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Abstract:

Concurrency can be used to make software im-
plementations more responsive. However, con-
currency also makes program analyses much
more difficult and can introduce bugs which can
cause two executions with the same inputs to
give different outputs. Symbolic Execution has
shown that it can be used to analyse a program
and detect bugs deep in the code which can only
be reached with specific inputs. However, this
has been done mostly on sequential programs,
not concurrent ones.
We explore how to leverage the strengths of
symbolic execution to determine if a program
contains data-races. This is accomplished
through transforming an input program into
a control flow graph, which contains informa-
tion of all possible assignments in concurrent
threads. By using this design, the symbolic ex-
ecution generates some invalid models as it is an
over approximation, and thus given that exact
model, it is not always possible to verify if the
detected data-race is a false positive or not.
The thesis thus also discusses how this can
be improved, and presents an improvement for
the symbolic execution, which has shown to be
quite effective for concurrent programs with two
threads. For concurrent portions of code, the
discussion also mentions potential mitigations
and extensions which can help improving the
symbolic execution to a point, where a concrete
execution should not be necessary to verify that
the detected data-race can indeed occur.



Summary

Testing is hard and automated testing has made thorough testing more feasible. Automated testing
can however be difficult in some areas especially when concerned with complex programs. Concur-
rency is a way to make some systems faster and more responsive, and is useful when many different
inputs can happen simultaneously. But concurrency can make otherwise simple programs complex,
and can introduce errors that are hard to detect, like data-races. Embedded systems such as IoT
devices often utilises concurrency to process numerous different tasks a bit faster, like retrieving
sensor readings from different sensors. To make the system more reactive to new input it can use
techniques such as events. This can improve power consumption and can be used to control when
tasks should be performed, like altering the speed of fans based on temperature readings, comparing
new readings to previous read values. Being a reactive system enhances the complexity of an al-
ready complex system, since the program can have many different and unforeseen execution paths,
and halting or enabling different paths based on an external environment is the cause for this added
complexity. This complexity makes the program harder if not impossible to fully test manually.
The level of complexity is hard to handle for automated testing as well since these types of programs
can have infinitely many different program paths. In order to discover all possible data-races, all of
these paths need to be covered by the analysis. Most automated testing techniques have difficulties
handling infinite program states or paths.

We propose leveraging symbolic execution to handle this complexity and analyse what different
program paths might lead to unwanted or erroneous program behaviour. While symbolic execution
cannot handle infinite program paths, we have found some techniques to alleviate these problems.
By over-approximating the possible program paths and restricting loops, we can handle this high
level of complexity. Symbolic execution can handle symbolic variables and uses these to find values
that yield wanted results. This is important in over-approximating program paths as a single
symbolic variable represent multiple different values, which translates to multiple different program
states. We leverage these symbolic variables to find data-races. Data-races are typically not easily
detected, since they depend on the execution path. Since concurrent and reactive systems can have
infinitely many different execution paths, analysing every path is infeasible. Leveraging symbolic
variables in this way does not remove the complexity as the programs can still have infinite paths, so
we limit the number of loop iterations to avoid the halting problem,reducing the number of program
paths from infinite to a finite number. This makes it feasible to perform an analysis that covers the
program. Since we analyse an over-approximation, it is possible to encounter infeasible program
paths, so we perform conflict analysis to remove some of these infeasible program paths. For some
concurrent programs, we can reduce the number of analysed program paths to only include the
feasible program paths; the possible paths that can occur during a concrete execution. We perform
a limited program simulation to verify some of the suspected data-races, and we propose an extended
analysis to completely verify or disprove all the suspected data-races.
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Glossary

EndFork The block which merges multiple threads following the execution of a fork statement

EndIf The block which merges the flow after the execution of an if statement and its body

Fork The block which contains a fork statement, spawning multiple concurrent threads
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Acronyms

CCFG Concurrent Control Flow Graph

CELE Concurrent and Event-based Language for Embedded systems

CFG Control Flow Graph

CSSA Concurrent SSA

DF Dominance Frontier

SMT Satisfiability modulo theories

SSA Static single assignment
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Chapter 1

Motivation

Symbolic Execution has shown that it can be effective in detecting program misbehaviour such as
accessing memory after it has been freed, and accessing memory that has not been allocated. While
symbolic execution can find these problems in sequential programs, these problems are present in
concurrent programs as well. Concurrent programs are prone to data-races, and some of these
data-races can have severe consequences that leads to program misbehaviour, such as accessing an
array outside its bounds. Should any program at some point introduce such a bug, debugging it
or performing regression testing in order to find when this bug was introduced, can be difficult, as
the problem may only ever surface with a very specific input, and only if the right interleavings
are performed. With smart appliances becoming increasingly popular and a demand for systems to
be responsive, it is only a matter of time before these hard-to-detect problems will become more
widespread.

This thesis thus explores the concurrency problem, and makes use of symbolic execution in order to
detect data-races in reactive programs. This thesis is rooted in the work performed by Grosen and
Svenningsen (2019). We perform symbolic execution on a subset of Concurrent and Event-based
Language for Embedded systems (CELE), a language which is intended for concurrent embedded
systems. We choose to avoid arrays, which are part of CELE, as this would complicate the symbolic
execution and will not affect the amount of data-races that we can discover.

The symbolic Execution proposed in this thesis is more traditional than the one proposed by Grosen
and Svenningsen (2019). We choose to do static analysis of the source code and then generate con-
straint sets based on that. But in (Grosen and Svenningsen, 2019), the construction of constraints
would have been performed dynamically, and partial constraint sets would be constructed and
solved while executing statements, all during the symbolic execution. We chose the static approach
to lessen the time needed to find data-races. The result is a less accurate analysis, due to over-
approximation in the static analysis. We aim to find data-races, a subset of problems which Grosen
and Svenningsen (2019) attempted to find, as the less accurate analysis makes it harder to detect
problems that are not apparent in the data. The flow-sensitive analysis proposed by Grosen and
Svenningsen (2019) can detect more problems, but the analysis has a larger time complexity, due
to simulating all possible execution paths. That analysis would have a worst-case complexity of
O(nm) where n is the number of threads and m is the number of concurrent instructions.

In order to perform static analysis, the program would first have to be transformed in such a way
that makes static analysis easier to perform. We thus first have to delve into some theories regarding
this, as well as understanding what problems concurrency and events can lead to.
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Chapter 2

Theory

We explore concurrency and events, and what problems these can lead to. Moreover, in order to
perform static analysis, we explain some widely utilised intermediate representations, namely a
Control Flow Graph (CFG), and such a graph being on Static single assignment (SSA) form. Since
SSA is not powerful enough to describe concurrent portions of code, we present the Concurrent
SSA (CSSA) form, first introduced by Lee, Midkiff, and Padua (1997). Finally, we explain symbolic
execution and why we choose to perform loop unrolling.

2.1 Concurrency

Concurrency is when a program has multiple threads with interleaved executions. Several issues can
arise when interleaving threads. Some additional problems caused by interleavings can occur in par-
allel programs, but we will only look at concurrency in this study. We leverage symbolic execution
in order to detect points of interests where data-races can occur due to thread interleavings.

2.1.1 Data-race

Definition: A data-race is when a variable at a given point of execution can have different values
depending on the interleaving of threads.

If the order of execution between threads can influence the value being stored or used in the system
there is a data-race, data-races is only affected by thread interleaving. Data-races can have severe
consequences for a system, like causing a system shutdown. If we have a controller that controls
the state of the system such as running certain tasks as well as shutting down the system, then
a variable might get misused, causing the controller to shut down the system. This might appear
random to the user and even the testing team, if this is caused by interleaving threads. This can
be hard to detect as it could appear as a normal system shutdown. The results of a data-race can
also be less severe. Given a system that reads a value from a potentiometer and uses this value to
determine the brightness of a light bulb, the system might occasionally use old data to determine
the brightness. However, if the brightness is updated frequently the user never experiences this
misbehaviour.

2



Chapter 2. Theory 2.2. Basic Blocks

Based on the system and its context the issues that arise from data-races can have different levels
of severity. Since we cannot assess the severity of the resulting behaviour we choose to alert the
developer of all detected data-races. We cannot determine the consequences of a data-race in the
external environment because we choose not to model that environment. We can however determine
what variables are affected and where the data-races occur, which we report to the user.

2.1.2 Events

Some embedded systems run on batteries, hence power consumption can be a big issue. In order to
conserve power, developers choose to put the system to sleep for period of time so the system only
request new sensor readings sparingly. This can make the system less responsive however, which is
something that can be important in many systems. To get both responsiveness and conserve power,
developers can utilise events, which allows the system to sleep until some criteria is fulfilled, like a
new sensor reading being available or completion of a task. Events can be a powerful tool, but can
be restricted without support for hardware interrupts.

Using events affects the complexity of the control flow. Concurrent systems is more complex with
events, as thread interleavings can be dictated by external factors. We choose to handle events
because many modern embedded systems are dependent on them.

2.2 Basic Blocks

In order to detect data-races, we require a way to represent a given program in its source-code
form. Compilers usually represent the source code as a CFG, where each edge in the graph is a flow
edge, and connects two basic blocks. A basic block is a block consisting of statements that can be
executed in succession without breaking the flow of the program. Since CELE has concurrency, each
basic block inside the concurrent fork statement can only have a single statement. Splitting each
basic block this way allows us to model interleavings between each statement, but not interleavings
between each expression evaluation. Moreover, after a branching statement, new blocks are needed
for each branch, and an additional EndIf block for merging the program flow. This EndIf block is
added to model the merging point prior to evaluating the next statement. The source-code shown
in listing 2.1, produces the CFG and basic blocks shown in figure 2.1.

Since each edge is a flow edge, we cannot place an edge between two blocks that are not inside the
same thread, despite an interleaving being possible. If we did that, then we would need to place
two edges between each block as the CFG is a directional graph and interleavings being possible
in both directions. However, this would be misleading, as we could then potentially evaluate block
a, followed by block b, then evaluate block a again. Evaluating the same block multiple times is
not possible, thus we cannot place flow edges between concurrent threads. Alternatively, we could
explicitly encode all possible paths and interleavings, but this would cause the CFG to become
enormous and make program analysis more complex and time consuming.

