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cess (TBMA) is a communication protocol
in charge of estimating a given QoI based on
the histogram of the received measurements
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the performance of TBMA when it is imple-
mented on a wireless technology. Narrow-
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as the baseline technology due to its reduced
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teristics. Three transmission schemes are
proposed and their estimation performance
is evaluated under different scenarios. Er-
ror probability results show the limitations
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preambles and maximum states of the QoI.
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aspects when incorporating the TBMA pro-
tocol to a real wireless system by focusing on
NB-IoT and propose alternatives upon sys-
tem limitations.
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Introduction

1.1 Massive connectivity

The new era of telecommunications is enabled by the arrival of 5G to our societies. 5G
technologies consider novel use cases that previous mobile network generations were not able
to fulfill. In addition to the well-known Human Type Communication (HTC), the applications
addressed by 5G include the new paradigm of Machine Type Communication (MTC) which
represents most of the challenges on the development of new wireless solutions. 5G applications
can be classified into three main categories [1]: enhanced Mobile Broadband (eMBB), Ultra
Reliable Low Latency Communications (URLLC) and massive-MTC (mMTC). See Figure 1.1
for some application examples. On eMBB, main requirements are generally given by HTC
demands with scenarios of typically low quantity of devices and high data transmissions.
The other two, i.e. URLLC and mMTC, are encompassed on the Internet-of-Things (IoT)
framework, where generally the type of communication refers to MTC. On URLLC, higher
priority is given to devices that require robust connectivity and very low latency whereas
mMTC addresses massive connectivity and comprise a range of applications with a massive
amount of devices transmitting small data packets with generally some degree of tolerance on
reliability and latency.

The number of connected devices in wireless networks is expected to grow with the future
enabling 5G technologies. IoT smart objects are expected to reach 212 billion entities deployed
globally by the end of 2020 [3]. Typical mMTC applications are smart or remote metering,
smart lights, smart cities or smart agriculture. For instance, an exemplary smart metering
scenario would be thousands of temperature meters deployed over a large industrial plant
reporting their measured values. As for this exemplary applications, and generally many
mMTC applications, the device’s density might reach up to 30.000 devices in a single cell [4].

The characteristics of the massive connectivity paradigm are distinct from the well-known
HTC applications. Most common and relevant mMTC characteristics are [5], [6]:

• Small data packets
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2 Chapter 1. Introduction

Figure 1.1: 5G usage scenarios defined by the ITU-R [2]

• Traffic mostly in Uplink (UL)

• Large number of device (up to 30.000 devices per cell)

• Energy-efficient transmissions

• Sporadic device activity: periodic or event-driven transmissions

With regard to the last bullet point, depending on the communication protocol the devices
can transmit either periodically (semi-persistent scheduling) or event-driven (i.e. based on
an event, for example a power outage). Under periodic transmissions, the large number of
devices can be split on transmission groups and scheduled by the Base Station (BS) at different
time windows. However, with thousands of devices and continuous periodic updates the BS
requires novel techniques to adapt the large quantity of transmissions. Under event-driven
transmissions, the number of active devices is given by the ones affected by the event. In this
case, the device activity is sporadic and generally the radio access is uncoordinated. One fact
to highlight here is that the data generated by the devices could be correlated. Taking up the
previous example, in case of a power outage, several devices would detect the same event and
therefore the information transmitted by most of the devices would be the same. In all cases
the main challenge is the following: how to adapt or coordinate the high number of devices
transmitting to the same access point?

Conventional multiple access technologies are not scalable for the future of massive connec-
tivity. Technologies like Long Term Evolution (LTE) include large overhead on the radio access
and high redundancy coding which is highly inefficient for MTC. For example, the redundant
information involved on channel estimation and coding procedures is potentially higher than
the payload information. On current standardisation processes an evolution of LTE is be-
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ing carried out in order to satisfy the most common and priority MTC requirements. The
most sounded technologies are Narrowband Internet of Things (NB-IoT), a Low Power Wide
Area (LPWA) technology with a signal bandwidth of 180 kHz and low-cost radio chips, and a
variant of LTE for Machine Type Communication (MTC) called Long Term Evolution MTC
(LTE-M), which meets higher data rates applications [5]. Despite both technologies are called
to be used by MTC applications, NB-IoT is the greatest candidate for massive connectivity
due to its low power consumption, reduced signal bandwidth and its coverage enhancements
[7]. Nonetheless, current NB-IoT features are still not capable of handling massive number
of devices transmitting simultaneously, so additional wireless transmission schemes must be
investigated to meet the strict demands of some massive connectivity use cases.

On the current literature, novel approaches address the massive connectivity challenge [5],
[8]. One research branch deals with Non-Orthogonal Multiple Access (NOMA) techniques. In
NOMA, multiple devices share the same physical resource grid in a non-orthogonal fashion.
The outcome is a considerable reduction of needed physical resources to multiplex all devices.
Other research directions argue with grant-free transmissions. The motivation behind this
approach is to face the overhead generated when devices access to the radio resources. For ex-
ample, on most uncoordinated multiple access schemes, the number of collisions considerable
increases with high number of devices (e.g. ALOHA) or the overhead generated for colli-
sion avoidance can overwhelm the system (e.g. collision avoidance-ALOHA) [8]. Grant-free
schemes emerge as a potential solution where the devices transmit data without the necessity
of performing a Random Access (RA) procedure.

One typical function of Wireless Sensor Networks (WSN) is the sensing of a state of the
nature or Quantity of Interest (QoI). Sensors (or generally devices) collect information of the
QoI and forward it to the fusion-center (a central processing entity) which is partially or
fully in charge of the detection or estimation task. This scenario is usually referred as dis-
tributed estimation/detection due to the spatially distributed measurements taken by devices
[9]. Research work has addressed the detection and estimation problems of WSN taken into
account efficient transmissions with reduced bandwidth and energy consumption. On this
context, two main strategies are found: local and centralized estimation [9]–[11]. One remark
to be introduced is the possible nomenclature confusion between centralized and decentralized
estimation. Local and centralized estimation are strategies or configurations of distributed
estimation framework. Distributed estimation is also named by literature as decentralized
estimation. To avoid confusion, we refer as distributed estimation to the estimation of a field
parameter using measurements taken by physically distributed sensors. Local estimation is
based on intelligent devices that have knowledge of the QoI statistics and therefore can make
local decisions based on the measured values. On this case, devices transmit hard of soft
information regarding their local estimates to the fusion-center which is in charge of making
the final decision. Centralized estimation includes dumb devices which do not have knowledge
of the state of the nature statistics and therefore cannot make local decisions. On this case,
devices take measurements and forward them to the fusion-center which conducts the full
estimation task based on all gathered measurements. Note that due to the limited amount of
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UL resources, on the local estimation approach soft-information has to be quantized just as
the reported measurements on centralized estimation.

One of the most well-known centralized estimation approaches is Type-Based Multiple Ac-
cess (TBMA). TBMA was proposed by Mergen in [12] as a solution for parameter estimation in
large number of devices scenarios with limited transmission energy. TBMA is communication
protocol in which sensors transmit orthogonal waveforms encoding the devices’ measurements
and the fusion-center infers the QoI based on the histogram of the received measurements
from the devices.

1.2 Type-Based Multiple Access

At this work we focus on TBMA as a communication protocol to enable distributed estimation.
TBMA is categorised as an information-centric protocol because the inference of the QoI relies
only on the estimated histogram of the devices’ observations. This approach differs from
classic device-centric protocols where individual observations are generally requested. Note
that device-centric protocols (as they exist on current technologies like NB-IoT or LTE-M)
are generally inefficient under massive amount of active devices. The fundamental pillar of
TBMA is that by assigning an orthogonal codeword to each of the possible measured values
by the devices, the receiver is able to estimate the histogram of the observations based on the
received signals and infer from it the value of the QoI. Once the information about the QoI
is obtained, device-centric approaches might be considered as an extension to TBMA in order
to acquire further information of particular devices measuring specific values (e.g. where the
device is located, other parameters of interest, etc.).

Some standpoints to consider TBMA as a potential approach on mMTC use cases are now
mentioned. TBMA takes advantage of one of mMTC characteristics: the data correlation. The
correlation of the measured data would cause that the observed values by devices have high
probability to be repeated among several devices (e.g. high temperatures on a room where
a fire has accidentally started). If observed values are mapped to orthogonal preambles, the
devices with same observed value would overlap on a non-orthogonal fashion. This fact can
be taken as an advantage because in order to estimate the histogram of the observations, the
computation of how many devices transmitted each preamble would be sufficient. However,
note that the possible observed values are constrained by the quantification levels defined by
the system (usually limited to the number of preambles). TBMA can be considered a special
form of NOMA due to devices transmit non-orthogonal signals if same measured value is
repeated among devices. Moreover, TBMA includes grant-free transmissions because devices
already know which physical resource to use, so no RA request is needed. In this sense, TBMA
reduces the limited number of UL resources and reduces the overhead and collisions generated
on grant-based communications.

TBMA research directions have focused on information-theoretic standpoint. Some ap-
proaches analyse the use of TBMA for centralized detection versus local detection [9]. Others
showed the necessity of channel normalisation under zero-mean channel fading [12] and anal-
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ysed the effect of the transmission rate on the estimation performance [13]. Other papers pro-
posed alternative implementations of TBMA [14] through a variant based on non-orthogonal
codewords with the objective of improving the spectral efficiency. The TBMA setup was
extended to a multi-cell scenario on [15] discussing where the centralised process should be
located: at the cloud or at the edge. Most existing work claims for the potential of TBMA in
terms of savings of power and bandwidth specially on the regime of large number of devices.

So far, the advantages of TBMA for massive connectivity have been extensively discussed,
but the implementation of TBMA to a real wireless system has not been addressed yet. Several
approaches are already available on the literature and the analysis of how feasible is to include
it on existing or future wireless technologies is of great interest.

1.3 Project scope

Then main characteristics and challenges of massive connectivity have been introduced on the
previous section. This projects focuses on TBMA as a potential enabler of information-centric
uses cases under massive connectivity scenarios. TBMA research directions have focused on
information-theoretic standpoint and its possible implementation challenges and adaptation
have not been investigated yet.

