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Chapter 1

Introduction

As a musician, I have often wondered wherein the difference between a great and average
drum performance lies. On one hand, you can find drummers with impressive technical
abilities, but who for some reason do not elicit a musically gratifying performance. On the
other hand, there are drummers, whose playing style is minimalistic, but who still manage to
make the listener resonate with their performance. The distinction between these two cases is
often attributed to the concept of groove, which Feld [1, p. 76] defines in a broad sense as:

"[...] an unspecifiable but ordered sense of something [...] that is sustained in a
distinctive, regular and attractive way, working to draw a listener in."

The vagueness of this definition illustrates that the concept of groove is difficult to do justice
in a simple statement. Hofmann et al. [2] are somewhat more specific and state "that there is
a common agreement that groove is a quality of music that makes listeners want to move or
dance to the music".

Frühauf et al. [3] argue that although various musical styles require different timing strategies,
such as playing a drum stroke slightly early or late relative to a musical timing grid, it is
essential that drummers are able to deliberately manipulate their inter-pattern timing in order
to induce a sense of groove - also referred to as playing "in the pocket" [4].

On the same topic, Iyer [5] is quoted by Danielsen [6, p. 9]:

"In groove contexts, musicians display a heightened, seemingly microscopic sen-
sitivity to musical timing (on the order of a few milliseconds). They are able
to evoke a variety of rhythmic qualities, accents, or emotional moods by playing
notes slightly late or early relative to a theoretical metric time point [...] All these
musical quantities combine dynamically and holistically to form what some would
call a musician’s ‘feel’. (Iyer 2002: 398)"

Drumeo instructor Dave Atkinson [7] provides an excellent video lesson, which demonstrates
some of the issues and concepts mentioned above, and I urge the reader to watch the video to
better understand the focus of this project.
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The audio clips on the website1 accompanying the study by Frühauf et al. [3] are also excellent
examples of how timing modifications affect the perception of a drum performance.

Having established the importance of timing accuracy with regards to the perceived quality
of a drum performance, I began to look into the current methods drummers apply to improve
their timing skills and asked myself, is it possible to fast-track this process using digital signal
processing and analysis?

After an initial research phase, it became clear that a range of timing practice tools exist on
the market, but they are usually built into electronic drum-kits or similar devices. Software
solutions also exist, but require the use of an electronic drum-kit or drum-pad as an input
device. However, the temporal resolution of the feedback is often fairly coarse and the tools
do not let the user study the results in detail after a performance.

Noticing a gap in the market for drummers, who play acoustic drum-kits, I decided to use
the thesis as an opportunity to develop a prototype for this segment, which also attempts to
improve upon some of the shortcomings of the currently available tools.

1http://musicweb.hmtm-hannover.de/groove/



Chapter 2

Problem Statement

An essential requirement for drummers is the ability to keep a steady rhythm, also known as
sensorimotor synchronization (SMS). To obtain this ability, a metronome is often used during
practice to establish an internal rhythmic sense. However, while practicing with a metronome
helps with overall timing precision, it does not necessarily help the drummer improve the
coordination of the hands and feet, which can result in rhythmic inconsistency and a musically
suboptimal performance.

Although tools are available for electronic drum-kits and drum pads to help drummers im-
prove their timing precision, these are not easily adapted to acoustic drums, which leaves out
a significant number of potential users.

The aim of this project is to provide similar tools for acoustic drum-kit users and help increase
drummers’ awareness of their inter-limb timing precision by analysing the audio signal ob-
tained from a monophonic microphone located in close proximity to the drum-kit. Following
timing analysis, the user receives performance feedback on a graphical user interface based
on the deviation from a known timing reference, i.e. a metronome.

System evaluation methods will be implemented to measure the performance of the under-
lying algorithms. By determining a suitable metric for comparing a drummer’s performance
prior and subsequent to practicing with the tool, the effect of providing timing feedback on
a drummer’s ability to perform sensorimotor synchronisation tasks will be evaluated within
the constraints placed on user testing due to the COVID-19 lockdown in place during the
finalisation of this project.

4



Chapter 3

Research

3.1 Timing

Timing in a musical context is generally understood as the ability of an individual to maintain
synchronisation with an internal or external pulse as described by Janata et al. [8, p. 682].
The task is also known as sensorimotor synchronisation and the ability to perform this task,
especially for drummers, is the foundation upon which music is built.

A subcategory of timing is microtiming, also referred to as expressive timing, which relates to
minuscule variations in a musician’s spacing of notes [9] and is generally what characterizes
a human performance compared to a perfectly quantized computer-generated performance.
The emotional expression in a performance can also be partly attributed to microtiming as the
musician’s decision to anticipate or lag certain notes can evoke a certain emotional response
in the listener [10, p. 496].

Sometimes the two definitions will overlap in practice, since musicians might discuss the
timing of a performance, but are actually referring to the underlying minute variations that
change the "feel" or groove of a musical performance.

Research by Senn et al. [11] into microtiming and its effect on listeners, suggests that exagger-
ated microtiming deviations have a negative effect on groove ratings depending on the genre
and the listener’s musical expertise.

These findings are reinforced by Frühauf et al. [3], who found that when presented to a drum
pattern where the kick and snare drum have been shifted in -25ms, -15ms, 0ms, +15ms and
+25ms increments while the hi-hat is played exactly on the grid, music students rated the
shifted performances worse than the 0ms version. The performances where the drums were
shifted early were rated slightly lower than the late shifted performances.

Frühauf et al. argue that listeners prefer late shifts since it leads to a more relaxed "feel",
whereas early shifts have a stressed "feel". Unfortunately, most people have a natural inclina-
tion to tap in advance of the beat when asked to synchronize to an external pulse. Research

5



3.1. Timing 6

indicates that the anticipation of the beat or negative mean asynchrony (NMA) is due to the
difference in processing time of tactile and auditory information in the brain [12]. Studies
also show that NMA differs between hands and feet, which indicates that the length and thus
latency of the neural paths affects the timing strategies for the different limbs [12, p. 500].

An alternative theory presented by Thaut [13, p. 45] suggests that the tendency to anticipate
the beat is a strategy to more efficiently compensate for inaccuracies in the motor system.
Compared to lagging the beat and increasing the distance between the executed action and
the actionable feedback, Thaut argues that it is more efficient to receive feedback immediately
following the execution of an action as it optimizes the opportunity for self-correction for the
upcoming event.

The reliance on an external pulse for self-correction could also explain why it usually is more
difficult to synchronize to a metronome set to a slow tempo compared to a faster tempo and
studies [14] shows that as IOI increases beyond approximately 2 seconds, non-musicians tend
to produce increased NMA. However, while the standard deviation increases similarly to that
of non-musicians as the IOI increases, trained musicians are able to maintain a near-constant
mean asynchrony.

With the advent of music composing on computers, a testament to the importance of timing
in music performances was the arrival of the quantization feature, which is used to align sym-
bolic data in the MIDI format to a musical grid. An audio equivalent, which is able to locate
and quantize onsets in multitrack audio recordings, was later introduced in the Beat Detec-
tive1 tool available in the Avid/Digidesign Pro Tools2 digital audio workstation (DAW). The
introduction of the tool, which is now available in most digital audio workstations, has had a
major impact on how modern music is produced as it made it possible to convert a mediocre
performance into an expert performance at the click of a button. However, quantizing musical
performances can have a negative effect on listeners rating of a performance as seen in the
study by Hofmann et al. [2, p. 339], where it was found that listeners preferred performances
with asynchronies below 19ms over fully quantized performances.

In summary, the research shows that timing plays an important role in listeners’ rating of a
musical performance, which suggests that it is beneficial for musicians to practice in a manner
that improves their timing accuracy - whether their intentions are to achieve computer-like
precision or to more precisely manipulate their microtiming in a specific manner fitting a
particular musical style.

The research also indicates that it is useful to both consider timing in a broad sense - which
can be determined from the mean asynchrony of the onsets - in order to provide insight into a
drummer’s ability to synchronise with the overall pulse, and also in a detail by evaluating the

1https://www.soundonsound.com/techniques/pro-tools-using-beat-detective
2https://www.avid.com/pro-tools

https://www.soundonsound.com/techniques/pro-tools-using-beat-detective
https://www.avid.com/pro-tools


3.2. Drum Performance Basics 7

timing consistency on a microtiming level determined by the standard deviation of the onset
asynchrony.

3.2 Drum Performance Basics

To better understand the factors that affect a drummers ability to perform consistently for an
extended period of time, it is useful to look at the some common techniques, exercises and
practice tools.

3.2.1 Drum Technique

There are essentially two schools on how to hold the drum sticks - traditional and match grip.
The traditional grip is commonly used by jazz drummers and stems from marching band
drummers, where the snare drum was carried with a strap across shoulder causing the drum
to tilt to one side. By changing the grip, it was possible to hit the drum without raising the
elbow into an awkward position [15].

The match grip on the other hand is probably the most common grip. It has the benefit of
symmetry across both hands making it easier to achieve an identical motion between both
hands and thus a similar sound when hitting the drum, regardless of which hand is used.

Fujii [16, p. 171] shows the ability to execute drum strokes at a high frequency is achieved by
compliance in the wrist. Most research only considers wrist muscle activity when evaluating
drum performances, but drumming exercise material [17] suggests that practicing specifically
to strengthen the muscles in the fingers can help improve accuracy at higher speeds, since
whether using traditional or match grip, most drummers will tend to switch from using their
wrist to using their fingers as actuators to set the drum stick in motion as playing speed
increases. While this reduces the maximum force that can be applied, it reduces fatigue and
thus enables improved timing consistency at shorter IOI’s.

Scientific research into feet tapping performance is limited, but according to Fujii et al. [12]
"the NMA increases during foot tapping compared to manual tapping", which suggests that it
is important to practice the feet in the same manner as the hands to achieve good coordination
between all limbs, which is reinforced by drummer, Thomas Lang, who is renowned for his
foot technique and author of the book Creative Coordination & Advanced Foot Techniques [18], in
an article for Drum! Magazine [19].

3.2.2 Exercises

A set of exercises that are commonly used to improve drum technique are the so-called rudi-
ments. Rudiments are exercise patterns that incorporate alternative strokes between both
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hands, both feet, if playing a bass drum with a double-pedal, or a combination of hands and
feet.

According to Meyer [20], an added benefit of practicing rudiments is improved sight-reading
due to the rudiments consisting of common note-groupings, which leads to the drummer
reading groups of notes rather than individual notes, much like reading words or groups of
words rather than individual letters. Also, by alternating between which hand plays the first
note in the rudiment, both hands are exercised - especially beneficial for the weaker hand.

There are forty standard rudiments that drummers should be acquainted with and an overview
is available on the Percussive Arts Society’s website3.

It is useful to have an goal in mind when practising and Fujii et al. [12, p. 500] note that the
data collected in their study can be used to determine a target performance level for music
students. The data indicates that to perform comparatively to a professional drummer, the
mean squared error (MSE) and synchronisation error (SE) should be below approximately
10ms.

3.2.3 Metronome

Fujii et. al [16] show that while non-drummers may be able to tap at the same rate as drum-
mers, the asymmetry score of the onset distribution is significantly smaller for drummers,
which is likely due to practicing in synchronization with a metronome or similar external
pulse in a musical context.

A metronome set to generate an audio and/or visual pulse for each quarter-note of a given
tempo is commonly used for synchronisation of multiple musicians and for practicing timing
accuracy and consistency. Music students are therefore usually encouraged to practice with a
metronome to improve their internal sense of timing.

Sometimes synchronization error is caused by the performer not being comfortable with per-
forming to a metronome. A commonly employed technique to help ensure synchronization
with an external audio pulse is to set the volume of the pulse to a setting, where it is masked
by the sound of the drum-kit, when a drum hit perfectly matches the metronome.

This makes determining if sensorimotor synchronization has been achieved more intuitive
and decreases the cognitive load of the task, since relating to the metronome is only necessary
if the performer drifts out of synchronisation and has to self-correct.

A method to improve the internal sense of timing is known as ghost clicks or quiet count -
an example of which is available in [21]. The concept is simple and the idea is to mute

3https://www.pas.org/docs/default-source/default-document-library/pas-drum-rudiments-2018dcccc96de1726e19ba7fff00008669d1.
pdf?sfvrsn=fdbeaea5_6

https://www.pas.org/docs/default-source/default-document-library/pas-drum-rudiments-2018dcccc96de1726e19ba7fff00008669d1.pdf?sfvrsn=fdbeaea5_6
https://www.pas.org/docs/default-source/default-document-library/pas-drum-rudiments-2018dcccc96de1726e19ba7fff00008669d1.pdf?sfvrsn=fdbeaea5_6
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the metronome audio every other bar, so that the musician has to maintain a consistent tempo
while the metronome is muted with the goal being that the synchronization is still intact when
the metronome audio returns. As the performer’s internal timing improves, the number of
muted bars is increased.

3.2.4 Smart Timing Practice Tools

A tool that measures timing accuracy and provides performance feedback to the user is often
referred to as a Rhythm Coach and can be found in certain metronomes4 and even smartphone
applications5. Using a sensor attached to a drum, the device measures the deviation of the
user’s performance from the metronome pulse used for synchronization. Electronic drum-kits
often include similar features, but support input from multiple drums simultaneously. Some
electronic drum-kits and drum pads also feature the quiet count method mentioned in the
previous section. More recently, a software application, Melodics6, expands upon the Rhythm
Coach concept by gamifying drum practice.

There are however some shortcoming in the current timing tools. The metronomes only
provide one sensor input, rendering it impractical to measure inter-limb timing, while the
electronic drum-kits do not provide detailed information about the inter-pattern timing of the
performance, but usually present the user with the total number of correct hits as a percentage
value. Melodics requires an external MIDI input device and as such mainly caters to electronic
drum-kit or drum-pad owners. The analysis is also limited to an indication of anticipated and
lagging events on a piano-roll representation without a unit of measurement and does not
provide a method for analysing the timing in detail after the performance.

3.3 Human Sensory and Motor System

According to Fujii et al. [16], the 2005 World’s Fastest Drummer (WFD) competition winner
was able to deliver just over 1200 drum hits per minute using both hands with drumsticks,
formally referred to as bimanual stick drumming. This equals a inter-onset interval (IOI) of
50ms for bimanual or 100 ms for unimanual stick drumming.

According to Dahl [22], the fastest rate reported for double pedal playing, i.e hitting a bass
drum alternating between both feet, is 1030 hits in 60 seconds, which is equal to an IOI of
117ms per foot.

These results provide a measure of the absolute minimum interval to be expected between
hits and can be used in the detection algorithm to discard additional hits that lie within this

4https://www.boss.info/us/products/db-90/
5https://makers4good.com/pages/backbeater
6https://melodics.com

https://www.boss.info/us/products/db-90/
https://makers4good.com/pages/backbeater
https://melodics.com
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interval after the initial hit to reduce false positives in the onset detection algorithm.

However, since the goal of the prototype is to measure the asynchrony or deviation of each hit
from a musical temporal grid, a higher resolution is required for the actual timing analysis. In
[12, p. 496] the synchronization error (SE) of 15 professional drummers lies in the range from
approximately -50ms to +50ms with a standard deviation of 10-15ms. The 2005 WFD winner
mentioned above shows similar standard deviation values for SE, 9.5 and 6.6ms for the left
and right hand, respectively. These figures suggest that the temporal resolution and accuracy
of the onset detection method should ideally be less than 10ms to capture the asynchrony of
expert drummers.

To reduce the risk of the user becoming confused or losing interest, any setup tasks required
prior to a practice session must be as straightforward and quick to complete as possible.
According to Doherty & Sorenson’s paper on user experience in a computing setting [23], a
user is likely to become inattentive, if a task takes more than 10 seconds to complete. For 5-10
second tasks, a user is likely to keep attention if progress feedback is provided. If a task takes
less than 5 seconds to complete, the user is unlikely to lose attention. Ideally, processing time
for the setup tasks would therefore be kept below 5 seconds per drum.

Another aspect to consider regarding the temporal resolution of the system is the limitations
of the human sensory apparatus itself - more specifically the window of simultaneity, which
Wykowska & Arstila [24] describe as the time range within which separate stimuli are per-
ceived as one synchronous event. Their research suggests that the window size is 20-30ms for
visual stimuli and approximately 4ms for auditory stimuli presented to different ears. This
inherent limited ability to discern separate audio events should therefore theoretically limit a
musician’s conscious synchronization efforts to a resolution of approximately 4ms.

Echo threshold is another definition of the same phenomenon used by Brown et al. [25]:

"The echo threshold is the briefest lead-lag delay at which subjects report perceiv-
ing “two sounds” or are able to accurately identify or discriminate the lag location
on some criterion proportion of trials (e.g., on 50 % or on 75 % of trials"

An overview of various studies of echo thresholds is presented in the paper and for short
burst signals most of the studies define the echo threshold as approximately 5ms.

This further supports using a 5ms temporal resolution for onset detection.

To summarize the findings on the human motor and sensory system as it relates to the features
and requirements for the prototype:

• Minimum inter-onset-interval (IOI) = 100ms for each limb

• Synchronization error of expert drummers measured as standard deviation = ~10ms
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• Task completion attention span <=5s

• Human visual temporal resolution = 20-30ms

• Human auditive temporal resolution = ~5ms

3.4 Automatic Drum Transcription Methods

The problem explored in this thesis is in many ways similar to the Automatic Drum Transcrip-
tion (ADT) problem.

One of the first mentions of ADT can be found in the 1985 dissertation On the Automatic
Transcription of Percussive Music by Walter A. Schloss [26]. Although the dissertation is more
than 30 years old, it still provides useful insights into the intuition and problems related to
ADT and shows that the although the field of ADT is constantly evolving and computing
power is ever increasing, it still worthwhile to ensure that the chosen tools are a good fit for
the problem at hand.

The operation of an ADT system can be divided into two parts - source separation and onset
detection.