This CFG can be analysed, such as a reaching definitions analysis in order to determine what
definition of a variable is used in each statement (Appel, 2004). However, this is inefficient if other
analyses has to be done as well, such as detecting data-races. However, the CFG can be transformed
into SSA form. A graph on this form makes each reaching definition explicit in the graph, and allows
a compiler to quicker perform optimisations.
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Chapter 2. Theory 2.2. Basic Blocks

1 a = read (1);
2 b = a + 2;
3
4 fork {
5 if (b < a) {
6 a = a+1;
7 } else {
8 write(2, a);
9 };
10 } and {
11 a = 10;
12 };
13
14 write(2, a);
15 write(2, b);

Listing 2.1: Small example program

a = read(1)
b = a + 2

fork with 2 threads

if(b < a)

a = a + 1

endfi

end conc-node of 2 threads

write(2, a)
write(2, b)

write(2, a)

a = 10

Figure 2.1: CFG of code shown in Listing 2.1
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Chapter 2. Theory 2.3. SSA

2.3 SSA

When a CFG is on SSA form, each variable is assigned exactly once statically, and any future use
of a variable, references the last assignment. SSA captures data flow and was first introduced by
Rosen, Wegman, and Zadeck (1988). Since then SSA form has been utilised by compilers to perform
optimisations. To use this data flow information, we opt to transforming the program to SSA form.

To transform our CFG of the input program, we construct a Dominance Frontier (DF) to capture
the dominance relations between each block in the graph. This frontier contains the blocks where
for any block n, n stops being a dominator (Appel, 2004). The DF for a block n for instance,
contains the set of blocks reachable from n, which n does not strictly dominate. So if a block n
contains a variable definition for variable a, then all blocks in DF(n) potentially need to have a
φ-function for variable a. To create the DF, we first compute the dominance tree using the method
proposed by Lengauer and Tarjan (1979). With the dominance tree in hand, we can compute the
DF using the algorithm from (Appel, 2004).

Blocks that would usually require φ-functions are EndIf blocks, due to these blocks being where flow
merges. A φ-function is a function which have n arguments, where n is the amount of immediate
parents of the block containing the φ-function. Each argument is a reaching definition. The value
of a φ-function thus depends on what flow edge was taken to reach it. Blocks with φ-functions thus
have to re-define variables so each future use of the variable would reference this definition.

The program we saw earlier in listing 2.1, will look like listing 2.2 once converted to its SSA form.

1 a1 = read (1);
2 b1 = a1 + 2;
3
4 fork {
5 if (b1 < a1) {
6 a2 = a1+1;
7 } else {
8 write(2, a1);
9 };
10 a3 = φ(a2, a1)
11 } and {
12 a5 = 10;
13 };
14
15 a4 = φ(a3, a5)
16 write(2, a4);
17 write(2, b1);

Listing 2.2: Code shown in Listing 2.1 on SSA form

When we have a CFG, we can use Algorithm 1 to place φ-functions at each EndIf block, then use
Algorithm 2 to rename each variable. Both algorithms are present in (Appel, 2004), but has been
included here for completeness.
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Chapter 2. Theory 2.3. SSA

Algorithm 1: Algorithm for φ-function placement. (Appel, 2004)
Data: A CFG (N, E, nstart, nexit)
Result: The given CFG with φ function at EndIf blocks

1 begin
2 for n ∈ N do
3 for a ∈ Aorig[n] do
4 defsites[a] ← defsites[a]

⋃
{n}

5 for a ∈ A do
6 W ← defsites[a]
7 while W is not empty do
8 n← front(W )
9 W ← tail(W )

10 for Y ∈ DF [n] do
11 if Y /∈ Aφ[n] then

/* insert statement a← φ(a, a, ... , a) at the top of block Y . */
/* The φ-function has as many arguments as Y has predecessors */

12 Aφ[n] ← Aφ[n]
⋃

{Y }
13 if Y /∈ Aorig[n] then
14 W ←W

⋃
{Y }

a1 = read(1)
b1 = a1 + 2

fork with 2 threads

if(b1 < a1)

a2 = a1 + 1

a3 = φ(a2, a1)
endfi

a4 = φ(a3, a5)
end conc-node of 2 threads

write(2, a4)
write(2, b1)

write(2, a1)

a5 = 10

Figure 2.2: The sequential SSA form
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Chapter 2. Theory 2.3. SSA

Algorithm 2: Computing the sequential SSA-form (Appel, 2004)
1 initialisation:
2 for a ∈ A do
3 Count[a] ← 0
4 Stack[a] ← 0
5 push(0, Stack[a])

6 Rename(n)
7 for each statement S in n do
8 if S is not a φ-function then
9 for each use of some variable x ∈ S do

10 i← top(Stack[x])
11 replace the use of x with xi in S

12 for each definition of some variable a ∈ S do
13 Count[a] ← Count[a] +1
14 i← Count[a]
15 push(i, Stack[a])
16 replace definition of a with definition of ai in S

17 for each successor Y of n do
18 Suppose n is the jth predecessor of Y
19 for each φ-function ∈ Y do
20 Suppose the jth operand of the φ-function is a
21 i← top(Stack[a])
22 replace the jth operand with ai

23 for each child X of n do
24 Rename(X )

25 for each definition of some variable a in the original S do
26 pop(Stack[a])

Applying these algorithms on the CFG through traversal of the Dominance Tree, we will have
computed the sequential SSA form. The output from applying these algorithms can be seen in
Figure 2.2.

This transformation however, is still not enough to detect data-races. Looking at the graph, it is
easy to see that the order of evaluation of the statements a5 = 10 and if(b1 < a1) matters, but
not when analysing the code. After all, if a program is on SSA form, then each future use of a
variable referencing its definition. Each definition is thus a new variable, meaning a1 and a5 are two
different variables, despite the inital CELE code snippet clearly showing these two to be the same.
The computed form here does indeed only work sufficiently for sequential programs, not concurrent
ones. Should a compiler choose to optimise this code using constant propagation, then it would fail
to adhere to the semantics of the language. Assume a1 was assigned the concrete value 5. Then,
a compiler in this case could use constant propagation and replace all occurrences of a1 with 5.
This in turn allows the compiler to evaluate the statements b1 = 5 + 2, but also the conditional
statement if(7 < 5).

Thus the sequential SSA form falls apart once we introduce concurrency. Other transformations
attempts to rectify this, which extends the SSA form with the introduction of a π-function. This
extended form would transform the CFG into a Concurrent Control Flow Graph (CCFG).

7



Chapter 2. Theory 2.3. SSA

2.3.1 Concurrent SSA

As mentioned in section 2.3, in order to detect data-races, we need to know if a variable is assigned
in other threads. If we take a look at figure 2.2, then in the conditional check, we only consider the
value of a1, even though it is possible for that value to actually be a5. To determine the correct
variable for each use, we can transform the CFG into a CCFG. A CCFG is a graph that is on
CSSA form (Novillo, Unrau, and Schaeffer, 2000). CSSA was first proposed by Lee, Midkiff, and
Padua (1997). It requires the additional placement of π-functions prior to each statement that
uses variables which can potentially be redefined in concurrent statements. In order to place these
functions, we have to add conflict edges to the CFG. A conflict edge, is an edge from a block
containing a definition of a variable, to a concurrent block which uses the same variable. Thus to
find all conflict edges, we need to determine if two basic blocks are concurrent. Two blocks are
concurrent if they share a common ancestor fork statement and if one of the immediate successor
blocks - to this common fork statement - is an ancestor of one of the two blocks, but not the other.

a1 = read(1)

if(a1 < 10)

a2 = 1

a3 = φ(a2, a4)
endfi

write(2, a3)

a4 = 2

1

2

3 4

5

6

Figure 2.3: Numbered sequential program

To determine if two blocks are concurrent, we choose to number each block. Lets first consider the
sequential program shown in Figure 2.3. The first block, as shown, will be numbered 1, then the
following blocks will be numbered in ascending order from root to leaf. When the flow diverges,
such as when an if-statement is encountered, then each path will be numbered from left to right.
Once all blocks prior to the EndIf block has been numbered, the EndIf block itself will be numbered
and and then will its children.

This means that for if-statements the true branch will be numbered first, then the false branch.
Once both branches has been named, so will the EndIf block.

To expand this method to concurrent programs we must handle thread numbers and where the
threads are spawned. To do this, we choose to model names as a hierarchy. Each time a Fork block
is encountered, we reuse the blocks name when naming future blocks between the Fork block and
the corresponding EndFork block. These future blocks will be named starting from 1 again, but
with a prefix. This prefix is the name of the immediate parent, plus a T and a thread number. A
thread number which is determined by the flow edge taken from the Fork block.

8



Chapter 2. Theory 2.3. SSA

a1 = read(1)
b1 = a1 + 21

fork with 2 threads2

if(b1 < a1)2.T1.1

a2 = a1 + 12.T1.2

a3 = φ(a2, a1)
endfi

2.T1.4

a4 = φ(a3, a5)
end conc-node of 2 threads

3

write(2, a4)
write(2, b1)

4

write(2, a1)2.T1.3

a5 = 102.T2.1

Figure 2.4: Numbered version of Figure 2.2

The T is added to differentiate this number from that of regular basic blocks. Figure 2.4 shows a
numbered version of Figure 2.2. These numbers help determine the context of each basic block,
which blocks are concurrent and which blocks are executed before others.

Algorithm 3 checks whether two basic blocks are concurrent, which relies on this numbering method.

The algorithm has a few checks to speed up the process when dealing with basic blocks that are
obviously not concurrent, then it proceeds to check if basic block a and b are concurrent by checking
whether they are part of the same fork-statement. For example if comparing blocks 2.T1.2 and
2.T1.3 in Figure 2.4 we check if they share the same Fork block. In both cases that is 2, meaning
that the threads are spawned by the same fork-statement. Afterwards, the thread numbers are
compared, and if the numbers are the same, in this case both are T1, then both blocks are part of
the same thread. This then continues until the names no longer are identical. If the number that
differs is a thread number, then the blocks are concurrent. If the number which differs are a regular
thread block number, then the blocks are sequential. Algorithm 3 implements this.

