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Reading Guide

It is assumed the reader has a basic understanding of robotic manipulators and
how they can be modelled kinematically. The reader should also has an under-
standing of control and how systems are modelled/simulated. A very basic un-
derstanding of electronics such as motors and microcontrollers is advised.

Throughout this report references to figures will be shown as figure 1.0, tables
as table I, equation as equation 1.0 and citations will be shown as [1]. Every figure
has a description underneath and tables have their description above. Footnotes
will be shown as footnote1 at the bottom of the page.
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ABS Akrylonitril-butadien-styren

CAD Computer Aided Design

COM Center of Mass
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CHAPTER | 1

Introduction

The development of humanoid robots is motivated by the possibility of robots as-
sisting humans in tedious, hazardous or physically demanding work that could
result in injury or disability. One step towards realising this, is to develop a mo-
tion controller that makes the humanoid robot walk.

Development of humanoid robots is not a new concept as the first full scale hu-
manoid robot was created in 1973 [1]. The robot was called WABOT and was devel-
oped at Waseda University. Since the creation of WABOT, universities and compa-
nies around the world have furthered the development with noteworthy mentions
being Honda Motor CO. Ltd, with their creation of the P-series humanoid robots
development program staring from the year 1986. Honda also created the state of
the art Asimo robot series in 2005, being one of the most complex humanoid robots
on the market [1].

The complexity comes at a price being that the Asimo robot costs an estimated
2,500,000 USD as of 2012 [2]. Asimo can be seen in figure 1.3. Other humanoid
robots as the HUBO 2 created by KAIST cost an estimated 400,000 USD, being less
complex than Asimo while still being a full body robot 1 [3]. The robot HRP-4
developed by Kawada Industries costs approximately 300,000 USD [2].

The price of such robots can be a restricting factor when studying the development
of control theories for humanoid robots, as it makes the hardware less accessible.
This report will focus on the development of a cheaper humanoid robot which
can be used for teaching, research and pushing the boundaries in humanoid robot
development. Developing a full body humanoid robot is not a trivial task and as
this report was created in a single semester, the development was narrowed down.
The development was reduced to just the lower body of a humanoid robot. This
should be able to perform dynamic walk, inspired by how humans walk. Analyses
of the current state of art regarding human gait and control theories for a biped
robot is to be carried out, with the project solution based on the findings.

1full body robot: One that consist of head, torso, arms and legs
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Introduction 1.1 State of the Art

1.1 State of the Art

A wide range of innovative humanoid and biped robots have been developed
throughout the years, from which this section will investigate a select few. The
robot to be developed aims at the same functionality of dynamic walk as the state
of art.

Atlas

Figure 1.1 Atlas

Atlas, by Boston Dynamics, is a humanoid hydraulic
actuated robot consisting of 28 joints. It has a height of
1.5 m and a 80 kg weight, and is capable of walking at a
speed of 1.5 m/s [4]. Boston Dynamics often showcase
the dynamic movements and agility of Atlas in promo
videos, sporting almost human like agility and demon-
strates the state of art humanoid robot control level. At-
las is based upon a COM trajectory planner, a full body
inverse dynamic model and a MPC controller to make
the robot perform dynamic walking [5]. The COM plan-
ner is based upon LIPM dynamics created for the robot
thus resulting in an optimisation problem. The resulting
control allows Atlas to walk on rubble, handle push’s
and walk dynamically.

2
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Cassie and Digit

Figure 1.2 Cassie

Cassie is a commercially available biped robot from
Agility Robotics [6]. Cassie can be combined with an
upper body, resulting in the robot Digit. The unactu-
ated dynamics of Cassie include compliant materials,
i.e. spring dynamics. The control of motion for Cassie
has been posed as a nonlinear problem, and the devel-
oped controller has a sample rate of 2 kHz in order to
handle the dynamics [7]. The results presented in [7]
showcase a hybrid model to overcome the unique chal-
lenge that Cassie poses due to its compliant mecha-
nism and highly underactuated nature of the dynam-
ics. The hybrid model consist of a rigid model (simple
model) and compliant model (full model), the simple
model assumes all four leaf springs are rigid linkages,
whereas the full model treats the rotational joints of the
leaf spring linkage as a torsional joint, with stiffness
and damping effects. These two models are compared
in regards to computation performance and simulation,
which suggested two directions. One being ignoring the
compliance and designing controllers which are robust
to the mismatch or using a more complex model which
designs locomotive behaviours encoding the compliant
behaviour. Contact detection is achieved from checking
if the axial leg force is greater than 75 N and maintained
for over 5 ms then contact is registered for a given leg. Additionally, if the force
falls below 75 N, contact is considered broken. This estimation routine runs at
500 Hz, while the control thread runs at 2 kHz.
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Asimo

Figure 1.3 Asimo

Asimo developed by Honda is a 34 DOF humanoid
robot created to imitate human motions.
In contrast the human body has 57 DOF distributed as
such: 3 DOF for the head, 18 DOF for the arms, 26 DOF
for the hands, 2 DOF for the hip and 16 DOF for the
legs [8].
The actuators of Asimo consist of servomotors, har-
monic speed reducers and drive units, which to-
gether with a 6-axis area sensor in the foot, gy-
roscope and acceleration sensor in the torso en-
ables Asimo to walk with a speed of 2.7 km/h.
Asimo has a height of 1.3 m and a weight of
50 kg [8].

Different work has been made on Asimo by different
researchers. The paper The intelligent ASIMO: system
overview and integration has worked on advancing Asimo
gesture recognition system, human interaction and task
performance, with the primary focus on doing recep-
tionist work [9]. While the paper Footstep Planning for
the Honda ASIMO Humanoid has implemented a foot-
step planner for Asimo to advance its dynamic walk by
being able to avoid obstacles [10].

4



Introduction 1.2 Gait Analysis

Wabian-2R

Figure 1.4 Wabian-2R

Wabian-2R was developed by Kato/Takanishi Labora-
tory in Japan and is a 41 DOF humanoid robot created
as a human motion simulator. It is 1.5 m high and weigh
64 kg. It is able to walk with a speed of 1.8 km/h with a
step length of up to 0.5 m [11]. It is able to perform hu-
man like walking with its knee stretched, heel contact
and toe offset. It is also able to walk with a horizon-
tally oriented foot with sensors placed in each corner to
measure ground contact and enables the robot to walk
on uneven terrain and up/down slopes.

LOLA

LOLA is a humanoid robot with a total of 25 DOF. The
legs each have 7 DOF, with the 7th joint being the toe
joint. This makes the LOLA robot able to closely mimic
a human gait, by adding a heel lift-off phase to the gait.
While using single leg support during walk, LOLA has
9 DOF between the supporting foot and the upper body. This high amount of
redundancy bring advantages such as increased agility, and reduces load on the
individual joints [12]. The LOLA project aims for 5 km/h walking speeds. [12]
mentions that for higher walking speeds, the time horizon of the motion planner
must be extended beyond just a single step, to include multiple steps. An impor-
tant part of stabilisation is real-time adjustment of gait parameters such as step
length, width and frequency [12].

1.2 Gait Analysis

How humans walk has been a research subject for many decades with focus on
how walking patterns are in normal gait and how the gait changes as age and in-
jury affect the person.
This research is usually applied on biped robots in order to make them mimic hu-
man gait, as seen from the Asimo, Atlas, Wabian and LOLA.
The human body produces metabolic energy. Muscles use the energy when mov-
ing and energy usage increases as speed increases. Walking more efficient uses
less energy and thus allows for greater speeds [13] To conserve energy humans
developed dynamic walking. How long or short steps a human takes depends on
the walking speed, where longer steps increases collision losses and shorter steps
increases energy used when swinging the legs. Many factors affect the energy per-
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Introduction 1.2 Gait Analysis

formance for dynamic walk and the most optimal step length vary from human to
human as leg properties change. The human gait will be analysed in the following
section, such that it can form a basis for later decisions in the development of the
biped gait.

Human Gait

The human gait can be described as a series of stances as the foot pushes off the
ground, swings, and performs a ground collision which triggers the movement
of the other leg [13]. In figure 1.5 the stances can be seen showcasing single foot
support and double foot support during a gait cycle. Walking creates a sinus-like
movement pattern for the COM mass as the support shifts from leg to leg when
performing dynamic walking [14] [15].

Figure 1.5 Human gait describes by the individual stances with single or double foot support [16]

Range of Motion

The normal human range of motion for lower body joints can be seen in table I.
The human body is flexible and can hyperextend most joints, however this is not
includes in table I. The notion of moving a limb, can be separated into the follow-
ing categories of motions, called: flexion 2, extension 3, abduction 4, adduction 5,
dorsiflexion 6, plantar flexion 7, eversion 8, inversion 9 All values of table I are
based on the upright standing position as the zero point.

2Flexion refers to a movement that decreases the angle between two body parts.
3Extension refers to a movement that increases the angle between two body parts.
4Abduction is a movement away from the midline.
5Adduction is a movement towards the midline.
6Dorsiflexion refers to flexion at the ankle, so that the foot points more upwards
7Plantar flexion describes the extension of the ankle so that the foot points downwards.
8Inversion involves the movement of the sole towards the midline.
9Eversion involves the movement of the sole away from the midline.

6
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TABLE I
Range of motion of human joints [17] [18]. Hip flexion is based upon single leg flexion with

the other in a neutral position. The neutral position is standing with straight legs.

Range of

motion (◦):
Max flexion Max extension

Hip - forward 110 30

Hip - sideways n/a 40

Knee 150 0

Max Dorsiflexion Max Plantar flexion

Ankle - forward 20 50

Max Eversion Max Inversion

Ankle - sideways 12 23

In figure 1.6 the knee joint can be seen describing how the joint moves. With the
ankle joint having 3 DOF the human foot can the tilted such full ground contact is
obtained while walking up/down hills or uneven terrain. Walking in debris and
with protruding objects in the ground is also possible.

Figure 1.6 Human gait with arrows indicating the movement of the knee joint.

7
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The hip, knee and ankle joint extend to the values seen in table II as dynamic
walking is performed. Theoretically the human joints could be limited to said
values if dynamic walk was all humans did.

TABLE II
Range of motion based upon normal gait at speeds between 0.4 to 1.6 m/s [14]. The knee

joint can only do flexion.

Range of

motion (◦):
Max flexion Max extension

Hip 34.33 ± 7.17 11.45 ± 5.11

Knee 62.42 ± 2.89 0

Max

Dorsiflexion

Max Plantar

flexion

Ankle 15.23 ± 2.66 21.54 ± 3.71

Joint Actuation

As a human moves, the joints accelerates and decelerates resulting in dynamic
walking being performed. Depending on the walking speed the joint velocities
change and the most optimal joint actuation based upon energy conservation is
used. For a normal human the peak joint angular velocities for the hip, knee and
ankle can be seen in table III. As the energy usage is dependant on the weight of
the limb the actual energy for each joint is different from human to human. The
joint velocities are however similar and thus forms a basis from which specific joint
torques can be found.

TABLE III
Peak joint angular velocity based upon normal gait at speeds between 0.4 to 1.6 m/s [14].

Peak angular velocity ( deg
s ): Max

Hip 219.82 ± 27.87

Knee 386.39 ± 50.48

Ankle 331.16 ± 34.68

Robot Gait

To imitate the human lower body a biped robot can be used when dynamic walk-
ing is the focus. Due to the many degrees of freedom found in the human body, the
biped robot representation is generally simplified with a less complex leg model,

8
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in terms of the amount of DOFs. Some of the major functionality that is lost is the
toe-joint of the foot. This joint is found in the forefoot of the human feet, and adds
the toe-off phase to the human gait. The Lola robot [12] includes such a toe-joint,
however it is seldom included in the design of a biped robot. Removing the toe-
joint alters the pre-swing phase of the robot gait. An additional phase that is often
removed to simplify the robot is the heel-strike phase. The heel-strike phase re-
quires a foot capable of a rolling motion as the heel hits the ground. Such a robotic
prosthetic is complex to recreate thus few robots implement a heel-strike phase.
The complexity of the human foot is hard to mimic as it has 30 DOF [8]. However
simplified versions of the legs are often created. The robot Cassie has a 5 DOF
leg while LOLA has 7 DOF. The 7 DOFs of the LOLA robot is distributed as: 3 in
the hip, 1 in the knee, 2 in the ankle and 1 in the toe. Finally another simplified
version of the leg, used in the Asimo robot, uses 6 DOFs where 3 are located in the
hip, 1 in the knee and 2 in the ankle. The purpose of these simplified models is
to approximate the function of human legs when creating humanoid robots, while
reducing the complexity of the model.

As a result of the knowledge gathered up to this point, the robot used for this
project will consist of a 12 DOF model, having 6 DOF in each leg, distributed as
such: 3 DOF in the hip, 1 DOF in the knee and 2 DOF in the ankle. However
walking on uneven terrain can be challenging with a regular robotic foot, therefore
the biped robot designed for this project will be fitted with force sensors in each
corner of the foot. This method is also used by the Wabian-2R robot, so as to pro-
vide feedback to the controller about how the foot is affected by the terrain.

The phases of the biped robot gait will mimic the human gait seen in figure 1.5
on page 6 to some degree. Due to the reduced amount of DOFs in the leg of the
robot, certain phases cannot be replicated. These include the heel strike phase, the
pre-swing phase and the terminal stance phase, which is illustrated in figure 1.5
on page 6. These phases have in common that only a part of the foot is in contact
with the ground, meaning that the robot rests on either the heel or the toe. These
phases has been altered such that the entire sole of the feet of the robot remains in
contact with the ground. The phases of the robot gait can be seen in figures 1.7, 1.8
and 1.9. With figure 1.7 showing the phases of static robot gait, meaning that the
COM, remains over the supporting foot, while going through the different phases.
Figure 1.8 also show static gait, but instead of showing it from the side, this figure
shows the phases from the back.
Figure 1.9 illustrates the concept of dynamic gait on the robot, by the COM is
moved outside the supporting foot, which will lead to the robot falling over if not
countered by placing the other foot at a stable position.
It should also be noted that the base of the robot is tilted forward, which is not

9
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used in this project, as the base orientation and its height is considered fixed in
order to simplify the model. However in order to include this, a feedback of the
base orientation should be added to the model.

Figure 1.7 The phases during static gait seen from the side. Here the COM is visualised as a black
dot, with it’s ground projection shown with the black dotted line. The supporting foot is shown by
the red line.

Figure 1.8 The phases during static gait seen from the front.

Figure 1.9 The phases during dynamic gait seen from the side.

10
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Phases of the Biped Gait

Start

Single Foot Support
- Right Foot swings
- Left Foot supports

Single Foot Support
- Left Foot swings
- Right Foot supports

Right Foot:
 - Hold foot position
 - Move COM x,y       
  position

Left Foot:
 - Lift foot from ground
 - Move foot in parabola 
  to new location
 - Lower foot to ground

Initiate Walk
- Move COM above right foot

Right Foot:
 - Lift foot from ground
 - Move foot in parabola 
   to new location
 - Lower foot to ground

Left Foot:
 - Hold foot position
 - Move COM x,y     
  position

Double Foot Support
 - Hold left foot position
 - Hold right foot position
 - Move COM linearly

Double Foot Support
 - Hold left foot position
 - Hold right foot position
 - Move COM linearly

Figure 1.10 The phases of the robot
gait

This section will explain further in detail the
mechanics of the different phases of the biped
robot gait. The flowchart shown in figure 1.10
is a graphic representation of the phases ex-
plained within this section.

• Initiate walk:
This is the first step of the walk, which will
begin by a left foot step. Here the robot
starts by standing still. Both feet remain in
contact with the ground and stationary. The
COM is then shifted above the right foot.
This prevents the robot from falling when
the left foot is lifted. Further explaining why
this is the case, will be done in section 4.1
on page 41 and section 5.5 on page 49. This
phase of the gait will only be repeated once,
while the remaining phases of the gait will
be repeated until the desired destination is
reached.

• Single Foot Support:
In this phase the robot is only resting on one
foot while the other is in the swing phase.
An illustration of this for static gait is seen
in figure 1.7. During this phase the robot
also moves it’s COM towards the supporting
foot as shown in figure 1.8.

• Double foot support:
After the single foot support phase has
ended, the robot will have placed the swing-
ing foot back onto the ground. This then
leads to the double foot support, which
means that the robot is supported by both
feet. This is visualised in figures 1.7, 1.8
and 1.9, as a long red line.

• Single foot support:
This phase is similar to the first single foot
support phase, although the feet have now
switched roles. This results in the right foot

11
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being the swing foot, while the left foot is
the support foot.