If the performance to be transcribed is monophonic, i.e. only a single drum-kit component is
active, then the process is simpler, as it is only a matter of performing onset detection. Some-
times the performance is quasi-monophonic in the sense that the audio signal may contain
multiple components, but only one is ever active at any given time. These situations require a
method that can detect multiple components, but usually a minimum interval between events
is specified to allow for classification of the event type.

However, in most ADT cases the signal is a polyphonic performance with a mixture con-
taining multiple components with overlapping events. In some situations, there may also be
pitched instruments in the mixture, but those cases fall into the domain of Automatic Music
Transcription (AMT) of which ADT is a sub-problem.

In case of polyphonic performance, pre-processing is required using source separation meth-
ods to separate the components into individual audio streams.

The following provides a brief overview of some currently popular methods for source sepa-
ration and classification as well as onset detection that were considered for the prototype. For
a more complete treatment, the paper A Review of Automatic Drum Transcription by Wu et al.
[27] presents the state of the art as of 2018.
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3.4.1 Source Separation and Classification

3.4.1.1 K-Nearest-Neighbour Classifier

Stefanakis et al. [28], demonstrate an quasi-monophonic method to detect and classify audio
events using a K-Nearest Neighbour Classifier with K=1.

Audio is captured via a microphone at a sampling rate of 22050Hz and STFT is performed
with a Hanning window of 3ms and hop size of 0.73ms.

A template dictionary is generated using isolated audio recordings of the events to be de-
tected. Audio events can be classified with 90% accuracy and a 5ms response time by com-
paring the real-time audio input to templates in the dictionary.

The method assumes no overlapping audio events, a minimum of 21ms between audio events
and uses the so called “percussiveness” measure for onset detection.

Although the accuracy and response time is within range of the requirements for the proto-
type, the method is ultimately not a good fit, since it does not support polyphonic perfor-
mances.

3.4.1.2 Bounded-Q Analysis

The software program Pure Data, commonly known as Pd [29], contains various tools for
signal processing and analysis. Amongst these is Bonk, which is used to detect onsets and
match them to pre-recorded spectral templates in quasi-monophonic performances.

The algorithm employed in Bonk is called Bounded-Q analysis [30]. The algorithm separates
the audio signal into eleven individual streams using a filterbank and performs onset detection
on each stream. The combination of onsets detected in the streams can then be compared
to known onset combinations for various percussive instruments and the closest match is
reported.

The minimum hop size possible with Bonk is 64 samples at 44.1kHz. This provides a temporal
resolution of 1.45ms, which is within the prototype requirements. However, the algorithm
does not support polyphonic performances and is therefore not suited for this project.

3.4.1.3 Non-Negative Matrix Factorization

Lee and Seung coined the term Non-Negative Matrix Factorization (NMF), which is de-
scribed in their paper Algorithms for Non-negative Matrix Factorization [31]. The expression
non-negative in this case refers to the overall assumption that the mixed signal is a sum
obtained exclusively through summation of a number of components. Since the magnitude
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spectrogram of an audio signal is inherently non-negative, it is readily applicable for source
separation with NMF.

The NMF method is defined in [31] as follows:

Given a non-negative matrix V, find non-negative matrix factors W and H such that:

V ≈WH (3.1)

In the case of drum source separation, the matrix V is usually a magnitude spectrogram
obtained through a Short-Time Fourier Transform (STFT) of an audio mixture containing drum
events.

The matrix W is the basis matrix, usually called the dictionary, which contains templates, i.e.
the spectral fingerprint of each drum, more formally known as the components.

Similarly, H is referred to as the activation matrix and contains the activity of the components
in the mixed signal.

The number of components that the algorithm attempts to isolate, also known as the rank or
simply R, is defined by the user and in our case, the rank is equal to the number of drum-
kit components in the mixture. If only standard drum patterns are to be identified, three
components might suffice for identifying the kick, snare and hi-hat. However, additional
components could be included for separation of a larger number of drums or to allow for
timbre changes as a result of specific drum performance techniques.

A dictionary of drum sound templates is constructed by applying the NMF algorithm with
rank R=1 to recordings of each drum-kit component in isolation, storing the W matrix in the
dictionary and discarding the H matrix.

Subsequently for classification, the W matrix is initialized with the previously stored tem-
plates, while the H matrix is initialized either randomly or uniformly.

The W and H matrices are updated using an iterative method and the divergence between
the estimated V and the actual V is minimized. The W matrix can optionally be fixed, which
makes the source separation adhere more strictly to the content of the templates.

Lee and Seung proposed the use of a multiplicative update approach, which can be combined
with a variety of divergence measurement methods, such as Euclidean distance, Kullback-
Leibler divergence and Itakura-Saito divergence.

The mixture is ultimately decomposed into separate magnitude spectrograms for each com-
ponent in the mixture and the phase information of the original mixture is combined with the
spectrogram magnitudes. The resulting data is then reconstructed into separate audio streams
by performing inverse STFT.
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The NMFD method introduced by Smaragdis [32] adds a temporal aspect to the standard
NMF method, which changes the NMF model to the following:

V ≈
T−1

∑
t=0

Wt ·
t→
H (3.2)

Whereas NMF assumes that a template is constant over time, the NMFD method expand the
templates into MxT matrices, where M is the number of frequency bins and T is the number
of continous STFT frames stored. This allows the algorithm to also take into account temporal
variations in the templates when separating the components.

López-Serrano et al. provide the NMF Toolbox [33] for MATLAB, which includes an im-
plementation of the NMFD algorithm by Smaragdis - although the T value is only used to
fade a static template over time and therefore the implementation does not capture the actual
temporal changes in the components.

3.4.1.4 Advanced Machine Learning Methods

As computing power has increased, development of ADT tools using advanced machine learn-
ing algorithms has expanded. The algorithms can typically be divided into two approaches:

- Algorithms trained on a large number of isolated audio recordings of the drums used within
a mixture

- Algorithms trained on sequences of events, such as the drum pattern mixture itself

Şimşekli et al. [34] present a Hidden Markov Model (HMM) model, which is trained on
isolated samples to detect and classify percussive events. Using an efficient HMM implemen-
tation, the method is able to operate in realtime, but does not support polyphonic audio.

Based on work on the previously described NMFD method, Smaragdis and Venkataramani
[35] successfully created a linear autoencoder termed the Non-Negative Autoencoder (NAE).
However, while the neural network adaptation provides more extensibility and better perfor-
mance than standard NMF for high-rank decompostion using a multilayered NAE approach,
it did not perform significantly better for low-rank decomposition, which makes it less useful
for the three-component drum-kit source separation problem at hand.

Comparing RNN and NMF methods in the paper A Review of Automatic Drum Transcription,
Wu et al. [27] state that the lstmpB method achieves the highest F-measure score of the RNN
variants and similarly NMFD for the NMF methods - although it scores lower than all the
RNN methods.
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"Based on our experiments, RNN-based methods seem to be the most promis-
ing approaches, and they are recommended when a large and diverse training
dataset with high-quality annotations is available. NMF-based methods, on the
other hand, provide decent performance with only little training data required;
suitable for cases when large training datasets are not available." [27, p. 1479]

For the prototype to facilitate analysis of inter-limb accuracy in a user performance, it is
important that the algorithm, in addition to correctly classifying overlapping drum events in
a mixture, also provides accurate temporal onset locations. As seen in section 3.1, Frühauf et
al. [3] show that temporally shifting individual drum-kit components as little as 15ms causes
listeners to lower their rating of a performance. Since F-measure evaluations of ADT methods
are often made with a fairly coarse window size of 50ms, as described in [27, p. 1466-1467], it
is difficult to predict the performance of a given method at the increased temporal resolution
required for the prototype to function properly in the intended use case.

Although neural network approaches typically outperform simpler source separation meth-
ods, while still achieving real-time operation, the main issue with neural networks is the
amount of time required for training as noted in [36].

As mentioned in the research chapter, users can only tolerate a certain amount of waiting
for setup tasks to finish. For the prototype, where the users train a dictionary using audio
recordings of their own drumkit, the time required to complete training of a neural network
would be detrimental to the user experience.

Training a neural network on a dataset containing a large number of generic drum samples
to ensure sufficient generalization could be a workaround, but this would prevent the algo-
rithm from taking into account the room acoustics and idiosyncrasies of the drumkit and
microphone setup specific to a given user.

It could be argued that if the drumkit, acoustics, microphone position and audio settings
remain constant between practice session, a one-time extended training procedure might be
acceptable. However, a static setup is not considered feasible in real-life scenarios, since most
musicians will regularly need to move their drum-kits for concerts and similar events.

After completing the initial research, a paper by Callender et al. [37] was published, which
describes an adaptation of the Onsets and Frames project [38], which was initially trained to
transcribe piano music, to perform ADT by training it on a new dataset, the Expanded Groove
MIDI Dataset (E-GMD).

The E-GMD dataset was generated by expanding the GMD dataset [39], which contains a large
number of human drum performances recorded as MIDI data, using the MIDI data to trigger
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drum samples in 43 different synthetic drum-kits on a Roland TD-17 electronic drum-kit7 and
recording the resulting mixtures.

The original Onset and Frames project as well the adaptation, OaF-Drums, is based on the
Magenta framework, which is powered by TensorFlow [40]. The training process for OaF-Drums
took three days to complete using 16 tensor processing units (TPUv3).

Whereas the original Onset and Frames model splits onset and note activity detection into
two separate stacks, the OaF-Drums model only uses the onset and velocity part. Further
modifications are incorporated to tailor the model to percussive content. It is worth noting
that a hop size of 441 samples is used resulting in a temporal resolution of 10ms. Mir_Eval [41]
is used to calculate the F-measure [42] and as previosly mentioned, the criteria for a correctly
classified onset requires it to fall within a 50ms window.

Although trained on synthetically generated audio mixtures, the approach is able to perform
ADT on audio containing acoustic drumkit mixtures with support for transcribing velocity
information.

3.4.2 Onset Detection

Following source separation, the resulting individual audio streams must be analyzed to de-
termine the temporal location of onsets in the signal. Although this seems like a simple
problem, onset detection has its own pitfalls starting with how to define an onset, since the
perceived onset does not necessarily match the onset detected in the audio signal - also known
as the perceptual center problem [43].

Even though percussive onsets are more pronounced than pitched instruments onsets, the
onset location is a flexible definition and is usually specified as part of a study. For example,
Fujii et al. [12] define the onset location as "the time at which the envelope exceeded 10% of
the maximum amplitude of each sound burst".

Both time- and frequency-domain methods are available for onset detection with varying
complexity. Most methods rely on peak-picking after an initial processing stage, in which the
audio signal is reduced to an envelope with peaks at the temporal locations of the onsets.
This can be accomplished either using a empirically determined fixed threshold or using an
automatic threshold that is updated based on the signal content. A comparison of various
methods is available in the paper A tutorial on onset detection in music signals by Bello et al. [44].

Assuming that percussive onsets are relatively constant between hits and if isolated audio
recordings are available of the drum-kit components used in the mixture, an alternative solu-
tion to detecting the actual onset is to detect the peak and extrapolate the onset by subtracting

7https://www.roland.com/global/products/td-17_series/

https://www.roland.com/global/products/td-17_series/
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a onset-to-peak lag value - similar to the method used in [12]. The lag can be determined
through either manual or automated analysis of the isolated drum-kit component recordings.
Detecting the peak reduces the risk of noise in the signal obscuring the exact onset location. It
can also reduce the ambiguity of defining onset locations, since, if required, the lag value can
be further adjusted manually to perfectly match the ground truth onsets - somewhat similar
to the recording delay compensation settings available in some audio software, such as Logic
Pro X8.

8https://www.apple.com/logic-pro/

https://www.apple.com/logic-pro/


Chapter 4

Prototype Requirements

Based on the research and problem statement, a basic requirements specification was created
for use as a guide during the implementation phase.

Purpose

The intended use case for the prototype is to provide an analytical tool for drummers to
measure their timing performance relative to a metronome pulse without consideration for
any genre-specific timing idiosyncrasies.

Although research shows that the timing accuracy of drummers changes with tempo [12] and
that the location of an onset has an effect on the perceived timing [3, p. 254], the main goal is
to provide an objective analysis of the incoming data and therefore the system will not take
into consideration the tempo or the location of onsets in the rhythmic structure.

The underlying assumption is that the ability to synchronize with a metronome is essential
regardless of the playing style and that the distribution of onsets on a microtiming level is an
artistic choice. Nevertheless, to be able to make that choice, drummers must be aware of their
timing.

However, if the user would like to practice a specific type of pattern or timing style, the ability
to import a MIDI file with a new exercise drum pattern should be provided.

Features

• Facility for user to generate a custom drum template dictionary

• Setup process duration should be less than 5 seconds per drum

• Import of standard MIDI files containing exercise patterns to be used as ground truth
data
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• The sample rate of the audio processing should accommodate the frequency range of
the drum-kit components

• Support for polyphonic drum performances

• Source separation of a monaural audio signal input into individual audio streams for
bass drum, snare drum and hi-hat

• Onset detection performed on the individual streams to enable inter-limb timing accu-
racy evaluation

• Onsets occurring within 100ms of each other in each audio stream should be removed
to reduce false positives

• Temporal resolution of onset detection algorithm should be at least 5ms

• User-friendly performance feedback in a graphical user interface showing detected on-
sets vs. reference onsets and timing accuracy per detected onset in milliseconds

Assumptions

Since the system cannot be expected to function correcly under adverse conditions, a set of
guidelines to ensure optimal system performance was compiled. The guidelines in table 4.1
should be presented to the user during the setup process and could optionally be displayed
to the user again in the case poor source separation and/or onset detection performance is
detected.

Issue User Information

Inadequate signal-to-noise ratio: Reduce background noise
Reduce microphone gain to avoid distortion

Template ambiguity: Avoid using drums with a similar pitch or timbre
Avoid drum patterns with overlapping events in similar drums

Temporal smearing: Reduce drum resonances
Reduce excessive reverberation

Table 4.1



Chapter 5

Prototype Development

5.1 Prototype Design

The main purpose of the current prototype is to facilitate an evaluation of the user experience,
the performance of the source separation algorithm, the accuracy of the timing analysis and
ultimately determine whether the user achieves improved timing performance as a result of
performing exercises with timing feedback.

The design of the prototype therefore has two paths - user evaluation and system evaluation.
The user evaluation aspect is functionally identical to what could be further developed into
a release version. The system evaluation contains functions to test the underlying algorithms
via benchmarking scripts and unit tests. Automated tests also enable comparison with other
ADT methods using the IDMT-Drums dataset.

Although the ideal design process would be to finalize the design prior to the implementation
process, due to the experimental nature of prototyping, it is expected that the implementation
process and additional research will prompt modifications to the design.

5.1.1 User Evaluation Design

When starting the prototype software, the user must first complete a setup process. Next, the
user is asked to examine the exercise pattern, listen to an audio preview of the pattern and
perform the pattern in synchronization with a metronome. Initially, the user does not receive
timing feedback, but after a predetermined number of exercise iterations, the user is presented
with timing feedback on a graphical user interface following each exercise iteration.

To accomplish this, the following tasks must be implemented in software:

20
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Setup

1. Record audio samples of each drum-kit component with automatically triggered record
start and stop

2. Perform NMFD with rank = 1 and T = 8 to generate templates

3. Compile templates into a dictionary and store as a .mat file

Analysis

1. Import and convert a standard MIDI file to an suitable format for use as an exercise
pattern and as ground truth data

2. Generate metronome audio pulses at a specified tempo

3. Record the user performance as an audio signal containing a mixture of the previously
sampled drums played according to the exercise pattern in synchronization with the
metronome.

4. Separate the drum-kit mixture into individual component audio streams

5. Detect onsets in the separated streams

6. Match detected onset to ground truth onsets

7. Calculate the timing error between the detected onsets and ground truth onsets

8. Depending on the test modality, plot the results to provide timing performance feedback
to the user

9. Store detected onsets for subsequent analysis

Statistics

The overall steps are as follows:

1. Load detected onsets from files containing user performances with and without timing
feedback

2. Perform timing analysis on detected onsets relative to ground truth data

3. Pool analysis result from the last three exercise attempts of each modality into two
vectors corresponding to the modalities

4. Calculate statistic and present the results of each modality
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In addition to calculating the mean and standard deviation of the onset distribution, the use of
a combined metric that could express the difference between two performances as one score
would be beneficial.

However, since the user’s onsets may anticipate or lag the beat relative to the ground truth
onsets, the data will potentially contain both negative and positive values, which could distort
the results of analysis methods based on mean and standard deviation calculations if not
processed correctly.

Therefore the final design of the statistical analysis will be determined as a result of analysing
the data and experimenting with different metrics.

5.1.2 System Evaluation Design

To verify correct operation of the implementation during development and to evaluate the
performance under different conditions, a number of system tests are required that program-
matically modify the ground truth data and other test variables prior to generating synthetic
audio mixtures to be used as input to the prototype.

The source separation and onset detection process is accomplished by utilising the same func-
tions as during the user evaluation to keep the results aligned.