9



Chapter 2. Theory 2.3. SSA

Consider two blocks n and m, where n is named “3.T1.7.T1.1” and m is named “3.T1.7.T2.1”. Using
the algorithm, the first subname which are indifferent, is the second-to-last thread num. This shows
the two blocks are concurrent.

Algorithm 3: Checks if blocks a and b are concurrent
Data: Two basic blocks a and b
Result: true if a and b are concurrent, false otherwise
1 concurrent(a, b)
/* Array of names. Each array does not contain the dot separator, and they have

as many indices as names */
2 aNames ← names on a
3 bNames ← names on b
4 i← 0
5 max← aNames.length if aNames.length ≤ bNames.length else bNames.length
6 if aNames = bNames then
7 return false // The two blocks are the same, thus not concurrent

8 if aNames.length = 1 ∨ bNames.length = 1 then
9 return false // Either a or b are not concurrent

10 while i < max do
11 if aNames[i] = aNames[b] then

/* The fork ancestor is identical. We know the next name is a thread
number, unless one block is a Fork block */

12 i← i+ 1
13 if i 6= max ∧ aNames[i] 6= aNames[b] then

/* The thread number differs but they share a fork ancestor, meaning
a and b are concurrent */

14 return true

15 else
/* A fork ancestor or the basic block number differs, meaning the

blocks are sequential */
16 return false

17 return false

To place conflict edges, we use Algorithm 4 defined in (Novillo, Unrau, and Schaeffer, 2000), and
included here for completeness.

10



Chapter 2. Theory 2.3. SSA

Algorithm 4: Add Conflict Edges (Novillo, Unrau, and Schaeffer, 2000)
Data: A CFG (N , E, nstart, nexit)
Result: The CFG with added conflict edges Ec added
1 Ec ← ∅
2 for a ∈ N do
3 for b ∈ N do
4 if concurrent(a, b) ∧ conflicts(a, b) then
5 Ec ← Ec

⋃
{(a, b)}

6 E ← E
⋃
Ec

Once we have the conflict edges, we can add π-functions in each basic block which has incoming
conflict edges.

A π-function in a block b has n + 1 number of arguments, where n is the number of incoming
conflict edges to b. The first argument is the variable definition found during the sequential SSA
transformation. The rest have no particular order, as the π-function is a non-deterministic choice
of its arguments.

Once a π-function has been placed, the original usage is added to it, and all uses of it is redefined
to match that of the π-function, similarly to what is done when placing φ-functions at each EndIf
block during the SSA transformation.

We place π-functions using Algorithm 5, which is based on the one defined in (Novillo, Unrau, and
Schaeffer, 2000). We modified it because the original algorithm only places a single π-function for
each conflicting variable. In our case, this is not good enough as this would not model possible
interleavings during the evaluation of an expression. A statement such as “b1 = a1 + a1 + 2;” would
only have one π-function for the variable a1, should there be a conflict. This means both occurrences
of a1 will always have identical values, thus the evaluation of this statement is done atomically.
As shown in the semantics of CELE (Grosen and Svenningsen, 2019), a binary expression has its
left-hand side evaluated before the right-hand side. The rules for concurrency also shows that an
interleaving after applying a single semantic rule, is allowed. Thus statements are not executed
atomically. The semantics for CELE has been included in Appendix A for completeness.
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With our modified version, we have two π-functions, which means the first occurrence of a1 can
have another value than the second occurrence. Moreover, we also extended it to convert the
φ-functions at EndFork blocks into π-functions. This is because unlike the value for φ-functions
being determined by what entry flow edge was taken, the value for π-functions is a non-deterministic
choice. Since all the parent blocks for a EndFork block has to be executed before the EndFork block
is reachable, only variable definitions inside the body of the fork statement, are allowed options.
As the value depends on the interleavings taken through the execution of the fork statement.

Algorithm 5: Place π functions. Modified version of the algorithm from (Novillo, Unrau,
and Schaeffer, 2000)

Data: A CFG (N , E, nstart, nexit)
Result: The CFG with π-functions added
1 count← 0
2 for b ∈ N do
3 for conflict edge e = (a, b) do
4 v ← variable defined in a
5 if no π-function for v is present in b then
6 for each use u of v in b do
7 Insert the statement T_vcount = π(v) immediately preceding the last

statement of b
8 π(v)[0] ← u
9 rename u to T_vcount

10 count← count+ 1

11 for each π-function p for v in b do
12 d← conflicting def of v in a
13 push(d, p)

14 for all EndFork blocks b do
15 for all φ-functions p in statements of b do
16 vars← variable options for p
17 for v ∈ vars do
18 if v is not defined inside the fork statement then

// Remove v from vars

19 p← π(vars)

Having added both conflict edges and π-functions to the CFG, we have transformed it to a CCFG,
which we can use for detecting data-races, as each use can now also be a value defined in concurrent
threads. The transformed CCFG can be seen in Figure 2.5.
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a1 = read(1)
b1 = a1 + 2

fork with 2 threads

T_a1 = π(a1, a5)
if(b1 < T_a1)

T_a0 = π(T_a1, a5)
a2 = T_a0 + 1

a3 = φ(a2, T_a2)
endfi

a4 = π(a3, a5)
end conc-node of 2 threads

write(2, a4)
write(2, b1)

T_a2 = π(T_a1, a5)
write(2, T_a2)

a5 = 10

Figure 2.5: a CCFG
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2.4 Symbolic Execution

Symbolic execution is a form of program analysis. Symbolic execution is very useful to determine
what type of input allows a certain part of a program to execute. During a normal concrete execu-
tion, inputs from the environment will have a concrete value, whereas during symbolic execution,
this value can be anything. When determining if a certain program part is reachable, the symbolic
execution engine will accumulate all constraints encountered on the way to the program part in
question, then use these constraints to determine what the values obtained through the environment
can be.

a1 = read(1)

if(a1 < 10)

a2 = a1 + 10

if(a2 > 18)

write(3, a2)

a3 = φ(a2, a2, a1)
endfi

write(2, a2)

write(2, a1)

Figure 2.6: CFG containing a nested if-statement

Consider the CFG in Figure 2.6. If we wish to find out if the statement write(3, a2); is reachable,
we can use symbolic execution. The very first statement a1 = read(1); is where symbolic execution
and concrete execution differs. Whereas a concrete execution would get an actual value from the
environment, such as the integer value 9, the symbolic execution engine will assign a1 a symbolic
value. Lets call this symbolic value s. We continue symbolically executing this program and
encounter the first if statement. Here, the engine has two choices for branching. To go along the
first branch, a1 < 10 has to be true, while this expression has to be false, should the execution
continue along the false branch. Continuing like this until we reach the statement we want to see
is reachable, that is; statement write(3, a2), we end up with the constraint set:

a1 = s, a1 < 10, a2 = a1 + 10, a2 > 18

14
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This constraint set is also the set which describes the path taken through the program. Thus this
constraint set can also be referred to as the path condition. We can ask the constraint solver here
for a concrete value for s given this path condition.

For this set to be satisfiable, we can see that a2 > 18 needs to be true, thus the constraint solver
can choose to assume that a2 is 19. Once this is done, lets replace all occurrences of a2 in the path
condition with the concrete value 19:

a1 = s, a1 < 10, 19 = a1 + 10, 19 > 18

We can then evaluate the second to last constraint: 19 = a1 + 10 more easily. For this constraint to
be satisfiable, a1 needs to have the value 9. Having solved that constraint, we can replace a1 with
the concrete value 9, similar to what we did with a2 previously:

9 = s, 9 < 10, 19 = 9 + 10, 19 > 18

We see that all constraints still hold, and that s can now only have the value 9. Thus 9 is a possible
concrete value that allows a concrete execution to reach the statement write(3, a2). Bear in mind
that this does not mean that 9 is the only solution, just that it is one possible solution.

The CFGs being on SSA form also helps constructing these constraints, as each new variable
assignment is considered a new declaration. If the CFG in Figure 2.6 was not on SSA form, and
each statement was transformed in the same manner as was done above, then the path condition
for reaching the same statement, would be:

a = s, a < 10, a = a+ 10, a > 18,

Looking at this constraint set, it is very clear that it is unsatisfiable. a cannot possibly both be
less than 10 and larger than 10, and can most definitely not have the same value as itself + 10.
The path would then have to redefine each assignment to a variable dynamically. Unlike if done
dynamically, the SSA form allows all possible paths through Figure 2.6 to be encoded as a single
constraint set, allowing the traversal of the graph to only be done once.

This form of data analysis has shown promises. Cadar, Dunbar, Engler, et al. (2008) developed
the tool Klee and showed that it is capable of detecting previously unknown bugs in real world
software. Cha et al. (2012) showed that their symbolic execution tool named Mayhem, is capable of
detecting vulnerabilities, such as zero-day exploits, in programs where they only have access to the
binary code. Chipounov, Kuznetsov, and Candea (2011) showed that symbolic execution can also
be used for analysing binary device drivers for Windows and to detect bugs that can cause kernel
panics.

2.4.1 Path

As explained, a path-condition is the constraint-set which applies for the current path. Some
statements can be reached through multiple paths, such as statements following EndIf and EndFork
blocks. Because of this, constructing all possible constraint sets and provide these for a symbolic
execution engine, then asking if a certain statement is reachable, is often more feasible, as this
means the constraint solver only needs to be asked once.

To determine what path was taken through a given sequential program, each block can have a
unique name assigned. The numbers assigned to each block, which was explained in Section 2.3.1,
can be used as this name.
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We can use this unique name to create a boolean constant, which is true if the statements contained
in the block was used in the path condition, and false otherwise. For a sequential program, this
makes it clear what branch of any if statement, was taken.

For concurrent programs, this becomes more difficult, as the paths also starts depending upon
interleavings. In CELE, interleavings can potentially happen many times during the evaluation of
a single statement. For example, during the evaluation of the statement a = a + b, it is possible
to interleave four times. Once after the evaluation of a in the binary expression. Once after the
evaluation of b. Once more after adding the two values together, and then once more after the
assignment has taken place. So for a sequential program, the evaluation of this statement does not
branch into multiple paths, but it can branch up to four times if this statement is inside the body
of a fork statement.