The scope of this project is to design realistic transmission schemes including the TBMA
principle and to study the implementation aspects that might bring into practice on a real
wireless system. Due to its physical layer design, NB-IoT will be taken as the reference technol-
ogy to be used for TBMA. For the evaluation of the transmission schemes, different scenarios
will be recreated and the influence of most relevant TBMA parameters will be discussed. Con-
sidering the obtained results, the implementation aspects of each transmission scheme and of
the general TBMA system will be analysed and modifications of current or future standards
will be proposed.

The remainder of this document is organised as follows. Chapter 2 introduces the NB-IoT
technology and the RA preambles. Chapter 3 describes the system model considered for this
work. Chapter 4 shows the performance of the transmission schemes under two scenarios,
discusses the results and proposes enhancements. Chapter 5 evaluates the implementation
aspects involved on the establishment of a TBMA-based protocol on a real wireless system
and Chapter 6 concludes this master thesis reflecting the main outcomes of this work.





2

Narrowband Internet of Things

Narrowband Internet of Things (NB-IoT) is a cellular technology standardised by the 3rd
Generation Partnership Project (3GPP) and introduced from Release 13. It was designed to
fulfill some MTC requirements with focus on LPWA device characteristics, battery powered
operation up to 10 years and radio module cost under 5$ [16]. Taking the heritage from LTE, it
was designed as a suitable precursor of 5G mMTC technologies [7]. The NB-IoT specifications
on this thesis have been taken from 3GPP Release 14.

2.1 Physical layer

NB-IoT signals occupy a bandwidth of 180 kHz in both Downlink (DL) and UL. In DL,
Orthogonal Frequency Division Multiplexing is applied with a subcarrier spacing of 15 KHz.
In the UL, multi-tone and single-tone transmissions are supported based on Single Carrier
Frequency Division Multiple Access. The multi-tone mode uses 15 KHz subcarrier spacing
and the single-tone mode uses either 3.75 KHz or 15 KHz subcarrier spacing. One of the
most relevant features from the NB-IoT physical layer is the inclusion of repetitions on the
transmissions (i.e. the signal is transmitted a number of repeated times according to the
device’s channel quality). Due to devices might experience different radio conditions, NB-IoT
defines up to three Coverage Enhancement (CE) levels. The CE levels represent different
groups or clusters of devices. The decision of how many CE levels are defined on each cell is a
network operator design parameter. Among other features, each CE level defines the number
of repetitions that a device or the BS has to incorporate during a transmission. Thanks to the
time diversity implied by the repetitions and its narrowband signals, NB-IoT has a coverage
improvement of 20 dB with respect to Global System for Mobile Communications (GSM) and
General Packet Radio Service (GPRS) [17].

In DL three physical channels are defined [18]: the Narrowband Physical Broadcast Chan-
nel (NPBCH), which carries the information that is broadcasted to all the users, the Nar-
rowband Physical Downlink Control Channel (NPDCCH), which indicates to User Equipment
(UE)s information about their DL data and UL grants or UL scheduling information, and the

7
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Narrowband Physical Downlink Shared Channel (NPDSCH), which contains traffic data for
specific UEs. In UL, only two physical channel are defined:

• Narrowband Physical Uplink Shared Channel (NPUSCH): it carrier the UL data packet
transmissions.

• Narrowband Physical Random Access Channel (NPRACH): it is used for performing
initial access to the network, to request UL resources or to reconnect to the BS after a
link failure.

2.2 NPRACH preambles

Random Access (RA) procedure is usually conducted for initial UE UL synchronization when
UL or DL data arrive and the UE is not synchronised. Additionally, it is also executed for
initial access when establishing a new radio link. On NB-IoT, RA is conducted by means of
the NPRACH. The RA procedure is based on four-stage handshake message with the following
procedure: (1) the UE randomly selects and transmit one of the available NPRACH preambles,
also kwown as RA preambles. From the received signal, the evolved Node B (eNB) estimates
the UE Timing Advance (TA). (2) If the eNB successfully detects the NPRACH preamble, it
responds with a message including a temporary identification for the UE and the TA estimate.
The (3) and (4) messages initialise and conclude the contention-resolution procedure to detect
possible collisions not detected during the first two steps.

With relation to the massive connectivity challenge, NB-IoT RA procedure expects that
only one UE attempts to access during the same RA window using the same NPRACH pream-
ble. In the hypothetical case that two (or more) UEs select the same preamble, a collision
may occur (note that this is more likely for larger number of devices). The RA procedure
under massive number of devices has been already addressed by [19]. For the RA attempts,
devices make use of NPRACH preambles defined on [20]. On predecessor technologies like
LTE, the RA preambles are made of Zadoff-Chu sequences which occupy a bandwidth of 1.08
MHz. Additionally, its peak-to-average power rate requires higher power amplifier back-off
[21]. Both facts make unachievable the adaptation of the LTE preambles to NB-IoT channel
bandwidth and low-power-based transmissions. Therefore, a new design was required for the
NPRACH preambles.

The NPRACH has a total channel bandwidth of 180 KHz and contains the RA preambles.
The NPRACH transmissions use a single-tone 3.75 KHz subcarrier spacing where a total of 48
subcarriers are found on the NPRACH bandwidth. Hence, 48 preambles are defined on NB-
IoT [17]. One NPRACH preamble is composed of NSG = 4 Symbol Group (SG)s, where each
symbol group is made of one Cyclic Prefix (CP) and five symbols. Two SG formats are stated
and define the duration of the CP. Format 0 has a CP duration of TCP = 66.7 µs whereas
format 1 has TCP = 267 µs. The use of format 0 allows a maximum cell range of 8 km while
with format 1 up to 35 km can be covered [21]. Both formats have a five symbols duration of
TSEQ = 1.333 ms [20]. The duration of a symbol group can be defined by TSG = TCP +TSEQ.
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Figure 2.1: NPRACH preambles illustration.

Preamble repetitions can be applied depending on the CE level experienced by the UE
with a number of repetitions Nrep ∈ {1, 2, 4, 8, 16, 32, 64, 128}. More number of repetitions
have been included from Release 15. In case repetitions are included, the NPRACH preamble
are composed of NSG = 4Nrep symbol groups. Each CE group, is assigned a set of 12,
24, 36 or 48 preambles, that is, the all available preambles are distributed among the CE
groups, so devices on different groups do not share same NPRACH preambles. The symbol
groups are transmitted following a particular frequency hopping pattern defined in [20] and
illustrated in Figure 2.1. On the one side, there is a 4-symbol groups frequency hopping fixed
pattern: a one subcarrier hopping distance for the 1st and 3rd hop, and a 6-subcarriers hopping
distance for the 2nd hop. On the other side, for every repetition, an outer layer pseudo-random
hopping is applied which depends on the cell identity that the UE is connected to [21]. This
configurations helps reducing the interference with RA attempts from neighbouring cells. Note
that the symbol groups can only hop among a set of 12 concatenated subcarriers, which means
a maximum extension of the preamble on 45 KHz. Hence, the frequency hopping pattern is
described by the following rule
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ñRASC (i) =



(ñRASC (0) + f(i/4))modNRA
SC imod 4 = 0 and i > 0

ñRASC (i− 1) + 1 imod 4 = 1, 3 and ñRASC (i− 1)mod 2 = 0
ñRASC (i− 1)− 1 imod 4 = 1, 3 and ñRASC (i− 1)mod 2 = 1
ñRASC (i− 1) + 6 imod 4 = 2 and ñRASC (i− 1) < 6
ñRASC (i− 1)− 6 imod 4 = 2 and ñRASC (i− 1) ≥ 6

(2.1)

where nRASC (i) = nstart+ñRASC (i) is the subcarrier index of the i-th symbol group, NRA
SC = 12,

ñRASC (0) ∈ {1, 2, ..., 48} and f(t) is the pseudo-random function that defines the initial preamble
for a new repetition (see [20] for the definition of f(t)). Note that ñRASC (0) is the selected initial
subcarrier which by default is selected randomly and identifies the selected preamble. The
parameter nstart is given by the chosen initial subcarrier index and the NPRACH configuration
included on the System Information Block (SIB) broadcasted by means of NPBCH.

Following with the frequency hopping rule, the transmitted signal at symbol group i ∈
{0, 1, 2, ..., NSG − 1} is given by

xi(t) = βNPRACHe
j2π(nRASC (i)−NUL

SC 0.5k0+0.5)∆fRA(t−TCP ), (2.2)

where 0 ≤ t ≤ TSG, βNPRACH is a scaling factor according to the transmitted power [22],
∆fRA = 3.75 KHz, k0 accounts for the difference in subcarrier spacing between NPRACH and
NPUSCH, and NUL

SC is the number of consecutive subcarriers in an UL resource unit.
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System model

3.1 Scenario

We consider a wireless system between a fusion-center (also known as BS) and a large number
of devices with limited power consumption. The BS has fixed location and the devices are
considered to be static (e.g. embedded on machinery, walls or underground). The propagation
delay of each device is determined by the physical distance between device and BS. The
wireless system follows a narrowband transmission scheme, i.e. the transmitted signals have a
bandwidth much smaller than the channel bandwidth. The system has been operating during
a long-time period allowing a learning-process of some communication parameters.

The BS has N attached devices of which K are active being 0 ≤ K ≤ N . The devices
are considered to be active in a given a transmission interval when they have UL data to
transmit during this period. The periodicity of the transmission interval is not relevant. The
transmission interval defines the time instance where all active devices transmit simultaneously.
The devices are denoted by n ∈ N = {1, 2, ..., N} and the active devices are referred as
k ∈ K = {∅, 1, 2, ...,K} where K ⊂ N . Both n and k will be used to refer to general
and active devices respectively. We focus on the UL communication direction, that is, the
transmitted information from the active devices to the fusion-center. The number of antennas
at devices and BS is NTX = 1 and NRX = 1 respectively. The extension of the system model
to NRX = 2 is trivial but comes at cost of more bulky notation. Nonetheless on this project
only one antenna at the BS is assumed. Figure 3.1 shows the system model for K active
devices. The included notation will be specified during the following sections.