The list below shows the basic tasks of the system tests:

1. Import and extract onsets from a standard MIDI file

2. Modify test variables programmatically on each iteration as required for the selected test

3. Perform NMFD with rank = 1 and T = 8 to generate templates using drum samples from
the selected synthetic drum-kit

4. Compile templates into a dictionary and store to a .mat file

5. Generate a synthetic audio mixture from the MIDI data

6. Perform source separation and timing analysis using the synthetic mixture

7. Optionally plot the timing feedback for verification of correct operation

8. Compare test iteration data and present results

A method to handle audio and ground truth data from the IDMT-Drums dataset [45] is re-
quired to enable comparison of the prototype to other ADT methods. The process is outlined
below and is slightly different to the other system tests due to the format of the data in the
dataset.
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1. Import dataset audio files and ground truth onset data

2. Segment training data into individual events and extract a single event for each drum-kit
component

3. Calculate onset-to-peak lag in the drum-kit component audio data

4. Perform NMFD with rank = 1 and T = 8 on audio data for each drum-kit component to
generate templates

5. Compile templates into a dictionary and store to a .mat file

6. Perform source separation and timing analysis using the dataset mixtures

7. Optionally plot the timing feedback for verification of correct operation

8. Export the detected onsets and the ground truth onsets to text files suitable for F-
measure calculation using Mir_Eval

5.2 Prototype Implementation

MATLAB [46] was chosen as the development environment to facilitate efficient prototype
implementation using the built-in tools in MATLAB and third-party toolboxes, such as the
NMF Toolbox by López-Serrano et al. [33], the MIR Toolbox by Lartillot et al. [47] and the
MIDI Toolbox by Eerola & Toiviainen [48].

Having established the overall design in section 5.1, the first step of the implementation pro-
cess was to divide the prototype into parts based on the intended use and designating a main
function file for each part.

The main function names and usages are listed in table 5.1 and correspond to the overviews
in figures 5.1 and 5.2.

Function Name Usage

- setupDictionary.m Record drum samples and generate dictionary
- performAnalysis.m Record user performance audio and perform analysis
- sourceSeparation.m Separate mixture into individual component streams
- detectOnsets.m Detect onsets in separated streams
- matchOnsets.m Compare detected onsets to MIDI onsets
- plotResults.m Plot the timing feedback presented to the user

Table 5.1
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Additional helper functions were created for various operations, such as converting from
tempo in beats per minute to inter-onset-interval in milliseconds, which are called from the
functions listed above.

Figure 5.1: Overview of the NMFD dictionary setup process with start and stop of audio recording controlled
using the audio signal level with pre-determined thresholds. The process is repeated for each drum-kit component.

Figure 5.2: Overview of the prototype system from input to output. The score onset locations is used as a starting
point for the activation update process for score-informed separation

In order to create a seamless evaluation process and ensure repeatability, two scripts were
created to automate the calling of the above functions during the user evaluation and the
system evaluation process named userEval.m and sysEval.m, which are available in appendix
K and J, respectively. A separate script was created for the the IDMT-Drums dataset test,
which is available in appendix L.

The source code is available in the supplementary material.
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5.2.1 Source Separation

Figure 5.3: NMFD templates showing normalized audio
signal energy over T=8 STFT frames

Based on research into the state-of-the-art
source separation methods and due to the re-
quirement for efficient template training, the
Non-Negative Matrix Factor Deconvolution
(NMFD) approach described in [32] was cho-
sen for source separation.

To speed up the implementation phase, the
NMF Toolbox by López-Serrano et al. [33]
provided the required functions. In addi-
tion to other NMF variants, the NMF Tool-
box supports the NMFD method utilising
Kullback-Leibler divergence for the multi-
plicative update function.

As mentioned in section 3.4.1.3, the tempo-
ral aspect of NMFD in the NMF Toolbox is
implemented in a fashion that fades out the
same spectrogram drum sample over T num-
ber of frames by multiplying it with a coeffi-
cient that decreases to zero over T iterations.

Some modifications were therefore required to the toolbox to create templates that contain the
required number of frames extracted from the actual drum spectrograms and to enable the
algorithm to use the expanded templates during the source separation process. Additional
information about the NMF Toolbox modifications is available in appendix I.

An example of the content in NMFD dictionary templates is shown in figure 5.3. While it can
be argued that the spectrum of a drum following the attack portion is more or less a fade-out
over time, the simplified approach in the original implementation would likely perform worse
with toms and similar drums that have a pitched component in the sustain period. Being able
to discern changes in the pitch component over time could potentially improve the separation
quality when similar sounding drums, such as bass drums and toms, coexist in a mixture.

Various settings for the NMFD algorithm were tested and notably, using adaptive templates
over fixed templates did provide better perceived separation quality, but also more cross-talk
making it less suited for onset detection, which is in line with the findings by Dittmar &
Gärtner in [45]. This prompted the use of fixed templates in the prototype.
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5.2.2 Multi-threading and Buffering Considerations

Since MATLAB does not support multi-threading, a limitation presented itself with regards
to simultaneously recording audio, performing the source separation and timing analysis as
well as plotting the results.

Ideally, the calculations and the plotting would be completed during each buffer period and
using sufficiently large buffers, this is indeed possible with a correspondingly large latency
between input and output. Benchmarks with different audio buffer sizes showed that a buffer
size greater than 8192 samples was required to avoid buffer underrun.

While pseudo-realtime performance can be achieved, another observation was that perform-
ing the NMFD processing on shorter audio segments as would be required for a real-time
implementation, resulted in a degradation of the source separation quality. This is most likely
caused by the number of components in the mixture varying in each frame, which confuses
the algorithm when it expects to find activations for all of the components specified, similar
to the issue mentioned in section 4.2 in [45].

Although the NMF Toolbox implementation provides an option for score-informed process-
ing, i.e. the ground truth onsets are used as a starting point for the activations, it does not
fully solve the issue. Another approach would be to dynamically update the expected number
of components for each frame to correspond with the components active in the mixture at a
given time as per the ground truth data. Exploring this further was however beyond the scope
of this project.

In [45], Dittmar & Gärtner successfully implemented a real-time NMF-based ADT system as
a VST1 plugin, which performs source separation and onset detection with a systemic delay
of approximately 6ms. This shows that a real-time implementation of the system is possible,
but will require a different approach than currently used in the prototype.

Seeing that a processing lag was unavoidable either due to buffer size latency or the need for
a large frame size for the NMFD algorithm for the prototype, it was decided to first record a
complete exercise pattern and then process the entire recording to avoid the issues described
above, which also bypasses the need to finish plotting in time for the next audio buffer being
acquired. The exercises can then be repeated indefinitely with the added benefit of allowing
the user to solely focus on playing the drums during the exercise - and having unlimited time
to study their timing performance between each exercise attempt.

5.2.3 Automatic Thresholding

Initially, a fixed threshold value was empirically determined in conjunction with the built-in
findpeaks MATLAB function used to detect peaks in the separated audio streams. However, a

1https://www.steinberg.net/en/company/technologies.html

https://www.steinberg.net/en/company/technologies.html
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fixed threshold requires tuning depending on the incoming signal and relying on the user to
set a threshold for each drum would be detrimental to the user experience.

An automatic threshold feature was therefore implemented based on detecting the envelope
of the audio signal with two separate detectors by applying the movmean function in MATLAB
to a rectified version of the original audio.

A slow detector was tuned to smooth out peaks leaving an envelope that shows the trends in
the signal over time and a fast detector was set to smooth the rapid fluctuations in the signal,
but leave the prominent peaks intact as seen in figure C.1.

As seen in equation 5.1, averaging the difference between the envelopes after adding an empir-
ically determined offset results in a vector containing the automatic threshold values. Figure
C.2 shows the threshold overlaid on the rectified audio signal.

average f ast = m(|X|), K = 5000

averageslow = m(|X|), K = 500

di f f = average f ast − averageslow

autoThreshold = m(di f f + o f f set), K = 500, o f f set = 0.2

where X = all audio samples and

m is the movmean MATLAB function with window size K

(5.1)

In equation 5.2, setting the output to one when the rectified audio signal is above the automatic
threshold value and zero otherwise, we get a vector of binary states with the same length as
the number of samples in the audio signal.

g(x) =

{
0 |x| <= autoThreshold
1 |x| > autoThreshold

}
(5.2)

Multiplying the rectified audio signal with the vector as per equation 5.3 either mutes the
audio or passes it through unchanged resulting in a cleaner signal for the findpeaks function to
process eliminating the need for a fixed threshold. Figure C.3 shows the audio signal before
and after thresholding is applied.

y(X) = |X| ∗ g(X)

where X = all audio samples and ∗ denotes element-by-element multiplication

(5.3)
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The MATLAB implementation can be seen in appendix F.

5.2.4 Onset Detection

The currently used onset detection method simply attempts to find the largest peaks in the
audio signal separated by the minimum IOI value of 100ms. Therefore, a slight discrepancy
can occur if a given drum sound has an extended attack duration and is compared to a ground
truth onset.

However, since the separated audio might contain low-level spurious noise from overlapping
audio events, it was decided to use the audio signal peak instead of attempting to locate the
exact onset. The logic behind this is that audio recordings of each drum in isolation are stored
during the NMFD dictionary setup process and assuming that the onset to peak distance
remains constant for each drum-kit component, it is possible to automatically extrapolate the
onset location from the peak location.

As seen in appendix G, the value of the audio peak is calculated from the isolated recordings
using the max function in MATLAB and then the onset location is found by assuming that
the onset is placed at the start of the recording at the temporal location where the rectified
audio level is equal to 1% of the peak value. Trimming the audio so the first sample is at the
onset location, the audio peak sample index is equal to the onset-to-peak lag value, which can
then be used to compensate for the difference in the detected onset locations compared to the
ground truth onsets. This method is similar to the approach used by Fujii et al. [12], where
an onset threshold of 10% of the peak value is used.

Another benefit of detecting peaks instead of onsets is that the audio signal can be pre-
processed with the automatic threshold function described above. If detecting the actual
onsets, their exact location would likely be shifted due to low-level signals being muted,
when below the threshold as seen in figure C.3 in the appendix.

The onset detection utilises the findpeaks function in MATLAB, which accepts a number of
parameters to tune the detection process, such Minimum Peak Height, which was set to the
default 0 (i.e. disabled), Minimum Peak Distance, which was set to 100ms based on the IOI
requirements established during the research phase and Minimum Peak Prominence, which
was empirically determined and set to 0.3. The remaining optional parameters were left at
their default values.

If required, the automatic threshold function described above could be further developed to
also handle peak detection and since the peak locations are already segmented and separated
by zero value samples, it would be trivial to use the max function to detect the peak locations.

Initially, the system detected peaks in the rectified audio signal, but after additional system
testing it became clear that attempting to find peaks in the rectified audio without smoothing
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the signal was causing onsets to be incorrectly detected by a couple of milliseconds as shown
in figure D.1. Inspecting the signal revealed that the issue occurred when the absolute peak of
a given hit had shifted due to the source separated signal waveform changing shape slightly
when two drum-kit components were overlapping in the mixture.

An exponential moving average (EMA) filter [49] was therefore used to smooth the thresh-
olded audio signal prior to processing with findpeaks.

As seen in equation 5.4, the EMA filter is a simple recursive filter [50]. The amount of smooth-
ing is set with the parameter a, which controls the weighting or ratio between the input and
the previous output inside the filter. The input and output of the filter are designated x and
y, respectively. The variable t is the current time step in samples.

y(t) = a · y(t− 1) + (1− a) · x(t) (5.4)

For the hi-hat, setting a=0.95 provided the best results, while a=0.9991 worked best for the
snare and bass drum. After smoothing the signal, the setting for the findPeaks function needed
to be modified by reducing the Minimum Peak Prominence setting to 0.03 for the hi-hat and
0.001 for the snare and bass drum. Also, since the filter introduces a delay in the signal
depending on the value of a, this must compensated for in the detected onset location values.

The result is that the overall detection consistency has degraded somewhat, but the detection
algorithm is more robust to changes in the shape of the audio signal peaks. The trade-off
between a higher precision, but less stable system versus a more stable, but less precise system
is worth considering when introducing real-world data, which is more unpredictable than
the synthetic data used for system evaluation. The EMA filter was implemented after the
preliminary and revised user evaluations, but was used for the system evaluation.

5.2.5 Onset Matching

To calculate the accuracy of the onsets detected in the user performance relative to the ground
truth or reference onsets, an onset matching method is required.

The concept is to simply calculate the Euclidean distance from each detected onset to each ref-
erence onset. Finding the minimum value returns the error or asynchrony in samples between
a given detected onset and its closest matching reference onset. The resulting asynchrony val-
ues are later converted to milliseconds and used as accuracy indicators for each drum-kit
component in the timing feedback visualisation as seen in the second row of figure 6.21.

The number of detected onsets are not always equal to the reference onsets. For example, the
player might hit a drum too many times or miss a hit. Also, noise might distort the signal that
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triggers the peak detection algorithm resulting in excess onsets or the input signal might be
too low resulting in missing onsets.

Currently, duplicate and missing detected onset are reported as-is in the timing feedback to
keep the user’s performance aligned with the feedback. It could be argued that removing
duplicates onset from the timing feedback could improve the user experience, but further
user testing is required to determine if this is the case.

However, when analysing the data after the fact and calculating statistics, it can be useful
to perform post-processing to ensure fair comparisons between datasets and reduce clutter
during visual inspection of the data. The functions described below were therefore added as
options, which can be activated by setting the correct parameters when calling the function
matchOnsets. The implementation is available in appendix H.

In the case of duplicate onset, it is usually safe to assume that the detected onset closest to
the reference onset should be left intact and any excess onsets should be removed. This is
accomplished by iterating detected onsets, which have been matched to the same reference
onset during the onset matching process, and only retaining the onset with shortest distance
to the reference onset.

For missing hits, a simple solution is to interpolate the missing onset asynchrony value. De-
termining whether an onset is missing can be accomplished by inspecting the list of detect-
ed/reference onset pairs and looking for reference onsets without a matching detected onset.
When a missing onset is found, the asynchrony values of the adjacent onsets are used to
calculate the mean, which is then inserted as the asynchrony value for the missing onset.

In addition to removing duplicate onsets and inserting missing onsets, it can also be useful to
remove outliers. Since the absolute distances from each detected onset to its closest reference
onset are already known and stored as a vector, the vector can be searched for values larger
than a specified distance limit and the resulting indices used to remove onsets accordingly.



Chapter 6

Prototype Evaluation

6.1 System Evaluation

Figure 6.1: Piano-roll representation of the original drum
exercise pattern

The goal of the system evaluation is to gather
data on the performance of the source sepa-
ration algorithm and the onset detection im-
plementation. The system evaluation is in-
tended to run semi-automatically enabling
the simulation of a wide range of scenarios.
The system evaluation operations are consol-
idated in a single script, sysEval.m, which is
presented in appendix J.

For clarity, a separate script was created for
the IDMT-Drums dataset test, which is avail-
able in appendix L.

Symbolic representations of drum patterns,
such as the one in figure 6.1, are imported
from standard MIDI format (.mid) files to
both serve as ground truth data and as input data for generating synthetic audio mixtures
that simulate a drummer playing a drum-kit. Using symbolic data enables programmatically
manipulating parameters of the drum pattern, such as the tempo, prior to generating the syn-
thetic audio mixtures. The template dictionary setup process is also included in the automated
test to enable evaluating the effect of different drum-kits on the system performance.

Comparing the analysis results of each test iteration, it is possible to evaluate the quality of
the source separation and the timing analysis process.

A specific test is selected by setting the variable testMode accordingly.

31
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6.1.1 Method

Based on the list of tasks compiled in the design phase in section 5.1.2, the following method
was established:

1. Set the user-specified test modality, such as tempo or pattern, via the testMode variable

2. Import drum pattern as MIDI data and use as ground truth data

3. Modify the ground truth data programmatically

4. If the drum pattern is the independent variable, import MIDI data currently specified in
test

5. Generate a synthetic audio mixture using the modified ground truth data onsets and
pre-recorded drum samples

6. Set up a template dictionary with currently selected drum samples (Only necessary to
repeat if independent variable is the drum-kit)

7. Perform source separation and timing analysis on the synthetic audio mixture

8. Compensate for onset-to-peak lag

9. Compare ground truth data onsets with detected onsets

10. Present results as plots of onset detection accuracy and range

11. Repeat steps 3 to 10 as required by the specified number of test iterations

6.1.2 Results

6.1.2.1 Baseline Performance

Figure 6.2: Piano-roll representation of drum
pattern used for baseline performance tests

Prior to automated testing with different test modal-
ities, the baseline performance was established us-
ing ideal drum samples, i.e. drum-kit components
recorded in a studio environment without background
noise, distortion or excessive reverberation, referred to
as drum-kit 1 (see scalograms in figure 6.3). The scalo-
grams show that the peaks in the spectral signature of
the samples are distinct and spaced evenly throughout
the frequency spectrum with little overlap between the
individual drums.

A test was implemented in the system evaluation
script (testMode = ’combinations’) that tests the consis-
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tency of the system with increasing inter-onset-intervals (IOI) ranging from 100ms to 800ms
as seen in the drum pattern in figure 6.2. The range can then be inspected to ensure it is lower
than the 5ms temporal resolution limit required as defined in section 4.

Figure 6.3: CWT scalograms of reference drum-kit samples for bass drum, snare drum and hi-hat

Ideally, the accuracy value should stay constant regardless of the IOI and thus the range
should be as close to zero as possible. This proves that the algorithm is able to consistently
discern between onsets with changing IOI’s.

Using range as a metric removes differences caused by the onset-to-peak lag in the drum
samples and exclusively reports discrepancies in the system. However, for clarity and to
enable direct comparison of plotted results, the option to automatically compensate for the
onset-to-peak lag as described in section 5.2.4 is used to normalize the data, so perfectly timed
onsets should have an accuracy value of 0ms regardless of the onset-to-peak lag of different
drums.

As seen in figure 6.4, the snare drum has the largest range value at 1.22ms, but is still well
within the temporal resolution limit.

Testing the same pattern with a 50ms lag deliberately added to the snare drum (testMode =
’combinations-staggered’), figure 6.6 shows that all snare drum onsets are correctly detected as
shifted in time by 50ms. Figure 6.5 shows that the range has decreased due to the bass drum
and snare drum not overlapping as in testMode = ’combinations’.
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Figure 6.4: Onset detection consistency as range
with increasing IOI’s

Figure 6.5: Onset detection consistency as range
with increasing IOI’s and snare drum shifted 50ms

Figure 6.6: Onset detection accuracy with increasing IOI’s and snare drum shifted 50ms
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6.1.2.2 Inter-Limb Onset Detection Accuracy

Figure 6.7: Piano-roll representation of the drum pattern
used to test the system’s inter-limb onset detection capa-
bilities

The prototype must be able to detect minute
inter-limb timing discrepancies in order to
analyse the coordination of the hands and
feet. The exercise pattern in figure 6.7 was
created to test the inter-limb asynchrony de-
tection capabilities of the system with var-
ious combinations of simultaneous events
likely to occur in a drum pattern.