• Double foot support:
This phase is similar to the previous double
foot support phase. The only difference be-
tween these is the direction that the COM is
moved. The background for this is further
explained in chapter 5 on page 46

Time-Based Gait

A time-based gait shifts between single and double foot support at fixed time
intervals [19]. Say that the robot is walking, and is about to take a step. Using
the time-based approach, the duration from the initiation of this new step until it’s
completion is predetermined. However, this duration is based on the assumption
that the environment that the robot operates in is known. Minor disturbances can
most likely be handled by the system, but is not always the case. Say a tile with
a height of 10mm has been placed in front of the robot. If this obstacle had not
been included when the trajectories were calculated, then the swing foot would
come into contact with obstacle before it was anticipated. This will however not
stop the robot from continuing to follow the flawed trajectory and will likely result
in the robot falling, as the robot will keep pushing the foot downwards for the
predetermined time. A method that seeks to improve upon this is the event-based
method.

Event-Based Gait

Another gait method for biped robots is the event-based method, which is used
by the LOLA robot [19]. As the name implies, the event-based method uses a
gait that relies on the event that occurs when the foot strikes the ground. The
event-based method draws inspiration from nature, where the strategy is found
in legged animals ranging from insects, cats and etc, to humans. This method is
suitable for unmodelled terrain, with debris and slopes. The event-based method
uses measured system states to determine the reference trajectories for the gait,
instead of the traditional time-based reference trajectories. This is typically done
by using force transducers in the feet, which can be used to detect ground contact.
This method makes the gait generation less time-dependant, thereby improving
the systems robustness to disturbances [19]. During a gait cycle, should the foot
come into contact with the ground before anticipated, this event will trigger the
switching to the next phase of the gait.
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Introduction 1.2 Gait Analysis

Joint Actuation

Regardless of the weight of the robot the joints are to replicate the speed of human
joints. As weight increases the energy required when moving increases as well. A
lighter robot would reduce the energy need, thereby allowing the use of motors
with less strength, thus smaller motors can be used to reduce weight. Materials
such as plastic is cheaper than steel, aluminium and titanium. Plastic is also lighter
at the price of less structural strength. A lighter robot is also safer to work with
as the energy in the system is smaller making testing a simpler task. To imitate a
human the robotic joint must be able to move at the velocities noted in table III.
Being able to comply with those velocities allows the humanoid robot to perform
dynamic walk with a gait speed up to 1.6 m/s [14].

Range of Motion

As human joints are flexible and have a high DOF, a humanoid robot aims at
achieving same level of flexibility. Depending on the task the robot is built to per-
form, the degrees of freedom can differ from a human.
As this report focuses on dynamic walk, the robot aims at being able to simulate
the walk of a human and therefore must adhere to the range of motion noted in
table II. At best case the robot is fully capable of the range of motion noted in
table I and thus being similar to a human while walking.
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1.3 Problem Statement

How can a biped robot be designed to walk on a flat surface at a velocity of
0.5 m/s using a dynamic gait

In order to solve this problem several fields must be studied, including: mechanical
design of the robot, design of control strategy and electronics and communication
design. The problem statement can be broken up into a list of requirements that
must be fulfilled if the problem statement is to be solved.

1.4 Requirements Specifications

The requirement specifications are based on the knowledge from the state of the
art section 1.1. Here a range of different robot speeds are mentioned. Atlas with
a walking speed of 1.5 m/s, Asimo with 0.75 m/s and Wabian-2R with 0.5 m/s.
Using these requirements, along with the analysis of the existing biped robots, the
list of requirements can be made.

Mechanical Design

• Each leg of the robot must have the following joints: 3× Hip, 1× Knee and 2×
ankle.

• The joints must have the range of motion noted in table II.

• The soles of the feet must have sufficient friction to avoid slipping and thereby
falling.

• The lengths of the robot’s links must closely resemble a human.

Electronics and Communication Design

• A communication network must be designed to provide the required sample
rates for sensors and actuators.

• The motors of the biped robot must, as a minimum, be able to achieve the
angular velocities required to maintain the walking velocity of 0.5m/s.

Control Design

• Send motor velocity references at a sample rate of 2 kHz, similar to state of
art [7].

• Strain gauges must be sampled at a rate of minimum 500 Hz [7].

• Sample the IMU at a rate of minimum 500 Hz [7].

• Generate trajectories that avoid tilting of the support foot during walking.
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CHAPTER | 2

Hardware

This chapter will present the biped robot developed for this report. This will be
divided into the mechanical and electrical design. The robot is developed with 6
DOF for each leg. These consists of 3 DOF for the hip, 1 for the knee and 2 for
the ankle. The joints are actuated by stepper motors, where the 3 hip joints are
rotational driven, and the knee and ankle joints are linear driven. The motors are
powered and controlled by individual uStepper S motor drivers, all controlled by a
single ESP32 where the the high level controller is implemented. The robot design,
focuses on weight and affordability. These two factors makes the production and
testing of the robot easier in the prototyping phase as alterations/errors in the
design can easily be corrected.

Reducing the weight also allows for lighter motors, as less torque is needed to per-
form the movements. The savings on weight allows cheaper motors to be procured
and components are diminished for less stress, also reducing cost.

The following section will describe the mechanical design of the robot including
the choice of materials, dimensions, ROM (Range of Motion) and design of the
feet.

2.1 Mechanical Design

The robot is primarily built by 3D printed components using PLA(Polylactic Acid)
thermoplastic. The components are joined together using metal machine screws
and ball bearings. Ball bearings and guide rails are created from aluminium and
steel. The hip joints of the robot are rotationally driven, while the knee and ankle
joints are linearly driven as the motors are connected with a belt to a linear push
rod. The angular velocity of these joints should be as close as possible to the
angular velocities from table III. This can be achieved through proper gearing of
the motors. The ROM of the robot needs to be at least that of table II, in order to
be able to achieve dynamic walk.
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Hardware 2.1 Mechanical Design

3D Printed Parts

Figure 2.1 The initial configura-
tion of the robot, where all joint
angles are at 0 radians. Here the
robot is shown in white for better
detail. Also this model of the robot
includes a spine, which could be
implemented onto the robot, to test
other control strategies

Due to the accessibility of a 3D printer the
robot was manufactured using 3D printed PLA.
However for further development of the robot
other alternatives should be considered. Sev-
eral common materials were investigated with
focus on weight, structural strength, price and
ease of manufacturing. Making the parts
out of steel would make the links heavy as
it has a density of 7.82 g/cm3 and met-
als such as aluminium, 2.70 g/cm3, or tita-
nium, 4.50 g/cm3, are lighter and thus bet-
ter alternatives [20]. Titanium is an ex-
pensive metal and therefore disregarded leav-
ing aluminium as a possible material for the
parts.
Aluminium is softer to process than steel and eas-
ier to manipulate, yet machining tools are still re-
quired.
Plastic is an attractive alternative, since it is of-
ten cheaper and lighter, compared to metal. ABS
plastic has a density of 1.06 g/cm3 and PLA a
density of 1.15 − 1.25 g/cm3 [20]. These plastics
can be used by a 3D printer and are often used
for prototyping and lightweight part construction.
ABS has a higher flexural strength, improved duc-
tility, lighter and is cheaper, while PLA is eas-
ier to print and the most common printer mate-
rial [21].
While ABS would be better for the parts, since it
has higher strength, PLA was chosen as the ma-
terial for the biped body parts as it was easier to
print with and was available for the production of
the robot.

The rigid links and joints were printed with an in-
fill density of 20 %, using a hexagonal pattern. The
design of the parts include cutouts for the motors,
batteries, slide rails and ball bearings for the joints.
These cutouts can be seen in figure 2.1, which shows
the full robot, consisting from the top and down-
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Hardware 2.1 Mechanical Design

wards of a spine, a hip, cardan joint, upper leg, lower leg, ankle and foot. Note
the spine shown in figure 2.1 was added to the design, as it could allow for other
control strategies. However this is not touched upon in this report and serves only
as a design idea, meaning the rest of the report will focus on a robot without a
spine. Another design choice was to have a 45° hip joint, as this will result in all
3 hip joints being used for forward motion, which will distribute the load among
the joints.

The dimensions of the robot are as follows: The robot has a total height of 101.1 cm,
a depth of 8 cm at the hip (excluding the feet) and a width of 32.1 cm from leg to
leg.
The length of the parts were designed so as to duplicate the leg dimensions of one
of the authors in a 1:1 scale making the mechanical design as humanoid as possi-
ble. The exceptions from this are the weights and the reduced amount of DOF. The
total mass of the robot is ≈ 8 kg.

Designing the Feet and Soles of the Robot

The friction between the soles of the feet and the ground play a vital role in walk-
ing, exactly why will be analysed in section 4. This is further complicated by the
fact that the robot might operate in environments with different types of friction,
as the floor of one environment could be concrete while in another environment it
could be dirt. In short, it can be said that the greater the friction is, the larger the
set of solutions is to where the feet of the robot can be positioned during walking
without slipping and falling.

Figure 2.2 Soles of the feet of the robot, showing the rubber cylinders ensuring increased friction
between the feet and the ground, here the strain gauges can also be seen as metal bars with holes in
them
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Hardware 2.1 Mechanical Design

Therefore it is desirable to design the soles of the feet of the robot to have as great
friction as possible. Another aspect is the area of the sole of the feet. As explained
in section 4.1, the larger the sole of the feet is, the greater is the support polygon
they form. Ultimately this again reduces the risk of falling. However, as tempting
as it might be to create feet with large soles, it also comes at a cost. As the size
of the feet goes up, so does the risk of collision, and thereby falling. Even when
walking in an obstacle free environment, the robot risks that the feet may collide
during walking.

A strategy should be devised such that the robot can recover from the feet col-
liding with each other or another object. However, since it is possible to reduce the
problem at it’s source, this is of cause preferable.
Finding the optimal size of the sole of the feet is not a trivial task, and it’s deter-
mination is therefore best suited through empirical trials.
For this robot a foot area of 13.75 cm/6.85 cm (L/D) is chosen. The reason behind
this decision is explained in section 4.1 on page 41 This foot area gives a length of
23.6 cm between the feet to minimise the chance of collision between them.
Increasing the friction between the soles of the feet and the ground can be done,
as long as the chosen material does not also add stiction, or becomes too soft Ad-
ditionally, adding extrusions at the corners of the feet will ensure that the contact
points are known.

In summary, this elaborate the mechanical requirements in section 1.4 to include
the following:

• Friction of the soles must be that between concrete and rubber, which is ≈ 0.6−
0.85 µkinetic, as this is the material found at the test site.

• The area of the soles must be 13.75 cm by 6.85 cm in order for the robot COM
being inside the support polygon for the robots initial position, as explained in
section 4.1.

• Extrusions at the corners of the feet, in order to easier model the contact points
of the feet.
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Degrees of Freedom

Roll

Pitch
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Figure 2.3 Figure showing
the DOF for the robot legs
seen from the anterior side.
The dotted lines between
joints indicates a distance of
zero.

The developed robot has, without the spine, a total of
12 DOF, with 6 DOF in each leg. For each leg 3 DOFs
are located at the hip for yaw, roll and pitch rotation,
1 at the knee for pitch and 2 at the ankle for pitch and
roll. The location of the DOF can be seen in figure 2.3.
The 6 DOF leg model as is mentioned in section 1.2 on
page 5, was chosen as it is simpler to model, compared
to the numerous DOF of a human leg as noted in sec-
tion 1.1 on page 2. The 6 DOF model also allows the
robot to make the fundamental movements of a human
leg, such as yaw, roll and pitch rotation of the hip, pitch
rotation of the knee and ankle and roll for the ankle.
This allows the robot to place the feet at stabilising po-
sitions. The 6 DOF leg model reduces the complexity
of the inverse kinematics, reduce number of motors, re-
duce cost and save weight. Based on the analysis in
section 1.2, it is estimated that the robot designed for
this project would emulate the human gait sufficiently
enough to be able to perform dynamic walk.

Range of Motion

As is shown in table II on page 8, the ROM of the each
joint of the robot encompasses the joint ROM for human
gait. The robot mostly outperforms the ROM of a hu-
man, except for knee rotation where a human is able to do 150° compared to the
90° of the robot and ankle pitch which is −50° compared to −30° of the robot. The
angles can be visually seen in figure 2.4.

TABLE IV
Table listing the joints ROM from tablesI,II and the ROM for the robot, all data has been

rounded to nearest whole number.

Joint ROM Human ROM Human gait ROM Robot

Hip Roll 40°/ -n/a° n/a°/ -n/a° 135°/ -90°

Hip Pitch 110°/ -30° 34°± 7°/ -11°± 5° 110°/ -110°

Hip Yaw n/a°/ -n/a° n/a°/ -n/a° 180°/ -180°

Knee 150°/ -n/a° 62°± 3°/ 0° 90°/ 0°

Ankle Roll 12°/ -23° n/a°/ -n/a° 30°/ -30°

Ankle Pitch 20°/ -50° 15°± 3°/ -22°± 4° 30°/ -30°
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2.2 Electrical Design

+90
°

0°

Figure 2.4 Figure showing the
ROM of the robots legs.

The electrical system consists of 12 NEMA 17 step-
per motors, one actuating each joint of the robot.
Each of the stepper motors have an uStepper S
motor driver, which provides position feedback at
a 0.0055° resolution [22]. The 12 motor drivers
are connected by I2C to an ESP32 microcontroller.
In each of the two feet of the robot are 4 strain
gauges. Each of the strain gauges are connected
to an AD7705 ADC. The output of these ADCs are
connected to the ESP32 using I2C. Additionally the
system is equipped with a 10 DOF GY-91 Internal
Measurement Unit (IMU) which provides a 3-axis
gyroscope, 3-axis accelerometer, 3-axis compass and
a barometric pressure sensor. An overview of the
electronic parts can be seen in table V.

Actuators

The requirements for the joint velocity trajectories
of the robot are described in section 1.4 on page 14.
In order for the joints to follow this desired joint ve-
locity, the motors and associated gearing must be chosen accordingly. The torque
produced by the actuators must be sufficient to accelerate the associated mass,
such that the joint follows the velocity trajectories. For this project, stepper mo-
tors are used, as they have better positional control, compared to servo motors,
which is essential when controlling a robot [24]. Additionally stepper motors offer
a promising amount of torque, considering the relatively low price [25].

TABLE V
Table listing the electronic components of the robot

Hardware Part: Amount: Description:

Motor 12 TRINAMIC QMOT QSH4218

Motor Controller 12 Ustepper S

Gait Controller 1 ESP32 Devkit V1

Strain gauge 8 10kg Straight Bar TAL220 [23]

ADC 8 AD7705 strain gauge ADC

IMU 1 GY-91: 10DOF MPU-9250, BMP280

Battery 3 Turnigy 2200 mAh 3S 25C Lipo Pack
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Stepper motors comes with a wide range of performance, depending on the size
of the motor. One of the most widely used standards of stepper motors is the
NEMA 17, which has a height and width of 42 mm [26]. The NEMA 17 motor
comes with various lengths of the stator and rotor, allowing for a greater amount
of motor windings which in turn gives a higher torque output. Generally it can be
said that the larger the motor is, the higher torque it produces. However the cost
of adding a larger motor is both increased power demand, and increased weight.
Finding the correct motor is based upon the power to weight ratio and the energy
supply available. The torque capabilities of the NEMA 17 stepper motors can be
derived by analysing the torque/velocity characteristics of the motor model. These
characteristics are determined by the combination of a given motor and associated
motor driver. An additional parameter that determines the performance of the
stepper motor is which stepping strategy is chosen for the motor driver. For this
project uStepper S stepper motor drivers will be used [22]. The TMC5130A motor
driver used on the uStepper S board comes with various modes of stepping strate-
gies. These primarily differ in the amount of micro-stepping being used. On av-
erage, the "256uS-SpreadCycle" micro stepping strategy offers the highest amount
of torque. The stepping strategy produces a maximum torque of approximately
0.33 Nm from 100 to 500 rpm [25], before the torque output begins to significantly
decay due to increased velocity of the motor.

Torque Demands

The required torque needed to follow the velocity trajectories of 0.5 m/s as de-
scribed in section 1.4 on page 14 must be investigated. By knowing the maximum
torque requirements, it can be made sure that the actuator is capable of delivering
the required torque at all times. The torque requirements are joint specific, since
each joint is exposed to a different loads due to the masses. The load is also de-
pendant on the phase of the gait cycle. There are two approaches to determine the
torque requirements prior to implementation. Either it is derived by analysing the
dynamic equations of the robot during walking, or it is found experimentally in
a simulated environment. The CAD model of the robot can be directly imported
into Simscape Multibody, which is an extension of Matlab/Simulink that provides
a simulation environment for mechanical systems. Within the simulation, the ac-
tuators can be given infinite torque capabilities and during a simulated walk, the
torque produced by the motors can be monitored, and the maximum torque re-
quirements can be found.