The devices observe a Quantity of Interest (QoI) which is a physical parameter (or state
of nature) such as temperature, pressure or pollution level. The QoI is described by the
discrete random variable θ which can take Q values/states (i.e. θ ∈ {θ1, θ2, ..., θQ}) and has a
Probability Mass Function (PMF) Pr[θ = θq] = pq where q ∈ Q = {1, 2, ..., Q}. Despite all N
devices of the system take observations of the QoI, we center our interests on the measurements
taken by the K active devices. Each device k takes a measurement/observation Xk which can
take values on the alphabet M = {1, 2, ...,M} (i.e. Xk = m where m ∈ M). Usually the

11
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Figure 3.1: System model illustration.

observationsXk are real-valued measurements which are later quantized intoM levels resulting
into a discrete random variable. Due to TBMA makes use of the quantized observations, we
directly assume that Xk can only take discrete values. The problem of optimized quantization
from analogue to discrete observations is out of the scope of this project. The distribution of
observations Xk is conditioned by θ, begin its conditional PMF Pr[Xk = m|θ = θq] = pθq(m).
The family of distributions pθq is known at the fusion-center. The distribution of devices
observations’ conditioned by θ is generally referred as pθ.

3.2 Signal model

All devices on the system share a codebook φ = [φ1(t), φ2(t), ..., φM (t)] where 0 ≤ t ≤ T being
T the duration of the codeword φm(t), and {φi(t), φj(t)} are orthogonal signals with unit
energy ∀ij, i 6= j. On this work, preamble and signature are used as synonyms of codeword.
Active devices map their observation Xk to a preamble from the codebook φ. The chosen
preamble by device k follows a TBMA protocol being φm(t) when the measured value is
Xk = m. Therefore, each preamble φm(t) represents a possible observed value m. We denote
sk(t) to the transmitted signal by device k. Note that this only applies to active devices. The
device k observing Xk = m has a transmitted signal given by sk(t) = αkφ

m(t+Dk) where αk
is the complex compensation factor for device k and Dk is the transmission delay introduced
by device k.

All devices’ signals are allocated on the same system bandwidth B and transmitted through
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a wireless fading channel. Doubly block-fading is assumed due to (i) the system is narrow-
banded, and (ii) both communication sides are static (no movement). In other words, the
channel is invariant in time and frequency during the transmission interval. Hence, the channel
affecting device k during a transmission period can be modelled as a one-tap channel hk(t) =
hkδ(t) where hk ∼ CN (0, 1) is Rayleigh fading i.i.d. across all active devices. The channel
coefficient hk is also expressed as hk = |hk|ejφk for later convenience. The received signal at
the fusion-center is given by

y(t) = z(t) + w(t) =
∑
k∈K

hksk(t− tTAk) + w(t) =
∑
k∈K

hkαkφ
m(t+Dk − tTAk) + w(t), (3.1)

where z(t) is the sum of the K received signals, tTAk is the propagation delay of device k,
and w(t) ∼ CN (0, σ2

w) is i.i.d complex Gaussian noise with zero mean and variance σ2
w. The

noise variance is given by the system Signal to Noise Ratio (SNR), which is defined as

SNR =
Pz(t)
σ2
w

, (3.2)

where Pz(t) is the average power of z(t) on interval 0 ≤ t ≤ T .

3.3 Communication protocol

The wireless system follows an information-centric TBMA-based protocol. Unlike traditional
device-centric protocols where the objective is to obtain devices’ individual payload, on TBMA
the objective is to obtain information about the QoI. Therefore, devices do not include an
identifier on the transmitted signal since the objective is to obtain information of the QoI
regardless the identity of the device.

As previously stated, the devices transmit orthogonal preambles which encode the observed
value m ∈ {1, 2, ...,M}. Devices observing value m will transmit preamble φm(t). Therefore,
preambles are used in a non-orthogonal fashion by devices observing the same value. With
the received signals, the fusion-center estimates the value of the QoI, i.e. θ, which conditioned
the measurements made by the devices. The transmitted information about the QoI is given
by the empirical measure, that is, the histogram of the measurements taken by the K devices

p̃ = 1
K

(K1,K2, ...,KM ), (3.3)

where Km =
∑
k∈K 1(Xk = m) is the number of devices that observe m. At the fusion-

center the estimated empirical measure is denoted by ˆ̃p and is computed as

ˆ̃p = 1
K̂

(Rφ1 , Rφ2 , ..., RφM ), (3.4)
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whereRφm is the correlation of preamble φm(t) with the received signal and K̂ =
∑
m∈MRφm .

The correlation of each preamble with the received signal is computed as

Rφm =
∫ T

t=0
φm(t) · y(t)∗dt, (3.5)

where y(t)∗ represents the complex conjugate of the received signal. Note that if y(t) =
φm(t), then Rφm = 1. On the first TBMA approaches [12], [13], the fundamental TBMA model
considered UL time synchronization (Dk = tTAk = 0) and channel coefficients equal to one or
equalised channel (hkαk = 1). Under these assumptions, the received signal is expressed as

y(t) =
∑
m∈M

Kmφ
m(t) + w(t), (3.6)

which under φm(t) orthogonal preambles and absence of noise, it is found that Rφm = Km.
In other words, the estimated empirical measure contains the number of devices that observed
eachm-th value. However, due to the nature of the wireless channels, the channel gains cannot
be considered equal to one, devices have different propagation delays and noise is inevitable.
Those factors can lead to an estimated empirical measure different from the original (i.e.
p̃ 6= ˆ̃p). Therefore, two main factors affect on the estimation of the empirical measure:

• Non-coherent addition of signals due to the channel coefficients

• Time unsynchronization of received preambles due to different propagation delays (also
leading to non-coherent superposition).

Estimation of θ

The family of distributions pθq is known at the fusion-center. In order to infer the value of the
parameter θ, the fusion-center computes the f-divergence between estimated empirical measure
and original observations’ distribution. Numerable f-divergence metrics exists on statistics
analysis [23]. Most well known f-divergences are the Kullback–Leibler divergence or the ξ2-
divergence among others. However, it must be taken into account that the empirical measure
might take probability zero for some preambles. Hence, the most appropriate f-divergence is
the Total Variation (TV). The total variation between two probability distributions a and b
is defined as

DTV (a, b) = 0.5
∑
m∈M

|am − bm|,

where am and bm are respectively the m-th element of the distributions a and b. Note
that 0 ≤ DTV ≤ 1, being DTV = 0 when a and b are the same distribution. In order to infer
the parameter θ, the fusion-center compares the estimated empirical measure ˆ̃p with each of
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the distributions pθq . Hence, by means of the total variation between the estimated empirical
measure ˆ̃p and each distribution pθq , we infer the field parameter as

θ̂ = arg min
θq

{DTV (pθq , ˆ̃p)},

where θ̂ is the estimate of θ. The decision rule takes into account all states θq have the
same probability of occurrence pq.

3.4 Performance metrics

The system performance will be evaluated by means of the error probability Pe defined by

Pe = Pr[θ̂ 6= θ], (3.7)

where θ is the parameter that describes the QoI and θ̂ is its estimated value at the fusion-
center. The computation of θ̂ (explained on previous section) is influenced by the number
of active devices K on the system and the estimated empirical measure ˆ̃p. The number of
active devices has a direct impact on the quantity of information reported about the QoI.
Larger number of active devices facilitates the reconstruction of pθq . For example, if K = 1
the empirical measure would be just one value with barely information about the QoI whereas
with K = 300 the distribution has more samples (in fact, 300) to represent the original pθq .
The other parameter of influence, i.e. the estimated empirical measure, is affected to several
parameters from the system: the SNR, the number of preambles M , the number of states Q
of the QoI and the channel propagation (hk and tTAk). Nevertheless, note that the effect of
the wrong estimation of the empirical measure on the error probability is more severe when
K takes short values.

3.5 Transmission schemes

Three transmissions schemes are designed in order to give a variety of TBMA-based implemen-
tations. Each transmission scheme (shortened as TS) incorporates modifications of parameters
of the signal model that lead to different error probability performances. Table 3.1 summa-
rizes each of the schemes and their implications on the system model. The advantages and
disadvantages of each transmission scheme together with their implementation aspects are
discussed on Chapter 5.

3.5.1 TS1 - Channel and TA compensation

The channel and TA compensation scheme, shortened as TS1, is determined by two facts

• All devices compensate the phase and amplitude of their channel hk. For compensating
the channel, the compensation factor of device k is set to αk = 1

hk
= 1
|hk|ejφk

.
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Table 3.1: Summary of transmission schemes

TS
abbreviation

TS
fundamentals

Channel
compen-
sated?

αk

TA
compen-
sated?

Dk Received signal

TS1 Channel and TA
compensation Yes 1

|hk|ejφk
Yes tTAk y(t) =

∑
m∈MKmφ

m(t) + w(t)

TS2
Channel phase

and TA
compensation

Only
phase

1
ejφk

Yes tTAk y(t) =
∑
k∈K |hk|φm(t) + w(t)

TS3 Uncontrolled
transmission No 1 No 0 y(t) =

∑
k∈K hkφ

m(t− tTAk) + w(t)

• All devices modify their transmission delay Dk to compensate their TA. To do so, it is
set Dk = tTAk . In this way, the propagation delay is counteracted and all transmitted
signals are UL timely synchronized.

Incorporating this configuration to the system model achieves integer forcing of the trans-
mitted preambles at the receiver. This means that the received signal is an integer combination
of codewords φm(t)

y(t) =
∑
k∈K

hk
1
hk
φm(t+ tTAk − tTAk) + w(t) =

∑
m∈M

Kmφ
m(t) + w(t), (3.8)

where Km is the number of devices observingm. As observed on Equation 3.8, the received
signal is a integer combination of preambles with noise addition. This transmission scheme
can be seen as an equivalent to Additive White Gaussian Noise (AWGN) channel with all
devices having same TA. Note that in absence of noise and having orthogonal preambles it is
obtained Rφm = Km.