In figure 6.8, a series of results are shown
for the ’testMode=inter-limb’ test, where the
drum pattern is modified so the second and
third bass are shifted backwards in time and
the second and third snare drum hits are
shifted forwards in time, while the hihat is
unmodified. The test was performed with
shifts of 1, 2.5 and 5 ms to simulate the ex-
pected inter-limb timing asynchrony of an
expert drummer. The results show that the algorithm is able to detect errors as small as
1ms in both the bass and snare drum - although with a 1ms overall shift in the accuracy value
for the bass drum, which is the result of a slight error in the onset-to-peak lag detection. See
figure D.2 for additional plots of the 1ms test.

In the following, test results are presented for each of the currently implemented automated
tests, pattern, tempo, drum-kit and velocity.

6.1.2.3 Pattern as Independent Variable

In addition to the drum patterns used for the baseline tests, the Simplified, Shuffled and Com-
binations patterns shown in figure B.1 were used to test the system with the pattern as the
independent variable (testMode=pattern). The patterns were designed to evaluate different
aspects of the system; performance with basic rhythms with minimal overlap of drums, per-
formance with shuffled rhythms and performance with different combinations of drum-kit
components being active simultaneously.

Comparing the results in figure 6.9 shows that performance is nearly identical for the first two
patterns. There is a slight inconsistency in the bass drum in the first two patterns and for the
third pattern there is also decreased consistency in the snare drum for the second and third
events - a result of the bass drum and snare drum being active simultaneously. However, all
the values are still within the 5ms temporal resolution limit.
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Figure 6.8: Inter-limb onset detection accuracy with asynchronies of 1, 2.5 and 5 ms to simulate an expert drummer



6.1. System Evaluation 37

Figure 6.9: Onset detection accuracy with different drum patterns
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6.1.2.4 Drum-kit as Independent Variable

Synthetic drum-kits were generated for system testing using audio recordings of various
drum-kits, which were gathered as follows:

• Acoustic drum-kit recorded with an iPhone 6S in a large theater

• Virtual drum-kit supplied with the Logic Pro X digital audio workstation software

• Acoustic drum-kit recorded with a MacBook Pro’s built-in microphone in a medium-
sized, reverberant room - the same drum-kit and room as used for the user evaluation.

Figure 6.10: Onset detection consistency as range with
different drum-kits

Figure 6.11 shows the onset detection accu-
racy result for the bass drum, snare drum
and hi-hat using all three drum-kits (test-
Mode=drumkit). While the results are within
the temporal resolution limit, a marked in-
crease is seen in the snare drum in the third
test.

While the accuracy value shows an error of
approximately 3ms, the range value for the
snare drum in the third test in figure 6.10,
is 0ms, which indicates that the problem
is caused by an issue in the onset-to-peak
lag calculation. Comparing the snare drum
scalograms in figure C.4 shows that the en-
ergy distribution in SD2 is more diffuse than
in SD0 and SD1. This could be caused by
either reverberation in the recording or due
to insufficient damping of drum resonances.
Both conditions can make the peak indistinct
and thus reduce the precision of the enve-
lope extracted by the exponential moving av-
erager.
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Figure 6.11: Onset detection accuracy with different drum-kits
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6.1.2.5 Tempo as Independent Variable

Figure 6.12 shows the onset detection consistency for testMode=tempo using the reference
drum-kit 1 with the Simplified drum pattern, when tempo is increased in steps of 60, 120
and 180 BPM. The nearly identical range values indicate that the system performance remains
constant as tempo increases.

Figure 6.13 shows the result of performing the same test with drum-kit 2, which is comprised
of samples recorded during the preliminary user test. Again, the range values indicate that
the performance is identical regardless of tempo.

Figure 6.12: Onset detection consistency as range
with increasing tempo using drum-kit 1

Figure 6.13: Onset detection consistency as range
with increasing tempo using drum-kit 2
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6.1.2.6 Velocity as Independent Variable

To determine the effect of a performer’s drum stroke velocity on the onset detection accuracy,
the testMode=velocity test modifies the level of the hi-hat in the pattern (see figure 6.15) by
changing the velocity value in the MIDI data to 1/3, 2/3 and full velocity over the course of
three test iterations. The results in figures 6.14 and 6.16 show that the detected values are
constant, which indicates that the system is robust to changes in velocity.

Figure 6.14: Onset detection consistency as range with
varying hi-hat velocity

Figure 6.15: Drum pattern used for velocity test
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Figure 6.16: Onset detection accuracy with varying hi-hat velocity
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6.1.2.7 Benchmarking

Basic benchmarking of the system processing performance was implemented by adding the
tic and toc functions, which measure the time required for operations to complete, to relevant
locations in the code. A more comprehensive performance profile was also genereated with
the Profiler1 tool running the sysEval.m script with a single iteration of the testMode = ’inter-
limb’ test. A condensed list of the most time-consuming operations is available in appendix
O.

On a 2014-model MacBook Pro 15" with a 2.5 GHz intel Core i7 processor and 16 GB memory,
the processing time for the setup procedure using three components (R=3) with 8 template
frames (T=8) and a convergence limit of 1000 iterations took approximately 7.7 seconds.

Processing two bars of audio at 100BPM equal to 211,680 samples at 44.1kHz using the same
number of components and template frames with a convergence limit of 100 iterations and
plotting the timing feedback took approximately 7.4 seconds. Subsequent runs - also with
different data - completed in approximately 2.4 seconds, which is below the limit specified
in section 4. The reduction in processing time is likely due to optimizations occurring in
MATLAB’s internal pipeline.

6.1.3 IDMT-Drums Dataset Test

For comparison with other ADT methods, the prototype was tested with the IDMT-Drums
dataset [45]. The IDMT-Drums dataset2 was chosen, because it exclusively uses bass drum,
snare drum and hi-hat and thus enables direct comparison with a number of ADT methods.

Training data is provided for each mixture as separate audio recordings of each drum-kit com-
ponent in isolation containing multiple hits on each drum-kit component. The mixtures are
divided into 14 acoustic drum-kit performances (RealDrum), 60 sample library performances
(WaveDrum) and 10 drum synthesizer performances (TechnoDrum). In addition to the audio
data, annotations of the onset locations are provided as SVL and XML data.

Mir_Eval [41] was used to calculate the F-measure with a window size of 50ms, which is
identical to the method used in the OaF-Drums paper [37] and in [27].

6.1.3.1 Method

In order to set up the NMFD dictionary, the training data for each drum-kit component be-
longing to the selected mixture was segmented into individual events using mirSegment from
the MIR Toolbox [47] and the second event of each drum-kit component was used for train-
ing, since the prototype only uses one NMFD template per drum. The onset-to-peak lag was

1https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
2https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html

https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html
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also automatically detected in the training samples for use in the onset detection process as
described in section 5.2.4.

Next, source separation and onset detection was performed on the mixtures and the actual
onset locations were extrapolated using the previosly detected onset-to-peak lag. Finally, the
detected onsets and the reference onsets for each drum-kit component were exported to text
files in a format suitable for Mir_Eval. Optionally, the detected onset can be plotted for visual
comparison with the reference onsets.

This procedure was repeated for all the mixtures in the dataset.

The source separation and onset detection functions used in the IDMT-Drums test are identical
to those used in the user evaluation and the other system tests, but for clarity a separate script
was created for the IDMT-Drums dataset test, which is available in appendix L. Some functions
were duplicated to separate .m files and edited for readability by removing code, which was
not utilised in the test.

A Python [51] script was created (see appendix M), which imports the onset data text files
generated by the MATLAB script and calculates F-measure, precision and recall of each drum-
kit component for all the tests in the dataset using the mir_eval.onset function. The F-measure
results are written to a CSV file for subsequent analysis in Excel.

6.1.3.2 Results

The averaged results of all tests for the individual drum-kit components are shown in table 6.1
and indicate that the prototype performs equally well for each component with an increase in
accuracy for the snare drum. Although the hi-hat is usually easier to classify compared to the
bass drum and snare drum, since there is less overlap occurring in the frequency spectrum
and it typically has a distinct peak shape as seen in the scalogram in figure C.4, there are
also a larger of number of events occurring for the hi-hat in a normal drum pattern and as a
consequence a greater possibility of erroneous classification.

As indicated by the results in table 6.2, the prototype compares favourably to the other meth-
ods. In fairness, the prototype is trained on drum samples used in the mixtures and therefore
has a slight advantage. However, only one drum sample per component, out of the approxi-
mately five samples available per drum, was used as training data. The templates were also
fixed, which disables the adaptive update in the NMFD algorithm and makes it less flexible
with regards to variations in the components.

Figures 6.17 and 6.18 shows the change in F-measure as a function of Mir_Eval window size
ranging from the standard 50ms to 10ms. Results for OaF-Drums and other methods are
unfortunately only available with window sizes of 50ms.
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The performance with a window size of 10ms does not quite align with the requirements
specified in section 4. The reason for the discrepancy between the other system tests and
the IDMT-Drums dataset test could be caused by the patterns in the IDMT-Drums dataset
not being optimized for the use case of this prototype, i.e. no overlaps between snare and
bass drum events or the frequency content of the samples might be too similar in some cases,
causing the source separation quality to decrease. It is also possible that certain training
samples cause issues in the automatic onset-to-peak lag calculation. Also, the score-informed
option in the NMFD algorithm was not activated for the IDMT-Drums dataset tests, since it
was not used in any of the other models in the comparison.

Component F-measure

BD 90.34
SD 94.77
HH 89.31

Table 6.1: Prototype F-measure per component using the IDMT-Drums dataset with a standard Mir_Eval window
size of 50 ms.

Model Training Dataset(s) F-measure

Prototype IMDT-Drums 91.47
OaF-Drums E-GMD 85.27
DT-Ensemble TMIDT(-BAL),MDB.ENST,RBMA 91.49
ADTLib ENST-3 83.12

Table 6.2: Prototype compared to other methods using the IDMT-Drums dataset with a standard Mir_Eval window
size of 50ms. Adapted from [37] .
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Figure 6.17: Overall F-measure for decreasing Mir_Eval window sizes

Figure 6.18: F-measure per drum-kit component for decreasing Mir_Eval window sizes
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6.2 User Evaluation

Figure 6.19: Original exercise pattern

Figure 6.20: Simplified exercise pattern

The goal of the user evaluation is to gather data from
a total of ten performances per participant, where the
first five are without timing feedback and the follow-
ing five are with feedback. The tests have been de-
signed to focus on the timing aspect of the user’s per-
formance by using a simple exercise pattern consisting
only of kick drum, snare drum and hi-hat events.

6.2.1 Preliminary Method

The list below outlines the steps of the preliminary
user evaluation process.

1. The participant is presented to a one-bar drum pattern shown as a piano-roll (see figure
6.1) of kick, snare and hi-hat events

2. The participant is asked to press a key to hear a audio preview of the drum pattern

3. The participant is again asked to press a key, which starts the exercise. Following a one
bar pre-count, the participant plays two bars of the drum pattern along to a metronome
audio pulse played back through headphones

4. The audio and analysis data is stored automatically after the performance as .wav and
.mat files, respectively, but feedback is not provided to the participant about the timing
performance

5. Finally, the participant is asked to press a key to restart the test and the process is
repeated for a total of five performances

6. The participant is informed by the operator to repeat steps 1-5, but this time timing
feedback is provided as shown in figure 6.21

Due to the COVID-19 lockdown in place during the finalization of this project, access to par-
ticipants was limited, but to progress the thesis a preliminary user evaluation was performed
with two participants between the age of 20 and 36, who are musicians, but not drummers.
The author also performed the test to verify correct operation of the system, but the results
were not used in the evaluation.

The template recording process was performed by the author on location in advance on a
three-piece drum-kit shown in figure 6.22 to more efficiently use the limited time available for
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testing. This could cause a slight inaccuracy in the detection process due to variations in the
playing style of participants.

After the test, the participants were presented with a number of informal questions, which
served as the basis for the formal questionnaire presented in appendix A.

Based on the insights gained from the preliminary evaluation, the evaluation method was
revised as described in section 6.2.3.

Figure 6.21: Example of timing feedback presented to the user. Red triangles in first row indicate the performer’s
onsets, while blue triangles indicate reference or ground truth onsets as per the exercise pattern. The second
row shows the accuracy of each hit chronologically, where anticipated onsets are negative and lagged onset are
positive. The third row shows the detected peaks overlaid on the audio waveform
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6.2.2 Preliminary Results

Figure 6.22: Drum-kit and computer used for user evaluation

Overall, the participants stated that
the tasks were clear. However, it
should be noted that since the par-
ticipants’ main instrument was not
drums, the users were guided by
the operator to ensure that they un-
derstood the notation of the drum
pattern and the timing feedback.
The users responded that the feed-
back given by the system was use-
ful as a guide to better understand
their timing issues and provided in-
sight into how to remedy them.

During the evaluation process, it became clear that non-drummers might not be familiar with
basic drumming techniques and therefore the template dictionary generated by the author
in the setup process might not correspond with the sounds generated during a participant’s
performance.

The built-in microphone in a 2014-model Apple Macbook Pro 15" was used for the system
evaluation and a set of Audio-Technica ATH-M50x3 sealed headphones were connected di-
rectly to the computer’s headphone output to play back the metronome audio pulse for the
participants to synchronize to. The gain of the built-in microphone can be adjusted via the
audio settings in the operating system, but unfortunately the minimum gain setting was still
too sensitive for the sound pressure levels generated by an acoustic drum-kit, unless played
very softly. This may have affected the source separation process, since clipping the audio
signal will distort the energy distribution in the spectrograms.

The pattern used for the preliminary user evaluation was a standard rock rhythm as seen
in figure 6.19. However, while the inclusion of an additional bass drum event together with
the snare drum event on the fourth beat, is useful for evaluating system performance with
overlapping events in a real-life setting, the pattern’s complexity and requirements for inter-
limb coordination had a negative effect on non-drummers’ timing performance.

Plots of the onset accuracy and distribution for the performances by participants LK and M
are available in figures E.1 to E.8 in the appendix.

For participant LK, there is an indication of lowered asynchrony in the third test attempt
without timing feedback, after which further improvement is less evident in the tests with

3https://www.audio-technica.com/cms/headphones/99aff89488ddd6b1/index.html

https://www.audio-technica.com/cms/headphones/99aff89488ddd6b1/index.html
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timing feedback.

Participant M’s timing performance is similar in all cases, but a slight improvement can be
detected in the third performance without timing feedback and thereafter the timing perfor-
mance remains similar for the tests with timing feedback. It was noted that compared to LK,
participant M more frequently omitted playing required events.
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6.2.3 Revised Method

• The exercise drum pattern has been simplified as seen in figure 6.20, so that a maximum
of two limbs are used simultaneously. This decision was made to reduce the effect of
perceptual or motoric limitations on the participant’s timing accuracy. The pattern is
identical to the one used in [12].

• The drum-kit component corresponding to each line in the piano-roll is now more clearly
labeled.

• The participant now has the option to hear the drum pattern played back multiple times
before starting the test.

• A standard Apple iPhone headset4 connected to the computer is used both as an external
microphone and for audio and metronome playback, since it provides a wider gain
adjustment range for the microphone to better match the acoustic output of the drum-
kit.

• The timing feedback is plotted in a format that fits better on a single laptop screen, while
leaving room so the text prompts are still visible.

• The waveform subplot has been removed from the user evaluation timing feedback,
since the added complexity was not beneficial for the user experience.

• The bar plot showing accuracy now has the text Early, Perfect and Late on the far right
aligned to the Y axis to make it more clear to the user what the plot indicates.

• The tests with and without feedback are now performed continuously without requiring
operator interaction.

• The participant is asked to fill out the questionnaire in appendix A after completing the
test to gather qualitative data.

An opportunity presented itself to test the revised evaluation design with a professional
musician, participant MP, who reported being a hobbyist level drummer. The partici-
pant does not usually practice with a metronome or similar timing tools, but regularly
composes music in a digital audio workstation to a specific musical grid.

The revised evaluation was performed in the same room as the previous evaluations
and with the same drum-kit, but located slightly differently. The microphone and head-
phones of an Apple iPhone headset were used instead of the built-in microphone in the
Apple MacBook Pro and the Audio-Technica ATH-M50X headphones. This provided a
more equidistant placement of the microphone relative to each drum and also enabled
the microphone gain to be set sufficiently low to avoid distortion of the audio signal.

4https://www.apple.com/shop/product/MNHF2AM/A/earpods-with-35-mm-headphone-plug

https://www.apple.com/shop/product/MNHF2AM/A/earpods-with-35-mm-headphone-plug
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6.2.4 Revised Result

On the questionnaire, the participant reported that synchronising to the metronome was easy.
But in a subsequent informal discussion, the participant mentioned that the metronome audio
pulse could be difficult to hear if playing loudly on the drum-kit, due to the open design of
the headphones implemented in the Apple headset, and felt that this affected the performance
negatively.

The participant was asked to perform the setup tasks prior to the exercises to ensure that the
dictionary correlated to the participant’s playing style. It was noted that care had to be taken
during setup to avoid spurious signals caused by movement of the microphone. The addition
of an option to restart the setup process was therefore suggested by the participant.

Plots of the onset accuracy and distribution without and with timing feedback are available
in figures E.13 to E.16. Note that only three attempts were made for each modality using the
simplified patterns.