When choosing the motor/gearing combination for implementation, it is recom-
mended to add some overhead to the motor torque, such that the motor can handle
any minor model inaccuracies.
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Gearing

Gearing offers the ability to trade velocity for torque, or opposite. However, gear-
ing also comes at additional cost such as backlash and added friction, which must
be taken into account of the mechanical design. Each joint has a specific require-
ment for torque and velocity, therefore each joint must be individually fitted with
the appropriate gearing. This can be included as part of the simulation described
in chapter 7 on page 58 to verify that the appropriate gearing has been chosen.

Sensors

An important design choice is to choose the appropriate sensors for the robot.
Robots such as Asimo, Cassie and Wabian-2R, which was mentioned in section 1.1
on page 2, uses an IMU sensor, which gives information about the robots torso ori-
entation and acceleration. Additionally, they use force/torque sensors for detecting
ground contact. The sensors used in this project is an IMU, angular encoders for
the joints and strain gauges for the feet.

IMU
The IMU has been chosen to give a measurement of the pose and velocities of the
robot in relation to the world. The position is necessary if the robot has to navi-
gate in the world. The velocities can be used as feedback for the control strategy
described in chapter 6 on page 50. The IMU used for the project is the 10 DOF
Gy-91. This sensor can be sampled at 1 kHz, and has a 3-axis gyroscope, 3-axis
accelerometer, 3-axis magnetometer and 1-axis barometer [27]. The sample rate of
the sensor is promising, as other biped robots [7] successfully use an IMU with a
sample rate of 800 Hz. However, sample rate alone does not ensure satisfactory
feedback. The quality of the measured IMU data, including accuracy, noise and
drift is a cornerstone of successfully implementing a walking controller on a biped
robot [12]. Should the system performance be unacceptable the IMU performance
should be evaluated.

Angular Encoders
The angular encoders for the joints are necessary to create closed-loop control of
the joint positions, described in section 6.3 on page 56. The angular encoders used
for this project are the ones provided by the uStepper S motor drivers. These en-
coders can be sampled at 1 kHz [28]. A similar biped robot such as Cassie uses
2 kHz angular encoders. However by maintaining relatively low velocities and ac-
celerations of the joints it is expected that 1 kHz will suffice.
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Strain Gauges
The strain gauges provide a measurement of the contact force when the feet collide
with the ground. This can be used for ground detection, and can be used to get a
measurement of the ZMP, which is described in section 4.2 on page 43. The strain
gauges are sampled using an ADC with a sample rate of 500 Hz [29], inspired by
the sampling frequency of a similar system from [7]. The required sample rate
of the strain gauges depends on the chosen control strategy, as described in sec-
tion 1.2 on page 6.

For event-based walking control it is important that ground contact is correctly
detected, which increases the demands on both the sampling rate of the strain
gauges, as well as precise classification of ground contact [19]. Improved contact
detection promises increased walking performance [19]. The task of correctly de-
tecting ground contact relies on the following: First, reducing the time between
ground impact happening and the event being detected. Secondly, ensuring no
false positives/negatives due to noisy signals. Using a moving average filter could
lower this probability. However, this would increase detection time, which means
the sampling rate should be increased. If possible, a simple threshold will give
the fastest detection. However some measures, such as hysteresis, must be used to
counteract any ringing that might occur from the foot striking the ground.

The strain gauges used for this project can be seen on figure 2.2 on page 17. While
the robot is static, the strain gauges can be used to measure the total mass of the
robot. This can be useful if the robot is to carry items, since the mass of the system
model used for control in chapter 6 on page 50 can then be updated on the fly. This
does however entail that the location of the added mass is known.

Microcontroller board

The high-level control unit for the robot consists of an ESP32 microcontroller
board [30]. The board offers up to 600 MIPS (Million Instructions Per Second), as
well as the necessary I2C peripherals to communicate with both the motor drivers
and the sensors. The computational power of the high-level control unit has an im-
pact on the performance of the control strategy discussed in chapter 6 on page 50.
Should the ESP32 prove to be a performance bottleneck, a more powerful microcon-
troller should be found. Additionally it comes with built-in Bluetooth and Wi-Fi,
allowing for high-level control commands such as waypoints to be send remotely.
Lastly the low power consumption of the ESP32 also makes it ideal for a system re-
lying on battery power, consuming only 250 mA at 3.3 V continuously. The ESP32
can be connected to a MATLAB GUI from which high-level control commands can
be sent and data logging performed. The communication done using the Bluetooth
connection to ease the setup.
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Power Consumption & Supply

For early implementation a laboratory power supply and a power cable is prefer-
able. However battery supply should be used as soon as possible since the weight
of the batteries contribute significantly to the mass of the robot, and thereby the
dynamics. The amount of batteries should be chosen so as to provide sufficient
power and have an energy deposit at a minimum large enough to enable the robot
to perform a full gait cycle 1 test on a single charge. An estimation for the battery
supply was calculated based on the maximal power consumption of the motors.
The supply needed for the sensors, IMU and ESP32 is disregarded as these compo-
nents have a low power consumption compared to the motors. The voltage chosen
for the system is 33.3 V based on the motor driver torque specifications [25].

The motor drivers have a peak current draw of 2.5 A for each of the 12 motors.
Thus the robots total peak current usage can be calculated as in equation 2.1. The
batteries must be able to provide a discharge rate greater than the the peak current
draw of the combined 12 motors. LiPo Batteries often used for drones, have a high
discharge rate, making it ideal for this application. The battery used for the follow-
ing calculations is a Turnigy 2200 mAh 3S 25C Lipo battery [31]. Having 3 batteries
gives a voltage of 33.3 V and a total capacity of 6600 mAh. The LiPo batteries are
able to discharge with a rate of 2200 mAh · 25C = 55, 000 mA = 55 A and therefore
suitable for powering the robot as shown by calculating the power consumption in
equation 2.1.

12 motors · 2.5 A = 30 A (2.1)

The power consumption is based on all motors drawing full power simultaneously,
which would result in a total power consumption of 30 A · 33.3 V ≈ 990 W. This
should be considered a worst case scenario. It is unlikely that nominal performance
during a gait cycle at a walking speed of 0.5 m/s will require this amount of power.
While walking at a speed of 0.5 m/s, an adult human male of average weight and
height consumes ≈ 200 W [32]. The human body should be considered far more
energy efficient at walking than the biped robot shown in figure 2.1 on page 16.
However, this biped robot has a significantly lower total mass of just 8 kg. The
battery life of the robot using maximum power is calculated in equation 2.2. This
yields the worst case performance, which can easily be scaled to the appropriate
power consumption based on the simulation of the system in section 7 on page 58
and calculated in equation 2.2.

1a full gait cycle for this project consist of a support phase, swing phase for first leg, support
phase, swing phase for second leg and then end on support phase
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6600 mAh
12 · 2500 mah

= 0.22 h ≈ 13min (2.2)

2.3 Communication

Several communication protocols were investigated for this project, among which
were I2C and SPI. The ESP32 supports both I2C and SPI, as do the uStepper S
motor drivers. The IMU and strain gauge ADCs use I2C. The communication
cables run along the legs to the motors and are with such length suitable to noise
from external factors.

  Master
SDA

SCL

Slave 1 Slave 2

SDASCL SDASCL

VDD

R R Pull Up
Resistors

Figure 2.5 An I2C network with a single master and two slaves. Pull up resistors ensure the correct
line voltage

The SPI protocol is potentially faster than I2C and can with SS (Slave Select) chose
which unit a given message is for, and run full duplex communication. I2C is
slower than SPI and supports multiple devices on one bus instead of having a sep-
arate SS line, reducing the required amount of cables. An investigation into SPI,
for the hardware in this project, proved it could not be used. The findings of this
investigation can be read in appendix A.1.

I2C was chosen as the communication protocol between the ESP32 and the uStep-
pers and the protocol can be seen in figure 2.5. I2C is based on a master/slave
principle with a two line bus connecting all units on the network. The communi-
cations lines are used with a pull up supply to VDD to ensure square signal waves
as the units pulls the line low when communicating. As for the hardware used
for this project, the uSteppers S has an internal pull-up power supply on the I2C
lines and therefore an external supply is not needed. For large scale I2C networks
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a common ground between the connected units is necessary as I2C is developed
for embedded systems and has high impedance. By using a common ground the
signals are tethered to the same zero point. An explanation of I2C can be seen in
figure 2.5. The remaining hardware is connected to the ESP32 with communication
protocols as seen in figure 2.6.

I2C

Bluetooth

I2C

ESP32
(I2C Master)

uStepper S
Motor 1

uStepper S
Motor 2

uStepper S
Motor 12

Strain Gauge
Left Foot
4 Gauges

I2C

Strain Gauge
Right Foot
4 Gauges

MATLAB GUI
Datalogging

IMU

Figure 2.6 Overview of system communication

Implementation of Controller on ESP32

The robot requires a controller and for this purpose the ESP32 microcontroller
board was mounted on the robot. The computational demand of the different con-
troller types varies, where PID, specifically P, requiring very little computational
power. Adding the ID terms increase the computational demand and switching to
a predictive controller such as MPC greatly increases demand. Especially MPC is
a heavy controller as it recalculates the control signal for the entire prediction hori-
zon for each iteration [33]. The controller is also affected by the amount of states,
with each added state increasing the computational demand [33]. As the controller
is to be created in Matlab and Simulink it can be converted to C code with the built
in Simulink CoderTM. Simulations of the controller would result in the optimal
controller parameters, however reality is often hard to simulate precisely, therefore
it is expected the settings would be tuned further on the actual robot.
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Kinematics

When modelling a mechanical system, the first step is to model the kinematics of
the system. For a mobile robot such as a biped robot there must be derived both
local frames for the robot and a world frame to describe the motion of the robot
related to the world around it. One approach to model the kinematics is to de-
rive the Denavit-Hartenberg (DH) parameters, which section 3.1 will cover. Once
the DH parameters are found, transformation matrices that relate each of the local
frames to each-other can be derived. The transformation matrices are often used
to describe either the forward kinematics or the inverse kinematics. The forward
kinematics describe the pose of the end-effector, given a set of joint angles. Inverse
kinematics describe the possible joint angles, given a pose of the end-effector.

Inverse kinematics has been derived for both a biped robot using 45° hip yaw joints,
and one using 90° hip yaw joints. This chapter will describe the derivation of the
90° inverse kinematics. The 45° inverse kinematics are located in appendix A.3 on
page 86.

3.1 Denavit-Hartenberg Parameters

In order to describe the link and joint configuration of a robotic system, Denavit-
Hartenberg(DH) parameters are often used. These parameters describes rotation
and translation between the frames of the system. There are two different forms
of DH-parameters, classic and modified DH-parameters. The difference between
classic-DH and modified-DH parameters are the locations of the coordinates sys-
tem attachment to the links and the order of the performed transformations. This
difference is shown in equation 3.1, where:

θi : z rotation αi : x rotation d : z translation r : x translation

The classic DH-parameters are described in [34] and are visualised in figure 3.1
since this approach will be used for the robot.
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Kinematics 3.1 Denavit-Hartenberg Parameters

Modified: Ti−1
i =


cosθi −sinθi 0 ri−1

sinθi cosαi−1 cosθi cosαi−1 −sinαi−1 −di sinαi−1

sinθi sinαi−1 cosθi sinαi−1 −cosαi−1 di cosαi−1

0 0 0 1



Classic: Ti−1
i =


cosθi −sinθi cosαi sinθi sinαi ri cosθi

sinθi cosθi cosαi −cosθi sinαi ri sinθi

0 sinαi cosαi di

0 0 0 1



(3.1)

Figure 3.1 The Classic DH-parameter description [35]

Using the classic DH-parameter approach on this robotic system results in table VI.
Here two DH-parameters are shown, one for each leg. The only difference between
each leg is the sign change of joint 0. This joint is also fixed, meaning that they
are not controlled, and are only used for achieving the correct orientation of the
controlled joints.
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TABLE VI
Classic DH Parameters for the legs of the robot

(a) Left Leg

Joint i ri−1[m] αi−1[Rad] di[m] θi[Rad]

0 L1 0 −L2 π

1 0 −π/2 0 −π

2 0 −π/2 0 π/2

3 L3 0 0 θ3

4 LL4 0 0 θ4

5 0 π/2 0 θ5

6 LL5 0 0 θ6

(b) Right Leg

Link i ri−1[m] αi−i[Rad] di[m] θi[Rad]

0 −L1 0 −L2 π

1 0 −π/2 0 −π

2 0 −π/2 0 π/2

3 L3 0 0 θ3

4 LL4 0 0 θ4

5 0 π/2 0 θ5

6 LL5 0 0 θ6

Lengths L1 and L2 are the offset from the torso, down to either leg, followed by L3

for upper leg, L4 for lower leg and L5 for foot offset from the ankle joint. The DH-
parameters are illustrated in figure 3.2 on the following page, where the resulting
joints and links are shown for the robot. The robot has 3 joints in the hip located
at the same position, one joint in the knee and two joints in the ankle. The robot is
oriented to walk in the positive y-direction when walking forward, and sideways
stepping in the x-direction.
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3.2 Inverse Kinematics

Figure 3.2 Matlab figure with links
and joints, from the DH-parameters
shown in table VI.

The inverse kinematics approach consists of the
following: Given desired end-effector (which
in this case are the feet) position and orien-
tation, calculate the required angle of each
joint.

The inverse kinematics problem is solved us-
ing the approach by [36], where the goal is
to find the "closed-form" joint solution. A
joint solution is said to be "closed-form" if
the unknown joint angles can be obtained
symbolically in terms of the arc-tangent func-
tion.

A closed form joint solution exists if a robot ma-
nipulator’s three adjacent joint axes are parallel
to one another or if they intersect at a single
point [36]. The robot designed for this project
has three intersecting joint angles in the hip
joint.

The approach suggested by [36] handles the
inverse kinematics problem of the legs of a
biped robot by separating each leg into a kine-
matic chain of it’s own. The approach then
reverses the kinematic chain, such that the
three intersecting joints at the hip of the leg
becomes the end-effector frame of the kine-
matic chain. The foot then becomes the
base frame. This effectively makes the last
three joints of the leg intersect at the same
point. According to [36] this makes it sig-
nificantly easier to find a closed-form solu-
tion.

A common solution to the inverse kinematics problem for humanoid robots is
the Jacobian method [36]. However that method comes with drawbacks such as:
Singularities (e.g. with fully stretched limbs), computational complexity and accu-
mulation of position error (Jacobian method is velocity based and iterative).
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Using classic DH-Parameters for a robot such as the one shown in figure 3.2 on
the previous page, a total of seven transformation matrices describe the transform
from base to end-effector, denoted as equation 3.2

T0
6 = ∏6

i=1 Ti−1
i = T0

1 T1
2 T2

3 T3
4 T4

5 T5
6 =


nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

 (3.2)

However, for the robot seen in Fig. 3.2, transformation matrix TB
0 is fixed and

contains the transformation seen in equation 3.3. These are the transformations
from the base(located at the centre of the hip) down to the hip-joint intersection
point for each leg. The sign of L1 depends on which leg the transformation is used
for. The right leg has negative sign.

TB
0 =


−1 0 0 ± L1

0 −1 0 0

0 0 1 −L2

0 0 0 1

 (3.3)

The remaining transformation matrices from the point of the three intersecting hip
joints, to the end-effector, i.e. the foot, can be found as seen in equations 3.4. In
these equations, Li is the corresponding length of the robot links, as described in
the DH parameters. θ1 through θ6 is the joint angles of the robot. A note should be
made that angle θ1 is fixed, as this is part of the fixed transform from the base to
the point where the three hip joints intersect, shown in figure 3.2.
Within this section, the equations follow the notation that cos(θi) = Ci and
sin(θi) = Si
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T0
1 =


C1 0 −S1 0

S1 0 C1 0

0 −1 0 0

0 0 0 1



T1
2 =


C2 0 −S2 0

S2 0 C2 0

0 −1 0 0

0 0 0 1



T2
3 =


C3 −S3 0 L3 C3

S3 C3 0 L3 S3

0 0 1 0

0 0 0 1



T3
4 =


C4 −S4 0 L4 C4

S4 C4 0 L4 S4

0 0 1 0

0 0 0 1



T4
5 =


C5 0 S5 0

S5 0 −C5 0

0 1 0 0

0 0 0 1



T5
6 =


C6 −S6 0 L5 C6

S6 C6 0 L5 S6

0 0 1 0

0 0 0 1



(3.4)

Now that the transformation from the base frame to the end-effector is known, it is
time to reverse the kinematic chain. Once the kinematic chain has been reversed,
the frame located at the feet becomes the base frame, while the three intersecting
joints at the hip becomes the end-effector.
For the following equations of this section it is important to emphasize the follow-
ing:
The new base frame is the frame located at the feet.
The new end-effector frame is at the point where the three hip joints intersect.