3.5.2 TS2 - Channel phase and TA compensation

The channel phase and TA compensation scheme, shortened as TS2, is similar to TS1 but
with a slight difference. In TS2 only the phase of the channel is compensated in comparison to
TS1 where both amplitude and phase are compensated. This transmission scheme is relevant
for devices observing deep fading events since the channel amplitude compensation requires
high power consumption. TS2 includes the two following facts:

• All devices compensate the phase of their channel hk. For compensating only the phase,
the compensation factor of device k is set to αk = 1

ejφk
.

• All devices modify their transmission delay Dk to compensate their TA. To do so, it is
set Dk = tTAk . In this way, the propagation delay is counteracted and all transmitted
signals are UL timely synchronized.
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By equalising the phase of the channel, coherent superposition of received preambles is
achieved. However, fading is not compensated and therefore transmitted preambles are scaled
by the amplitude of the channel gain |hk|. Equation 3.9 shows the received signal when TS2
is applied.

y(t) =
∑
k∈K
|hk|ejφk

1
ejφk

φm(t+ tTAk − tTAk) + w(t) =
∑
k∈K
|hk|φm(t) + w(t), (3.9)

3.5.3 TS3 - Uncontrolled transmission

Shortened as TS3, this scheme includes devices which do not compensate neither channel
nor TA. It is referred as an uncontrolled transmission because the devices do not modify the
amplitude or delay of the signal, therefore not controlling the effects of radio propagation.

• The channel is not compensated, therefore being αk = 1 for all devices.

• The transmission delay is set to Dk = 0, therefore signals do not achieve time alignment
at the receiver and the arrival depends on the propagation delay of each device.

By the addition of these parameters, the received signal turns into

y(t) =
∑
k∈K

hkφ
m(t− tTAk) + w(t), (3.10)

It can be demonstrated that if the channel is not equalised but devices counteract their TA,
the system performance is the same because the superposition of the signals is non-coherent
in both ways whether or not received preambles achieve UL time synchronization.

3.6 Adaptation to Narrowband Internet of Things

In order to see how close the system model can approximate to existing or future radio technolo-
gies, hereby we adapt the system model to a real wireless technology. Note that the adaptation
focuses on the physical layer structure, although the use of some features from upper layers
might be also considered (e.g. clustering). The election of the technology is justified by the fol-
lowing scenario characteristics: (i) large number of devices, (ii) with energy-constraints, and
(iii) narrowband signals. Therefore, from the physical layer point of view, a very appropriate
technology is NB-IoT.

NB-IoT has a signal bandwidth of B = 180 KHz. On UL, two physical channel are found:
NPUSCH and NPRACH. We propose the use of NPRACH and specially of the NPRACH
preambles. On the normal functioning of this physical channel, devices start RA procedures
with the transmission of preambles on a given format specified by the NPRACH configura-
tion. If the NPRACH preambles are used with a TBMA purpose, it only implicates another
interpretation of the received preambles.
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The NPRACH preambles are usually organised on sets of M = 12, 24, 36 or 48. For this
work, we consider any M integer value up to 48 preambles, i.e. M ∈ {1, 2, ..., 48}. Taken the
NPRACH preambles structure described on Section 2.2, the system codebook is given by a
set of M orthogonal codewords φ = [φ1(t), φ2(t), ..., φM (t)] shared by the N devices of the
system. Each m-th codeword (or preamble) has the following expression

φm(t) = 1√
T

NSG−1∑
i=0

φmi (ti), (3.11)

which is the sum of NSG symbol groups where 0 ≤ t ≤ T being T = NSGTSG, and φmi (ti)
is the i-th symbol group from m-th preamble which is defined as

φmi (ti) = ej2π(nRASC (i)−NUL
SC 0.5k0+0.5)∆fRA(ti−TCP ), (3.12)

where TSG i ≤ ti ≤ TSG(i+ 1) determines the time instances where the i-th symbol group
is defined, TSG = TCP + TSEQ is the duration a symbol group, and nRASC (0) = m is the initial
subcarrier index which also affects subcarriers nRASC (i) for i > 0 according to the rule explained
on Section 2.2. Rest of the parameters definition can be found in Section 2.2.

Even though the system model does not include clustering of devices, the NB-IoT CE-
based grouping is considered and its implications on the results and on the TBMA protocol
will be further discussed on Chapter 5.
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Performance evaluation

On this Chapter, we discuss the performance of the different TBMA transmission schemes
introduced on the previous chapter. We analyse the influence of TBMA parameters such as
number of preambles or number of states. The results are generated through Monte Carlo
simulations with 10000 independent realizations. For the regime of the results Pe < 10−2, we
consider that the accuracy of the results is sufficient. The simulations have been conducted
with MATLAB R2019b. The performance will be given in function of the number of active
devices K.

4.1 Considered scenarios

The simulation parameters are summarized on Table 4.1. The system SNR is set to 6 dB.
All devices have the same NPRACH preambles configuration: Nrep = 8 and preambles with
format 1, i.e. TCP = 267 µs and TSEQ = 1.333 ms. The use of preambles with format 1 allows
devices located up to 32 km far away from the BS. Devices are physically uniformly distributed
on a cell radius of 32 km. On an actual NB-IoT system, this NPRACH configuration would be
equivalent to devices having same CE level. The implication of having simultaneously different
NPRACH configurations will be further discussed on Section 4.3. By analysing different system
parameters, we aim at studying what are the minimum system requirements to achieve a target
probability of error. For this work, we will consider a error probability objective of Pe = 10−2.

4.1.1 Scenario A - Binary-state QoI

The following described scenario is labelled as Scenario A. We consider a binary state of nature,
i.e. the QoI can take two values/states θ ∈ {θ1, θ2}. Both states have equal probability of
occurrence Pr[θ = θ1] = Pr[θ = θ2] = 0.5. The observations Xk can take M values and have
a conditional probability distribution given by the distributions:

19
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Table 4.1: Simulation parameters

Parameter Value
SNR 6 dB
Nrep 8

NPRACH preamble format 1
TCP 267 µs
TSEQ 1.333 ms

Cell range 32 km

pθ1(m) = pM (M − (m− 1)) if θ = θ1 (4.1)
pθ2(m) = pM m if θ = θ2 (4.2)

where pM = 1∑
m∈M m

. This generates two distributions of descendant and ascendant
probabilities. Note that the distributions corresponds to the quantized observations and could
represent a low temperature or pollution state for θ = θ1 (shorter m are more likely) and a
high temperature or pollution state for θ = θ2 (larger m are more likely). To provide a more
intuitive understanding, Figure 4.1 illustrates the two observations’ distributions on Scenario
A for M = 4. Appendix A contains more illustrative distributions for other M values. In this
case, θ can represent the mean of the observed values. Then for M = 4, the field parameter
could take two values θ ∈ {2, 3}. Another interpretation is just considering two states θ1 and
θ2 as the tendency to measure low or high values of a physical parameter.

The value of M has a direct impact on the distributions’ observations. Large M values
increase the number of quantization levels so that the discrete m values are a closer approx-
imation of the original real-valued measurements. The consequence of increasing M is an
improvement of the Pe due to the increase of transmitted information. This turns M as a

(a) θ = θ1 (b) θ = θ2

Figure 4.1: Scenario A observations’ distributions for M = 4
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relevant system parameter which can be tuned to achieve a certain Pe application-objective
within a certain number of devices. However, there is a trade-off between the limited number
the preambles available on the system and the target Pe. On an optimal implementation, we
want to minimize the number of resources (preambles) and achieve the lowest error probability.

4.1.2 Scenario B - Multi-state QoI

The following described scenario is labelled as Scenario B. The QoI can take Q states, i.e.
θ ∈ {θ1, θ2, ..., θQ}. All states have the same probability of occurrence Pr[θ = θq] = 1

Q . The
observations Xk made by the devices can takeM possible values. For this scenario we consider
M = 12 although it can be generalised for any M . The devices’ observations are distributed
according to

pθq ∼ 1 + B(M − 1, θq
M − 1), (4.3)

where B(n, p) is a binomial r.v. with number of trials n = M − 1 and probability of
success p = θq

M−1 . The addition of "1" to the binomial distribution is to make pθq be defined
on m ∈ {1, 2, ...,M}. Note that our parameter of interest θq = p(M − 1) defines the mean of
the binomial distribution and can take any real value on the interval [0,M − 1] (although we
only consider Q possible values). The selection of values θq is an interesting point and might
lead to an extent discussion. The following lines include a brief discussion of how to choose
θq in order to fairly evaluate the error probability performance in function of Q. For a more
intuitive understanding, let us interpret the QoI as the ambient temperature. In case Q = 2
states are considered, one possibility is to take the most extreme states, i.e. θ ∈ {0,M−1} but
this would correspond with states of very low or very high measured values with generally low
probability of occurrence. Instead, for Q = 2 medium states are the most reasonable choice
to transmit relevant information. For instance, an acceptable choice would be θ ∈ {3, 8}.
The two probability distributions of the discussed Q = 2 cases are illustrated on Figure 4.2.
As observed, by selecting inter-medium states all measured values are covered an relevant
information about the event will be acquired. Note also that with θ ∈ {0,M −1} there should
not be misdetection between states since each observed value can only be mapped to one
possible state.

The distributions pθq correspond to the discrete measurements Xk. Be aware that the
original measurements are usually real-valued and have a different probability distribution.
On distributed estimation, it is common to model the original measurements as Gaussian
distributed with certain mean and variance, where the mean is usually the parameter of interest
(see [11] among others). The quantization of the sensor’s measurements and its implication on
the system performance is out of the scope of this project. In general, the Gaussian distribution
is quantized and the resulting distribution of the quantized observations is a non-symmetric
quantized version of the Gaussian distribution. We consider that the binomial distribution
might approximate to the quantized observations. The advantage of the defined distribution
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(a) θ ∈ {0, 11} (b) θ ∈ {3, 8}

Figure 4.2: Two cases for Scenario B observations’ distributions with Q = 2

on Equation 4.3 is the possibility to tune M and Q. Appendix A illustrates all the considered
distributions for Scenario B.

