these while determining the number of clusters. In this chapter, two algorithms are presented

and tested; Gaussian Mixture Models as seen in section 3.2 and the ”Density-based algorithm for

discovering clusters in large spatial databases with noise”(DBSCAN) [19] algorithm.

4.1 GMM Clustering

In section 3.2, the GMM clustering algorithm is presented, as well as a method for finding the

appropriate number of clusters. This method is used to cluster the received transmissions. This

includes using silhouette scores to determine the number of clusters.

4.2 DBSCAN Clustering

The DBSCAN algorithm is capable of finding clusters with different densities, sizes and shapes in

large data sets while handling outliers. The algorithm does this by separating areas with high density

from areas with low density. To quantify area density, the algorithm relies on two parameters ε and

V . For each data point p, a sphere with radius ε and center p will contain a number of data points.

The number of data points determines if the point p is a ”core point”, a ”border point” or noise.

Each data point has a set of neighbouring points. All the points within the distance ε from the center

point is said to be neighbours of point p and the set of neighbours is defined as seen in eq. 4.1.

N(p) = {q ∈ D | ||q − p||2 ≤ ε} (4.1)

• Core point: A core point is a point with at least V individual data points within distance ε,

|N(p)| ≥ V .
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• Border point: A point p which lies in the neighbourhood of a core point and has less than V

individual data points in its neighbourhood, |N(p)| < V .

• Noise: A point which is not a core or a border point.

In figure 4.1 the three types of points are illustrated, here V = 3. Point A is a core point, point B is

a border point and point C is noise.

�

�

A

B

�

C

Figure 4.1: DBSCAN Points classification.

Three important definitions in DBSCAN rely on the definitions of points shown above. Directly

density reachable, density reachable and density connected.

A

B

D

C

Figure 4.2: DBSCAN Connection classification.

• Directly density reachable: If point B is a core point and point A is in the neighbourhood of B,

then A is directly density reachable from B.

• Point A is density reachable from point B if a chain of points b1, ..bn with b1 = B and bn = A,

where the bi + 1 is directly density reachable from bi for all i, connects the point A and B.

• Density connected: Point A and B are density connected of they belong to the same cluster, but

do not share a common core point.

In figure 4.2, the point B is directly density connected to point A, point D is density reachable from

point B and point A and D is density connected.

The algorithm executes as follows:

1. The neighbourhood set for an arbitrary point p which is not yet visited is found.
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2. If |N(p)| ≥ V for point p the data point is classified as belonging to cluster k, otherwise the data

point is classified as noise. This point can later be found to be density reachable from another

point and made part of the corresponding cluster.

3. If the point p is a core point, all the points density reachable from point p is also part of cluster

k. This may cause clusters to be merged.

4. If all points are visited, terminate. Otherwise, go to step 1.

The downside of using DBSCAN is that finding a meaningful ε parameter requires domain knowledge,

hence it may be difficult to find. However, for this application the input features will be normalized to

the range [0,1] and the ε parameter can be computed by deciding a percentage threshold for how much

the parameters are allowed to deviate with respect to the maximum center frequency, transmission

time or transmission bandwidth.

4.3 Interference clustering test

To show that the clustering methods GMM and DBSCAN can cluster transmissions and extract

information about the dominating interferers in the spectrum, a test of both algorithms is performed.

For testing the clustering algorithms, two different test signals has been constructed. The first test

signal consists of four individual transmissions and the parameters for the individual transmissions

can be seen in table 4.1. Here all the transmission has the same power level, and the purpose of using

this signal, is to show that the algorithm is capable of determining the number of interferers, as well

as the correct center frequency, transmission time and transmission bandwidth.

# fc [MHz] Offset from fc [kHz] Power level [dBm] BW [kHz] T [ms]

1 868.3 -200 -60 5 40

2 868.3 -75 -60 10 20

3 868.3 75 -60 15 13.33

4 868.3 200 -60 20 10

Table 4.1: Transmission type 1 parameters.
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In figure 4.3 a spectrogram of the first 2 seconds of the test signal is seen.

Figure 4.3: Clustering test signal 1 spectrogram.

The second test signal consists of six individual signals. The purpose here is to verify that for different

power levels, the algorithm is still capable of determining the correct transmission parameters. Hence,

three different power levels are used as seen in table 4.2.

# fc [MHz] Offset from fc [kHz] Power level [dBm] BW [kHz] T [ms]

1 868.3 -250 -60 10 20

2 868.3 -150 -60 20 10

3 868.3 -50 -75 10 20

4 868.3 50 -75 20 10

5 868.3 150 -90 10 20

6 868.3 200 -90 20 10

Table 4.2: Transmission type 2 parameters.
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In figure 4.3 a spectrogram of the first 2 seconds of the test signal is seen.

Figure 4.4: Clustering test signal 2 spectrogram.

In section 3.2, the GMM segmentation of the received power proved to be the more effective than

K-Means, when the transmission time was several times longer than the time resolution of the

spectrogram. Since both these test signals has a transmission time T ≥ 5 ·∆t, GMM segmentation is

used in this test.

The results in section 3.5 show that the estimated bandwidth of the signals varies much more than

the transmission time and the center frequency. For simplicity, the bandwidth will not be used as a

parameter for clustering the transmission parameters in this test. In the rest of the thesis, this is not

the case. The cluster centers will be marked by an opaque sphere with the same colour as the samples

in the cluster.
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4.3.1 GMM Clustering test

Silhouette tests are performed for 2 to 20 clusters, and the number of clusters with the largest score

is used to cluster the transmission parameters.

GMM clustering - Results signal 1

In table 4.3, results for GMM clustering of the transmission parameters obtained from test signal 1 is

seen. Four clusters are found as expected, since four individual signals is used to generate test signal

1. The average error in percentage is 0.0042% for frequency offset, 135.41% for the bandwidth and

32.88% for transmission time.

Cluster # Offset from fc [MHz] T [ms] BW [kHz] Percentage of samples [%]

1 199.93 15.42 44.53 41.27

2 −200.05 45.04 12.55 10.07

3 −75.03 24.97 23.82 19.38

4 74.97 18.65 34.48 29.28

Table 4.3: GMM Cluster centers for test signal 1.

In figure 4.5 the result of the clustering is seen.

Figure 4.5: GMM Clustering of transmission parameters for test signal 1.

GMM clustering - Results signal 2

In table 4.4 the results for GMM clustering of test signal 2 is seen. Six clusters are found as expected,

since six individual signals is used to generate test signal 2. The average error in percentage is 0.167%

for frequency offset, 84.93% for the bandwidth and 38.82% for transmission time.
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Cluster # Offset from fc [MHz] T [ms] BW [kHz] Percentage of samples [%]

1 −250.05 25.47 23.41 15.31

2 49.97 14.94 26.33 29.35

3 −152.30 15.44 43.37 36.24

4 −50.05 25.01 16.39 17.05

5 243.51 15.10 33.51 1.41

6 150.00 25.14 19.55 0.64

Table 4.4: GMM Cluster centers for test signal 2.

In figure 4.6 the result of the clustering is seen.

Figure 4.6: GMM Clustering of transmission parameters for test signal 2.
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4.3.2 DBSCAN Clustering test

DBSCAN needs two parameters, the minimum number of samples in a cluster, V , and the core

distance, ε, as described in section 4.2. It is difficult to argue for a specific value of V , but the value

V = 10 yields good results for this specific signal and application. It may be necessary to change the

parameter to better match other scenarios. For the parameter ε, it is decided that samples with center

frequencies within 6kHz belongs to the same cluster, which gives ε = 0.01 with a total bandwidth of

600kHz.