T′ =


nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1


−1

=


n′x s′x a′x p′x
n′y s′y a′y p′y
n′z s′z a′z p′z
0 0 0 1

 = T6
5 T5

4 T4
3 T3

2 T2
1 T1

0 = T6
0 (3.5)

With the reversed kinematic chain, it is now possible to separate the leg into two
parts, namely a part that controls the position and a part that controls the ori-
entation of the end-effector. The position of the point where the three hip joints
intersect is denoted p′. In order to obtain an expression for p′, the transformation
matrix T1

6 must be inverted. This is then denoted as T6
1 and contains the column
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p′. The contents of p′ is shown in equation 3.6:

p′ =


−C6 (L3 C45 + L4 C5)− L5

S6( L3 C45 + L4 C5)

−L3 S45 − L4 S5

1

 (3.6)

Following the approach of [36] which incorporates Pieper’s approach. Three equa-
tions are made by setting the first, second and thirds row of the p′ matrix equal to
p′x, p′y and p′z respectively, which denotes the position for each axis.

p′x + L5 = − C6 (L3 C45 + L4 C5) (3.7)

p′y = S6 (L3 C45 + L4 C5) (3.8)

p′z = − L3 S45 − L4 S5 (3.9)

Squaring and adding equations 3.7, 3.8 and 3.9, and then isolating for C4 results in
equation 3.10.

C4 =
−L2

3 − L2
4 + (L5 + p′x)2 + p′y

2 + p′z
2

2 L3 L4
(3.10)

Then by applying rule A.3 on page 85, S4 can be found, as shown in equation 3.11

S4 = ±

√√√√1−
(−L2

3 − L2
4 + (L5 + p′x)2 + p′y

2 + p′z
2)2

4 L2
3 L2

4
(3.11)

Now θ4 can be calculated by using atan2(S4, C4), which is an arc-tangent function
that returns tan−1( S4

C4
) adjusted to the proper quadrant.

θ4 = atan2 (S4, C4) (3.12)

By squaring equations 3.7 and 3.8 and then adding and expanding them, equa-
tion 3.13 is formed.

C5 (C4 L3 + L4)− S5 (S4 L3) = ±
√
(p′x + L5)

2 + p′y
2 (3.13)

Then by expanding equation 3.9 using rule A.1 on page 85, equation 3.14 can be
obtained.

S5 (C4 L3 + L4) + C5 (S4 L3) = −p′z (3.14)

Note that the terms (C4 L3 + L4) and (S4 L3) are apparent in both equation 3.13
and 3.14, and on the same form. Since both equations are on the same form, they
can be rewritten by creating variables k1 and k2 as seen in equation 3.15.

k1 =C4 L3 + L4

k2 =S4 L3
(3.15)
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Here k1 is the first term of equation 3.10 and 3.14 and k2 is the second term of the
two equations. Another new variable r is defined in equation 3.16, which consists
of the right hand side of equation 3.13 and 3.14.

r =
√
(L5 + p′x)

2 + p′y
2 + p′z

2 (3.16)

Another variable γ can be defined from k1 and k2 as:

γ = atan2(k2, k1) (3.17)

Now let (C4 L3 + L4) = rCγ and (S4 L3) = rSγ, then by substituting them into
equation 3.13 and 3.14 gives equation 3.18.

rC7γ = ±
√
(p′x + L5)

2 + p′y
2 (3.18)

rS7γ = −p′z (3.19)

Then by dividing equation 3.19 by 3.18, results in tan(θ5 + γ), which by using
rule A.4 on page 85 gives equation 3.20.

S5 + atan2((L3 S4), (L4 + L3 C4))

C5 + atan2((L3 S4), (L4 + L3 C4))
= − p′z√

(L5 + p′x)
2 + p′y

2
(3.20)

Which can be rewritten by using equation 3.17, as equation 3.21.

S5

C5
= − p′z√

(L5 + p′x)
2 + p′y

2
− γ (3.21)

Then from equation 3.21, θ5 can be defined as equation 3.22.

θ5 = atan2(−p′z,±
√
(p′x + L5)

2 + p′y
2)− γ (3.22)

In order to find θ6 equation 3.8 are divided by 3.7 resulting in equation 3.23.

− S6

C6
=

p′y
L5 + p′x

(3.23)

Then using rule A.4 on page 85, θ6 can be derived in equation 3.24.

θ6 = atan2((p′y), (−L5 − p′x)) (3.24)

In order to find θ1, θ2 and θ3 the inverse transform method, used in [37] and also
applied in [36], will be applied. This approach differs from the standard approach
which works by simultaneously solving all entries of equation 3.5, which is 12
equations with 7 unknowns. This approach is non-trivial since the equations are
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transcendental, meaning both the sine and cosine are required to determine the
angles uniquely and accurately, the robot also exhibits more than one solution for
a given position.
There are, however, seven other matrix equations obtained by successively pre-
multiplying equation 3.5 with the T matrix.

This method works by first creating a variable, in this case Gn seen in equation 3.25,
which has as left side matrix GLHS

n , and a right side matrix GRHS
n . Hence Gn can

be written as GLHS
n == GRHS

n , by comparing these two matrices, θ1, θ2, θ3 can be
found.

G6→1 =



GLHS
6 = GRHS

6

GLHS
5 = GRHS

5

GLHS
4 = GRHS

4

GLHS
3 = GRHS

3

GLHS
2 = GRHS

2

GLHS
1 = GRHS

1

(3.25)

The right side of Gn, called GRHS
n is defined as in equation 3.26, where the red

transforms are being moved over on the other side, by inverting them. This action
is shown in equation 3.28.

GRHS
6 = T6

5 T5
4 T4

3 T3
2 T2

1 T1
0

GRHS
5 = T6

5 T5
4 T4

3 T3
2 T2

1 T1
0

GRHS
4 = T6

5 T5
4 T4

3 T3
2 T2

1 T1
0

GRHS
3 = T6

5 T5
4 T4

3 T3
2 T2

1 T1
0

GRHS
2 = T6

5 T5
4 T4

3 T3
2 T2

1 T1
0

GRHS
1 = T6

5 T5
4 T4

3 T3
2 T2

1 T1
0

(3.26)

The matrix elements of the right hand sides are either zero, constants, or functions
of the nth to 2th joint variables. As matrix equality implies element by element
equality 12 equations from each matrix equation are obtained, that is, one equation
for each of the components of the four vectors n′, s′, a′ and p′ combined in equation
3.27.

GRHS
6 = T6

0 =


n′x s′x a′x p′x
n′y s′y a′y p′y
n′z s′z a′z p′z
0 0 0 1

 (3.27)

35



Kinematics 3.2 Inverse Kinematics

The left side of Gn, called GLHS
n is defined as in equation 3.28, these equations are

functions of the elements of the inverse composite link transformation matrix T6
0 ,

which was shown in equation 3.5, multiplied by the inverse of the first -n joint
variables of GRHS

n :
GLHS

n = GRHS
n

′ T6
0 (3.28)

This is visualised as:

GLHS
6 = T6

0

GLHS
5 = T5

6 T6
0

GLHS
4 = T5

6 T4
5 T6

0

GLHS
3 = T5

6 T4
5 T3

4 T6
0

GLHS
2 = T5

6 T4
5 T3

4 T2
3 T6

0

GLHS
1 = T5

6 T4
5 T3

4 T2
3 T1

2 T6
0

(3.29)

Only G5 is used as the remaining thetas can be found using this equation. The left
side of G5 is seen in equation 3.30.

GLHS
5 =


n′x C6 − n′y S6 s′x C6 − s′y S6 a′x C6 − a′y S6 C6 (L5 + p′x)− p′y S6

n′y C6 + n′x S6 s′y C6 + s′x S6 a′y C6 + a′x S6 S6 (L5 + p′x) + p′y C6

n′z s′z a′z p′z
0 0 0 1

 (3.30)

The right side of G5, called GRHS
5 can be seen in equation 3.31, and consists of the

transformation T5
0 :

GRHS
5 =


C1 C2 C345 − S1 S345 S1 C2 C345 + C1 S345 S2 C345 −L3 C45 − L4 C5

−C1 S1 −S1 S1 C2 0

C1 C2 S345 + S1 C345 S1 C2 S345 − C1 C345 S2 S345 −L3 S45 − L4 S3

0 0 0 1

 (3.31)

Then by comparing elements (2,3) of the left and right side of G5 gives equation
3.32.

C2 = a′y C6 + a′x S6 (3.32)

Which by using rule A.3 on page 85, gives S2 from equation 3.33.

S2 =
√

1− (a′y C6 + a′x S6)2 (3.33)

In order to find θ2 equation 3.33 are divided by 3.32 resulting in equation 3.34.

− S2

C2
=

√
1− (a′y C6 + a′x S6)2

a′y C6 + a′x S6
(3.34)
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Then using rule A.4 on page 85, θ2 can be derived in equation 3.35.

θ2 = atan2(S2, C2) = atan2(
√

1− (a′y C6 + a′x S2
6, a′y C6 + a′x S6) (3.35)

By comparing the elements of (2, 1) and (2, 2) of GLHS
5 and GRHS

5 , two equations
are given as:

S1S2 = −S6 s′x − C6 s′y (3.36)

C1S2 = −S6 n′x − C6 n′y (3.37)

By dividing these two equations results in tan( S1
C1
), from which the joint solution

for θ1 can be obtained as:
θ1 = atan2(S1, C1) (3.38)

Then by comparing the elements of (1, 3) and (3, 3) of GLHS
5 and GRHS

5 , result in
two equations, which if divided by each other gives:

S345

C345
(3.39)

by which the joint angle θ345 is given as:

θ345 = atan2(S345, C345) (3.40)

From this the joint solution θ5 is given as:

θ3 = θ345 − θ4 − θ5 (3.41)

Now that the robots joints can be determined given a desired position and orienta-
tion of the COM, the next step is to figure out where to place the feet, in order for
the robot to walk without falling. One approach is by using Zero Moment Point,
which the following chapter will look at.
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CHAPTER | 4

Zero Moment Point

Figure 4.1 The support foot and the
swing foot of the robot during walk.
pCOM is the COM projected unto the
ground plane

The Zero Moment Point (ZMP), is the point in
space where all moments sum to zero. This is
relevant for biped robot walk, as a crucial part
of walking is to place the feet at positions that
prevents falling. The strategy for placement of
the feet can have an effect on many aspects of
walking. These include energy efficiency, ve-
locity, robustness etc. One method for deter-
mining where to place the feet is the ZMP ap-
proach [38]. During any motion of the robot,
the feet should be positioned at points where
the contact between the soles of the feet and the
ground is maintained. If not, the robot is likely
to fall.
For the robot depicted in figure 4.1, the sole of
a foot is formed by the 4 extrusions under the
foot. There are two ways that the contact be-
tween the sole and the ground can be broken,
either the foot slips1 or it tilts2.
It is important to keep in mind that the ZMP
is the sum of all moments acting upon the foot.
Say you have a foot, with a single 3D inverted
pendulum on top, as seen in figure 5.1. When
the pendulum is in an upright position, all the
forces acting on the foot are perpendicular to
the ground. At this particular point, where the
pendulum is truly perpendicular to the ground,
the foot will not move no matter how small the friction is between the foot and the
ground. However, once the pendulum moves away from the upright position, the

1Slipping of the foot is the state where the supporting foot of the robot no longer remains static
2Tilting of the foot is the state where at least 1 of the contact points of the supporting foot (or

feet) are not in contact with the ground
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combined forces acting on the foot will no longer be perpendicular to the ground.
The forces will be a product of the vertical and horizontal forces. This is illustrated
in figure 4.2, showing a block lying on a inclined plane. The forces acting on this
block is the gravitational force Fg, the normal force Fn and the friction force Ff .
The gravitational force is defined as mass times gravity Fg = m g, the normal force
definition depends on the inclination of the plane, if horizontal Fn = m g and if
inclined it is determined using vector analysis, as less of the force of gravity is
perpendicular to the face of the plane. Friction force Ff is parallel to the surface,
and in a direction opposite to the net of applied forces [39].

Figure 4.2 Forces included in friction. Ff = force of friction, Fh = forces of horizontal, Fg = force of
gravity and Fn = normal force

The point at which the moments no longer sum to zero must be taken into account
when planning the walking pattern of the robot. The further the projected COM
(pCOM)3, seen in figure 4.1, moves away from the centroid of the support polygon,
the higher the horizontal forces acting on the supporting foot will be. Therefore,
the step length and width, as seen in figure 4.3, must be limited to ensure that it
does not create horizontal forces large enough to overcome the friction between
the supporting foot and the ground.
However, determining this exact point is no trivial task, as it depends on: The
combined forces that the robot affects the supporting foot with, as well as the
friction between the support foot and the ground.

3The Projected COM is known as the point where the gravity force vector of the COM intersects
with the ground
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Figure 4.3 Step length and width during walking. Robot seen from bottom
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4.1 The Support Polygon

Figure 4.4 The support poly-
gon of the robot in the double
foot support phase, marked
with a red polygon

A concept closely related to the ZMP is the support
polygon. This is defined as the convex hull of all contact
points between the sole of the feet and the ground [38].
figure 4.4 shows the support polygon during the double
foot support phase of walking. The support polygon
is found by taking the convex hull of ground contact
points. This requires detection of the ground contact
points, which is done by using the strain gauges which
is described in chapter 2.
The design of the sole, described in section 2.1, ensures
that when the feet is in contact with the ground and
the position of the contact points are known. The con-
vex hull is then found by checking which strain gauges
reads a value above a given ground contact threshold.
By using the geometry of the feet and using the kine-
matic configuration of the robot, the x and y coordinates
of each contact point can be found.
One method for finding the convex hull of a set of points
is the Jarvis march algorithm, also known as the Gift
Wrapping algorithm [40]. When compared to other con-
vex hull algorithms it is described as being simple to im-
plement, and having favourable performance compared
to other convex hull algorithms, when used for a small
number of points.

(a) Illustration of the Jarvis’ March Algorithm process-
ing convex hull point candidates

(b) Pseudo code describing the Jarvis’ March Algo-
rithm

Figure 4.5
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Figure 4.6 Contact points of the sole of
one of the feet. Distances are marked
with red.

An illustration of how the algorithm evaluates
candidate points for the convex hull, can be
seen in figure 4.5a. Pseudo code describing
the overall functionality of the algorithm can
be seen in figure 4.5b. The robot described in
chapter 2 can be simplified by describing the
contact between the feet and the ground with a
maximum of 8 contact points, 4 for each foot.
This simplification reduces the size of the sup-
port polygon slightly, as the contact between
the sole of the feet and the ground is assumed
as single points. Each of the points are located
at the centre of the rubber cylinders, seen in the
corners of the foot in figure 2.2. The contact
points of a foot can be seen in figure 4.6 and
lie at the centre-axis of the mounting holes of
the rubber pads underneath the feet. The local
position for the contact points of the individual
feet are constant, but the position in relation to
the base frame of the robot changes as the kine-
matic configuration of the robot changes.
As the robot moves the feet, the shape and size
of the support polygon changes, but the global
position of the feet change as well. The robot
moves in relation to a world coordinate frame,
which means that the position of the contact
points, as well as the support polygon, must also be transformed to global co-
ordinates.

Static vs. Dynamic Walk

Two claims can be made regarding the balance of the robot [38]:

• The ZMP must at all times lie within the boundary of the support polygon of
the robot.

• The projected COM may exist outside the support polygon.

The ZMP can never exist outside the support polygon, since this would cause a
non-zero sum of all forces acting on the foot, disqualifying the point from being
a ZMP. If the robot is static, then a projected COM outside the boundary of the
support polygon will cause the robot to fall. However, while moving dynamically,
the COM may exist outside the support polygon, as long as other forces cause the
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sum of forces acting on the foot to become zero, i.e. as long as a ZMP exists [38].
One example of such a dynamic activity is running, where the COM is moved
outside the support polygon in the running direction, in order to move the robot at
a higher velocity. Here a ZMP still has to lie withing the support polygon, while the
COM does not. Within this report, the concept of "Static Walk" will be defined as
walking while at all times keeping the projected COM within the boundary of the
support polygon. "Dynamic Walk", or just "walk", will include trajectories where
the projected COM exists outside the boundary of the support polygon, while a
ZMP exists. "Falling" will therefore be defined as the case where a ZMP does not
exist.