One of the objective of Scenario B is to see the influence of the number of states Q on the
system performance. This is also a trade-off between how accurate is the information of the
QoI (the larger Q, the more precise information) and the required error probability. Think
that including more states Q implicates that the estimated empirical measure at the receiver
has to be accurate enough to differentiate between one state or another. Being M = 12, we
consider the following Q cases

Q = 2, θ ∈ {3, 8} (4.4)
Q = 4, θ ∈ {1, 3, 8, 10} (4.5)
Q = 6, θ ∈ {1, 3, 5, 6, 8, 10} (4.6)
Q = 12, θ ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (4.7)

4.2 Results

4.2.1 Scenario A

The results when utilising TS1 are shown in Figure 4.3. The evaluated configuration of pream-
bles are M = 2, 4, 12 and 24. The largest number of preambles (M = 24) provides the best
performance among the shown configurations. This proves that increasing the quantization
levels, and therefore the number of preambles that encode the quantized values, provides more
information about the QoI and improves the estimation performance. Nonetheless, on the
regime of Pe = 10−2 this improvement is more significant for short than for large number of
preamble. For instance, with K = 16 the error probability for M = 2 and M = 4 is respec-
tively 0.02 and 0.084, while for M = 12 is 0.097 showing a small improvement with respect to
M = 4. Even M = 24 provides almost same performance compared to M = 12 at K = 16.
The reason is that the improvement obtained by M = 12 and M = 24 is notorious for the
regime Pe < 10−2 showing apparent gains in terms of error probability on that regime. Hence,
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Figure 4.3: Error probability on Scenario A for TS1

short number of preambles are sufficient to achieve the objective error probability when the
channel and TA are compensated.

Figure 4.4 shows the Pe performance for TS2. Similar trends to the performance of TS1
is observed although reaching same Pe values for larger K. As introduced on Section 3.5,
TS2 has similar configuration to TS1 but without channel amplitude compensation. The
empirical measure estimation is affected by the amplitude of the channel which increases the
error probability with respect to TS1. Comparing with the results of TS1 (Figure 4.3), using
M = 2 the Pe = 10−2 is reached with a minimum of K = 46 for TS1 and K = 58 for TS2.
The difference is not significant and supports the use of TS2 due to its advantages regarding
energy savings. Furthermore, with M = 12 and M = 24 the worsening of TS2 with respect to
TS1 is less significant on the regime of Pe = 10−2 .

With respect to the last of the transmission schemes, Figure 4.5 shows the estimation
performance for TS3. On a first sight, readers might notice that only large number of preambles
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Figure 4.4: Error probability on Scenario A for TS2
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Figure 4.5: Error probability on Scenario A for TS3

(M = 12, 24 and 48) are evaluated. The reason is that the channel and the propagation delays
have a severe effect on the Pe performance therefore requiring large number of preambles to
achieve proper results. The error probability saturates for K > 70 in the M = 12 case. The
fact is that with uncontrolled transmissions, no matter how K increases, at some point the
non-coherent addition of signals limits the improvement of the QoI estimation. This saturation
happens in the same manner for M = 24 and M = 48 although on the lower regime of Pe.

To sum up, the main conclusions of the analysis of Scenario A are the followings. The
use of TS1 and TS2 have provided the best performance showing the advantages of including
channel and TA compensation strategies on the communication scheme. Even though TS2
does not incorporate the compensation of the amplitude of the channel, it has shown close
approximation to the performance of TS1. TS1 and TS2 have shown a considerably good
performance for low number of preambles and the use of large quantity of preambles is recom-
mended to achieve very low error probabilities (Pe < 10−2). TS3 has shown the severe effect of
non-coherent superposition of signals requiring configurations with up to 48 preambles. Addi-
tionally on TS3, saturation of the error probability has been observed after a certain number
of active devices.

4.2.2 Scenario B

The election of the number of states Q is a trade-off between increasing the information about
the QoI at cost of worse Pe performance. Figure 4.6 presents the error probability performance
with different Q configurations for TS1, TS2 and TS3.

Starting with TS1, on Figure 4.6 we observe that Q = 6 outperforms Q = 12 because larger
number of states implicates a decrease of the estimation performance. Note that comparing
with Scenario A (M = 12 on Figure 4.3), Pe = 10−2 is reached with only K = 17. For
that case, a binary QoI (Q = 2) was taken into account. By increasing the number of states
to Q = 6 or Q = 12, the minimum required K to achieve the Pe objective is K = 53 and
K = 74 respectively. Using TS2, the performance has similar trends to TS1 but with a slightly
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decrease of performance caused by the non-compensated channel fading. Between Q = 6 and
Q = 12 curves, TS1 has an offset of around 20 devices, while for TS2 curves differ in almost
30 devices. For instance, at K = 50 and Q = 6, TS1 achieves Pe = 0.0115 and TS2 achieves
Pe = 0.0172 which is an insignificant difference. Similarly happens also for Q = 12. Hence,
due to the implementation advantages of TS2, we support the use of TS2 over TS1.

The uncontrolled transmissions of TS3 comes at cost of worsening of the Pe performance
as observed on Figure 4.6. This is already observed looking at the Q values evaluated in com-
parison with TS1 and TS2. While on the other transmission schemes acceptable performance
is obtained with larger number of states, TS3 rapidly decreases the performance with short
number of states. With Q = 2, the target Pe is achieved with only 14 devices. However, with
the increase to Q = 4, the estimation performance saturates around Pe = 0.04 not showing
any improvement with the increase of K. The reason is that with Q = 2, the measured values
m are quite differentiated for each state while Q = 4 increases the difficulty on the estimation
task (compare the probability distributions of Figure A.3a and Figure A.3b). An interesting
appreciation is the difference on error performance for Q = 2 between Scenario A and Scenario
B. In case of Q = 2 and M = 12, both scenarios are at the same comparison level. We have
only evaluated this case for TS3. Under these circumstances, we observe a different perfor-
mance comparing M = 12 case in Figure 4.5 (remember that Scenario A has fixed Q = 2) and
TS3 Q = 2 case in Figure 4.6 (remember that Scenario B has fixed M = 12). While Scenario
B reaches the Pe = 10−2 with short K, Scenario A saturates around Pe = 0.04 and does not
reach the target error probability. Here, the differentiation factor is clearly the definition of the
probability distributions. The two compared cases are illustrated by probability distributions
from Figure A.1c (Scenario A) and Figure A.3a (Scenario B). As observed on Scenario A, all
m values are covered by significant probability for both states whereas on Scenario B both
states are quite differentiated by the m values of each state.
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Figure 4.6: Error probability on Scenario B for TS1, TS2 and TS3
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4.3 Discussion and enhancements

The results from above show the positive impact on the error probability of increasing M

and decreasing Q. Moreover, the increase of K also yields to an improvement on the error
performance, so the results show the minimum required K to achieve a given error probability.
The transmission schemes have shown distinctive estimation performance being TS1 the best
and TS3 the worst in terms of error probability. TS2 provides results on the same order of
magnitude than TS1. In cases where devices are located in small areas close to each other the
performance of TS2 might approximate more to TS1. In those cases, the channel amplitude |hk|
could be correlated among close devices. If all devices have similar |hk|, all received preambles
would be affected by the same factor. Due to the normalization factor K̂ on Equation (3.4),
if all devices are affected by same |hk|, the channel coefficient is normalised and the estimated
empirical measure on TS2 approximates to TS1. The main advantage of using TS2 is the
reduction of the power consumption by not compensating the channel amplitude. Moreover,
the full channel amplitude compensation (as TS1 does) is not always feasible due to power
constraints. A further discussion about the implications of each transmission schemes can be
found on Chapter 5.

Readers might hesitate if the results presented on this chapter correspond to realistic mas-
sive connectivity scenarios. The point here is how many devices are required to consider an sce-
nario as massive. With this regard we point to 3GPP TR 37.868 [4] where mMTC traffic models
are proposed to determine typical values of active devices on MTC scenarios. According to
this document, typical number of connected devices are N ∈ {1000, 3000, 5000, 10000, 30000}.
From the N connected devices, the number of K active devices is determined by the traffic
model. Two traffic models are proposed. Both consider that in a given period Ta all devices are
active (have UL data to transmit). For the activity pattern, Model 1 makes use of an uniform
distribution with Ta = 60 s and Model 2 utilises a beta distribution with Ta = 10 s. Model
1 represents scenarios where devices are active uniformly over a period of time, i.e. in a non-
synchronized manner. Model 2 represents an extreme scenario where large amount of MTC
devices access the network in a highly synchronized manner, e.g. after a power outage [4]. As
an exemplary scenario, we consider the periodicity of transmissions (time between transmis-
sion intervals, i.e. time in which the devices can become active) to be every 1280 ms. This is
a typical value for the NPRACH periodicity [18]. For all the N considered above, the number
of active devices is K ∈ {21, 64, 106, 213, 640} for Model 1 and K ∈ {31, 93, 155, 310, 931}
for Model 2. Note that results depend on the periodicity of transmission and Ta. The error
probability results shown in Section 4.2 comprise K values which might be below some of the
K typical values determined above. Nevertheless, the error probability decreases or remains
the same for larger K under fixed SNR. Hence, the minimum error probability performance
can be extrapolated for larger K.

The results from Section 4.2 have been generated under a fixed SNR of 6 dB. Other SNR
results have been dismissed due to the low influence on the Pe performance. The low impact of
the SNR on the results has two prevalent reasons. Firstly, the good orthogonality properties of
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the preambles provokes that at the output of the correlator an SNR gain is obtained, therefore
increasing the noise robustness of the system. Secondly, the SNR affects to the empirical
measure estimation which has only a greater influence on the short regime of K. Nonetheless,
the SNR has a significant impact for SNR < −20 dB, provoking a notorious degradation on the
estimation of θ. This robustness is another advantage to consider TBMA-based protocols on
massive connectivity scenarios because the low impact of the SNR on the system performance
could be used to reduce the transmitted power from the devices. This fact is a great advantage
for mMTC scenarios where devices are commonly energy-constrained.