DBSCAN clustering - Results signal 1

In table 4.5 the results for DBSCAN clustering of test signal 2 is seen. Five clusters are found which

is one more than expected. However, cluster 5 contains less than 1% of all samples, with parameters

similar to cluster 1. The average error in percentage is 0.0042% for frequency offset, 135.41% for the

bandwidth and 34.39% for transmission time.

Cluster # Offset from fc [MHz] T [ms] BW [kHz] Percentage of samples [%]

1 −75.03 25.51 23.80 18.34

2 199.93 15.53 44.55 40.57

3 74.97 18.80 34.50 28.75

4 −200.05 45.47 12.55 9.72

5 −75.03 15.65 23.62 0.99

Table 4.5: DBSCAN Cluster centers for test signal 2.

In figure 4.7 the result of the clustering is seen. The DBSCAN algorithm classifies noise separately,

which is seen as the blue samples.

Figure 4.7: DBSCAN Clustering of transmission parameters for test signal 1.
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DBSCAN clustering - Test signal 2

In table 4.6 the results for DBCAN clustering of test signal 2 is seen. Seven clusters are found where six

is expected, since six individual signals is used to generate test signal 2. However, cluster 7 seems to be

a duplicate of cluster 4 which are merged to compute the average error percentage. The average error

in percentage is 0.012% for frequency offset, 85.43% for the bandwidth and 39.16% for transmission

time.

Cluster # Offset from fc [MHz] T [ms] BW [kHz] Percentage of samples [%]

1 249.96 15.25 34.56 1.28

2 −150.04 15.49 43.85 34.96

3 49.97 14.94 26.33 29.35

4 −250.05 25.53 23.38 15.13

5 −50.05 25.01 16.39 17.05

6 150.00 25.14 19.55 0.64

7 −250.03 16.83 22.95 0.82

Table 4.6: DBSCAN Cluster centers for test signal 2.

In figure 4.8 the result of the clustering is seen. The DBSCAN algorithm classifies noise separately,

which is seen as the blue samples.

Figure 4.8: DBSCAN Clustering of transmission parameters for test signal 2.
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4.3.3 Clustering results - GMM vs. DBSCAN

Both GMM and DBSCAN finds good estimates for the center frequency, a decent estimate of the

transmission time and overestimates the transmission bandwidth with more than a factor of two

for test signal 1 and almost a factor of two for test signal 2. The cluster centers found by the two

algorithms are more or less identical however the DBSCAN algorithm tends to overestimate the number

of individual transmitters. For both test signals, the DBSCAN algorithm finds one more cluster than

there are actual transmitters.

In section 3.5, it is found that the interference transmissions with low transmission power is harder

to detect in presence of interference transmission with higher power. In test signal 2, the low power

interference transmissions are found much less frequently than other transmissions as seen in table 4.6,

and 4.4. One approach to mitigate this problem, would be to separate the spectrogram into several

frequency bands and segment the frequency bands separately.

However, using a more complex signal, as described in section 5.1, where the data points are not that

well separated, the silhouette score cannot determine the correct number of data points. In figure

4.9, it is seen how clusters are formed by the DBSCAN algorithm, relative to figure 4.10, where the

GMM algorithm is used. In figure 4.10, clusters are formed across large ranges of bandwidth, center

frequency and transmission time indicating that the number of clusters is too low. To mitigate this,

other methods than the silhouette score could be used to find the optimal number of clusters if the

GMM method is preferred.

Figure 4.9: DBSCAN Clustering of transmission parameters for test signal.
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Figure 4.10: GMM Clustering of transmission parameters for test signal.
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Algorithm test 5
In this chapter the algorithm developed in chapter 3 and 4 to estimate the parameters in the ALOHA

interference model is evaluated. In the model, both transmission rate and average interference

transmission length in a frequency range is needed. The error of those two estimates depends on

the algorithms ability to find a large fraction of the transmissions in a spectrum as well as estimating

the transmission parameters; center frequency, transmission time and bandwidth. A labelled dataset is

simulated with known interference sources to test the fraction of transmissions found and the estimate

error at different spectrum congestion scenarios. Furthermore, a real-world unlabelled dataset provided

by Kamstrup is analyzed. For the real-world dataset the interference sources are not known, however

the clusters found are compared with the most common interferers in the signal spectrogram as a sanity

check of the algorithm. The amount of interference found in the signal by the algorithm is compared

to the actual amount where a high fraction will indicate good estimates for the transmission rate and

average transmission length.

5.1 Test signal generation

To generate realistic test signals, the histogram of received power levels from the Aarhus dataset is

considered, see figure 5.1. In a real-life interference scenario, transmitters far away from the receiver

will cause low power interference transmission to be seen at the receiver and transmitters closer to the

receiver will contribute with high power transmission at the receiver. The tail seen in the distribution

in figure 5.1 is the combination of these transmissions. The large amount of values at ≈ −130dBm/Hz

is complex Gaussian noise as discussed in section 3.1.

Figure 5.1: Aarhus data set 0.5s spectrogram.
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To approximate the low power interferers, a range of interference signals is constructed where the

power levels are drawn from the distribution of power levels in the Aarhus dataset.

By normalizing the histogram, it is possible to compute a probability distribution from where power

levels can be drawn. The transmission parameters fc, T and BW are choosen with uniform distribution

from the ranges seen below.

• Center frequency, fc: 868MHz to 868.6MHz

• Transmission time, T : 0.034s to 340s

• Transmission bandwidth, BW : 2kHz to 50kHz

To keep the computational complexity at a reasonable level, the transmission time and transmission

bandwidth is kept in these ranges. If a large range of parameters are chosen, the resolution required

to detect transmissions in each end of the ranges will become too computationally expensive.

Each interference signal will transmit at a a predefined duty cycle. Furthermore, white Gaussian noise

is added with power level −130dBm/Hz(Approximate mode of the noise distribution) to simulate

thermal noise.

An interference signal with 40 low power sources generated as described above is constructed, in figure

5.2 the spectrogram of the signal is seen.

Figure 5.2: Interference noise spectrogram example.

Since all signals drawn from the power levels distribution are likely to be low power, a number of high

power signals are added to the interference signal. These interference sources models the transmitters

placed closer to the transceiver.
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Transmission # T [ms] BW [kHz] Power level range [dBm] Modulation type

1 340 5 [ -90, -75, -60] 2GFSK

2 170 10 [ -90, -75, -60] 2GFSK

3 68 25 [ -90, -75, -60] 2GFSK

4 34 50 [ -90, -75, -60] 2GFSK

Table 5.1: Interference transmission types

In figure 5.3, an example of 40 low power interference sources combined with three of each transmission

type shown in table 5.1 is seen. Here the four transmission types are transmitted with power levels

−60dBm/Hz, −75dBm/Hz and −90dBm/Hz.

Figure 5.3: Interference noise spectrogram example.

Two types of test signals are constructed which are used to verify that the algorithm is capable of

reliable extraction and clustering of transmission parameters. The test signals has a length of 15

minutes.

Parameter estimatation test signal

To simulate a real spectrum with interference, 3 separate signals are constructed. Each with 40 low

power noise sources and 12 interference sources, 3 of every transmission type seen in 5.1 with separate

power levels. The transmissions are assigned a random center frequency, uniformly chosen in the range

868MHz − 868.6MHz. The time between the transmissions are randomly drawn, such that the total

transmission time matches a given duty cycle over the total signal length.