4.2 Measuring the ZMP
For the 2D case, the vertical and horizontal forces acting on the distribution of the
foot, can all be represented by an equivalent force and moment, placed at a point
px in the sole of the foot. For the case, where the moment τ(px) about the point px

sums to zero, the ZMP can be determined as equation 4.1, which is also described
by [38] as the centre of pressure. px is the ZMP. x1 and x2 are the boundary
points of the 2D sole, within which the ZMP may exist. ρ(ξ)) is the vertical force
component which is the ground reaction force.

px =

∫ x2
x1 ξρ(ξ)dξ∫ x2
x1 ρ(ξ)dξ

(4.1)

The ZMP and pressure distribution across the sole of the foot is closely related.
When the pressure is equally distributed across the foot, the ZMP is found at
the centre of the foot. If the robot leans forward, the pressure distribution shifts
towards the front of the foot, and the ZMP moves forward as well. By the notion
that a ZMP is the point where all moments acting on the foot must sum to zero,
it can be assumed that numerous ZMPs exist within the boundary of the sole.
These points together form a region of ZMPs. Using ZMPs close to the boundary
of the support polygon should be done with caution. The closer the ZMP lies to
the boundary of the support polygon, the less robust the robot will be to external
disturbances. However, increasing the velocity of the COM in the horizontal plane
will move the ZMP closer to the boundary, so robustness comes at a cost.
For the 3D case, the ZMP is called p, and consists of the two coordinates (px, py).
These can be found using equation 4.2, assuming that the moments about p are
zero [38], i.e. τn(p) = [τnx τny τnz]T = [0 0 0]T.

px =

∫
S ξρ(ξ, η)dS∫
S ρ(ξ, η)dS

py =

∫
S ηρ(ξ, η)dS∫
S ρ(ξ, η)dS

(4.2)
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Here the position of the ZMP is defined by a position vector r = [ξ η 0]T which
is a translation from the world frame to the ZMP of the foot. With no moments
about the ZMP p, it effectively becomes the centre of pressure [38]. This leads to
an elaboration on the definition of the ZMP, which states that for 3D: The ZMP is
the point where the moment produced by the horizontal ground reaction forces
is zero. [38]

ZMP for Single Foot Support

Figure 4.7 One foot of the robot
showing the four strain gauges.
The strain gauges are placed on a
common circle with offsets of 45°in
the top and bottom, and 135°at
each side

Each foot of the robot is equipped with 4, 1 - dimen-
sional force sensors as described in section 2, and
shown in figure 4.7. The force acting on the strain
gauges depends on the configuration of the robot.
If the robot stands in the standard configuration,
as seen in figure 2.1, then the signal values of all
strain gauges are approximately equal. If the robot
begins to lean forward, the force acting on the for-
ward facing strain gauges will increase, while the
force acting on the backward facing strain gauges
will decrease.
Calculating the ZMP based on measurements is
done for either the single foot support phase, or
double foot support phase. For the single foot sup-
port phase, 4 of the force sensors are in contact with
the ground. The location of the ZMP can then be
calculated using equations 4.3, where the x and y
components of forces acting on the foot has been
set to zero, leaving only the forces in the z axis. In
this equation N is the number of force sensors in
the foot, which in this case is 4. px, py are the coor-
dinates of the ZMP. Force sensor j is affected by the
force f jz.
pjx and pjy are the coordinates at which each of the
forces are measured. Therefore, by measurement of
the forces, and knowledge of the location of each
force sensor, the ZMP can be found.

px =
∑N

j=1 pjx f jz

∑N
j=1 f jz

py =
∑N

j=1 pjy f jz

∑N
j=1 f jz

(4.3)
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ZMP for Double Foot Support

The double foot support phase is an intermediate phase between taking a new step,
where both feet are in contact with the ground. Contact is determined by measure-
ments of the strain gauges. The procedure for calculating the ZMP for double foot
support requires that the ZMP is calculated for each individual foot first, follow-
ing the procedure described in section 4.2 on the preceding page. Once a ZMP
has been found for both feet, the combined ZMP can be found. Equations 4.4 have
been derived by [38], and describes how to calculate the x and y coordinate (px, py)

of the combined ZMP. Equations 4.4 are based on the calculated ZMP for the right
foot pRx, pRy, the left foot pLx, pLy as well as the force measurements fRz, fLz from
each of the feet.

px =
pRx fRz + pLx fLz

fRz + fLz

py =
pRy fRz + pLy fLz

fRz + fLz

(4.4)

Tilt Detection

A critical state, that should be avoided at all cost, is when the robot balances on
the edge of the feet. This can be detected when the strain gauges in the supporting
foot (or feet for double foot support) has signal values of zero. Although it is rec-
ommended to avoid this state, a control strategy should be developed to recover
from this state, since a disturbance could push the robot into this state.

The analysis of the ZMP shows why it is an ideal method for choosing references
for the position of the feet of the robot. In practice, positions for the feet are chosen,
and then the rest of the body must be moved such that these points become and
remain ZMPs during movement. Moving the rest of the robot body is no trivial
task. While taking a step, such as figure 4.1, a chain of 12 joints and 8 bodies are
attached at the supporting foot. Should an upper body be added to the robot in the
future, the task becomes even more challenging. A complex problem such as this
calls for simplification. For a majority of biped robots, the model used for control
design is simplified using methods such as the LIPM (Linear Inverted Pendulum
Model), which is a model of the behaviour of the linear inverted pendulum(LIP).
A method for doing so, will be introduced in chapter 5.
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CHAPTER | 5

Linear Inverted Pendulum Model

Zc

x y

Figure 5.1 The biped robot simplified as an in-
verted pendulum with a telescopic joint, attached
on top of single foot. The entire mass of the robot
is represented by a point mass located at the centre
of the COM sphere

This chapter will dive into the LIPM
simplification method, and explain
how it can be used for motion control
of a biped robot. Similarly to humans,
the biped robot walk consists of dou-
ble legged and single legged periods.
One approach to model a biped robot
during a single legged period, is to fol-
low the LIPM approach [41]. Here the
biped walking robot is modelled as a
3D LIP with a telescopic arm, as illus-
trated in figure 5.1. The COM of the
LIP corresponds to the combined COM
of the whole robot. The telescopic arm
of the pendulum is attached to the floor
at the point of the supporting foot. The
other foot of the robot is in a swing
phase, as shown in figure 4.1. It is as-
sumed that the supporting foot does
not slip. The arm that connects the
COM to the floor has no mass. The LIP
is constrained to movements in the xy-
plane, which is why the telescopic joint
must be added to the arm of the LIP. If
not, then the LIP would be restricted to movements in a circle on the xy-plane.
Since the COM is only allowed to move in the xy-plane, the z coordinate i.e. the
height of the COM is fixed.
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Figure 5.2 Top view of the LIP, and it’s recorded natural trajectory. Initial conditions are: x0 =
−0.08, y0 = 0.35, ẋ0 = 0.48, ẏ0 = −1.28

In figure 5.1 the variables x, y and Zc describe the position of the COM of the LIP,
and can be found using equation 5.1. This position can be found using the two
angles θr, θp of the pendulum, as well as the length L of the telescopic arm.

x = L sin θp

y = L sin θr

zc = L
√

1− sin θp
2 − sin θr

2

(5.1)

The unactuated, or natural, movement of the LIPM is given as equation 5.2. An
example of this movement can be seen in figure 5.2. Here the initial velocity of the
LIP is nonzero. Since the LIP is constrained to movements in the XY plane, the
acceleration in the z direction becomes zero. Once the swing foot connects with
the ground, the base of the LIP instantaneously changes position to that of the new
support foot.

ẍ =
g
zc

x

ÿ =
g
zc

y
(5.2)

The actuated movements for the LIP are given as seen in equation 5.3. Here m is
the total mass of the system, g is gravity and ux, uy are virtual inputs designed to
linearize the LIPM [41]. The virtual inputs are given in equation 5.4, where τr and

47
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τp are the torque about the x and y axis respectively.

Figure 5.3 Topview of the trajectory
of the LIP movement during walking.
The green line marks the trajectory
during the right-foot support phase,
the red line marks the left-foot sup-
port phase. The red dots mark the po-
sitions of the support foot

ẍ =
g
zc

x +
ux

mzc

ÿ =
g
zc

y−
uy

mzc

(5.3)

ux =
τr

√
1− sinθr

2 − sin θp
2

cos θr

uy =
τp

√
1− sin θr

2 − sin θp
2

cos θp

(5.4)

Figure 5.3 shows the trajectory of the LIP during
walking. The robot is travelling in the positive y
direction, with a symmetric trajectory about the
0 value of the x axis. The robot starts the walk
on the left foot. The initial conditions of the walk
are found through study of the orbital energy of
the LIPM.

5.1 Orbital Energy of the LIPM
When standing at rest, in the standard configura-
tion as shown in Figure 2.1 on page 16, the robot
has the COM between the two feet. Say we de-
sire for the robot to move forward. When taking a
step only one of the legs support the weight. This
means, that when pushing forward, the COM is
pushed both along the y-axis direction, i.e. for-
ward, but also along the x-axis direction, i.e. side-
ways. Each new step contributes with force to the
COM in both the y and x direction. Therefore,
for each new step, the COM is pushed across the
sagittal plane, which in this case is found at the
0 value of the x-axis in figure 5.3 . The energy of
the COM, described by [41] as the orbital energy,
can be found using equation 5.5. These equations
are obtained by integration of equation 5.2.
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Ex = − g
2 zc

x2 +
1
2

ẋ2

Ey = − g
2 zc

y2 +
1
2

ẏ2
(5.5)

Looking at the bottom of figure 5.3 the first two red dots account for the initial
steps, while the following steps are the consecutive steps of the walk. The initial
steps should be regarded as a special case, designed to bring the LIP up to the
initial velocities required for the consecutive steps. In figure 5.3 during the initial
steps the LIP is moved towards the right to bring the projected COM within the
support polygon of the right foot, allowing the robot to take the first step with the
left foot without falling. This first step is half the length of the desired step length,
in order to get the initial velocities, which in the ideal case results in symmet-
ric trajectory for the consecutive steps. For asymmetric trajectories, more robust
techniques should be investigated. However this will not be touched upon in this
report, but will remain a subject worthy of further investigation.

Finding the initial conditions for the symmetric consecutive steps can be done
by using the orbital energy of the LIP. The equations for the orbital energy of the
LIP can be seen in equation 5.5. Here the energy of the LIP is described in the x-
and y-axis, and is denoted Ex, Ey. Gravity acceleration is g, zc is the height of the
LIP. x, y is the position of the LIP, while ẋ, ẏ is the velocity of the LIP. As figure 5.3
shows, halfway through a step the x-velocity of the LIP ẋ is equal to zero as the
LIP movement changes x-direction.
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Predictive Control

Different types of control strategies are used in order to move, in this case, legs.
For humans the brain calculates a trajectory for the legs and sends signals to the
muscles in order to contract the muscles, thereby making the leg follow the trajec-
tory and resulting in dynamic walk. For robots, which are controlled by a series of
motors acting as the robot muscles, a reference is required. This is usually either
velocity, position or torque and a controller to make the motors follow the refer-
ence. Among commonly used controllers are PID, LQ and MPC. Each controller
has its own set of advantages and disadvantages and depending on the system
the most suitable controller is chosen. The humanoid robot controller should have
a sufficient controller sampling rate to follow a gait reference. In other words, it
should command the motors at a sufficient enough rate to prevent the robot from
falling. Plainly the controller sampling rate affects how good the controller is at
following the reference. However while high frequencies allow for better reference
tracking, the cost is increased computational power and could amplify controller
gain errors. If the controller is too aggressive each control iteration would fight
with the next to be as close to the reference as possible, resulting in excessive mo-
tor actuation and wasting energy.

State of art humanoid robots such as Atlas use predictive control to manipulate
the system, specifically Atlas uses MPC. The use of predictive control has the ad-
vantage of finding the optimal inputs for a finite horizon, based upon a system
model of the robot. It has the ability of anticipating future events and act accord-
ingly, to make a more smooth walk unlike PID which can only control the current
instant. As the report focuses on creating a biped robot capable of competing with
the state of art the most obvious controller would be a predictive controller.

A promising method of biped walking control consists of the ZMP of chapter 4
and LIPM of chapter 5 combined with preview control [42]. This method of the
combination of the ZMP and LIPM approaches aim to remove some of the draw-
backs of both methods. Using the ZMP approach puts high torque demands on
the actuators of the ankle, in order to keep the feet at exact positions. The LIPM
does not suffer from the same drawback, however when using the LIPM the posi-
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tion of the feet is not directly controlled [42]. This makes the LIPM ill-suited for
applications where the exact position of the feet is important, such as walking in
terrain with obstacles where the feet must be placed at specific points. By using
the method that mixes the ZMP and LIPM approach, arbitrary foot positioning
becomes possible [42].

The LIPM presented in chapter 5, although useful, remain an approximation of
a dynamic model of the robot during walk. One of the causes of model inaccuracy
is the approximation of the COM position. A simple method used for positioning
the COM for a full body humanoid robot is to assume it is located at the centre of
the pelvis link [42]. However the COM position depends on the configuration of
the limbs of the robot. If significant enough, the COM position error can cause the
robot to fall, as the ZMP calculated by the simple LIPM model may not be an ac-
tual ZMP. A method of handling this model inaccuracy is by preview control [42].
In order to do so, knowledge is required of the expected ZMP error between the
LIPM and the multibody model, this error is in [42] found by comparing the ZMP
reference against the real ZMP measured from the dynamical system. The ex-
pected future ZMP error is then stored in a memory buffer. This knowledge can
then be used by a preview controller to compensate for the errors caused by the
model inaccuracies of the LIPM [42]. For implementation of the preview controller,
it should be noted that the necessary amount of compensation and size of preview
horizon correlate. A practical example of this is when the robot walks on what is
assumed to be a flat ground, but it actually has a slope. This will cause an error
in the estimated ZMP when compared to the measured ZMP which the predictive
controller must compensate for.

The first step to apply the preview control method proposed by [42], is to rewrite
the LIPM equation 5.3 on page 48 such that the ZMP becomes the output, this is
done by first merging it with 5.4. This yields equation 6.2 which, given position of
the COM x, y, zc, gravity g and accelerations of the COM ẍ, ÿ results in the ZMP.

ẍ =
g
zc

(x− ux)

ÿ =
g
zc

(y− uy)
(6.1)

Then isolating for ur and up by dividing with g
pz

and moving px and pz to the
opposite side of the equal sign, and finally multiplying both sides with −1:

ux = x− ẍ
zc

g

uy = y− ÿ
zc

g

(6.2)
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The next step is then to reformulate equation 6.2 as a servo control problem on
state space form [42].

First, two new variables named
...
x ,

...
y are created, which are the time derivative

of ẍ, ÿ respectively. The third derivative of position is often referred to as jerk and
is the rate of change of acceleration [43]. The system dynamics are formulated on
state space form, as shown in equation 6.3. Here ux, uy is the x and y coordinate
of the ZMP. Zc is the height of the COM of the robot and g is gravity acceleration.
The system dynamics are based on equation 6.2 and shown in equation 6.3.

d
dt


x

ẋ

ẍ

 =


0 1 0

0 0 1

0 0 0




x

ẋ

ẍ

+


0

0

1

 ...
x ,

ux =
[
1 0 −zc

g

] 
x

ẋ

ẍ

 ,

d
dt


y

ẏ

ÿ

 =


0 1 0

0 0 1

0 0 0




y

ẏ

ÿ

+


0

0

1

 ...
y

uy =
[
1 0 −zc

g

] 
y

ẏ

ÿ


(6.3)

A walking pattern generator can be made using the ZMP system dynamics in equa-
tions 6.3 [42]. Essentially the walking pattern generator will generate trajectories
for the COM of the robot, such that the ZMP references are realised. An impor-
tant observation made by [42] is that the COM of the robot must start to move
before taking a new step. The same behaviour can be experienced in human gait.
Here a new step is initiated by first leaning the torso slightly forward, before the
swing foot is lifted from the ground. However, since the COM trajectory is based
on ZMP references, and since the COM must move before a new ZMP reference
is received, then the output is calculated not from the current input but from the
future input. Calculating current output based on future input calls for applica-
tion of preview control. Numerous control strategies exists that apply preview
control, notable mentions among these are the Linear Quadratic Regulator (LQR)
and Model Predictive Control (MPC).

6.1 LQR
LQR is an optimal control strategy that seeks to minimise the cost of operating a
dynamic system. LQR has been successfully implemented to generate trajectories
for the COM of a biped robot [42]. LQR makes use of a quadratic cost function as
the one seen in equation 6.4. Here x(k) is the system state, Q1, Q2 are weighting
matrices, and uk is the input signal. The LQR problem is solved either with an
infinite or finite horizon. For the infinite horizon LQR, it can be said that the
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solution is globally optimal.