Another point to think over is the effect of CE-based clustering on the system performance.
Take into account that the set-up scenario includes devices transmitting with same Nrep, so
equivalently, all devices belong to same CE-based group (see Section 4.1). Following the
preambles structure from NB-IoT (see Section 2.2), Nrep modifies the length of the preamble.
In order to make possible the use of preambles with different length, the set or codebook of 48
NPRACH preambles has to be partitioned on orthogonal codebooks for each CE-group (i.e.
for each Nrep). The Nrep value for each group is normally set up by the BS and its main
purpose is to enhance the coverage of devices on a group. If each group is assigned a different
set of preambles, then having more than one group has no effect on the performance metrics.

In general, TS1 and TS2 provide better performance than TS3 under the same M and
Q configurations. On the contrary, as discussed on the next Chapter, TS3 is simpler scheme
because it does not have power constraints or does not require the devices’ knowledge of their
TA. Motivated by the practical advantages of TS3, alternative receiver configurations should
be taken into account to improve the performance when using TS3. With such purpose,
we propose the use of machine learning algorithms. The application of machine learning
techniques is specially interesting for configurations like TS3 where the channel is not equalised
and/or the TA is not compensated. Machine learning can be used either to estimate the
empirical measure or to directly infer the parameter θ. The uncertainty variables are the
channel coefficients of each device (hk) and their TA (tTAk). The training of the machine
learning algorithm implies a long-term learning process where prior information is gathered in
order to help on the estimation process:

• Likely number of active devices

• Likely TA of active devices

• Likely observed values.

• Likely channel coefficients for active devices

For instance, if devices are measuring the temperature at night on winter period, the
fusion-center does not expect to receive measures of high temperatures. In this way, a previous
learning process could help on the estimation process. Additionally, the learning process is
facilitated by the static conditions of the devices, therefore persevering the same propagation
characteristics. If the fusion-center can compute sufficient statistics of devices’ transmissions,
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machine learning could improve the estimation performance. Hence, we consider machine
learning-assisted solutions as a potential future research line on TBMA systems.

4.3.1 TBMA vs local estimation approaches

TBMA has been studied as a communication protocol to enable centralized estimation of a
field parameter. On the distributed estimation paradigm, local estimation is also a possible
solution for the parameter estimation problem. Although existing work has considered TBMA
as a communication protocol to encode information about local decisions (see [24]), we con-
sider TBMA to be used on estimation approaches involving the transmission of quantized
observations (centralized estimation-based).

Local estimation solutions using NB-IoT preambles raise as an interesting alternative to
TBMA. The physical layer could be used on the same way but with different mapping from
observed values to transmitted preambles and different interpretation of received preambles
at the fusion-center. While in TBMA the preambles encode the measured values, in a local
estimation approach the preambles would encode the hypothesis that is locally decided or
soft-information about the local estimate. Note that the soft-information must be quantized
into M quantization levels, just us that observed values on TBMA. The quantization problem
for either observed values or soft-information of the local estimate has a relevant impact on the
transmission of information and should be considered under a implementation point of view.
The choice of local or centralized strategies is up to debate. Local estimation might be a good
choice in scenarios with a binary hypothesis QoI. However, devices need to be intelligent so
that they have knowledge of the observations distributions to be able to conduct local decisions.
In that case, only two preambles are needed to encode the local decision. In case additional
information aims at be transmitted (for instance quantized Log-Likelihood Ratio (LLR)), more
preambles would be required. Furthermore, when more than two states are defined (Q > 2),
transmitting local estimation information would require from more preambles.

Authors in [9] compared centralized and local detection over multiple-access channels as-
suming that the received preambles are added in a coherent fashion (AWGN channel). Under
individual power constraints and discrete observed data, histogram fusion (a.k.a TBMA) and
soft-information showed better detection performance than hard-information (one bit local
decision quantization). Transmission of hard-information provided good results only when
the SNR is sufficiently low. However, TBMA and soft-information strategies dominates over
hard-information for number of devices sufficiently large. On the context of Cloud-Radio
Access Networks (C-RAN) the use of local and centralized detection has been evaluated in
[10]. On this work both approaches are assessed motivated by the optimization of resources
on fronthaul links. However, the estimation problem is evaluated at the fronthaul link being
the sensors’ observed values directly transmitted through non-orthogonal signatures without
quantization at devices. The effect of the quantization of measured values or local estimates is
not evaluated over the radio interface which is the one that would carry the NB-IoT preambles
that encode the measured values or local estimates.

As a final remark we want to emphasize that election of one strategy or another is not
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a trivial decision. The optimal choice is directly influenced by the quantization function of
either the observed values or the soft-information of the local estimate. Therefore, future work
should address this optimization problem considering the use of NB-IoT physical layer.





5

Implementation aspects

A TBMA-based protocol has been proposed based on the system model described in Chap-
ter 3. Its performance has been discussed on Chapter 4 and the influence of different system
parameters have been analysed. On this work, we also analyse how the defined model and the
taken assumptions come into truth on a real wireless system and to which extent the proposed
approach can be really implemented.

An appropriate evaluation direction is to choose an already existing technologies and anal-
yse what changes or implications have to be considered to develop the proposed TBMA pro-
tocol. Even though current technologies might not completely fulfill the functioning of a
TBMA-based system, the efforts involved on modifying or including enhancements on next
standard releases are more feasible than developing a completely new technology for TBMA.
Nonetheless, the implementation aspects should be considered in the same manner if TBMA
aims at being implemented on any other technology.

NB-IoT is found as the most suitable candidate not only due to its characteristics for
massive connectivity but also due to the standardisation efforts as a 5G technology [7]. Hence,
the following analysis will focus on adapting TBMA to future releases of NB-IoT and to suggest
physical and access layers features of TBMA-based systems for massive connectivity.

5.1 Scenario and wireless channel

As part of the massive connectivity paradigm, this work targets applications which involve a
large number of devices on a wireless system. On massive connectivity scenarios, it is common
to have devices with null or reduced mobility (devices are usually embedded on physical
surfaces, e.g. temperature meters on pipelines) [6]. Due to sporadic transmission patterns,
mMTC communication protocols are usually designed to fulfill the requirements under the
condition of static devices, not including mobility features when the devices are active (e.g.
NB-IoT only conducts handovers between BSs if the device is not transmitting, i.e. IDLE
state). With these arguments, we consider a fair assumption the fact that the devices are
static while being active.

31
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Table 5.1: Implementation aspects of the transmission schemes considered on this work

TS
abbreviation

TS
fundamental

TDD system
and

UL reciprocity
required

Sensitive to
high power

consumption

Previous TA
learning process

required

TS1 Channel and TA
compensation 3 3 3

TS2 Channel phase and TA
compensation 3 7 3

TS3 Uncontrolled transmission 7 7 7

The system model assumes the use of narrowband signals (i.e. the signal bandwidth is much
larger than the coherence bandwidth of the channel). This is achieved by NB-IoT with only
180 KHz bandwidth. Furthermore, NPRACH signals extent only to 45 KHz (see Section 2.2).
Considering a frequency correlation coefficient of 0.5, the coherence bandwidth of a channel is
usually approximated as Bc ≈ 1

5σRMS
where σRMS is the Root Mean Square delay spread of the

channel [25]. Under commonly used Tapped Delay Line (TDL) channel models like Extended
Pedestrian A (EPA) or Extended Typical Urban (ETU) [26], the coherence bandwidth is
respectively Bc ≈ 4.66 MHz for EPA and Bc ≈ 200 kHz for ETU which are larger than 45
KHz. In order to verify this approximation, simulations with multi-path channel models have
been also conducted. We compared the one-tap channel model with EPA and ETU models.
The power delay profile of EPA and ETU models can be found in [26]. TS2 and TS3 were
evaluated on this comparison. In case of TS2, the phase is considered to be a constant value
and it is equalised in the same way for both channel models (see Section 3.5.2). The simulation
results did not show significant difference on the performance and therefore we consider that
one-tap channel model is a fair assumption for our system model.

To conclude with the scenario considerations, it must be taken into account the reduction
of the system complexity to one-single cell scenario. Multi-cell TBMA is a potential line
of future work and has already been studied in [15]. One relevant constraint is the inter-cell
interference due to the non-orthogonal frequency reuse among cells. When deploying a cellular
network, the effect of interference on the performance metrics must be analysed. This effect is
less severe in campus network deployments like indoor industrial plants. Nonetheless, NB-IoT
NPRACH preambles are already aware of the harmful effects of inter-cell interference and add
a pseudo-random hop frequency pattern to decrease this effect (see Section 2.2).

5.2 Transmission schemes

Table 5.1 summarizes the system implications of each of the transmission schemes described
on Section 3.5. The main conditional factors are the channel and TA compensation.
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Channel compensation

The channel is compensated at the transmitter side. Previous to compensation, the UL chan-
nel must be estimated. Two UL channel estimation strategies are proposed: (i) individual
UL channel estimation at the BS for all devices using UL independent reference signals and
feedback from the BS to devices about their individual channels or (ii) individual DL channel
estimation at the devices using DL reference signals and consider UL reciprocity. On the one
hand, the main drawback of (i) is that on presence of large number of devices, the overhead
generated for this process is very high (each device needs independent resources on UL and
DL). On the other hand, on (ii) the process only requires one set of DL reference signals
common for all devices and the individual channel estimation at each device. Nevertheless,
(ii) can only be assumed on behalf of TDD systems since UL reciprocity is required. Some cel-
lular system usually include a Time Division Duplex (TDD) mode. Since Release 15, NB-IoT
supports TDD mode [27]. On this way by using the Narrowband Reference Signals (NRS),
DL channel estimation would be enabled with no modification of the UL or DL NB-IoT frame
structure. The reciprocity between DL and UL channels is also supported by the fact that the
channel time-variation is diminished due to the null mobility of the devices. However, up to
now, NB-IoT does not include mechanisms to equalise the UL channel at the transmitter. As
mentioned, by using the existing physical layer, DL channel estimation and UL reciprocity can
be conducted but modifications on the transmitted signal are required to equalise the channel
at devices.