Each separate signal transmits with a duty cycle to simulate different levels of congestion in the

spectrum. Both the low power and the high power sources has the same duty cycle of 2%, 4% or 6%.

Since the allowed duty cycle for many unlicensed spectrum bands is in the range 0.1− 1% [20], these

levels of congestion should ideally simulate worst case conditions.
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Transmission extraction test signal

For the second type of test signals, only one signal is constructed with 12 interference sources, 3 of

every transmission type seen in 5.1 with separate power levels. The center frequencies are chosen such

that the interference transmissions are spread out evenly in the 868MHz− 868.6MHz spectrum with

a minimum of overlap. Time between transmissions and duty cycle are identical to the previous test

signal. Again, the signal is constructed at three different congestion levels, 2%, 4% and 6%.

5.2 Algorithm parameters

From the algorithm development in chapter 3 and 4, a set of parameters for the algorithm is found.

This set is used on the test signals to test the performance of the algorithm without any changes. The

test signals in the development tests are generated differently from the test signals used in this chapter.

They have different transmission time and bandwidth ranges, fixed time between transmissions and

only complex Gaussian noise with no low power interference sources. The algorithm is tested on both

real and simulated test signals, which are generated differently from the development test signals used

to find the algorithm parameters. This is important, since tuning the algorithm parameters on the

test data will cause bad generalization to other datasets and may yield parameters which only work

for that specific dataset. Furthermore, by finding the parameters from a dataset generated differently

from the tests sets, it is expected that the results will be comparable to any results found by analysing

previously unseen data. The algorithm parameters can be found in table 5.2.

For these tests, DBSCAN will be used, since the test in section 4.3 showed that the silhouette tests for

the GMM method has trouble finding a suitable number of clusters in data where the clusters are less

distinct. An upper bound for the bandwidth and transmission time is used in parameter extraction.

The clustering algorithm normalizes the data before clustering, and outliers with large values will

cause the remaining data points to be close in value. This causes large variation in the performance

of the DBSCAN algorithm since the ε parameter depends on reliable scaling. By introducing these

upper bound, as well as using them as max when normalizing the parameters, the effect of epsilon

can be calculated for all three parameters. With ε = 0.01, the parameters for the clustering will be

∆BW = 1kHz, ∆T = 5ms1 and ∆fc = 1kHz.

Spectrogram

∆t ∆f Overlap
2 ms 100 Hz 50%

Power level segmentation

Clustering method Clustering interval Max clusters
GMM 500 ms 10

Parameter extraction

Max bandwidth Max transmission time kNN Smooting
100 kHz 500 ms K = 9

Transmission parameters clustering

Method ε Min samples/cluster
DBSCAN 0.01 10

Table 5.2: Algortihm parameters

1Five interference units on a spectrogram with ∆t = 2ms and 50% overlap
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5.3 Algorithm test - Transmission extraction test

In section 2.4 the ALOHA model for interference is introduced. The model parameters are the average

interference transmission rate r and the transmission time length TP . The parameter TP is the length

of the desired transmission added to the average length of the interference transmissions in a frequency

range. If a large fraction of the transmissions in a spectrum is detected, the estimated transmission

rate will be close to the true value. The average length of the interference transmissions also depends

on the fraction of transmissions which are detected. As an example, if two transmissions are present

in a spectrum and only a large fraction of the first type is detected, the average transmission time will

be biased heavily towards this transmissions average length.

Hence, a prerequisite for obtaining good estimates of the model parameters is to detect a large fraction

of the transmissions in a spectrum. It is hard to quantify the error in average transmission length,

since this depends heavily on the frequency range used for a desired transmission and the individual

interference sources in the spectrum. On the other hand, the error when estimating the transmission

rate is easier to quantify, since a success rate of 90% in detecting transmissions will result in the

estimated transmission rate to be 90% of the true value2.

Since the fraction of detected transmissions is critical to model the interference, a test to detect the

the number of false negatives(Missed transmissions) is conducted for the test signals specified in table

5.1. The transmission extraction test signal described in section 5.1 is used.

Transmission extraction - 2% duty cycle

In figure 5.4 a spectrogram of the transmission extraction test signal with 2% duty cycle is seen.

Figure 5.4: Interference first 5 for 2% duty cycle.

2Since transmission rate has units Transmissions/second
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Transmission extraction - 2% duty cycle results

Table 5.3 shows the percentage of transmission found for each interference source in the test signal.

Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm] % found

1 868.020 340 5.000 -60 87.50

2 868.040 340 5.000 -75 74.07

3 868.060 340 5.000 -90 19.23

4 868.100 170 10.000 -60 96.30

5 868.140 170 10.000 -75 67.74

6 868.180 170 10.000 -90 29.41

7 868.240 68 25.000 -60 97.92

8 868.300 68 25.000 -75 61.54

9 868.360 68 25.000 -90 10.42

10 868.420 34 50.000 -60 87.93

11 868.480 34 50.000 -75 26.92

12 868.540 34 50.000 -90 2.17

Table 5.3: Interference transmission clustering results with 2% duty cycle

All the interference sources are found, but it is clear that the high powered sources are easier for the

algorithm to detect. The 12’th transmission is barely found at 2.17% of the transmissions detected.
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Transmission extraction - 4% duty cycle

In figure 5.5 a spectrogram of the transmission extraction test signal with 4% duty cycle is seen.

Figure 5.5: Interference first 5 for 4% duty cycle.

Transmission extraction - 4% duty cycle results

Table 5.4 shows the percentage of transmission found for each interference source in the test signal.

Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm] % found

1 868.020 340 5.000 -60 92.86

2 868.040 340 5.000 -75 71.43

3 868.060 340 5.000 -90 0.00

4 868.100 170 10.000 -60 97.87

5 868.140 170 10.000 -75 57.89

6 868.180 170 10.000 -90 10.42

7 868.240 68 25.000 -60 97.01

8 868.300 68 25.000 -75 45.31

9 868.360 68 25.000 -90 6.33

10 868.420 34 50.000 -60 78.86

11 868.480 34 50.000 -75 26.21

12 868.540 34 50.000 -90 0.00

Table 5.4: Interference transmission clustering results with 4% duty cycle

Here, only one of the −90dBm sources are found, and a comparable fraction of the −60dBm power

sources if found. The fraction of −75dBm power sources found have declined a bit.
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Transmission extraction - 6% duty cycle

In figure 5.6 a spectrogram of the transmission extraction test signal with 6% duty cycle is seen.

Figure 5.6: Interference first 5 for 6% duty cycle.

Transmission extraction - 6% duty cycle results

Table 5.5 shows the percentage of transmission found for each interference source in the test signal.

Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm] % found

1 868.020 340 5.000 -60 93.55

2 868.040 340 5.000 -75 89.19

3 868.060 340 5.000 -90 0.00

4 868.100 170 10.000 -60 97.83

5 868.140 170 10.000 -75 54.55

6 868.180 170 10.000 -90 0.00

7 868.240 68 25.000 -60 93.81

8 868.300 68 25.000 -75 25.45

9 868.360 68 25.000 -90 0.00

10 868.420 34 50.000 -60 86.53

11 868.480 34 50.000 -75 15.08

12 868.540 34 50.000 -90 0.00

Table 5.5: Interference transmission clustering results with 4% duty cycle

For this test none of the −90dBm power sources found and the fraction of −74dBm power sources

found has decreased.
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5.3.1 Transmission extraction test discussion

As expected, the high power transmission has a larger probability for being found than the low power

transmissions. From the tables 5.3, 5.4 and 5.5 the results in figure 5.7 are compiled.