I =
∞

∑
k=0

x(k)TQ1x(k) + u(k)TQ2u(k) (6.4)

The optimal controller is described using equation 6.5 where the gain L(k) is found
by solving the discrete time algebraic Ricatti equations.

u(k) = −L(k)x(k) (6.5)

However, a drawback of the LQR control strategy is that although an optimal
controller can be found, the gain L(k) is calculated prior to execution, were it
is run once and then calculates the desired control for the plant for all future
iterations. This means that should model errors exist, or external disturbances
affect the system, the gain will no longer result in optimal control. Since it only
runs once there is no error correction on the plant thus robustness is low.

6.2 MPC
Unlike LQR, MPC recalculates the gains for each new sample of execution. The
downside to this, is that it significantly increases the computational requirements
to execute the algorithm. For embedded systems, where computational power is
often scarce, MPC should be considered with caution. The computational require-
ments increase with the number of system states, as well as the size of the horizon.

The MPC uses a fixed horizon, the required length of which is determined by
system dynamics and expected disturbances. Since the MPC algorithm is executed
for each new time step, the horizon is said to be receding. Since the horizon is fi-
nite, it can only be guaranteed that the MPC provides a locally-optimal controller,
in the sense that it is only guaranteed optimal for the given time horizon.

As is also the case for LQR, MPC is optimised with respect to a quadratic cost
function, such as in equation 6.6. [44] Here the tune-able parameters are Q(i) and
R(i) which are weighting matrices that specify the cost of particular states and
inputs. Additional tune-able parameters are Hp, Hu and Hw which are the predic-
tion horizon, control horizon and window parameter respectively. Notice that the
mentioned parameters do not depend on time. ẑ(k + i|k) is the measured system
output, r(k + i|k) is the reference signal and ∆û(k + i|k) is the input. The ∆ of the
input implies the use of integral action to combat steady state error.

V(k) =
Hp

∑
i=Hw

||ẑ(k + i|k)− r(k + i|k)||2Q(i) +
Hu−1

∑
i=0
||∆û(k + i|k)||2R(i) (6.6)
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When choosing the prediction horizon Hp, the size of it should be larger than the
slowest dynamics of the system. Looking past the start-up phase, and walking at
a constant pace, the biped gait repeats the same trajectories over and over. This
may draw to the conclusion that a prediction horizon corresponding to a single
gait cycle could be sufficient. However, should the robot diverge from nominal
performance by encountering a disturbance, it may take numerous steps to recover,
if possible at all. This is similar to human walk, where an obstacle can cause a
person to stumble, which often requires several steps to recover from. Changing
the length of the prediction horizon would create a increasingly stable system with
only downside being the computation time, the horizon should be as large as the
computational system can handle. At some point increasing the horizon would no
longer affect the optimality of the system and only increase computational power,
then the horizon should be shortened. Tests in the Simulink environment would
indicate the turning point for performance/computational power use.

MPC can also take into account the constraints of the system states and input [44].
The constraints are linear inequalities as seen in equation 6.7. These represent
the constraints on the actuator slew rate1, actuator range and constraints on the
manipulated variable.

E

∆U (k)
1

 ≤ 0, F

U (k)
1

 ≤ 0, G

Z(k)
1

 ≤ 0 (6.7)

System Constraints

The system can be constrained with joint limits like the values from table IV on
page 19. The maximum joint velocity and acceleration could be inserted as con-
straints in the controller with weights indicating the amount of softening for each
individual constraint. Hard constraints can also be used, for example limiting a
joint angle.

Constraint Softening

The robot has multiple physical constraints, such as joint limits and slew rate of the
actuators. These are considered hard constraints, as the robot cannot physically vi-
olate them. Setting a constraint as a hard constraint, means that the solution must
at all times satisfy the constraint. If this is not possible, the solution becomes infea-
sible [44]. Even if a solution is found that is feasible, disturbances could push the
system past the hard constraint, which could result in a loss of system control [45].

1Slew rate is rate of change. Max slew rate is max rate of change
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For those constraints where it is possible, this leads to the desire for soft con-
straints. Setting a constraint as soft, allows the constraint to be violated, without
causing a solution to become infeasible [44]. Not all constraints are suited for soft-
ening. However, constraints such as velocity of the COM is suitable for softening.
Say it is desirable for the COM of the robot to move at a specific velocity. Should
a situation arise, where a feasible solution that fulfil the velocity demand is not
found, then it is unlikely that a catastrophic failure occurs. On the other hand,
should a situation arise where the MPC produces a trajectory that violates a joint
limit of the robot, then it is crucial that the solution is deemed infeasible.

Soft constraints should be used with caution, as some system dynamics may be
hard constrained in practice. Examples of such could be saturation of motor torque,
or limited range of motion of the joints. On the other hand, hard constraints should
also be placed with caution, as they decrease the size of the solution space. Placing
unnecessary hard constraints can result in discarding solutions that could other-
wise have saved the robot from a fall. Having several hard constraints may cause
conflicts and result in reduced working space or complete failure.

The constraints for the proposed robot are based upon the states from the LIPM
state space model and are; COM position, COM velocity and feet positions. The
states are further explained in section 7.2 on page 69. The COM velocity can be soft
constrained with the peak gait velocity of 1.6 m/s The positions can also be con-
strained if deemed necessary. The position constraints can set limits for how long
steps the biped robot is allowed to take, and where the COM position is allowed to
swing. These limits could be useful if feet slippage proves to be a problem when
taking steps above a certain length.
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6.3 Position Control of Joints

The simple system model used for MPC does not handle control of the individual
joints of the robot, but solely produces a trajectory that the joints are expected
to follow. In order to make the joints follow the given trajectory, a control loop
must be devised for each joint. In order to linearise the system the computed
torque [34] method will be used. The essence of this method is to use knowledge
of the system dynamics, to calculate a torque that compensates for said dynamics.
Effectively, this makes the model linear, as it is reduced to an integrator, as seen in
figure 6.1This does however imply that the actuator can produce enough torque to
move the joint at the desired acceleration. The computed torque method requires
a model of the system dynamics, which can be described by the Euler-Lagrange
equation of motion [34]. The first step of applying this method, is to find the kinetic
energies ki of the system as shown in equation 6.8. Here mi is the mass of link i
of the robot, vi is the linear velocity, Ii is the inertia matrix, and ωi is the angular
velocity of joint i.

ki =
1
2

mi v2
i +

1
2

Ii ω2
i (6.8)

The second step to obtaining the Lagrangian, is to compute the potential energies
pi of the system. These are found as seen in equation 6.9. Here hi is how high body
i is above the ground plane. mi is the mass of body i and g is gravity.

pi = mi g hi (6.9)

The expressions for kinetic and potential energy can be used to form the La-
grangian L, as shown in equation 6.10

L =
∞

∑
i=1

ki − pi (6.10)

Knowing the Lagrangian and the vector of generalised coordinates q, the Euler-
Lagrange equation can be formulated as shown in equation 6.11. The generalised
coordinates is a vector of the positions of the robot joints and body frame. The Γ is
the vector of joint torques.

Γ =
d
dt

δL
δq̇
− δL

δq
(6.11)

Reformulation equation 6.11, the dynamics can be put on the form of equation 6.12.
Here M is the nxn mass matrix, V is an nx1 vector including the Coriolis and
centrifugal force terms and G is the nx1 gravity vector [34]. Adding this to the
control loop, yields a control structure as seen in figure 6.1.

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ (6.12)
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An interesting observation is the case where the position error e becomes zero.
In this case the controller becomes solely a gravity compensator, calculating the
necessary joint torque to cancel out the gravity force. This model does however
not include all dynamics. A major part that has been left out is the contribution
of contact forces when the feet collide with the ground. To keep the effect of the
contact dynamics as low as possible, the kinetic energy of the foot should be low
when coming into contact with the ground. This should be taken into account
when planning the trajectories for the feet.

Figure 6.1 Position controller with computed torque system linearization. The linearization consists
of a model of the mass matrix, Coriolis vector and gravity vector. The generalised coordinate q is the
joint angle reference computed by inverse kinematics.
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Simulation

Before implementation of the control strategy it is tested through simulation. The
results of the simulation can be used to verify that the chosen strategy provides
satisfactory system performance. Additionally the simulation will give a measure
of the system performance given the chosen stepper motors, and whether the mo-
tor size should be re-evaluated. The robot has been modelled in Matlab/Simulink
using Simscape Multibody and its associated libraries. The simulation is separated
into two parts: The walking controller and the dynamic model of the robot and the
overview can be seen in figure 7.1.

Figure 7.1 The Simscape model of the biped robot and the walking controller used to control it
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7.1 Simscape Multibody Model of the Robot

Figure 7.2 The Simscape model of the robot, separated
in right leg, left leg and world, all connected at the hip
link of the robot

The robot is modelled using the
Simscape Multibody library of
Simulink. The model is built from
12 revolute joints, connected by 13
rigid links. This structure can be
seen in figure 7.2 where the left and
right leg are shown, connecting to
the the common hip link. Each link
of the robot has an associated mass,
moment of inertia and product of
inertia. These are generated from
the CAD file of the robot, which
can be exported to Simscape Multi-
body. Here each part of the robot
has been assigned the appropri-
ate density to approach the same
mass distribution as the physical
robot. This means that each indi-
vidual bolt, nut, motor etc. of the
robot has been assigned a density
matching the material of which it
is made. This is an important as-
pect of the simulation, as the dy-
namics associated with the masses
of the system significantly impacts
the systems behaviour.

Another important aspect of the
model is the associated coordi-
nate frames and length of links.
The DH-parameters used to derive
the inverse kinematics described
in chapter 3 must correspond to
the ones of the model. This has
proven to be a non-trivial task, as
the coordinate frames generated by
Simscape does not follow the DH-
convention. Each coordinate frame
of the kinematic chain must be
transformed to follow the DH-convention, described in section 3.1. Here the coor-
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dinate frame of each joint must rotate about the z-axis, and the x-axis must point
along the next link in the kinematic chain.

Modified Robot Design

Figure 7.3 The robot design where the
yaw joint of the hip is mounted at a 45
degree in relation to the hip link

Figure 7.4 The robot design where the
yaw joint of the hip is perpendicular in
relation to the hip link

The original mechanical design of the robot discussed in chapter 2 and seen in
figure 7.3 has been changed to the one seen in figure 7.4. Within the scope of
this project it was not possible to control the robot shown in figure 7.3. This can
be accounted to either an error in the derived inverse kinematics or an error in
the Simscape model of the robot. Changing the robot design to the one seen in
figure 7.4, and directly applying the inverse kinematics method described chapter 3
on page 27 proved solvable. The main difference of the two robot designs lies in
the hip yaw joint. In figure 7.3 the hip yaw joint is mounted with a 45 °angle,
while in figure 7.4 it is mounted at an 90 °angle. The design using 45 °angle
should however be investigated further. Experiments shows that the design using
90 °does not utilise the yaw joint while walking straight, which puts a high load on
the remaining hip motors. The 45 °design utilises all motors for walking straight
to reach the desired angles.
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Another modification of the robot design is the location of the two ankle joints. In
the original design they are located at a distance of 116.7 mm above the sole of
the foot. In the new design the location of the ankle joints have been moved closer
to the sole of the feet, such that they are now located at a distance of 36.7 mm
above the sole. This change was made based on experimentation which showed
that ankle joints located further from the sole made the robot more susceptible to
loss of foothold, as the forces affecting the ankle at the initial height would exceed
the foot support frame and tilt the ankle.

Friction

The walk of the robot relies heavily on the interaction between the foot of the robot
and the ground. A crucial part of this interaction is the dry friction between the
ground and the feet. As explained in chapter 4, for a ZMP point all forces acting on
it must sum to zero. This is visualised in figure 4.2 on page 39. If the supporting
foot slips, collapse of the robot is likely.
Friction can be separated into two categories; static friction and dynamic friction.
As the names of these implies that static friction is the friction force that exists while
the foot remains stationary, while the dynamic friction is when the foot slides. For
this simulation friction coefficients for static and dynamic friction has been chosen
to simulate the interaction between dry rubber and concrete [46]. To prove that the
robot can operate in a variety of terrains, performance should be tested for a range
of coefficients of friction.

Contact Forces

Figure 7.5 The forces of col-
liding bodies

Another interaction that heavily impacts the operation
of the robot is when the feet and the ground plane col-
lide. In this simulation the Simscape Multibody Con-
tact Forces Library has been used to simulate contact
between the two bodies, such as seen in figure 7.5.
Figure 7.6 shows the 4 contact points of the support-
ing foot, marked with red spheres. Simscape Multi-
body Contact Forces Library defines contact through
3 parameters: contact damping, contact stiffness and
transition region width. The damping is given in the
unit N/(m/s) and is the dissipation of energy, based
on velocity. Having too little damping results in an un-
derdamped system, which is experienced as the foot
bouncing on the surface after the initial contact. On the other hand, having too
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much damping causes the system to become overdamped, resulting in a long set-
tling time upon contact. The ideal damping is found by means of experimentation.
However, for implementation purposes the damping is not as easily controlled as
in simulation. In the practical cases, the damping is, like friction, determined by
the properties of the colliding bodies, namely the foot and the ground.

Figure 7.6 The supporting foot of the robot, shown schematically and animated. The contact points
are shown using red spheres. The four contact points of the robot are rigidly connected to the foot

In addition to damping, the stiffness must also be determined. Stiffness is a mea-
sure of how much an object resists deformation, and has the unit N/m.

It is important that the stiffness should be chosen such that the feet of the robot
does not break through the ground plane. Another argument for increasing the
stiffness of the contact points is to avoid the robot tilting. Too low stiffness makes
the robot sink into the ground plane, which becomes apparent when the projected
COM of the robot moves close to the edge of the support polygon. This causes
the unwanted behaviour of the edge of the foot "sinking" into the ground plane.
These arguments motivates the choice of a high amount of stiffness to be applied.
The downside however, is that experiments shows that an increase in stiffness
negatively impacts simulation speed.
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Connecting the Robot and the World

Figure 7.7 The simscape model of the robot
showing the solver block, world block, grav-
ity block, world plane block and the 6-DOF
joint block connecting the robot to the world.

In figure 7.7 the robot is connected to the
world frame (top-left block) using a 6-DOF
joint. This allows for the robot to move in
any direction and orientation in the simu-
lation world. The centre-left block denoted
f (x) = 0 is used to configure the specific
ODE solver. For this simulation the back-
ward Euler method has been chosen. The
bottom-left block defines external forces,
applied to the bodies within the simulation.
In this simulation the only external force is
the gravity force. The gravity force vector
has been defined as perpendicular to the
ground.

Joint Position Controller

In order for the joint to follow a given posi-
tion reference, each joint of the robot model
is equipped with a separate joint controller.
To best replicate the physical robot, this can be done using a control loop as shown
in figure 7.8. This requires that every PI controller is individually tuned to obtain
a desired system response for each joint. A properly tuned joint controlled should
make the joint track the given reference signal without significant overshoot and
with only a slight delay due to the response time. To improve the performance of
the joint controllers, an inverse dynamics model should be used to linearize the
system, as described in chapter 6 on page 50. This model must take into account
all system dynamics, ideally including the dynamics caused by ground contact,
and calculate the torque required to compensate for the system dynamics.

Figure 7.8 PI Controller with computed torque system linearization
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Instead of linearization and PI control, Simscape offers an alternative method of
joint control. Using the direct motion control of the revolute joint seen in figure 7.9,
Simscape automatically computes the necessary torque to reach the desired posi-
tion. Since the motion controller of Simscape has no torque limits it will follow the
discrete signal perfectly. However this causes issues as it produces a high amount
of accelerations in the system, which experimentation has shown breaks the fric-
tion between the foot and the ground. To improve upon this, a second order filter
has been added to the reference, before it enters the joint. Essentially, the motion
control along with a second order filter, produces results as could be expected by
linearization and PI control of the joint. The direct motion control of the joint
can be used as a means of comparison, when designing the actual controller for
implementation.

Figure 7.9 The simscape model of a joints layout, consisting of a transformation box, linking the
joint together with the other parts of the robot. The joint is directly controlled by the provided po-
sition reference, where Simulink computes the necessary joint torque to track the position reference
exactly

Measuring Joint Torque Requirements

Simscape offers the ability to measure the joint torque during simulation. This
will give an estimate of the torque requirements of the physical robot motors.
This can be done by first giving the motors in the simulation unlimited torque
capabilities. The joints are then set to follow a specified motion profile that includes
the requirements described in section 1.2 on page 5. While the joint follows this
motion profile, the torque can be measured. By inspection of the measurements
the maximum torque requirements for the joints is then obtained. Comparing this
to the torque capabilities of the motors will show if the chosen motors can manage
to move the joints as desired.