The plots show that the participant is able to a achieve low asynchrony from the first attempt
for both test modalities. This indicates that participant MP is more familiar with playing
drums to a metronome than participants LK and M.

For completeness, the participant was also asked to perform the evaluation tasks using the
original exercise pattern, but as expected the performance suffered due to the increased com-
plexity of the pattern as seen in figures E.9 to E.10. However, as indicated by the results for
the attempts with timing feedback shown in figures E.11 to E.12, MP is able to recover and
achieve similar timing accuracy as seen in the performances with the simplified pattern.

6.3 Descriptive Statistics

The purpose of performing a statistical analysis of the test results is to establish a simple metric
that can be used to compare different performances by the same performer and between
different performers. The metric can also function as a simplified score that can be presented
to the performer as an overall indicator of their performance as it changes over time in addition
to the more nuanced timing feedback currently provided.

As seen in [12, 16, 52], a common metric for measuring asynchrony in drumming perfor-
mances is the mean and standard deviation of the performed onsets relative to a timing refer-
ence, such as a metronome. The benefit of this method is that it relates directly to an intuitive
understanding of the problem.

Intuitively, the mean should tend towards zero if there is an improvement in the performers
ability to synchronize with the metronome guide and the standard deviation should become
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smaller if the performer’s timing consistency is improving. Comparing the performances with
and without feedback should therefore reveal whether a performer is making progress.

Combining the mean and standard deviation into one metric was considered. However, this
requires a definition of what constitutes a performance improvement in a combined metric.
A mean close to zero with a large standard deviation is not necessarily better than a mean
far from zero with a small standard deviation. In the intended use case, the ideal is that both
mean and standard deviation tend towards zero as the user progresses.

One option could be to simply multiply the mean with the standard deviation and use the
result as a performance score, since it equalizes the importance of either metric on the final
score. Due to the small number of participants in the user evaluation, this was not explored
further, but might be worth revisiting in the future.

To perform the analysis, the MATLAB script, analyzeUserData.m available in appendix N, was
created, which loads the onset data stored to files after each performance in the user evaluation
process.

The script handles post-processing of the data by calling the matchOnsets function with the
post-processing options enabled to remove duplicate onsets and outliers and to interpolate
missing onset.

The script also calls the userdataStats function, which performs the calculations and plotting
for the statistical analysis described below.

To calculate the mean and standard deviation, the last three performances without and with
timing feedback are pooled into two vectors - one vector for each test modality. Prior to using
MATLAB’s mean and std functions to perform the calculations, the asynchronies are converted
to absolute values using the abs function.

The results for participant LK are presented in figure 6.23 as a bar graph with the two test
modalities shown side by side indicated as without FB and with FB (FB = feedback). The results
show that a marked decrease in both onset mean and standard deviation occurs for the tests
with timing feedback compared to the tests without feedback.

Similarly, the results for participant M are shown in figure 6.24 and also show a decrease in
onset mean and standard deviation, although not as substantial.

In figure 6.26 the mean and standard deviation values for MP performing the simplified pat-
tern show an increase in both metrics for the performances with timing feedback. However,
it could be argued that when mean asynchrony and standard deviation variations are be-
low 15ms, the difference can just as likely be attributed to chance as much as differing test
modalities.
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The statistics also provide insights into the evaluation method itself. For instance, the fact
that an improvement can be seen for all participants when performing the original drum
pattern with timing feedback - also participant MP, who did not show a marked difference
in asynchrony values between modalities when performing the simplified drum pattern -
indicates that the improvements might be more related to increasing familiarity with the
pattern over the evaluation period, since it requires inter-limb coordination proficiency not
common for non-drummers.

Looking closer at participant MP’s performance in figure 6.25 shows that the largest improve-
ment is seen in the bass drum mean value, which correlates with added complexity of an
additional event for the bass drum on the fourth beat.

Overall, the statistical analysis results are in line with the manual inspection of the onset
accuracies performed in section 6.2.2 and 6.2.4, which indicates that the chosen metrics are a
good fit for the use case.
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Figure 6.23: Asyncrony statistics for participant LK performing the original pattern with and without feedback

Figure 6.24: Asyncrony statistics for participant M performing the original pattern with and without feedback
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Figure 6.25: Asyncrony statistics for participant MP performing the original pattern with and without feedback

Figure 6.26: Asyncrony statistics for participant MP performing the simplified pattern with and without feedback
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6.4 Inferential Statistics

While it is possible to use derived statistics to manually analyse test results for a small number
of participants, a method for determining whether changes seen in the mean and standard
deviation values as a result of different modalities are statistically significant is essential for
larger scale testing.

The Repeated Measures Analysis-Of-Variance (RM-ANOVA) test is often utilized for this purpose
and operates on the basis of a null hypothesis and an alternative hypothesis.

In this case, the null hypothesis is that presenting the user with timing feedback after the ex-
ercises has no effect on the user’s timing accuracy compared to performing the same exercises
without feedback. The alternative hypothesis is that timing feedback has an effect on timing
accuracy.

In order to verify that the RM-ANOVA test would provide meaningful results with the avail-
able data, the RM-ANOVA test was performed on asynchrony data from test participant MP,
performing the simplified pattern without receiving timing feedback, as the control group
and the ground truth data as the experimental group. In essence, a simulation of the results
if a participant’s performance reached perfection when receiving timing feedback.

Only data from the last three attempts of a participant’s performance was used to reduce the
effect of a participant perhaps not fully understanding the task and how to use the timing
feedback effectively in the beginning.

RM-ANOVA assumes normally distributed data and therefore the Shapiro-Wilk test was per-
formed on the data using the swtest.m function available from [53]. The null hypothesis for
the Shapiro-Wilk test is that the data is normal with unspecified mean and variance.

Performing the Shapiro-Wilk test on the control data and the experimental data for all par-
ticipants showed that the data was normally distributed except for the bass drum and hi-hat
data in the performances with timing feedback for participant M at p=0.011 and p=0.0093, re-
spectively. Also, the hi-hat data for the performances without timing feedback for participant
MP with the original drum pattern failed the test at p=9.247e-06.

Ordinarily, the Mauchly test would be performed to verify sphericity of the data, but since the
user evaluation is a within-subjects design with only two levels, sphericity is inherent and the
Mauchly test becomes redundant [54, p. 561].

To avoid issues due to the data containing both negative and positive asynchrony, the data
was converted to absolute values using the abs function prior to the RM-ANOVA test. A
significance level of p < 0.05 is used to indicate a statistically significant difference.

Inspecting the result of the RM-ANOVA test in table 6.3 indicates that a statistically significant
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difference can be detected in all drum-kit components, which fits with the expected result
given the data.

Seeing that RM-ANOVA produces meaningful results on the synthetic data, the user perfor-
mances were analyzed and are presented in tables 6.4 to 6.7.

The results show that all hi-hat performances show a statistically significant difference, while
the results for the bass drum and snare drum are less consistent. As an example, in table 6.5
participant M’s results do not show a statistically significant difference for the bass drum and
the snare drum is borderline significant, while the hi-hat is significantly different.

MP vs. Ground Truth SumSq DF MeanSq F pValue
Bass Drum
(Intercept):Asynchrony 3050.82966 1 3050.82966 65.4632218 3.12825E-07
Error(Asynchrony) 792.26324 17 46.60372 1 0.5
Snare Drum
(Intercept):Asynchrony 162.849006 1 162.849006 17.8947006 0.001411912
Error(Asynchrony) 100.104445 11 9.10040406 1 0.5
Hi-Hat
(Intercept):Asynchrony 3081.53601 1 3081.53601 84.8177254 4.26044E-12
Error(Asynchrony) 1707.56987 47 36.3312738 1 0.5

Table 6.3

LK SumSq DF MeanSq F pValue

Bass Drum
(Intercept):Asynchrony 50866.7846 1 50866.7846 10.857985 0.004274657
Error(Asynchrony) 79640.4986 17 4684.73521 1 0.5

Snare Drum
(Intercept):Asynchrony 26218.0779 1 26218.0779 8.23979572 0.015227775
Error(Asynchrony) 35000.729 11 3181.88446 1 0.5

Hi-Hat
(Intercept):Asynchrony 13732.0717 1 13732.0717 14.4295731 0.000417145
Error(Asynchrony) 44728.0987 47 951.661674 1 0.5

Table 6.4
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M SumSq DF MeanSq F pValue
Bass Drum
(Intercept):Asynchrony 1083.07158 1 1083.07158 0.91381997 0.352500385
Error(Asynchrony) 20148.6261 17 1185.2133 1 0.5
Snare Drum
(Intercept):Asynchrony 3188.82907 1 3188.82907 5.32766542 0.041431691
Error(Asynchrony) 6583.95696 11 598.541542 1 0.5
Hi-Hat
(Intercept):Asynchrony 10452.6009 1 10452.6009 21.8489579 2.50692E-05
Error(Asynchrony) 22484.9277 47 478.402718 1 0.5

Table 6.5

MP - Original SumSq DF MeanSq F pValue
Bass Drum
(Intercept):Asynchrony 420.668471 1 420.668471 0.82554607 0.376264898
Error(Asynchrony) 8662.58619 17 509.563894 1 0.5
Snare Drum
(Intercept):Asynchrony 1651.96002 1 1651.96002 4.04023975 0.069596379
Error(Asynchrony) 4497.64405 11 408.876732 1 0.5
Hi-Hat
(Intercept):Asynchrony 11157.3714 1 11157.3714 80.7596787 8.95791E-12
Error(Asynchrony) 6493.29548 47 138.155223 1 0.5

Table 6.6

MP - Simplified SumSq DF MeanSq F pValue
Bass Drum
(Intercept):Asynchrony 14.2259541 1 14.2259541 0.11415493 0.73959884
Error(Asynchrony) 2118.53509 17 124.619711 1 0.5
Snare Drum
(Intercept):Asynchrony 821.966242 1 821.966242 13.9168217 0.003320424
Error(Asynchrony) 649.69063 11 59.0627845 1 0.5
Hi-Hat
(Intercept):Asynchrony 2534.95213 1 2534.95213 16.3189933 0.000196605
Error(Asynchrony) 7300.86396 47 155.337531 1 0.5

Table 6.7
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Discussion

The system evaluation results show that the system is able to meet the requirements defined
in the requirements specification in section 4. The IDMT-Drums dataset test shows that per-
formance equal to the state-of-the-art methods is achieved with the standard 50ms F-measure
window size, but reduced performance with smaller window sizes. Inspecting the automat-
ically detected onset-to-peak lag values as well as the source separated streams more closely
might reveal where further optimizations can be made to align the IDMT-Drums results with
the other systems evaluation results.

One option would be to apply bandpass filtering optimized for each drum-kit component to
reduce interaction between components since the peaks of bass drum, snare drum and hi-hat
lie in different frequency ranges.

Currently, onset detection is performed on the individual reconstructed audio streams, how-
ever as seen in [45], onset detection could just as well be performed on the magnitude spectro-
grams prior to reconstruction, which would also allow detecting peaks in specific frequency
bands without the use of bandpass filtering.

Although the accuracy of the onset detection has been verified with synthetic audio signals,
there is still a risk that real-world audio, where the components mix together acoustically,
can contain content that degrades the performance of the system. However, the empirically
evaluated stability during the user evaluations indicates that system evaluation results are
transferable to the real world if the assumptions in section 4 are met.

The reduced number of participants in the user evaluation due to the COVID-19 lockdown
renders the evaluation results less conclusive and further testing is therefore required to prop-
erly determine the effects of the timing feedback on a performer’s timing accuracy.

However, inspecting the results available so far indicates that the improvements seen in the
performances with timing feedback are related to an increased familiarity with the task rather
than a result of changing the modality.
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The evaluation design could be improved by dividing the participants into two groups - an
experimental group and a control group. Modifying the independent variable for each group -
i.e. whether the participant receives timing feedback - but otherwise performing the exercises
identically in both groups, should improve the quality of the evaluation given a sufficiently
large number of participants.

As an alternative to separate groups, the order of when feedback is provided could be random-
ized to rule out the effect of the participant becoming increasingly familiar with the exercise
pattern over time. This constant change of modality could however confuse the participant,
since a certain amount of trial and error is required to understand how actions - i.e. hitting
the drums earlier or later in time - are reflected in the timing feedback in order to utilise the
feedback efficiently.

The results indicate that the drum pattern used for the user evaluation can have a significant
effect on the timing performance due to perceptual and motoric limitations of the performer.
Further evaluations should therefore be performed with the simplified drum pattern to ensure
that the results solely reflect sensorimotor synchronisation accuracy.

Allowing the user evaluation participant to practice the pattern without any timing aids for
an certain amount of time prior to the actual test, could perhaps also equalize the effect of
perceptual and motoric limitations among the participants - especially for non-drummers or
beginners.

Including the questionnaire in appendix A in the user evaluation process provides a means to
correlate the quantitative data with qualitative data. Especially, investigating if there is a con-
nection between how participants rate their ability to synchronize with the metronome as well
as the accuracy of timing feedback and the level of improvement seen in the quantitative data
would be interesting to explore further with a larger number of user evaluation participants.

The qualitative aspect of the user evaluation could also be expanded further to help guide
future development efforts and feature implementation, as the informal discussions with par-
ticipants following the evaluation provided important user feedback.

Optimal system performance requires the performer to maintain a consistent playing style,
since excessive sonic and dynamic variation might degrade the performance of the source
separation and onset detection. However, since this is a learning tool, playing within certain
constraints and maintaining consistency could be incorporated into the exercises, however
care has to be taken to not make the constraints too strict and cause frustration for beginners.
Therefore, it might be useful to adjust settings in the system, such as the temporal resolution
of the timing feedback, depending on the skill level of the performer, so that beginners can
focus on the broader aspects of their timing and when improved performance is detected, the
required level of accuracy can be increased to keep the exercises challenging.
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Conclusion

The goal of this thesis project was to design and implement a prototype tool to help drummers
improve their timing accuracy based on research into the human sensory and motor system
as well as the state-of-the-art in automatic drum transcription methods.

A number of automated system tests were performed to evaluate the accuracy and perfor-
mance of the implementation and underlying algorithms. The result indicate that the system
meets the specified requirements and achieves state-of-the-art results when compared to other
automatic drum transcription methods using the IDMT-Drums dataset.

Limited by the Covid-19 lockdown in place during the finalization of the project, a user eval-
uation was conducted with three participants, who all were musicians, but non-drummers.

The results were analysed with descriptive statistics methods and repeated measures ANOVA,
which established that a statistically significant difference could be detected between the test
modalities.

However, the small number of participants and the lack of a control group renders the results
inconclusive as to whether the difference is a result of the timing feedback or just due to
extended exposure to the same drum exercise pattern.
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Chapter 9

Future Work

For future implementations, porting the prototype to a custom embedded device could be
considered, but development costs and the resulting end user cost would likely be prohibitive
for the market. Ultimately, a mobile device implementation of the prototype would be advan-
tageous, since mobile devices already contain the required audio and graphics peripherals.
An attempt was made to create an iPhone app using MATLAB Coder1, but to create a C/C++
code version of the prototype would require replacing the third-party toolboxes used with
custom functions that comply with the MATLAB Coder requirements, which was not feasible
within the time-frame of the thesis.

Additionally, it would beneficial to port the prototype to a real-time audio-focused framework,
such as JUCE2, to gain more flexibility in further development of the system and to enable
custom user interface designs.

Utilizing a stereophonic mixture and thus enabling the use of separate spectrograms for the
left and right audio signals, the NMFD algorithm could be augmented to provide better sep-
aration of similar sounding drums, since the drum-kit components are usually located in
distinct locations within the pickup pattern of a stereo microphone. However, since stereo-
phonic recording has only become available in more recent smartphones, this would limit the
user base.

While the exercise patterns should be optimized for the capabilities of the algorithms - i.e.
a bass drum event should not be placed at the same time as a snare drum event - further
optimization of the system could possibly improve detection of similar sounding drums. To
this end, exploring the use of Continous Wavelet Transform (CWT) to generate the input to
the NMFD algorithm instead of STFT magnitudes would be interesting, since CWT could
potentially provide increased time-frequency resolution in the salient areas compared to STFT.

1https://www.mathworks.com/products/matlab-coder.html
2https://juce.com
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Appendix A

User Evaluation Questionnaire
• Age?

• How many years have you been a musician?

[0-1 | 1-3 | 3-5 | 5-10 | 10+ ]

• How would you rate your musical skills?

[ Beginner | Hobbyist | Experienced | Professional ]

• Are drums your main instrument?

[ Yes | No ]

• How would you rate your drumming skills?

[ Beginner | Hobbyist | Experienced | Professional ]

• Do you usually practice and/or play to a metronome?

[ Yes | No ]

• Have you used the Rhythm Coach function in a metronome or electronic drum kit

[ Yes | No ]

• Do you have experience editing audio or composing music to a musical grid in a
digital audio workstation, such Logic Pro X, or Ableton Live?

[ Yes | No ]

• Do you practice with the Melodics app?

[ Yes | No ]

• Did you find it easy to synchronize to the metronome?

[ Yes | No ]

• Did you feel that the timing feedback was accurate?

[ Yes | No ]
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Appendix B

Additional Exercise Pattern Figures

Figure B.1: Score of drum patterns used for system evaluation. Notation starting from the top: hi-hat, snare drum,
bass drum
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Appendix C

Additional Implementation Figures

Figure C.1: Signal envelopes using slow and fast detectors
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Figure C.2: Automatically derived threshold over time



72

Figure C.3: Audio before and after thresholding



73

Figure C.4: CWT scalograms of bass drum, snare drum and hi-hat for three drum-kits used for system evaluation.
1: Samples recorded with an iPhone 6S in a large theater, 2: Samples from Logic Pro X virtual instrument, 3:
Samples recorded with a MacBook Pro’s built-in microphone in a medium-sized, reverberant room (taken from
user evaluation).