Constructing a constraint set this way to represent all possible paths through a program, is unfea-
sible as the amount of possible paths explode almost immediately. That is another reason why we
transform the CFG into a CCFG as was described in Section 2.3.1. The π-functions can capture
possible values from concurrent threads, which allows us to overestimate all possible paths through
the program, despite not constructing constraints for all possible interleavings explicitly. This does
mean that the symbolic execution can potentially find inputs that allows us to reach locations
where data-races can occur, despite this location not necessarily being reachable during a concrete
execution. How this can happen, will be described in a later section.

Since we transform the entire program into a set of constraints, we have to unroll our while
statements as well.

2.4.2 Loop Unrolling

Loops are an Achilles heel for symbolic execution. If a variable in the loop’s condition is symbolic,
we cannot easily determine how many times a loop will execute. Moreover, as was explained in
Section 2.4, a strength SSA provides, is that the constraint building becomes more simple, since
variable declarations are done statically, not dynamically. Without knowing how many times a loop
executes, variable declarations here would have to be done dynamically. Moreover, since we do not
know how many times a loop is executed, the constraint set for the loop can grow indefinitely, thus
we are facing the halting problem.

To avoid infinite execution paths, and again to leverage the benefits of SSA we unroll each while
statement a set amount of times, and check if the loop was left prematurely. This unrolling is done
prior to transforming the program into a CFG such that the SSA and CSSA algorithms can be
applied on the unrolled construction.

To keep the same semantics for the transformed program we use the CELE [While] rule to transform
each iteration.
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1 a = 0;
2 while(true){
3 a = a+1;
4 };

Listing (2.3) source program

1 a = 0;
2 if(true){
3 a = a+1;
4 if(true){
5 a = a+1;
6 if(true){
7 a = a+1;
8 } else { skip; };
9 } else { skip; };
10 } else { skip; };

Listing (2.4) transformed program
with max 3 iterations

Figure 2.7: While loop transformation to nested if statements, three iterations

Figure 2.7 shows a small program and its loop unrolled “equivalent”. In this example we unrolled
the loop three times, so the highest number of possible iterations is three. This limits our ability to
verify potentially found data-races in a program, because some data-races might only occur after x
amount of iterations. Reducing the possible amount of discover-able data-races is severe, but never
finding any is unacceptable. We assume that most data-races is discover-able after few iterations,
but we acknowledge that some data-races could require a very large number of iterations. If a block
contains a potential data-race, but we cannot verify it, then we can still report it as a potential
location for a data-race if any of the used variables there has a definition located inside the body
of a while statement.

We stated that we can check if our symbolic execution exits loops prematurely. We do this by
introducing a boolean variable for each unrolled loop.
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1 a = 0;
2 if(true){
3 a = a+1;
4 if(true){
5 a = a+1;
6 if(true){
7 a = a+1;
8 } else { skip; };
9 } else { skip; };
10 } else { skip; };

Listing (2.5)
unrolled loop program, before
variable introduction

1 a = 0;
2 early_exit = false;
3 if(true){
4 a = a+1;
5 if(true){
6 a = a+1;
7 if(true){
8 a = a+1;
9 if(true){
10 early_exit = true;
11 } else { skip; };
12 } else { skip; };
13 } else { skip; };
14 } else { skip; };

Listing (2.6) early_exit variable added

Figure 2.8: Add variable to help determine if the unrolled loop is exited prematurely

As shown in Figure 2.8, we introduce a boolean variable and set it to false right before the first
iteration, and at the last iteration, we add an if statement which checks if the loop condition
is still satisfiable. In case it is, we assign true to the early_exit variable. This is sufficient
because if another iteration can be performed after our last iteration then there is at least one more
iteration that is possible. Knowing whether we exit loops early is useful when determining whether
our symbolic execution has covered all program paths, because if we cover all possible concurrent
thread interleavings and we never exit a loop prematurely, we can determine that we have covered
all program paths, and provide the user with this information.

2.5 Summary

Having explained the theories we utilise to perform symbolic execution in order to detect potential
locations for data-races, we can present a design which is capable of generating models which are
an over approximation, but can find every location where a data-race potentially can occur.
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Chapter 3

Design

Having delved into theories used for performing data analysis, as well as concurrency and events,
we can explain how a constraint set modelling all potential paths through a given program, can be
constructed.

Instead of developing a Satisfiability modulo theories (SMT) solver ourselves, we make use of an
existing one. We opt to use Microsoft’s Z3(Bjørner, 2018) because it has plenty documentation
and is well supported across a variety of languages, which makes the constraint solver easy to
include, configure and use. Moreover, the theorem prover supports the SMTLIB2 standard(Barrett,
Stump, and Tinelli, 2010), which makes it easier to replace, should an alternative theorem prover
be preferred.

Having built the constraints, we present how the constraint solver is utilised to detect potential
data-races, and how the resulting model can be verified using an interpreter.

3.1 Constraint Building

Given a CCFG, we can construct constraints for the entire graph, then ask the constraint solver
if it is possible that a data race can occur. We only consider those data races where a variable’s
value in any statement depends on interleavings, except for the when statement. We ignore this for
when statements, as these are blocking calls, and continued execution on this thread is only allowed
when the condition evaluates to true.

In this section, we use the CELE syntactical operators in CCFGs, whereas we use the mathematical
operators everywhere else, unless otherwise specified. For example, the mathematical symbol for
equality “=” means equality by default, except in CCFGs where it indicates a CELE assignment.
Moreover, the constraint sets shown here does not follow the standard notation which is SMTLIB2,
and is thus not the actual output from the constraint building algorithm which is then provided to
the constraint solver.

For clarity when reading the constraint sets, all block names have been appended with the letter b.

To build constraints for any CCFG, each possible statement needs to be transformed into con-
straints. Algorithm 6 accomplishes this. The algorithm traverses the CCFG from the current
block cb and returns the conjunction of all constraints after encoding the last block lb. Using the
algorithm on the CCFG in Figure 3.1 produces the constraint set shown in Listing 3.1.

To get this encoding, the statements if and assignment has to be implemented, as well as the
φ-functions.
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Algorithm 6: The encoding algorithm with details for cases omitted
Data: previous block pb, current block cb, last block lb and a CCFG
Result: The encoded blocks between cb and lb
1 encode(pb,cb,lb)
2 btc← boolean tracking constant for cb
3 expression ← btc = true
4 for statement s ∈ cb do
5 switch statement type of s do
6 case Assignment do

/* Handle Assignment */

7 case If do
/* Handle if-statement */

8 case φ do
/* Handle phi-function */

9 case Fork do
/* Handle fork-statement */

10 case π do
/* Handle pi-function */

11 case When do
/* Handle event */

12 if cb 6= lb then
13 expression ← expression ∧ encode(cb, successor of cb, lb)

14 return expressions

1 {-readVal1 ≥ −32768 ∧ -readVal1 < 32768
2 a1 = -readVal1 ∧ 1b = true
3 (ite{a1 < 10}
4 {a2 = 1 ∧ 3b = true ∧ a3 = a2 ∧ 5b = true ∧ 4b = false}
5 {a4 = 2 ∧ 4b = true ∧ a3 = a4 ∧ 5b = true ∧ 3b = false}
6 ) ∧ 2b = true
7 6b = true
8 }

Listing 3.1: Constraint set describing all paths through the program shown in Figure 3.1
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a1 = read(1)

if(a1 < 10)

a2 = 1

a3 = φ(a2, a4)
endfi

write(2, a3)

a4 = 2

1b

2b

3b 4b

5b

6b

Figure 3.1: CFG with a single if-statement and boolean-tracking constants

if-statement

When encountering an if-statement, constraints for both the true and false branches has to be
constructed. However, only the constraints on one of these branches are eligible, which is determined
by the condition of the if statement. Thus the encoding of the if statement in the given example,
produces the following subset of the resulting constraint set:

1 (ite{a1 < 10}
2 {a2 = 1 ∧ 3b = true ∧ a3 = a2 ∧ 5b = true ∧ 4b = false}
3 {a4 = 2 ∧ 4b = true ∧ a3 = a4 ∧ 5b = true ∧ 3b = false}
4 ) ∧ 2b = true

The encoding of an if statement effectively transforms the statement and each branch into an ite
expression. This expression takes three arguments, which are all boolean expressions. The first
argument determines which of the following two arguments should be used when finding a model
that satisfies the complete constraint set. In short, if the first argument evaluates to true, then the
second argument is used, otherwise the third argument. This ite expression therefore very much
behaves like the CELE if statement. Algorithm 7 transforms a CELE if statement into an ite
expression.

This algorithm calls Algorithm 6 recursively for both the true and false branches, where the last
block for each recursive call, is the EndIf block for the if statement. The conjunction of all
constraints gathered through the true branch, is then used as the second argument to ite, while
the third argument, is the conjunction of all constraints gathered through the false branch. The
ite expression then ensures only one of these constraint sets are used when finding a model, and
which one of them is used, is determined by the first argument, which is the condition of the if
statement.
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Algorithm 7: Excerpt for encoding if-statements from the encoding algorithm
Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoded if-statement added to expression
/* s is an if-statement */
1 cond← condition of s
2 eb← EndIf block for cb
3 tb← first successor of cb // first basic block of the true branch of s
4 fb← last successor of cb // first basic block of the false branch of s
5 truebranch← encode(cb, tb, eb)
6 falsebranch← encode(cb, fb, eb)
7 boolexprT ← true
8 boolexprF ← true
9 for all bool tracking constants b in true branch of s do

10 boolexprT ← boolexprT ∧ {b = false}
11 for all bool tracking constants b in false branch of s do
12 boolexprF ← boolexprF ∧ {b = false}
13 expr ← ite(cond, truebranch ∧ boolexprF, falsebranch ∧ boolexprT )
14 expression ← expression ∧ expr
15 cb← eb // successor of cb is the block we need to encode next

φ-functions

The encoding of φ-functions are always done during the encoding of an if-statement, as the only
place we have φ-functions in the CCFG, is in EndIf blocks, which only ever merges branches of
if-statements. The parameter pb to the encoding algorithm is a necessity when encoding any φ-
function, as this parameter dictates which option of the φ-function is valid. Algorithm 8 transforms
the φ-function into a constraint. It uses the pb parameter to determine where we came from, in
order to build the correct constraint. This is why EndIf blocks, and thus the φ-function, are visited
twice during the encoding of if statements, as the values of φ-functions depends on what branch
was taken.