64



Simulation 7.2 Walking Controller

7.2 Walking Controller

The second part of the simulation is the walking controller. This part encompasses
the ZMP generator, the MPC, LIPM, Stepping Logic and Inverse kinematics. The
structure of the simulation is inspired by the work of [47].

Figure 7.10 Overview of the walking controller in the simscape model, consisting of ZMP generator,
MPC, LIPM, stepping logic and inverse kinematics.

ZMP Generator

The first part of figure 7.10 is the ZMP generator. This generator is made for time-
based gait, which was described in section 1.2 on page 5, and outputs the x and y
position of the ZMP. These positions are derived using the parameters; step length,
step time and swing height. The x position is created using a counter which holds
the step time parameter and is then multiplied with the step length. Hence if the
step time is 1 second and the step length is 20 cm then if the robot is told to walk
for 5 seconds the combined step length will be 100 cm. Put differently, there is a
new ZMP every 20 cm out on the x-axis. This is also shown in figure 7.11, where
the line "stepFwd" is the x position

For the y position a pulse is given instead of a counter, since the feet are positioned
opposite of each other on the y-axis. Put differently, when walking outwards the
x-axis, one foot will have a negative y position while the other will be positive.
This pulse is determined from an amplitude set to the step width, and a period
set to the step time. This is shown in figure 7.11, where the line "stepLat" is the y
position.
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Figure 7.11 Graph showing the ZMP reference generation, showing the x position of the ZMP as
"stepFwd" and the y position as "stepLat". Here the parameters are as: "Step time" = 1 sec, "Step
length" = 0.075 meter.

The first step in making a walking controller is to define the parameters of the
walk. These parameters include the step length, step time and swing height of the
foot, and is defined as:

Parameters of the Walk

The characteristics of the swinging foot is determined by the following parameters:

• Step length. The length between between the start and end position of the
swinging foot.

• Step width The width from the centre of the robot out to the foot.

• Step time The duration of time for a step, including lift, swing and contact.

• Swing height The Z plane height of the foot in the swinging phase.

These parameters are based upon the requirements for the biped robot. If the
system is required to move at a high velocity, then the step time and length must
be chosen accordingly. Increasing the velocity of the robot can be achieved by
faster and longer steps. The stepping speed can be increased until the motors
reaches their maximum torque limit. The stepping length can be increased until
the joint limits are reached. However, the stepping length is often preceded by
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another limit, namely that the foot in contact with the ground must be at a ZMP
as described in section 4, which summarises to the following: In order for the foot
to be at a ZMP, all moments must sum to zero. A state at which this is not true,
is when the horizontal forces of the body acting on the foot, exceeds the friction
between the foot and the ground. Should this happen, the foot will slip and the
robot will fall. When generating trajectories for the feet of the robot, it must be
made sure that these are at all times at a ZMP. Therefore, choosing a too large step
length will cause the foot in contact with the ground to slip. Thus, the step length
is limited by the amount of friction between the foot and the ground.
For this system the step length, step time and swing time should be chosen as to
fulfil the requirement stated in 1.4 on page 14, which states that the robot should
aim for a walking speed of 0.5 m/s. The optimal stepping length and speed is to
be found through experiments in order to find an optimal balance.

Interpolation of Trajectory from ZMPs

When the robot is tasked with moving a foot to a new point, a suitable trajectory
that connects the current position of the foot, with the desired position, must be
computed. Since it is assumed that the robot walks on a flat surface, the shortest
distance between the two points is a straight line. Before the foot can be moved
it must break contact with the ground so that it is not affected by friction. It is
achieved by raising the height of the foot during the transition between points,
starting and ending with a height of zero. There exists numerous solutions for the
shape of the trajectory. One solution, is to use a cubic polynomial to interpolate
a trajectory between the current foot position and the goal foot position [47]. The
swinging foot will reach the top of the swing at the midpoint in time, as can be
seen in figure 7.13. Likewise, the movement in the Y direction also uses a cubic
polynomial as shown in figure 7.12. For the case where the foot is only moved
in the YZ plane, the foot will follow the trajectory shown in figure 7.14, if cubic
polynomial interpolation is used.

Depending on the situation, other trajectories might be more suitable than the
cubic polynomial interpolation approach. In a situation where there are obstacles
on the ground, it might be desirable to elevate the swinging foot further, and at an
earlier point during the step. A simple approach could be to elevate the foot to a
certain height, before moving the foot in the X or Y direction. This would decrease
the likelihood of tripping over an object in front of the foot.

Now that the ZMP references are derived, the next step is to contruct the LIPM
and design the MPC.
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Figure 7.12 Swing Foot trajectory in the Y axis
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Figure 7.13 Swing Foot trajectory in the Z axis. The peak of height is reached at the midpoint in
time
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Figure 7.14 Swing Foot trajectory in the YZ axis

MPC Block

Figure 7.15 MPC and LIPM part of the
walking controller simulation

In figure 7.15, two block named MPC_X
and MPC_Y can be seen. These blocks uses
the reference "ref", together with with the
measured output "mo", in order to calculate
the manipulated variable "mv". The refer-
ence consists of a series of future ZMP ref-
erences, spanning for the length of the pre-
diction horizon. This entire series of ZMP
references is passed to the MPC. This gives
the MPC knowledge of future inputs, as ex-
plained in chapter 6 on page 50. The mea-
sured output is the feedback used for the
MPC. For the MPC shown in figure 7.15,
the feedback consists of px, py, which is the
measured ZMP. This means that it can be
considered an open-loop trajectory genera-
tor, as it has no feedback from the model
of the actual robot. Ideally, the references
from this open loop trajectory generator
should be sufficient to keep the robot walking. However, since the MPC is de-
coupled from the actual robot, the trajectory will not be altered to correct for dis-
turbances.
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The solution is closing the control loop and can be done by replacing the feedback
from the LIPM with feedback from the actual robot. This is done by providing
the MPC with measurements of the ZMP. The ZMP is found using the calculations
described in section 4.2 on page 43, and measurement of the contact force. The
contact force is measured directly from the contact points shown in figure 7.6, us-
ing the "fn" output. Due to time limits the controller did not receive feedback from
the actual biped robot.

Figure 7.16 Reference tracking of the MPC. Blue is ZMP x reference. Yellow is COM trajectory.
Notice how the MPC begins tracking the reference ahead of time

The performance of the MPC can be seen in figures 7.16 and 7.17. These figures
show the ZMP reference and the resulting COM trajectory produced by the MPC,
with the output states being: COM position, COM velocity and foot position. An
important detail in these figures is that the MPC begins tracking the reference
ahead of time. This is the result of supplying the MPC with the series of future
references and using its advantage: predictive control. The controller is focused on
energy conservation and as can be sen is behaving in a smooth manner despite the
jagged reference.
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Figure 7.17 Reference tracking of the MPC. Green is the controller reference. Blue is ZMP y ref-
erence. Orange is COM trajectory. Notice how the MPC begins tracking the reference ahead of
time

Controller Constraints

The controller outputs two position states and one velocity state. The velocity con-
straint should be set to the requirement noted in section 1.4 with a soft constraint
as the gait velocity is not of critical nature. The position constraints should be set
such that the COM and foot is not allowed excessive swings in Y plane while a
slope constraint for the rising X coordinated should be used.
Input constraints can also be set to limit the input to the controller. This reduces the
impact on the controller if it receives values that are not reliable or are noisy. For
this simulation the controller receives feedback from the ideal LIP model. There-
fore no constraints are necessary.

LIPM Block

The LIP model is designed using dimensions resembling the physical robot. The
simulations are based upon the desired walking velocities, noted in the require-
ment specification 1.4 on page 14. The simulation has been carried out for three
COM velocities of 0.4, 1.0 and 1.6 m/s. The LIPM model is affected by the step
length, step width and step time. The step time was chosen as 0.5 second and step
lengths are 0.2, 0.5 and 0.8 m. The step width was set equal to the hip width of the
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robot, which is 0.135 m.
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ẏ

ÿ
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The MPC controller is connected to a state space model of the LIPM, seen in equa-
tion 7.1. Tests showed the controller required a prediction horizon of 3 steps when
using a sample time of 100 Hz, thus a prediction horizon of 150 time stamps to
make the model stable. The controller outputs 1 measured state, feet position, and
2 unmeasured states, the COM velocity and COM position. The simulation results
can be seen in figure 7.18. The results show the LIPM model is stable and is able
to be used for the simulation of the biped robot.

(a) LIPM simulation walking
speed of 0.4 m/s with a step
length of 0.2 m

(b) LIPM simulation walking
speed of 1.0 m/s with a step
length of 0.5 m

(c) LIPM simulation walking
speed of 1.6 m/s with a step
length of 0.8 m

Figure 7.18 Graphs displaying the X,Y position of the COM of the LIPM simulated model with a
COM height set to the value of 0.7 m. The blue line indicates the COM position and the purple line
indicates the LIPM foot position reference. The figures can be seen in full detail in appendix A.4 on
page 91

Stepping Logic

The contents of the stepping logic block seen in figure 7.10, is shown in figure 7.19.
The design of the stepping logic is based on the work of [47]. From this figure it
can be seen that the stepping logic consist of two phases for both legs. The figure
shows that the stepping logic block contains some initial values, a "Wait" block, a
control function on the upper right corner and a "RightStep" and "LeftStep" block.
The "Wait" block is defined to wait for the amount of stepTime/2. After this time
has passed the "LeftStep" block is executed. This block starts by setting the right
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foot as support foot, and sets the left foot as swing foot. Then the value of the
"stepLat" signal is checked, this signal defines the lateral movement of the foot. In
this case, where the robot is walking along the x-axis, the lateral step reference will
change between negative and positive as shown in figure 7.11 depending on which
foot is actuated.
This procedure is then copied for the "RightStep" block, but now with the left foot
as support foot and right foot as swing foot instead. This results in the phases of
a robot gait, as was shown in figure 1.10 on page 11. The output of the stepping
logic block are the x, y, z position references for the feet throughout the simulation.
These trajectories are then send to the inverse kinematic, to compute the necessary
joint angles.

Figure 7.19 Stepping logic block [47]. Per top left corner the algorithm starts and sets initial system
values. After a wait time, to allow for filling the MPC controller reference buffer, the algorithm enters
LeftStep and switches between it and RightStep after each step as stepLat changes
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Inverse Kinematics

In order for the simulated robot to move the robot feet to their desired position, the
inverse kinematic has to be implemented. This is done by using the expressions
for θ derived in section 3.2 on page 30 in a function in the simulation. The function
blocks is seen in figure 7.10 on page 65, at the right side on the figure, and is shown
in more details in figure 7.20. Note that this figure only show the inverse kinematic
function for the right leg but there are two inverse kinematic functions, one for each
leg. This was done to avoid having to use true/false statements to define which leg
the function should solve for. The reason for this, as was explained in section 3.2
on page 30, is that there is a difference in the sign of L1 between the two legs.

Figure 7.20 Inverse kinematics function block, which takes in the a position vector p of the foot, and
a rotation matrix R Which defines the orientation difference between the base and the world. From
these inputs the function then outputs a vector of theta’s in this case six, as each leg has 6 motors.

These functions take in the desired position of the feet and the rotation matrix be-
tween the base frame and the world frame, which for this project is fixed, as the
orientation of the base is fixed as was mentioned in section 1.2 on page 5.
From the feet position references, the inverse kinematic function calculates and
output the necessary joint angles θi. These joint angles are send to the joint blocks
as shown in figure 7.9 on page 64 which will then realise the desired feet position,
by moving the joints.
In order to verify that the obtained inverse kinematics is correct, an initial test is
conducted as seen in figure 7.21. Here the robot is fixated at the hip link, hovering
above the ground plane. The inverse kinematics are given foot references with con-
stant values of 0 for the x, y positions. For the z references the inverse kinematics
are given a sine wave reference, with a bias of -0.6 and an amplitude of 0.2. This
causes the robot to move the feet up and down, purely along the z-axis, while the
x, y positions remain constant.
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Figure 7.21 Testing the inverse kinematics of the robot. The robot is fixated at the hip link. The
system is tasked with moving the legs straight up.

Walking Controller Performance Test

The 9 snapshots shown in figure 7.22 on the next page shows a test of the walking
controller implemented on the simulated robot. The test was terminated when
the robot fell. During the test, the robot managed to move the COM above the
support foot, lift the swing foot, and take a step. This completes half a gait cycle.
However when tasked with taking the next step, the walking controller fail. The
robot attempts to move the COM above the new support foot, however it lifts the
new swing foot too early, and causes the fall of the robot.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.22 These 9 figures are taken as snap pictures from the gait simulation starting with a
initial position in (a), beginning a step in (c)/(d), swinging the foot in (e) and impacting the ground
in (f)/(g). The robot then tumbles completely in (h)/(i)
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7.3 Simulation Evaluation

The simulation had a proven LIP model, reference generator and MPC controller.
The inverse kinematic block performed as intended when performing a separate Z
test motion. But when the dynamic gait was initialised the robot would fail as seen
in figure 7.22. The X,Y motion was also tested with the inverse kinematic block but
as an undocumented preliminary visual test. The source of the gait problem was
guesstimated to be in the inverse kinematic block or the R-matrix of the base frame
but no conclusive evidence was found, with the error being unknown.

The result of the walking controller test in section 7.2 suggests that the initial con-
ditions of the gait, described in section 5.5 on page 49 are not properly adjusted
for the system. Had the COM of the robot moved at a higher forward velocity, it is
possible that the fall could had been prevented.
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Implementation

Figure 8.1 Assembled state of the biped robot

The following chapter will describe the
implementation part of the project spilt
into hardware, setup and communica-
tion. However due to physical lim-
itations to the hardware and test fa-
cilities the project implementation was
hindered and thus a much greater fo-
cus was put on simulation.
The assembled state of the robot
showed a promise of being able to per-
form dynamic walk as the joints could
be operated as intended. The chapter is
split into three section: Hardware, Pro-
posed Setup and Communication with
the implemented hardware first.

8.1 Hardware

The robot was built with the initial as-
sembly in mind and therefore has a
45° hip joint. The assembled state can
be seen in figure 8.1. When assem-
bling, minor production inaccuracies in
3D printing and miscellaneous parts
affects the dimensions of the robot
and thus affected the range of motion
slightly. The upper body attached to
the hip was not created for the proto-
type but can be added for future endeavours. The joint angles of the physical
robot were measured and are noted in table IV in chapter 2. A cable harness for
the power and I2C communication was created allowing the motors to be powered
in parallel and for communication between uSteppers, IMU and ESP32.
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The 3D print proved its value being both solid and lightweight, it was deemed
future improvements of minimising the link dimensions was possible with the ma-
terial, however unnecessary until the design had performed a complete burn in
test.

8.2 Proposed Setup

The setup proposed for the biped robot would comprise of a wheeled frame with
wires as to catch the weight of the robot in the case of a fall. This insures a
safer testing environment as the falling weight may cause damage or injury of its
surrounding. This will also prevent the robot from breaking apart from the kinetic
impact force created by a fall. The wheeled frame is pushed in the direction the
robot is walking and should not support the robot, or impact the dynamics, in any
way.

Figure 8.2 Proposed setup for dynamic walking, note the lift is wheeled and would be pushed
forward so as not the hinder the walk and only catch the robot when errors occur and it falls

As preliminary tests would drain the batteries many times over, with a worst case
battery life of approx 13 minutes, as noted in chapter 2, a cabled power supply
capable of supplying the same voltage and ampere would be connected instead
with wiring suspended from the wheeled frame. The proposed setup can be seen
in figure 8.2.

To document the dynamic walk a Vicon motion tracking system could have been
used to check joint angles and velocities. The system is vision based with 12 cam-
eras capturing reflective spheres attached to the joints and links of the robot. It has
a capture rate of 100 Hz and can thus calculate the velocity of the joints.
The Vicon system would be used to verify the physical motion to the controller
output, proving if the controller performs as expected.
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8.3 Communication

Start

No

YesTime interval
has passed

Initiate I2C
Initiate IMU

Initiate uSteppers

Read Sensors
Recieve Motion Reference

Calculate Joint
Angles and Velocities

Send Motor:
ID, Velocity & Direction

Switch support leg

No

YesFirst loop
iteration? Initiate first step

Figure 8.3 Sudo code for ESP32 receiving a mo-
tion reference and command the legs to move by
switching support leg after a leg movetime inter-
val has passed

The parts of robot communicate with
each other with I2C. Some initial code
between the uStepper’s, strain gauges,
ESP32 and IMU was created thus sudo
code is presented in figure 8.3 display-
ing the ESP32 master algorithm.