Figure 5.7: Average percentage of transmissions found

The values in figure 5.7 indicates how close the ALOHA parameter estimates are to the true value

given transmission power and spectrum congestion levels. In table 5.6 the values from figure 5.7 is

found.

Power level/Congestion 2% 4% 6%

−60dBm/Hz 92.41 91.65 92.93

−75dBm/Hz 57.57 50.21 46.07

−90dBm/Hz 15.31 4.19 0

Table 5.6: Transmissions found

Here, the average percentage for each power level at each duty cycle scenario is seen. These shows

that the high powered transmissions are more likely to be found at the high duty cycle scenario and

the probability for finding −75dBm and −90dBm transmission declines as the duty cycle increases.

The reason for this, is found in the way power levels are segmented. When the spectrograms are

segmented, they are split into chunks in time. If a high powered transmission exists in the same time

frame as a low powered transmission, the low powered transmission will not be assigned to the cluster

with the highest power and in turn not be considered by the parameter extraction algorithm.

From figure 5.7 the average error in transmission rate can be found for the three power levels at 2%,

4% and 6% duty cycle. A reliable estimate of the −60dBm source can be expected however as soon

as the power level decreases, the estimate becomes less reliable. To understand how the parameter

estimation error translates to deviation in real-world interference probability it is necessary to perform

field tests where the transmission success rate is measured under different interference scenarios. This

is outside the scope of this thesis, however in section 5.5 the percentage of interference located in a

real-world spectrum is evaluated to better understand the possible parameter estimation error.
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In figure 5.8 a signal segmented into power layers is seen. At ≈ 1.75s and ≈ 868.1MHz a high powered

transmission causes the two transmission at ≈ 868.475MHz to be clustered into the second highest

cluster.

Figure 5.8: Power level segmentation

Since the two transmissions at ≈ 868.475MHz are clustered into the second highest cluster, they are

not considered by the parameter extraction algorithm, which is seen in figure 5.11 where they are not

marked. Examples like this can be found several times in these figures.

Figure 5.9: Transmission found

In a more congested spectrum it becomes increasingly unlikely that transmissions with low power is

not considered in the same time frame as a higher powered transmission, which is seen in table 5.3,

5.4 and 5.5. To mitigate this, the spectrum can be divided into several sub-spectra. One strategy for
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dividing the spectrum while minimizing the probability of dividing transmissions into several parts is

to separate the spectrum along a frequency with a low probability interference transmission to appear.

Figure 5.10: Average interference power along all frequencies

In figure 5.10, the average interference power level along a given frequency is seen. Here two

frequencies(Marked red) are chosen to divide the spectrogram. These are both close to being a local

minima, chosen conveniently at f = 868.2MHz and f = 868.33MHz

The divided spectrogram can be seen figure 5.11.

Figure 5.11: Spectrogram segmented

If the spectrogram is divided into three parts and the algorithm is run individually on these, the low

powered transmission are more likely to be found, as seen in table 5.7.
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Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm] % found

1 868.020 340 5.000 -60 92.86

2 868.040 340 5.000 -75 82.14

3 868.060 340 5.000 -90 20.69

4 868.100 170 10.000 -60 97.87

5 868.140 170 10.000 -75 78.95

6 868.180 170 10.000 -90 22.92

7 868.240 68 25.000 -60 97.01

8 868.300 68 25.000 -75 92.19

9 868.360 68 25.000 -90 26.58

10 868.420 34 50.000 -60 63.41

11 868.480 34 50.000 -75 57.24

12 868.540 34 50.000 -90 17.27

Table 5.7: Interference transmission clustering results with 4% duty cycle on several sub spectrums

In the 4% duty cycle test without spectrogram segmentation, three out of four of the −90dBm

transmissions are found but when the spectrogram is segmented, all of the −90dBm interference

sources are found. For nearly all sources, more transmissions are found except for transmission 10,

where the percentage of found transmission declines.

Hence, it is shown that the fraction of low powered transmissions being found by the algorithm, relates

the the amount of high powered transmission in the spectrum.
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5.4 Algorithm test - Parameter clustering test

When estimating the average interference transmission length used in the ALOHA interference model,

discussed in section 2.4, it is important to make a reliable estimate of the transmission length of each

individual transmission source. Also, it is important to know which frequency range a transmission

source occupies, which can be calculated from the center frequency fc and the transmission bandwidth

BW . To quantify the error of these estimates, the interference sources in the 4 test signals described

in section 5.1 is is found by clustering as discussed in 3.2 and 3.4.2 and the error of the estimated

parameters is found.

The transmission parameters for each transmission found is stored in a vector. The vectors consisting

of fc, BW and T , for each of the duty cycle levels is clustered separately using the DBSCAN clustering

algorithm.

Transmission parameters clustering - Duty cycle 2%

In figure 5.12 a spectrogram of the first 20s of the 2% duty cycle test signal is seen.

Figure 5.12: Spectrogram of test signal with 2% duty cycle.

In figure 5.13 the extracted transmission parameters are seen. The blue data points are classified

as noise and the clusters found are each marked by a color. Some colors repeat, even though they

represent separate clusters. This is intentional, to use a small set of easily distinctive colors, instead

of using more nuances which could look alike.

65



5. Algorithm test Group SPC-1075

Figure 5.13: DBSCAN Clustering results, 2% duty cycle.

The clusters seen in figure 5.13 is compared to the actual transmitted interferers in table 5.8. It is seen

that for each transmitted cluster, one or more similar clusters are found except for a single transmission

source with power −90dBm. Some transmitted signals, such as transmission 4 yields several clusters.

This happens when the estimated bandwidth of the transmissions has a large variance. The errors in

the estimated parameters are seen to be lower than what is found in section 4.3. The average absolute

error in percentage for the transmitted clusters found is 0.0047% for fc, 6.99% for T and 71.92% for

BW . Compared to the estimates in section 4.3 the BW estimate is further from true value while

the center frequency is still close to the true value. The transmission time estimate has improved

significantly compared to the estimates in section 4.3.
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Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm]

Transmission 1 868.010 170.0 10.00 -90.0

Found cluster: 868.012 176.0 17.69 -

Transmission 2 868.119 68.0 25.00 -60.0

Found cluster: 868.119 74.1 49.10 -

Transmission 3 868.122 34.0 50.00 -90.0

Found cluster: 868.123 44.2 75.80 -

Transmission 4 868.217 34.0 50.00 -75.0

Found cluster: 868.217 41.8 84.41 -

Found cluster: 868.217 41.0 79.89 -

Found cluster: 868.217 41.3 72.62 -

Transmission 5 868.229 68.0 25.00 -75.0

Found cluster: 868.229 78.1 60.00 -

Found cluster: 868.229 74.2 40.99 -

Transmission 6 868.303 68.0 25.00 -90.0

Found cluster: 868.303 77.8 44.58 -

Transmission 7 868.371 340.0 5.00 -90.0

Transmission 8 868.400 34.0 50.00 -60.0

Found cluster: 868.400 42.0 93.72 -

Found cluster: 868.400 41.4 84.75 -

Transmission 9 868.419 340.0 5.00 -75.0

Found cluster: 868.420 343.0 10.33 -

Transmission 10 868.479 170.0 10.00 -60.0

Found cluster: 868.481 174.1 19.56 -

Transmission 11 868.482 170.0 10.00 -75.0

Found cluster: 868.482 177.8 27.86 -

Transmission 12 868.567 340.0 5.00 -60.0

Found cluster: 868.568 342.8 10.99 -

Table 5.8: Interference transmission clustering results with 2% duty cycle
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Transmission parameters clustering - Duty cycle 4%

In figure 5.14, a spectrogram of the first 20s of the 4% duty cycle test signal is seen.