Appendix D

Additional System Evaluation Figures
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Figure D.1: Snare drum peak-picking issue prior to EMA addition. The first and last onsets are perfectly timed
reference onsets, the second and third onsets are deliberately shifted forward by 1ms. The first onset is incorrectly
reported as lagging by 10.84ms due to the waveform having changed shape as seen in the second row. Compar-
atively, the last peak is correctly detected as being on time. The second and third onsets, which are deliberately
shifted, are correctly detected as 1.02ms
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Figure D.2: System test results (testMode = inter-limb) showing inter-limb timing detection accuracy with deliberate
1ms shifts in BD and SD with the reference synthetic drum-kit (BD1,SD1,HH1 in figure C.4)



Appendix E

Additional User Evaluation Figures

User Evaluation Figures
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Figure E.1: Onset accuracy for test participant LK without timing feedback performing the original exercise pattern
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Figure E.2: Onset distribution for test participant LK without timing feedback performing the original exercise
pattern
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Figure E.3: Onset accuracy for test participant LK with timing feedback performing the original exercise pattern
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Figure E.4: Onset distribution for test participant LK with timing feedback performing the original exercise pattern
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Figure E.5: Onset accuracy for test participant M without timing feedback performing the original exercise pattern
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Figure E.6: Onset distribution for test participant M without timing feedback performing the original exercise
pattern
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Figure E.7: Onset accuracy for test participant M with timing feedback performing the original exercise pattern
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Figure E.8: Onset distribution for test participant M with timing feedback performing the original exercise pattern
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Figure E.9: Onset accuracy for test participant MP without timing feedback performing the original exercise
pattern
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Figure E.10: Onset distribution for test participant MP without timing feedback performing the original exercise
pattern
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Figure E.11: Onset accuracy for test participant MP with timing feedback performing the original exercise pattern
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Figure E.12: Onset distribution for test participant MP with timing feedback performing the original exercise
pattern
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Figure E.13: Onset accuracy for test participant MP without timing feedback performing the simplified exercise
pattern
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Figure E.14: Onset distribution for test participant MP without timing feedback performing the simplified exercise
pattern
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Figure E.15: Onset accuracy for test participant MP with timing feedback performing the simplified exercise
pattern
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Figure E.16: Onset distribution for test participant MP with timing feedback performing the simplified exercise
pattern



Appendix F

MATLAB Implementation of Automatic
Threshold Function

1 function [gatedAudio] = autoThreshold(audio)
2

3 % Baldur Kampmann
4 % SMC Master Thesis 2020
5

6 monoAudio = mean(audio ,2);
7 rectAudio = abs(monoAudio);
8 slowAvg = movmean(rectAudio , 5000);
9 fastAvg = movmean(rectAudio , 500);

10

11 diff = fastAvg -slowAvg;
12 offset = 0.2; % lift threshold a certain amount above diff value
13

14 threshold = movmean(diff+offset , 500);
15

16 gate = rectAudio >threshold;
17 gatedAudio = rectAudio .*gate;
18

19 end
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Appendix G

MATLAB Implementation of Onset-To-
Peak Lag Calculation Function

1

2 function onset2peakLagMs = calcOnset2peakLag(audio , smoothingCoeff)
3

4 %CALCONSET2PEAKLAG Trim audio to start at onset location , smooth audio to
5 %get envelope and get onset -to-peak lag by finding the location on the peak
6

7 % Find samples > 1% of peak value
8 trimIndex = find(abs(audio) > (max(abs(audio))*1) /100);
9

10 % Trim beginning and end of audio to remove samples below 1% of peak
11 trimmedAudio = audio(trimIndex (1):length(audio));
12

13 % find onset -to-peak lag , which is simply the location of peak since
14 % the audio has trimmed to start at the onset location
15

16 % smooth audio
17 absAudio = abs(audio);
18 numSamples = length(absAudio);
19 w = smoothingCoeff;
20 envelope = zeros(numSamples , 1);
21

22 for i=1: numSamples
23 if (i < 2)
24 envelope(i) = expAvg(w,absAudio(i), envelope (1));
25 else
26 envelope(i) = expAvg(w,absAudio(i), envelope(i-1));
27 end
28 end
29

30 % find peak
31 [~, peakLocation] = max(envelope);
32 onset2peakLagMs = samples2ms(peakLocation);
33 end
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Appendix H

MATLAB Implementation of Onset Match-
ing Function

1 function [error] = matchOnsets(audioOnsets ,midiOnsets , removeOutliers ,
removeDuplicates , addMissing)

2 %MATCHONSETS Calculate Euclidean distance from each detected onset to each
3 % ground truth onset.
4

5 % Optionally remove duplicate onsets and outliers as well
6 % as interpolate missing onsets.
7

8 if nargin < 5
9 addMissing = false;

10 end
11

12 % clear variables
13 absDistMatrix = [];
14 distMatrix = [];
15 absDiff = [];
16 absDiffLocation = [];
17

18 % calculate distance
19 for j = 1: length(audioOnsets)
20 for k = 1: length(midiOnsets)
21 absDistMatrix(k,j) = abs(audioOnsets(j) - midiOnsets(k));
22 distMatrix(k,j) = audioOnsets(j) - midiOnsets(k);
23 end
24 end
25

26 % find minimum distance using absolute values
27 [ absDiff , absDiffLocation ] = (min(absDistMatrix));
28

29 % remove duplicate onsets
30 if removeDuplicates == true
31 numDetectedOnsets = length(absDiffLocation);
32 h = 0;
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33

34 % loop
35 while h < numDetectedOnsets -1
36

37 % Update counter
38 h = h + 1;
39

40 % look for two detected onsets pointing to the same % reference
onset

41 if absDiffLocation(h) == absDiffLocation(h+1)
42

43 % find index of the onset with shortest distance to the
reference

44 [~, minIndex] = min([ absDiff(h) absDiff(h+1)]);
45

46 % if first onset is closer , remove the following
47 if minIndex == 1
48 absDiffLocation(h+1) = [];
49 absDiff(h+1) = [];
50 numDetectedOnsets = numDetectedOnsets - 1; % adjust loop

length after removing entry
51 distMatrix (:,h+1) = [];
52 h = h - 1; % ensure that the last index is included
53

54 % if second onset is closer , remove the previous
55 else
56 absDiffLocation(h) = [];
57 absDiff(h) = [];
58 numDetectedOnsets = numDetectedOnsets - 1; % adjust loop

length after removing entry
59 distMatrix (:,h) = [];
60 h = h - 1; % ensure that the last index is included
61 end
62 end
63 end
64 end
65

66 %%
67

68 % use absolute values as index into non -absolute matrix to get
69 % minimum distance from each detected onset to each ground truth
70 % onset regardsless of whether the hit is early or late
71 error = [];
72 for l = 1: length(absDiffLocation)
73 error(l) = distMatrix(absDiffLocation(l),l); % TODO: exceeds diffMatrix

array bounds occasionally if duration in bars < 2.
74 end
75
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76 % remove outliers
77 if removeOutliers == true
78 errorLimit = tempo2samples (100 ,8); % 8-note
79 error(absDiff > errorLimit) = [];
80

81 % update absDiff
82

83 absDiffLocation(absDiff > errorLimit) = [];
84 absDiff(absDiff > errorLimit) = [];
85 end
86

87 % interpolate missing onsets
88 if addMissing == true
89 if length(midiOnsets) ~= length(absDiff)
90 for i=1: length(midiOnsets)
91 if sum(absDiffLocation == i) == 0
92 % make room for missing value
93 temp (1:i-1) = error (1:i-1)
94 temp(i+1: length(error)+1) = error(i:length(error))
95 % interpolate
96

97

98 if i > 1 && i < length(temp)
99 temp(i) = round(mean([temp(i-1) temp(i+1)]));

100 elseif i == 1 % handle start of vector
101 temp(i) = round(mean([temp(i+1) temp(i+2)]));
102 else % handle end of vector
103 temp(i) = round(mean([temp(i-2) temp(i-1)]));
104 end
105 error = temp;
106 end
107 end
108 end
109 end
110

111 end



Appendix I

NMF Toolbox Modifications

The NMF Toolbox was modified to support templates with T number of frames in order to
facilitate the temporal aspect of the NMFD algorithm.

First, the original dictW.mat file, which contains the dictionary, was replaced with dictWNFMD.mat,
which supports a MxT matrix for each component, whereas the original dictW.mat only utilises
a Mx1 vector.

The setupDictionary.m file, which contains code that generates templates from audio samples,
was then modified to store the generated MxT templates in the new dictionary file instead.

Finally, the NMFD implementation was modified by adding an additional case to initTem-
plates.m as seen in the code below.

This loads the new dictionary from the dictWNMFD.mat file as seen in line 3. In line 8 the
initialization values are copied from the dictionary one frame at time in a for loop.

The original code, which has been commented out in line 9, shows that the implementation by
López Serrano et al. fades out a single template over time by multiplying it with a coefficient
to get the number of frames specified in numTemplateFrames.

1

2 case ’nmfd’ % use correct NMFD template format wrt. value of T
3 s = load(’../ data/dictWNMFD.mat’);
4

5 % sanity check
6 if parameter.numBins == size(s.dictionary {1},1)
7 for k = 1:size(s.dictionary ,2)
8 initW{k} = s.dictionary{k};
9 %initW{k} = s.dictW(:,k)*linspace (1,0.1, parameter.numTemplateFrames);

10 end
11 end
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Appendix J

System Evaluation MATLAB Script

1

2 % Baldur Kampmann
3 % SMC Master Thesis 2020
4

5 % System Evaluation Script
6

7 % Performs automated testing of system performance. By linking test
8 % variables to iteration index , a number of parameters can be tested and
9 % compared by changing the testMode variable. See the switch case in the

10 % code for test options.
11

12 % Source separation is performed using the NMFD algorithm by Smaragdis
13 % implemented in the NMF Toolbox by Dittmar et al.
14

15 % ********************************************************************** %
16

17 % Additional user settings are available inside the called functions.
18

19 % Requires the following 3rd party MATLAB toolboxes:
20 % - NMF Toolbox by Lopez -Serrano et al.
21 % - MIDI Toolbox by Eerola & Toiviainen
22 % - MIR Toolbox by Lartillot et al.
23

24 % References:
25 % Patricio Lopez -Serrano , Christian Dittmar , Yigitcan Ozer , and Meinard
26 % Muller
27 % NMF Toolbox: Music Processing Applications of Nonnegative Matrix
28 % Factorization
29 % In Proceedings of the International Conference on Digital Audio Effects
30 % (DAFx), 2019.
31

32 % Eerola , T. & Toiviainen , P. (2004).
33 % MIDI Toolbox: MATLAB Tools for Music Research.
34 % University of Jyvaskyla: Kopijyva , Jyvaskyla , Finland.
35

36 % Lartillot O., Toiviainen P., Eerola T. (2008)
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37 % A Matlab Toolbox for Music Information Retrieval.
38 % In: Preisach C., Burkhardt H., Schmidt -Thieme L., Decker R. (eds)
39 % Data Analysis , Machine Learning and Applications. Studies in
40 % Classification , Data Analysis , and Knowledge Organization.
41 % Springer , Berlin , Heidelberg
42

43 % ********************************************************************** %
44

45 clear variables;
46 close all;
47 clc;
48

49 %% Setup
50

51 % Test options: ’drumkit ’, ’tempo ’, ’pattern ’, ’velocity ’, ’combinations ’,
52 % ’combinations -staggered ’, ’inter -limb ’
53

54 % select test variable
55 testMode = ’velocity ’;
56

57 % Test options: ’drumkit ’, ’tempo ’, ’pattern ’, ’velocity ’, ’combinations ’,
58 % ’combinations -staggered ’, ’inter -limb ’
59

60 % test iterations
61 numTests = 3;
62 numComponents = 3;
63

64 % Drum names
65 componentNames {1} = ’Bass Drum’;
66 componentNames {2} = ’Snare Drum’;
67 componentNames {3} = ’HiHat ’;
68

69 % Original MIDI pattern
70 origMidiFileName = ’../ data/patterns/exercisePattern.mid’;
71

72 % MIDI data filenames
73 selMidiFileName {1} = ’../ data/patterns/Simplified.mid’;
74 selMidiFileName {2} = ’../ data/patterns/Shuffled.mid’;
75 selMidiFileName {3} = ’../ data/patterns/Combinations.mid’;
76 selMidiFileName {4} = ’../ data/patterns/twolimbs.mid’;
77

78 % create figures
79 figure (1)
80 figure (2)
81

82 % system settings
83 outPath = ’../ output/’;
84 saveAudio = false;
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85 onsetMismatch = false;
86 sysTest = true;
87 numAttempts = 1;
88 plotPattern = false;
89 timingFeedback = false;
90 playAudio = false;
91 normalize = true;
92 selPattern = 1;
93

94

95 drumkit = 1;
96 userTempo = 100; % 1/4-notes at 600 BPM = IOI of 100ms
97

98 %% Init variables
99

100

101 set(0,’DefaultTextInterpreter ’,’none’) % remove Tex interpretation
102 patternMidiFileName = selMidiFileName{selPattern };
103

104 maxRange = 0;
105 rangeLimit = 2.5; % +-2.5ms - maximum range before test fails
106 compareToUnmodifiedMIDI = false;
107

108 shifts = [1, 2.5, 5];
109

110 %% % Init test -specific settings before loop
111 switch testMode
112

113 case ’velocity ’
114 tempo = 75;
115 drumkit = 1;
116 patternMidiFileName = ’../ data/patterns/twolimbs.mid’;
117

118 case ’tempo’
119 tempo = 75; % init value - not used in test
120 drumkit = 2;
121 selPattern = 1;
122 case ’combinations ’
123

124 tempo = 75;
125 drumkit = 1;
126 case ’combinations -staggered ’
127

128 tempo = 75;
129 drumkit = 1;
130 compareToUnmodifiedMIDI = true;
131

132 case ’inter -limb’
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133 tempo = 75;
134 drumkit = 1;
135 timingFeedback = true;
136 compareToUnmodifiedMIDI = true;
137

138 otherwise
139 tempo = userTempo;
140 end
141

142 %% Analyze and extract data
143

144 % train dictionary
145 onset2peakLag = setupDictionary(sysTest , drumkit);
146

147 % store onset -to-peak lag for each drum
148 componentLag {1} = onset2peakLag {1}
149 componentLag {2} = onset2peakLag {2}
150 componentLag {3} = onset2peakLag {3}
151

152 % extract MIDI data
153 [midiData numComponents] = loadExerciseMIDI(patternMidiFileName , tempo ,

plotPattern);
154

155 % store unmodified MIDI data for testMode=velocity
156 origMidiData = midiData;
157

158 %% Iterate through test variables
159 for i=1: numTests
160

161 % avoid figures being overwritten
162 if timingFeedback == true
163 figure (2+i)
164 end
165

166 % update parameters programmatically depening on test mode
167 switch testMode
168 case ’drumkit ’ % update which audio samples are used
169

170 drumkit = i-1;
171

172 testDesc = ’Drumkit ’;
173 testValue = [’Drumkit ’, num2str(drumkit)];
174

175 % update dictionary
176 onset2peakLag = setupDictionary(sysTest , drumkit);
177

178 % update onset -to-peak lag
179 componentLag {1} = onset2peakLag {1};
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180 componentLag {2} = onset2peakLag {2};
181 componentLag {3} = onset2peakLag {3};
182 disp(componentLag);
183

184 case ’pattern ’
185 selPattern = i;
186 patternMidiFileName = selMidiFileName{selPattern };
187 [midiData numComponents] = loadExerciseMIDI(patternMidiFileName ,

tempo , plotPattern);
188 testDesc = ’Pattern ’;
189 testValue = num2str(selPattern);
190

191 case ’tempo’
192 tempo = 60*i;
193 [midiData numComponents] = loadExerciseMIDI(patternMidiFileName ,

tempo , plotPattern);
194 testDesc = ’Tempo ’;
195 testValue = [num2str(tempo), ’ BPM’];
196

197 case ’velocity ’
198 component = 3; % hi -hat velocity is modified
199 normalize = false;
200 coeff = ((1/ numTests)*i);
201 midiData = modMIDIVelocity(origMidiData , component , coeff);
202 testDesc = ’HH Velocity ’;
203 testValue = num2str(round(coeff ,2));
204

205 case ’combinations ’ % test ability to detect onsets when varying IOI
206

207 patternMidiFileName = ’../ data/patterns/comb_Accuracy.mid’;
208

209 testDesc = ’Increasing IOI’;
210 testValue = ’N/A’;
211 [midiData numComponents] = loadExerciseMIDI(patternMidiFileName ,

tempo , plotPattern);
212

213 case ’combinations -staggered ’ % test ability to detect onsets when
snare has lag of 64th -note (50 ms@75BPM)

214

215 patternMidiFileName = ’../ data/patterns/comb_Accuracy.mid’;
216 [origMidiData , ~] = loadExerciseMIDI(patternMidiFileName , tempo ,

plotPattern);
217

218 testDesc = ’Increasing IOI (SD +50ms)’;
219 testValue = ’N/A’;
220 exp_patternMidiFileName = ’../ data/patterns/

comb_Accuracy_Staggered.mid’;
221 [midiData numComponents] = loadExerciseMIDI(
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exp_patternMidiFileName , tempo , plotPattern);
222

223 case ’inter -limb’ % test ability to detect inter -limb error with 16
th -notes and longer

224

225 patternMidiFileName = ’../ data/patterns/twolimbs.mid’;
226 simAsync = shifts(i) / 1000; % (sec to ms)
227