The ESP32 calculates the joint positions
reference by the use of the walking con-
troller designed in the simulation. The
references are forwarded by I2C to each
individual motor using the joint angle
command. The message is split into
three parts being the ID, joint veloc-
ity and rotation direction, clockwise or
counter clockwise. The pseudo code is
based upon the time based gait as it is
simpler to implement. An event based
gait should also be created and tests of
the systems carried out to collect data
on which strategy is superior.
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Conclusion & Discussion

9.1 Conclusion

A state of the art analysis of existing biped robots was conducted. Human gait was
analysed and a robot gait strategy approximating the human gait was developed.
Appropriate hardware for the instrumentation of the robot was researched, and
the most suitable candidates were described.

A lower body biped robot was constructed using primarily 3D printed materials.
Each joint of the robot successfully fulfilled the ROM requirements for dynamic
walk of a human. The links lengths of the robot closely resembles that of a human.
The friction of the soles of the feet were never tested, so it is unknown whether they
suffice or not. A communication network was designed to ensure communication
across all peripherals.

The ability of the biped robots motors to reach their required velocities was never
tested. A program that samples the sensors and actuators at the required rate was
never created. Inverse kinematics was derived for both the 45° and 90° robots, and
were successfully tested in their own environments, however successful implemen-
tation into the simulation environment for either was not obtained.

Favoured biped robot modelling strategies were analysed and their potential for
this project was described. A trajectory generator was designed using MPC and a
solution for a closed-loop trajectory generator using the measured ZMP was pro-
posed. A simulation environment was developed to test the designed walking
controller and inverse kinematics with the test environment including a full me-
chanical model of the robot, contact forces, friction and joint actuation. This project
did not conclude in the robot being able to walk at the desired velocity of 0.5 m/s.
At the termination of the project the robot was able to walk a few steps before
falling, as shown in figure 7.22
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9.2 Discussion

During the project period the unfortunate event of a global pandemic known as
COVID-19 occurred and affected the project by denying access the to university,
group room and test/production facilities. The physical robot was not completed
before the lock down as access to production tools like 3D printers was denied
resulting in the construction of the robot not being fully completed. Further, the
closure of the test facilities resulted in tests such as sole friction, motor velocity,
sensor and actuator sample rate was not possible. The project was thus shifted
from practical oriented to simulation oriented with a simulation of the biped robot
performing dynamic walk.

The robot was constructed with a 45° hip as such a hip is more anatomically correct
compared to a regular 90° hip. It would also allow for a more evenly distribution
of the torque required to move the legs, split between the hip motors. However
implementation of the 45° and 90° inverse kinematic model in the simulation did
not work flawlessly. This is assumed to be a problem with the rotation matrix R
which describes the orientation of the feet in regards to the base, since the inverse
kinematic worked separately, and the problem arose when changes in the orienta-
tion of the robot base occurred. The simulation worked as intended for movement
along the z-axis as is shown in figure 7.21 on page 75.

The hardware communication was initially developed with SPI in mind with time
invested in data transfer between the units being the uStepper S, IMU and EPS32.
The communication worked when handling simple tests and small networks, how-
ever the uStepper S was found not suitable as it could not be used as a SPI slave due
to Slave Select restrictions in the software. Instead I2C was chosen for the commu-
nication protocol and saw promising development. With project time constraints
and focus on simulation the I2C communication saw only initial development and
the Bluetooth communication was not initiated.

During preliminary friction simulation tests of the ankle height offset proved a
problem. The offset would allow the friction forces to not be handled correctly and
the forces affecting the foot in the vertical and horizontal plane, when combined,
created a vector which would exceed the dimensions of the foot and thus tip the
foot and cause slippage. The solution was to lower the axis of rotation for the
ankle joints in simulations. However, to implement the solution on the physical
robot it would need to have the ankle joints completely redesigned with focus on
still having the a range of motion allowing dynamic walk.

The model accuracy of the simulation had some inaccuracies, in regards to resem-
bling the physical robot. These inaccuracies were caused by parameters such as
motor constraints not being modelled, as the development of the simulation was
limited by time.
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Future development on the system could include improved energy conservation
by making the robot more humanoid. The development of arms for an upper
body should be looked into for that purpose. By introducing arms to the system
the energy consumption when walking can be reduced and also make walking
easier [13]. Research into the control possibilities of adding the spine to the robot
should be done, in order to connect a upper body to the system.
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Appendix

A.1 SPI
Serial Peripheral Interface-bus, or in short terms SPI, can be used as a communica-
tion protocol for sending data between the different hardware parts on a robot. It
is based upon a master-slave setup as seen in figure A.1 with four wires between
the units noted as: SCLK, MOSI, MISO and SS. The clock SCLK is set by the master
and can be any speed the hardware can handle. MOSI and MISO are the master
and slave data communication wires and SS is the slave select controlled by the
master.

The SPI protocol is not limited to the use of 8 bit words and can used the function
SPI.transfer.(data); for a regular 8 bit message and SPI.transfer16.(data); for a 16 bit
message. A larger message is use full for specifying the velocity resolution, from 8
bit with a resolution of 256, to 16 bit with a resolution of 65.535.

SCLK

SS

MOSI

MISO

1 Byte

Figure A.1 SPI communication example. 8 high bits are sent by both the master and the slave at
the same time when SS is triggered by the master.
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With push-pull drivers i SPI offers reliability and high speeds in networks with
many attached units. The software implementation allows most setting to be con-
figured on the master while the slave is setup with a interrupt service routine and
listens on the SS pin for data transmissions.

The communication is handled by the master which pulls the SS pin low to inform
the slaves a data transmission is imminent. The data is then transferred over the
MOSI pin in accordance to the SLCK frequency.

The uStepperS NEMA motor driver used is however unable to run as a SPI slave
and can only be used as a master. A SPI network can only consist of one master
and several slaves therefore SPI cannot solve the communication dilemma for this
project.

A.2 Trigonometric Identities

The sine and cosine for the sum of difference of angles θ1 and θ2

cos(θ1 + θ2) = c12 = c1c2 − s1s2

sin(θ1 + θ2) = s12 = c1s2 + s1c2

cos(θ1 − θ2) = c1c2 + s1s2

sin(θ1 − θ2) = s1c2 − c1s2

tan(θ1 ± θ2) =
tan(θ)± tan(θ)

1∓ tan(θ1)tan(θ2)

arctan(x)± arctan(y) = arctan(
x± y

1∓ xy
)

(A.1)

The sum of the squares of the sine and cosine of the same angle is unity:

c2θ + s2θ = 1 (A.2)

Pythagorean identities:

sin in term of cos = sinθ = ±
√

1− cos2θ

cos in term of sin = cosθ = ±
√

1− sin2θ

tan in term of sin = tanθ = ± sinθ√
1− sin2θ

tan in term of cos = tanθ = ±
√

1− cos2θ

cosθ

(A.3)

Inverse function of tan:

tanθ =
sinθ

cosθ

tanθ−1 = arctan = atan2arctan = atan2
(A.4)
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A.3 Inverse Kinematics for 45° robot

The 45° model consist of of seven transformation matrices which describe the trans-
form from base to end-effector, denoted as seen in equation A.5

T1
8 = ∏8

i=1 Ti−1
i = T1

2 T2
3 T3

4 T4
5 T5

6 T6
7 T7

8 =

x8 y8 z8 p8

0 0 0 1

 =


nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1

 (A.5)

The 45° model has two other transformations denoted as TB
0 , and T0

1 , which is
fixed and contains the transformation seen in equations A.6 and A.7. These are
the transformations from the base(located at the centre of the hip) down to the
hip-joint intersection point for each leg. The sign of L1 depends on which leg the
transformation is used for. The right leg has positive signs.

TB
0 =


0 0 −1 0

−1 0 0 ±L1

0 1 0 −L2

0 0 0 1

 (A.6)

T0
1 =



√
2

2 0 −
√

2
2 0

√
2

2 0
√

2
2 0

0 −1 0 0

0 0 0 1

 (A.7)

T2
3 =



√
2

2

√
2

2 0 0

−
√

2
2

√
2

2 0 0

0 0 1 0

0 0 0 1

 (A.8)

The remaining transformation matrices from the point of the three intersecting hip
joints, to the end-effector, i.e. the foot, can be found as seen in equations A.9. note
that angles θ0, θ3 and θ1 are fixed, as these are parts of the fixed transform from
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the base to the point where the three hip joints intersect.

T1
2 =


C2 0 S2 0

S2 0 −C2 0

0 1 0 0

0 0 0 1



T3
4 =


C4 0 −S4 0

S4 0 C4 0

0 −1 0 0

0 0 0 1



T4
5 =


C5 −S5 0 L3 C5

S5 C5 0 L3 S5

0 0 1 0

0 0 0 1



T5
6 =


C6 −S6 0 L4 C6

S6 C6 0 L4 S6

0 0 1 0

0 0 0 1



T6
7 =


C7 0 S7 0

S7 0 −C7 0

0 1 0 0

0 0 0 1



T7
8 =


C8 −S8 0 L5 C8

S8 C8 0 L5 S8

0 0 1 0

0 0 0 1



(A.9)

T′ =


nx sx ax px

ny sy ay py

nz sz az pz

0 0 0 1


−1

=


n′x s′x a′x p′x
n′y s′y a′y p′y
n′z s′z a′z p′z
0 0 0 1

 = T8
1 (A.10)

p′ =


L3 C8 S6 S7 − L4 C7 C8 − L3 C6 C7 C8 − L5

S8( L3 C67 + L4 C7)

−L3 S67 − L4 S7

1

 (A.11)

p′x = L3 C8 S6 S7 − L4 C7 C8 − L3 C6 C7 C8 − L5 (A.12)

Equation A.12 can be reformulated using rule A.1 on page 85, which results in
equation A.13, that are on the same form as equations A.14 and A.15.

p′x + L5 = − C8 (L3 C67 + L4 C7) (A.13)

p′y = S8 (L3 C67 + L4 C7) (A.14)

p′z = − L3 S67 − L4 S7 (A.15)

By squaring and adding equations A.13, A.14 and A.15, and then isolating for C6

results in equation A.16.

C6 =
−L3

2 − L4
2 + L5

2 + 2 L5 p′x + p′x
2 + p′y

2 + p′z
2

2 L3 L4
(A.16)
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Equation A.16 can be rewritten as in equation A.17

C6 =
−L2

3 − L2
4 + (L5 + p′x)2 + p′y

2 + p′z
2

2 L3 L4
(A.17)

Then by applying rule A.3, S6 can be found, as shown in equation A.18

S6 = ±

√√√√1−
(−L2

3 − L2
4 + (L5 + p′x)2 + p′y

2 + p′z
2)2

22 L2
3 L2

4
(A.18)

Now θ6 can be calculated by using atan2(S6, C6), which is an arc-tangent function
that returns tan−1( S6

C6
) adjusted to the proper quadrant.

θ6 = atan2 (S6
2, C6) (A.19)

By squaring equations A.13 and A.14, adding and expanding, the resulting equa-
tion A.20 is derived.

C7 (C6 L3 + L4)− S6 S7 L3 = ±
√
(p′x + L5)

2 + p′y
2 (A.20)

Then by expanding equation A.15, equation A.21 can be obtained.

− p′z = S7 (L4 + L3 C6) + L3 C7 S6 (A.21)

k1 =L4 + L3 C6

k2 =L3 S6
(A.22)

Using k1 and k2 a new variable r is defined in equation A.23.

r =
√
(L5 + p′x)

2 + p′y
2 + p′z

2 (A.23)

Another variable γ can be defined from k1 and k2 as:

γ = atan2((L3 S6), (L4 + L3 C6)) (A.24)

Let (L4 + L3C6)) = rCγ and (L3S6)) = rSγ, and substituting them into equa-
tions A.20 and A.21 gives:

rC7γ = ±
√
(p′x + L5)

2 + p′y
2 (A.25)

rS7γ = −p′z (A.26)

Then by dividing equation A.26 by A.25, results in tan(θ7 + γ), which by using
rule A.4 gives:

S7 + atan2((L3 S6), (L4 + L3 C6))

C7 + atan2((L3 S6), (L4 + L3 C6))
= − p′z√

(L5 + p′x)
2 + p′y

2
(A.27)
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Then from equation A.27, θ7 can be defined as:

θ7 = atan2(−p′z,±
√
(p′x + L5)

2 + p′y
2)− γ (A.28)

In order to find θ8 equation A.14 are divided by A.12 resulting in:

− S8

C8
=

p′y
L5 + p′x

(A.29)

Then using rule A.4, θ8 can be derived:

θ8 = atan2((p′y), (−L5 − p′x)) (A.30)

G8→2 =



GLHS
8 = GRHS

8

GLHS
7 = GRHS

7

GLHS
6 = GRHS

6

GLHS
5 = GRHS

5

GLHS
4 = GRHS

4

GLHS
3 = GRHS

3

GLHS
2 = GRHS

2

(A.31)

GRHS
n = T8

7 T7
6 ... T10−n

9−n

GRHS
8 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

GRHS
7 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

GRHS
6 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

GRHS
5 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

GRHS
4 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

GRHS
3 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

GRHS
2 = T8

7 T7
6 T6

5 T5
4 T4

3 T3
2 T2

1

(A.32)

GRHS
8 = T8

1 =


n′x s′x a′x p′x
n′y s′y a′y p′y
n′z s′z a′z p′z
0 0 0 1

 (A.33)

GLHS
n = GRHS

n
′ T8

1 (A.34)
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This is visualised as:

GLHS
8 = T8

1

GLHS
7 = T7

8 T8
1

GLHS
6 = T7

8 T6
7 T8

1

GLHS
5 = T7

8 T6
7 T5

6 T8
1

GLHS
4 = T7

8 T6
7 T5

6 T4
5 T8

1

GLHS
3 = T7

8 T6
7 T5

6 T4
5 T3

4 T8
1

GLHS
2 = T7

8 T6
7 T5

6 T4
5 T3

4 T2
3 T8

1

(A.35)

Only G7 is used as the remaining thetas can be found using this equation. The left
side of G7 is seen in equation A.36.

GLHS
7 =


n′x C8 − n′y S8 s′x C8 − s′y S8 a′x C8 − a′y S8 C8 (L5 + p′x)− p′y S8

n′y C8 + n′x S8 s′y C8 + s′x S8 a′y C8 + a′x S8 S8 (L5 + p′x) + p′y C8

n′z s′z a′z p′z
0 0 0 1


(A.36)

The right side of G7, called GRHS
7 can be seen in equation A.37, and consists of the

transformation T7
1 :

GRHS
7 =


C2 C4 C567 − S2 S567 S2 C4 C567 + C2 S567 S4 C567 −L3 C67 − L4 C7

−C2 S4 −S2 S4 C4 0

C2 C4 S567 + S2 C567 S2 C4 S567 − C2 C567 S4 S567 −L3 S67 − L4 S7

0 0 0 1


(A.37)

Then by comparing elements (2,3) of the left and right side of G7 gives:

C4 = ay C8 + ax S8 (A.38)

which by using rule A.3, gives S4 from:√
1− (ay C8 + ax S8)2 (A.39)

In order to find θ4 equation A.39 are divided by A.38 resulting in:

− S4

C4
=

√
1− (ay C8 + ax S8)2

ay C8 + ax S8
(A.40)

Then using rule A.4, θ4 can be derived:

θ4 = atan2(S4, C4) = atan2(
√

1− (ay C8 + ax S8)2, ay C8 + ax S8) (A.41)
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By comparing the elements of (2, 1) and (2, 2) of GLHS
7 and GRHS

7 , two equations
are given as:

S2S4 = −S34S2 (A.42)

C2S4 = −S34C2 (A.43)

By dividing these two equations results in tan( S2
C2
), from which the joint solution

for θ2 can be obtained as:
θ2 = atan2(S2, C2) (A.44)

Then by comparing the elements of (1, 3) and (3, 3) of GLHS
7 and GRHS

7 , result in
two equations, which if divided by each other gives:

C567

S567
(A.45)

by which the joint angle θ567 is given as:

θ567 = atan2(C567, S567) (A.46)

From this the joint solution θ5 is given as:

θ5 = θ567 − θ6 − θ7 (A.47)

A.4 LIPM simulation

Figure A.2 LIPM simulation walking speed of 0.4 m/s with a step length of 0.2 m. Blue line indicate
COM and purple is foot ref
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Figure A.3 LIPM simulation walking speed of 1.0 m/s with a step length of 0.5 m. Blue line indicate
COM and purple is foot ref

Figure A.4 LIPM simulation walking speed of 1.6 m/s with a step length of 0.8 m. Blue line indicate
COM and purple is foot ref
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