Figure 5.14: Spectrogram of test signal with 4% duty cycle.

In figure 5.15 the extracted transmission parameters are seen. Again, the blue data points are classified

as noise and the clusters found are each marked by a color.

Figure 5.15: DBSCAN Clustering results, 4% duty cycle.
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The clusters seen in figure 5.15 are compared to the actual transmitted interferers in table 5.9.

It is seen that no clusters for sources transmitted with transmission power −90dBm are found. For

the transmissions with power level −75dBm and −60dBm, one or more similar clusters are found. As

with the 2% test some transmission yields several clusters which still is due to the large variance of

the bandwidth estimate. The errors in the estimated parameters are seen to be lower than what is

found in section 4.3 and the previous test. The average absolute error in percentage for the parameters

estimated by the clusters are 0.0079% for fc, 8.56% for T and 81.14% for BW .

The center frequency is still accurate, but the transmission time estimate is closer to the true value

compared to the 2% test and the estimates in 3.5. The reason for this, is that the power levels for

detected transmissions are on average much higher, since less low power transmission are detected.

When the power levels are higher, more of the sidelobes will be belong to the cluster which is used for

transmission extraction.

Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm]

Transmission 1 868.026 68.0 25.00 -75.0

Found cluster: 868.027 73.4 38.73 -

Found cluster: 868.029 77.6 52.57 -

Transmission 2 868.155 340.0 5.00 -75.0

Found cluster: 868.156 340.7 9.33 -

Transmission 3 868.186 68.0 25.00 -90.0

Transmission 4 868.189 170.0 10.00 -90.0

Transmission 5 868.257 170.0 10.00 -75.0

Found cluster: 868.258 173.1 16.90 -

Transmission 6 868.283 340.0 5.00 -90.0

Transmission 7 868.310 34.0 50.00 -75.0

Found cluster: 868.310 42.3 75.85 -

Transmission 8 868.366 34.0 50.00 -60.0

Found cluster: 868.366 41.1 91.51 -

Found cluster: 868.366 40.9 76.55 -

Found cluster: 868.366 41.4 80.00 -

Transmission 9 868.444 170.0 10.00 -60.0

Found cluster: 868.444 172.8 19.72 -

Transmission 10 868.484 34.0 50.00 -90.0

Transmission 11 868.492 68.0 25.00 -60.0

Found cluster: 868.492 74.4 49.11 -

Found cluster: 868.492 69.9 40.64 -

Transmission 12 868.519 340.0 5.00 -60.0

Found cluster: 868.519 341.4 10.92 -

Table 5.9: Interference transmission clustering results with 4% duty cycle
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Transmission parameters clustering - duty cycle 6%

In figure 5.16 a spectrogram of the first 20s of the 6% duty cycle test signal is seen.

Figure 5.16: Spectrogram of test signal with 6% duty cycle.

In figure 5.17 the extracted transmission parameters are seen. Again, the blue data points are classified

as noise and the clusters found are each marked by a color which repeats.

Figure 5.17: DBSCAN Clustering results, 6% duty cycle.
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The clusters seen in figure 5.17 is compared to the actual transmitted interferers in table 5.10.

Similar to the previous test, no transmitted interference with transmission power −90dBm is found.

For all interferers with power level −60dBm and −75dBm, one or more similar clusters are found. As

with the previous tests some transmission yields several clusters which is due to the large variance of

the bandwidth estimate. The errors in the estimated parameters are seen to be lower than what is

found in section 3.5. The average absolute error in percentage for the transmitted parameters and the

clusters found is 0.0052% for fc, 6.03% for T and 73.57% for BW .

Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm]

Transmission 1 868.038 340.0 5.00 -90.0

Transmission 2 868.055 68.0 25.00 -60.0

Found cluster: 868.056 72.9 47.88 -

Transmission 3 868.063 34.0 50.00 -75.0

Found cluster: 868.064 40.3 70.56 -

Transmission 4 868.136 170.0 10.00 -75.0

Found cluster: 868.136 171.6 14.92 -

Transmission 5 868.151 340.0 5.00 -75.0

Found cluster: 868.151 340.6 8.79 -

Transmission 6 868.213 68.0 25.00 -90.0

Transmission 7 868.251 170.0 10.00 -90.0

Transmission 8 868.267 340.0 5.00 -60.0

Found cluster: 868.268 340.4 10.97 -

Transmission 9 868.393 68.0 25.00 -75.0

Found cluster: 868.394 72.7 34.74 -

Transmission 10 868.421 34.0 50.00 -90.0

Transmission 11 868.516 170.0 10.00 -60.0

Found cluster: 868.517 172.7 19.91 -

Transmission 12 868.542 34.0 50.00 -60.0

Found cluster: 868.543 39.1 86.72 -

Table 5.10: Interference transmission clustering results with 6% duty cycle

5.4.1 Transmission parameter test discussion

The results in table 5.8, 5.9 and 5.10 show that the algorithm is capable of finding clusters that

matches the actual interference transmissions found in the spectrogram. It is also shown that the

congestion of the spectrum affects the algorithms capability to detect low powered transmission.

In table 5.11 the average parameter estimate error at each congestion level is seen.

Parameter/Congestion 2% 4% 6%

fc 0.0047 0.0079 0.0052

T 6.99 8.56 6.03

BW 71.92 81.14 73.57

Table 5.11: Transmission parameter estimate error

It is expected that the algorithm overestimates the bandwidth of the interference transmission, since

it is hard to distinguish between the actual transmission and the transmission sidelobes. Also, the
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sidelobes of high powered transmissions may cause interference of desired transmissions and should

be considered when the transmission rate in a frequency range is computed. The ALOHA model

relies on accurate estimation of transmission time, and with an average error of ≈ 7% the estimates

are close to the true value. Hence, the largest error in the parameter estimates must be caused by

the algorithm missing transmissions and bias the estimates towards transmission parameters from

transmissions which are more likely to be detected.

72



5. Algorithm test Aalborg University

5.5 Algorithm test - Aarhus dataset

A final test to evaluate the real-world performance of the algorithm is performed. The purpose

of this test is to determine the percentage of interference the algorithm is capable of detecting.

The accuracy of the transmission parameter estimates have been tested in section 5.4 and the

transmission parameters are not available in this unlabelled dataset. Hence, only the percentage

of found interference is evaluated. When modelling the interference spectrum as discussed in section

2.4, the accuracy of the model depends on the accuracy of the parameters r(Transmission rate) and

Tp(Average interference transmission length). If a large fraction of the interference in a spectrum is

found, the estimates of these parameters will be close to their true value.

Kamstrup has provided a set of preexisting measurements, the Aarhus dataset, a 1 hour recording of

the 868MHz− 868 6MHz band in the center of Aarhus. For recording the spectrum a Signal Hound

BB60C spectrum analyzer [21] is used to sample the 868MHz to 868.6MHz frequency range with center

frequency 868.3MHz. The received signal is mixed down to 0.6MHz and sampled into I/Q samples

with a rate of fs = 10MHz.

A spectrogram of the first 2 seconds of the Aarhus dataset signal i seen in figure 5.18.

Figure 5.18: Aarhus dataset signal spectrogram, first 2 seconds.

As with the other test signals, power levels segmentation is performed. Power level segmentation of

the first 2 seconds is seen in figure 5.19.