Full channel equalisation is constrained by the limited power consumption of the devices.
This limitation was already taken into account by existing TBMA work [9], [12], [28]. On
presence of deep fades, the required power to compensate such fades is potentially higher than
the maximum allowed by the battery of the device. Additionally, the system might also limit
the transmitted power to avoid interference. Assuming that the channel amplitude can be
fully compensated is not realistic. Since the power-issues of channel compensation are mostly
related to TS1, three possible alternatives are proposed to original the TS1 [29]:

a) Channel compensation with saturation after certain power value.
Devices compensate the channel up to a certain channel power γ. When the required power
compensation exceeds γ, the compensation saturates to that value. The compensation
factor is then expressed by the following expression

αk =


1

|hk|ejφk
if |hk|2 > γ

1√
γejφk

if |hk|2 ≤ γ

The value of the parameter γ should be determined by the power limitation of the device and
the maximum UL transmitted power defined by the regulation standard. The disadvantage
of this strategy is that if the channel cannot be completely compensated, it might lead to a
wrong empirical measure estimation. Note that this modification could be incorporated to
TS1 and Pe performance is expected to be be laying between original TS1 and TS2 cases.
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b) Switching transmission off in presence of deep fades.
Devices compensate the channel up to a certain channel power γ. If the required power
compensation exceeds γ, the device do not transmit. The channel compensation factor is
therefore

αk =


1

|hk|ejφk
if |hk|2 > γ

0 if |hk|2 ≤ γ

If the number of active devices is sufficiently high, this might be a good choice to save
power. The impact on the Pe performance is given by the reduction of active devices. For
instance, if K = 100 but 10 devices are observing deep fades and switch off, then only 90
devices are effectively active.

c) Only channel phase compensation
Devices only compensate the phase of the channel, therefore not compensating the channel
fading (amplitude). Unlike TS1 a) or TS1 b), the transmitted power does not depend on
how deep is the fading event. Additionally, note that this strategy is followed by TS2, and
even though the fading is not compensated, the Pe performance is comparable to TS1.

Considering that γ = 0.25, Figure 5.1 compares on Scenario A and M = 2 the original
TS1 with alternatives a) and b) for TS1, and TS2. A power constraint of γ = 0.25 implies
that devices compensate up to 6 dB of channel fading. As observed, TS1 provides the best
performance while TS2 the worst. The performance of alternatives proposed for TS1 lay in
between TS1 and TS2. For TS1 b) and due to channel coefficients are Rayleigh faded, the
power constraint causes that 11.75% of devices switch off. In the same way, for TS1 a) only
11.75% of devices are not able to fully compensate the channel amplitude. Since the limitation
only affects to a few devices, it is observed close performance between the original TS1 and
its alternatives. Higher γ would provoke the approximation of TS1 a) and TS1 b) to the
performance of TS2.

The choice of one strategy or another is a trade-off between the power consumption lim-
itation of devices and achieving sufficient Pe performance for the use case. For instance, on
some applications the devices might be embedded on locations with access to constant power
supply and TS1 strategies like a) or b) are feasible. However, on typical mMTC uses cases like
smart agriculture or remote metering, devices have limited power consumption and therefore
reduced energy-transmission turn into a priority choice to consider (e.g. TS2 or TS3). Even
in very extreme energy-limited systems, TS2 should be avoided because the compensation of
the channel phase implicates the constant or periodic process of channel estimation which also
consumes battery.

TA compensation

On TS1 and TS2, devices set their transmission delay to Dk = tTAk in order to compensate
their TA. Be aware that devices need to know how far from the BS they are in terms of distance
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Figure 5.1: Error probability of power-constrained schemes on Scenario A and M = 2 with power constraint
γ = 0.25

or propagation delay. To that end, the system should have been functioning for a long time
and devices should already know their TA (either they computed it or the BS computed it
and communicated to them). NB-IoT provides already methods to determine the TA. On
the normal functioning of the NPRACH, preambles are utilised to start RA procedures. On
this procedure, the BS computes the TA of the device and communicates back to it. If the
devices are static (assumption discussed on Section 5.1), the TA does not change and therefore
devices can keep the TA communicated on their first RA attempt. In case mobility exists, the
device should communicate to the BS about the position modification and start a TA update
procedure.

TA compensation could be avoided if devices are grouped in a small area with similar
distance to BS. In those cases, the TA is approximately the same among devices, therefore the
signals would arrive aligned in time at the receiver without necessity of TA compensation.

5.3 Physical layer

As proposed on Section 3.6, the physical layer of NB-IoT can be used with very few modifica-
tions. In particular, the TBMA implementation only affects to UL channels, and for that, the
NPRACH could be utilised because it contains transmitted signals based on orthogonal pream-
bles. The advantages of using the NPRACH preambles are mainly two: they are narrowband
signals and have low power consumption. These characteristics oppose to RA preambles from
other technologies like LTE where the preambles are based on Zadoff-Chu (ZC) sequences [20]
which have much larger bandwidth (1.08 MHz) and require higher power amplifier back-off,
reducing the efficiency of the power amplifier and out-consuming the device battery life time
[21].

Channel estimation does not require from modification of the physical layer structure. As
previously mentioned, NRS can be used to estimate the channel on DL, and the TDD mode
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of NB-IoT enables UL reciprocity. NRS are included on broadcast and dedicated DL trans-
missions (NPBCH, NPDCCH and NPDSCH). However, channel compensation at transmitter
side is not configured by default on NB-IoT. Looking at the signal model described on Section
3.2, the most relevant parameters introduced by the system model are αk and Dk which are
device-specific. According to the NB-IoT standard [20], preambles are scaled by the parameter
βNPRACH according to the transmitted power (see Equation (2.2)). This parameter is device-
specific and could be equivalently used as αk. On its normal functioning, βNPRACH is used
by the power control mechanism of NPRACH, similarly to TS1 a) scheme, to compensate the
channel power up to certain maximum transmission power based on the DL channel estimation
from NRS [22]. This mechanism can be reused for TS1 a) and modifications for the switching
off of devices could be included in case TS1 b) is used. Additionally, TS1 strategies and TS2
compensate the phase of the channel coefficient at each device. To that end, if the parameter
βNPRACH is considered as a complex coefficient, the phase of the channel could be compen-
sated without addition of new paremeters. Hence, our parameter αk could be substituted by
βNPRACH on NB-IoT standard.

The other parameter, transmission delay Dk, is just a delay introduced by device k to
counteract (or not) its propagation delay (i.e. the TA). The only implication on the transmitted
signal is a modification of the transmission time. TA compensation strategies address the
achievement of UL time synchronization. By default, in the UL shared channel NPUSCH,
signals are required to achieve UL time synchronization to be transmitted in a orthogonal
fashion on the grid of physical resources. On this way, devices modify the transmission time
to make UL signals arrive at the receiver at specific time. In case TA compensation is enabled,
NPRACH signals would incorporate the UL time synchronization characteristic of NPUSCH.

Another fact to highlight is the non-modification of the BS receiver processing. At the BS,
the usual functioning on RA protocol incorporates a bank of correlation operations between
the NPRACH preambles and the received signal. The proposed TBMA receiver keeps same
correlation-based processing and the only implication is a different interpretation of the output
of the correlator.

5.4 Clustering of devices

It is common that in cellular protocols devices are clustered (or grouped) according to specific
guidelines. Depending on each cluster, devices can adapt some parameters of the physical
layer. Clustering can be taken as an advantage on the communication protocol to improve the
radio link, include explicit information or make special requests for a specific groups of devices
(e.g. reduce transmit power). TBMA-based protocols might also take advantage of clustering
either by utilising existing schemes or by introducing an adapted one.
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5.4.1 Existing cellular clustering

On common cellular networks like LTE or NB-IoT, clustering of devices is usually determined
by the quality of the wireless channel, i.e. the coverage level. On NB-IoT, up to 3 CE levels are
defined. Depending on CE level, the devices usually have different Nrep and different codebook
of preambles (see Chapter 2). This existing clustering strategy can be used and taken as an
advantage for TBMA. For instance, devices with high CE level (bad channel quality and/or far
from BS) might consume more power due to the higher number of repetitions. For that cluster,
low-power consumption schemes might be a good option (e.g. TS2 or TS3). Additionally, the
TS1 alternatives a) and b) proposed on Section 5.2 should be also considered. On the other
side, devices with low CE level (good channel quality and/or close to BS) are prone to have
more available power and therefore take advantage of its better Pe performance by means of
TS1 alternatives.

Other advantage of the CE-based clustering is the implicit information contained on the
fact of belonging to a certain cluster. For example, on open environments with high presence
of Line-Of-Sight (LOS) (e.g. rural area on smart agriculture applications), the CE-level is
highly correlated with remoteness of the device. On those cases, and based on that each
cluster utilises a different set of preambles, the fusion-center could estimate the value of the
QoI at different remoteness from the BS.

Although the system model of this thesis does not consider more than one cluster, be aware
that the NB-IoT clustering technique does not affect to the Pe performance. As explained on
Section 2.2, each cluster is assigned a different set of preambles or codebook. The differ-
ent groups can be treated as independent systems with different configurations (transmission
scheme, preambles, number of states, etc.). Hence, several clusters can work in parallel and
the QoI can be evaluated for each of them separately.