228 testDesc = ’Inter -Limb Asynchrony ’;
229 testValue = [num2str(shifts(i)), ’ms’];
230 [midiData numComponents] = loadExerciseMIDI(patternMidiFileName ,

tempo , plotPattern);
231

232 % store unmodified MIDI data
233 origMidiData = midiData;
234

235 % shift BD backwards in time. Leave first and last hit intact
for comparison

236 midiData {1}(2:3 ,6) = midiData {1}(2:3 ,6) + simAsync;
237

238 % shift SD forwards in time. Leave first and last hit intact for
comparison

239 midiData {2}(2:3 ,6) = midiData {2}(2:3 ,6) - simAsync;
240

241 otherwise
242 disp(’Unknown test’)
243 break;
244 end
245

246

247 % prepare text
248 testName = [’Test Variable: ’,testDesc ];
249 testValue = [’Test Value: ’, testValue ];
250

251 % convert MIDI to audio
252 [audio , fs] = midi2Audio(midiData , drumkit , tempo , normalize);
253

254 % play back audio
255 if playAudio == true
256 sound(audio , fs);
257 end
258

259 if saveAudio == true
260 audiowrite ([outPath ,datestr(now), ’ - Accuracy_Test.wav’],audio ,fs);
261 end
262

263 % perform analysis
264 audioOnsets = performAnalysis(timingFeedback , numAttempts , componentLag ,
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patternMidiFileName , sysTest , audio , fs, tempo , numComponents);
265

266 % for each drum
267 for h=1: numComponents
268 % convert onsets to ms
269 audioOnsets{h} = samples2ms(audioOnsets{h}, fs);
270

271 if compareToUnmodifiedMIDI == true
272 midiOnsets{h} = origMidiData{h}(:,6) * 1000 ’;
273 else
274 midiOnsets{h} = midiData{h}(: ,6) * 1000 ’;
275 end
276

277 % detect mismatch between number of onsets and pattern
278 if length(audioOnsets{h}) > length(midiOnsets{h})
279 excessOnsets = length(audioOnsets{h}) - length(midiOnsets{h});
280 disp([ newline num2str(length(audioOnsets{h})), ’ onsets detected

. Correct number is ’, num2str(length(midiOnsets{h})), ’. Test halted for
component ’, num2str(h)])

281 onsetMismatch = true;
282 break;
283

284 elseif length(audioOnsets{h}) < length(midiOnsets{h})
285 missingOnsets = length(midiOnsets{h}) - length(audioOnsets{h});
286 disp([ newline num2str(length(audioOnsets{h})), ’ onsets

detected. Correct number is ’, num2str(length(midiOnsets{h})), ’. Test
halted for component ’, num2str(h)])

287 onsetMismatch = true;
288 break;
289

290 else % if numbers match , calculate timing error
291

292 onsetMismatch = false;
293

294 error{i}{h} = audioOnsets{h} - midiOnsets{h}’;
295

296 % set up subplot
297 figure (1)
298 subplot(numTests ,numComponents ,h+((i-1)*3))
299 title(’System Test Results ’)
300

301 % plot bars
302 bar(error{i}{h})
303

304 ylim([-5 5]);
305 ylabel(’Accuracy (ms)’);
306 xlabel(’Drum hit’);
307 title ({[’Test ’, num2str(i)], testName , testValue , [’Tempo: ’,
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num2str(tempo), ’ BPM’], [’Drum -kit ’, num2str(drumkit), ’ - ’,
componentNames{h}], [’Pattern: ’, extractAfter(patternMidiFileName ,’patterns
/’)]})

308 %sgtitle(’Onset Detection Consistency ’);
309 fig1 = gcf;
310

311 % calculate diff between smallest and largest error to determine
range ,

312 % i.e. the consistency of the algorithm itself. Eliminates
variations caused

313 % by differing drum sample start trimming and similar factors
314 range{i}(h) = max(error{i}{h}) - min(error{i}{h});
315 maxRange(i) = max(range{i});
316 end
317 end
318

319 if onsetMismatch == true
320 break; % skip plotting if onset count is incorrect
321 else
322 % plot range
323 figure (2);
324 subplot(3,1,i);
325 bar(range{i})
326

327 % plot values above bars
328 text (1: length(range{i}),range{i},num2str(round(range{i},4) ’),’vert’,

’bottom ’,’horiz’,’center ’);
329 box off
330

331 ylim([-5 5]);
332 yticks ([ -5:1:5])
333 xticklabels ({’Kick’, ’Snare’, ’Hihat ’})
334 ylabel(’Accuracy Range (ms)’);
335 title ({[’Test ’, num2str(i)], testName , [’Tempo: ’, num2str(tempo),

’ BPM’], [’Drum -kit ’, num2str(drumkit)], [’Pattern: ’, extractAfter(
patternMidiFileName ,’patterns/’)]});

336

337 %sgtitle(’Asynchrony Range ’);
338 fig2 = gcf;
339 end
340 end
341

342 %% scale and position windows
343 fig1.Units = ’normalized ’;
344 fig1.OuterPosition = [0.05 0.3 0.35 0.9];
345 %fig1.OuterPosition = [0.05 0.3 0.15 0.36]; % Single
346

347 fig2.Units = ’normalized ’;
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348 fig2.OuterPosition = [0.5 0.3, 0.15 0.5];
349

350 %% Test success/fail handling
351

352 % Onset count test
353 if onsetMismatch == true
354 if tempo >= 600
355 disp(newline , ’ONSET COUNT TEST = SUCCESS: IOI goal of 100ms

successfully attained.’)
356 else
357 disp([newline , ’ONSET COUNT TEST = FAIL: Onset mismatch at current IOI

of ’, num2str(tempo2ms(tempo)), ’ ms’]);
358 end
359 else
360 disp([newline , ’ONSET COUNT TEST = SUCCESS: Correct number of onsets

detected ’])
361 end
362

363 % Range test
364 finalRange = max(maxRange);
365 if finalRange > rangeLimit
366 disp([ newline ’RANGE TEST = FAIL: Range value ’, num2str(finalRange), ’ ms

exceeds limit at tempo ’, num2str(tempo), ’ BPM’]);
367 else
368 disp([ newline ’RANGE TEST = SUCCESS: Range value ’, num2str(finalRange), ’

ms is within limit ’]);
369 end



Appendix K

User Evaluation MATLAB Script

1

2

3 % Baldur Kampmann
4 % SMC Master Thesis 2020
5

6 % USER EVALUATION SCRIPT
7

8 % Automates the user evaluation process by first recording samples of the
9 % user ’s drumkit to set up a NMFD template dictionary.

10 % Next , the user is asked to perform exercises without timing feedback.
11 % Finally , the exercises are repeated but this time with feedback.
12

13 % Behind the scenes , the user performance is recorded as audio , source
14 % separated and analysed for timing accuracy by comparing the user ’s
15 % performance ground truth onset timing.
16

17 % Source separation is performed using the NMFD algorithm by Smaragdis
18 % implemented in the NMF Toolbox by Dittmar et al.
19

20 % ********************************************************************** %
21

22 % Additional user settings are available inside the called functions.
23

24 % Requires the following 3rd party MATLAB toolboxes:
25 % - NMF Toolbox by Lopez -Serrano et al.
26 % - MIDI Toolbox by Eerola & Toiviainen
27 % - MIR Toolbox by Lartillot et al.
28

29 % References:
30 % Patricio Lopez -Serrano , Christian Dittmar , Yigitcan Ozer , and Meinard
31 % Muller
32 % NMF Toolbox: Music Processing Applications of Nonnegative Matrix
33 % Factorization
34 % In Proceedings of the International Conference on Digital Audio Effects
35 % (DAFx), 2019.
36
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37 % Eerola , T. & Toiviainen , P. (2004).
38 % MIDI Toolbox: MATLAB Tools for Music Research.
39 % University of Jyvaskyla: Kopijyva , Jyvaskyla , Finland.
40

41 % Lartillot O., Toiviainen P., Eerola T. (2008)
42 % A Matlab Toolbox for Music Information Retrieval.
43 % In: Preisach C., Burkhardt H., Schmidt -Thieme L., Decker R. (eds)
44 % Data Analysis , Machine Learning and Applications. Studies in
45 % Classification , Data Analysis , and Knowledge Organization.
46 % Springer , Berlin , Heidelberg
47

48 % ********************************************************************** %
49

50 clear variables;
51 close all;
52 clc;
53

54 % Settings
55 numAttempts = 5 % exercise iterations
56

57 % Setup dictionary
58

59 disp(’Welcome ’)
60 disp([newline , ’Press any key to begin setup’])
61 pause;
62

63 onset2PeakLag = setupDictionary ();
64

65 % Perform analysis
66

67 % without timing feedback
68 disp([newline , ’Setup complete ’])
69 disp([newline ,’Press any key to start the exercise ’])
70 pause;
71 clc;
72

73 enableFeedback = false;
74 performAnalysis(enableFeedback , numAttempts , onset2PeakLag);
75

76 % with timing feedback
77 clc;
78 disp([newline , ’You will now be shown a timing analysis of your performance

after each exercise ’])
79 disp([newline , ’Please take some time to examine the timing of each drum and

see if you can improve your accuracy ’])
80 disp([newline , ’Press any key to start the exercise ’])
81 pause;
82 enableFeedback = true;
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83 performAnalysis(enableFeedback , numAttempts , onset2PeakLag);
84

85 %
86 clc;
87 disp([newline , ’Thank you for participating ’]);
88 disp([newline , ’Please fill out the questionnaire before leaving ’])



Appendix L

IDMT-Drums Dataset Test MATLAB Script

1

2 % Requires the following 3rd party MATLAB toolboxes:
3 % - NMF Toolbox by Lopez -Serrano et al.
4 % - MIDI Toolbox by Eerola & Toiviainen
5 % - MIR Toolbox by Lartillot et al.
6

7 % References:
8 % Patricio Lopez -Serrano , Christian Dittmar , Yigitcan Ozer , and Meinard
9 % Muller

10 % NMF Toolbox: Music Processing Applications of Nonnegative Matrix
11 % Factorization
12 % In Proceedings of the International Conference on Digital Audio Effects
13 % (DAFx), 2019.
14

15 % Eerola , T. & Toiviainen , P. (2004).
16 % MIDI Toolbox: MATLAB Tools for Music Research.
17 % University of Jyvaskyla: Kopijyva , Jyvaskyla , Finland.
18

19 % Lartillot O., Toiviainen P., Eerola T. (2008)
20 % A Matlab Toolbox for Music Information Retrieval.
21 % In: Preisach C., Burkhardt H., Schmidt -Thieme L., Decker R. (eds)
22 % Data Analysis , Machine Learning and Applications. Studies in
23 % Classification , Data Analysis , and Knowledge Organization.
24 % Springer , Berlin , Heidelberg
25

26 % ********************************************************************** %
27

28 clear variables;
29 close all;
30 clc;
31

32 %% Setup
33

34 % select data subset
35 set=’TD’; % see avaiable cases below
36
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37 % Debug settings
38 saveSampleAudio = false;
39 saveOnset2PeakLag = false
40 saveMirEvalData = true;
41

42 % Plot settings
43 plotting = false
44 timingFeedback = false;
45 plotRange = false;
46

47 %% System settings
48

49 numComponents = 3;
50

51 % Drum names
52 componentNames {1} = ’Bass Drum’;
53 componentNames {2} = ’Snare Drum’;
54 componentNames {3} = ’HiHat ’;
55

56 % create figures
57

58 if plotting == true
59 figure (1)
60 figure (2)
61 figure (3)
62 end
63

64 % system settings
65 onsetMismatch = false;
66 sysTest = true;
67 normalize = true;
68

69 %% Init variables
70

71 maxRange = 0;
72 rangeLimit = 25; % F-Measure in Mir_Eval is usually done with 50ms
73

74 % create folders
75 outPath = [’../ data/mir_eval/’, datestr(now ,30), ’/’];
76 if ~exist(outPath , ’dir’)
77 mkdir(outPath);
78 end
79

80 % Folder for segmented samples
81 segmentedPath = [outPath , ’SegmentedSamples/’];
82 if ~exist(segmentedPath , ’dir’)
83 mkdir(segmentedPath);
84 end
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85

86 % Folder for trimmed samples
87 trimmedPath = [outPath , ’TrimmedSamples/’];
88 if ~exist(trimmedPath , ’dir’)
89 mkdir(trimmedPath);
90 end
91

92 %% Analyze and extract data
93

94 % Test -specific variables
95 offset = 1;
96 suffix {1} = ’#KD#train ’
97 suffix {2} = ’#SD#train ’
98 suffix {3} = ’#HH#train ’
99

100 switch set
101 case ’RD’
102 numTests = 14;
103 testName = ’RealDrum01_ ’
104

105 case ’WD1’
106 numTests = 10;
107 testName = ’WaveDrum01_ ’
108

109 case ’WD2’
110 numTests = 60;
111 testName = ’WaveDrum02_ ’
112 offset = 0;
113 suffix {1} = ’#KD’;
114 suffix {2} = ’#SD’;
115 suffix {3} = ’#HH’;
116

117 case ’TD’
118 numTests = 10;
119 testName = ’TechnoDrum01_ ’
120 end
121

122 for i=1: numTests
123

124 % match IDMT count format
125 test = i-offset;
126

127 % update filenames
128 sampleFn {1} = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), suffix {1},

’.wav’]; %’#KD.wav ’]; % ’#KD#train.wav ’]
129 sampleFn {2} = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), suffix {2},

’.wav’]; %’#SD.wav ’]; %’#SD#train.wav ’];
130 sampleFn {3} = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), suffix {3},’
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.wav’]; %’#HH.wav ’]; % ’#HH#train.wav ’];
131

132 mixFn = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), ’#MIX.wav’];
133

134 refOnsetFn {1} = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), ’#KD.svl’
];

135 refOnsetFn {2} = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), ’#SD.svl’
];

136 refOnsetFn {3} = [’../ data/IDMT/’, testName , num2str(test , ’%02d’), ’#HH.svl’
];

137

138 for j=1: numComponents
139

140 [sampleData ,sampleFs] = audioread(sampleFn{j});
141

142 mirSample = mirsegment(sampleData , ’RMS’);
143

144 index = get(mirSample ,’FramePos ’)
145

146 % Use 2nd sample for training
147 indexSamples = ms2samples(index {1}{2}*1000);
148

149 indexBegin = indexSamples (1);
150 indexEnd = indexSamples (2);
151

152 if indexBegin == 0
153 indexBegin = 1;
154 end
155

156 segmentedSample = sampleData(indexBegin:indexEnd);
157

158 % Trim beginning and end to 1% below peak value
159 % trimIndex = find(abs(segmentedSample) > (max(sampleData)*1) /100); % 1%

percent below peak
160 trimIndex = find(abs(segmentedSample) > (max(segmentedSample)*1) /100); %

1% percent below peak
161

162 trimmedSample{j} = segmentedSample(trimIndex (1):trimIndex(length(
trimIndex)));

163

164 % find onset -to-peak lag
165 [~, onset2peakLag{j}] = max(abs(trimmedSample{j}));
166 onset2peakLagMs{j} = samples2ms(onset2peakLag{j})
167

168 %figure
169 %plot(trimmedSample{j});
170

171 if saveSampleAudio == true
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172 % save samples for debugging
173 audiowrite ([ segmentedPath , testName , num2str(test , ’%02d’), suffix{j

}, ’ - segmented ’, ’.wav’],segmentedSample ,sampleFs);
174 audiowrite ([ trimmedPath , testName , num2str(test , ’%02d’), suffix{j},

’ - trimmed ’, ’.wav’], trimmedSample{j},sampleFs);
175 end
176 end
177

178

179 if saveOnset2PeakLag == true
180 % write onset -to-peak lag to text file in mir_eval format
181 o2pFn = [trimmedPath , testName , num2str(test , ’%02d’), ’#onset2peak.txt’

];
182

183 fileID = fopen(o2pFn ,’w’);
184 fprintf(fileID ,’%.6f %.6f %.6f\n’, onset2peakLagMs {1}, onset2peakLagMs

{2}, onset2peakLagMs {3});
185 fclose(fileID);
186 end
187

188 % train dictionary
189 setupDictionary(sysTest , 1, 3, ’’, trimmedSample , true);
190

191

192 for j=1: numComponents
193 refOnsets{j} = parseSVLAnnotations(refOnsetFn{j});
194 end
195

196 % Drum peak position lag correction in ms
197 componentLag {1} = onset2peakLagMs {1}
198 componentLag {2} = onset2peakLagMs {2}
199 componentLag {3} = onset2peakLagMs {3}
200

201 % load mixture
202 [audio ,fs] = audioread(mixFn);
203

204 if timingFeedback == true
205 figure (2+i)
206 end
207

208 % perform analysis
209 audioOnsets = [];
210 audioOnsets = idmtAnalysis(timingFeedback , sysTest , audio , fs , numComponents

,componentLag);
211

212 % plot onsets
213 % plotResults(componentName ,vizEnd , detectedOnsets , iteration , patternOnsets

, errorMs , audio , preCountOffset , prePadding , plotWaveform , overlayOnsets)
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214

215 % for each drum
216 for h=1: numComponents
217 % convert onsets to ms
218 audioOnsets{h} = samples2ms(audioOnsets{h}, fs);
219 midiOnsets{h} = [];
220 midiOnsets{h} = refOnsets{h} *1000; % midiData{h}(:,6) * 1000’;
221

222 % detect mismatch between number of onsets and pattern
223 if length(audioOnsets{h}) > length(midiOnsets{h})
224 excessOnsets = length(audioOnsets{h}) - length(midiOnsets{h});
225 disp([ newline num2str(length(audioOnsets{h})), ’ onsets detected.

Correct number is ’, num2str(length(midiOnsets{h})), ’. Test halted for
component ’, num2str(h)])

226 onsetMismatch = true;
227 %break;
228

229 elseif length(audioOnsets{h}) < length(midiOnsets{h})
230 missingOnsets = length(midiOnsets{h}) - length(audioOnsets{h});
231 disp([ newline num2str(length(audioOnsets{h})), ’ onsets detected.