73



5. Algorithm test Group SPC-1075

Figure 5.19: Aarhus dataset signal power level segmentation, first 2 seconds.

After the power level segmentation, transmissions are located and the transmission parameters are

extracted. In figure 5.20 the transmissions located in the first 2 seconds can be seen.

Figure 5.20: Aarhus dataset signal located transmissions, first 2 seconds.

Finally, the transmission parameters are clustered to find clusters of repeating transmissions. This is

seen in figure 5.21. Again a set of easily distinguishable colors which repeats is chosen.
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Figure 5.21: Aarhus dataset signal transmission parameters clusters.

The clusters seen in figure 5.21 is found in table 5.12 with the estimated parameters and a silhouette

score.

Cluster # fc [MHz] T [ms] BW [kHz] Silhouette score

1 868.038 57.32 14.05 0.590

2 868.038 330.57 18.30 0.396

3 868.038 292.21 17.27 0.761

4 868.038 233.56 17.13 0.550

5 868.087 29.12 13.73 −0.024

6 868.131 40.40 31.01 0.485

7 868.171 32.08 16.91 0.636

8 868.214 322.39 19.46 0.915

9 868.235 41.65 13.84 0.547

10 868.238 313.13 20.42 0.392

11 868.325 24.26 81.30 0.681

12 868.325 21.30 23.21 0.697

13 868.438 24.70 12.09 0.877

14 868.587 16.16 12.75 0.954

Table 5.12: Interference transmission clustering results

Some of the clusters in table 5.12 are easily recognized from the spectrogram in figure 5.22.

Cluster 1 and 2 found at 868.038MHz can be seen as two different transmissions(One long and one

short), in figure 5.22 at ≈ 868.038MHz. Cluster 3 and 4 are similar to cluster 2 which could indicate

that at least three different transmission times are used for that particular transmission type.
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Cluster 8 at 868.214MHz is found as the long transmissions at ≈ 868.2MHz in the spectrogram.

Two more clusters, 9 and 10 at ≈ 868.236MHz, is seen as a short transmission followed by a long

transmission. Finally, cluster 12 captures the repeated short transmissions in the spectrogram seen at

≈ 868.33MHz.

It is difficut to verify the validity of the remaining clusters of table 5.12. Some may be transmission

occurring at a later time in the signal and some may be results of noise. The test in section 5.4

shows that for simulated data, the algorithm is capable of finding the actual interference sources by

clustering the interference transmission parameters. However, to verify if this is also the case for

real-world spectrum recordings field tests with a known interference spectrum will be necessary.

Figure 5.22: Aarhus dataset signal spectrogram, first 5 seconds.

Since the accuracy of the transmission parameters relies on the fraction of transmissions found, the

percentage of found interference is calculated. Since the dataset is unlabelled and the actual number

of transmissions is unknown, a range of thresholds [−120,−60] is used to quantify the percentage

of transmissions found. The percentage is calculated as the number of interference units above the

threshold found by the algortihm divided by the number of interference units above the threshold

present in the spectrogram. In figure 5.23 the percentage of interference found for each threshold

value is seen. Also, the number of interference units in the spectrogram above the threshold is seen.

This is included to explain the sharp decline in found interference after ≈ −65dBm/Hz since almost

no interference units exists above this threshold the estimate goes towards zero.
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Figure 5.23: Aarhus dataset signal - Percentage of interference found by clustering.

In table 5.13, a range of results from figure 5.23 is seen. The results cannot be directly compared

to the results in section 5.3, however it is seen that already at −100dBm/Hz more than half of

the interference transmissions above that threshold are found. Considering only interference above

−90dBm/Hz, the transmission rate estimate for these transmissions are likely to be ≈ 76% of the true

value. However, as discussed in section 5.3 the difference in real-world transmission success compared

to the ALOHA model with estimated parameters needs to be evaluated by fields tests.

Power threshold [dBMm/Hz] Interference units found [%] # interference units in spectrogram

-120 15.48 1702614

-110 35.93 683958

-100 62.95 307257

-90 76.04 139297

-80 86.25 44765

-70 88.88 3620

Table 5.13: Percentage of interference units found

Looking at figure 5.24 where the transmissions for the first 25 seconds of the signal is marked, it is

clear that a large fraction of the transmissions is indeed found as indicated by the results in table

5.13. Some of the low power transmissions, for example at ≈ 868.53MHz, are not located as seen in

figure 5.23. This is expected when considering the results in section 3.5 which shows that low powered

transmissions existing in the same time frame as high power transmissions are likely to be missed by

the algorithm.

Appendix A shows 5x25s of the Aarhus dataset, for a longer time period. Here a large fraction

of the interference transmissions are marked as found. Appendix B shows a more detailed version

of the Aarhus dataset to illustrate how well the markings matches the actual transmissions. This

is a prerequisite for accurate estimates of the center frequency, transmission time and transmission

bandwidth.
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Figure 5.24: Aarhus dataset signal transmissions found.
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5.6 Comparision with prior work

To evaluate the results obtained in the previous tests, an approach similar to the one used by German

researchers [8] is tested. In this paper, a threshold for activity in the spectrogram is defined, and

everything above the threshold is classified as interference. A method similar to the approach discussed

in section 3.4.2 is used to find the outline of individual transmissions on the spectrogram and the

individual transmission parameters are clustered to identify the main interference sources.

The test signal used is the 4% duty cycle signal from section 5.3. Here 12 interference transmissions

with either −60dBm, −75dBm or −90dBm populates the spectrum.

The paper does not mention how to find the threshold used to detect activity in the spectrum. This

threshold is not trivial to find since a threshold too low will result in random noise being identified as

interference transmissions and a threshold too high will result in interference transmissions not being

found. The spectrogram segmentation algorithm in section 3.2 avoids this by finding the clusters in

the received interference spectrum.

For now, a threshold of −115dBm/Hz is used since the power level of the interference sources are

known, and this threshold can completely separate the noise from the interference sources. This is to

show the best case performance of the algorithm. However, for this algorithm to be used on real-world

data, it is necessary to find a method for estimating the detection threshold.

Furthermore, the paper does not mention a clustering algorithm, hence it is assumed that the clustering

is done manually. If this is the case, the algorithm is hard to scale, and for spectra with high interference

activity, it is a cumbersome process. Looking at figure 5.25 the local density of the samples can be

hard to determine with only visual inspection since some of the samples are either close to each other

or directly on top of each other. Since no clustering method is mentioned and due to the possible

errors in manually clustering the samples, the DBSCAN clustering algorithm is used in this test.

The parameters for the DBSCAN algorithm is the same as used in the other tests. By using this

algorithm, this test will only show the effect of using a predetermined static threshold against an

adaptive approach as used in section 3.2. Without exact information on how the clusters in the paper

are obtained it is difficult to make a better comparison of the algorithms.

In figure 5.25 the clusters obtained by using a fixed −115dBm/Hz threshold, marking the interference

transmissions and clustering them is seen.
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Figure 5.25: Interference transmissions clustered.