5.4.2 TBMA-based clustering

The definition of specific clustering strategies for TBMA systems may result in an improvement
of the distributed estimation. Instead of using the CE-based clustering, a special TBMA
grouping could be used instead. Different group-rules can be defined. For instance, the cluster
criterion can be the distance to BS (or TA). By this means, each cluster represents a group
of devices with different remoteness to the BS. This strategy has some correlation with the
CE-based clustering due to, in general terms, the further from the BS, the worse coverage level.
Nonetheless, by fixing the distance to BS as the group-rule we ensure to group the devices
according to their remoteness. The distance-based clustering provides additional information
about the QoI. Since the fusion-center monitors the QoI for each cluster, information about
the QoI with respect to the distance is also acquired. On Figure 5.2 we depict a scenario
illustration where devices monitor a parameter related to the rain and devices are clustered on
two groups depending on the distance to BS (close or far from BS). As observed, the remote
group observes θ = θ2 (i.e. it is raining) and the closer cluster observes θ = θ1 (i.e. it is not
raining). Thanks to the distance-based clustering, the fusion-center obtains information of the
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Figure 5.2: Illustration of distance-based clustering on the monitoring of a rain-dependent parameter.

rain parameter at each cluster, therefore having implicit knowledge of the distance.
Another alternative would be to make groups measure a different QoI. For instance, a

system with two groups, one could monitor temperature and the other pollution level. This
strategy allows having two TBMA protocols in parallel. Many other rules can be defined to
either acquire additional information about the QoI or to use efficiently the available resources.
In fact, TBMA-based clusters might reuse the physical layer implications of cellular grouping
like NB-IoT. The only required modification would be a different interpretation of the cluster
rule (e.g. distance-based instead of CE-based). The rest of implications can be reused, i.e.
each cluster has a different set of preambles and each group can set a different Nrep.

5.5 Extension to device-centric protocol

TBMA is generally used as an information-centric protocol, where instead of interested on the
individual payload, the system is interested on the information of the QoI. Nevertheless, after
obtaining general information of the QoI, depending on the acquired information, additional
information to specific devices could be requested such as location of specific devices, real-
valued measurements of specific devices, constant monitoring of the parameters of interest,
other QoI, etc.

Therefore, we also consider extensions to device-centric approaches. The use of a cellular
protocol is an interesting choice due to existing communication protocols could be reused.
On NB-IoT, before sending any requested information, devices need to obtain UL resources
through a RA procedure. Be aware that the RA procedure on NB-IoT is conducted through
the NPRACH which we propose to be also used for TBMA. Nonetheless, both RA and TBMA
protocols can coexist on the same physical channel. Figure 5.3 illustrates two possible config-
urations to enable RA and TBMA over the NPRACH. One way to achieve this is to separate
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(a) Time-alternate RA and TBMA (b) Parallel RA and TBMA

Figure 5.3: Illustration of coexistence between RA and TBMA on the NPRACH.

both protocols at different time windows, that is, both procedures are alternated on time. An-
other way is to execute both in parallel by splitting the preambles for both processes. In both
cases, the fusion-center must be aware of the different interpretation of the received preambles
at each time windows and/or set of preambles. Devices could be informed of the RA con-
figuration through the SIB on the NPBCH (as usual) which could also contain information
about the TBMA configuration. In that case, modification on the NB-IoT SIB by including
TBMA-specific fields should be considered on future standardisation processes.

The greatest inconvenient of using RA procedures to acquire further information is that
under high number of devices and the reduced amount of RA preambles, simultaneous RA
attempts might provoke high number of collisions. Hence, we propose two strategies:

I. Acquisition of device-specific information from devices observing m.
The fusion-center might be interest on getting further information from devices observing
a value m or set of m values (e.g. large values of m values which, for example, mean that
the temperature is very high). On those cases, acquiring further information from the
devices (e.g. their location) might be critical on some applications.
The UL data request should be started by the fusion-center by means of a DL message, for
instance, stated on the Downlink Control Indicator (DCI), and requesting that all devices
which observed m should start a RA procedure. The configuration parameters of the RA
could be also embedded on the DCI, defining when and which preambles can be used. If
devices success on the RA attempt, they will get individual UL resources in which they
can transmit device-specific information (e.g. location or another measurement). Note
that this strategy is feasible if the number of devices Km which observed m is relatively
low. Authors studied on [19] the RA success probability for different number of devices,
number of attempts and number of preambles. For instance, with for 3 attempts, 12
preambles and 30 devices on the RA procedure, the success probability is 0.2. When
assigning the resources for RA, these results should be taken into account. In case Km

is considerable large, an attempt probability could be stated on the DCI defining the
probability of a starting a RA attempt of devices observing m. With this probability,
we reduce the amount of devices starting the RA procedure and therefore reducing the
number of collisions.

II. Acquisition of device-specific information from devices on a given area
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If the value of the QoI discloses an exceptional or important situation, the fusion-center
can start a process to get further information from the devices on a specific location or
area. Through a DL message (for instance, on a DCI), the fusion-center must state the
value of the parameters that define the location or the area (e.g. coordinates, distance to
BS or antenna through which the devices are connected). Then, the devices located on
each defined area start RA procedures in order to get UL resources and provide device-
specific information. Note that the devices must be aware of their location or the area.
This strategy is specially relevant if the devices are already clustered according to their
remoteness or location.

In any of the cases I. or II., the request of device-specific information can be done through
the DCI. In case of utilising the NB-IoT technology, the DCI is included on the NPDCCH
and has reserved fields (on the DCI format N1) to make individual RA requests initiated by a
"PDCCH order" [22]. These orders are usually for specific UEs and specify the preamble they
have to use during RA procedure (no collisions happen, also known as non-contention based).
This available design can be reused without modification and with a different interpretation.
For instance and regarding strategy I., the field which normally states the identifier of the
device requested on the "PDCCH order" could encode the device-specific information that is
requested. The field which specifies the allocated subcarrier/preamble for a specific device
(ISC) can be interpreted as the value that the devices had to measure (m = ISC) to start the
request of UL resources. In such way, that if ISC = m, all devices measuring m should start
a RA procedure.



6

Conclusion

This master thesis has studied the use of TBMA for parameter estimation on massive connec-
tivity scenarios and considering system limitations. TBMA has been proposed as a solution
to achieve centralized estimation of a QoI together with savings of UL power and bandwidth.
NB-IoT has been chosen as the most suitable technology for TBMA due to its physical layer
design for massive connectivity. Motivated by these facts, the reuse of most NB-IoT features
for TBMA systems has been considered.

Three transmission schemes have been proposed with the objective of comparing the system
performance under different system configurations. The proposed schemes include alternatives
to counteract or not the non-coherent superposition of signals caused by the wireless channel
and TA of each device. The system model has incorporated the use of the NB-IoT UL physical
layer, with special stress on the preambles from the NPRACH. These preambles have been
used to encode the devices’ observations following the TBMA principle. Two scenario have
been evaluated. On the first, a binary QoI case has been analysed under the dependency
of the number of preambles encoding the devices’ observations. Results showed that short
number of preambles (M ≤ 4) are sufficient to achieve a error probability objective of 10−2

when coherent addition of signals is achieved. However, when coherent superposition is not
achieved by the communication scheme, configurations with up to 48 preambles are required to
obtain error probabilities on the 10−2 regime. On the second scenario, a multi-state QoI was
studied with the objective of analysing the influence of the number of states into the estimation
performance. Results showed that increasing the number of states on the parameter of interest
provokes an increase of the error probability. In both scenarios, the best performance belonged
to schemes with channel and TA compensation strategies. Nonetheless, on scenarios where
devices are located close to each other, their TA can be approximated as the same and TA
compensation is not required to achieve UL time synchronization.

An analysis of the practicalities of TBMA systems has been carried out. Main conclusions
are that TBMA can be deployed using the NPRACH of NB-IoT, only requiring a different
interpretation of the transmitted and received preambles. Additionally, the existing protocol
on the NPRACH (i.e. Random Access) could coexist with TBMA over the NPRACH by ei-

41
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ther alternating them at different time-windows or splitting the available preambles for both
processes. Each transmission scheme implication has been evaluated. Main outcome is that
devices’ power limitation caused by the compensation of channel amplitude can be handled
by solutions like only compensating the channel phase or limiting the maximum compensable
power. In those cases the estimation performance approximates to the full channel compen-
sation performance. Finally, other appreciated advantages of using cellular technologies like
NB-IoT for TBMA are the reuse of clustering and the possible extension to device-centric pro-
tocols to either include implicit information or transmit device-specific information on request.

6.1 Future work

The use of transmission schemes with reduced complexity has great advantages from the im-
plementation point of view. However, this type of schemes suffer from the severe effects of
radio propagation resulting into a deterioration of the estimation performance. Hence, en-
hancements focused on the improvement of these configurations are of high interest on the
extension of this work. As discussed on Section 4.3, we consider as interesting future line the
use of machine learning-assisted solutions to improve the performance estimation of TBMA
systems. Furthermore, local estimation strategies could outperform TBMA-based systems on
certain scenarios and its comparison must be analysed under a NB-IoT implementation per-
spective. Another interesting direction is the extension of the one-cell TBMA system presented
on this thesis to a the multi-cell set up. Continuing with the analysis studied on [15], consider-
ing a multi-cell NB-IoT system that incorporates the TBMA protocol could be a very relevant
research line. Here, we find specially interesting the implication of the frequency hopping
pattern of NB-IoT preambles which includes a pseudo-random hop pattern for repetitions in
order to reduce inter-cell interference. Its effect on the estimation performance of a multi-cell
scenario must be further investigated.
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A

Probability distribution of devices’ ob-
servations

Hereby we illustrate the probability distributions of the observations from devices on Scenario
A and B which are described on Sections 4.1.1 and 4.1.2.

A.1 Scenario A

For the evaluated number of preamblesM = 2, 4, 12, 24 and 48, the observations’ distributions
are illustrated on Figure A.1.

A.2 Scenario B

Figure A.2 illustrates the probability distribution of each θ value evaluated on Scenario B.
Additionally, Figure A.3 illustrates the distribution of the states considered on each Q case on
Scenario B.
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(a) M = 2

(b) M = 4

(c) M = 12

(d) M = 24

(e) M = 48

Figure A.1: Probability distribution of the observations on Scenario A.
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(a) θ = 0 (b) θ = 1

(c) θ = 2 (d) θ = 3

(e) θ = 4 (f) θ = 5

(g) θ = 6 (h) θ = 7

(i) θ = 8 (j) θ = 9

(k) θ = 10 (l) θ = 11

Figure A.2: Probability distribution of the observations on Scenario B for each state θ.
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(a) Q = 2

(b) Q = 4

(c) Q = 6

(d) Q = 12

Figure A.3: Probability distribution of the observations on Scenario B.
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