Algorithm 8: Excerpt for encoding φ-functions from the encoding algorithm
Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoded φ-function added to expression
/* s is a φ-function */
1 name← variable assigned in s
2 vars← variable options for name
3 j ← index of pb in parents of cb
4 expr ← name = vars[j]
5 expression ← expression ∧ expr
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Assignment statement and read expression

Having shown how the transformation of if statements and φ-functions are done, to encode the
remaining constraint set, the encoding algorithm have to handle assignments.

Algorithm 9 transforms a CELE assignment into a constraint. In CELE, the left-hand side of an
assignment gets the value of the right-hand side of the assignment symbol “=”. When transforming
this to a constraint, this can be considered as an equality because the CCFG is on CSSA form.
Any future assignment creates a new variable, thus an assignment for any variable a1, is only seen
once. Stating both sides have to be equal, is therefore sufficient.

Algorithm 9: Excerpt for encoding an assignment statement from the encoding algorithm
Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoded assignment statement added to expression
/* s is an assignment */
1 name← variable assigned in s
2 rhs← right-hand side of s
3 expr ← name = rhs
4 expression ← expression ∧ expr

When transforming the CFG to one on SSA form, each variable usage needs to be found and
renamed to use the latest version of a variable. The read expression can be treated as it was a
variable, and during the transformation, each time a read is encountered, increment the counter,
similar to what is done when encountering an assignment. The read expression in the first basic
block of the CCFG shown in Figure 3.1 is the first encountered read expression. This read thus
gets the name -readVal1. Each read expression has the same constraints. We need a new read
variable for each encountered read expression, otherwise they would all be one variable with one
value. A read expression can only have values between −32768 and 32767 in accordance to the
semantics of CELE(Grosen and Svenningsen, 2019). When encoding any statement where a read
expression occurs, a constraint is created stating that the corresponding read variable has these
value boundaries as per the semantics in CELE.

Boolean Tracking Constants

To determine what path was taken through the program from a model which satisfies the constraint
set produced for any given CCFG, we use boolean tracking constants. The names of each constant
are that of each basic block, due to this name being unique. This constant is true if the encoded
block is used in the model, or false otherwise. This means no matter what path is taken, they still
need a constraint, as the constants would otherwise be unconstrained, which allows the SMT solver
to give them any value it so desires. That is what the two for loops in Algorithm 7 handles. If the
true branch is used, then all statements on the false branch is not used, and the boolean tracking
constants for each block occurring there, needs to have the constraint false.

Having shown how constraints are built for a sequential program, lets consider a concurrent program
such as the one shown in Figure 3.2.

Using Algorithm 6 on this CCFG produces the constraint set shown in Listing 3.2.

In order to produce this constraint set, Algorithm 6 has to be extended to handle the remaining
statements: fork and when, as well as π-functions.
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1 {-readVal1 ≥ −32768 ∧ -readVal1 < 32768 ∧
2 -readVal2 ≥ −32768 ∧ -readVal2 < 32768 ∧
3 a1 = -readVal1 ∧ 1b = true ∧
4 2b = true ∧
5 {( T_a3 = a1 ∨
6 (ite {2.T2.3b = true} {T_a3 = a4} {false }) ∨
7 (ite {2.T2.4b = true} {T_a3 = a6} {false })
8 ) ∧ 2.T1.1b = true ∧
9 (ite {T_a3 = 10} {(a2 = -readVal2) ∧ (2.T1.2b = true)} {2.T1.2b = false })

10 }
11 ∧
12 {(T_a2 = a1 ∨
13 (ite {2.T1.2b = true} {T_a2 = a2} {false })
14 ) ∧ 2.T2.1b = true ∧
15 (ite {T_a2 < 0}
16 {((T_a1 = T_a2) ∨
17 (ite {2.T1.2b = true} {T_a1 = a2} {false })
18 ) ∧ 2.T2.2b = true ∧
19 (ite {T_a1 > 0}
20 {a4 = 10 ∧ 2.T2.3b = true ∧ a5 = a4 ∧ 2.T2.5b = true}
21 {2.T2.3b = false ∧ 2.T2.5b = false}
22 )
23 }
24 {a6 = 0 ∧ 2.T2.4b = true ∧ a5 = a6 ∧ 2.T2.5b = true}
25 )
26 } ∧
27 (ite {(ite {2.T1.1b = true} {T_a3 = 10} {true}) ∧
28 (ite {2.T2.2b = true} {T_a1 > 0} {true})
29 }
30 {( (ite {2.T1.2b = true} {a3 = a2} {false} ∨
31 (ite {2.T2.5b = true} {a3 = a5} {false}
32 ) ∧ 3b = true ∧ 4b = true
33 }
34 {3b = false ∧ 4b = false}
35 )
36 }

Listing 3.2: Constraint set for Figure 3.2
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a1 = read(1)

fork with 2 threads

T_a3 = π(a1, a4, a6)
event(T_a3 == 10)

a2 = read(1)

a3 = π(a2, a5)
end conc-node of 2 threads

write(2, a3)

T_a2 = π(a1, a2)
if(T_a2 < 0)

T_a1 = π(T_a2, a2)
event(T_a1 > 0)

a4 = 10

a5 = φ(a4, a6)
endfi

a6 = 0

1b

2b

2.T1.1b

2.T1.2b

2.T2.1b

2.T2.2b

2.T2.3b

2.T2.4b

2.T2.5b

3b

4b

Figure 3.2: CCFG with multiple events

fork-statement

Extending the encoding algorithm with Algorithm 10 produces most of the constraint set shown
in Listing 3.2. According to the semantics of CELE(Grosen and Svenningsen, 2019), all threads in
a fork statement needs to finish the evaluation before the next statement can be evaluated. Due
to that, the constraint of a fork statement is effectively the conjunction of all constraints gathered
through each thread. Should any encountered when statement in either thread prevent a thread
from finishing, this has to be handled here as well.

Unlike what is done for EndIf blocks, the EndFork block is encoded only once.

Algorithm 10: Excerpt for encoding fork-statements from the encoding algorithm
Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoded fork-statement, excluding the EndConc block, added to expression
/* s is a fork-statement */
1 eb← EndFork block for cb
2 expr ← true
3 i← 0
4 for each successor succ of cb do
5 p← basic block at index i in parents of eb
6 expr ← expr ∧ encode(cb, succ, p)
7 i← i+ 1

8 expression ← expression ∧ expr
9 cb← p // successor of cb is now eb, which is the block we need to encode next
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when-statement

Compared to the other statements, encoding an event is more complex, as the evaluation of the
rest of the program depends on the event’s condition. If the condition never evaluates to true,
the thread with the event stalls and no future statement in that thread will be evaluated. If this
happens inside a fork-statement, then the threads will never join either. Looking at events this
way, they can be encoded similar to if statements. The second parameter to the resulting ite
expression is thus the remaining program. The third parameter, is then a conjunction of all the
remaining boolean tracking constants, such that they all should be equal to false.

However, the remaining program cannot be encoded straight away, as this could potentially lead
to a situation where the rest of the program can be explored, should only one event’s condition
evaluate to true. What can be done instead, is to encode until the last block provided to the call
to the encode function, then propagate up a boolean value which tells the caller if an event was
encountered during the call to the function. If that is the case, then find all events between cb and
lb which was provided to the call to encode where an event was encountered. All conditions for the
found events, thus needs to evaluate to true in order to encode the rest of the program, but only
if the event was actually part of the path condition. Algorithm 11 handles the encoding of a single
when statement, by adding all the constraints between the block where this statement is located,
and the block lb. Should the condition be false, then the boolean tracking constants are false as
well, similar to what is done when encoding an if statement.

Algorithm 11: Excerpt for encoding when statements from the encoding algorithm
Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoded when statement added to expression
/* s is a when statement */
1 btcs← boolean tracking constants between cb and lb excluding cb
2 fb← true
3 for b ∈ btcs do
4 fb← fb ∧ (b = false)

5 expr ← ite(condition of s, encode(cb, successor of cb, lb), fb)
6 expression ← expression ∧ expr
7 cb← lb
/* Let caller know we have encountered an event */

Recall the CCFG in Figure 3.2. In the body of the fork statement are multiple events; one in the
first thread, and one in the second thread. Because we find at least one, we find each when-statement
between the Fork and EndFork blocks. Once these statements are found, ite expressions are created
for each of them. This is done because the boolean tracking constant has to be considered. For
example, this program can reach the write statement, even if the when-statement in the second
thread never evaluates to true. This is possible if the if-statement evaluates to false, as this event
would then never be encountered. Since that event is never encountered, it does not matter what
its condition would evaluate to. Such an ite expression is shown in Listing 3.3

The third parameter here is just true, because if the event is never encountered, then this condition
should not be used when encoding the remaining program. Once all found events have been detected,
and these ite expressions have been formed, a conjunction of all of them is used as the condition
on a final ite expression. The second and third parameters on this final ite expression are encoded
in the same way they are when encoding a single when statement. The constraint for the remaining
program from the fork statement, which includes the EndFork block and the write statement, is
shown in Listing 3.4.
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1 { (ite {2.T2.2b = true}
2 {T_a1 > 0}
3 {true}
4 )
5 }

Listing 3.3: Constraint stating if an event is encountered, its condition has to hold

1 {(ite {(ite {2.T1.1b = true} {T_a3 = 10} {true}) ∧
2 (ite {2.T2.2b = true} {T_a1 > 0} {true})
3 }
4 {( (ite {2.T1.2b = true} {a3 = a2} {false} ∨
5 (ite {2.T2.5b = true} {a3 = a5} {false}
6 ) ∧ 3b = true ∧ 4b = true
7 }
8 {3b = false ∧ 4b = false}
9 )

10 }

Listing 3.4: Constraint describing the EndFork block and the remaining program of Figure 3.2

Since events need to be handled when encoding both if and fork statements, the encoding algorithm
needs to be extended such that any call to the function, also provides information about whether
or not a when statement was encountered.

Thus Algorithm 7 and Algorithm 10 are extended with Algorithm 12 in order to handle this prop-
agation.