In table 5.14 the clusters from figure 5.25 with estimated parameters, fc, T and BW for each cluster as

well as transmission power and fraction of transmissions found is seen. The fraction of transmissions

which is found exceeds what is found in section 5.3, which is expected when the threshold is set

lower than the transmission power of the interference transmissions. The average error is < 1% for

fc and 11% for transmission time. This is similar to the results seen in section 5.4. The results in

table 5.14 shows that the bandwidth estimate depends on the transmission power of the interference

transmissions and consequently will also depend on the interference activity detection threshold. The

choice of threshold will not only determine how many of the interference transmissions are found, but it

will also determine the bandwidth estimate error. Furthermore, the bandwidth estimates will be highly

location dependent. As an example, if the spectrum is recorded in two different places, any path loss

due to terrain, buildings etc. will alter the received transmission power and the estimated bandwidths

will be different for the two locations. Hence, the estimated parameters for the interference model

will only be valid close to where the recordings are made and will not provide a general interference

model for the area.
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Transmission # fc [MHz] T [ms] BW [kHz] Power level [dBm] % found

Transmission 1 868.020 340.0 5.00 -60.0 -

Found cluster: 868.020 332.5 16.65 - 0.93

Transmission 2 868.040 340.0 5.00 -75.0 -

Found cluster: 868.040 331.6 12.52 - 0.89

Transmission 3 868.060 340.0 5.00 -90.0 -

Found cluster: 868.061 331.5 9.00 - 0.79

Transmission 4 868.100 170.0 10.00 -60.0 -

Found cluster: 868.100 161.6 30.98 - 0.98

Transmission 5 868.140 170.0 10.00 -75.0 -

Found cluster: 868.140 161.6 23.00 - 0.97

Transmission 6 868.180 170.0 10.00 -90.0 -

Found cluster: 868.180 161.0 15.68 - 0.92

Transmission 7 868.240 68.0 25.00 -60.0 -

Found cluster: 868.240 60.1 71.39 - 0.91

Transmission 8 868.300 68.0 25.00 -75.0 -

Found cluster: 868.300 60.1 53.97 - 0.91

Transmission 9 868.360 68.0 25.00 -90.0 -

Found cluster: 868.360 58.9 33.03 - 0.81

Transmission 10 868.420 34.0 50.00 -60.0 -

Found cluster: 868.421 25.7 129.71 - 0.78

Transmission 11 868.480 34.0 50.00 -75.0 -

Found cluster: 868.480 25.5 99.93 - 0.80

Transmission 12 868.540 34.0 50.00 -90.0 -

Found cluster: 868.541 24.9 45.12 - 0.70

Table 5.14: Interference transmission clustering results with 4% duty cycle
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6.1 Discussion

When the resolution of interference units in the spectrogram, ∆t and ∆f , is close to the transmission

parameters T and BW , the Binomial distribution seen in section 2.3 can be used to model interference

probability. When these conditions are satisfied, the model assumes that the transmissions occur

independently in time and frequency, which for a completely unknown spectrum with several

independent sources can be an appropriate assumption. However, when ∆t and ∆f are lower than

the transmission parameters and the transmissions cover several interference units, the assumption

does no longer hold. Neighbouring interference units will have a high probability for being close in

value, which is not accounted for in the Binomial model. Hence, the model is not inherently bad, but

the spectrogram resolution ∆t and ∆f has to be chosen carefully.

The pure ALOHA model used in this thesis assumes that all interference transmissions are transmitted

by a finite number of sources, which transmit with a fixed center frequency, transmission time

and bandwidth. It assumes that all interference sources transmits at random times with a given

average transmission rate in transmissions/second. This may not always be true, since some of the

transmissions can be two-way communication between two or more units. For example, a gateway in

a network can acknowledge the transmissions sent by the individual nodes, or request data from the

nodes1. If this happens, the nodes will communicate on request of the initiator, hence they are no

longer independent of each other. Several such scenarios can be constructed where the interference

sources in a spectrum no longer transmits independently. However, it is assumed that most units

using the spectrum will not be aware of other units and, operate independently. As stated in [12],

pure ALOHA spectrum access is a common model for such a communication channel which is the

reason why this model is chosen.

When segmenting the received power levels for finding the transmissions, a straightforward approach

would be to use a set threshold as shown by German researchers [8]. The reason for not choosing

this approach, is that low powered interference transmissions can have the same maximum power

levels as the sidelobes of a high powered transmission. This will cause the bandwidth estimate of

the high powered transmissions to become much larger than a comparable low powered transmission.

To mitigate this the threshold can be set to only consider the high powered transmissions which will

greatly affect the the estimated parameters for the ALOHA model. However, if a spectrum recording

is made locally to evaluate the interference in a wider area not only locally where the recording is

made, the high powered transmissions can be low powered transmission(Due to path loss) somewhere

else. This is shown in section 5.6 where a static threshold is used to detect interference transmissions.

Here a greater fraction of the interference transmissions are found, compared to the tests in section 5.3,

but the method require that a static threshold can be determined which the paper does not provide.

1This could be any scenario where two units communicate over a wireless channel.
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To obtain a model for interference in a area, regardless of location(Which translates to power level) it

is important to only consider the main part of the transmission when evaluating the bandwidth and

avoid as much as the sidelobes as possible.

The estimated parameters of the ALOHA model will result in an interference probability for a

frequency range and transmission time both specified by a desired transmission. In section 5.3, the

fraction of transmissions found by the algorithm is evaluated. As discussed in that section, finding

90% of the transmissions in a given frequency range will result in an estimated transmission rate which

is 90% of the true value. For a real spectrum, it is impossible not to miss some of the interference

transmissions and the estimates of both transmission rate and average transmission time for the

interference transmission will always have some errors. The error in the estimates will be highest

for the low powered transmissions which implies that the model will be most accurate close to the

receiver.

The transmission rate and average transmission time used in the ALOHA model varies with the

parameters of a desired transmission. When the bandwidth or center frequency changes, both

parameters will change since another set of interference transmissions will occupy the frequency range

used to transmit the desired transmission. This results in a large number of permutations for even

a small set of transmission parameters. In the tests, either the fraction of located transmissions

is calculated or the error in estimating transmission parameters is found. If a large fraction of

transmissions is found and the individual transmission parameters are estimated close to their true

value, the parameters in the ALOHA model can be estimated with a small error. The model parameters

has not been calculated directly for any of the tests, but in section 5.3, any desired transmission

covering only a frequency range with one interference source will have a transmission rate estimate

error corresponding to the fraction of transmissions found. The error in average transmision time,

can be found from the parameter estimate error in section 5.4. Instead of calculating the ALOHA

parameter estimate errors for a small number of arbitrary transmissions, the underlying parameter

estimate errors have been highlighted in the results in the test chapter.

In a known interference scenario ,the ALOHA parameter estimates can be calculated and compared to

the true ALOHA parameters. If the calculated interference probability is compared to the real-world

packet error rate for a system transmitting in a spectrum with the known interference, the implications

of the parameter estimate error can be evaluated. To fully understand this relation between the

estimate errors and the deviation in interference probability, from model to the real world, a test

campaign with known interference spectrum and a transmitter/receiver should be conducted. Due to

limited laboratory access at the time of writing this thesis, this has not been performed.

84



6. Discussion and Conclusion Aalborg University

6.2 Conclusion

This thesis aims to answer the following problem statement:

• How can probability for interference be modelled and how can the model parameters be estimated?

• How can intelligent learning algorithms be used to find, separate and cluster similar transmissions

in a spectrum recording to identify the parameters needed for modelling interference?

Chapter 2 aims to answer the first part of the problem statement. Here the pure ALOHA spectrum

access model is used to calculate the probability for interference in a wireless channel. It is shown

how to find the model parameters, the transmission rate and transmission time in a frequency range

specified by the parameters from the desired transmission. Furthermore, an example of choosing the

optimal transmission parameters by using the model is presented and the result is verified by use of

a brute-force interference probability algorithm. The second part of the problem statement is treated

in chapters 3, and 4. Afterwards, the performance of the algorithm is evaluated in chapter 5.