Correct number is ’, num2str(length(midiOnsets{h})), ’. Test halted for
component ’, num2str(h)])

232 onsetMismatch = true;
233 %break;
234 end
235

236 % if numbers match , calculate timing error
237 if onsetMismatch == true
238 error{i}{h} = 0;
239 onsetMismatch = false;
240 else
241 error{i}{h} = audioOnsets{h} - midiOnsets{h};
242 end
243

244 % convert to samples
245 audioOnsetsSamples{h} = ms2samples(audioOnsets{h});
246 midiOnsetsSamples{h} = ms2samples(midiOnsets{h});
247

248 if saveMirEvalData == true
249 % write to text file in mir_eval format
250 estFn {1} = [outPath , testName , num2str(test , ’%02d’), ’#KD_est.txt’

];
251 estFn {2} = [outPath , testName , num2str(test , ’%02d’), ’#SD_est.txt’

];
252 estFn {3} = [outPath , testName , num2str(test , ’%02d’), ’#HH_est.txt’

];
253

254 refFn {1} = [outPath , testName , num2str(test , ’%02d’), ’#KD_ref.txt’
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];
255 refFn {2} = [outPath , testName , num2str(test , ’%02d’), ’#SD_ref.txt’

];
256 refFn {3} = [outPath , testName , num2str(test , ’%02d’), ’#HH_ref.txt’

];
257

258 fileID = fopen(estFn{h},’w’);
259 fprintf(fileID ,’%.15f\n’, audioOnsets{h}/1000);
260 fclose(fileID);
261

262 fileID = fopen(refFn{h},’w’);
263 fprintf(fileID ,’%.15f\n’, midiOnsets{h}/1000);
264 fclose(fileID);
265 end
266

267 % plot
268 if plotting == true
269 figure (3)
270 plotResults(componentNames ,length(audio), audioOnsetsSamples{h}, h,

midiOnsetsSamples{h}, error{i}{h}, audio , 0, 0, true , audioOnsetsSamples{h})
271

272 % set up subplot
273 figure (1)
274 subplot(numTests ,numComponents ,h+((i-1)*3))
275 title(’System Test Results ’)
276

277 % plot bars
278 bar(error{i}{h})
279 ylim ([-50 50]);
280 ylabel(’Accuracy (ms)’);
281 xlabel(’Drum hit’);
282 title(componentNames{h})
283 sgtitle(’Detected Onset Error ’);
284 fig1 = gcf;
285 end
286 end
287

288 if plotRange == true
289 if onsetMismatch == true
290 break; % skip plotting if onset count is incorrect
291 else
292 % plot range
293 figure (2);
294 subplot(3,1,i);
295 bar(range{i})
296

297 % plot numbers above bars
298 text (1: length(range{i}),range{i},num2str(round(range{i},4) ’),’vert’,
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’bottom ’,’horiz’,’center ’);
299 box off
300

301 ylim([-5 5]);
302 yticks ([ -5:1:5])
303 xticklabels ({’Kick’, ’Snare’, ’Hihat ’})
304 ylabel(’Accuracy Range (ms)’);
305 title ({[’Test ’, num2str(i)]});
306

307 sgtitle(’Baseline Algorithm Accuracy Measured as Range of Error’);
308 fig2 = gcf;
309 end
310 end
311 end
312

313 %% scale and position windows
314 if plotting == true
315

316 fig1.Units = ’normalized ’;
317 fig1.OuterPosition = [0.05 0.3 0.45 0.7];
318

319 fig2.Units = ’normalized ’;
320 fig2.OuterPosition = [0.5 0.3, 0.45 0.7];
321

322 % wait for user to finish
323 pause
324 end
325

326 %% Test success/fail handling
327

328 % Onset count test
329 if onsetMismatch == true
330 disp([newline , ’ONSET COUNT TEST = FAIL: Incorrect number of onsets detected

’]);
331 else
332 disp([newline , ’ONSET COUNT TEST = SUCCESS: Correct number of onsets

detected ’])
333 end
334

335 % Range test
336 finalRange = max(maxRange);
337 if finalRange > rangeLimit
338 disp([ newline ’RANGE TEST = FAIL: Range value ’, num2str(finalRange), ’ ms

exceeds limit at tempo ’, num2str(tempo), ’ BPM. Test halted ’]);
339 else
340 disp([ newline ’RANGE TEST = SUCCESS: Range value ’, num2str(finalRange), ’

ms is within limit ’]);
341 end



Appendix M

Mir_Eval Python Script

1 # Baldur Kampmann
2 # SMC Master Thesis 2020
3

4 # This script calculates F-measure with Mir_Eval and exports the results
5 # to a CSV file for subsequent analysis in Excel.
6

7 import mir_eval
8 import os
9 import csv

10

11 # Mir_eval.onset window size in ms (default =0.05)
12 windowSize = 0.05
13

14 path="/data/mir_eval/"
15 os.chdir(path)
16

17 # Test settings
18 drumkit = ["RealDrum01_", "TechnoDrum01_", "WaveDrum01_", "WaveDrum02_"]
19

20 beginDrumkit = 0;
21 endDrumkit = len(drumkit);
22

23 endTest = [14, 10, 10, 61]
24 startTest= [0, 0, 0, 1]
25

26 numTests = [14, 10, 10, 60]
27

28 # CSV output setup
29 with open(’F_measure.csv’, mode=’w’) as fn:
30 F_writer = csv.writer(fn , delimiter=’,’, quotechar=’"’, quoting=csv.

QUOTE_MINIMAL)
31 F_writer.writerow ([’BD’, ’SD’, ’HH’])
32

33 # Iterate through all drum -kits
34 for h in range(beginDrumkit ,endDrumkit):
35 print(’Drumkit ’, h)
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36

37 # Iterate through all tests for current drumkit
38 for i in range(startTest[h], endTest[h]):
39

40 # Update variables
41 insert = drumkit[h]
42 num = ’%02d’ % (i)
43 print(’Test #’, num)
44

45 # BD
46 estimated_onsets = mir_eval.io.load_events(insert+ str(num) + ’#

KD_est.txt’)
47 reference_onsets = mir_eval.io.load_events(insert + str(num) + ’#

KD_ref.txt’)
48 BD_F , P, R = mir_eval.onset.f_measure(reference_onsets ,

estimated_onsets , window=windowSize)
49

50 # SD
51 estimated_onsets = mir_eval.io.load_events(insert + str(num) + ’#

SD_est.txt’)
52 reference_onsets = mir_eval.io.load_events(insert + str(num) + ’#

SD_ref.txt’)
53 SD_F , P, R = mir_eval.onset.f_measure(reference_onsets ,

estimated_onsets , window=windowSize)
54

55 # Hi -Hat
56 estimated_onsets = mir_eval.io.load_events(insert + str(num) + ’#

HH_est.txt’)
57 reference_onsets = mir_eval.io.load_events(insert + str(num) + ’#

HH_ref.txt’)
58 HH_F , P, R = mir_eval.onset.f_measure(reference_onsets ,

estimated_onsets , window=windowSize)
59

60 # Write F-meausure results to CSV file
61 F_writer.writerow ([BD_F , SD_F , HH_F])



Appendix N

User Evaluation Data Analysis MATLAB
Script

1

2 % Baldur Kampmann
3 % SMC Master Thesis 2020
4

5 % Performance Data Analysis Script
6

7 % Analyzes user evaluation performance data and handle descriptive and
inferential

8 % statistics.
9

10 clear variables;
11 close all
12 clc;
13

14 %% Setup
15

16 % Enable or disable plots to speed up process
17 plot = true;
18

19 numTests = 3;
20 numDrums = 3;
21

22 fs = 44100;
23

24 % Post -processing options
25 removeOutliers = true;
26 removeDuplicates = true;
27 addMissing = true;
28

29 % Export options
30 exportExcel = false % export ANOVA data to excel file
31

32 % Unit test compares the ground truth data with it itself.
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33 % Should result in zero in all plots.
34 unitTest = false;
35

36 % compare user data to ground truth
37 % Should show zero in plots of data with timing feedback
38 refTest = false;
39

40 % Drum names
41 componentNames {1} = ’Kick’;
42 componentNames {2} = ’Snare ’;
43 componentNames {3} = ’HiHat ’;
44

45 % load MIDI data
46 patternMidiFilename = ’../ data/patterns/exercisePattern.mid’;
47

48 % extract MIDI data
49 tempo = 100; % make sure to use same tempo as was used for the test
50 [midiData numComponents] = loadExerciseMIDI(patternMidiFilename , tempo , false);
51

52 % import previosly recorded onset data
53

54 % Original test , participant: M
55 %fnWithoutFB = ’../data/onsets/M - Unguided.mat ’;
56 %fnWithFB =’../ data/onsets/M - Guided.mat ’;
57

58 % Original test , participant: LK
59 fnWithoutFB = ’../ data/onsets/LK - Unguided.mat’;
60 fnWithFB =’../ data/onsets/LK - Guided.mat’;
61

62 %userOnsets_WithFeedback = importUserOnsets (’../ data/onsets/refUser.mat ’);
63

64 % Original test , participant : MP
65 %fnWithoutFB = ’../data/onsets/MP - Orig - Unguided.mat ’;
66 %fnWithFB = ’../data/onsets/MP - Orig - Guided.mat ’;
67

68 % Revised test , participant : MP
69 %fnWithoutFB = ’../data/onsets/MP - Simp - Unguided.mat ’;
70 %fnWithFB = ’../data/onsets/MP - Simp - Guided.mat ’;
71

72 userOnsets_WithoutFeedback = importUserOnsets(fnWithoutFB);
73 userOnsets_WithFeedback = importUserOnsets(fnWithFB);
74

75 % create figures
76 if plot == true
77 figure (1)
78 figure (2)
79 figure (3)
80 figure (4)
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81 end
82

83

84 %% Calculate statistics from unguided data
85

86 % Calculate start and end of pattern in samples
87 barSamples = tempo2samples(tempo ,0.5); % 1 bar
88 padding = tempo2samples(tempo ,8); % 8-note padding
89 rangeStart = -(padding);
90 rangeEnd = barSamples + padding;
91

92 barSamples = tempo2samples(tempo ,0.5); % 1 bar
93 padding = tempo2samples(tempo ,8); % 8-note padding
94 rangeStart = -(padding);
95 rangeEnd = barSamples + padding;
96

97 for i=1: numTests
98 for h=1: numDrums
99

100 % remove onsets outside time range
101 userOnsets_WithoutFeedback.combOnsets{i}{h} = trimOnsetRange(

userOnsets_WithoutFeedback.combOnsets{i}{h}, rangeStart , rangeEnd);
102 userOnsets_WithFeedback.combOnsets{i}{h} = trimOnsetRange(

userOnsets_WithFeedback.combOnsets{i}{h}, rangeStart , rangeEnd);
103

104 % calc number of detected onsets for statistics
105 numDetectedOnset_WithoutFeedback{i}{h} = length(

userOnsets_WithoutFeedback.combOnsets{i}{h});
106 numDetectedOnset_WithFeedback{i}{h} = length(userOnsets_WithFeedback.

combOnsets{i}{h});
107

108 % convert reference onset to ms
109 midiOnsets{h} = midiData{h}(: ,6) * 1000 ’;
110

111 % convert ref onsets to samples
112 midiOnsets{h} = ms2samples(midiOnsets{h});
113

114 % extend pattern
115 numBars = 2;
116 midiOnsets{h} = extendPattern(numBars , midiOnsets{h}’, tempo2samples(

tempo ,1), 0) ’;
117

118 % calc number of reference onsets for statistics
119 numRefOnsets{h} = size(midiOnsets{h},1);
120

121 % calculate Euclidean distance from each detected onset to each ground
truth onset

122 if unitTest == true
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123 async_withoutFeedback{i}{h} = matchOnsets(midiOnsets{h}’, midiOnsets
{h}’, false , false);

124 async_withFeedback{i}{h} = matchOnsets(midiOnsets{h}’, midiOnsets{h
}’, false , false);

125 elseif refTest == true
126 async_withoutFeedback{i}{h} = matchOnsets(userOnsets_WithoutFeedback

.combOnsets{i}{h}, midiOnsets{h}’, removeOutliers , removeDuplicates ,
addMissing);

127 async_withFeedback{i}{h} = matchOnsets(midiOnsets{h}’+(randn(length(
midiOnsets{h}) ,1)*1000) , midiOnsets{h}’, false , false , false);

128 else
129 async_withoutFeedback{i}{h} = matchOnsets(userOnsets_WithoutFeedback

.combOnsets{i}{h}, midiOnsets{h}’, removeOutliers , removeDuplicates ,
addMissing);

130 async_withFeedback{i}{h} = matchOnsets(userOnsets_WithFeedback.
combOnsets{i}{h}, midiOnsets{h}’, removeOutliers , removeDuplicates ,
addMissing);

131 end
132

133 % convert to ms
134 async_withoutFeedback{i}{h} = samples2ms(async_withoutFeedback{i}{h});
135 async_withFeedback{i}{h} = samples2ms(async_withFeedback{i}{h});
136

137 % plot results
138 if plot == true
139 [plotBarsUnguided plotHistfitUnguided] = plotUDAnalysis(numTests ,

numDrums ,h,i, async_withoutFeedback ,componentNames , ’Without Timing Feedback
’, 1);

140 [plotBarsGuided plotHistfitGuided] = plotUDAnalysis(numTests ,
numDrums ,h,i, async_withFeedback ,componentNames , ’With Timing Feedback ’, 3);

141 end
142

143 %% calculate means and standard dev
144 asyncMean_WithoutFeedback{i}{h} = mean(async_withoutFeedback{i}{h});
145 asyncStd_WithoutFeedback{i}{h} = std(async_withoutFeedback{i}{h});
146 asyncMean_WithFeedback{i}{h} = mean(async_withFeedback{i}{h});
147 asyncStd_WithFeedback{i}{h} = std(async_withFeedback{i}{h});
148 end
149 end
150

151 %% Scale and position figures
152

153 if plot == true
154

155 plotBarsUnguided.Units = ’normalized ’;
156 plotBarsUnguided.OuterPosition = [0.0 0.1 0.35 0.8];
157 plotBarsUnguided.Name = ’Without Feedback - Accuracy Per Hit’;
158
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159 plotHistfitUnguided.Units = ’normalized ’;
160 plotHistfitUnguided.OuterPosition = [0.0 0.5 0.35 0.8];
161 plotHistfitUnguided.Name = ’Without Feedback - Distribution ’;
162

163 plotBarsGuided.Units = ’normalized ’;
164 plotBarsGuided.OuterPosition = [0.5 0.1 0.35 0.8];
165 plotBarsGuided.Name = ’With Feedback - Accuracy Per Hit’;
166

167 plotHistfitGuided.Units = ’normalized ’;
168 plotHistfitGuided.OuterPosition = [0.5 0.5 0.35 0.8];
169 plotHistfitGuided.Name = ’With Feedback - Distribution ’;
170

171 end
172

173 %% Check for improvement in timing as a result of training
174

175 % Pool data from last three test iterations
176 for h=1: numDrums
177

178 controlGroup{h} = [];
179 experimentalGroup{h} = [];
180

181 for i=(numTests -2):numTests
182 controlGroup{h} = [controlGroup{h}; async_withoutFeedback{i}{h}’];
183 experimentalGroup{h} = [experimentalGroup{h}; async_withFeedback{i}{h}’];
184 end
185 end
186

187 % Calculate stats
188 userdataStats(controlGroup , experimentalGroup);
189 rm_anova = userdataANOVA(controlGroup , experimentalGroup , 3, 3);
190

191 if exportExcel == true
192 insert = extractBetween(fnWithoutFB , ’onsets/’, ’ -’);
193 filename = [’../ data/rm -anova - ’, insert {1} ,’.xlsx’];
194 writetable(rm_anova {1},filename ,’Sheet ’,1,’Range’,’B1’)
195 writetable(rm_anova {2},filename ,’Sheet ’,1,’Range’,’B5’)
196 writetable(rm_anova {3},filename ,’Sheet ’,1,’Range’,’B10’)
197 end
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Profile Summary
Generated 14-May-2020 12:39:16 using performance time.
Function Name Calls Total

Time
Self
Time*

Total Time Plot
(dark band = self
time)

systemEval 1 15.507 s 0.891 s

NMFD 4 7.741 s 3.481 s

setupDictionary 1 7.708 s 0.021 s

performAnalysis 1 5.729 s 0.031 s

highpass 3 3.684 s 0.003 s

convModel 3016 2.461 s 2.151 s

highpass>designFilter 3 2.417 s 0.004 s

designfilt 3 2.392 s 0.007 s

designfilt>parseAndDesignFilter 3 2.384 s 0.004 s

...signfiltProcessCheck.checkConstraints 3 2.358 s 0.019 s

shiftOperator 72288 1.719 s 1.719 s

detectOnsets 3 1.632 s 0.009 s

abstracttype.design 3 1.392 s 0.002 s

abstracttype.superdesign 3 1.389 s 0.005 s

abstracttype.kaiserwin 3 1.368 s 0.002 s

abstracttype.privdesigngateway 3 1.367 s 0.004 s

abstracttypewspecs.thisdesign 3 1.332 s 0.001 s

abstractspec.kaiserwin 3 1.331 s 0.001 s

abstractspec.design 3 1.330 s 0.006 s

abstractdesign.design 3 1.310 s 0.002 s

abstractdesign.designcoeffs 3 1.290 s 0.004 s

abstractwindow.actualdesign 3 1.276 s 0.001 s

kaiserhpmin.designargs 3 1.264 s 0.002 s

abstractkaisermin.postprocessargs 3 1.258 s 0.004 s

filterData 3 1.248 s 0.004 s

digitalFilter>digitalFilter.filter 3 1.236 s 0.002 s

digitalFilter>filterFIR 3 1.234 s 1.234 s

abstractfir.iskaisereqripminspecmet 3 1.113 s 0.005 s

basefilter.freqz 6 1.106 s 0.002 s
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