Algorithm 12: Excerpt for handling encountered events inside the bodies of if and fork
statements

Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoding of the remaining program when the conditions for all events are

satisfied, added to expression
1 if when was encountered then
2 condition ← true
3 for all events e between cb and lb do
4 bc← boolean tracking constant of the block of e
5 c← condition of e
6 expr ← ite(bc = true, c, true)
7 condition ← condition ∧ expr
8 pb← // p if s is a fork statement, or eb if s is an if statement
9 btcs← boolean tracking constants for all blocks between pb and lb excluding pb

10 fb← true
11 for b ∈ btcs do
12 fb← fb ∧ (b = false)

13 expr ← ite(condition, encode(cb, successor of pb, lb), fb)
14 expression ← expression ∧ expr
15 cb← lb

/* Let caller know we have encountered an event */
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π-functions

In practice, all π-functions are locations where a potential data-race can occur. A simple disjunction
of a choice between all possible variable choices will find if a variable can have two different values.
A program execution can then verify if such an occurrence is indeed possible. How the encoding of
a π-function is accomplished, is shown in Algorithm 13.

We restrict which variables are available in each π-function, by forcing the solver to only consider
variables that has been assigned. We utilise the boolean-tracking constants to determine what
variable options are applicable. We express each variable option choice with ite expressions. As
seen in line 6 of Algorithm 13, an ite expression is formulated to invalidate variables that are not
assigned on the path chosen by the solver.

Algorithm 13: Excerpt for encoding π-functions from the encoding algorithm
Data: The data accessible during the call to the encoding Algorithm 6
Result: The encoded π-function added to expression
/* s is a π-function */
1 name← variable assigned in s
2 vars← variable options for name
3 expr ← false
4 for var ∈ vars do
5 btcv ← bool tracking constant for the block where the variable assignment to var occurs

/* False branch is unsatisfiable, forcing the constraint solver to pick
another option in the final disjunction if btcv is false */

6 expr ← expr ∨ {ite(btcv, name = var, false)}
7 expression ← expression ∧ expr

3.2 Finding Possible Data-races

In principle all conflict-edges represent a possible data-race. If no conflict-edges are present then
no data-race can occur. But reporting a data-race for each conflict-edge is in most cases an over-
approximation, and could lead to wasted effort trying to remove all conflict-edges. To narrow the
amount of possible data-races, we found inspiration in a paper regarding Noninterference and sym-
bolic execution (Milushev, Beck, and Clarke, 2012). The authors perform two program executions
through symbolic execution to find if some secret variables called High security variables can affect
the value of Low security variables; variables are public. They state that if two program executions
starting with the same values in each Low security variable, and High security variables can be
different, then if at some point in the program a Low security variable can have different values,
then the program is insecure and does not have noninterference. If we use a similar approach
and consider all variables Low security variables except a variable we expect might be a subject
of a data-race, then we can perform symbolic execution of two programs with similar variables
that share the same values. We have then isolated that only the path can influence the suspected
variable, and if two different paths lead to the variable having different values, we can conclude
that a data-race is possible. While it is still an over-approximation, we can reduce the number of
suspected data-races.
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We perform this by encoding the same CCFG twice, then appending an extra text string to each
variable name, unique to each execution. For example, the statement a2 = T_a1 + 2 would look
like the following in each execution:

execution 1: a2run1 = T_a1run1 + 2

execution 2: a2run2 = T_a1run2 + 2

This ensures each variable can potentially have different values in each execution, even when the
only symbolic values we have comes from the read expression, which we make sure to be the same in
each execution. To make sure read expressions evaluate to the same value during each execution, we
encode all reads in the program at the very beginning. Since the CCFG is already on CSSA form,
we just find out how many reads can occur, then give all of them constraints. During the constraint
transformation, we just use the name provided to each read expression, but without appending the
string identifying the execution. This ensures each read are identical across executions.

Having transformed both executions into constraints for the SMT solver, we constructs additional
constraints that we want answered. What we want answered, is if π-functions can have two different
values, as this means a data race can occur, and is also why we build constraints in this manner.
One such constraint would be:

T_a1run1 6= T_a1run2

Such constraints for all π-functions in the CCFG is constructed, and the constraint solver is then
asked if one of these are satisfiable. If it is, then a potential data-race is found, otherwise there
are none. If a data-race is discovered, then an interpreter does a concrete execution to verify if the
data-race can occur in the given model.

3.2.1 Verifying Suspected Data-races

In order to verify that a detected data-race can indeed occur, we resort to concrete execution. With
a model that satisfies the constraints, provided by the symbolic execution, we can find out what
values are used for each variable use, and in turn, see what value are assigned to each variable.
Additionally, the model also contains values for each φ and π functions and have concretised values
for each read expression. Using this information allows an interpreter to execute the program with
concretised values.

With a model, the interpreter does a concrete execution of the program, checking if variables get
the assigned values that matches that of the model received by the SMT solver. During concurrent
parts of the program, the interpreter does not know what interleavings were taken, only what the
values each π-function should have, thus the interpreter saves multiple states and explores the state
space of the concurrent part in a depth-first manner. When a π-function is encountered, the value
for the variable this π-function is for, is checked against the model, and should the values not match,
the interpreter stops executing more statements from this thread, as an interleaving either should
have, or should not have been taken previously.

When the π-function, which is being checked for a data-race, is encountered, the interpreter checks
the π-function to see if the value for it matches that of the model. If it does, then the interpreter
repeats all the steps using the model matching that of the second execution. If both executions are
valid, the interpreter reports the data-race location and its values, thus having verified the data-race
using the model from the symbolic execution component.

Once a data-race has been verified, the interpreter resets and awaits another potential location for
a data-race to verify.
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3.3 Summary

The design proposed in this chapter can find possible data-races in any program written in the CELE
language, and it can verify some of the data-races. But this design is prone to over-approximation
and can report multiple data-races that are impossible during concrete execution, and it will not
verify all the possible data-races. While this solution is sufficient we will propose a design that can
more accurately1 report data-races.

1Accuracy: Here accuracy refers to how accurate the prediction is. High accuracy means no false-positives and
low accuracy means many false-positives.
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Chapter 4

Discussion

The design proposed in Chapter 3 leads to an over-approximation, causing the constraint solver to
generate many invalid models. Recall that a π-function contains all the possible variable assignments
that can occur in concurrent threads, including the same value propagated down along the thread it
occurs in. A variable in the block with a π-function is then replaced by the value of the π-function.
This value can either be that of a previous definition in the thread, or an assignment taking place
in a concurrent thread.

With the current encoding of π-functions, we get a constraint-set which cover states that are not
encounterable during a concrete execution. To show this, consider the CCFG in Figure 4.1.

By taking this approach, the SMT solver can choose to do the following:

T_a1 = a2, T_a2 = a4, T_a3 = a5, T_a4 = a4, T_a5 = a2, T_a6 = a2

We know that this is impossible during an actual program execution, because in order for this to
ever happen, the assignment a4 = 20 needs to happen twice. In this case, the boolean tracking
constants does not help us, because these only explain if statements are part of the path condition
or not. However, all variable assignments would indeed be part of the path condition, thus all
options in the π-functions are available. Nothing therefore prevents the SMT solver from re-using
the same variable in any order. With this encoding, the statement reachable2 = true would be
reachable, despite this being impossible during any concrete program execution.

All possible paths could in theory be encoded in each π-function, but then each variable usage in
each π-function would be disjunctions containing disjunctions, and the encoding itself would be
Θ(nm), where n is the amount of π-functions present in the graph, and m is the maximum amount
of variable choices in any π-function. We therefore choose not to opt for this as a program with
even a few π-functions would take an infeasible amount of time to encode. Instead, a more feasible
approach can be used.

4.1 Removing False-Positives

The solution presented in Chapter 3 can find all data-races, but it can also report many data-races
that are impossible during concrete execution. Reporting too many false positives in a program
will affect how powerful the solution is, as the users might disregard some reported data-races if
presented with too many false-positives.
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We have not encountered any solutions, with a reasonable run time, that can completely eliminate
the false-positives reported by the symbolic execution, but have discovered techniques that can
mitigate the number of false-positives. Additionally, we have also found a way that may help verify
each data-race reported by the symbolic execution.

a1 = 0
reachable1 = false

fork with 2 threads

T_a2 = π(a1, a4, a5)
a2 = T_a2 - 10

T_a1 = π(a2, a4, a5)
if(T_a1 == 10)

T_a4 = π(T_a1, a4, a5)
if(T_a4 == 20)

T_a3 = π(T_a4, a4, a5)
if(T_a3 == 50)

reachable2 = true

reachable3 = φ(reachable2, reachable1, reachable1, reachable1)
endfi

a3 = π(a2, a6)
reachable4 = π(reachable3)
end conc-node of 2 threads

skip

skip

skip

a4 = 20

T_a6 = π(a4, a2)
if(T_a6 < 20)

T_a5 = π(T_a6, a2)
a5 = T_a5 + read(1)

a6 = φ(a5, T_a6)
endfi

skip

Figure 4.1: CCFG of a program where the value of reachable4 will never be true

4.1.1 Limiting Interleavings

π-functions capture thread interleavings, and they over-approximate in order to capture all possible
interleavings. If the constraints for π-functions can be extended to invalidate impossible interleav-
ings, then the amount of false-positives reported by the symbolic execution, can be reduced. The
conflict edges can be utilised to restrict the amount of valid options a π-function can have. A simple
yet efficient restriction is that only a maximum of one outgoing conflict edge is possible for each
block. So if an assignment occurs in one thread that has multiple outgoing edges to another thread,
then only one of these conflict edges can be chosen. As shown in Figure 4.1, the assignment a4 can
influence multiple π-functions in the other thread, but since the assignment can only occur once, it
can at most affect one of them. Lets explore this approach in more detail.
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Leveraging Conflict Edges

The cause of many invalid models being generated from the over-approximation is caused by inter-
leavings. The graph already have conflict edges so instead of each π-function being encoded as a
simple disjunction, each option could also encode an invalidation of incoming and outgoing conflict
edges, should the block also contain an assignment.