By assuming noise in the wireless channel as AWGN 2[12], a signal model for the received signal

with and without interference present is constructed. Spectrograms are calculated from recordings of

interference in the 868.0MHz − 868.6MHz frequency range and the received power at each time and

frequency index with resolution ∆t and ∆f is computed. From the signal model it is clear that the

Gaussian noise in the spectrogram will be Rayleigh distributed and interference sources in the the

channel, with additive Gaussian noise, will be Rice distributed. To segment the received power in the

spectrogram into clusters of either noise or one of several possible interference sources, two methods,

K-Means and Gaussian mixture models, have been presented, implemented and tested.

When inspecting the histograms computed from the spectrograms, the findings matches the expected

distribution from the signal model. A significant part of the interference levels is Rayleigh distributed

and several Ricians with different means, due to interference transmission with different power, appear

in the histogram. The Rice distribution with mean v 6= 0 will have a shape similar to a Gaussian,

and the Gaussian mixture model also proves to be the best in separating the noise from interference

transmissions given the spectrogram resolution is sufficient. To use the ALOHA model, good estimates

of parameters are needed. To obtain these, the algorithm should be able to locate a large fraction of

the transmissions in a spectrogram. In table 6.1 the fraction of transmissions located with different

power levels and spectrum congestion settings is seen. The fraction of found transmissions is lower

for power levels −75dBm/Hz and −90dBm/Hz compared to the reference test in section 5.6 where a

method proposed by German researchers [8] is tested.

Power level/Congestion 2% 4% 6%

−60dBm/Hz 92.41 91.65 92.93

−75dBm/Hz 57.57 50.21 46.07

−90dBm/Hz 15.31 4.19 0

Table 6.1: Transmissions found

To extract the transmission parameters from a segmented spectorgram, an algorithm to find

neighbouring clusters of non-zero entries in the spectrogram is developed. With this it is possible to

find the center frequency, transmission time and bandwidth parameters of an interference transmission.

2Additive white Gaussian noise
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To find similar transmissions, likely emitted by the same source, the samples containing the extracted

transmission parameters are clustered. The DBSCAN clustering algorithm proved to be superior

compared to the Gaussian mixture models when more noise samples existed in the samples. It is

desired to minimize the parameter estimate error, which is seen in table 6.2. The closer these estimates

are to the true value, the closer the ALOHA parameter estimates are to their true value.

The results in table 6.2 shows that the algorithm proposed in this thesis provides interference parameter

estimates which is better than the estimates obtained in the reference test in section 5.6.

Parameter/Congestion 2% 4% 6%

fc 0.0047 0.0079 0.0052

T 6.99 8.56 6.03

BW 71.92 81.14 73.57

Table 6.2: Transmission parameter estimate error

With the results in table 6.1 and 6.2, it can be concluded that for high powered transmissions the

algorithm is capable of making reliable estimates for the transmission rate. For the low/mid power

transmission, the estimate depends highly on how congested the spectrum is. It is seen that when the

spectrum becomes less congested, the fraction of transmissions located rises. Furthermore, it can be

concluded that for the interference sources found, both center frequency and transmission time can

be estimated close to their true value where the bandwidth is overestimated as expected.

Compared to the method proposed in [8], the algorithm proposed here finds better bandwidth estimates

while the fraction of interference transmissions found is worse. If a reliable method for finding the

interference activity threshold is available, it will be possible to combine the algorithm proposed in this

thesis with the algorithm proposed in [8] to estimate the transmission parameters and the transmission

rate respectively. This will combine the strengths of both algorithms while reducing the weaknesses.

The real world test in section 5.5 shows that a large fraction of the interference sources in a spectrum

can in fact be located by the algorithm, as seen in table 5.13 and in appendix A and B where

the transmissions are marked in the spectrogram. These results indicates that a large part of the

dominating interference sources are in fact located by the algorithm. Furthermore, the clustering of

transmission parameters locates what appears to be the most dominating interference sources. This

enhances the belief that the algorithm is capable of making reliable estimates of the ALOHA model

parameters which can be used to predict the interference probability for a desired transmission.
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6.3 Future work

In this thesis, only the fraction of interference transmissions which is found in a spectrum and the

estimate error of fc, T and BW are evaluated.

To validate the algorithm, it is necessary to conduct real-world tests with a known interference

spectrum to evaluate the algorithms ability to find the individual interference sources and estimate

their parameters.

A number of IoT devices should be set-up to communicate on the 868.0MHz − 868.6MHz frequency

range with fixed center frequencies, transmission times and bandwidths. The duty cycle of each

transmitter should be noted, such that the true transmission rate and average transmission time of

the interferers is known. A recording of the spectrum should be made with a spectrum analyzer similar

to the one used for the recordings presented in this spectrum. By using the proposed algorithm to

analyze the recording and estimating the source parameters, the ALOHA model parameters can be

estimated and the probability for interference calculated.

During this test, two or more transmitters/receivers should communicate back and forth and the

packet error rate should be logged, to calculate the probability for interference. By comparing

the actual interference probability with the one estimated by the ALOHA algorithm it is possible

to determine if the algorithm is suitable for extracting the model parameters and estimating the

interference probability.
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Aarhus data set - Found
transmissions results A

To show how many of the transmissions are found by the algorithm, the first 5x25s of the Aarhus

dataset are shown as spectrograms with their corresponding overlay which marks transmissions found.

The figures are matched page for page for better overview. For this reason, the rest of this page is left

blank and the results are shown from the next page.
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Figure A.1: Aarhus dataset signal spectrogram 1.

Figure A.2: Aarhus dataset signal transmissions found 1.
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Figure A.3: Aarhus dataset signal spectrogram 2.

Figure A.4: Aarhus dataset signal transmissions found 2.
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Figure A.5: Aarhus dataset signal spectrogram 3.

Figure A.6: Aarhus dataset signal transmissions found 3.
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Figure A.7: Aarhus dataset signal spectrogram 4.

Figure A.8: Aarhus dataset signal transmissions found 4.
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Figure A.9: Aarhus dataset signal spectrogram 5.

Figure A.10: Aarhus dataset signal transmissions found 5.
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Aarhus data set - Found
transmissions results zoom B

To show how many of the transmissions are found by the algorithm, the first 5x2.5s of the Aarhus

dataset are shown as spectrograms with their corresponding overlay which marks transmissions found.

This is the first 2.5s of each spectrogram in A. The figures are matched page for page for better

overview. For this reason, the rest of this page is left blank and the results are shown from the next

page.

It is seen how the short transmissions in the range 868.05MHz−868.2MHz are not well marked. This is

due to the time resolution of the spectrogram as discussed in section 3.5. To find these transmissions,

it is necessary to use a much higher time resolution. To maintain the same frequency resolution, this

would require a higher sample rate of the spectrum analyzer as well as increasing the computational

complexity of the algorithm.
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Figure B.1: Aarhus dataset signal spectrogram 1.

Figure B.2: Aarhus dataset signal transmissions found 1.

98



B. Aarhus data set - Found transmissions results zoom Aalborg University

Figure B.3: Aarhus dataset signal spectrogram 2.

Figure B.4: Aarhus dataset signal transmissions found 2.
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Figure B.5: Aarhus dataset signal spectrogram 3.

Figure B.6: Aarhus dataset signal transmissions found 3.
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Figure B.7: Aarhus dataset signal spectrogram 4.

Figure B.8: Aarhus dataset signal transmissions found 4.
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Figure B.9: Aarhus dataset signal spectrogram 5.

Figure B.10: Aarhus dataset signal transmissions found 5.
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