Consider Figure 4.1. For the π-function T_a1, it is clear that the option a4 is not a valid option should
a4 have been used in the previous block. Thus when choosing an option, only if the corresponding
edge is valid, should the π-function have the value of the chosen option, and in doing so, invalidate
the other options. Moreover, should the option a4 be chosen for T_a1, then all other outgoing edges
from a4 should be invalidated, if the edge leads to any other block in the same thread containing
T_a1. This works because the value of the π-function propagates down in the thread.

If a π-function gets its value from another statement, then this would mean that all statements
in that block have finished execution. This is because all concurrent blocks only have a single
statement, and π-functions. The π-functions are always placed above the CELE statement, and
thus, the assignment would always be the very last thing to occur in a block with outgoing conflict
edges. Due to this, a value provided from a block cannot have two valid outgoing conflict edges to
the same thread.

Each conflict edge are assigned names which matches that of the two blocks. They follow the form
ed-DEF-to-USE, whereas each USE is a π-function. For instance, the conflict edge from the block
containing the assignment a4 = 20; to the block containing the π-function T_a1 would be called
ed-a4-to-T_a1. The constraint for T_a1 when using this approach, can be seen in Listing 4.1.

1 T_a1 = a2 ∨
2 (ite {ed-a4-to-T_a1 ∧ 2.T2.1b}
3 {ed-a4-to-T_a2 = false ∧
4 ed-a4-to-T_a3 = false ∧
5 ed-a4-to-T_a4 = false ∧
6 ed-a5-to-T_a1 = false ∧
7 ed-a5-to-T_a2 = false ∧
8 T_a1 = a4
9 }

10 {false}
11 ) ∨
12 (ite {ed-a5-to-T_a1 ∧ 2.T2.3b}
13 {ed-a4-to-T_a1 = false ∧
14 ed-a4-to-T_a3 = false ∧
15 ed-a4-to-T_a4 = false ∧
16 ed-a5-to-T_a2 = false ∧
17 ed-a5-to-T_a3 = false ∧
18 ed-a5-to-T_a4 = false ∧
19 T_a1 = a5
20 }
21 {false}
22 )

Listing 4.1: constraint for T_a1 = π(a2, a4, a5)
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This approach limits each assignment’s influence to a maximum of one π-function in every thread.
However, this does not prevent an assignment to influence multiple π-functions in the entire pro-
gram, as this would only limit it to a maximum of n − 1 π-functions, where n is the amount of
concurrent threads. With multiple threads, this prevention of constructing invalid models is no
longer as effective.

a1 = read(1)

fork with 3 threads

T_a1 = π(a1, a5, a4)
a2 = 1 + T_a1

T_a2 = π(a1, a5, a2)
a4 = -2 - T_a2

a3 = π(a2, a4, a5)
end conc-node of 3 threads

write(2, a3)

T_a3 = π(a1, a4, a2)
a5 = 3 + T_a3

Figure 4.2: Figure with three threads showing interleaving issue

Consider Figure 4.2. Using this approach, the constraint solver can still choose interleavings which
results in an invalid model. One such example is highlighted by the thicker conflict edges. It is
possible to prevent this in theory during constraint construction since the edge invalidation is done
based on the picked incoming edge. Having picked a2 for T_a2, then the reversed edge is invalidated.
Because each incoming conflict edge in this example leads to an assignment, it is easy enough to
ensure that the value from this assignment does not end up being used for T_a1. When having
picked a2 for T_a2, then the value from this block’s assignment, is only usable for T_a3, and since
that block has an assignment, then we can in turn follow its outgoing edges and invalidate the
conflict to T_a1.

As can be seen, it is clear that just adding one more thread leads to constraint building becoming
significantly more complex, as it is no longer necessary to just consider the immediate conflict edges,
but also the conflict edges from the blocks containing the conflicting values. It is fair to say that
the complexity grows at least exponentially for each additional thread added.

Results

The approach to the encoding shown in Chapter 3 will be able to find data races that are otherwise
unreachable. Consider the example shown in Figure 4.3. With the current encoding, asking the
constraint solver if it is possible for reachable4 to have the value true, will return a model that
satisfies that constraint. Although for this to be the case, the statement reachable2 needs to be
reachable, which it is not.

To reach this statement, the assignment a4 = 20 need to have been executed, otherwise T_a1 will
not get a value that is needed for the condition of the if statement to evaluate to true. But since
this assignment has now taken place T_a4 cannot get the value 20 from T_a4 as this assignment has
already taken place. The only way to obtain the required value, is through the assignment to a5.
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a1 = 0
reachable1 = false

fork with 2 threads

T_a2 = π(a1, a4, a5)
a2 = T_a2 - 10

T_a1 = π(a2, a4, a5)
if(T_a1 == 10)

T_a4 = π(T_a1, a4, a5)
if(T_a4 == 20)

T_a3 = π(T_a4, a4, a5)
if(T_a3 == 50)

reachable2 = true

reachable3 = φ(reachable2, reachable1, reachable1, reachable1)
endfi

a3 = π(a2, a6)
reachable4 = π(reachable3)
end conc-node of 2 threads

skip

skip

skip

a4 = 20

T_a6 = π(a4, a2)
if(T_a6 < 20)

T_a5 = π(T_a6, a2)
a5 = T_a5 + read(1)

a6 = φ(a5, T_a6)
endfi

skip

Figure 4.3: CCFG of a program where the value of reachable4 will never be true

If however a5 gets the value 20, then there are no remaining assignments left inside this fork
statement, thus the condition (T_a3 == 50) will never evaluate to true. Moreover, the only value
T_a3 can have, is 20, which is propagated down from the block above.

The first encoding, the one explained in Chapter 3, ignores previous interleavings when determining
the value for a π-function. That encoding will cause the constraint solver to produce a model where
the assignment reachable2 = true; takes place, despite that from not being the case. The following
values for all π-functions allows this to be the case:

T_a1 = a2, T_a2 = a4, T_a3 = a5, T_a4 = a4, T_a5 = T_a6, T_a6 = a2

This over-approximation lead to the proposed changes shown in Section 4.1.1. With that proposed
change, each encoding of a π-function invalidates the other edges to it, while also ensuring that
the conflicting statement is not a valid option for any other block in the same thread where the
π-function is located. Moreover, any other conflict is not a valid option either for blocks earlier
than this π-function, if that conflict is from a statement that happens after the chosen one.

Having implemented that approach, the constraint solver can no longer return a satisfiable model
where the statement reachable2 = true takes place. Moreover, it also only detects five locations
for possible data-races, despite there being six π-functions. This is correct, as the only value that
T_a3 can have, is 20, as just discussed.
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[BIN_1]
env ` e1 ⇒ e′1

env ` e1 �b e2 ⇒ e′1 �b e2
[VAR]

env ` a⇒ v

where v = env(a)

[BIN_2]
env ` e2 ⇒ e′2

env ` v1 �b e2 ⇒ v1 �b e′2
[ASS_1]

env ` e⇒ e′

a=e, env⇒ a=e′, env

[BIN_3]
env ` v1 �b v2 ⇒ v

where v = v1 �̄b v2
[ASS_2] a=v, env⇒ env[a 7→ v]

Table 4.1: CELE semantics for assignments and binary expressions. The complete semantics is first
presented by (Grosen and Svenningsen, 2019) and has been included in Appendix A for completeness

However, the conflict edge invalidation technique is still a gross over approximation for programs
with more than two threads, as it does not invalidate conflict edges between other threads than
the thread with the π-function being encoded, and the thread containing the conflicting definition.
Extending it leads to an algorithm that grows exponentially and is thus not sufficient. Limiting
the maximum amount of allowed outgoing conflict edges from each block to one, would make
the encoding more feasible, but would lead to an under approximation. For instance, consider
Figure 4.2. It is clear that both T_a1 and T_a3 can get the value a4, if the assignments in those
two blocks have yet to take place. In the semantics of CELE an assignment is not atomic. It first
evaluates an expression until that becomes a value, and only then can the actual assignment take
place. Thus, for the assignment to take place, the binary expressions have to become a single value
first. For reference, the valid rules is shown in Table 4.1.

The rule [ASS_1] needs to apply both rules [BIN-2] and [BIN-3] before the variable mapping is
applicable, which is done through the rule [ASS_2]. To show that both T_a1 and T_a3 can have the
same value, lets apply the semantics until a4 = 2 + T_a2 is reached, without visiting either thread
1 and 3.

Once a4 is assigned, then an interleaving occurs, and the rule [BIN-2] is applied to the statement
a2 = 1 + T_a1. That rule states the right-hand side of the binary expression needs to be evaluated,
and as T_a1 is the value from a π-function for a in this statement, the only rule applicable, is [VAR].
[VAR] looks up the variable a and substitutes it in the statement with the value that a currently
has; which is the same value as a4. Another interleaving can then be taken here, and the same rules
can be applied for the statement a5 = 3 + T_a3. The result is that T_a1 and T_a3 have the same
value.

Thus only allowing one outgoing conflict edge from each block means that the constraint solver
will not be able to find some models which can actually occur during a concrete execution, thus
potentially limiting the amount of detectable data-races.

However, as loop unrolling is already being done, the amount of correct models is already limited, so
this under approximation may still prove to be good enough for detecting data-races. We choose to
keep an over approximation, and instead choose to use an interpreter to validate if the data-race can
occur in the found model. The interpreter can do with some extensions to improve its usefulness.
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4.1.2 Interpreter

The interpreter currently receives a satisfiable model from the symbolic execution and executes the
input program such that the execution does not break the received model. It knows what statement
the symbolic execution found a data-race for, as well as the blocks which was encountered. The
interpreter executes the program to see if it can encounter the statement where the data-race occurs
using this model in order to verify it. If this statement is reachable, and the current value matches
that given by the model, then the data-race is possible.

But if this is not the case then the data-race might still be possible, because the model provided
by the symbolic execution component may be invalid. The model can be analysed to find where
this invalid interleaving was taken. This would often occur in π-functions where a chosen variable
option is allowed by the constraints but is not a valid option due to previous interleavings.

With the design proposed in Section 3.1, the model does not contain information about inter-
leavings, but it does contain information about what blocks were executed, and the value of each
variable. This information can be used to construct additional constraints and then provided for
the constraint solver in order to obtain a new model, should the current one be invalid.

Consider the CCFG shown in Figure 4.1. As it stands, and as was described in Section 4.1.1, the
proposed design means that the constraint solver will be able to find a model that shows a data-race
can occur at T_a3. The constraints in the model for the π-functions in a single execution could look
like:

T_a2 = 20, T_a1 = 10, T_a4 = 20, T_a6 = 10, T_a5 = 10

During a concrete execution, the interpreter will discover that T_a4 cannot have the value which
this model states it has, unless a5 gets the value 20. However in that case, the model would be
unsatisfiable, as T_a3 would have the value 20 in all cases. We therefore know, for the symbolic
execution to report a data-race, that a5 6= 20 holds. Moreover, since the block in this execution
is unreachable, the interpreter could construct a constraint using the values it found during the
execution. The constraint for this example is shown in Listing 4.2.

1 {(ite {T_a2 = 20 ∧ T_a1 = 10 ∧
2 T_a6 = 10 ∧ T_a5 = 10 ∧
3 a1 = 0 ∧ a2 = 10 ∧
4 a4 = 20 ∧ a5 = 50
5 }
6 {2.1T.4b = false}
7 {true}
8 )
9 }

Listing 4.2: Constraint stating that given these values, the block containing T_a3 is unreachable

With this constraint, the SMT solver will choose not to generate a new model where this condition is
true, as that would lead to an invalid model. After all, a part of the constraint asking if a π-function
can have two different values, also explicitly states that the block containing this π-function needs
to be present. Were this not part of the constraint, the π-function could have an unconstrained
value if the SMT solver found a means to avoid using the constraints for the block containing the
π-function. This would thus allow the SMT solver to pick any value it wants.
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The constraint does not include the value for T_a4 because the model states this value should be
something that the interpreter never finds to be true. Stating that T_a4 should not be the value
found during this execution, would be an additional condition that does assist much in finding a
valid model. If this constraint was added, then the SMT solver could return the very same model,
because in that model, T_a4 was 20, not whatever the interpreter discovered. Moreover, adding
T_a4 6= 20 to the constraint would provide the same information as the if statement where the
value is used.

A problem with this approach is immediately apparent. Recall that the only data-races considered,
are those where a π-function can have different values. With this extra constraint, there is no
stopping the SMT solver from just reading another value from the environmment, as this is symbolic.
Doing so would change the value of a5 to something else, again yielding a satisfiable problem. The
interpreter would thus keep building these constraints, only modifying a5 with each execution until
killed or all possible values from the environment has been tested, finally making the constraint
solver return an unsatisfiable model.

Utilising Conflict Edges

Having discussed the utilisation of conflict edges in Section 4.1.1 and discovered that invalidating
conflict edges upon variable choices in π-functions can significantly help producing correct models
for programs with two threads, a similar approach could be done with the interpreter.

An interpreter that are aware of conflicts can utilise this information to know where exactly the
values for each π-function came from. By still validating the model as previously, it can use this
information to help assist it in choosing what thread to execute. For instance, consider Figure 4.4
which also shows the problem that the approach in Section 4.1.1 cannot model accurately.

a1 = read(1)

fork with 3 threads

T_a1 = π(a1, a5, a4)
a2 = 1 + T_a1

T_a2 = π(a1, a5, a2)
a4 = -2 - T_a2

a3 = π(a2, a4, a5)
end conc-node of 3 threads

write(2, a3)

T_a3 = π(a1, a4, a2)
a5 = 3 + T_a3

Figure 4.4: Program with three threads. These interleavings are valid

When the interpreter encounters the fork statement, it then adds all children blocks to a set which
holds all potential blocks it can execute next. It does not know which one is the right block to visit
first however. Lets assume it visits its first child. Here, it sees that the value for the given π-function
does not match the value in the model, but the model does state that this block’s incoming conflict
edge containing the statement a5 = 3 + T_a3 determined this value. The interpreter sees that this
block is a potential candidate for execution, so it attempts executing this block instead.
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This continues until it ends up at the middle child, where the value for T_a2 matches that of the
model, thus it can execute this statement. It then follows conflict edges, as these are allowed and
executes the statements accordingly, matching it against the model.

If this model had an invalid interleaving, such as the ones shown in Figure 4.2, the interpreter would
attempt the execution and realise it encounters a loop, thus breaking the execution. Having followed
these interleavings, the interpreter will thus be able to build the constraint shown in Listing 4.3.

1 {(ite {ed-a2-to-T_a2 ∧ ed-a4-to-T_a3 ∧ ed-a5-to-T_a1}
2 {false}
3 {true}
4 )
5 }

Listing 4.3: Constraint stating that given these conflict edges, the model generated will be invalid

With this constraint, the interpreter tells the symbolic execution not to consider this set of conflict
edges for a new model, as these leads to one that is invalid. By not considering values of variables,
we avoid the problem of repeatedly generating similar models where only the value of a symbolic
input has been changed.
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Chapter 5

Conclusion

This concludes our research in making use of symbolic execution in order to detect the locations
where data-races can occur. The constraint generation presented in Chapter 3 results in constraints
that over approximates the location of data-races and leads to the generation of many invalid models.
Moreover, without information of the chosen interleavings, only values for each variable can be used
for constructing additional constraints which can prevent the same model from being considered
next time.

We therefore opted to encode conflict edges and the invalidation of others, when building constraints
for π-function, as described in Section 4.1.1. Using that method, the symbolic execution component
can much more precisely find data-races in concurrent portions of code which have two threads. It
does have the problem of not invalidating all invalid conflict considerations, if there are more than
two threads, as doing so would lead to an exponential computation time depending on threads and
the number of options for each π-function. An under approximation such as one which only allows
a maximum of one outgoing conflict edge per block may be good enough in practice, but this was
not experimented with during this thesis.

Instead, we considered expanding the interpreter to build constraints using the conflict edges that
are now part of the problem, then updating the final constraint set, such that the symbolic execution
component will not consider the same set of conflict edges when asked for a new model. The
implementation for what is presented and discussed in Section 3.1 and Section 4.1.1 can be found
on Github (Grosen and Svenningsen, 2020). We have leveraged Symbolic execution to find errors
specific to concurrent and reactive programs, our solution over-approximates the possible data-
races. We have found ways to mitigate this over-approximation, eliminating many of the impossible
interleavings. We have shown that we can find data-races within the programs tested in this thesis.
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Appendix A

Syntax and Semantics

This appendix contains the semantics referenced in this thesis and originally presented by Grosen
and Svenningsen (2019). Language construct not considered in this thesis has not been included
as part of this appendix. Moreover, an oversight was discovered. In the abstract syntax, the read
expression expected a variable, as did the write statement as its first argument. However, the
semantics for IO had no rules for such constructs. The abstract syntax for the read expression
and the write statement has thus been modified such that the semantics apply. The syntax and
semantics as they were originally presented, can be seen in (Grosen and Svenningsen, 2019).

A.1 Abstract Syntax

S ∈ STMT statements
a ∈ VAR variable names
e ∈ EXPR expressions
v ∈ VAL values

e := (e) | e+e | e-e | e*e | e/e | e%e | e>e | e>=e | e<e | e<=e |

e==e | e!=e | e&&e | e || e | !e | -e | read(v) | v | a

S := a = e | write(v, e) | if (e) {S} else {S} | while(e) {S} |

fork {S1} and {S2} ... and {Sn} | when (e) | skip | S;S

A.2 Semantics for I/O

[READ_1] env ` read(v1)⇒ v

where v < 215 and v ≥ −215

[WRITE_1]
env ` e⇒ e′

write(v, e), env⇒ write(v, e′), env

[WRITE_2] write(v1, v2), env⇒ skip, env
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A.3 Semantics for Expressions

Literals

[INT_LIT] v ∈ Z

[BOOL_LIT] v ∈ { true, false }

Access Expression

[VAR] env ` a⇒ v

where v = env(a)

Binary Expressions

�b ∈ {+, -, *, /, %, >, >=, <,
<=, ==, !=, &&, ||}

[BIN_1]
env ` e1 ⇒ e′1

env ` e1 �b e2 ⇒ e′1 �b e2

[BIN_2]
env ` e2 ⇒ e′2

env ` v1 �b e2 ⇒ v1 �b e′2

[BIN_3] env ` v1 �b v2 ⇒ v

where v = v1 �̄b v2

Unary Expressions

�u ∈ {!, -}

[UNARY]
env ` e⇒ e′

env ` �ue⇒ �ue′
[NOT_1] env ` !true⇒ false

[NOT_2] env ` !false⇒ true

[NEG] env ` -v1 ⇒ v

where v = −1 · v1

�b �̄b
+ +
- −
* ·
/ ÷
% modulo
< <
<= ≤
== =
>= ≥
> >
!= 6=
&& ∧
|| ∨
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A.4 Semantics for Statements

Assignments

[ASS_1]
env ` e⇒ e′

a=e, env⇒ a=e′, env

[ASS_2] a=v, env⇒ env[a 7→ v]

Conditionals

[If-Else_1]
env ` e⇒ e′

if(e) {S1} else {S2}, env⇒ if(e′) {S1} else {S2}, env

[If-Else_2] if(true) {S1} else {S2}, env⇒ S1, env

[If-Else_3] if(false) {S1} else {S2}, env⇒ S2, env

[While] while(e) {S}, env⇒ if(e) {S; while(e) {S}} else {skip}, env

[EVENT] when(e), env⇒ BLOCKED(e), env

[BLOCK]
env ` e⇒∗ true

BLOCKED(e), env⇒ skip, env
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Control Structures

[SKIP] skip, env⇒ env

[CONC-1]
Sk, env⇒ S′k, env

′

fork {S1} and ..., and {Sk−1} and {Sk} and ..., and {Sn}, env⇒

fork {S1} and ..., and {Sk−1} and {S′k} and ..., and {Sn}, env′

where 1 ≤ k ≤ n

[CONC-2]
Sk, env⇒ env′

fork {S1} and ..., and {Sk−1} and {Sk} and ..., and {Sn}, env⇒

fork {S1} and ..., and {Sk−1} and ..., and {Sn}, env′

where 1 ≤ k ≤ n

[CONC-3] fork {S}, env⇒ S, env

[SEQ-1]
S1, env⇒ S′1, env′

S1;S2, env⇒ S′1;S2, env′

[SEQ-2]
S1, env⇒ env′

S1;S2, env⇒ S2, env′
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